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ARTIFICIAL WORLDS AND ECONOMICS

David A. Lane”
School of Statistics
University of Minnesota

0. Introduction

In this paper, I describe a class of models, called
Artificial Worlds (AWs), that are designed to give insight
into a process called emergent hiexarchical organization

(EHO) . I argue that many economic phenomena seem to manifest

EHO, and so economists might be interested in studying this
proecess —- and in making use of AWs to do so. There are,
however, some formidable inferential difficulties that will
have to be overcome before AWs can become socially acceptable
research tools,

The paper is organized as Ffollows. Section 1 briefly
describes EHO. Section 2 introduces AWs and some of their
attendant inferential problems. Section 3 introduces two
abstract AWs that address important general problems in EHO
and then briefly describes an economic phenomenon, the coming
into being of new industries, in which these problems appear
te play a key role. Section 4 describes & particular kind of
BW, classifier systems, that ecan be used to represent agents
that are capable of generating complex behaviors in response
te intermittent rewards from an "environment® of which they
are a part. A collectiocn of such agents, engaging in
"economic” interactions with one another, produces another
kind of AW, in which such interesting aggregate behaviors as
the formation of bubbles and crashes and technical trading in
an artificial “stock market", may arise. Section S considers
the idea of an Artificial Economy —- an AW that can provide a
dynamic, nonequilibrium, microfounded account of such
aggregate—level or macroeconomic phenomena as stable growth
paths, business cycles, and Pareto firm-size distributions.

-
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1 Hi hi canieati

Many systems, in chemistry and biology as well as in human
society, appear to have the capability of achieving, over
time, a more and more complex organization. The process
through which this organization is achieved, emergent
hierarchical organization, typically displays two
characteristic features.

First, the organization is nierarchical. That is, the
systems are composed of a number of different levels, each
level consisting of entities that interact with one another.
Lower-level entities may actually be components of higher-
level ones. The higher in the hierarchy is the level, the
longer is the time-scale and the more extended the space-
scale in which it is natural to describe the interactions
between the relevant entities. For example,

* biological systems include entities and processes at
levels ranging from molecular to cellular to organismic to

ecologic;

* economic activities involve interactions between
individual "decision-makers", firms and households,
industries, and national econcmies.

Second, the systems appear to produce their own order. The
actions of lower—level entities are channelled —— in effect,
coordinated -- by higher-leve! structures that themselves
arise from the lower-level entities' interactions. For
example,

* informal trading networks transform into formally
organized impersonzl markets; .

* neurons firing in response to sensory stimuli or the
firing or other neurons with which they are connected produce
predictakle organism-level behavioral responses to particular
patterns of envircnmental activity -— or may even give rise
to action-guiding "concepts™.

The order induced by this kind of hierarchical coordination
is never static, since the interactions between higher-lewvel
entities change the environment in which lower—level
interactions take place, and hence in the higher-level
structures that develop out of them. Thus, the system as a
whole is characterized by perpetual novelty at ail its
levelis.



Z. What are Artificial Worlds —— and What Might We Tearn
from_Them?

Artificial Worlds are computer—implementable stochastic
medels, which consist of a set of "microlevel entities" that
interact with each other and an “environment" in prescribed
ways. AWs are designed so that they themselves may, under
some conditiens, manifest EHO, As a result, AWS represent an
engineering approach to the study of EHO.

The entities built into an AW and their modes of
interaction may be quite abstract, or they may be closely
linked to objects and relations occurring in some real-world
system of interest. In the former case, the AW may be used
to investigate general principles underlying EHO, while in
the latter the AWs may help us to understand how particular
aggregate properties of the modelled real-world system depend
on the characteristics of the lower—-level processes that
underlie them.

Formally, an AW consists of a set of microlevel entities
(MEs}, an environment and a dvnamic. Each ME has attributes
and medes of interactions with other MEs. The environment
has a state.

When two or more MEs interact, their attributes may change.
The changes are determined by the MEs' interaction modes. In
addition, they may depend on the MEs' current attributes and
the current state of the environment. Interactions between
MEs can also change the state of the environment.

The dynamic, which may be in part stochastic, specifies the
order in which interactions occur. The dynamic also imposes
rules that determine when MEs die and when new ones come into
the World (and with what attributes) .

The initial conditions of an AW determine a state of the
World: the state of the environment, & population of MES, and
the attributes of each of the MEs. These initial conditions,
together with the dynamic of the AW, generate a history --
that is, a time-ordered sequence of states of the World.
(With a stochastic dynamic, of course, the same initial
conditions generate az probability distribution over s space
of possible histories.)

The aim of AW modelling is to discover whether (and under
what conditions) histories exhibit interesting emergent
Rroperties. An emergent property is a feature of a history
that (i) can be described in terms of aggregate-lewvel
constructs, without reference to the attributes of specific
MEs; (ii) persists for time periods much greater than the
time scale appropriate for describing the underlying micro-
interactions; and (iii) defies explanation by reduction to
the superposition of "built in" micro-properties of the AW.!

1 Gbviously, what “defies explanation" teo one person may be explicable
by another. Wwhat is required here is a negative assertion by the
medeller, to the effect that the aggregate-level property in guestion is
not deducible from the model's micro-properties by any argument

For example, imagine an Artificial Economg ;n which Mgs
represent traders exchanging a set of commodities according
to some prescribed rules that do not single out any
particular commodity as a medium of exchange: 'the _
replacement of a barter system with the exzclusive use of one
of the commodities as a “money" would be an emergent property®
(see Section 4.5 below). Similarly, in an Artificial Economy
in which some MEs produce machines for sazle to other MEs who
ir turn produce consumer goods for sale to other ME; (who
work for one or the other producer MEs), the evolution of a
stable growth rate for "GDP%, or of sector-specific Pareto-—
distributions for firm size, might be an emergent property
(Secticn 5). .

As these examples indicate, some emergent properties can be
described in terms of variables that aggregate over the
attributes of many MEs (like GDP), while others refeF to
"real" higher-level structures (like money). Both give
evidence of self-organization in the AW -- coordination amoeng
the MEs induced by their interactions, leading to sys?em
meta-stability. More is possible: higher-level "entities™
may arise. These entities are composed of sets of MEs that
display coordinated patterns of behavior. They may even
reproduce themselves (Section 3.2} and develop modes of
interaction between one another (Sections 3.1 and 4.4),
leading to even higher-level emergent properties. In such
cases, the AW exemplifies EHO.

What can we hope to learn from AWS? We have to beg{n by
considering "about what" we can learn. First, the‘AW itself
might be the primary target of inference, agd we Tlght want
to discover just which emergent properties it manxfe§t§, and
how they depend on the system rutes and initial conditions.
Second, the AW might be regarded as a model of some realj
world phenomenon in which we might be interested. In this
case, we might want to determine whether (and if 5o, how)
certain “lower"-level interactions in the rezl-world "canse™
higher-level structures and processes to arise —- and how
these higher-level structures and processes then chagge the
nature of the lower-level interactions. Third, we mlght.want
to learn about EHO as an abstract phencmenon, investigating
such gquestions as the following:

* What properties must a system have for EHO to occur??

substantially shorter than producing that property by running the'm?d?l.
I will discuss later some maneuvers that might lend “public" credibility
to such an assertien. Notice that the modeller‘s assertdion is no?
equivalent to the statement that he assigns low a priori probability to
the property manifesting jtself when he runs the modelf gfter all, he
may have other reasons than deductive argument for_bel;evxng that
systems with the micro-properties he built in to his model tend-to
exhibit aggregate-lewvel regularities analogous to the property in
question!

2 See Kauffman (1980) and Rasmussen et al. {1990} for some interesting
speculation on this question.



» Is there a taxonomy of possible forms of emergent
organization? In particular, are all emergent organizational
forms hierarchical?

* How do the properties of emergent higher-level entities
and their interactions depend on the properties of the lower-
level entities from which they arise?

* What kinds of interactions are possible between the
levels of a hierarchically organized system? In particular,
how autonemous are the processes of different levels? Under
what circemstances can the evolution of a system process be
predicted on the basis of observations only of the attributes
of entities at the same level as the process (that is,
without detailed information about processes at lower or
higher levels)?

* What are the dynamical properties of emergent processes?
For example, are "punctuated equilibria™ (Section 3.2)
generic?

While computer scientists might be interested in an AW for
its own sake, economists presumably would study AWs in order
to get insights into what might be going on in economies.
Whatever the goal, to learn anything useful about any of the
three inferential targets described above, we need strategies
for designing appropriate AWs and for generating and
processing useful data from them. There are some formidable
difficulties standing in the way of this endeavor. I
conclude this section by mentioning four of them:

AWs are well-defined mathematical medels, but it is
unlikely that interesting theorems about their emergent
properties will be proved with tools currently available. I
offer three reasons for this assessment :

First, AWs are designed to be innovatory or cpen-ended
systems. Their emergent pProperties are only meta-stable, not
equilibria or asymptotic states. By changing the environment
of the lower-level entities that give rise to them, emergent
Structures induce processes leading to their own
transformation (or demise). As a result, it wili be
difficult to apply the rich repertoire of mathematical
methods that compute equilibria or asymptotic states, and
there is no corresponding methodology for studying the
properties of transient phenomena.

Second, emergent properties are necessarily complicated
functions of the history of the attributes of the ME's from
whose interactions they are formed (if this were not so, it
would be easy to explain them by superposing the AW's micro—
properties, and they would not qualify as emergent
properties!). Since the dynamics of AWs are specified in

terms of these micro-interactions, it is hard to.imag;ne that
the mathematical description of emergent properties will be

ically tractable. )
aniéiﬁ;ﬁ iéfseems to be a plausible (albeit ill-defined) )
hypothesis that the capability of a system to prgdnce EHO is
a function of its complexity, either in the attr}butes or
arrangements of its component entities or in their patterns
of interaction. As a2 result, the mathematician's ploy of
constructing a highly simplified, tractable model t@at can be
proved to display an interesting behav%or observed in some
more complicated system will not work in the context of EHO
phenomena.

Thus, it seems likely that we will learn about EHQ from AWs
oniy by implementing them computationally and_observ1ng what
happens. As a result, we can learn about the%r emergent
properties only inductively, and.ogr success in that .
enterprise will depend on our ability to develop approprlat?
statistical tools, for the design as well as for the analysis
of "evolutionary" experiments.

The very nature of emergent properties makes it problematic
for us, as observers of the AW, even to formulaFe them, let
alone discover whether or not they in fact obtain. Emergent
properties represent innovations in the orgagizatio? of the
AW, and, to describe them, a new vocabulary is requlreq,
beyond the modelling language used to express the attributes
and interactions of the AW's micro-entities. Afte? all,
emergent properties cannot be compactly gxPr?ssed in the
modelling language itself —- and, by definition, they "defy
explanation" in terms of the constructs of that language. So
how do we develop the right aggregate-level language to
define —— and guide our search for ~— potentially emergent
properties?

AWs that model a real-world system have a natural
vocabulary to express potentially emergent properties: the
language that describes higher—level patterns and structures
observed in the modelled system. Some? of these higher-level
constructs may suggest AW analogs that can be expressed as
functions of AW histories, and the words that describe the
real-world constructs may be appropriated to define these
functions. Thus, the modeller can build a glossary tha?
semantically links higher-level real-world constructs with
particular functions of AW histories. Any real-world

? But certainly not all. After all, the modeller absfia?ts only a
small subset of entities, attributes and interactions to incorporate
into the Artificial World, and only those higher-level constructs for
which it is meaningful to aggregate only over this subset can be
translated as a function on Artificial World histories. The
determination of which higher-level constructs are meaningful in the
Artificial World —— and how -~ can be an important exercise for
understanding the meaning and role of these constructs in the real world
system itself.



phenomenon that can be described by these constructs
translates, wvia the glossary, to a candidate for an emergent
pProperty of the AW —— provided, that is, that it satisfies
the metastability and “"explanation-defying" definitional
requirements. - Candidates generated in this way might be
described as "expected emergent properties" of the AW.
"Unexpected emergence" —- an daggregate-level coordination
phenomenon in the AW unmotivated by any real-world analogy —-
is harder to find. This is particularly troublesome for
abstract AWs, which lack a natural real-world reference
vocabulary. In fact, most of the work that goes into
studying such AW models as Coreworld (Rasmussen et al .,
1980}, Tierra (Ray, 1992) and Function-Object Gas {Fontana,

1992 —-- see Section 3.1 below) consists in poring over
cutput, attempting to identify features that display the
"right" kind of coherence and temporal stability —— and then

formulating a vocabulary, with both mathematical and “natural
language" variants, in which to express them. Whether this
search can be in some way "automated" is an important
conceptual and practiecal problem,?

