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ARTIFICIAL WORLDS AND ECONOMICS

David A. Lane*
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In this paper, I describe a class of models, calledArtificial Worlds (AWs), that are designed to give insightintQ a process called emergent hierarchical organization(ERO). I argue that many economic phenomena seem tQ manifestEHO, and so economists might be interested in studying thisprocess -- and in making use of AWs tQ do so. There are,however, some formidable inferential difficulties that willhave tQ be overcome before AWs can become socially acceptableresearch tools.
The paper is organized as follows. Section 1 brieflydescribes ERO. Section 2 introduces AWs and some of theirattendant inferential problems. Section 3 intrQduces twoabstract AWs that address important general prQblems in EHOand then briefly describes an economic phenomenQn, the cominginto being of new industries, in which these problems appearto playa key role. Section 4 describes a particular kind QfAW, classifier systems, that can be used to represent agentsthat are capable of generating complex behaviors in responseto intermittent rewards from an "environment" of which theyare a part. A collection of such agents, engaging in"economic" interactions with one another, produces anotherkind of AW, in ·which such interesting aggregate behaviors asthe formation of bubbles and crashes and technical trading inan artificial "stock market", may arise. Section 5 considersthe idea Qf an Artificial Economy -- an AN that can provide adynamic, nonequilibrium, microfounded account Qf suchaggregate-level or macroeconomic phenQmena as stable growthpaths, business cycles, and Pareto firm-size distributions.

Work on this paper is supported by grants from the National ScienceFoundation and Citicorp. For many helpful conversations around theideas presented in this paper, I would like to thank my colleagues JimDickey of the University of Minnesota and Brian Arthur, John Holland,Walter Fontana and Jim Pelkey of the Santa Fe Institute; mycollaborators Franco Malerba and Luigi Orsenigo of Bocconi Universityand Giovanni Dosi and MarCO Lippi of the University of Rome; and mystudents in the Artificial Worlds seminar at the University ofMinnesota.
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1. Emergent Hierarchical OraaojzatiQo

Many systems, in chemistry and biology as well as in humansociety, appear to have the capabil~ty ~f achieving, overtime, a more and more complex organ~zat~Qn. The prQcessthrough which this organization is achieved, emergenthierarchical organization, typically displays two
characteristic features.

First the Qrganization is hierarchical. That is, thesystems ~re composed of a number of differen~ levels, eachlevel consisting of entities that interact w~th one another.Lower-level entities may actually be cQmponents Qf higher­level Qnes. The higher in the hierarchy is the level, thelonger is the time-scale and the more.extende~ the sp~ce­scale in which it is natural to descr~be the ~nteract~Qnsbetween the relevant entities. For example,

• biological systems include entities and processes atlevels ranging from molecular to cellular to organismic to
ecologic;

• economic activities involve interactions betweenindividual "decision-makers", firms and households,industries, and national economies.

Second the systems appear tQ produce their own order. Theactions ~f lower-level entities are channelled -- in effect,coordinated -- by higher-level structures that themselvesarise frQm the lower-level entities' interactions. FQr
example,

• informal trading networks transform into formally
organized impersonal markets;

• neurons firing in response to sensory stimuli or thefiring or other neurons with which they are connected p:oducepredictable organism-level behavioral responses to ~art~~ularpatterns of environmental activity -- or may even g~ve r~seto action-guiding "concepts".

The order induced by this kind of hierarchical coordinationis never static, since the interactions between higher-levelentities change the environment in which lower-levelinteractions take place, and hence in the higher-levelstructures that develop Qut of them. Thus, the system as awhole is characterized by perpetual novelty at ~ll its
levels.
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2. What are Artificial WorldS -- and What Mjobt We T,earofrom Them?

Artificial Worlds are computer-implementable stochasticmodels, wh'ich consist of a set of "microlevel entities" thatinteract with each other and an "environment" in prescribedways. AWs are designed so that they themselves may, undersome conditions, manifest EHO. As a result, AWs represent anengineering approach to the study of ERO.
The entities built into an AW and their modes ofinteraction may be quite abstract, or they may be closelylinked to objects and relations occurring in some real-worldsystem of interest. In the former case, the AW may be usedto investigate general principles underlying ERO, while inthe latter the AWs may help us to understand how particularaggregate properties of the modelled real-world system dependon the characteristics of the lower-level processes thatunderlie them.
Formally, an AW consists of a set of microlevel entities(MEs), an environment and a dvnamic. Each ME has attributes

and modes of interactions with other MEs. The environmenthas a state.
When two or more MEs interact, their attributes may change.The changes are determined by the MEs' interaction modes. Inaddition, they may depend on the MEs' current attributes andthe current state of the environment. Interactions betweenMEs can also change the state of the environment.
The dynamic, which may be in part stochastic, specifies theorder in which interactions occur. The dynamic also imposesrules that determine when MEs die and when new ones come intothe World (and with what attributes).
The initial conditions of an AW determine a state of theWorld: the state of the environment, a population of MEs', andthe attributes of each of the MEs. These initial conditions,together _with the dynamic of the AW, generate a hjstory -­

that is, a time-ordered sequence of states of the World.(With a stochastic dynamic, of course, the same initialconditions generate a probability distribution over a spaceof possible histories.)
The aim of AW modelling is to discover whether (and underwhat conditions) histories exhibit interesting emeroent

propertjes. An emergent property is a feature of a history
that (i) can be described in terms of aggregate-levelconstructs, without reference to the attributes of specificMEs; (ii) persists for time periods much greater,. than thetime scale appropriate for describing the underlying micro­interactions; and (iii) defies explanation by reduction tothe superposition of "built in" micro-properties of the AW.I

Obviously, what "defies explanation" to one person may be explicableby another. What is required here is a negative assertion by themodeller, to the effect that the aggregate-level property in question isnot deducible from the model's micro-properties by any argument
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For example, imagine an Artificial Econom~ ~n which ME~represent traders exchanging a set of ~ommod1t1es accord1ngto some prescribed rules that do not s1ngle out anyparticular commodity as a medium. of exchange: . the _replacement of a barter system w1th the e~clus1ve use OL oneof the commodities as a "money" would be an emergent property'(see Section 4.5 below). Similarly, in an Artificial Economyin which some MEs produce machines for sale to other MEs whoin turn produce consumer goods for sale to other MEs (whowork for one or the other producer MES), the evolution of astable growth rate for "GDP", or of sector-specific Pareto­distributions for firm size, might be an emergent property
(Section 5).

As these examples indicate, some emergent properties can bedescribed in terms of variables that aggregate over theattributes of many MEs (like GDP), while others refer to"real" higher-level structures (like money). Bo~h g~veevidence of self-organization in the AW -- coord1nat1on amongthe MEs induced by their interactions, leading to systemmeta-stability. More is possible: higher-level "entities"may arise. These entities are compos~d of sets of HEs thatdisplay coordinated patterns of behav10r. They may evenreproduce themselves (Section 3.2) an~ develop modes ofinteraction between one another (Sect10ns 3.1 and 4.4),leading to even higher-level emergent properties. In suchcases, the AW exemplifies ERO.
What can we hope to learn from AWs? We have to begin byconsidering "about what" we can learn. First, the AW itselfmight be the primary target of inferenc~, a~d we ~ight wantto discover just which emergent propert1es 1t man1fests, andhow they depend on the system rules and initial conditions.Second, the AW might be regarded as a model of some real~world phenomenon in which we might be interested. In th1scase, we might want to determine whether (and if so, how)certain "lower"-level interactions in the real-world "cause"higher-level structures and processes to arise -- and howthese higher-level structures and ~rocesses.then cha~ge thenature of the lower-level interact10ns. Th1rd, we m1ght wantto learn about EHO as an abstract phenomenon, investigating

such questions as the following:

• What properties must a system have for EHO to occur?2

SUbstantially shorter than producing that property by run~i~g the,m~d:l.I will discuss later some maneuvers that might lend "publ~c credi.b~l~tyto such an assertion. Notice that the modeller's assertion is notequivalent to the statement that he assigns low a priori probability tothe property manifesting itself when he runs the model: ~fter all, hemay have other reasons than deductive argument for bel~ev~ng thatsystems with the micro-properties he built in to his model tend.toexhibit aggregate-level regularities analogous to the property 10
questionl
2 See Kauffman (1990) and Rasmussen et al. (1990) for some interestingspeculation on this question.
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• Is there a taxonomy of possible forms of emergent
organization? In particular, are all emergent organizational
forms hierarchical?

• How do the properties of emergent higher-level entities
and their interactions depend on the properties of the lower­
level entities from which they arise?

• What kinds of interactions are possible between the
levels of a hierarchically organized system? In particular,
how autonomous are the processes of different levels? Under
what circumstances can the evolution of a system process be
predicted on the basis of observations only of the attributes
of entities at the same level as the process (that is
without detailed information about processes at lower' or
higher levels)?

• What are the dynamical properties of emergent processes?
For example, are "punctuated equilibria ,f (Section 3.2)
generic?

While computer scientists might be interested in an AW for
its own sake, economists presumably would study AWs in order
to get insights into what might be going on in economies.
Whatever the goal, to learn anything useful about any of the
three inferential targets described above, we need strategies
for designing appropriate AWs and for generating and
processing useful data from them. There are some formidable
difficulties standing in the way of this endeavor. I
conclude this section by mentioning four of them:

The need for cQmputer-implementation
AWs are well-defined mathematical models, but it is

unlikely that interesting theorems about their emergent
properties will be proved with tools currently available. I
offer three reasons for this assessment:

First, AWs are designed to be innovatory or open-ended
sys~e~s., Their emergent properties are only meta-stable, not
equ~l~br~a or asymptotic states. By changing the environment
of the lowe:-level entities that give rise to them, emergent
structures ~nduce processes leading to their own
transformation (or demise). As a result it will be
difficult to apply the rich repertoire of mathematical
methods that compute equilibria or asymptotic states and
there is no corresponding methodology for studying the
properties of transient phenomena.

se~ond, emergen~ properties are necessarily complicated
funct~ons of the h~story of the attributes of the ME's from
whose interactions they are formed (if this were not so, it
would be easy to explain them by superposing the AW's micro­
properties, and they would not qualify as emergent
properties!). Since the dynamics of AWs are specified in
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terms of these micro-interactions, it is hard to imagine that
the mathematical description of emergent properties will be
analytically tractable.

Third, it seems to be a plausible (albeit ill-defined)
hypothesis that the capability of a system to produce EHO is
a function of its complexity, either in the attributes or
arrangements of its component entities or in their patterns
of interaction. As a result, the mathematician's ploy of
constructing a highly simplified, tractable model that can be
proved to display an interesting behavior observed in some
more complicated system will not work in the context of ERO
phenomena.

Thus, it seems likely that we will learn about EHO from AWs
only by implementing them computationally and observing what
happens. As a result, we can learn about their emergent
properties only inductively, and our success in that
enterprise will depend on our ability to develop appropriate
statistical tools, for the design as well as for the analysis
of "evolutionary" experiments.

Tdentifyjna Emergent Propertjes
The very nature of emergent properties makes it problematic

for us, as observers of the AW, even to formulate them, let
alone discover whether or not they in fact obtain. Emergent
properties represent innovations in the organization of the
AW, and, to describe them, a new vocabulary is required,
beyond the modelling language used to express the attributes
and interactions of the AW's micro-entities. After all,
emergent properties cannot be compactly expressed in the
modelling language itself -- and, by definition, they "defy
explanation" in terms of the constructs of that language. So
how do we develop the right aggregate-level language to
define -- .and guide our search for -- potentially emergent
properties?

AWs that model a real-world system have a natural
vocabulary to express potentially emergent properties: the
language that describes higher-level patterns and structures
observed in the modelled system. Some3 of these higher-level
constructs may suggest AW analogs that can be expressed as
functions of AW histories, and the words that describe the
real-world constructs may be appropriated to define these
functions. Thus, the modeller can build a glossary that
semantically links higher-level real-world constructs with
particular functions of AW histories. Any real-world

3 But certainly not all. After all, the modeller abst"racts only a
small subset of entities, attributes and interactions to incorporate
into the Artificial World, and only those higher-level constructs for
which it is meaningful to aggregate only over this subset can be
translated as a function on Artificial World histories. The
determination of which higher-level constructs are meaningful in the
Artificial World -- and how -- can be an important exercise for
understanding the meaning and role of these constructs in the real world
system itself.
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phenomenon that can be described by these constructs
translates, via the glossary, to a candidate for an emergent
property of the AW -- provided, that is that it satisfies
the metastability and "explanation-defying" definitional
requi:ements .. Candidates generated in this way might be
descr~bed as "expected emergent properties" of the AW.

"Unexpected emergence" -- an aggregate-level coordination
~henomenon in the AW unmotivated by any real-world analogy __
~s harder to find. This is particularly troublesome for
abstract AWs, which lack a natural real-world reference
vocabulary. In fact, most of the work that goes into
studying. such AN models as Coreworld (Rasmussen et al.,
1990), T~erra (Ray, 1992) and Function-Object Gas (Fontana
1992 -- see Section 3.1 below) consists in poring over '
?u~put~ a~tempting to identify features that display the
r~ght ~~nd of coherence a~d temporal stability -- and then
formulat~ng a vocabulary, w~th both mathematical and "natural
language" variants, in which to express them. Whether this
search can be in some way "automated" is an important
conceptual and practical problem.~

Fjndjng Conditjons of Emergence

When potentially emergent properties have been identified
a~d tr~nslated into the behaviors of appropriate functions on
h~stor~es, the next question to ask is: under what initial
condit~o~s (an~, for stochastic dynamics, with what
probab~l~ty) w~ll they obtain? Developing strategies to
answ~r.this qu:stion is difficUlt, since the space of initial
~ond~t~o~s typ~cally has a very high dimension, and
~nterest2ng emergent properties may well depend on
complicated interdependencies among the system parameters
that define these dimensions.
. Moreove~, th~ rel~vant search space is even larger, because
2t has a t2me d~mens~on. Well-defining the function on
histories that determines whether a particular property
emerges r 7quires a spe~ificat~o~ of.how long that property
must perS2st -- and th2s spec~f2cat~on must always be
somewhat arbitrary. In addition, whether a particular
prop~r~y emerges or not depends not only on initial
cond2t20ns, but on the length of time the history is observed

~ .Bedau and Pack~rd (1992) propose a statistic whose purpose is to
dJ.ag~os? the arrJ.val of an "innovation" into an Artificial World. Their
s~atJ.stJ.7 ~ee~ to depend on a genotype-phenotype distinction: the
mJ.croentJ.tJ.es J.n the World are replicators, whose behaviors are coded by
a genome; selection operates on the coded behaviors; inn~vations in
~ehavio~ depend 00 the intrOduction of a new genotype; and successful
7onovatJ.ons are marked by the initiating genotype's ability to persist
J.n the po~ulation over time. The Bedau and Packard statistic tracks
such perSJ.stence at ~he genomic level. But the generality of this
approach seems questJ.onable: not all higher-level innovations depend
upon t~e persistence of single micro-innovations,' even in biological
evolut70n. To paraphrase the evolutionary perspective persuasively set
forth.J.n BUSS. (19S9): on an evolutionary time scale, genotypes are
tranSJ.ent, whJ.le phenotypic organization is here to stay.
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-- so negative results may just mean that longer observation
times are required, not that the initial conditions are
insufficient to support the emergent property in question.

Callsa] ity and Emeroenr.e
Suppose a potentially emergent property of an AW has been

identified and defined in terms of some function of histories
-~ and, with some set of initial conditions, a history has
been generated and the property obtained. What kind of claim
can be made about what "caused" this property -- in
particular, is it meaningful to think of emergence itself aa
a cause?

To interpret emergence as a cause, we mean to say that the
property formed because of the interactions amongst a dense
network of entities -- and this formation depended on the
denseness of this network, and perhaps the richness of the
structure of the entities and their interactions. Thus, it
is not enough merely to produce the property in the AW from
some particular set of initial conditions: that set would
have to be embedded in a hierarchy of sets, ordered by a
"complexity" measure that increased with the network's
"denseness" and the structural "richness" of the MEs and
their interactions. Emergence as a cause would then require
demonstration that the property fails to appear for low
values of this meaSure -- but does, beyond some threshold
value. 5

Such a complexity measure imposes a structure on the high­
dimensional AW parameter space. Without this structure, it
is hard to see how one could begin to infer about what causes
emergent properties -- and it is equally hard to see how any
causal inference could be made that is independent of the
particular measure used to induce the structure.

Now suppose we know how to infer about emergence-as-cause
inside the AW. Suppose further that we believe that a
particular aggregate-level feature in- the AW is indeed an
emergent property, and we have determined how "complex" the
AW needs to be in order to support the feature's emergence.
Suppose in addition that this emergent property is
semantically linked to some real-world higher-level pattern
or structure: what can we infer about the "cause" of this
feature in the real world?