When potentially eémergent properties have been identified
and translated into the behaviors of appropriate functions on
histories, the next question to ask is: under what initial
conditions (and, for stochastic dynamics, with what
probability) will they obtain? Developing strategies to
answer this guestion is difficult, since the space of initial
conditions typically has a very high dimension, and
interesting emergent properties may well depend on
complicated interdependencies among the system parameters
that define these dimensions.

Moreover, the relevant search space is even larger, because
it has a time dimension. Well~defining the function on
histories that determines whether a particular property
emerges requires a specification of how long that property
must persist —— and this specification must always be
somewhat arbitrary. 1In addition, whether a particular
property emerges or not depends not only on initial
conditions, but on the length of time the history is observed

% Bedau and Packard (1992) propose a statistic whose purpose is to
diagnose the arrival of an "innovation" into an Artificial World. Their
statistic seems to depend on a genotype-phenotype distinction: the
microentities in the World are replicators, whose behaviors are coded by
2 genome; selection operates on the coded behaviors:; innovations in
behavier depend on the introduction of a new genotype;: and successful
innovations are marked by the initiating genctype's ability to persist
in the population over time. The Bedau and Packard statistic tracks
such persistence at the genomic level. But the generality of this
appreach seems questionable: not all higher-level innovations depend
upen the persistence of single micro-innovations, even in biolegical
evolution. To paraphrase the evolutionary perspective persuasively set
forth in Buss {1989): on an evelutionary time scale, genotypes are
transient, while phenotypic organization is here to stay.

—= sc negative results may just mean that longeF observation
times are reguired, not that the initial conditions are
insufficient to support the emergent property in question.

Cavsality and Emergence

Suppose & potentially emergent property of an AW hqs begn
identified and defined in terms of some function ?f histories
~— and, with some set of initial conditions, a h}story hasl
been generated and the property obtained. What k+nd of claim
can be made about what "caused" this property —— in
particular, is it meaningful to think of emergence itself as
a cause?

To interpret emergence as a cause, we mean o say that the
property formed because of the interactions amongst a dense
network of entities -- and this formation depended on the
denseness of this network, and perhaps the richness of the
structure of the entities and their interactions. Thus, it
is not enough merely to produce the property in the AW from
some particular set of initial conditions: that set would
have to be embedded in a hierarchy of sets, ordered by a
"complexity" measure that increased with the network's
"denseness" and the structural “richness" of the MEs and
their interactions. Emergence as z cause would then require
demonstration that the property fails to appear for low
values of this measure -- but does, beyond some threshold
value.” .

Such a complexity measure imposes a structure on the h%gh—
dimensional AW parameter space. Without this structure, it
is hard to see how one could begin ta infer about what causes
emergent properties —— and it is equally hard to see how any
causal inference could be made that is independent of the
particular measure used to induce the stricture.

Now suppose we know how to infer about emergence-as-—cause
inside the AW. Suppose further that we belieye that a
particular aggregate-level feature in the AW is indeed an
emergent property, and we have determined how "“complex"™ the
AW needs to be in order to support the feature's energence.
Suppose in addition that this emergent property is
semantically linked to some real-world higher-level pattgrn
or structure: what can we infer about the “cause" of this
feature in the real world? . .

At the least, we can certainly argue against the necessity
of any alternative explanation that assigns a causal role
either to other real-world aggregate—-level features that do

5 Dne might suspect that typically, as the complexity ieasure in?reases
above this value, a second threshold might be obtained, beyond which the
System again fails to manifest the property in question —— j?st as
turning uvp the heat applied to the bottom of 2 beaker of fluid resulis
first in the formation of convection cells and, at even highex
temperature, their degradation into a regime of turbulence. See .
Kauffman (1992) and Langton (1992) for stimulating discussions on this

theme.



not have analogs in the AW or to attributes of lower—level
"agents" that &re not possessed by the MEs of the AW. For
example, an Artificial Economy in which, say, a stable
growth path for GDP emerged from sufficiently rich patterns
of micro-interactions would thus argue against the necessity
of invoking the existence of Walrasian equilibrium to explain
macro-cecrdination — or against the propesition that such
macro-coordination depended upon the assumption of optimizing
agents capable of forming rational expectations,

But we would like to infer more than this. Can we argue
that the real-world aggregate regularity is indeed “"caused
by" the entities and interactions we abstracted out of it and
built inteo the AW, in which the analog of that reqularity was
identified as an emergent property? That is, can we infer
emergence as a "“causal mechanism”™ in the real world, once we
have so identified it in the AW?

Certainly, the AW demonstration ought to raise our
probability that such a mechanism operates in the real world,
just as it diminishes the probability of alternative causal
stories that credit features and attributes not detected ox
built into the AW. But the real world necessarily contains
many more entities and interactions than the AW, operating at
levels below, at and above that of the focal regularity.
Surely, it is possible that the causal mechanism hinted at in
the AW is swamped by the additional "turbulence™® in the real
world, and scme entirely different sets of interactions ox
direct effects drive the formation of the feature of
interest. It is not clear how to determine how plausibie is
this possibility -- but of course, the more specific one can
be about just which additional interactions or effects might
provide the alternative causal story, the more plausible it
would appear to be.

3. &Abhstract AWs and the Lawfulness of EHO

In this section, I describe two abstract Artificial Worlds,
Walter Fontana's Function-Object Gas (Fontana, 1992) and
Kristian Lindgren's Evolutionary Priscner's Dilemma
(Lindgren, 1992). Function-Object Gas is directed primarily
to an exploration of the relation between structure and
function, Evolutionary Prisoner's Dilemma to the dynamics of
evolutionary processes.

While much work remains to be done before AWs yield deep
insight into these two themes, the themes themselves are
fundamental to an understanding of many real-world processes.
The section concludes with a discussion of an efonomic
example of such a process, the coming into being of a new
industry.

3.1 Function-Object Gas: Function and Organization
Function-QObject Gas (FOG) is designed to explore how
higher-level structure emerges from micre-level function.
The noticn of function on which FOG is based is abstracted

from chemistry. A chemical entity functions by acting on
cther chemical entities to produce new chemical entities.
Similarly, in FOG, all interactions between MEs are of a
single type: a ME A acts on a ME B to produce a new ME A(B) .6

FOG also abstracts from chemistry the relation between
structure and function at the micro-level. Which new
entities are produced when chemical entities interact are
completely determined by the structure of the interacting
entities: the components from which they are built up and
the way in which these components are arranged . Thus, a
chemical entity is both a syntactic and a semantic object.
Syntactically, it is built up from component objects,
according to well-defined rules. Semantically, its "meaning"
(that is, its function), coded by its structure, is revealed
in the chemical reactions in which it partakes. The dual
character -- syntactic and semantic —- of chemical entities
is most striking in catalysis: the syntactic form of the
catalyst is unchanged, even as it accomplishes its function
of transforming the structure of other chemical entities.

In FOG, each ME has a syntactic representation in terms of
more elementary components. This representation never
changes during the lifetime of the ME. An ME's
representation codes for its semantics, in that the
representations of the interacting MEs determine the ocutcome
of the.interaction. That is, the representations of the MEs
A(B) and B{A) can be “computed" from the representations of a
and B, for every pair of allowable syntactic representations

A and B.7-8 In FOG, all interactions are doubly catalytic:
neither A nor B is "destroyed" by their interaction. S0, A+B
-> A+B+A(B).

Thus, in chemistry and FOG alike, micrpo-level function is
determined by micro-level structure. However, this is by no
means the end of the function-structure story: micro-level

$ The interacting entities are ordered: RA(B) need not be the same as
B{A). In addition, A(B) is not defined for all MEs & and B.

7 Technically, this is achieved by using Alonzo Church's A-calculus to
represent MEs as A~objects -- mathematical functions in intensional
form, that act on other functions to yield new functions according to
nine axioms of construction and syntactic transformation.
Computationally, then, a A-object is both function and data. The
components of a A-cbject are variable names, the abstractien symbol A,
and three structural symbols {pericd and left and right parentheses).
The set of A-objects are defined recursively by the three construction
axioms: wvarianles are A-objects; if x is a variable and M an A-cbject,
then Ax.M is a A-cbject: and if M and N are A-objects, so is M(N). The
semantics governing function evaluation are incorporated in the other
five axioms. The A-calculus is computationally complete; every
recursive function can be represented as a A-object. See Barendregt
(1984) for details,

8 For A-objects A and B, B is not in the domain of A if the computation
implied by the transformation axioms applied to A(B) does not halt. In
FOG, there is a limit placed on transformation steps, and any
interaction whose associated computation exceeds this limit produces no
product.

10



function can in turn give rise to higher-level structures.
Consider an Autocatalytic network: a set 0f chemical
entities that {(perhaps in the presence of some "food set")
catalyze reactions among its members (and the food set), such
that each member of the network is a product of at least one
of these reactions. Thus, an autocatalytic network
reproduces itself —-— collectively, not necessarily
individually. Take away some of its members, and an
autocatalytic nebwork may "disappear" as one after anocther of
its members fail to be produced by reactions involving
remaining members; while the removal of others of its members
may not matter, as they are soon replaced from
transformations among the “survivors". Thus, even though the
functionality of a particular chemical entity may be latent
in its structure, the organizations of chemical entities to
which this functionality may give rise are really aggregate-—
level or population concepts.

To see how FOG can he used to address the problem of the
emeérgence of higher-level structure frem micro-level
function, I first describe how to generate a FOG history.
Start with a population of MEs® (A-cbjects: see footnote 7)
—— these are typically generated at random. Wext, select a
pair of these MEs at random, say A and B, and let them
interact as described above. If the computation for A(B)
terminates, add this ME to the population and select ancther
ME at random and remove it from the population. This dynamic
keeps the population size constant. Now iterate the
interaction~deletion steps many times,10

The population of MEs in the FOG after many interactions
may display structure at the syntactic or_the semantic level.
Syntactic structure refers to common features of the
representations of the members of a set of MEs. For example,
the set of A-objects of the form Agy = Axghag. Lo Axg. ox., <
i, exhibits syntactiec structure,

Semantic structure depends on the production pathways
involving reaction products from interactions between members
cf the set. For example, suppose A, B, C, and D are MEs,
with A(B) = ¢, B(C) = B, C(D} = B and D(A) = B. Then,
regardless of the other interactions of these MEs, the set
{A, B, C, D} is -ma i iping, in that each can be formed
from interactions between members of the set, (This property
is analogous to the concept of an autocatalytic network).
Note also that {A,B}, (B,C), {C,D} and {A,D} are all seeding
Sets, in that the entire set can be reconstructed by
interactions involving the elements in each of these subsets
and their "descendant" products. A set that contains all of

3

% There is ne (external) environment in FOG.

10 Note that with this dynamic, FOG interactions are "oq average"
singly, not doubly, catalytic, since A is removed from the system with
the same probability as it is salected to form a product A(C), for all C
in the population.

11

the products from interactions between set mempers is glosed.

self-maintaining sets are 5£lf:x£gzﬂﬂu£lng-l
Cliiii—maintaining sets are not guaranteed toc survive under
FOG dynamics, since MEs are removed randomly from the .
population. Clearly, MEs that belong to a self-reproducing
subset with several small seeding sets h§ve a better ghance
of persisting in a population that contains that seeding set
than does an ME that belongs to no such sgbset. One way in
which a FOG population can display semantic structure 1S.lf
it can be decompesed into a number of such sel;—reprodUC1ng
subsets. These subsets in turn can have a variety of
semantic structures, which may be represented by means of
interaction graphs, as in Fontana (1?92)._

So far, there have been no constraints imposed on
interactions in FOG, except for the upper bound on alicwable
computation time (see footnote 8). It turns out, powever,
that what higher-level structures form depends crucially on
which interactions are allowed to take p}ace. For example,
some MEs may reproduce themselves (that is, A(A} = &) or
other MEs (A{B) = B}. Clearly, if tpe sgt.of M?s reprqd?ced
by an ME A centains A, it is self—ma%ntalnlng, in a trlvlal
way. Fontana (1992) reports that, without constra}nts in
interactions, FOG tends to organize arcund productlog
pathways that end in an ME that reproduces every ME in the
pathway. Starting with 1000 random MEs,.aftgr tens of
thousands of collisions, the FOG population is tgplcally
closed and consists of one or more self-reproducing subsets,

i its own identity function. .
ea?&;ﬁfjlo explore a gregéer range of iqteresging emergent
structures in FOG, Fontana has begug tg investigate what
happens when he constrains the permissible §et of
interactions. He does this in twe ways, which corresp?nd to
syntactic and semantic constraints. For e;ample, barring
copy reactions is a semantic constralpt, since whether a
reaction copies one of the reactants is a funcplon of the
interaction, not just the product of the reaction. ;n
general, though, it is difficult to formglate sepantlc
constraints. Syntactic constraints bar interactions that
produce reaction products with specified s?ructure. ?hus,
they amount to restricting the FCG population to particular

subsets of A-abjects.

To determine which products to prohibit, Fortana has taken
advantage of a peculiar finding:| FOG tends t9 produce N
organization on both the syntactic and semantic level.l That
is, when the FOG achieves a metastable,lclosed populatlon%
this population exhibits patteras both in the strucgurg [+]
their MEs and in their production pathwéys. Thgs, %t is
pessible to prevent a particular semantic organlzatlog from
eccurring by prohibiting reaction products that have its

nding syrtactic features. .
coﬁiﬁ??:;ampfz,i;hen copy reactions are prohibited, families

consisting of MEs of the form Byj = Axy Axy. o Axgl x50 3< 1,
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as described above, proliferate. Their syntactic structure
is clear. Semantically, according to the transformation

rules of A-caleulus, these so~called projection functions
satisfy

Ajj () = Ay g, if § > 1
= Byl metel if j =1
Thus, start with, say, A;y, : this ME acts on itself to

produce Ay, ; , which then acts on itself {(or on any other
member of the family) to produce (in turn) Az . 4., for s =
2,.;i=1. These i MEs form a simple semantic structure,
erganized around the cycle RPgy => By g Pyiz,1- - > By, -
Note that any member of this cycle is a seeding set for the
cycle. According to Fontana (personal communication, 1992),
FOG without copy reactions organizes into one or more of
these families, with transient random selection between
families {and victory tends to go to the largest}.

So the next organizational question to investigate is:
what structures emerge when all MEs of the form A;; are
prohibited? Once these are discovered and their syntactic
regularities are found, a further constraint can be imposed,
and additional organization forms obtained., By continuing in
this way, Fontana is uncovering a hierarchy of increasingly
complex organizational forms that can emerge in FOG, under
increasingly complex constraints on allowable interactions.

graph. The hope is that these structures. will provide the
basis for a mathematical theory of organizational form.

Another direction of current research with FOG is to
search for the emergence of structures at a higher level than
the sets of MEs so far described. For example, can self-
reproducing sets interact with one another to produce other
sets with some metastable Structure? An interaction between
sets of MEs can be defined trivially to produce the union of
all the pairwise interactions between elements of the two
sets. It is not <clear that this is a useful definition; nor
is it yet clear what a reasonable alternative might be. It
may also bhe necessary to introduce noise inte the system, for
example by cccasionally perturbing the structure of
individual MEs or the products of their interactions. This
may "destabilize® emergent organizations, especially those
that involve many MEs with complicated production pathways,
with the result that the system will Support more, smaller
Structures that may Support or inhibit one another through
their mutual interactions. At any rate, EHO is so far a
one-level phenomenon in FOG.

To conclude this discussion of P0G, consider an alternative

way of building a computational system in which entities
interact with entities to produce new entities. an obvious
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strategy is to decide how many entities you want to have in
the system, say n, and then randomly construct an n—by—g ]
lookup table that gives the products of all possible pairwise
interactions. Representing MEs as A-objects has two
principal advantages over this “"random lookup® strategy:

+ The A-based system is computationally open-ended.ll vou
are not limited to any pre-fixed number of MEs, énd you can
represent any imaginable relation between MEs, since any

computable function can be expressed as a A-object.

* In the A-based sfstem, the representation of MEs codes
for their function. Thus, it is poss%ble to explore
relations between structure and function that have no
counterparts in the "random lookup" scheme.l in partlculay,
any syntactically correct expression or family of expressions
can be inserted {(or deleted) from the system and the effects
or organization monitored. Put another way, the i:
representation provides a true genotype-phenotype

distinction -- and a way of experimentally determining which
"genes" are responsible for which "body plan®
characteristics.

On the other hand, experiments with EOG alone cannot tell
us whether the structure-function relations that they reveal
depend upon the A-representation of its MEs. That 1st.we
need other arguments to determine whethe; th? algeb;alc
structures of organization that Fontana is digscovering are
general principles of emergent organlzatl?n or merely )
artifacts of his model (and perhaps reducible to theorems in
A-calculus itself}. These arguments must be inductive in

thers!} be
character. Can these structures (and not others i
observed in other systems, from real or Artificial worlds, in
which functional interaction can be interpreted as the
creation of new entities??3

11 At least in principle: in practice, one must introduce constraints
on the number of steps in a computation, the length of the

sentation of objects and so forth. )
ffpﬁ:ej;t; self—maingaining set of A-objects repzesent§\the "organism",
with the syntactic structure of eachiA-object representing a gene£1ﬂ?he
phenotype is the (semantic) structure of the interaction graph o =]
set and its reaction products. .
13 Fontana and biologist Leo Buss are currently translating some
organizational experiments with FOG into the language_of evo%utlon:rgnd
biology, with promising resuilts. A paper on‘"Algebralc Repll?ator
Units of Selection" is forthcoming. 1In p§rt1cular, they provide new
interpretations of the significance of "life cycles".
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3.2 Evolutionary Prisoner's Dilemma: The Dypamics of

Evelutionary Prisoner's Dilemma (EPD) is a simple example
of an evolutionary process. The leading natural example of
an evolutiomary process is, of course, biological, and it is
far from simple. It is hard to think about biclogical
evolution now without taking account of its rich
organizational structure, in particular the hierarchy of
descent {replicating genes, inrteracting organisms, evolving
species -- and beyond) and the economic or ecological
network, with its complex of relations between organisms,
revolving around energy production and exchangeld.

The concept of evolutionary process on which EPD is based
abstracts away from all this Structure. It starts with the
notion of an entity as a set of attributes. Entities are
capable of self-replication: that is, they can produce other
entities that have the same set of attributes as themselves.
Entities with the same set of attributes form an entity type.
The entities in an evcelutionary process form a population,
and the population consists of more than one entity type.
Different entities replicate at different rates, so that the
distribution of entity types in the population changes over
time.l% The probability that an entity replicates at any
given time depends not enly on its own attributes but also on
those of the other members of the population at that time.
Finally, evolutionary processes include mechanisms whereby
entities with new kinds of attributes enter the population.
Frequently, these mechanisms depend upon innovation-
generating errors that take place in the process of
replication.

Thus, evolutionary processes are characterized by

i i (the reproduction of existing entities),
selection (the differential replication rates of different
entity types), and variation (the generation of new entity
types}. To determine a particular evolutionary process, it
is necessary to specify the following elements-:

* 8 zet of entity attributes;16

= a fitpess function {which may be stochastic) that gives
the replication rate for each entity type, given the current
distribution of entity types in the population;1?

14 For introductions ro the literature on hierazchical views of
evelution, see Hulli (1988, 1989), Salthe {1985}, and Blaredge (1985).

15 Entities may also leave che population, for example by dying.

18 Note that if the process is truly open-ended, S is an infinite set,
'T Note that the domain of the fitness function is not the set of
indivicdual entity types, but the set of possiblie pRopulations of entity
types. The process described here is coevolutionary: the fitness of
each entity type depends on what other entity types share its world, In
this sense, the population is an “individwal", with entities as its
“parts", which itself undergoes evolution. Thus, no "landscape theory"
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v wariati nechanisms whereby new entity types enter the

population; and

* an initial opopulation of entities.

For example, in population genetics modelslused in
theoretical evocluticnary biclogy, entity attrlbute§ are
typically defined at the genotypic level. The variaticn
meéchanisms include such genetic operators as mutation and
recombination. The most problemztic element in these models
is the fitness function, since relative replication rates
depend on the interactions at the phegotypic leyel. Thus, a
genotype's relative replication rate is a function not only
of how phenotype is determined by genotype,!® but also of the
kinds of ecologic relations that different phegotypes have
with one another (competition, predation, symbiosis and so
forth). These underlying processes are no? at all well
understood, and so it is impossible to derive the formlof the
fitness function from first principles. 1In contrgst, if
entities were taken to be organisms (or even species), the
relevant attributes might be structural or functlogal
properties that could be directly rel@teq to relat%ve
replication rates -- but then the variation mechanisms could
be modelled only phenomenclogically,l?

The designer of an AW evolutionary process.faces two .
difficult challenges: how to determine the fitness function
for an arbitrary population of MEs, and how to create
variation mechanisms that can supply new types of MEs
indefinitely. Lindgren solved these problems, and also

that fixes a "fitness function" over the set of entity types can o
describe the dynamics of the kind of evolutionary process I am defining
here, since such a "landscape" is continuously deforming as the
distributions of the entity types in the population change. )

'8 which may of course depend in part on what other genotypes are in
the relevant population, since this determination is "environmentally
mediated -- and the other entities in the population form part of a
given entity's environment. .

19 an alternative approach to modelling evolutionary processes begins
by positing two different types of entities: replicators and
interactors. Replicators have a fixed structure that can be exactly
replicated; variation mechanisms then introduce new pres of )
replicators. On the other hand, replicators do not AntEract-dlrectly
with cne another; interactors do. S$o selection cperates on .1nte:.:actors.
The key modelling problem in this approach is to relgte\the repll?ators
to the interactors: in particular, how do the functional properties of
interactors depend upon the structure of replicators, and how do the
interactions between interactors determine the differential.rates at
which the replicators replicate? The answers to these questions
determine the analog of the fitness function described in the text. Hull
(1988, 1989) argues exhaustively and convincingly for this a?proach to
modelling biological evolution. In EPD, the MEs {or strategies, see
text) are both replicators and interactors.
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provided a natural language in which to describe his AW, by
building EPD around a version of Iterated Prisoner's Dilemma.

Each EPD ME represents a strategy for playing a two-person
game with two possible actions (say, 0 and 1) .20 This
Strategqy is the only attribute of the ME. Each generation,
MEs interact with one another in a round robin tournament:
every ME in the population uses its strategy to play &
particular version of Iterated Prisoner's Dilemma against
every other ME.?! The MEs then receive their average reward
from these encounters, and they replicate in such a way that
the expected number of replicates of each ME is proportional
to its average reward.?? Thus, the Ffitness function is
determined by the representation of MEs, via the pairwise
interaction rule of the round robin tournament and the
interpretation of the representation as a Prisoner's Dilemma
strategy.

Variation in EPD arises from three kinds of replication
error, each of which occurs with a fixed probability,
independently Ffor each transcription event. First, any given
bit may be transcribed incorrectly {(here the probability is
per bit transcription, so the greater is the length of the
string representing the ME, the higher the probability of
replication error). Second, the string may get adjoined to a
copy of itself, doubling its length (for example, "01i" is
incorrectly copied as "0101"}. This error is particularly
important, since it makes the set of possible MEs infinite,
50 that EPD is potentially open-ended. Because of the way in
which strategies are encoded (see footnote 20), the offspring

20 Each EPD ME is a string of 0's and 1's of length 2™, where m is an
integer, The strategy encoding for the ME works as follows: write the
last m moves {in reverse order: the opponent's last move, your last
move, the opponent's next-to-last nove,..); read what you have just
written as a binary number; g6 to that coordinate of the your strategy
vectox -~ and play the number you find there.

21 the version has the fellowing features: a) the play is noisy:

that is, if a player's strategy dictates that he play a “0v, say, he
plays a "1" with probability p (p is small, and does not depend on the
player or the history of the game): b) the payoff per play is as
follows: if both players choose 0 ("defect"), they each win 1; if they
beth choose 1 ("cooperate"), they win 3; otherwise, the one who chooses
0 wins 5 and the one who cheoses 1 wins nothing; c) the iteration is
infinite, and the reward to each player in the iterated game is average
payoff per play given above.

22 1p Lindgren's version of EDP, population size is kept constant and
the propertion of sach entity type in the next generatign is
proportional te its average reward. Tf the proportion of any entity
type falls below 1/N, where N is the nominal population size, the entity
type is dropped from the population. In effect, rather than setting the
probability of replication for each ME to be proportional to its average
reward, Lindgren substitutes the expected number of replicates per type.
While Lindgren's version gains computaticnal efficiency at the cost of
failing to be a true evoluticnary process, it shares the qualitative
dynamical features described below with the truly evolutionary
probabilistic replication scheme.
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ME resulting from this error has exactly the same strategic
behavior as its parent.?? However, its doubled length means
that it takes account of one more previous move than its
parent does -- and a subsequent transcription error in'any of
its bits will give rise to z different kind of strategic
behavior than could arise from any transcription error in the
parent type. Finally, the string may be cut in half, with
either half chosen at random as the viable offspring (for
example, "1101" might be incorrectly copied as either "11% or
"01"} i

EPD dynamics exhibit interesting emergent properties.
First, a succession of stable ecologies -- that is,
distributions of entity types that persist for many
generations —-- form, dominate the EPD population, and then
degrade. Both the individual ecologies and their svecession
may be regarded as emergent higher-level structures. Each
ecology may possess one of a number of possible
organizatjonal forms: some are dominated by a single entity
type; some have several symbiotic or competitive dominant
types; in others, the dominant role is distributed among a
number of “quasi-species" that share some key features and
differ in others.