At the least, we can certainly argue against the necessity
of any alternative explanation that assigns a causal role
either to other real-world aggregate-level features that do

one might suspect that typically, as the complexity ~asure increases
above this value, a second threshold might be obtained, beyond which the
system again fails to manifest the property in question -- just as
turning up the heat applied to the bottom of a beaker of fluid results
first in the formation of convection cells and, at even higher
temperature, their degradation into a regime of turbulence. See
Kauffman (1992) and Langton (1992) for stimulating discussions on this
theme.
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not have analogs in the AW or to attributes of lower-level
"agents" that are not possessed by the MEs of the AN. For
example, an Artificial Economy in which, say, a stable
growth path for GOP emerged from sufficiently rich patterns
of ~icro~interacti~ns would thus argue against the necessity
of 2nvoklng the eXlstence of Nalrasian equilibrium to explain
macro-coordination -- or against the proposition that such
macro-coordination depended upon the assumption of optimizing
agents capable of forming rational expectations.

But we would like to infer more than this. Can we argue
that the real-world aggregate regularity is indeed "caused
by" the entities and interactions we abstracted out of it and
~uilt. i~to the AW, in which the analog of that regularity was
ldentlfled as an emergent property? That is, can we infer
emergence as a "causal mechanism" in the real world, once we
have so identified it in the AN?

Certainly, the AW demonstration ought to raise our
probability that such a mechanism operates in the real world
just as it diminishes the probability of alternative causal '
stories that credit features and attributes not detected or
built into the AN. But the real world necessarily contains
many more entities and interactions than the AN, operating at
levels b::lm:-" at a~d above that of the focal regularity..
Surely, ~t 2S posslble that the causal mechanism hinted at in
the AN is swamped by the additional "turbulence" in the real
world, and some entirely different sets of interactions Or
direct effects drive the formation of the feature of
interest. It is not clear how to determine how plausible is
this possibility -- but of course, the more specific one can
be about just which additional interactions or effects might
provide the alternative causal story, the more plausible it
would appear to be.

3. Abstract AWS and the Lawful ness of EHO

In this section, I describe two abstract Artificial Worlds
Walter Fontana's Function-Object Gas (Fontana 1992) and '
Kristian Lindgren's Evolutionary Prisoner's Dilemma
(Lindgren, 1992). Function-Object Gas is directed primarily
to an exploration of the relation between structure and
function, Evolutionary Prisoner's Dilemma to the dynamics of
evolutionary processes_

While much work remains to be done before AWs yield deep
insight into these two themes, the themes themselves are
fundamen~al to an understanding of many real-world processes.
The sectlon concludes with a discussion of an economic
example of such a process, the coming into being of a new
industry.

3.1 Function Object Gas' Fnnctjon and Qrganization

Function-Object Gas (FOG) is designed to explore how
higher-level structure emerges from micro-level function.
The notion of function on which FOG is based is abstracted
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from chemistry. A chemical entity functions by acting on
other chemical entities to produce new chemical entities.
Similarly, in FOG, all interactions between MEs are of a
single type: a ME A acts on a ME B to produce a new ME A(B)

FOG also abstracts from chemistry the relation between
structure and function at the micro-level. Which new
entities are produced when chemical entities interact are
completely determined by the structure of the interacting
entities: the components from which they are built up and
the way in which these components are arranged. Thus, a
chemical entity is both a syntactic and a semantic object.
Syntactically, it is built up from component objects,
according to well-defined rules. Semantically, its "meaning"
(that is, its function), coded by its structure, is revealed
in the chemical reactions in which it partakes. The dual
character -- syntactic and semantic -- of chemical entities
is most striking in catalysis: the syntactic form of the
catalyst is unchanged, even as it accomplishes its function
of transforming the structure of other chemical entities.

In FOG, each ME has a syntactic representation in terms of
more elementary components. This representation never
changes during the lifetime of the ME. An ME's
representation codes for its semantics, in that the
representations of the interacting MEs determine the outcome
of the-interaction. That is, the representations of the MEs
A(B) and B{A) can be "computed" from the representations of A
and B, for every pair of allowable syntactic representations
A and B.7,8 In FOG, all interactions are doubly catalytic:
neither A nor B is "destroyed" by their interaction. So, A+B
-> A+B+A(B).

Thus, in chemistry and FOG alike, micrp-level function is
determined by micro-level structure. However, this is by no
means the end of the function-structure story: micro-level

6 The interacting entities are ordered: A{B) need not be the same as
B{A). In addition, A(B) is not defined for all MEs A and B.
7 Technically, this is achieved by using Alonzo Church's A-calculus to
represent MEs as A-objects -- mathematical functions in intensional
fo~, that act on other functions to yield new functions according to
nine axioms of construction and syntactic transformation.
Computationally, then, a A-object is both function and data. The
components of a A-object are variable names, the abstraction symbol A,
and three structural symbols (period and left and right parentheses) .
The set of A-objects are defined recursively by the three construction
axioms: variables are A-objects; if x is a variable and M an A-object,
then Ax.M is a A-object; and if M and N are A-objects, so is M{N). The
semantics governing function evaluation are incorporated in the other
five axioms. The A-calculus is computationally complete; every
recursive function can be represented as a A-object. See Barendregt
(1984) for details.

8 For A-objects A and 8, B is not in the domain of A if the computation
implied by the transformation axioms applied to A(B) does not halt. In
FOG, there is a limit placed on transformation steps, and any
interaction whose associated computation exceeds this limit produces no
product.
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function can in turn give rise to bishaL-level structures.
Con~i~er an autocatalytic network: a set of chemical
entJ..tles that (perhaps in the presence of some "food set")
catalyze reactions among its members (and the food set) such
that each m~mber of the network is a product of at leas~ one
of these re~ctions. Thus, an autocatalytic network
~ep:o~uces J..tself -- collectively, not necessarily
J..ndJ..vJ..duall~. Take away Some of its members, and an
~utocatalytJ..c network may "disappear" as one after another of
lts ~e~ers fail to b~ produced by reactions involving
remalolng members; whlle the removal of others of its members
may not mat~er, as they are soon replaced from
trans~orma~J..ons among the "survivors". Thus, even though the
~un~t~onal~ty of a particular chemical entity may be latent
~n,~ts s~ructure, the organizations of chemical entities to
wh~ch th~s funct~onality may give rise are really aggregate­
level or populat~on concepts.

To see how FOG can be used to address the problem of the
emerg~nce of ~igher-level structure from micro-level
funct~on, I f~rst describe how to generate a FOG history.
Start with a population of MES9 (A-objects: see footnote 7)
--,these are typically generated at random. Next, select a
~a~r of these MEs.at random, say A and B, and let them
~nte:act as descr~~ed above. If the computation for A(B)
term~nates, add th~s ME to the population and select another
ME at random and remove it from the population. This dynami
~eeps th~ population size constant. Now iterate the c
~nteract~on-deletion steps many times.10

Th~ population of MEs in the FOG after many interactions
may d~s~lay structure at the syntactic or~the semantic level.
Syntact~c s~ructure refers to common features of the
representat~ons of the members of a set of MEs, For example,
the set of A-objects of the form A· ~ AX AX 1 X,., J.<
. " l.j 1· 2· ... J1,.X i ·
l, exh~b~ts syntactic structure.
. sem~ntic str~cture depends on the production pathways
lnvolvlng react~on products from interactions between members
o~ the set. For example, suppose A, B, C, and Dare MEs,
w~th A(B) = c, B(C) = D, C(D) = A and D(A) = B. Then,
regardless of,the other interactions of these MEs, the set
{A, B, c, D} lS self-majntainjno, in that each can be formed
~rom interactions between members of the set, (This property
lS analogous to the concept of an autocatalytic network) .
Note a~so that {A,B}, {B,C}, {C,D} and {A,D} are all seedjng
~' ~n,that ,the e~tire set can be reconstructed by
lnterac~~o~s ~nvolvlng the elements in each of these subsets
and thelr descendant" products. A set that contains all of

9 There is no (external) environment in FOG.
l~ Note that with this dynamic, FOG interactions are "on average"
s~ngly, not dOU?l~, cata~ytic, since A is removed from the system with
~he same proba?~l~ty as ~t is selected to form a product A(e) for all C
~n the populat~on. '
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the products from interactions between set members is ~.
Closed self-maintaining sets are self reprodpcjng,

Self-maintaining sets are not guaranteed to survive under
FOG dynamics, since MEs are removed randomly from the
population. Clearly, MEs that belong to a self-reproducing
subset with several small seeding sets have a better chance
of persisting in a population that contains that seeding set
than does an ME that belongs to no such subset. One way in
which a FOG population can display semantic structure is if
it can be decomposed into a number of such self-reproducing
subsets. These subsets in turn can have a variety of
semantic structures, which may be represented by means of
interaction graphs, as in Fontana (1992).

So far, there have been no constraints imposed on
interactions in FOG, except for the upper bound on allowable
computation time (see footnote 8) . It turns out, however,
that what higher-level structures form depends crucially on
which interactions are allowed to take place. For example,
some MEs may reproduce themselves (that is, A(A) = A) or
other MEs (A(B) ~ B). Clearly, if the set of MEs reproduced
by an ME A contains A, it is self-maintaining, in a trivial
way. Fontana (1992) reports that, without constraints in
interactions, FOG tends to organize around production
pathways that end in an ME that reproduces every ME in the
pathway. Starting with 1000 random MEs, after tens of
thousands of collisions, the FOG population is typically
closed and consists of one or more self-reproducing subsets,
each with its own identity function.

Thus, to explore a greater range of interesting emergent
structures in FOG, Fontana has begun to investigate what
happens when he constrains the permissible set of
interactions. He does this in two ways, which correspond to
syntactic and semantic constraints. For example, barring
copy reactions is a semantic constraint, since whether a
reaction copies one of the reactants is a function of the
interaction, not just the product of the reaction. In
general, though, it is difficult to formulate semantic
constraints. Syntactic constraints bar interactions that
produce reaction products with specified structure. Thus,
they amount to restricting the FOG population to particular
subsets of A-objects.

To determine which products to prohibit, Fontana has taken
advantage of a peculiar finding: FOG tends to produce
organization on hQLh the syntactic and semantic level. That
is, when the FOG achieves a metastable, closed population,
this population exhibits patterns both in the s~ructure of
their MEs and in their production pathways. ThUS, it is
possible to prevent a particular semantic organization from
occurring by prohibiting reaction products that have its
corresponding syntactic features.

For example, when copy reactions are prohibited, families
consisting of MEs of the form Aij =: AX1 , AX2 .... AXi. Xjr j< i,
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To conclude this discussion of FOG, consider an alternativeway of building a computational system in which entitiesinteract with entities to produce new entities. An obvious

as described above, proliferate. Their syntactic structureis clear. Semantically, according to the transformation
rules of A-calculus, these so-called projection functions
satisfy

Thus, start with, say, Ail: this ME acts on itself to
produce A 2i- 1 ,i , which then acts on itself (or on any other
member of the family) to produce (in turn) A2i- s ,i-s , for s
2, ... , i-I. These i MEs form a simple semantic structure,organized around the cycle Ail -> A2i_1,i ->~i-2,i-l .-. -> Ail'
Note that any member of this cycle is a seeding set for thecycle. According to Fontana (personal communication, 1992),FOG without copy reactions organizes into one or more ofthese families! with transient random selection betweenfamilies (and victory tends to go to the largest) .So the next organizational question to investigate is:what structures emerge when all MEs of the form Aij are
prohibited? Once these are discovered and their syntacticregularities are found! a further constraint can be imposed,and additional organization forms obtained. By continuing inthis way, Fontana is uncovering a hierarchy of increasinglycomplex organizational forms that can emerge in FOG, underincreasingly complex constraints on allowable interactions.He is attempting to associate with each of these forms anunderlying algebraic structure that describes its interactiongraph. The hope is that these structures~will provide thebasis for a mathematical theory of organizational form.Another direction of current research with FOG is tosearch for-the emergence of structures at a higher level thanthe sets of MEs so far described. For example, can self­reproducing sets interact with one another to produce othersets with some metastable structure? An interaction betweensets of MEs can be defined trivially to produce the union ofall the pairwise interactions between elements of the twosets. It is not -clear that this is a useful definition; noris it yet clear what a reasonable alternative might be. Itmay also be necessary to introduce noise into the system, forexample by occasionally perturbing the structure ofindividual MEs or the products of their interactions. Thismay "destabilize" emergent organizations! especially thosethat involve many MEs with complicated production pathways,with the result that the system will support more, smallerstructures that may support or inhibit one another throughtheir mutual interactions. At any rate, EHO is so far aone-level phenomenon in FOG.

Aij (Akm ) = Ai - 1 • j - 1,

= Ak+i-l.m+i-l

if j > 1
if j 1

'5 to decide how many entities you want to have instrategy .... bthe system, say 0, and then randomly construct a~ n- y-~ .lookup table that gives the products of all poss1ble pa1rw1se
interactions. Representing MEs as A-objects has two
principal advantages over this "random lookup" strategy:

e The A-based system is computationally open-ended. 11 You
are not limited to any pre-fixed number of MEs, ~nd you canrepresent any imaginable relation between MEs, .S1nce any
computable function can be expressed as a A-obJect.

e In the A-based system, the representation of MEs codes
for their function. Thus! it is possible to explorerelations between structure and function that have n~counterparts in the "random lookup" scheme .. In part1cula:;!any syntactically correct expression or fam11y of express10nscan be inserted {or deleted} from the system and the effects
on organization monitored. Put another way, the A­
representation provides a true genotype-phenotype~2,distinction -- and a way of experimentally determ1n1ng which"genes" are responsible for which "body plan"
characteristics.

On the other hand, experiments with ~OG alone cannot tellus whether the structure-function relat10ns that they reveal
depend upon the A-representation of its MEs. That is~_ we
need other arguments to determine whethe:; th7 algeb:;a1cstructures of organization that Fontana 1S d1scover~ng aregeneral principles of emergent organization or merelyartifacts of his model {and perhaps reducible to theoremS in
A-calculus itself}. These arguments must -be inductive in
character. Can these structures (and not o~h:r~~) beobserved in other systems! from real.or Art1f1c1al worlds! inwhich functional interaction can be 1nterpreted as the
creation of new entities?13

11 At least in principle: in practice, one must introduce constraintson the number of steps in a computation, the length of the
representation of objects and so forth. .12 Here a self-maintaining set of A-objects represents.. the "organ~sm",with the syntactic structure of each A-object :epresen:ing a gene. Thephenotype is the (semantic) structure of the ~nteract~on graph of the
set and its reaction products_ .13 Fontana and biologist Leo Buss are currently translat~ng so~eorganizational experiments with FOG into the language. of evo~ut~onarybiolOgy, with promising results_ A paper on "Algebra~c Repl~::ato~swandUnits of Selection" is forthcoming. In particular, they prov~de einterpretations of the significance of "life cycles"_
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3.2 Evolutionary PriSOner's pilemma' The DynamicS Of
EYolutionary prOCesseS

Evolutionary Prisoner's Dilemma (EPD) is a simple example
of an evolutionary process. The leading natural example of
an evolutio~ary process is, of course, biological, and it is
far from simple. It is hard to think about biological
evolution now without taking account of its rich
organizational structure, in particular the hierarchy of
descent (replicating genes, interacting organisms, evolving
species -- and beyond) and the economic or ecological
network, with its complex of relations between organisms,
revolving around energy production and exchange14.

The concept of evolutionary process on which EPD is based
abstracts away from all this structure. It starts with the
notion of an entity as a set of attributes. Entities are
capable of self-replication: that is, they can produce other
entities that have the same set of attributes as themselves.
Entities with the same set of attributes form an entity type.
The entities in an evolutionary process form a population,
and the population consists of more than one entity type.
Different entities replicate at different rates, so that the
distribution of entity types in the population changes over
time. 15 The probability that an entity replicates at any
given time depends not only on its own attributes but also on
those of the other members of the population at that time.
Finally, evolutionary processes include mechanisms whereby
entities with new kinds of attributes enter the population.
Frequently, these mechanisms depend upon innovation- '
generating errors that take place in the process of
replication.

Thus, evolutionary processes are characterized by
replication (the reproduction of existing entities),
selection (the differential replication rates of different
entity types), and variation (the generation of new entity
types). To determine a particular evolutionary process, it
is necessary to specify the following elements:

a set of entity attrjhutes;16

a fitness fnoctioo (which may be stochastic) that gives
the replication rate for each entity type, given the current
distribution of entity types in the population; 17

14 For introductions to the literature on hierarchical views of
evolution, see Hull (1988, 1989), Salthe (l985), and Eldredge (1985).
15 Entities may also leave the popUlation, for example by dying.
16 Note that if the process is truly open-ended, 5 is an infinite set.
17 Note that the domain of the fitness function is not the set of
individual entity types, but the set of possible popplations of entity
types. The process described here is coevolutionary: the fitness of
each entity type depends on what other entity types share its world. In
this sense, the population is an "individual", with entities as its
"parts", which itself undergoes evolution. Thus, no "landscape theory"
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variation mechanisms whereby new entity types enter the
populationi and

an ;njtiaJ gOglllgtion of entities.