Second, the periods of stasis or "guasi-egquilibrium" in
which a stable ecology persists are interrupted by shorter
periods of destabilization, which alse display certain
characteristic features. During a destabilization period,
the number of entity types in the population fluctuates
rapidly. Frequently, these periods begin with a large
"extinction", in which the number of entity types drops
rapidly. It is also typical that the average reward that MEs
receives drops during the destabilization periods. In EED,
there is no exogenous "environment"™, so all destabilizations
are endogenously generated: that is, such phenomena as mass
extinction and structural disintegration do not necessarily
require exogenocus causes (like asteroid collisions or
volcanic eruptions!). Destabilization periods end with the
formation of a new stable ecology, in which the leading
entity types were not present (or present only at low
frequencies) in the previous “quasi-equilibrium®,

Contingency plays an important role in EPD ecological
succession. While it is easy to compute which strategies
have relative advantages over which, it is not easy to
predict which sets of strategies will dominate the emerging
stable ecologies. Start with the same initial populations,
and guite different successions can occur. For example,
starting with particular values for the system parameters .
(growth and error rates) and an initial population consisting
entirely of memory 1 strategies, with probability? about 0.9
EPD will end up {by 30,000 generations) in an ecology

23 For example, 0101 is the same strategy as 01, since its play depends
only on the opponent's last move, regardless of its own previous move.
249 These probabpilities, as reported in Lindgren (1992), are of course
obtained as frequencies over many runs of EPD.
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dominated by many different memory 4 entity types that share
common features in their representation (1xx10xxx0xxxx001) ;
Lindgren argues that this particular ecology cannot be
destabilized by the low-frequency introduction of any
possible entity type. On the other hand, with probability
0.1, this ecoleogy will not form, and the system will follow
some other succession, leading to ecologies whose dominant
types have memory lengths of 5§ or greater.

These features of EPD dynamics -- a contingent succession
of "quasi-equilibria™ interrupted by "catastrophic®
destabilization periods -- resemble the "punctuated

equilibrium" version of the history of biolegical evolution,
as put forward by Eldredge znd Gould (1972) .25 Their
appearance in such a simple evoluticnary process as EPD
suggests that they may be generic, at least in some very
general subg¢lass of evolutionary processes. An important
goal for future work with abstract AWs is to try to discover
the defining properties of this subclass and to gain a better
understanding of punctuated equilibrium dynamics. What
characterizes the set of possible stable ecologies? How
large is the set? To which perturbations is a stable ecology
robust -- and which destzbilize it? Why are the
destabilization periods relatively short-lived, compared to
the "quasi-equilibriav? Why are destabilization periods
frequently initiated by rapid mass extinctions -~ and what
endogenous mechanisms drive these events? What determines
the order of succession of stable ecoclogies -~ and which
successions are contingent and which (at least conditionally
on scme predecessors) necessary?

I conclude this discussion by pointing out two important
phenomena in biological evolution that denot arise in EPD
but could be the targets of future AW research. To explore
these two phencmena would require evolutionary AWs with more
structural possibilities for higher-leve} organization than
are present in EPD;:2§

* A key ingredient of the “punctuated equilibriun® story
is that fundamental structural innovation seems to arise only
in brief destabilization pericds, not in the intervening
“quasi-equilibria", in which various “implications™ of the
fundamental innovations are worked out. Most dramatically,
all existing animal phyla fand many more, since lost)
appeared in the Cambrian explosion, a period lasting less
than two million years, over 500 million years ago (Gould,
1%889). That is, biological evolution seems to produce big
differences first, in quick bursts, and slowly £ills in the
details.

25 somit and Peterson {1992) contains a very interesting series of
e5says on the meaning and scope of punctuated equilibrium.

26 an interesting evelutionary AW that addresses at least the first of
these issues is Thomas Ray's Tierra ({see Ray, 1992).
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* In biological evolution, selection operates at more than
one level at the same time. Thus, within organisms, cellular
selection continues to occur (for example, cancers represent
successful selection at the cellular lewvel that can be fatal
at the organism level}; and, at the same time, higﬁer level
entities -- like colonies, species, or even ecologies ——
compete for resources, reproduce themselve§ and generate-new
attributes that lead to new colonies, species, or ecologies.
The coexistence of all these processes constrains the
structure and direction of each of them.?’

3.3 Economics, EEQ and Abstract AWs

In general, abstract AWs are designed to study processes
whereby higher-level structure emerges from lower—level
functional interactions. The two abstract AWs described in
this paper, FOG and EPD, focus on two different aspects of
these processes: the characterization of types of structure
that can arise as a function of constraints on zllowable
interactions; and the dynamics of emergent structure,
Clearly, far more exploration of both of these themes, by
these and other abstract AWs, must be carried out bhefore we
can expect to gain useful insights into the lawfulness of EHO
processes. Once obtained, such insights will serve as a
background against which it might be possible to understand
what is generic and what particular to real-world processes
in which these themes appear to play a role,

Here I offer an economic example of such a real-—world
process: the coming into being of a new industry.?® This
process is central to economic growth and development. The
point is not that we can apply Fontana's and Lindgrenrs
investigations to learn anything interesting about thls_
process. Rather, I want tec call attention to those of its
features that appear to exhibit EHO and to argue that these
features are fundamental to understanding what the industry
comes to "be" and te "do". Furthermore, the most interesting
questions that arise about the process in my descripti?n
involve precisely the themes that FOG and EPD were designed
to investigate.

in ial r
I begin by sketching what I mean by the structure of an
industry. An industry can be described in two complementary
ways. First, the industry can be identified with the set of
products that it produces. These products are related to each

27 According to Lec Buss (1989), the two phenomena are.related: the
bursts of structural innovation ceincide with the emergence of a new
level of entity, which has successfully developed mechanisms that
control the selection processes operating on its component entitie§ 50
that they do not favor variants that are harmful to the larger entity of
which they are a part.

28 The formulation of this process, sketched here, is described in .
detail in a forthcoming paper by the author, Franco Malerba and Luigi
Orsenigo.
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other functionally, by the uses to which they can be put, and
technologically, through the processes by which they are
made. These two kinds of relations induce a structure to the
industry's product set.

An industry's product set changes over time, as new
products and ways to make them are developed. Since new
products may come from the modification of existing ones (or
their production processes), products alsc are related to cne
another by descent. Descent relations induce a hierarchical
structure on the product set, with higher-level “"taxa"“
defined in terms of successively more remote “common
ancestors". As is the case in biology, the members of
higher-level families of products also may share attributes,
for example, functional complementarities (such as computers
that share software) or similar producticn processes (so that
expertise accrued in making one of the family carries over to
making others) .

The second way of describing an industry is as a collection
of econcmic entities or "agents". These entities have a
variety of structural relations with one another, all
oriented towards developing, making and exchanging products
in the set described above. At least six classes of entities
enter into these relations: producers, demanders, suppliers,
financiers, scientists, and governments. While the industry
has an organization induced by the relations between its
component entities, these entities themselves {firms,
universities, research centers, regulatory agencies) have
internal structure as well. Thus, an industry exhibits
hierarchical structure. For example, a firm may have
subordinate divisions -- marketing, production, R&D -— and
may also belong to a superordinate entity like a research
consertium or a trade association.

The entities that make up an industry and the kinds of
relations between them also change over time, as a result of
the interactions between the entities. Thus, the industry's
organization is an emergent phenomenon. Consider, for
example, the case of biotechnology.?? By 1975, research
funded by NIH and NSF and carried out by scientists working
in the biomedical centers of several American universities
had resulted in the development of recombinant DNA and
hybridoma technologies. With financing obtained initially
from venture capitalists (a relatively new kind of financial
entity, swollen with profits from prior investments in
microelectronics), some of these scientists set up new firms
designed to exploit the econcmic possibilities of the new
technologies. There were some formidable obstacles to be
overcome, especially in product selection and development and
"scaling-up" production volume.

Lured both by the promise of the technologies and their
potential competitive threats to existing products and
production methods, some older, established firms explored a

2% For an excellent analytic account of the emergence of the
bictechnology "industry" through 1985, see Crsenigo (198%9}).
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variety of techniques to acquire proficiency in the new
technologies -~ ranging from research contracts with
individual scientists and their universities or with the new
biotech firms, to buying into the new firms, to setting up
in-house biotech R&D units. The most active of these
established firms were pharmaceutical companies, which had
long-standing ties to the research centers where the new
ideas originated and thus were well positioned to appreciate
their implications; and companies with experience in
fermentation technigues, which were crucial to "scaling up".
The background and competences of these firms played a key
role in reinforcing the orientation of the new technologies
towards medically-related products and, later, extending them
to agricultural products. By the mid-1980's, the
interactions between the new research-oriented firms, the
pharmaceutical companies, the chemical companies with
expertise in fermentation, the venture capitalists, the
universities, and the government regulators had produced a
distinctive organization of “biotechnology® entities, with a
burgecning (if still largely prospective} product set.

Connections between entities take many forms. Of course,
some of the interactions between entities take place in
impersonal markets. But many more involve direct and longer—~
lasting relationships. Pharmaceutical and chemical companies
fund university research, place representatives on the boards
of smaller, research-oriented companies, send their in-house
researchers to scientific meetings. Producing firms carry
out extensive market research into the needs and preferences
of current and potential customers and use special price and
service incentives to consolidate long-term relationships
with suppliers and buyers. Competing firms cooperate in
various research initiatives, form consortia to jointly
produce particular products, work together through their
trade associations to lobby legislatures and develop
international markets for their products.

Industry structure is then the totality of the connections
between the economic entities that make up the industry. To
understand how an industry develops, this structure matters,
for at least two reascns:

* Nol everyone knows how to do everything. The competence
to perform economic tasks is embodied: particular entities
have acquired skills, particular ways of doing things,
through experience and over time, It is not generally
possible to transfer these skills without immersion in the
experiences that gave rise to them. To solve new economic
tasks, like those that arise in the carly days &f a new
industry, it is necessary to patch together solutions to old
preblems, as embodied in the entities with the requisite
skills. That is, new eccnomic tasks requires new entities,
which consist of old entities connected in new ways. For
example, the research-oriented biotechnelogy firms combined
the technological skills of the university researchers with
business plans put together under the auspices of the venture

22



capitalists —-- and when these firms developed products, they
formed partnerships with older firms that embodied
competences in production, marketing and regulatory
managemant .

* To decide what to do next -- what new products to make or
how to improve production processes —— a producer has to
ferret out opportunities, which requires knowledge outside
the producer's current competence. That knowledge is
embodied somewhere else —— in the tastes or experiences of
users of the industry's products, in the theories or
experiments of scientific researchers, in the factories or
design studios of competitors. And the knowledge can be
obtained only through the connections that already exist
between the producers and the entities that embody it.
Without the mutual experiences that arise from these
connections, it is not even possible to conceive of what one
needs to know about. So who is connected to whom fand how)
determines in part what directions will be explored and how
those explorations proceed.

Thus, the process whereby new industries come into being
links two interdependent processes, both of which can be
viewed as evolutionary in the sense described in Section 3.2.
The first takes place in the product set; in it,
technolegical and functional relations between existing
products give rise, through the interacticns of different
kinds of agents, to new products. The other occurs in the set
of agents, amongst whom new connections create new structures
that embody the solutions to the economic problems posed by
developing, making and using the industry'"s new products.

The kinds of structure to which these linked processes can
give rise and the dynamics by which they do so ougnt then to
be fundamental objects of economic inguiry. Abstract AWs can
provide an important modelling tool in this enterprise,
particularly by shedding light on what is peculiarly economic
about these evolutionary processes.

4. Classifier Systems: Modelling Acents that Tearn

In neoclassical economics, agents are modelled as rational
actors. In this section, I consider a different approach to
modelling agents, and I describe an AW, John Holland's
classifier system, that realizes this approach. I then
briefly discuss two ways to use classifier systems to
"populate” AWs that are expressly designed to 8tudy economic
phenomena.

4.1 Rational Actors or Agents Who Learn?

The concept of rationality that underlies neoclassical
economics is a particular method for handling the problem of
choice. In any given choice situation, rational actors are
supposed to know what they want and what it is possible for
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them to do. While they may be uncertain about what will
happen as a result of their possible actions, they know what
all the possible consequences are, and they understand how
what they get depends on what they do. They are rational,
because they choose to do that which gets them (at least in
expectation) the most of what they want.