For example, in population genetics. models ,used in
theoretical evolutionary biology, entlty attrlbutes are
typically defined at the genotypic ~evel. The var~ation

mechanisms include such genetic operators as mutatlon and
recombination. The most problematic.element,in ~hese models
is the fitness function, since relatlve repllcatlon rates
depend on the interactions at the phenotypic level. ThUS, a
genotype's relative replication rate is a function not only
of how phenotype is determined by genotype,1S but also of the
kinds of ecologic relations that diff7rent phe~ot~pes have
with one another (competition, predatlon, SymblOS1S and so
forth). These underlying processes are no~ at all well
understood and so it is impossible to derlve the form of the
fitness fu~ction from first principles. In contrast, if
entities were taken to be organisms (or even spe7ies), the
relevant attributes might be structural or functlo~al

properties that could be directly related to relatlve
replication rates -- but then the variation mechanisms could
be modelled only phenomenologically. IS

The designer of an AW evolutionary process faces two
difficult challenges: how to determine the fitness function
for an arbitrary population of MEs, and how to create
variation mechanisms that can supply new types of MEs
indefinitely. Lindgren solved these problems, and also

that fixes a "fitness function" over the set of entity types can ..
describe the dynamics of the kind of evolutionary pro~ess I am def~n~ng

here since such a "landscape" is continuously defornu.ng as the
dist~ibutions of the entity types in the population change. .
18 Which may of course depend in .part on ~hat .oth~r ~;no~ypes are ~n "
the relevant population, since th~s dete~nat~on.~s env~ronmentally

mediated -- and the other entities in the populat~on form part of a
given entity's environment. .
lS An alternative approach to modelling evolutionary processes beg~ns

by positing two different types of entities: replicators and
interactorS. Replicators have a fixed structure that can be exactly
replicated; variation mechanisms then introduce new ~ypes of ,
replicators. On the other hand, replicators.do not ~nteract.d~rectly

with one another; interactors do. 50 select~on operates on ~nte7actors.

The key modelling problem in this approach is to rel~te-...the repl~~ators

to the interactors: in particular, how do the funct~onal propert~es of
interactorS depend upon the structure of replicators, and how do the
interactions between interactors determine the differential. rates at
which the replicators replicate? The answers to these q~est~ons

deter.mine the analog of the fitness function described ~n the text. Hull
(1988, 1989) argues exhaustively and convincingly for this a~proach to
modelling biological evolution. In EPD, the MEs (or strateg~es, see
text) are both replicators and interactors.
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provided a natural language in which to describe his AW by
building EPD around a version of Iterated Prisoner's Dilemma.

Each EPD ME represents a strategy for playing a two-person
game with two possible actions (say, 0 and 1) .20 This
strategy is the only attribute of the ME. Each generation,
MEs interact with one another in a round robin tournament:
every ME in the population uses its strategy to play a
particular version of Iterated Prisoner's Dilemma against
every other ME.21 The MEs then receive their average reward
from these encounters, and they replicate in such a way that
the expected number of replicates of each ME is proportional
to its average reward. 22 Thus, the fitness function is
determined by the representation of MEs, via the pairwise
interaction rule of the round robin tournament and the
interpretation of the representation as a Prisoner's Dilemma
strategy.

variation in EPD arises from three kinds of replication
~rror, each of which Occurs with a fixed probability,
~ndependently for each transcription event. First, any given
bit may be transcribed incorrectly (here the probability is
per bit transcription, so the greater is the length of the
string representing the ME, the higher the probability of
replication error). Second, the string may get adjoined to a
::opy of itself, doubling its length (for example, "01" is
~ncorrectly copied as "0101"). This error is particularly
important, since it makes the set of possible MEs infinite
so that EPD is potentially open-ended. Because of the way' in
which strategies are encoded (see footnote 20), the offspring

~o Each EPD ME is a string ~f O's and l's of length 2m, where m is an
~nteger. The strategy encod~ng for the ME works as follows: write the
last m moves (in reverse order: the opponent's last move, your last
move, the opponent's next-to-last move'H.); read what you have just
written as a binary number; go to that coordinate of the your strategy
vector -- and play the number you find there.
21 The version has the following features: a) the play is noisy:
that is, if a player's strategy dictates that he playa "0", say, he
plays a "I" with probability p (p is small, and does not depend on the
player or the history of the game); bl the payoff per play is as
follows: if both players choose 0 ("defect"), they each win 1; if they
both choose 1 ("cooperate"), they win 3; otherwise, the one who chooses
o wins 5 and the one who chooses 1 wins nothing; c) the iteration is
infinite, and the reward to each player in the iterated game is average
payoff per play given above.
22 In Lindgren's version of EDP, population size is kept constant and
the proportion of each entity type in the next generati~n is
proportional to its average reward. If the proportion of any entity
type falls below liN, where N is the nominal population size, the entity
type is dropped from the population. In effect, rather than setting the
probability of replication for each ME to be proportional to its average
re~ard, .Lindgren substitutes the expected number of replicates per type.
wh~le L~ndgren's version gains computational efficiency at the cost of
failing to be a true evolutionary process, it shares the qualitative
dynamical features described below with the truly evolutionary
probabilistic replication scheme.
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ME resulting from this error has exactly the same strategic
behavior as its parent. 23 However, its doubled length means
that it takes account of one more previous move than its
parent does -- and a subsequent transcription error in any of
its bits will give rise to a different kind of strategic
behavior than could arise from any transcription error in the
parent type. Finally, the string may be cut in half, with
either half chosen at random as the viable offspring (for
example, "1101" might be incorrectly copied as either "11" or
"01 ") .

EPD dynamics exhibit interesting emergent properties.
First, a succession of stable ecologies -- that is,
distributions of entity types that persist for many
generations -- form, dominate the EPD population, and then
degrade. Both the individual ecologies and their succession
may be regarded as emergent higher-level structures. Each
ecology may possess one of a number of possible
organizational forms: some are dominated by a single entity
type; some have several symbiotic or competitive dominant
types; in others, the dominant role is distributed among a
number of "quasi-species" that share some key features and
differ in others.

Second! the periods of stasis or "quasi-equilibrium" in
which a stable ecology persists are interrupted by shorter
periods of destabilization, which also display certain
characteristic features. During a destabilization period,
the number of entity types in the population fluctuates
rapidly. Frequently, these periods begin with a large
"extinction", in which the number of entity types drops
rapidly. It is also typical that the average reward that MEs
receives drops during the destabilization periods. In EPD,
there is no exogenous "environment", so all destabilizations
are endogenously generated: that is, such phenomena as mass
extinction and structural disintegration do not necessarily
require exogenous causes (like asteroid collisions or
volcanic eruptions!). Destabilization periods end with the
formation of a new stable ecology, in which the leading
entity types were not present (or present only at low
frequencies) in the previous "quasi-equilibrium".

Contingency plays an important role in EPD ecological
succession. While it is easy to compute which strategies
have relative advantages over which, it is not easy to
predict which sets of strategies will dominate the emerging
stable ecologies. Start with the same initial populations,
and quite different successions can occur. For example,
starting with particular values for the system parameters
(growth and error rates) and an initial populatton consisting
entirely of memory 1 strategies! with probability24 about 0.9
EPD will end up (by 30,000 generations) in an ecology

23 For example, 0101 is the same strategy as 01, since its play depends
only on the opponent's last move, regardless of its own previous move.
24 These probabilities, as reported in Lindgren (1992), are of course
obtained as frequencies over many runs of EPD.
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dominated by many different memory 4 entity types that share
common features in their representation (lxxIOxxxOxxxxOOl)
Lindgren argues that this particular ecology cannot be
destabilized by the low-frequency introduction of any
possible entity type. On the other handr with probability
0.1, this ecology will not formr and the system will follow
some other succession r leading to ecologies whose dominant
types have memory lengths of 5 or greater.

These features of EPD dynamics -- a contingent succession
of "quasi-equilibria" interrupted by "catastrophic"
destabilization periods -- resemble the "punctuated
equilibrium" version of the history of biological evolution,
as put forward by Eldredge and Gould (1972) .25 Their
appearance in such a simple evolutionary process as EPD
suggests that they may be generic, at least in some very
general subclass of evolutionary processes. An important
goal for future work with abstract AWs is to try to discover
the defining properties of this subclass and to gain a better
understanding of punctuated equilibrium dynamics. What
characterizes the set of possible stable ecologies? How
large is the set? To which perturbations is a stable ecology
robust -- and which destabilize it? Why are the
destabilization periods relatively short-livedr compared to
the "quasi-equilibria"? Why are destabilization periods
frequently initiated by rapid mass extinctions -- and what
endogenous mechanisms drive these events? What determines
the order of succession of stable ecologies -- and which
successions are contingent and which (at least conditionally
on some predecessors) necessary?

I conclude this discussion by pointing out two important
phenomena in biological evolution that do"not arise in EPD
but could be the targets of future AW research. To explore
these two phenomena would require evolutionary AWs with more
structural possibilities for higher-level organization than
are present in EPD:26

• A key ingredient of the "punctuated equilibrium" story
is that fundamental structural innovation seems to arise only
in brief destabilization periods, not in the intervening
"quasi-equilibria", in which various "implications" of the
fundamental innovations are worked out. Most dramatically,
all existing animal phyla (and many more, since lost)
appeared in the Cambrian explosion, a period lasting less
than two million years, over 500 million years ago (Gould,
1989). That iS r biological evolution seems to produce big
differences first, in quick bursts r and slowly £ills in the
details.

25 Somit and Peterson (1992) contains a very interesting series of
essays on the meaning and scope of punctuated equilibrium.
26 An interesting evolutionary AW that addresses at least the first of
these issues is Thomas Ray's Tierra (see Ray, 1992).
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• In biological evolutionr selection operates at more than
one level at the same time. Thus r within organisms, cellUlar
selection continues to occur (for example r cancers represent
successful selection at the cellular level that can be fatal
at the organism level); and, at the same timer higher level
entities -- like colonies, species r or even ecologies -­
compete for resources r reproduce themselves and generate new
attributes that lead to new colonies, species r or ecologies.
The coexistence of all these processes constrains the
structure and direction of each of them. 27

3.3 Ecopomics EHO and Abstract AWS
In general r abstract AWs are designed to study processes

whereby higher-level structure emerges from lower-level
functional interactions. The two abstract AWs described in
this paperr FOG and EPD r focus on two different aspects of
these processes: the characterization of types of structure
that can arise as a function of constraints on allowable
interactions; and the dynamics of emergent structure.
Clearly, far more exploration of both of these themes, by
these and other abstract AWS r must be carried out before we
can expect to gain useful insights into the lawfulness of ERa
processes. Once obtainedr such insights will serve as a
background against which it might be possible to understand
what is generic and what particular to real-world processes
in which these themes appear to playa role.

Here I offer an economic example of such a real-world
process: the coming into being of a new industry.28 This
process is central to economic growth and development." The
point is not that we can apply Fontana's and Lindgren's
investigations to learn anything interest\ng about this
process. Rather r I want to call attention to those of its
features that appear to exhibit EHO and to argue that these
features are fundamental to understanding what the industry
comes to "be" and to "do". Furthermore, the most interesting
questions that arise about the process in my description
involve precisely the themes that FOG and EPD were designed
to investigate.

The emergence of industrial structure
I begin by sketching what I mean by the structure of an

industry. An industry can be described in two complementary
ways. First, the industry can be identified with the set of
products that it produces. These products are related to each

27 According to Leo Buss (1989), the two phenomena are"~elated: the
bursts of structural innovation coincide with the emergence of a new
level of entity, which has successfully developed mechanisms that
control the selection processes operating on its component entities so
that they do not favor variants that are harmful to the larger entity of
which they are a part.
28 The formulation of this process, sketched here, is described in
detail in a forthcoming paper by the author, Franco Malerba and Luigi
Orsenigo.
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other functionally, by the uses to which they can be put and
technologically, through the processes by which they are'
made. These two kinds of relations induce a structure to the
industry's product set.

An industry" s product set changes over time, as new
products and ways to make them are developed. Since new
products may come from the modification of existing ones (or
their production processes), products also are related to one
another by descent. Descent relations induce a hierarchical
structure on the product set, with higher-level "taxa"
defined in terms of successively more remote "common
ancestors". As is the case in biology, the members of
higher-level families of products also may share attributes,
for example, functional complementarities (such as computers
that share software) or similar production processes (so that
expertise accrued in making one of the family carries over to
making others) .

The second way of describing an industry is as a collection
of economic entities or "agents". These entities have a
variety of structural relations with one another, all
~riented towards . developing, making and exchanging products
~n the set descr~bed above. At least six classes of entities
enter into these relations: producers, demanders, suppliers
financiers, scientists, and governments. While the industry'
has an organization induced by the relations between its
component entities, these entities themselves (firms,
~niversities, research centers, regulatory agencies) have
~nternal structure as well. Thus, an industry exhibits
hierarchical structure. For example, a firm may have
subordinate divisions -- marketing, production, R&D -- and
may also belong to a superordinate entity"like a research
consortium or a trade association.

The entities that make up an industry and the kinds of
rela~ions between them also change over time, as a result of
the ~nteractions between the entities. Thus, the industry's
organization is an emergent phenomenon. Consider, for
example, the case of biotechnology.29 By 1975, research
~unded b~ NIH. and NSF and carried out by scientists working
~n the b~omed~cal. centers of several American universities
had resulted in the development of recombinant DNA and
hybridoma technologies. With financing obtained initially
from venture capitalists (a relatively new kind of financial
entity, swollen with profits from prior investments in
microelectronics), some of these scientists set up new firms
designed to exploit the economic possibilities of the new
technologies. There were some formidable obstaeles to be
overcome, especially in product selection and development and
"scaling-up" production volume.

Lured both by the promise of the technologies and their
potential competitive threats to existing products and
production methods, some older, established firms explored a

29 For an excellent analytic account of the emergence of the
biotechnology "industry" through 1985, see Orsenigo (1989).
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variety of techniques to acquire proficiency in the new
technologies -- ranging from research contracts with
individual scientists and their universities or with the new
biotech firms, to buying into the new firms, to setting up
in-house biotech R&D units. The most active of these
established firms were pharmaceutical companies, which had
long-standing ties to the research centers where the new
ideas originated and thus were well positioned to appreciate
their implications; and companies with experience in
fermentation techniques, which were crucial to "scaling up".
The background and competences of these firms played a key
role in reinforcing the orientation of the new technologies
towards medically-related products and, later, extending them
to agricultural products. By the mid-1980's, the
interactions between the new research-oriented firms, the
pharmaceutical companies, the chemical companies with
expertise in fermentation, the venture capitalists, the
universities, and the government regulators had produced a
distinctive organization of "biotechnology" entities, with a
burgeoning (if still largely prospective) product set.

Connections between entities take many forms. Of course,
some of the interactions between entities take place in
impersonal markets. But many more involve direct and longer­
lasting relationships. Pharmaceutical and chemical companies
fund university research, place representatives on the boards
of smaller, research-oriented companies, send their in-house
researchers to scientific meetings. Producing firms carry
out extensive market research into the needs and preferences
of current and potential customers and use special price and
service incentives to consolidate long-term relationships
with suppliers and buyers. Competing firms cooperate in
various research initiatives, form consoriia to jointly
produce particular products, work together through their
trade associations to lobby legislatures and develop
international markets for their products.

Industry structure is then the totality of the connections
between the economic entities that make up the industry. To
understand how an industry develops, this structure matters,
for at least two reasons:

• Not everyone knows how to do everything. The competence
to perform economic tasks is embodied: particular entities
have acquired skills, particular ways of doing things,
through experience and over time. It is not generally
possible to transfer these skills without immersion in the
experiences that gave rise to them. To solve new economic
tasks, like those that arise in the early days &f a new
industry, it is necessary to patch together solutions to old
problems, as embodied in the entities with the requisite
skills. That is, new economic tasks requires new entities,
which consist of old entities connected in new ways. For
example, the research-oriented biotechnology firms combined
the technological skills of the university researchers with
business plans put together under the auspices of the venture
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capitalists -- and when these firms developed productS r they
formed partnerships with older firms that embodied
competences in production, marketing and regulatory
management.

• To decide what to do next -- what new products to make or
how to improve production processes -- a producer has to
ferret out opportunities, which requires xnowledge outside
the producer's current competence. That knowledge is
embodied somewhere else -- in the tastes or experiences of
users of the industry's products, in the theories or
experiments of scientific researchers, in the factories or
design studios of competitors. And the knowledge can be
obtained only through the connections that already exist
between the producers and the entities that embody it.
Without the mutual experiences that arise from these
connections, it is not even possible to conceive of what one
needs to know about. So who is connected to whom (and how)
determines in part what directions will be explored and how
those explorations proceed.