There are of course many ways to criticize this concept and
its applicability to "real" economic agents. How can agents
know all these things? Is it plausible (one might say,
“physiologically justifiable”} to suppose that, even if they
did have the reqguisite knowledge, they would have the ability
to compute which act has the highest payoff? And even if
they could act rationally, is there any evidence that real
agents in fact behave in this way?

Here, I want to start with a question more fundamental than
any of these: c¢an we really come to understand economic
action by examining "choice"? We -- you and I and economic
agents —- are immersed in a continuous, ever—changing stream
of information, partly received as signals from the outside
world by our sensory apparatus, partly generated internally
{(and recursively) in response to this stream. Before we can
"choose™, we have to select out a small part of all this
infermation and "attend" to it. Then we have to recognize,
on the basis of the information to which we attend, that we
face a choice situation. Finally, we have to formulate all
the ingredients that choice situations require: what we want
to have happen, what options we have, who the other relevant
acters are, what consequences we can expect. Only at this
point does a methodology for handiing choice -- rational or
otherwise —— become relevant.

Thus, our actions, even those that are based upon choice,
depend upon acts (of attention, category formation and
conceptual organization) that logically precede choice and
cannot, without creating infinite self-referential loops, be
subsumed under any choice-based theory of action. To found
economic theory on a choice-based theory of action implies
that the processes that produce “pre-choice" acts are
irrelevant to what happens when agents actually get down to
the business of making their choices. Or to put it more
precisely, it implies that the actions that economists wish
to study will be the same, however (and by whomever, the
modeller or the "real" agent) these unmodelled processes are
carried out.

Suppose, on the contrary, that these processes matter, in
the sense that the kind of eccnomic behaviors in which agents
engage depend upon the way in which they learn to recognize
and structure choice situations -- or even that’ through
these processes, agents come to develop certain behavioral
repertoires (for example, "organizational routines", as in
Nelson and Winter, 1982), without benefit of “"choice®, in
contexts that neoclassical economists simply misidentify as
“choice situations". Then, the descriptive and explanatory
power of economic theory would be seriously compromised by
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the very definition of the nature of the agents it takes as
its subjects of analysis.

An alternative is to base economics on a learning-based
theory of action. an agent in such a theory lives in an
"environment", which might of course include other agents,
Structurally, an agent can be thought of as a set of sensors,
2 processor, and a set of effectors. The sensors determine
which states of the environment the agent is able to
perceive, and the effectors which actions into the
environment the agent can perform. The sensors transmit
their perceptions to the processor; on the basis of these,
and a set of internal states that it maintains, the Processor
sends instructions to the effectors that result in actions.

The key to learning is the notion of @ “"reward", which the
agent receives intermittently from the environment. The
"aim" of the agent is to act in such a way to receive an
increasing guantity of this reward. The agent accomplishes
this aim by building up and refining a repertoire of actions
that tend to lead to reward. The instructions for these
actions are coded in the agent's processor as particular
sequences of transitions of internal states, triggered by
particular patterns of perceived environmental states. A
learning-based theory of action describes how this coding
takes place and how the code is stored and executed.

In contrast to a choice-based theory of action, a learning-
based theory directly models the transformation from
information-stream to actions. That is, all the mechanisms
that process the information stream on the basis of which the
agent is assumed to act are handled internally to the theory.
In principle, agents in such a theory could learn to "choose"
-~ but the theory would be responsible for describing how the
agents identify sitvations in which they regard choice as
appropriate, how they organize what they perceive about the
environment intc the ingredients of a problem of choice, and
how they develop the methodolegy that they apply when they go
about the act of choosing. In other words, "choice" might
arise as an emergent property in a world (Artificial or notl)
populated by learning agents.

To provide an adeguate basis for ecenomic theory, a
learning-based theory of action should provide a
representation of agents and environments rich enough to
support such characteristic features of economic behavior as
the foliowing:

* The theory should be able to model complicated, changing
environments, since real econemic agents engage™~in complex
interactions, exchanging and transforming many kinds of
commodities (and information). In the course of these
interactions, the agents can perceive much more than they can
"cognize". The more restricted is the information that a
learning-based theory allows its agents to perceive in their
environment, the less possibility there is for understanding
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the processes whereby economic agents actua}lyafome to know
their complex worlds and their relation to it.

* It should be possible to interpret the internal states
of agents in the theory so that the agents seem to
progressively "model" their world: that is, to generate
broad categories that describe the wgrld,.to develop
plausible hypotheses about the relationships betw§en thgse
categories {in particular, those that suggest agtlons likely
to produce reward), and to refine Fhese categories and
hypotheses on the basis of increasing experience.

= Agents should be able te¢ build up behavioral repertoires
that include chains of actions that are initiated long before
the agent obtains the reward they eventually vield. The .
capacity te build up these chaips and then tg act.on"them in
the appropriate circumstances gives an “outside view" meaning
to strategic behavior, since that is how the resulting
behaviors might appear to an cutside observe;, regaxrdless of
the internal process by which the agent acquired them,

* Agents should be able to develop the cagacity to plan
future actions on the basis of their expectations gf what the
consequences of these actions will be. This'capac1t¥
provides an "inside view" meaning to strategic beh§v1or. if
a theory admits the possibility of strategizing, without
building it in, then it can be used to explore the very
interesting questions of when agents actuglly engage in
strategic action and how they come to do it, espeglally in
comparison to the answers given by economic theories of

choice.

4.2 (Classifier Svstems: An Introduction _

In & classifier system, the agent is essentiallyljust a
collection of basic cognitive units, called classifiers.3l
Each classifier integrates perception, categorization and
acticn. A& classifier monitors the world, on the watch for a
particular constellation of perceptible features. When this

30 ghile Bayesian decision theory can be interp{etgd as a learniqg—
based theory of action, from this point of view it lS‘qulte rgstrlcted,
since Bayesian agents can only process environmental lnfOFmatlon abeut
which they have already “cognized" their opinions (as Fo its form and
probability}. Moreover, Bayesian decision theory requizes thét the
categories that agents use to construct their world, their prloy
cpinions about these categories, and their pro?edures far ch?nglﬁg.
opinion and taking action on the basis of opinion b? "hard-wired" into
the model. As a learning theory in the sense described here —- as
opposed te a theory of choice -~ this "hard-wiring" has no prescriptive
{and certainly no descriptive!) justification.

3L See Section 4.3 for a formal definition of a classifier —— the
functional “"definition" given in this paragraph {as a circumstance- .
specific behavioral propensity) is sufficieac for the remainder of this

section .
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constellation is perceived, the classifier "proposes" that
the agent take a particular action.

There are no consistency requirements on the classifiers of
which an agent is comprised. Thus, propensities to act in
different, even contradictory, ways, can coexist inside an
agent. The notion of an agent as a bundle of possibly
inconsistent behavioral propensities is a far cry from the
rational prototype of economic theory, whose internal
consistency is guaranteed by a probability distribution over
all possible states of the world, well-defined preferences
encoded in a utility function, and & single principle of
action: maximize expected utility.

There are, however, some advantages to a conception of
agents as inherently inconsistent. First, it is clear that
requiring consistency imposes great computational costs on a
system, as it entails a lot of internal structure and
frequent consistency checking amongst different structural
components. Second, since the world is always more
complicated than our perscnal experience, maintaining
consistency in an agent's behaviorali or conceptual system
almost necessarily requires a reduction in the agent's range
of possible action, in particular in response to novel
situations. Finally, there is overwhelming evidence that we
humans do in fact maintain overlapping and inconsistent
conceptual systems and associated behavioral propensities3? ——
perhaps because we are the products of an evolutionary
prccess that rewards behavioral flexibility and is
constrained by computational cost.

An agent that maintains inconsistent behavioral
propensities has to have some mechanism that determines on
which of these propensities it will actually act. After all,
the world itself provides certain kinds of consistency
conditions for behavior: you cannot move forward and
backward at the same time. 1In classifier systems, this
mechanism depends on a number that is associated with each of
the agent's classifiers, its strength, which registers the
"memory" of how well the classifier has served in the past in
the agent's quest for reward. When different classifiers
propose contradictory actions in the same circumstances, the
agent tends to act upon the one that has the greatest
strength.

Se far, I have described an agent in & classifier system
statically, as it exists at & particular point in time. But
agents learn, and learning means changing. Classifier system
agents learn in two ways: the strength associated with each
classifier changes with experience, and cold claisifiers with
low strength are replaced by new ones. 33

32 See, for example, Lakoff (1987}, especially chapter 18, and Holland,
Holyoak, Nisbett and Thagard (1986), which presents the learning-based
theory of action underlying classifier Systems, along with supporting
arguments from psychology and philosophy.

33 It is worth noting that "learning™ in classifier systems has & quite
different meaning than it does in raticnalistic theories like Bayesian

27

In order that useful classifiers increase their strength
over time, the mechanism that changes classifier strength

mest in effect identify actions that lead to reward —-— not
just those that produce reward directly, but also t?ose that
"set the stage." Holland introduced his "bucket brigadev

algorithm to solve this problem. The bucket brigade.cyanges
classifier strengths in two ways. First, any classifier
whose action is implemented passes some of its strength to
its .immediate. predecessors —— that is, the classif?ers that
proposed actions immediately preceding its own, which helped
produce the constellation of features that triggered the
classifier to propose its action. Second, the strength of
classifiers whose action is implemented when the agent
receives reward is increased as a function of the reward
received. In this way, chains of action that culminate in
reward can in principle build up: initially, the last
classifier in the chain gains strength with the reward, which
is passed back link by link as the chain is repeatedly
executed. And as each classifier in the chain augments its
strength, the sequence of actions proposed by the chain as a
whcle becomes more and more likely £o be executed in the
appropriate circumstances -- see Section 4.4 bhelow.

Two kinds of mechanisms are required to carry out the
operation of replacing old classifiers with new ones. The
first determines when replacements take place. It is
desirable for mechanisms of this type to recognize situations
in which the agent *needs" new classifiers. For example,
some mechanisms proposed in the literature trigger .
replacement when the world presents features that no existing
classifier recognizes, while others introduce new classifiers
that serve to link the actions of pairs of classifiers that
have been activated in sequence.¥

The secend type of mechanism constructs the new
classifiers, and here it would be desirable for the new
classifiers to plausibly improve the prospects for the agent
to obtain reward. For this purpose, Holland proposes the use
of genetic algorithms, which build new classifiers by

learning theory, 1In the raticnalistic view, the world is composed of
definite objects, properties and relations, and "learning" is the
process whereby an agent forms a mental model of the world rhat ]
correctly describes these features. Learning in classifier systems is
about acquiring circumstance-specific behavioral propensities that
function together to produce reward. That is, the agent is learning how
to act in the world, rather than how to describe it. In the process,
the agent may or may not develop descriptive categoriesy causal theories
and so forth; and even if he does, there is no presumption that these
categories and theories match some objective features "out there®™, nor
would their worth to the agent depend on whether or not they did so.

See Winograd and Flores (1986) for an extended critique of rationalistic
learning and decision theories.

3% The intuition behind this so-called Triggezed Chaining Operator is
that, logical fallacy to one side, sometimes “post hoc" is "trying" to
imply “propter hog™!
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combining parts of existing high-strength classifiers.3S The
idea, based upon an analogy with the success of sex (that is,
meiotic genetic recombination) in biological evolution, is
that useful classifiers work because they are composed of
good "building blcocks", either in the features of the world
that trigger them or in the actions they recommend —-- and
that trying out new combinations of these building blocks is
more likely to produce useful new classifiers than is any
kind of random search through the space of possible
classifiers.

At first sight, an agent in a classifier system seems quite
disagreggated. One might well wonder whether such an entity
could possibly display attributes that we usually associate
with the human beings or institutions that Ffunction as agents
in an economy. For example, will a classifier system agent
appear to outside observers to have an “identity" -- that is,
to manifest predictable behavioral regqularities over broad
categories of circumstances? Can a classifier system agent
develop "points of view" -—— internal models of the world in
which it functicas? If the answer to either of these
questions is "yes",36 then it would be reasonable to regard
these properties as emergent phenomena in classifier systems,
driven by the ability of agents' learning mechanisms to
induce a “"match" between the agents and their world that
endows agents with a coherence that is in no sense *"built-
an'",

Indeed, a classifier system can be interpreted as an
evelutionary process, with classifiers as replicators. The
replicator dynamics are given by the bucket brigade, with
relative stxength representing relative frequency of
replicators of each classifier type, while the genetic
algorithms function as variation mechanisms. In this view,
the agent is an evolving population of replicators -- but
selection of replicators is a function of their joint
effects, through actions carried out at the agent level. 1In
this respect, the classifier system agent is similar to the
population of strategies in Lindgren's EPD, and it is perhaps
then not so surprising that structure and coherence at the
level of the agent should evolve, or that they should
manifest themselves in the agent 's behavior,

In section 4.4 below, I will review some evidence that, at
least in relatively simple instances, classifier systems can
exhibit such emergent phenomena as chains of linked behaviors
and "mental models" that categorize and provide causal
explanations for features that appear in the agent's world.
Indeed, with a little additional structure, classifier system
agents may even engage in a form of strategic planning.