Thus, the process whereby new industries come into being
links two interdependent processes, both of which can be
viewed as evolutionary in the sense described in Section 3.2.
The first takes place in the product set; in itr
technological and functional relations between existing
products give rise, through the interactions of different
kinds of agents, to new products. The other occurs in the set
of agents, amongst whom new connections create new structures
that embody the solutions to the economic problems posed by
developing, making and using the industry'~ new products.
The kinds of structure to which these linked processes can
give rise and the dynamics "by which they do so ought then to
be fundamental objects of economic inquiry. Abstract AWs can
provide an important modelling tool in this enterpriser
particularly by shedding light on what is peculiarly economic
about these evolutionary processes.

4. Classifier Systems' Modelling Agents thatT.earn

In neoclassical economics r agents are modelled as rational
actors. In this section, I consider a different approach to
modelling agents, and I describe an AW, John Holland's
classifier system, that realizes this approach. I then
briefly discuss two ways to use classifier systems to
"populate" AWs that are expressly designed to ~udy economic
phenomena.

4.1 Ratjonal Actors or Agents WhO Learn?
The concept of rationality that underlies neoclassical

economics is a particular method for handling the problem of
choice. In any given choice situation, rational actors are
supposed to know what they want and what it is possible for
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them to do. While they may be uncertain about what will
happen as a result of their possible actions, they know what
all the possible consequences are, and they understand how
what they get depends on what they do. They are rational,
because they choose to do that which gets them (at least in
expectation) the most of what they want.

There are of course many ways to criticize this concept and
its applicability to "real" economic agents. How can agents
know all these things? Is it plausible (one might say,
"physiologically justifiable") to suppose that, even if they
did have the requisite knowledge, they would have the ability
to compute which act has the highest payoff? And even if
they could act rationally, is there any evidence that real
agents in fact behave in this way?

Here, I want to start with a question more fundamental than
any of these: can we really come to understand economic
action by examining "choice"? We -- you and I and economic
agents -- are immersed in a continuous, ever-changing stream
of information r partly received as signals from the outside
world by our sensory apparatus, partly generated internally
(and recursively) in response to this stream. Before we can
"choose"r we have to select out a small part of all this
information and "attend" to it. Then we have to recognizer
on the basis of the information to which we attend, that we
face a choice situation. Finally, we have to formulate all
the ingredients that choice situations require: what we want
to have happenr what options we have, who the other relevant
actorS are r what consequences we can expect. Only at .this
point does a methodology for handling choice -- rational or
otherwise -- become relevant.

Thus, our actions, even those that are .based upon choicer
depend upon acts (of attention, category formation and
conceptual organization) that logically precede choice and
cannot, without creating infinite self-referential loops, be
subsumed under any choice-based theory of action. To found
economic theory on a choice-based theory of action implies
that the processeS that produce "pre-choice" acts are
irrelevant to what happens when agents actually get down to
the business of making their choices. Or to put it more
precisely, it implies that the actions that economists wish
to study will be the samer however (and by whomever, the
modeller or the "real" agent) these unmodelled processes are
carried out.

Suppose, on the contrary, that these processes matter, in
the sense that the kind of economic behaviors in which agents
engage depend upon the way in which they learn to recognize
and structure choice situations -- or even that~ through
these processes, agents come to develop certain behavioral
repertoires (for example r "organizational routines", as in
Nelson and Winter, 1982), without benefit of "choice"r in
contexts that neoclassical economists simply misidentify as
"choice situations". Then, the descriptive and explanatory
power of economic theory would be seriously compromised by
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~he ver~ definition of the nature of the agents it takes as
lts subJects of analysis.

An alternative is to base economics on a learning-based
theory of action. An agent in such a theory lives in an
"environment", which might of course include other agents,
Structurally, an agent can be thought of as a set of sensors,
a ~rocessor, and a set of effectors. The sensors determine
whlch,states of the environment the agent is able to
percelve, and the effectors which actions into the
environment the agent can perform. The sensors transmit
their percept~ons to the procesSor; on the basis of these,
and a 7et of l~ternal states that it maintains, the processor
sends lnstructlons to the effectors that result in actions.

The key ,to le,arnins: is the notion of a "reward", which the
ag:nt recelves lntermlttently from the environment. The
"alm" of the agent is to act in such a way to receive an
in~rea7ing qua~ti~y of this reward, The agent accomplishes
thls alm by bUlldlng up and refining a repertoire of actions
that tend to lead to reward. The instructions for these
actions are coded in the agent's processor as particular
sequ~nces of transitions of internal states, triggered by
partl~ular patterns of perceived environmental states. A
learnlng-based theory of action describes how this coding
takes place and how the code is stored and executed.

In contrast to a choice-based theory of action, a learning­
~ased th~ory directly models the transformation from
lnformatlon-stream to actions. That is, all the mechanisms
that p:ocess the information stream on the basis of which the
agent lS assumed to act are handled internally to the theory
In principle, agents in such a theory could learn to "choose;'
-- but ~he t~eorY,woul~ be :esponsible for describing how the
agents ~dentlfy sltuatlons ~n which they regard choice as
app:oprlate, how they organlze what they perceive about the
enVlronment into the ingredients of a problem of choice, and
how they develop the methodology that they apply when they go
ab~ut the act of choosing. In other words, "choice" might
arlse as an emergent property in a world (Artificial or notl)
populated by learning agents. .

To provide an adequate basis for economic theory, a
learn lng-based theory of action should provide a
representation of agents and environments rich enough to
support such characteristic features of economic behavior as
the following:

. The theor~ should be able to model complicated, changing
~nvlronm~nts, s~nce real economic agents engage~in complex
lntera?t~ons, exc~anging and transforming many kinds of
?Ommodlt~es (and lnformation). In the course af these
~nter~ct~ons, the agents c~n per?eive much more than they can
cogn~ze. The more restrlcted lS the information that a

lea:nlng-based theory allows its agents to perceive in their
envlranment, the less possibility there is for understanding
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the processes whereby economic agents actually come to know
their complex worlds and their relation to it. 30

It should be possible to interpret the internal states
of agents in the theory so that the agents seem to
progressively "model" their world: that is, to generate
broad categories that describe the world, to develop
plausible hypotheses about the relationships between these
categories (in particular, those that suggest actions likely
to produce reward), and to refine these categories and
hypotheses on the basis of increasing experience.

Agents should be able to build up behavioral repertoires
that include chains of actions that are initiated long before
the agent obtains the reward they eventually yield. The
capacity to build up these chains and then to act on them in
the appropriate circumstances gives an "outside view" meaning
to strategic behavior, since that is how the resulting
behaviors might appear to an outside observer, regardless of
the internal process by which the agent acquired them,

Agents should be able to develop the capacity to plan
future actions on the basis of their expectations of what the
consequences of these actions will be. This capacity
provides an "inside view" meaning to strategic behavior. If
a theory admits the possibility of strategizing, without
building it in, then it can be used to explore the very
interesting questions of when agents actually engage in
strategic action and how they come to do it, especially in
comparison to the answers given by economic theories of
choice.

4.2 Classifier SvStems· An Introdllction

In a classifier system, the agent is essentially just a
collection of basic cognitive units, called classifiers. 31
Each classifier integrates perception, categorization and
action. A classifier monitors the world, on the watch for a
particular constellation of perceptible features. When this

30 While Bayesian decision theory can be interpreted as a learning­
based theory of action, from this point of view it is quite restricted,
since Bayesian agents can only process environmental information about
which they have already "cognized" their opinions {as to its form and
probability}. Moreover, Bayesian decision theory requires that the
categories that agents use to construct their world, their prior
opinions about these categories, and their procedures f~ changing
opinion and taking action on the basis of opinion be "hard-wired" into
the model. As a learning theory in the sense described here -- as
opposed to a theory of choice -- this "hard-wiring" has no prescriptive
(and certainly no descriptive!) justification.
31 See Section 4.3 for a formal definition of a classifier -- the
functional "definition" given in this paragraph (as a cirCWllstance­
specific behavioral propensity) is sufficient for the remainder of this
section .
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constellation is perceived, the classifier "proposes" that
the agent take a particular action.

There are no consistency requirements on the classifiers of
which an agent is comprised. Thus, pro~ensities to act in
different, even contradictory, ways, ca~ coexist inside an
~gent. ,The notion of an agent as a bundle of possibly
lnconSlstent behavioral propensities is a far cry from the
rational prototype of economic theory, whose internal
consistency is guaranteed by a probability distribution over
all possible states of the world, well~defined preferences
encoded in a utility function, and a single principle of
action; maximize expected utility.

There are, however, some advantages to a conception of
agents as inherently inconsistent. First, it is clear that
requiring consistency imposes great computational costs on a
system, as it entails a lot of internal structure and
frequent consistency checking amongst different structural
components. Second, since the world is always more
complicated than our personal experience maintaining
consistency in an agent's behavioral or ~onceptual system
almost necessarily requires a reduction in the agent's range
of possible action, in particular in response to novel
situations. Finally, there is overwhelming evidence that we
humans do in fact maintain overlapping and inconsistent
conceptual systems and associated behavioral propensities32
perhaps because we are the products of an evolutionary
process that rewards behavioral flexibility and is
constrained by computational cost.

An agent that maintains inconsistent behavioral
propensities has to have some mechanism that determines on
which of these propensities it will actually act. After all,
the world itself provides certain kinds of consistency
conditions for behavior: you cannot move forward and
backward at the same time. In classifier systems, this
mechanism depends on a number that is associated with each of
the agent's classifiers, its strength, which registers the
"memory" of how well the classifier has served in the past in
the agent's quest for reward. When different classifiers
propose contradictory actions in the same circumstances, the
agent tends to act upon the one that has the greatest
strength.

So far, I have described an agent 1n a classifler system
statically, as it exists at a partlcular point in time. But
agents learn, ,and learning means changing. Classifier system
agents learn In two ways: the strength associated with each
classifier changes with experience, and old claSsifiers with
low strength are replaced by new ones.3J

32 See, f~r example, Lakoff (1987), especially chapter 18, and Holland,
Holyoak, N~sb~tt and Thagard (1986), which presents the learning-based
theory of act~on underlying classifier systems, along with supporting
arguments from psychology and philosophy.
3~ It is worth .noting that "learning" in classifier systems has a quite
d~fferent rnean~ng than it does in rationalistic theories like Bayesian
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In order that useful classifiers increase their strength
over time, the mechanism that changes classifier strength
must in effect identify actions that lead to reward -- not
just those that produce reward directly, but also those that
"set the stage." Holland introduced his "bucket brigade"
algorithm to solve this problem. The bucket brigade changes
classifier strengths in two ways. First, any classifier
whose action is implemented passes some of its strength to
its _immediate predecessors -- that is, the classifiers that
proposed actions immediately preceding its own, which helped
produce the constellation of features that triggered the
classifier to propose its action. Second, the strength of
classifiers whose action is implemented when the agent
receives reward is increased as a function of the reward
received. In this way, chains of action that culminate in
reward can in principle build up: initially, the last
classifier in the chain gains strength with the reward, which
is passed back link by link as the chain is repeatedly
executed. And as each classifier in the chain augments its
strength, the sequence of actions proposed by the chain as a
whole becomes more and more likely to be executed in the
appropriate circumstances -- see Section 4.4 below.

Two kinds of mechanisms are required to carry out the
operation of replacing old classifiers with new ones. The
first determines when replacements take place. It is
desirable for mechanisms of this type to recognize situations
in which the agent "needs" new classifiers. For example,
some mechanisms proposed in the literature trigger
replacement when the world presents features that no existing
classifier recognizes, while others introduce new classifiers
that serve to link the actions of pairs of classifiers that
have been activated in sequence. 34 ~

The second type of mechanism constructs the new
classifiers, and here it would be desirable for the new
classifiers to plausibly improve the prospects for the agent
to obtain reward. For this purpose, Holland proposes the use
of genetic algorithms, which build new classifiers by

learning theory. In the rationalistic view, the world is composed of
definite objects, properties and relations, and "learning" is the
process whereby an agent forms a mental model of the world that
correctly describes these features. Learning in classifier systems is
about acquiring circumstance-specific behavioral propensities that
function together to produce reward. That is, the agent is learning how
to act in the world, rather than how to describe it. In the process,
the agent mayor may not develop descriptive categoriest causal theories
and so forth; and even if he does, there is no presumption that these
categories and theories match some objective features "out there", nor
would their worth to the agent depend on whether or not they did so.
See winograd and Flores (1986) for an extended critique of rationalistic
learning and decision theories.
3~ The intuition behind this so-called Triggered Chaining Operator is
that, logical fallacy to one side, sometimes "post hoc" is "trying" to
imply "propter hoc"!
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combining parts of existing high-strength classifiers. 35 Theidea, based upon an analogy with the success of sex (that is,meiotic genetic recombination) in biological evolution, isthat useful classifiers work because they are composed ofgood "building blocks", either in the features of the worldthat trigger them or in the actions they recommend -- andthat trying out new combinations of these building blocks ismore likely to produce useful new classifiers than is anykind of random search through the space of possibleclassifiers.
At first sight, an agent in a classifier system seems quitedisagreggated. One might well wonder whether such an entitycould possibly display attributes that we usually associatewith the human beings or institutions that function as agentsin an economy. For example, will a classifier system agentappear to outside observers to have an "identity" -- that is,to manifest predictable behavioral regularities over broadcategories of circumstances? Can a classifier system agentdevelop "points of view" -- internal models of the world inwhich it functions? If the answer to either of thesequestions is "yes",36 then it would be reasonable to regardthese properties as emergent phenomena in classifier systems,driven by the ability of agents' learning mechanisms toinduce a "match" between the agents and their world thatendows agents with a coherence that is in no sense "built­in" .

Indeed, a classifier system can be interpreted as anevolutionary process, with classifiers as replicators: Thereplicator dynamics are given by the bucket brigade, withrelative strength representing relative frequency ofreplicators of each classifier type, while the geneticalgorithms function as variation mechanisms. In this view,the agent is an evolving population of replicators -- butselection of replicators is a function of their jointeffects, through actions carried out at the agent level. Inthis respect, the classifier system agent is similar to thepopulation of strategies in Lindgren's EPD, and it is perhapsthen not so surprising that structure and coherence at thelevel of the agent should evolve, or that they shouldmanifest themselves in the agent's behavior.
In section 4.4 below, I will review some evidence that, atleast in relatively simple instances, classifier systems canexhibit such emergent phenomena as chains of linked behaviorsand "mental models" that categorize and provide causalexplanations for features that appear in the agent's world.Indeed, with a little additional structure, cla~sifier systemagents may even engage in a form of strategic planning.

35 See Goldberg (1969) and Booker, Goldberg and Holland (1969), both ofwhich provide good introductions to the literature on geneticalgori thms .
36 See Section 4.4, where I argue that both these questions may beanswered affirmatively.
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Like the A-calculus, classifier systems are computat!onally
complete. In addition, they hav~ two particularly des~rablecomputational efficiency propert~es:

• None of the processing algorithms -- class~fieractivation, bucket brigade and replacement algor~thmsimpose heavy memory requirements on the system.. ~ll theinformation that has to be retained about class~f~ers areincluded in their representations and their strengths. It isnot necessary to "remember" any descriptions of ~hecircumstances in which a classifier prop?sed act70n or whathappened as a result; in particula:, n? ~nformat~on about thejoint actions of classifiers is ma~nta~ned by the system.

• Much of the information processing in all the proces~ingalgorithms can be carried out in parall~l. For example, ,~~classifier activation and the bucket br~gade, each class~f~eracts as its own "processor", to determine whether the featureconstellation it monitors obtains and to pa:s on str7ng~h toits predecessors respectively. Similarly, ~n the pr~n7~pa~genetic algorithm, pairs of classifiers undergo recomb~nat~on
independently of one another.

4 3 speCjfyincr a Classifjer System
. Formally a classifier system is a discrete-time AN thatmodels a l:arning agent and the environmen~ in whic~ theagent lives. The current state of the env~r?nment 7s

represented by a vector, one component of wh~ch reg~sterswhether or not the agent receives any reward in the currentperiod -- and if so, how much. The othercompo~ents code forvarious features of the agent's world, as perce~ved by theagent Since the environment is represented as the agent .perceives it, the agent's sensors are impli7itly modelled ~nterms of the features registered in the env~ronmental state
vector. 31

,The state of the environment changes accord~ng to aspecified dynamic, which may depend upon current ,and pastenvironmental states and the agent's current act~on. Sincethis dynamic describes how the agent's actions change theenvironmental state, the agent's effectors are alsoimplicitly modelled, through their actual effects.The agent's processor is represented by two structuralfeatures: a behaviQral repertoire, which determines the setof possible actions the agent can take, and a message board,which records the agent's current internal sta~e in th7 formof a list of messages. The behavioral reperto~re cons~sts ofthe set of all the MEs in the classifier system, These MESare called classifiers. Each classifier consists of two

31 The agent is presumed to have access to the current state of theenvironmental vector. As a result, the question"of the fidelity of theagent's perception does not arise here. Of course, this issue has to beconfronted when the rnodeller constructs the environmental state dynamic.
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symbol strings, the condition and~ strings (say A and B
respectively), along with a label identifying the classifier
and the value of a numerical attribute, the classifier's
strength. All classifiers have the same number of symbols in
their representation, say n. 38

The classifier (A,B) is interpreted as a behavioral rule:
IF the conditions specified by A are satisfied by the current
state of the environment and at least one of the messages
currently on the message board,39 THEN take the actions
specified by B. There are two kinds of action: external
actions, which change the state of the environment, and
internal actions, which send a message to be posted on the
message board. 40

The contents of the message board in any given period
consist of a list of messages sent to it in the previous
period, along with the label of the classifier that sent the
message. Each message on the list either does or does not
satisfy any particular classifier's condition string. It is
both computationally necessary and makes good modelling sense
to assume that there is an upper bound to the number of
messages that can be posted in any period on the message
board.

Which actions the agent actually takes in a given period
depends upon the current contents of both the behavioral
repertoire and the message board, as follows. First, each
classifier's condition string is checked against the current
environmental state vector and the messages currently on the
message board. Note that this checking operation can be
carried out in parallel, with each classifier "processing"
each of the available messages (including the "message" coded
into the environmental state vector) and determining by
which, if any, of these it is satisfied. The classifiers
that are satisfied by at least one of the messages are then
eligible for activation (see footnote 39).

Next, a subset of the eligible classifiers are selected for
activation. It may not be possible to activate all of the
eligible classifiers, for two reasons. First, the action
strings of different classifiers may dictate changes to the
environmental state vector that are mutually inconsistent.
This inconsistency has to be resolved in some way in order to
assign a definite value to the environmental state vector for

38 Generally, the bits represent values of the sensors, internal states
and effectors. If these values are binary, the symbols corne from the
set IO,I,lt}, where t in a condition is interpreted as '~?on't care" -­
that is, disregard the feature represented by any bit whose value is t.
The specificjty of a condition string is the number of non-I symbols it
contains.
39 In most implementations, each classifier actually has two condition
strings, and both must be satisfied before the classifier's action is
eligible for execution. In this way, internal and environmental
conditions may interact to trigger particular behavioral responses
(hence the conjunction "and" in the text).
40 A single classifier may produce both types of action.
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the next period. Second, if more classifiers send messages
than the message board can hold, some mechanism must
determine which of these messages get posted. In either
case, a competition between the relevant set of eligible
classifiers determines which of them actually execute their
actions. The rules of the competition vary from one
implementation of classifier systems to another, but the
basic idea is always the same: the greater is the strength of
a competing classifier, the more likely it is that its action
will be executed.~l

The strength of a classifier whose action is executed can
change in three different ways. First, it must pay for this
right with a (fixed) fraction of its strength. This payment
is distributed amongst those classifiers whose posted
messages in the previous period satisfied the conditions of
the winning classifier. Second, if after all the acts are
executed, the environmental state indicates that the agent
has obtained a reward, then this reward is shared out to
increase the strength of each of the winning classifiers.~2

Third, if classifier posted a message on the message board,
it has the chance to gain strength in the following period,
in the form of payments from those classifiers whose
conditions its message turns out to satisfy (and which
themselves win the right to execute their actions). In
addition to these "bucket brigade" strength changes, some
implementations of classifier systems impose a small strength
tax every period on all classifiers in the behavioral
repertoire, in order to expedite the replacement of useless
classifiers.

Implementations of classifier systems use a variety of
different mechanisms to replace low strength classifiers.
Most systems replace a fixed fraction of classifiers at
regular intervals. Generally, classifiers are deleted with
probability an inverse function of current strength. In
addition, as described in section 4.2, it is possible to add
event-dependent triggering conditions and algorithms for new

~1 Typically, the competition is probabilistic, with the probability
that a given eligible classifier will be selected proportional to some
increasing function of its strength. Sometimes, other attributes of the
classifiers besides their strength affect their probability of
selection. These include specificity (the number of different features
of the environment or internal state that are "checked" by the condition
string) and support (the number of different messages on the board that
satisfy the classifier's condition string). Both of these measure,
though in different ways, the extent to which a particular classifier is
"tuned" or adapted to the particular circumstances of the agent and the
environment. The more specific is the satisfied condition, the more the
classifier "exactly fits" the particular situation; while high support
indicates a fit of the classifier to other behavioral elements in the
agent's repertoire.
~2 Note that each classifier whose action is executed receives a share
of the reward, whether or not its action had anything to do with the
agent's obtaining the reward. The sorting out of "causal" from
noncausal actions takes place statistically, over time.
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classifiers tailored to the triggering events. For example,
when no classifier's condition is satisfied by the current
set of messages, the so-called Cover Detector Operator
constructs a new classifier whose condition string is
satisfied and whose action string is chosen in some random
way.

The most important general algorithm for constructing new
classifiers is recombination, a genetic algorithm. To
implement this algorithm l select two "parents" from the
current behavioral repertoire, with selection probability
proportional to strength. To produce two "daughter"
classifiers, first copy each parent. Next, choose two
position indices (integers between 1 and n inclusive), and
exchange the symbols in the copied classifiers between these
two positions. The two classifiers that result from this
operation are the daughters. One of the two daughters is
then chosen as the replacement classifier, with strength
initialized as some function of the strengths of its parents.

In summary, to construct a classifier system, one must
specify the following ingredients:

• symbol string representations for the environmental state
vector and for classifiers;

a dynamic for the environmental state vector;

versions of the activation, bucket brigade, and
replacement algorithms;

an initial population of classifiers.

4.4 Classifier Systems· Emergent properties
At the end of Section 4.1, I listed some criteria for an

economically useful learning-based theory of action. In
particular, the agents in such a theory ought to be able to
construct "mental models" of their world, to build up
repertoires of temporally-linked behaviors that culminate in
reward, and to plan future actions based upon expectations of
consequences. In this section, I discuss some work that
suggests that classifier systems can produce emergent
properties satisfying each of these criteria.

Categori es and detan It hierarchies
The world presents itself to us as a ceaseless succession

of sensory stimUli. To form our mental models of the world,
we have to endow it with a set of objects, properties and
relations, in terms of which we reason, develop causal
hypotheses, plan our actions. The process whereby we
construct this set, from the raw material of sensory stimuli
and the changes in our subcognitive "internal states" they
trigger (and, recursively, from the elements we have already
constructed), is a process of category formation.
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How we form categories, and what structure the resulting
categories come to have, are difficult and important
psychological and philosophical problems. 43 At first sight,44
it might appear that the categories we use to describe the
world are "natural" -- that is, they merely reflect the
structure of the world itself and hence can be defined as a
set of necessary and sufficient conditions on perceived
"states of the world". 45 However, there are deep reasons why
the idea that there can be a simple isomorphism between the
structure of the world and our mental models of it fails 46

and with it, the classical conception of categories as
mirrors-of-the-world. In addition, there is abundant
evidence that the categories we use to describe the world are
not reducible to sets of "states of the world" and in fact
exhibit complex internal structure. 47 As we shall see, these
features also characterize the principal structures that
represent categories in classifier systems, defa)llt
hierarChies.

A default hierarchy (DR) is a set of classifiers I whose
condition strings differ in their specificity.48 The most
general classifiers in the hierarchy establish "default"
values for the category that the DR represents. These values
may be overruled or modified by some of the more specific
classifiers at the next level of the hierarchy -- and so on l

down the hierarchy.
For example I consider a category that we could call "things

to avoid". A DR representing this category might include a

43 See Lakoff (19B7) for a stimulating survey of recent research on the
process of category formation and its profound psychological and
philosophical implications, many of which challenge the foundations of
neoclassical economics. Lakoff stresses the importance of the
experiential and biological bases of categori~ation. His analysis is
supported and extended by the evolutionary and neurophysiological
arguments of Gerald Edelman (see Edelman, 1992, for an introduction and
references) .
44 Which, in the history of philosophy, lasted a long time -- from
Aristotle to wittgenstein!
45 Note that if categories actually had this structure, then any
category X could be expressed as a simple disjunction (over different
states of world) of rules of the form "If [state AJ then [category Xl"
-- and thus would be directly expressible in a classifier system.
46 See, for example, Lakoff (lgB7}, chapter 15, for a discussion of
Putnam's Theorem, which establishes the internal inconsistency of
objectivist semantics.
47 For example, our categories typically display prototype effects
that is, some instances of a category are consistently ~garded as more
"typical" or "central" than others (for example, a robin is a more
central member of the bird category than is a penguin; and blue is a
more central color than is violet). Prototype effects are inconsistent
with the classical conception of a category as a set of objects with
membership criteria defined by necessary and sufficient conditions on
SOme attribute set.
48 That is, the number of non-# symbols in their condition-strings; see
footnote 3B.
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general classifier of the form "IF a large vehicle is moving
towards you THEN turn and move quickly out of its path". ~9
This classifier establishes a good general policy for
avoiding traffic accidents on city streets. However, if you
want to travel by'bus, it might be good to have an exception
rule of the form "IF you are waiting at a bus stop and a bus
moves towards you THEN wait where you ere". These classifiers
might in turn be supplemented by the even lower-level
exception rule "IF you are waiting at a bus stop and a bus
moves towards you and fails to slow down THEN turn and move
quickly out of its path."

In a default hierarchy, even though the component
classifiers may contradict one another, they actually work
together to define complex categories efficiently. Good
general classifiers benefit the system of which they are a
part, because they cover many possible situations and produce
an appropriate action for most of them. On the other hand,
more specific exception classifiers, which generate better
actions in the situations their condition-strings match, can
accumulate high strength. As a result, they tend to win
bidding competitions in these situations against the general
classifier whose action theirs contradicts, particularly when
bidding rules favor classifiers with higher specificity.
This does two good things for the system. First, it leads to
appropriate actions in these situations. Second, it protects
the valuable general classifier from losing strength, by
preventing it from winning bidding competitions and
consequently paying out strength, in situations where it is
unlikely to gain strength by producing an action that results
in reward. As a result, it is possible for all the members
of a DH to maintain relatively high strength values, which
increases the probability that the DH will persist inside the
classifier system. ThuS, for example, without having to
maintain a lot of specific rules that cover every imaginable
interaction between you and large vehicles, a two-rule
default hierarchy will still allow you to avoid being run
over and to catch the bus when you need to.

Notice that DHs represent categories implicitly: the
"meaning" of the category is distributed among all the
classifiers that make up the DH representing it. This fact
has two important consequences. First, it is possible for a
category to "function" but have no "name" -- that is, no way
to refer to it inside the classifier system. Second, the
"meaning" of categories can change over time. New classifiers
are always being generated by the system's replacement
operators, and some of these new classifiers witl function
interactively (competitively or cooperatively) with

~9 Note that this classifier links the recognition of a category
instance to an appropriate behavior. This pragmatic orientation is a
general feature of classifier system categories. A classifier.system
supports categories not just to "name the world", but because it has to
act in it. Those categories that help the system obtain reward are the
ones that are reinforced and consequently persist and ramify.
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classifierS in the DH. As a result, the "meaning" of the
category represented by the DH will change, in the sense that
new situations will be recognized as instances of the
category or new actions will be taken when certain instances
are recognized. Of course, such changes in the "meaning" of
categories corresponds to experientially-based learning by
the agent that the classifier system represents. 50

Categories can also be referred to explicitly in classifier
systems, through the use of tags. A tag just corresponds to
a particular symbol substring, for example "001" occurring at
the 6th through 8th position of a condition or action string.
Tags can name categories. Using tags, the system can support
classifierS that recognize the category named by a tag, say B
(IF state A THEN IBt, where fBt is a string with the tag B
and all other positions "don't care"), and others that take
appropriate action when the system has recognized the
category (IF aBc THEN action C, where aBc is satisfied if
some B-recognizing classifier has posted its message the
previous period, and perhaps some additional conditions,
represented by a and c, are met). In this way, categories
can link directly to other categories, and "abstract" mental
models can be represented in the classifier system. Because
they require specialized subsets of classifiers for
recognition and response, tagged categories have more complex
structure than their untagged counterparts, but DRs are
equally suitable for both representation tasks.

So far, I have described how categories can be represented
in classifier systems. The question of real interest, of
course, is different: will DHs that represent categories
actually~? In general, this is hard to prove: not
only must the classifier system produce the DH -- but we, as
observers, have to recognize that it did so! In one of the
most impressive of the relatively few studies addressing this
critical question, Riolo (1989a) provided a strong case that,
in some circumstances, DHs in fact emerged in a particular
classifier system.

Riolo investigated the performance of a classifier system
that detects 8-bit binary vectors and must determine which of
four categories they belong to. The highly nonlinear
function that determines the "real" categories is, of course,
unknown to the system. The system is rewarded whenever it

50 A third consequence of the distributed "meaning" of categories
represented by DHs is that they share many of the attributes that recent
psychological research has established for our categori~~. For example,
not all instances of a category represented by a DH have the same
membership status, since different instances trigger different
classifiers in the representing DH, with different ensuing xding
competitions and outcomes. As a result, for example, some kinds of
instances may always be recognized as belonging to a category, while
others may be accorded membership sometimes and sometimes not. Hence,
classifier system categories give rise to prototype effects -- see
footnote 46. For many more examples, see Holland, Holyoak, Nisbett and
Thagard, 1986.
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achieves a correct classification. 51 Starting with a randomset of 100 classifiers, Riolo's system was able after 30,000trials to correctly classify the input vector over half thetime. By "interpreting" the high strength classifiers in thesystem and analyzing their interactions, Riolo was able toshow that the classification was accomplished by means ofcategories represented by DHs. It is worth noting that someof the interactions between the general rules and theirexceptions in some of these DHs were subtle; expressing thecategories represented by these DHs in English clearly aninappropriate language for this world -- would be quitedifficult!
Riolo's work not only provides strong evidence that DHsrepresenting categories can in fact emerge in classifiersystems, but it also gives some insight into conditions underwhich this is likely to happen. For example, bidding rulesthat favor more specific classifiers turn out to be necessaryto maintain DHs in the system (Riolo, 1987b), as doprovisions that prevent the random removal of high strengthclassifiers (Riolo, 1989a). Whether DHs will emerge in morecomplex classifier systems like those that might be used tomodel economic agents -- and whether we will be able tointerpret the categories they represent if they do -- remainquestions for future research.

Classifier chains and strategjc ar.ri~n

Viewed from the outside, agents -- firms, chess players,urban racoons foraging fOr food -- appear to act .strategically when they carry out a sequence of separate butlinked actions that culminate in a favorable outcome. Seenonce, the action sequence might appear co2ncidental. Themore it recurs in circumstances which turn out similarly wellfor the agent, the more we would tend to regard the agent andthe behavioral sequence as "strategic" -- particularly if wehad seen the agent initially respond in different ways to thekinds of situations that later trigger the sequence, thenengage in bits and pieces of the sequence, and finally put itall together and repeatedly act it out in the appropriatecircumstances.
Classifier system agents are capable of this kind ofstrategic action. Linked chains of classifiers can emerge,such that each successive classifier acts to bring the system

51 Note that a perfect solution to this problem is possible -­obviously, with 256 separate classifiers, one for each \~tate of theworld"; not so obviously, with only 17 classifiers, by taking advantageof the structure of the encoding function. As such, it is a verydifferent world than the one we -- or interesting modelled economicagents! -- inhabit. Clearly, the larger is the set of classifiers inRiolo's system, the less incentive there is to achieve a "compact"categorization by maintaining general rules in a .DH. Conversely, thesmaller the classifier set, the more "pressure" on the system toorganize i~s categories efficiently -- and so the more likely it is thatDHs might emerge.
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closer to reward and also sends a message that triggers theaction of the next classifier in the chain. The system canmaintain these chains -- and they can be assimilated intolonger sequences, that either begin temporally even furtherfrom the eventual reward, or end by producing even morereward for the system (see Wilson, 1985, Riolo, 1987a,
Robertson and Riolo, 1988, Riolo, 1989b).For such chains to emerge, the classifier system must beequipped with special bidding rules and replacementoperators. In the next several parag:aphs, ,I descr~b7 howlinks between classifiers are accompl1shed 1n class1f1erchains and review some of what is known about the conditionsunder which classifier chains can emerge.