35 See Goldberg (1989) and Booker, Goldberg and Holland {1989}, both of
which provide good introductions to the literature on genetic
algorithms.

3¢ See Section 4.4, where T 2rgue that both these questions may be
answered affirmatively.
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Like the A-calculus, classifier systems are computaticnally
complete. In addition, they have two particularly desirable
computational efficiency properties:

*« None of the processing algorithms —-— classéfier
activation, bucket brigade and replacement algorithms --—
impose heavy memory requirements on the system.. all the
information that has to be retained about-cla551f1ers are
included in their representations and th?lr strengths. It is
not necessary to “remember" any descriptions of Fhe
circumstances in which a classifier propgsed act}on or what
happened as a result; in particula;, no information about the
joint actions of classifiers is maintained by the system,

* Mach of the information processing in all the procesging
algorithms can be carried out in parallgl. For example,_ly
classifier activation and the bucket brigade, each classifier
acts as its own "processor", to determine whether the feature
constellation it monitors obtains and teo pass on strgng?h to
its predecessors respectively. Sim:].larlyr in the prln?lpa}
genetic algorithm, pairs of classifiers undergo recombination

independently of one another.

4.3 Specifyinag a Classifier Svstem

Formally, a classifier system is a discre§e~tiqe AW that
models a learning agent and the environmen? in wh1c§ the
agent lives. The current state of the environment is
represented by a vector, one component of Whl?h registers
whether or not the agent receives any reward in the current
period -- and if so, how much. The other compogents code for
various features of the agent's world, as perceived by the
agent., Since the environment is repregent?d.as the agent .
perceives it, the agent's sensors are lmpll?ltly modelled in
terms of the features registered in the environmental state
vector.? ‘

The state of the environment changes according to a
specified dyramic, which may depend upon current‘and pa§t
environmental states and the agent's current action. Since
this dynamic describes how the agent's actions change the
environmental state, the agent's effectors are also
implicitly modelled, through their actual effects.

The agent's processor is represented by two gtructural
features: a behavioral revertoire, which determines the set
of possible actions the agent ¢an take, and a mga;agg_hgaxd,
which records the agent's current internal state in thg form
of a list of messages. The behavicral repertoite consists of
the set of all the MEs in the classifier system. These MEs

are called classifiers. Each classifier consists of two

37 The agent is presumed to have access to the current state of the

environmental vector. As a result, the questicn of th? ffdellty of the
agent's perception does not arise here. Of course, this issue has to_be
confronted when the modeller constructs the environmental state dynamic.
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symbol strings, the gondition and action strings (say A and B
respectively), along with a label identifying the classifier
and the value of a numerical attribute, the classifier's
strenath. All classifiers have the same number of symbols in
their representation, say n.3®

The classifier (A,B) is interpreted as a behavioral rule:
IF the conditions specified by A are satisfied by the current
state of the environment and at least one of the messages
currently con the message board, 3% THEN take the acticns
specified by B. There are two kinds of action: external
actions, which change the state of the envircnment, angd
internal actions, which send a message to be posted on the
message board.*?

The contents of the message board in any given period
consist of a list of messages sent to it in the previous
perxiocd, along with the label of the classifier that sent the
message. Each message on the list either does or does not
satisfy any particular classifier's condition string. It is
both computationally necessary and makes good modelling sense
to assume that there is an upper bound to the number of
messages that can be posted in any period on the message
board.

Which actions the agent actually takes in a given period
depends upon the current contents of both the behavioral
repertoire and the message board, as follows. First, each
classifier's condition string is checked against the current
environmental state vector and the messages currently on the
message board. Note that this checking operation can be
carried out in parallel, with each classifier "processing"
each of the availlable messages (including the “message" coded
into the environmental state vector) and determining by
which, if any, of these it is satisfied. The classifiers
that are satisfied by at least one of the messages are then
eligible for activation (see footnote 39).

Next, a subset of the eligible classifiers are selected for
activation. It may not be possible to activate all of the
eligible classifiers, for two reasons. First, the action
strings of different classifiers may dictate changes to the
environmental state wvector that are mutually inconsistent.
This inconsistency has to be resolved in some way in order to
assign a definite value to the envircnmental state wector for

*8  Generally, the bits represent values of the sensors, internal states
and effectors. If these values are binary, the symbols come from the
set {0,1,#}, where # in a condition is interpreted as "don't care® --
that is, disregard the feature represented by any bit whose value is #.
The specificity of a condition string is the number of non-# symbols it
contains.

3% 1n most implementations, each classifier actually has two condition
strings, and both must be satisfied before the classifier's action is
eligible for execution. In this way, internal and environmental
conditions may interact to trigger particular behavioral responses
(hence the conjunction "and" in the texr).

%9 A single classifier may produce both types of action.
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the next period. Second, if more cliassifiers send messages
than the message board can hold, some mechanism must
determine which of these messages get posted. In either
case, a competition between the relevant set of eligible
classifiers determines which of them actually execute their
actions. The rules of the competition vary from one
implementation of classifier systems to¢ another, but the
basic idea is always the same: the greater is the strength of
a competing classifier, the more likely it is that its action
will be executed.?!

The strength of a classifier whose action is executed can
change in three different ways. First, it must pay for this
right with a (fixed} fraction of its strength. This payment
is distributed amongst those classifiers whose posted
messages in the previous period satisfied the conditions of
the winning classifier. Second, if after all the acts are
executed, the environmental state indicates that the agent
has obtained a reward, then this reward is shared out to
increase the strength of each of the winning classifiers.??
Third, if classifier posted a message on the message board,
it has the chance to gain strength in the following period,
in the form of payments from those classifiers whose
conditions its message turns out to satisfy (and which
themselves win the right to execute their actions). In
addition to these "bucket brigade™ strength changes, some
implementations of classifier systems impose a small strength
tax every pericd on all classifiers in the behavieral
repertoire, in order to expedite the replacement of useless
classifiers.

Implementations of classifier systems use a variety of
different mechanisms to replace low strength classifiers.
Most systems replace a fixed fraction of classifiers at
regular intervals. Generally, classifiers are deleted with
probability an inverse functicn of current strength. In
addition, as described in section 4.2, it is possible to add
event-dependent triggering conditions and algorithms for new

4l rypically, the competition is probabilistic, with the probability
that a given eligible classifier will be selected proportional to some
increasing function of its strength. Sometimes, other attributes of the
classifiers besides their strength affect their probability of
selection. These include specificity {the number of different features
of the environment or internal state that are “checked" by the condition
string) and supporxt {the number of different messages on the boarxrd that
satisfy the classifier's condition string). Both of these measure,
though in different ways, the extent to which a particular classifier is
“tuned” or adapted to the particular circumstances of the agent and the
environment. The more specific is the satisfied condition, the more the
classifier "exactly fits" the particular situation; while high support
indicates & fit of the classifier to other behavioral elements in the
agent's repertoire,

%2 Note that each classifier whose action is executed receives a share
of the reward, whether or not its action had anything to do with the
agent's obtaining the reward. The sorting out of "cawvsal™ from
noncausal actions takes place statistically, over time.
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classifiers tailored to the triggering events. For example,
when no classifier's condition is satisfied by the current
set of messages, the so-called Cover Detector Operator
constructs a new classifier whose condition string is
satisfied and whose action string is chosen in some random
way.

The most important general algorithm for constructing new
classifiers is recombination, a genetic algorithm. To
implement this algorithm, select two "parents" from the
current behavioral repertoire, with selection probability
proportional to strength. To produce two "daughter"
classifiers, first copy each parent. Next, choose two
position indices (integers between 1 and n inclusive), and
exchange the symbols in the copied classifiers between these
two positions. The two classifiers that result from this
operation are the daughters. One of the two daughters is
then chosen as the replacement classifier, with strength
initialized as some function of the strengths of its parents.

In summary, to construct a classifier system, one must
specify the following ingredients:

* symbol string representations for the environmental state
vector and for classifiers;

* & dynamic for the environmental state vector;

* versions of the activation, bucket brigade, and
replacement algorithms;

+ an initial population of classifiers.

4.4 (Cilassifier Systems: Emergent Properties

At the end of Section 4.1, I listed some criteria for an
economically useful learning-based theory of action. 1In
particular, the agents in such & theory ought to be able to
construct "mental models™ of their world, to build up
repertoires of temporally-linked behaviors that culminate in
reward, and to plan future actions based upon expectations of
consequences. In this section, I discuss some work that
stggests that classifier systems can produce emergent
properties satisfying each of these criteria.

hi hi

The world presents itself to us as a ceaseless succession
of sensory stimuli. To form our mental models of the world,
we have to endow it with a set of objects, propérties and
relations, in terms of which we reason, develop causal
hypotheses, plan our actions. The process whereby we
construct this set, from the raw material of sensory stimuli
and the changes in our subcognitive "internal states® they
trigger (and, recursively, from the elements we have already
constructed), is a process of category formation.
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How we form categories, and what structure the resulting
categories come to have, are difficult and important
psychological and philosophical problems.4® At first sight, 44
it might appear that the categories we use to describe the
world are "natural" -— that is, they merely reflect the
structure of the world itself and hence can be defined as a
set of necessary and sufficient conditions on perceived
"states of the world".%® However, there are deep reasons why
the idea that there can be a simple isomorphism between the
structure of the world and our mental models of it fails?% ——
and with it, the classical conception of categories as
mirrors-of-the-world. In addition, there is abundant
evidence that the categories we use to describe the world are
not reducible to sets of “"states of the worid" and in fact
exhibit complex internal structure.®? As we shall see, these
features also characterize the principal structures that
represent categories in classifier systems, default

A default hierarchy (DH) is a set of classifiers, whose
condition strings differ in their specificity.?® The most
general classifiers in the hierarchy establish "default"
values for the category that the DH represents, These values
may be overruled or modified by some of the more specific
classifiers at the next level of the hierarchy -- and so on,
down the hierarchy.

For example, consider a categery that we could call "things
to aveid". A DH representing this category might include a

13 See Lakoff {1987) for a stimulating survey of recent research on the
process of category formation and its profound psychological and
philosophical implications, many of which challenge the foundations of
neoclassical economics. Lakoff stresses the importance of the
experiential and biological bases of categorization. His analysis is
supported and extended by the evolutionary and neurophysiological
arquments of Gerald Edelman (see Edelman, 1992, for an introduction and
references) .

9% which, in the history of philosophy, lasted a long time -~ from
Aristeotle to Wittgenstein!?

45 Note that if categories actually had this structure, then any
category X could be expressed as a simple disjunction (over different
states of world) of rules of the form "If [state A] then [category X]*
-- and thus would be directly expressible in a classifier system.

18 see, for example, Lakoff (1987), chapter 15, for 2 discussion of
Putnam's Theorem, which establishes the internal inconsistency of
objectivist semantics.

%7 For example, our categories typically display protctype effects ——
that is, some instances of a category are consistently megarded as more
"typical™ or “central“ than others (for example, a robin is a more
central member of the bird category than is a penguin; and blue is a
more gentral color than is violet). Prototype effects are inconsistent
with the classical conception of a category as a set of cbjects with
menbership criteria defined by necessary and sufficient conditions on
some attribute set.

48 That is, the number of non-f symbols in their condition-strings; see
footnote 38.
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general classifier of the form "IF a large vehicle is moving
towards you THEN turn and move quickly out of its path®" 49
This classifier estahblishes a good general policy for
avoiding traffic accidents on city streets. EHowever, if you
want to travel by 'bus, it might be good to have an exception
rule of the form “IF you are waiting at & bus stop and a bus
moves towards you THEN wait where you are". These classifiers
might in turn be supplemented by the even lower-level
exception rule "IF vou are waiting at a bus stop and a bus
moves towards you and fails to slow down THEN turn and move
quickly ovt of its path."

In a default hierarchy, even though the component
classifiers may contradict one another, they actuvally work
together to define complex categories efficiently. Good
general classifiers benefit the system of which they are &
part, because they cover many possible situations and produce
an appropriate action for most of them. On the other hand,
more specific exception classifiers, which generate better
actions in the situations their condition-strings match, can
accumulate high strength. As a result, they tend to win
bidding competitions in these situations against the general
classifier whose action theirs contradicts, particularly when
bidding rules favor classifiers with higher specificity.