The links in a chain of classifiers are forged by means oftags. To see why tags are necessary, consider the followingexample. Suppose AI, A2, A3 are classifiers of the fOrm "IFthe WOrld is in state Si THEN change it to Si+l" (i = 1,2,3)Moreover, suppose that the classifier system gains rewar~when the world is in S4. Then, if the world starts out 1n
Sl, and our three classifiers fire sequentially, the worldends up in S4 and the system gets reward, which all goes toA3. What about the other two classifiers, who set the stagefor A3? So far, they get nothing. In fact, they lose,because in order to execute their actions, they have to winbidding competitions and payout their winning bids to their"suppliers".52 Thus, this "chain" (so far unlinked exceptthrough its "function") will not last very long.Now suppose we modify these classifiers in two ways. First,suppose Al and A2, in addition to changing the state of theworld through the system's effectors, also post messages inthe form of tags, say Bl and B2 respectively. Second,
suppose that A2 has the tag Bl and A3 the tag B2 in theircondition strings. 53 Through these tags, Al is now a
"supplier" of A2 and A2 of A3 -- and as a result, strength ispaid out down the chain, from A3 to A2 and A2 to AI. In thisway, reward won by A3 will eventually result in an increase
to the strengths of both its predecessors. 54

52 In this simple case, their suppliers are just the detectors, whichposted messages identifying the successive states of the world. Itturns out in general a bad idea to payout bids to detectors, forreasons perhaps clear from this trivial example!
53 Formally, this requires that they have two condition strings, as
described in footnote 39 above. ."
54 Higher-level representations of chains can also be achieved bytagging an entire chain, in addition to the link-by-link tags describedhere. This sort of tagging essentially makes the chain into a category__ organized diachronically, in contrast to the synchronic cat~gories.described above. In this way, the system can refer to the ent~re cha~n,"mobilizing" it into action as a unit -- or terminating its executionbefore completion, should circumstances warrant. Research has not yetbeen carried out on the conditions under which such higher-level
structures can emerge.
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Evidence suggests that tagged links between classifiers are
unlikely to develop by chance -- at least at a fast enough
rate to generate functionally useful classifier chains
(Robertson and Riolo, 1988). As a result, "strategic"
classifier systems require a special mechanism, called a
Triggered Chaining Operator (TCO), to bind together
classifiers that plausibly might function usefully as part of
a classifier chain. The TCO creates a pair of coupled
classifiers in the following way. First, it selects a
classifier B that was active and experienced a net strength
gain in period t -- and another classifier, A, that was
active in period t-l. So far, there is no relation between A
and Bi the idea, however, is that A's action in period t-l
~ have helped set the stage for B's strength gain in the
next period. So the TCO creates two new classifiers, A and
B, which are joined by a tag (in the action string of A and
the condition string of B), but otherwise identical to A and
B. Through the tag, A triggers B.

If there is any benefit to the system in the connection
between A and B, A is essentially volunteering its services
-- while A is paid for its efforts by B's bid. As a result,
A has a much better chance of staying around, and the system
does better as a result. On the other hand, if there is no
benefit to the connection, B, with its additional triggering
requirement of A's tag, will not fare well relative to Band
will soon disappear from the system -- and without its income
from B, so will A.

The story is not complete yet: why should B prosper
relative to B? After all, B is triggered whenever B is
and sometimes when it is not. What if there are other
favorable situations for B -- or if B is only active after A?
In either case, B has no obvious advantage over B. If the
action of A or some other stage-setter is necessary for B's
success, then the overall system suffers if B (and other
linked versions of B) cannot supplant B. B is free-riding on
the stage-setters it requires for its reward, and as their
strength declines, so does the system's opportunities for
reward -- not to mention Bls as well.

This is a serious problem, because unlinked classifiers
like B have to precede linked classifiers like B in the
system -- they are the building blocks out of which long
chains are constructed. Thus, by the time the linked
versions come onto the scene, via TCO, the unlinked versions
are already established and tend to have relatively high
strength. Unless classifiers like B have some bidding
advantage over classifiers like B, the prospects for building
up long action chains is not bright. Several solutions to
this problem have been proposed in the literature. For
example, it is possible to bias bidding competitions towards
classifiers that appear to fit the general context better -­
that is, are supported by a greater number of the messages
currently on the message board (see footnote 41). This gives
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B an advantage over B whenever A is active, since A supports
B but not B.

Riolo (1989b) presents striking evidence that these .
mechanisms work. He worked with a classifier system des~gned

to negotiate its way through a 4-1evel, 16-state feed-forward
network with reward possible only when the system entered
one of ~he four possible fourth-level states .. Without TCO,
the system learned how to proceed from the thlrd-level states
to the fourth-level reward state, but essentially nothing
more. With TCO and two mechanisms designed to solve the
"free-rider" problem described in the last paragraph, 55 the
system performance greatly improved, through the emergence
and maintenance of effective classifier chains that guided
the system from each first-level state of the network to the
payoff state. 56

T.ookahead and strategic planning
Suppose some classifier system agents actua~ly had the .

capabilities described in the last two subsect~ons. That ~S,

they could form categories that described useful features of
their world, and they could generate chains of actions that
tend to culminate in reward. would such agents count as
rational actors, in the sense described in Section 4.1?

To answer this question, first recall how rational actors
decide what to do. They begin by recognizing that they are
in a choice situation. Next, they determine their possible
courses of action and forecast the consequences of each of
them. Finally, they choose the course of action that .
promises them the most favorable outcome.

Now, how might our idealized classifier system agents
behave? With their ability to categorize,~ they could come to
recognize situations in which it would be appropriate to
activate one of a number of their chains of actions.
Moreover, they would "choose" which of these chains to
activate on the basis of the relative strengths of the

5S One was the inclusion of support in bidding, as described in the
text. The other was a modification in the way the genetic operators
deleted classifiers when adding new ones to the system -- only
classifiers that had submitted a bid in the current period were eligible
for deletion. This modification served to limit the number of copies of
unlinked "free-riding" classifiers, which otherwise tended to swamp the
newer linked versions in bidding competitions.
S6 Negotiating the network with transitions chosen at random yields an
average score of 150 per three-transition trial; perfect performance
yields the maximum payoff per trial of 1000. With TcO,~the.system

achieves an average score of around 400 after about 3000 tr~als, and
does not improve much thereafter. With the modified bidding and g~netic

rules described in the text and in footnote 55, the average score Jumped
to over 600 after 3000 trials and then continued to increase, reaching
nearly 800 after 12000 trials. One additional modification, designed to
"encourage" the formation of chains that travers~ less frequently
encountered paths achieved further improvement, producing an average
score over 900 after 12000 trials. This last modification extends the
idea of the Cover Detector Operator, described in Section 4.3.
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chains' constituent classifiers, which of course reflect theagents' experience of the chains' relative benefits-- andhence their "expectations" of the chains' benefits in thecurrent situation.
These two descriptions sound quite similar. However, theymask a key distinction in the way in which the two kinds ofagents form their expectations of benefit from a particularcourse of action. Classifier agents look backwards, sincethey base their expectations on classifier strengths, whichaggregate over every past experience with the relevantaction. In contrast, rational actors look forward: startingfrom the current state of the world, they envision whatconsequences will follow if they take the action underconsideration -- until they reach some end-state whose valuecan be determined. Typically, they have to consider morethan one end-state for each possible action, since the futuredepends on other contingencies than the current state and therational actors' actions. When this is the case, theyevaluate the benefits of taking a particular action byaveraging over the benefits of the different possibleconsequences of that action.

This might not seem to be such a big difference, since,after all, rational actors have to base their scenarios forthe future on what they have learned from the past. But thisis misleading: the difference between forward- and backward­looking strategies is indeed profound. In particular, theforward-looking strategy requires two capabilities that ourclassifier system agents so far lack: .

• Rational actors need to generate explicit predictions offuture states of the world, and to do so they must havemethods for storing information about how these states havechanged in the past in response to their own actions. Incontrast, classifier system agents do not predict futurestates of the world explicitly. Moreover, it is not clearhow classifiers that were designed to predict would survive,since a classifier's strength accrues only with respect toits action's usefulness in obtaining reward, not with respectto how well it predicts changes in the state of the world.

• Rational actors have the capability of operating in a"putative mode", in which they run their predictive modelscounterfactually to discover what the future may hold forthem (that is: IF the world~ in state A THEN take act Band the world would enter state C; IF the world~ in stateC THEN ... ). In contrast, in classifier system~ there is noputative mode: every action always results in a real change,either to the state of the world or to the systems' internalstate; and any action changes the strength of the classifierthat proposes it, through the system's bidding rules.

Both Holland (1990) and Riolo (1990) have recently shownhow to design classifier systems that can operate in the
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putative mode. Such systems require surprisingly fewmodifications of the basic classifier system architecture.Moreover all of the required modifications can be carriedout with~ut violating the fundamental principles ofclassifier design, inclUding parallel processing and local
memory storage.

In order to express what happens in the putative mode, tworepresentation problems have to be solved. First, it isnecessary to distinguish between "putative" and "real" statesof the world. Riolo solves this problem efficiently, with a
single~bit tag attached to all messages t~at re~er t? statesof the world' the value of the bit establ1shes 1n wh1ch ofthe two mode~ putative or real, the state is meant toobtain. Seco~d, the system must support classifiers thatexpress predictions of future states of the world ..Here,Riolo uses classifiers of the following "F+A" (predJ.ction +action) form: IF the world is (or were -- depending on thecurrent mode!) in state X THEN take action Y And the worldwill be in state Z. In the real mode, this P+A classifierspecifies an action (Y) and predicts that the next state ofthe world will be C which mayor may not turn out to becorrect. In the putative mode, however, the classi~iergenerates a putative action (Y again) -- and determlnes the
next putative state of the world (C) ,57 /'

Next, the system needs rules that detetmin~ wh~n it entersand leaves the putative mode. For example, R1olo s systementers the putative mode in response to messages about thestate of the world received from its detectors, 56 and itleaves it either when some action reaches a threshhold levelof support or when "too much" time has elapsed (in which caseits next "real mode" act is determined by a biddingcompetition). In particular, if a sufficiefoltly well­supported action is available, the system s1mply actsotherwise, it goes into the putative mode to "decide" what to
do.

Once in the putative mode, the system can use P+Aclassifiers to explore the future consequences of itscurrently available "real mode" acts. Here, the crucialdesign question is how to choose between these acts on thebasis of this exploration. The difficulty is that the worlddoes not provide reward in the putative mode. There are avariety of possible solutions to this problem. For ex~mpl~,the system could predict in which states of the world J.~ w111obtain reward and then use a simulated reward as a bas1s forits choice. The system must then of course distinguish

57 Clearly, it is important to supplement the system with replacementalgorithms that generate a sufficient supply of such structuredclassifiers when needed. See Riolo (1990) for examples.
56 And recognized by special classifierS that post messages declaring"putative" states of the world, in response to messages from detectorsor from "prediction" classifiers. The preceding footnote also holds forthis type of classifier.
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between classifier strength that reflects Iaal reward and alocal, putative mode strength augmented by simulated reward. 59
The final key design problem is how to make the systempredict accurately. For example, Riolo's system must keeptrack not only of how useful P+A classifiers are, but howwell they predict what happens next. Strength serves for thefirst of these tasks, but for the second, Riolo introducedyet another quantity associated with each c~assifier. Thisquantity, which measures the classifier's predictiveeffectiveness, only pays attention to the prediction part ofa P+A classifier's action. It is updated every time theclassifier is activated in the real mode, by averaging itspast value with an indicator variable that is 1 if theprediction is correct, a otherwise. A P+A classifier's bid(in either mode) is an increasing function of~ its

strength and its predictive effectiveness.
Riolo (1990) provides convincing evidence that thesemodifications work. In three different task domains, themodified system comes to learn enough about how its worldbehaves to predict the consequences of its actions and toplan its actions accordingly -- and, finally, to achieve ahigh level of task performance. Thus, at least with respectto problems of the complexity of maze-learning and navigatingaround obstacles, classifier system agents appear capable ofstrategic planning -- and hence rational action. Moreover,in Riolo's experiment, some interesting cognitive featuresemerge. For example, the more the system masters aparticular task, the less time it needs to spend planning howto carry it out. That is, in these systems, planning is aresponse to unfamiliarity and its consequent uncertainty.Given a sufficiently regular world, the need for planning isself-limiting. 60

59 Riolo uses a version of this idea, in which the predicted simulatedreward is represented implicitly. He associates a second, "local"strength with each classifer. In contrast to "real" strength, "local"strength changes in the putative as well as in the real mode; its valuein a particular execution cycle of the putative mode reflects the "real"strengths of the classifiers it activates, directly or indirectly. Thesupport that determines which "real" action to take depends on the"local" strength of the classifiers associated with each of the possibleactions. In the putative mode, then, "local" strength is passed fromclassifier to classifier by a variant of the usual bucket brigadealgorithm. In addition, the "local" strength of unused classifiers isadjusted so that it comes to reflect the classifier's ".i!;ctual" strength.60 This is consistent with a large body of psychological researchcontrasting the performance of human experts with novices. For example,expert clinicians typically generate ~, not more, conjectures in thecourse of a diagnostic consultation than do medical students orresidents, and they use less data to distinguish among the conjecturesthey do generate. From this point of view, the function of the"putative mode" activity of strategic planning is to facilitate theprocess Whereby agents come to generate the categories and associatedchains of action that guide their "real mode" behaviors. When the
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As both Holland and Riolo acknowledge, there is a lot ofroom for improvement in their system designs. For example,the systems' predictive capabilities do not ~et ~ave muchstatistical sophistication. In particular, In Rlolo'ssystem, every prediction is a~out the "entire" state of ~heworld and is either exactly rlght or exactly wrong -- nelthervery useful features in a complicated world .. ~n addition, itwould be very desirable to construct a clasSlfler system thatcould function in more than one task domain and developpredictive models based on appropriat~ categor~es for each ofthem. Again, particularly for economlC model I lng, thereought to be more than one kind of "reward" that agen~s canobtain from their environment, and it would be good lf theycould develop the ability to establish preferences amongstthese different rewards. But these opportunities forimprovement should not obscure what has already beenaccomplished: classifier systems represent an approach tomodelling agents in which agent "identity" and evenrationality can reasonably be regarded as emergent
properties.

4.5 Economjc Modelljng with Classifjer systems
In this section, I will briefly describe two AWs that applyclassifier systems to economic problems. The microentitiesof both of these AWs are classifier systems, which representeconomic agents. ThUS, these AWs have a built-inhierarchical structure, since their microentities arethemselves AWs. Interesting properties emerge at both -levelsin this hierarchy: as a result of their interactions witheach other, the individual classifier system agents come totake on coherent "identities"; and an ecology of agentsforms, with aggregate-level pattern and structure.

Repeated Wicksell triangles and the emergence of money
Marimon, McGratton and sargent (1990) constructed an AWbased on classifier system agents, which implements a multi­period Wicksell triangle economic environment introduced byKiyotaki and Wright (1989). This environment is populated bythree different types of agents, who produce, exchange andconsume three different types of goods. Each of the agenttypes can produce exactly one type of good (different for thedifferent types) and gains positive utility only by consuminga singler different type of good (again different fordifferent types). Thus, trade is necessary to satisfy wantsin this environment.
At the beginning of each periodr each agent helds one good.Agents are randomly paired with one another, and each agentmust make two choices. First, he must decide whether or notto exchange his good with the one held by the agent with whomhe is paired. If both agents decide to trade, an exchangetakes place. At this point, each agent decides whether or

process is successful, explicit planning is no longer necessary -­"plans" are implicit in organized actions.
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not to consume the good he now holds. If an agent consumes
his good, he immediately (without cost) produces a
"replacement", whose type of course depends on his type' s
production capability. Thus, regardless of whether or not he
decided to consume, at the end of the period each agent again
holds one good. Before the next period begins, the agents
must pay a storage fee, which depends on the type of good
they are holding.

The accounting that underlies decision-making in this model
trades off utility gains from consumption against storage
costS. 61 Agents clearly might want to trade either for the
type of good they like to consume or for goods with lower
storage costs than the one they currently hold. In addition,
they might conceivably want to speculate by obtaining and
holding a good that they hope will bring them a "profit" in
subsequent period trades that is sufficient to offset a high
storage cost in the present period. What strategies agents
will actually pursue -- either rational agents trading in
equilibrium or classifier agents learning how to act -­
depends on a complete specification of the parameters of the
environment: the production functions (that is, which agent
types produce which good types), the agent type-specific
utility functions, the relative storage costs of the
different good types, and the proportion of each type of
agent in the environment.