This does two good things for the system. First, it leads to
appropriate actions in these situations. Second, it protects
the valuable general classifier from losing strength, by
preventing it from winning bidding competitions and
consequently paying out strength, in situations where it ig
unlikely to gain strength by preducing an action that results
in reward. As a result, it is possible for all the members
of a DH tec maintain relatively high strength values, which
increases the probability that the DH will persist irnside the
classifier system. Thus, for example, without having to
maintain a lot of specific rules that cover every imaginable
interaction between you and large vehicles, a two-rule
default hierarchy will still allow you to aveoid being run
over and to catch the bus when you need to.

Notice that DHs represent categories implicitly: the
"meaning” of the category is distributed among all the
classifiers that make up the DH representing it. This fact
has two important consequences. First, it is possible for a
category to "function" but have no "name" =-- that is, no way
to refer to it inside the classifier system. Second, the
“meaning" of categories can change over time. New classifiers
are always being generated by the system's replacement
operators, and some of these new classifiers will function
interactively {competitively or cooperatively) with

1% Note that this classifier links the recognition of a category
instance to an appropriate behavior. This pragmatic orientation is a
general feature of classifier System categeries.- A classifier system
Supports categeries not just te "name the world”, but because it has to
act in it. Those categories that help the system obtain reward are the
ones that are reinforced and consequently persist and ramify.
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classifiers in the DH. As a result, the "meaning” of the
category represented by the DH will change, in the sense that
new situations will be recognized as instances of the
category or new actions will be taken when certain instances
are recognized. Of course, such changes in the “meaning™ of
categories correspends to experientially-based learning by
the agent that the classifier system represents.59

Categories can also be referred to explicitly in classifier
systems, through the use of tags. A tag just corresponds to
a particular symbol substring, for example "001"“ occurring at
the 6th through 8th position of a condition or action string.
Tags can name categories. Using tags, the system can support
classifiers that recognize the category named by a tag, say B
(IF state A THEN #B#, where #B# is a string with the tag B
and all other positions "don't care“), and others that take
appropriate action when the system has recognized the
category (IF aBc THEN action C, where aBc is satisfied if
some B-recognizing classifier has posted its message the
previous period, and perhaps some additional conditions,
represented by a and ¢, are met). In this way, categories
can link directly to other categories, and “abstract™ mental
models can be represented in the classifier system. Because
they require specialized subsets of classifiers for
recognition and response, tagged categories have more complex
structure than their untagged counterparts, but DHs are
equally suitable for both representation tasks.

So far, I have described how categories can be represented
in classifier systems. The question of real interest, of
course, is different: will DHs that represent categories
actuaily emerge? 1In general, this is hard to prove: not
only must the classifier system produce the DH —— but we, as
observers, have to recognize that it did so! In one of the
most impressive of the relatively few studies addressing this
critical question, Riolo (198%a) provided a strong case that,
in some circumstances, DHs in fact emerged in a particular
classifier system.

Riolo investigated the performance of a classifier system
that detects 8-bit binary vectors and must determine which of
four categories they belong to. fThe highly nonlinear
function that determines the "real® categories is, of course,
unknown to the system. The system is rewarded whenever it

50 A third consequence of the distributed "meaning" of categories
represented by DHsS is that they share many of the attributes that recent
psychological research has established for our categorigs. For example,
not all instances of a category represented by a DH have the same
mertbership status, since different instances trigger different
classifiers in the representing DH, with different ensuing xding
competitions and outcomes. As a result, for example, some kinds of
instances may always be recognized as belonging to a category, while
others may be accorded membership sometimes and sometimes not. Hence,
classifier system categories give rise to pretotype effects —-- see
footnote 46. Feor many more examples, see Helland, Holyoak, Nisbett and
Thagard, 1986.
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achieves a correct classification.s! Starting with a random
set of 100 classifiers, Riolo's system was able after 30,000
trials to correctly classify the input vector over half the
time. By “interpreting” the high strength classifiers in the
system and analyzing their interactions, Riolo was able to
show that the classification was accomplished by means of
categories represented by DHs, It is worth noting that some
of the interactions between the general rules and their
exceptions in some of these DYs were subtle; expressing the

categories represented by these DHs in English -- clearly an
inappropriate language for this world —- would be quite
difficult!

Rioleo's work not only provides strong evidence that DHs
representing categories can in fact emerge in classifier
systems, but it also gives some insight inte conditions under
which this is likely to happen. For example, bidding rules
that favor more specific classifiers turn out to be necessary
Lo maintain DHs in the system (Rioclo, 1987b), as do
provisions that prevent the random removal of high strength
classifiers (Rioclo, 1989a)}. Whether DHs will emerge in more
complex classifier systems like those that might be used to
model economic agents —— and whether we will be able to
interpret the categories they represent if they do =-- remain
questions for future research.

Viewed from the outside, agents —— firms, chess players,
urban racoons foraging for food —— appear to act )
Strategically when they carry out a sequence of separate but
linked actions that culminate in a favorable outcome. Seen
once, the action sequence might appear coincidental. The
more it recurs in circumstances which turn out similarly well
for the agent, the more we would tend to regard the agent and
the behavioral sequence as "strategic" —— particularly if we
had seen the agent initially respond in different ways to the
kinds of situations that later trigger the sequence, then
engage in bits and pieces of the sequence, and finally put it
all together and repeatedly act it out in the appropriate
circumstances,

Classifier system agents are capable of this kind of
strategic action. Linked chains of classifiers can emerge,
such that each successive classifier acts to bring the system

51 Note that a perfect solution to this problem is possible —-
obviously, with 255 separate classifiers, one for each Ystate of the
world"; not so cbviously, with oniy 17 c¢lassifiers, by taking advantage
of the structure of the encoding function. As such, it is a very
different world than the one we —- or interesting modelled economic
agents! -- inhabit. Clearly, the larger is the set of classifiers in
Riolo's system, the less incentive there is to achieve a "compact"
categorization by maintaining general ruyles in & DH. Conversely, the
smzller the classifier set, the more "pressure” on the system to
organize its categories efficiently —- and so the more likely it is that
DHs might emerge.
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closer to reward and also sends a message that triggers the
action of the next classifier in the chain. The syst§m can
maintain these chains -- and they can be assimilated into
longer sequences, that either begin temporally even Ffurther
from the eventual reward, or end by producing even more
reward for the system (see Wilson, 1985, Riole, 1987a,
Rebertson and Riolo, 1988, Riclo, 1988b).

For such chains to emerge, the classifier system must be
equipped with special bidding rules and replacement.
operators. In the next several paragraphs,‘I descr%bg how
links between classifiers are accomplished in classlfler.
chains and review some of what is known about the conditions
under which classifier chains can emerge.

The links in a chain of classifiers are forged by means of
tags. To see why tags are necessary, consider the following
example. Suppose Ai, A2, A3 are classifiers of the form "IF
the world is in state Si THEN change it to Sis+1" (i = 1,2,3).
Moreover, suppose that the classifier system gains rewar?
when the world is in S4. Then, if the world starts out in
81, and our three classifiers fire sequentially, the world
ends up in S4 and the system gets reward, which all goes to
A3. What about the other two classifiers, who set the stage
for A3? So far, they get nothing. In fact, they lose, .
because in order to execute their actiens, they have to win
bidding competitions and pay cut their winninq bids to their
“suppliers".52 Thus, this "chain" (so far unlinked except
through its “function") will not last very }ong. -

Now suppose we modify these classifiers in two ways. First,
suppose A} and A2, in addition to changing the state of tpe
world through the system's effectors, also post messages in
the form of tags, say Bl and Bp respectively. Second, .
suppose that A2 has the tag By and A3 the tag Bz in their

" condition strings.??® Through these tags, A1 is now a )
- "supplier" of A2 and Az of A3z —— and as a result, strength is

paid ocut down the chain, from A3 to A2 and Ao to A1: In this
way, reward won by A3 will eventuvally result in an increase
to the strengths of both its predecessors.5!

32 Ip this simple case, their suppliers are just the detectors, which
posted messages identifying the successive states of the world. It
tuzns out in general a bad idea to pay out bids to detectors, for
reasons perhaps clear from this trivial example!

53 Formally, this requires that they have two condition strings, as
described in footnote 39 above. -

5% Higher-level representations of chains can also be achieved by .
tagging an entire chain, in addition to the link-by-1ink tags described
here. This sort of tagging essentially makes the chain into a category
—- organized diachronically, in contrast to the synchronic categories.
described above. In this way, the system can refer to the entire chain,
“mobilizing™ it into action as a unit -- or terminating its execution
before completion, should circumstances warrant. Research has not vet
been carried cut on the conditicns under which such higher-level
structures can emexge,
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Evidence suggests that tagged links between classifiers are
unlikely to develop by chance -- at least at a fast enough
rate to generate functionally useful classifier chains
(Robertson and Riolo, 1988). As a result, "strategic®
classifier systems require a special mechanism, called a
Triggered Chaining Operator (TCO), to bind together
classifiers that plausibly might function usefully as part of
a classifier chain. The TCO creates a pair of coupled
classifiers in the following way. First, it selects a
classifier B that was active and experienced a net strength
gain in period t —— and another classifier, A, that was
active in perieod t-1. So far, there is no relation between A
and B; the idea, however, is that A's action in period t-1
might have helped set the stage for B's strength gain in the
next period. So the TCO creates two new classifiers, A and
B, which are joined by a tag (in the action string of A and
the condition string of B), but otherwise identical to A and
B. Through the tag, A triggers B.

If there is any benefit to the system in the connection
between A and B, A is essentially volunteering its sexrvices
-- while A is paid for its efforts by B's bid. As a result,
A has a much better chance of staying around, and the system
does better as a result. On the other hand, if there is no
benefit to the connection, B, with its additional triggering
requirement of A's tag, will not fare well relative to B and
will scon disappear from the system —— and without its income
from B, so will a.

The story is not complete yet: why should B prosper
relative to B? After all, B is triggered whenever B is ——
and sometimes when it is not. Waat if there are other
favorable situations for B -— or if B is only active after A?
In either case, B has no obvious advantage cover B. If the
action of A or some other stage—setter is necessary for B's
success, then the overall system suffers if B (and other
linked versiocns of B) cannot supplant B. B is free-riding on
the stage-setters it requires for its reward, and as their
strength declines, so does the system's opportunities for
reward -- not to mention B's as well.

This is a serious problem, because unlinked classifiers
like B have to precede linked classifiers like B in the
system —— they are the building blocks out of which long
chains are constructed. Thus, by the time the linked
versions come onto the scene, via TCQ, the unlinked versions
are already established and tend to have relatively high
strength. Unless classifiers like B have some bidding
advantage over classifiers like B, the prospects for pbuilding
up long action chains is not bright. Several solutions to
this problem have been proposed in the literature. For
example, it is possible to bias bidding competitions towards
c¢lassifiers that appear to fit the general context better ——
that is, are supported by a greater number of the nessages
currently on the message board (see footnote 41) . This gives
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B an advantage over B whenever A is active, since A supports
B but not B.

Riclo (1988b) presents striking evidence that these .
mechanisms work. He worked with a classifier system designed
to negotiate its way through a 4-level, lé-state feed-forward
network, with reward possible only when the system entered
one of the four possible fourth-level states. Without TCO,
the system learned how to proceed from the third-level states
to the fourth-level reward state, but essentially nothing
more. With TCO and two mechanisms designed to solve the
"free-rider" problem described in the last paragraph,5 the
system performance greatly improved, through the emergence
and maintenance of effective classifier chains that guided
the system from each first-level state of the network to the

payoff state.56

Lookal l i . ) .
Suppose some classifier system agents actuwally had the .
capabilities described in the last two subsections. That is,
they could form categories that described useful features of
their world, and they could generate chains of actions that

tend to culminate in reward. Would such agents count as
rational actors, in the sense described in Section 4.17?

To answer this guestion, first recall how rational actors
decide what to do. They begin by recognizing that they are
in a choice situation. WNext, they determine their possible
courses of action and forecast the consequences of each of
them. Finally, they choose the course of action that
promises them the most favorable outcome.

Now, how might our idealized classifier system agents
behave? With their ability to categorize,  they could come to
recognize situations in which it would be appropriate to
activate one of a number of their chains of actions.

Moreover, they would “choose" which of these chains to
activate on the basis of the relative strengths of the

55 oOne was the inclusion of support in bidding, as described in the
text. The other was a modification in the way the genetic operators
deleted classifiers when adding new ones to the system —- only
classifiers that had submitted z bid in the current period were eligible
for deletion. This modification served to limit the number of copies of
unlinked "free-riding" classifiers, which otherwise tended to swamp the
newer linked versions in bidding competitions.