Kiyotaki and Wright assumed that the agents who populate
this environment satisfy the usual rationality assumptions,
and they calculated Markovian Nash equilibria for a number of
particular specifications of the environment. 62 In contrast,
Hariman, McGratton and Sargent (hereafter MMS) use classifier
systems to represent their agents. Their"primary interest
was to discover whether these classifier system agents would
learn their way into the Kiyotaki-Wright equilibria -- and,
in situations in which there was more than equilibrium, which
one would the classifier agents prefer. Their hope was that
models with classifier system agents could support and even
extend standard neoclassical theory, by providing a mechanism
for arriving at equilibria, a tool for finding equilibria
when direct calculation is intractable, and a way of

61 Of course, this accounting is explicit in the Kiyotaki and Wright
models, but only implicit (and distributed amongst all the classifiers
that constitute a particular agent!) in the Marimon, McGrattan and
Sargent AW. The description of strength changes in the~text below shows
how these quantities affect the strengths of individual classifiers.
62 These equilibria of course depend on the model specifications. In
particular, for some specifications, Kiyotaki and Wright found
equilibria in which the good with lowest storage cost served as "money"
(that is, in every exchange, each participant obtained either a good he

wanted to consume -- or the "money" good). Other specifications
produced equilibria that included some speculative exchanges, as
described in the previous paragraph of the text. And still other
specifications supported more than one equilibria.
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distinguishing between multiple equilibria. As we shall see,
this hope was not realized.

with agents restricted to Markovian strategies, the
Kiyotaki-Wright environment is a very simple world.
"Reasonable" agents really only have one choice to make: they
have to decide which of the two types of goods to which they
assign zero utility they prefer to store between periods!63
Of course, the problem is harder for classifier system
agents, because they are not a priori reasonable -- nor do
they even have a priori knowledge of their utility functions
or the storage costs that will be imposed on them.

MMS use two linked sets of classifiers to represent their
agents. One of these sets codes rules for exchange, the
other rules for consumption. Exchange rules are of the form:
IF you hold good type in set A and your trading partner holds
good type in B THEN C; where A and B are subsets of {1,2,3)
and C is either "trade" or "don't trade". Consumption rules
have the form: IF you hold good type in A THEN D; where D is
either "consume" or· "store". 64

To decide whether or not to exchange and then whether or
not to consume in period t, each agent holds successive
bidding competitions in its two classifier sets. The
classifiers that submit the highest bid in their respective
competitions win -- call these winning classifiers Et and Ct
respectively. Of course, the consumption competition occurs
after the action specified by Et has been carried out.

Agents learn through changes in strength to the classifiers
that win the competitions in each period. 65 As usual, winners
lose strength when they payout their bids, and they gain
strength from the payments of the bids of the winners of the
"next" competition (C t pays Etl and E t +l wil-l in turn pay Ct ) .66

63 I am supposing that agents know which type of good has positive
utility for them. "Reasonable" agents will always exchange for this good
and then consume it (assuming, of course, that the utility they derive
from consumption is greater than the storage cost of the good they
produce as a replacement). And since agents do not produce the good
they like, the only way they can end up with the good they neither like
nor produce is to exchange for it (if they don't start with it) or keep
it (if they do) -- and then not consume.
64 Note that all actions are "external", so the system does not use the
standard classifier message list. Instead, its short-term memory only
records which classifier of each type won the last competition.
65 Because the possible choices for agents are so limited -- even
without assuming "reasonableness" -- MMS could represent all possible
strategies with computationally tractable classifier sets. They also
considered variant models with some standard replacement~operators

(Cover Detectors, Cover Effectors, specification mutations and
recombination) .
66 Note that the action of Et leaves the agent with the good that
matches the condition of Ct, whose action in turn leaves the agent with
the good that matches the condition of Et+l. So this is just the usual
"payment to supplier" idea, without the usual message list. MMS do not
use the standard bucket brigade to deteDmine the magnitude of strength
changes. With their strength updating algorithm, strength reflects
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Reward comes from consumption. If Ct.' s action is "consume",it is credited with the utility gain the agent experiencesfrom consumption, and its strength increases as a result. Inaddition, storage costs have to be paid. Since Ct.'s actiondetermines which .type of good the system holds betweenperiods t and t+l, its strength is reduced as a function ofthe cost of storing this good. 67
What happens in the MMS AW? First, the agents developcoherent behavior patterns: they trade to obtain goods theylike to consume or to lower their storage costs, and theyconsume for the same reasons. As a result, "money" emergesin this AW: in every transaction, an agent either obtains agood he wants to consume or "money", that is, the good withlowest storage cost. Thus, organization occurs at bothlevels of this hierarchical AW: the agents develop coherenteconomic identities, and the economy they form is

characterized by structured patterns of trade.
Second, the stable trading structure that emerges in thisAN does not necessarily correspond to a Markovian Nashequilibrium. In particular, classifier system agents arereluctant to speculate -- that is, to hold a good with highstorage costs in the hopes of trading it in the next periodfor a desired consumption good -- even when it is "rational"for them to do so. Thus, the classifier system agents do notorganize themselves into an equilibrium trading pattern inKiyotaki-Wright environments that support only speculativeequilibria. Rather, they "prefer" to trade only forinunediate consumption or "cash". 68 As a result, the idea touse classifier system agents in a mere supporting role inequilibrium theory seems a dead end.

average payoff per activation, rather than total payoff as in Holland'ssystem. For a justification of this change in te~ of convergenceproperties, see Arthur (1990).
67 A peculiar feature of the MMS dynamics is that they impose the sameclassifier systems on every agent of a given type. This means that whenstrengths are modified as a result of an interaction between any twoagents, changes are made to all agents of the same type as the twointeractors. MMS justify this imposition of "representative agents" interms of savings in computer time and space, but it violates the spiritof AW modelling. In particular, it means that MMS could not probe theextent to which (path-dependent) heterogeneity between initiallyhomogeneous agents can arise in their economic environment.68 Of course, it 1s not particularly surprising that MMS agents do notspeculate, since to do so, they would have to form linked chains ofactions -- and as we saw in Section 4.4, these are unlikely to emergewithout system rules that promote them, like Triggered ChainingOperators. In addition, the "representation agent" constraint describedin the previous footnote makes it impossible to explore variant within­type agent behavior. With within-type agent het~rogeneity and someprovision for differential replication rates for agents with differentbehaviors, perhaps more interesting behaviors might arise in a Kiyotaki­Wright environment.
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An art; f;c;aJ stock market
The second example of an economic AW with classifier systemagents is currently being developed by Brian Arthur, JohnHolland, Richard Palmer and Paul Tayler. (her7after ~PT) .69Their AN models a simple stock market, 1n w~1~h a S1ng~esecurity is traded. This security pays a d1v1~end~ wh1chvaries stochastically with respect to the outs1de 1nterestrate. Each period, agents can place orde~s to buy or sell asingle unit of stock, or they can do.noth1ng., The~ base ,their decisions just on the informat~on conta1ned 1n the tlmeseries of past prices, dividends and inte~est rat:s. Whenthe bUy and sell orders are in, a special1st fUI~llls alltrades and uses an algorithm based on current pr1ce a~dexcess demand to declare a new price for the next per1od.An AHPT agent consists of a set of classifiers that codefor predictions of future price movem7nt7, based on past ,stock prices and returns. These pred1ct1ons have forms 11ke:"IF last period price exceeds twice fundamental value(dividend/interest rate) THEN price will. go down" or "IF theaverage price of the last five P7riods ex;eeds the aver~ge,ofthe last 50 periods THEN price w111 go up. At the beg1nn1ngof each period, a bidding competition amongst 7ac~ agent'smatched classifers determines the agent's pred~ctlon for thenext period's price. If the prediction is that ~rices willrise next period, the agent places a buy order; If the

prediction is that prices ~ill fall~ ~he agent sells;otherwise, he holds. Winn~ng class1f1ers are rewarded on thebasis of the (one period) profits that result from thetransaction they initiate. Current versions of the AWconsist of 100 agents, each with 60 predictor cla7sifiers.Genetic algorithms periodically generate new pred1ctors for
each agent. .In the AHPT world stock price is determined each per10d onthe basis of the ac~ion of all the agents, w~ich in ~urnreflect complicated interactions between the1r constltuentpredictors. How well any given predictor functions dependsin turn on the market's overall price dynamics. As a resultof this complexity of interaction and feedback betweenlevels, the behavior that emerges in this system, both at thelevel of the individual agents and at the level of themarket's price dynamics, is very ,rich. Acco:ding t~ Arthur'ssummary account of experiments wlth AHPT, pr1ce beg1ns byfluctuating around fundamental value: But then. "mu~ually "reinforcing trend-following or techn~cal-analys~s-11kerulesestablish themselves in the predictor populations. Later,other phenomena, such as speculative bubbles an? crashes, canbe observed to occur. Moreover, the market does not seem tosettle down to any stationary state, as in the MMS AN. AHPT

69 unfortunately, there is not yet any detailed de~c~iption of ~he AHPTAN in print. My account is based primarily on prel~~nary mater~algiven in Arthur (1992) and personal conversations with AHP~..AS aresult, it is even more sketchy than the other model descr~pt~onsreported in this paper.
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test for this by cloning and "freezing" successful agents andthen reintroducing them much later into the system, wherethey turn out to perform poorly, since they are no longeradapted to the behavior of the other agents in the market.This may happen despite the fact that the price series itselfappears stationary to an "outside observer".
AHPT's primary purpose in designing their artificial stockmarket was to gain insight into the reasons why real-worldtraders perceive their markets as they do. According toArthur, "traders talk about the 'mood of the market', its'nervousness', or 'confidence' for example; they taketechnical trading rules or 'chartism' seriously; they seetemporary surges and crashes as more than random

fluctuations." None of this makes sense from the point ofview of neoclassical economics. AHPT's hope was to design asystem in which such features arise as the result of theinteractions amongst heterogeneous agents, each capable oflearning about the world their joint actions are creating,but exploiting different frames of reference that generatedifferent "local" opportunities for successful action. Theyseem to be succeeding in this enterprise. The next step isto figure out how to carry out experiments with their AW thatwill shed some light on how and under what circumstancesthese kinds of phenomena emerge.

5. Artifjcial Economjes and the problem Of Coordjnation

Perhaps the most surprising thing about an economy is thatthere is such a "thing" at all. From one point of view, aneconomy appears totally disaggregated: every firm separatelydecides what to produce, every consumer what to bUy, and allthese decisions are based just on agent-specific needs,interests and information. Why should anything coherentresult from such a process? Yet it does: an economyexhibits large-scale structure -- with organized markets,mutually dependent but distinct industries, trade
associations, labor unions and so on -- and relatively stablemacroeconomic descriptors that vary slowly compared to therate of change of the underlying microeconomic decisions overwhose consequences they aggregate. The problem of
coordination is: where does this order come from? That is,what are the mechanisms whereby Adam Smith's Invisible Handaccomplishes its task?

5.1 TwO ApproacheS to the Problem Of Coordjnation
Neoclassical economic theory places at the center of itsaccount of coordination a single concept: Walrasian priceequilibrium. 70 In a Walrasian equilibrium, the market

70 A Walrasian equilibrium is a system of prices for commodities suchthat, if agents exchange freely at these prices, (i) each agent willobtain a set of commodities that provides him with the maximumattainable value (given his initial endowment), and {iil all markets
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efficiently coordinateS the actions of agents, through theprices it assigns to the various commodities: The greattriumphs of neoclassical theory are mathematlcal theoremsthat guarantee the existence of Walrasian equilibria, whencompetition is "perfect" and agents "rational,,·ll andalgorithms for computing equilibria, given assumptions aboutproduction capabilities and agents' endowments and values.On the other hand, there are several unsatisfactory aspectsof the equilibrium account of coordination. First, it doesnot explain how the market arrives at a Walrasian p~iceequilibrium. Quite the contrary: attempts to provlde adynamic account of out-of-equilibrium price formation haveyielded more and more general counter-examples to theproposition that price adjustments to over-supply or over­demand result in convergence to equilibrium prices. Second,it is based on unrealistic assumptions about agent behaviorand market conditions. Firms and consumers do not formexpectations about the future or decide what to do in therational manner that the theory posits, and competition isfrequently far from perfect. Third, and most important, manyof the most striking aspects of real-world economiccoordination play no role at all in the theory. Inparticular, the real economy is constantly changing: newkinds of commOdities are developed, then produced and traded,and richer institutional linkages connect agents over widerand wider geographical areas. It is hard to see how theproblem of the coherence of such a system can be addressedwith a theory that fails to assign a central role toprocesses of innovation and change, in what economic agentscan do and the structures through which they act.
Artificial Worlds provide another approach to the problemof coordination. In this approach, economic coordination isregarded as a special kind of EHO, and the central questionis to find the attributes of specifically economic objectsand interactions that result in specifically economic formsof aggregate pattern and structure. Artificial Econom~es areArtificial Worlds whose microentities represent economlCagents and products. Interactions between these

microentities model fundamental economic activitiesproduction, exchange and consumption. Unlike the ArtificialWorld models described in Section 4.5, Artificial Economiesare meant to represent "entire" economies. Thus, they havecertain closure properties: for example, what consumerS

will clear (that is, the supply for each commodity will-exactly equalthe demand for that commodity).
71 In perfect competition, agents may take prices as given when theydecide what to buy and sell, ignoring the effects of their ac7ions onthe prices that obtain. Rational agents are able to form rat~onalexpectations about future contingencies and they always act so as tomaximize their own expected utility_ Even with these assumptions, the"equilibrium guarantee" only covers certain conditions on productionfunctions and agent's values.
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spend in one market of an Artificial Economy, they are paid
in another.

When an Artificial Economy is populated with an initial set
of agents endowed with an inventory of products, and the
values of its system parameters have been fixed,12 the economy
can be "run". under some conditions on population and
parameters, the resulting economy exhibits such emergent
features as stable growth paths for the Artificial Economy's
analog of GDP, Pareto-law distributions for firm size, and
characteristic product life-cycle curves -- under others, no
sustained growth or orderly industrial structure at all takes
place. The purpose of Artificial Economy experimentation is
to discover what kinds of structured economic regimes can
occur and to see how they depend on system parameters and the
characteristics of the constituent agents.

In contrast to General Equilibrium models, Artificial
Economies are inherently dynamic. 13 While General Equilibrium
modellers start by assuming a desired outcome state
(Walrasian equilibrium), the designer of an Artificial
Economy is first of all concerned to model how economic
agents interact -- the institutional arrangements through
which interactions take place, as well as the ways in which
agents take advantage of the opportunities these arrangements
afford. The more plausible are the assumptions about agents
and institutions built into an Artificial Economy, the
better: 14 the argument that emergent aggregate regularities in
the Artificial Economy are causally related to observable
macIQfeatures of real economies depends on the match between
the characteristics of the ~interactions built into the
Artificial Economy and those that actually take place in real
economies.

Artificial Economy have to be "playable" -- and so a lot of
institutional details have to be explicitly specified. For
example, events have to be scheduled to occur in a logically
meaningful and physically realizable order -- a firm cannot
produce until it has hired the workers it will use to do so.
Also, market rules have to spell out how prices are formed
and who ends up trading with whom, as a function of the
allowable actions of the agents who trade in the market. And

12 For example, in the Artificial Economy described in section 5.2
below, most of these parameters control features of the economic
environment that affect innovation, such as technological opportunity,
degree of appropriability of new technologies, cumulativeness of
research, and extent of learning-by-using.
13 By "dynamic", I do not mean merely "time-indexed", a'S the term is
used in the literature on intertemporal equilibria. Rather, I mean that
the model specifies transition laws that govern how its state at time t
transforms into its state at time t+l, and these laws are not a function
of future states (as they are in rational expectations theory) •
14 In particular, agents in an Artificial Economy are constrained to
make their decisions in a psychologically plausible way, in the face of
future contingencies about which they can be no better equipped to form
rational expectations than is the designer himself!
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if firms can borrow, some form of bankruptcy law has to be
implemented, since a firm might find itself unable to make
good on the terms of its loans. One of the most interesting
experiences in designing and experimenting with an Artificial
Economy is coming to realize that these institutional details
matter -- and that any theory that leaves them out is
sweeping something crucial under the rug.

5.2 An Artificial Economy
In this section, I describe an Artificial Economy developed

by myself in collaboration with Giovanni Dosi, Marco Lippi,
Jim Pelkey and Paul Tayler (hereafter DLLPT) .15 This model
extends work reported in Chiaramonte, Dosi and Orsenigo
(1992), which in turn was inspired by models in Nelson and
Winter (1982). Perhaps the most ambitious and well­
documented model that could be considered an Artificial
Economy is the MOSES model of the Swedish economy described
in Eliasson (1985, 1989). All of these models (again in
contrast with equilibrium theory) are inspired by
Schumpeterian insights into the disequilibrating effects of
competition, and assign a central role to processes of
innovation -- both successful and "mistaken" --"in their
accounts of economic coordination.

Here are brief descriptions of the microentities in the
DLLPT Artificial Economy and their principal modes of
interaction:

• MjcrQPntjtjes: There are five types of agents (Sector 1
and Sector 2 firms, a bank, researchers, and laborers) and
two types of products (machines and consu~~r good). Sector 1
firms hire laborers to produce machines. 16 In addition, they
hire researchers to develop new types of machines. Sector 2
firms buy machines from Sector 1 firms and use them, together
with labor, to produce a consumer good. Researchers and
laborers use their wages to purchase this good, which they
then consume. The bank pays interest on savings from firms
and workers, lends to firms at an interest rate that it sets,
and funds the formation of new firms.

15 I chose this model to summarize because I am most familiar with it
and because its inferential difficulties, discussed in the next

section, are generic. A program implementing this model was written by
Francesca Chiaramonte at the Santa Fe Institute.
16 All their other production inputs are free.
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• Innovatjon: Sector 1 research is designed to discover
m~chi~e types that can perform better than the machines the
flrm lS currently capable of producing. Each machine type is
described by two positive numbers: one measures how much it
cos~s,t? produce, the other its efficiency in production. The
Artlflclal Economy's model of technological innovation then
corresponds to a controlled stochastic process moving through
R2+, where the control variables are the amounts a firm
inves~s in each of three types of innovative activities.
, Thls ,stochastic process specifies, for each type of
lnnovatlve activity, the probability of successful outcome of
a gi~en research project and the performance indices of the
machlne type that results from a successful project. The
~robabil~ty of suc:ess depends on: how much money the firm
lnvests In the proJect; system parameters that measure the
degree of appropriability of innovations and the
technological opportunity for each type of innovative
activity; and firm-specific parameters that reflect cumulated
research know-how from prior investment.

, The three types of research activity in which Sector 1
~lrms can ch~ose to engage are radical innovation,
lncremental lnnovation and imitation. Radical innovation, if
suc~essful, P70duces ~ machine type belonging to a new family
or technologlcal traJectory" of machine types. Successful
incremental innovation leads to a new machine in the same
"technological trajectory" as one the firm currently knows
how to produce. For the same investment, radical innovation
has a lower probability of success than incremental ­
innovation; but.when radical search succeeds, it typically
produces a machlne type whose performance characteristics
7epresent a greater advance than what is achieved from an
lncremental innovation. Imitative search targets a machine
type currently produced by a competing Sector 1 firm. The
sear7h succeeds if the imitating firm learns how ~o produce a
machlne type on the same "technological trajectory" as the
targetted type (though not necessarily as efficient as the
target) .

Market Rlll es' There are three markets in the Artificial
Economy: the market in which Sector 2 firms buy machines
produced by Sector 1; the market in which workers buy the
consumer good produced by Sector 2; and the labor market in
which Sector 1 and Sector 2 firms hire laborers and '
researchers.

The machine market features production to order Sector 1
firms i~sue cat~logue~ listing the machine types they produce
along wlth m~chlne prlc~s, and Sector 2 firms place orders
for th~ mach~nes they wlsh to purchase. Machines are payable
on dellvery, so a Sector 1 firm may receive more orders than
they can fill, in which case they accept orders on a first­
come, first-served basis. Sector 2 firms whose orders are
not.accepted may place orders for their second and third
cho~ces before the market closes.

53

Consumer goods are sold at a fair held at the end of the
production year. Each firm determines how much of the good
to bring to the fair and what prices to charge for what it
brings. Workers have full access to the prices asked by each
seller, and they buy, first-come first-served, from the
cheapest to the more expensive. The fair closes when all the
good is sold or there is no more consumer demand.

The labor market operates as a hiring hall, at the
beginning of each year. Each firm determines the wage rates
they are willing to pay (one for researchers and one for
laborers), and the workers sign up on a first-corne first­
served basis, from the highest- to lowest-paying firms.
Firms may fail to hire their desired quota of workers, in
which case they invest the unspent research or production
dollars in the bank; or there may be unemployment, in which
case unemployed workers forego all consumption for the year.

Note that in none of these three markets are prices
negotiated. Markets that allow price negotiations require
more complicated inputs from participants: in addition to
quantity and price inputs, negotiating strategies have to be
supplied.

• Banking RllleS' The Artificial Economy has only a
rudimentary banking sector. There is a single bank that sets
an interest rate for savings and another for loans. Firms
must exhaust savings before they can borrow. Loans are
issued for fixed periods that depend on the borrowing firm.
Each firm faces a credit cap that depends on its previous
year's net turnover. Annual interest and principal payments
are due at the end of every year.

Firms that cannot meet the required annual payments are
allowed to postpone payment for one year. During this year,
the bank will issue an emergency loan covering some
production costs. This loan must be paid back over the next
two years and no other emergency loans will be granted during
this period. Two successive failures to repay all
outstanding loans force a firm into bankruptcy. The assets
of a bankrupt firm are scrapped.

• Firm Decision-Making -- Sector l' Firms make their
decisions according to "organizational routines" that are
modelled as particular forms of decision rules. These rules
are typically functions of three types of arguments:
adjustable environmental parameters, firm-specific parameters
that describe aspects of the firm's "psychology" of decision­
making (risk-aversion, time-discounting, etc.), .~and past
observables such as the firm's previous period sales, degree
of labor rationing experienced, orderS received and so forth.
The rules are based either on the empirical literature on
firm decision-making or on approximations to "optimal
decision-making under uncertainty", with heuristic methods
for forming expectations of future aggregate quantities.
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Sector 1 firms decide how much to pay workers, which
machines to list in their catalogues and how much to charge
for them, how many research workers to hire and what tasks to
assign them, how many laborers to hire, how much to borrow,
and how much to produce of which type of machine.

How mnch to pay workers: Firms of both sectors try to
maintain their position in the labor markets, so if they paid
a bonus in excess of the average overall wage rates in the
previous period, they offer at least the same bonus in the
following period. They raise their bonus only if they
experienced labor rationing in the previous period, in which
case the increase is a fixed function of the extent of that
rationing.

How mllch to charge for ljsted machjnes: A new machine is
priced according to a mark-up rule: that is, it is priced at
a firm-specific multiplier times the machine's production
cost. For previously listed machines, the firms adjust the
previous period price in response to three factors: change
in production costs (that is, wage rates), change in sales,
and the quantity of unfilled orderS (which represents a kind
of backlog of demand for the machine). The adjustment rule
depends on firm-specific "reactivity" parameters. If the
adjustment rule determines a price below a firm-specific
minimum acceptable mark-up rate, the firm ignores the rule
and uses this minimal mark-up rate to set its price.

Which machines to list: Firms want to produce machines
that will be attractive to their customers. To Sector 2
firms, evaluating a machine involves trading off between its
price and its productivity in use. The Sector 2 firmS
accomplish this trade-off through a payback period criterion,
in which they estimate the prOfit they wiEl obtain by
operating the machine for a firm-specific length of time.
The longer this length, the more they are willing to pay to
obtain a more productive machine. Sector 1 firms then use
the same evaluation functional to decide whether to go into
production with new machine types their researchers have
designed; they use pay-back periods that are reported to them
by their own customers. (This allows a certain amount of
"market segmentation" to emerge: some Sector 1 firms
producing low-cost, low-productivity machines for their
customers who favor short pay-back periods, while others
produce high-cost, high-productivity machines for a different
set of customers.)

How many resqarch workers to hire and what tasks to assign
~: Firms invest a firm-specific proportion of their
previous year's net turnover in research. Total research
investment is allocated to the three types of search activity
according to a formula determined by two firm-specific
parameters. Which machine types to incrementally improve or
imitate are determined by calculating expected returns for
the investment, where the expectations are based on the
firm's experience with previous incremental and imitative
research projects.
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How many 1abQrers tQ h j re how mIlch tQ horrow and hQw IDllCh

tQ produce Qf what: All orders are filled up to the firm's
credit ceiling. This determines how much the firm borrows
and how many laborers it can hire. If it receives more
orders than it can fill, it produces the most profitable
machines first.

• Firm Decision Makino Sector 2· Like Sector 1 firms,
Sector 2 firms have to decide what wages to offer to laborers
and how much to borrow from the bank. In addition, they have
to decide how much to produce and what prices they will
charge, which of their current stock of machines to use in
production, how many and which new machines to order, and
which machines to scrap.

petermining prices: First, the firm calculates the costs
of production with each machine in stock and those it
considers purchasing. Next, using a statistical procedure
together with data from previous years, it forecasts the
highest price that will paid at this year's consumer good
fair. It then decides compares production costs with
anticipated sales, machine by machine, to determine which
machines to use in production. Finally, it sets its prices
by reducing its estimated cutoff price by a safety margin
that depends on a firm-specific "timidity factor". This
process simultaneously determines price and selects which
machines to employ in production.

Investing in new machines: After deciding (as above) which
of its current machines to use in production, the firm.
calculates how much cash and credit it could apply to
expanding its machine stock. It evaluates machines offered
for sale according to the payback period criterion already
described, and it orders the available machines for which it
projects a profit over its payback period. If it can afford
its first choice, it orders it; else it orders its second
choice if it can afford that one. It then iterates this
process until it can no longer afford any desired machine.

Scrappjng machjnes: Any machine that is not used in
production in three successive periods is removed from the
firm's capital stock.

• Aoent pemography· The number of researchers and laborers
grow exponentially. New firms are created according to
several different schemes; the rate of creation depends on
average profitability rates in the two sectors. New firms
are funded by the bank for a fixed period to engage in
product research (Sector 1) and to purchase cap~tal stock
(Sector 2). Their attributes are selected according to the
empirical distribution of currently existing firms. Firms
die when they no longer generate positive net turnover and
cannot qualify for bank loans.

In all, there are 15 system parameters in the Artificial
Economy. In addition, the behavior of each Sector 1 firm is
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determined by 8 firm-specific parameters, while 3 suffice for
each Sector 2 firm. Sensible initialization of such a large
parameter set, while difficult, is made easier by the fact
that almost all of these parameters have a direct economic or
psychological int~rpretation, and it is possible to define
clusters of related parameter values that form "natural"
rnetapararneterizations of "economic regimes".

5.3 Some Djffjculties with Artificial Economies
As the last section makes clear, there really is not such a

thing as a~ summary description of an Artificial Economy
A lot of details are required to specify "playable"

institutional arrangements and the agents who have to operate
in them. Clearly, there is more than one way to specify any
of these details. In the DLLPT Artificial Economy, for
example, why organize the consumer good market as a fair
instead of an auction? Does it matter that machine
manufacturers produce to order instead of building up
inventories? Why should firms use payback-period accounting
and mark-up pricing rules? And so on, on and on. As a
reSUlt, any Artificial Economy is open to criticism on the
grounds that its design is arbitrary.

A first response might be that it is necessary to start
somewhere: if you can show that "macroeconomic" stability
can emerge from the dynamics of "microeconomic" interaction
in .a.ny: recognizably "economic" environment,11 then you have
increased the plausibility of the proposition that real-world
economic coordination is an instance of ERO.18 Unfortunately,
this response does not go very far. Artificial Economies,
unlike the Arrow-Debreu model, lack the virtues associated
with a high level of abstraction -- simplicity and
mathematical tractability. This produces a real barrier to
their social extension. The more richly detailed a model is,
the more intriguing it is to its designers -- but the less
likely it is to capture anyone else's imagination or
interest, which flags at the first~ and unshared
assumption. Without mastering the microlevel details built
into an Artificial World, it is simply impossible to come to
a reasoned judgem~nt on whether an observed aggregate-level
property is in fact emergent -- or merely a consequence
easily derived from the superposition of some particular
microlevel features. And without this judgement, the whole
point of the Artificial World is lost.

If arbitrariness cannot be abstracted away, what then?
Here are two complementary research strategies for coping
with the problem. First, building on ideas already in the

?? More particularly: in one that does not assume away the question by
invoking "representative agents" (see Kinnan, 1992).
18 This "existence proof" justification is similar to that frequently
given for takin~ the Arrow-Debreu model seriously: the Arrow-Debreu
model shows that at least one kind of "economic"- environment (surely as
remote from a real economy as the Artificial Economy described in the
last section) supports Walrasian equilibrium.
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economic "mechanism design" literature, one could at least
delimit degrees of arbitrariness by developing functional
taxonomies of the various institutional arrangements that
have to be introduced into an Artificial Economy. For
example, is there a minimal characterization of the
functionally different types of market rules or bankruptcy
laws? Similarly, one might try to construct a typology of
"nonoptimizing" decision-making strategies (or perhaps
orientations) that are economically relevant. Such
taxonomies would help to define the set of Artificial
Economies that have to be investigated to make general
assertions about ERa in real economies.

Second, one could change the notion of what an Artificial
Economy is, away from the idea of a single parameterized
model that specifies a prjori its institutional forms and
agent behaviors. Instead, imagine an Artificial Economy as
an experimental environment in which users can easily tailor
models designed to suit their own particular research
agendas. Object-oriented programming techniques can be used
to construct such an environment, which would consist of a
library of different kinds of modelled institutions and agent
types, together with an interface that makes it easy for
users to combine different items from this library to make
particular experimental economies. The interface might also
feature statistical and graphical features that aid in the
discovery of emergent properties in these experiments -- and
procedures for summarizing experimental designs and relevant
results in a way that they can be assimilated into a data­
base that all users could access and analyze. 19 with such a
tool, assuming a sufficient number of users found it
attractive, Artificial Economy research might become better
characterized as diversified than arbitra£y.

There is another, more serious, difficulty with current
Artificial Econo~ies. They offer only very limited scope to
the emergence of new structures -- and, so far, none at all
to the emergence of higher-level entities. What do emerge
are patterns -- in macroeconomic variables like GDP, in
aggregate descriptors of industrial organization (like firm
size) and innovative demography (like innovation rate as a
function of age and size distributions of firms), and in
product life-cycles. But no Artificial Economy yet has a way
of representing the kinds of innovations in entity structure
at the level of the firm and of the industry that are
sketched in Section 3.3. In fact, even the entities that the
current Artificial Economies do represent are not capable of
much change in what they do or how they do it. 8o Nor do any

?9 A prototype that implements these ideas is currently under
development.
80 MOSES finns can engage in new kinds of activities (for them), but
they do not develop novel ways of carrying these out. Firms represented
by parameterized behavioral rules for their "behavioral routines" hardly
change at all -- at most, their parameters may respond adaptively to the
firm's experiences in the marketplace.
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of the Artificial Economies represent products in such a waythat new "kinds of" commodities (as opposed to the sort oftechnological development described in the previous section)arise endogenously; to do so would require even moreelaborate repres~ntations for agents r since really newproducts must coevolve with "tastes" for them. Thus,Artificial Economies are not open-ended computationally, evento the extent of the other principal Artificial Worldsreviewed in Sections 3 and 4. Though there are some obviousways to improve this situation -- for example r using adaptiverepresentations for agents r like classifier systems or evenneural nets -- real progress will require new insights ineconomics about the nature of the structures that need to berepresented as well as new computational techniques for therepresentations themselves.

6. An Afterword

As we have seen, Artificial worlds differ substantiallyfrom the kind of "minimalist" models on which much ofneOClassical economic theory is based. StructurallYrArtificial Worlds are populated with a variety ofheterogeneous microlevel "agents" who enter into complexinteractions with one another. The "agents" must respond toan environment that is formed in part as a result of thecollective history of their interactions. Their responsepotential is programmed into the Artificial world r but forthe World to work, there must be some degree of open­endedness in the way this potential manifests itself. From acomputational point of view, this is the great challenge indesigning Artificial Worlds r and we have seen a variety ofapproaches to this problem, from FOG's intensional functionalrepresentation r to the genetic operators used in EPD, throughthe whole gamut of replacement operators and "biddingcompetition" structures in classifier systems. 81
Of course, the difference between Artificial Worlds andmost neoclassical economic models is more than structural:they are designed to explore different kinds of questions.Artificial Worlds are about EHO, and if EHO is an importantkind of phenomenon in real economies, then Artificial Worldswill have a place in economic theory. I have argued thatthere is a variety of economic phenomena that seem tomanifest the characteristic features of EHO, from theprocesses through which individual agents learn how to act innew situations, through the coevolution of new -products andindustrial structure r to the emergence of "herd behavior" in

81 I think we can expect more and more approaches to the problem ofdesigning open-ended computer programs to emerge from the computerscience community -- see, for example, Forrest (1990) and Huberman(1988). In addition, object-oriented programming, with its emphases onmodularity and extendability, provides a natural environment forbuilding programs of sufficient complexity that they can manifest EHO.
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markets and macroeconomic metastability. I have alsodescribed some existing Artificial Worlds that, suitablymodified or extended, have the potential go give someinsights into these economic processes. The match betweenproblems and methods is not yet very good. :he.purpose ofthis paper is to promote such a match, by po~~t:ng to apromising direction for workers wi~h the requ~s~~efamiliarity with economic institut~ons and behav~ors whomight not have considered whit alternative modelling style.
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