56 nNegotiating the network with transitions chosen at randem yields an
average score of 150 per three-transition trial; perfect performance
yields the maximum payoff per trial of 1000. With TCO, the system
achieves an average score of around 400 after about 3000 trials, and
does not improve much thereafter. With the modified bidding and genetic
rules described in the text and in footnote 55, the average score jumped
to over 600 after 3000 trials and then continued to increase, reaching
nearly 800 after 12000 trials. One additional modificatien, designed to
"“encourage" the formation of chains that traverse less frequently
encountered paths achieved further improvement, producing an average
score over 900 after 12000 trials. This last modification extends the
idea of the Cover Detector Operator, described in Section 4.3,
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chains' constituent classifiers, which of course reflect the
agents' experience of the chains' relative benefits—- and
hence their “expectations" of the chains' benefits in the
current situation.

These two descriptions sound quite similar. However, they
mask a key distinction in the way in which the two kinds of
agents form their expectations of benefit from a particular
course of action. Classifier agents look backwards, since
they base their expectations on classifier strengths, which
aggregate over every past experience with the relevant
action. In contrast, rational actors look forward: starting
from the current state of the world, they envision what
consequences will follow if they take the action under
consideration -- until they reach some end-state whose value
can be determined. Typically, they have to consider more
than one end-state for each possible action, since the future
depends on other contingencies than the current state and the
ratiornal actors' actions. When this is the case, they
evaluate the benefits of taking a particular action by
averaging over the benefits of the different possible
consequences of that action.

This might not seem to be such a big difference, since,
after all, rational actors have to base their scenarios for
the future on what they have learned from the past. But this
is misleading: the difference hetween forward- and backward—
looking strategies is indeed profound. In particular, the
forward-looking strategy requires two capabilities that our
classifier system agents so far lack: '

* Rational actors need to generate explicit predictions of
future states of the world, and to do so they must have
methods for storing information about how these states have
changed in the past in response to their own actions. 1In
contrast, classifier system agents do not predict future
states of the world explicitly. Moreover, it is not clear
how classifiers that were designed to predict would survive,
since a classifier's strength accrues only with respect to
its action's usefulness in obtaining reward, not with respect
to how well it predicts changes in the state of the world.

* Rational actors have the capability of operating in a
"putative mode", in which they run their predictive models
counterfactually to discover what the future may hold for
them (that is: IF the world were in state A THEN take act B
and the world would enter state C; IF the world were in state
C THEN ...)}. 1In contrast, in classifier system$ there is no
putative mode: every action always results in & real change,
either to the state of the world or to the systems' internal
state; and any action changes the strength of the classifier
that proposes it, through the system's bidding rules.

Both Holland (1990) and Riolo (199G) have recently shown
how to design classifier systems that can operate jin the
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putative mode. Such systems require surprisingly'few
modifications of the basic classifier system architecture,
Moreover, all of the required modifications can be carried
out without vielating the fundamental principles of
classifier design, including parallel processing and local
memory storage. .

In order to express what happens in the putative mode, two
representation problems have to be solvgd. First, it is
necessary to distinguish between "putative® anq "real™" §tates
of the world. Rioclo sclves this problem efficiently, with a
single~-bit tag attached to all messages that reﬁer to states
of the world; the wvalue of the bit establishes in which of
the two modes, putative or real, the state is meant to
obtain. Second, the system must support classifiers that
express predictions of fauture states of the worid. -HeFe,
Riolo uses classifiers of the following "P+AY" (prediction +
action) form: IF the world is (or were —- depending on the
current mode!) in state X THEN take action ¥ and the world
will be in state Z. In the real mode, this P+A classifier
specifies an action (Y) and predicts that the next state of
the world will be C, which may or may not turn out to be
correct. In the putative mode, however, the classifier
generates a putative action (Y again) —— and determines the
next putative state of the worid (C).%? {5. ‘

Next, the system needs rules that detefmine when it enters
and leaves the putative mode. For example, Riolo's system
enters the putative mode in response to messages about the
state of the world received from its detectors, 58 and it
leaves it either when some action reaches a threshhold level
of support or when "too much" time has elapsed {in which case
its next "real mode" act is determined by a bidding
competition). In particular, if a sufficiegtly well-
supported action is available, the system simply acts ——
otherwise, it goes into the putative mode to "decide™ what to
do.

Once in the putative mode, the system can use P+A
classifiers to explore the future consequences of its
currently available "real mode" acts. Here, the crucial
design question is how to choose between these acts on the
basis of this exploration. The difficulty is that the world
does not provide reward in the putative mode. There are a
variety of possible solutions to this problem. For ex§mp1§,
the system could predict in which states of the world it will
obtain reward, and then use a simulated reward as a basis for
its choice. The system must then of course distinguish

57 Clearily, it is important to supplement the system with replacement
algorithms that generate 2 sufficient supply of such structured
classifiers when needed. See Riolo (1990} for examples. )

58 And recognized by special classifiers that post messages declaring
"putative" states of the world, in response to messages from detectors
or from “"prediction" classifiers. The preceding footnote alsc holds for
this type of classifier.
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between classifier strength that reflects real reward and a
local, putative mode strength augmented by simulated reward.5?

The final key design problem is how to make the system
predict asccurately. For example, Riolo's system must keep
track not only of how useful P+a classifiers are, but how
well they predict what happens next. Strength serves for the
first of these tasks, but for the second, Rioclo introduced
Yet another quantity associated with each classifier. This
quantity, which measures the classifier's predictive
effectiveness, only pays attention to the prediction part of
& P+A classifier's action. It is updated every time the
classifier is activated in the reatl mode, by averaging its
past value with an indicator variable that is 1 if the
prediction is correct, 0 otherwise. A P+A classifier's bid
{in either mode) is an increasing function of hoth its
strength and its predictive effectiveness.

Riolo (1990) provides convincing evidence that these
modifications work. In three different task domains, the
medified system comes to learn encugh about how its world
behaves to predict the consequences of its actions and to
plan its actions accordingly -- and, finally, to achieve a
high level of task performance. Thus, at least with respect
to problems of the complexity of maze-learning and navigating
around obstacles, classifier system agents appear capable of
strategic planning -- and hence rational action. Moreover,
in Riolo's experiment, some interesting cognitive features
emerge. For example, the more the system masters a
particular task, the less time it needs to spend planning how
to carry it out. That is, in these systems, planning is a
response to unfamiliarity and its consequent uncertainty.
Given a sufficiently regular world, the néed for planning is
self-iimiting.%°

59 Riolo uses a version of this idea, in which the predicted simulated
reward is represented implicitly. He associates a second, "local™
strength with each classifer. Tn contrast to “real" strength, “local*
strength changes in the putative as well as in the real mode; its value
in a particular executicn cycle of the putative mode reflects the "real®
strengths of the classifiers it activates, directly or indirectly. The
suppert that determines which "real" action tc take depends on the
"local® strength of the classifiers associated with each of the possible
actions. In the putative mode, then, "local" strength is passed from
classifier to classifier by a variant of the usuval bucket brigade
algorithm. In addition, the "logcal" strength of unused classifiers is
adjusted s¢ that it comes to reflect the classifier's "actual" strength.
% this is consistent with a large body of psychological research
contrasting the performance of human experts with novices. TFor example,
expert clinicians typically generate fewer, not more, conjectures in the
course of a diagnostic consultation than do medical students or
residents, and they use less data to distinguish among the conjectures
they do generate. From this peint of view, the function of the
"putative mode" activity of strategic planning is to facilitate the
process whereby agents come to generate the categories and associated
chains of action that guide their “real mode" behaviors. When the
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As both Holland and Riolo acknowledge, there is a lot of
room for improvement in their system designs. For example,
the systems' predictive capabilities do not yet @ave'much
statistical sophistication. In particularf in Riclo's
system, every prediction is about the "entire" state of ;he
world and is either exactly right or exactly wrong - gelthgr
very useful features in a complicated world.‘ ;n addition, it
would be very desirable to construct a classifier system that
could function in more than one task domain and develop
predictive models based on appropriate categor%es for each of
them. Again, particularly for economic modelling, there
ought to be more than one kind of "reward" that agents can
obtain from their environment, and it would be good if they
could develop the ability to establish prefereyces amongst
these different rewards. But these opportunities for
improvement should not obscure what has already been
accomplished: <lassifier systems represent an approach to
modelling agents in which agent "identity" and even
rationality can reasonably be regarded as emergent
properties.

4.5 i i wi ]

In this section, I will briefly describe two AWs thqt.apply
classifier systems to economic problems. The m%croentltles
of both of these AWs are classifier systems, which represent
economic agents. Thus, these AWs have a bui}tTin
hierarchical structure, since their microentities are
themselves AWs. Interesting properties emerge at both -levels
in this hierarchy: as a resuit of their interactions with
each other, the individual classifier system agents come to
take on coherent "identities"; and an ecology of agents
forms, with aggregate-level pattern and structure.

Marimon, McGratton and Sargent (1990) constructed an AW.
based on classifier system agents, which implements a multi-
period Wicksell triangle economic environment %ntroduced by
Kiyotaki and Wright (1989). This environment is populated by
three different types of agents, who produce, exchange and
consume three different types of goods. Each of the agent
types can produce exactly one type of good (different for ?he
different types) and gains positive utility only by consuming
a single, different type of good (again different for
different types). Thus, trade is necessary to satisfy wants
in this environment.

At the beginning of each period, each agent helds one good.
Agents are randomly paired with one another, and each agent
must make two choices. First, he must decide whether.or not
to exchange his good with the one held by the agent with whom
he is paired. If both agents decide to traqe, an exchange
takes place. At this point, each agent decides whether or

precess is successful, explicit planning is no longer necessary —-—
"plans® are implicit in organized actions.
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not to consume the good he now holds. 7If an agent consumes
his good, he immediately (without cost) produces a
“"replacement", whose type of course depends on his type's
production capability. Thus, regardless of whether or not he
decided to consume, at the end of the period each agent again
holds cne good. Before the next period begins, the agents
must pay a storage fee, which depends eon the type of good
they are holding,

The accounting that underlies decision-making in this model
trades off uwtility gains from consumption against storage
costs.®l Agents clearly might want to trade either for the
type of good they like to consume or for goods with lower
storage cosis than the one they currently hold. In addition,
they might conceivably want to speculate by obtaining and
holding a good that they hope will bring them a "profit"™ in
subsequent period trades that is sufficient to offset a high
storage cost in the present period. What strategies agents
will actually pursue -- either rational agents trading in
equilibrium or classifier agents learning how to act ——
depends on a complete specification of the parameters of the
environment: the production functions {that is, which agent
types produce which good types), the agent type-specific
utility funetions, the relative storage costs of the
different good types, and the proportion of each type of
agent in the environment.

Kiyotaki and Wright assumed that the agents who populate
this environment satisfy the usual rationality assumptions,
and they calculated Markovian Nash equilibria for a number of
particular specifications of the enviromment.%? 1In contrast,
Marimon, MeGratton and Sargent (hereafter MMS) use classifier
systems to represent their agents. Their primary interest
was to discover whether these classifier system agents would
learn their way into the Kiyotaki-Wright equilibria —- and,
in sitvations in which there was more than equilibrium, which
one would the classifier agents prefer. Their hope was that
models with classifier system agents could support and even
extend standard necclassical theory, by providing a mechanism
for arriving at equilibria, a tool for finding equilibria
when direct calculation is intractable, and a way of

81 of course, this acecounting is explicit in the Kiyotaki and Wright
models, but only implicit (and distributed amongst all the classifiers
that constitute a particular agent!) in the Marimon, McGrattan and
Sargent AW. <the description of strength changes in the, text below shows
how these quantities affect the strengths of individual classifiers.

52 These equilibria of course depend on the medel specifications. In
particular, for some specifications, Kiyotaki and Wright found
equilibria in which the good with lowest storage cost served as “money"
(that is, in every exchange, each participant obtained either s good he
wanted to consume -- or the "money" good). Other specifications
produced equilibria that included some speculative exchanges, as
described in the previous paragraph of the text. Ang still other
specifications supported more than one equilibria.
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distinguishing between multiple egquilibria. As we shall see,
this hope was not realized.

With agents restricted to Markovian strategies, the
Kiyotaki-Wright environment is a very simple worid.
"Reasonzble” agents really only have one choice to make: they
have to decide which of the two types of goods to which they
assign zero utility they prefer to store between periods!é?
Of course, the problem is harder for classifier system
agents, because they are not a priori reasonable —- nor do
they even have a priori knowledge of their wutility functions
or the storage costs that will be imposed on them.

MMS use two linked sets of classifiers to represent their
agents. One of these sets codes rules for exchange, the
other rules for consumption. Exchange rules are of the form:
IF you hold good type in set A and your trading partner holds
good type in B THEN C; where A and B are subsets of {1,2,3)
and C is either “trade® or "don't trade". Consumption rules
have the form: IF you hold good type in A THEN D; where D is
either "consume" oxr “"store".®

To decide whether or not to exchange and then whether or
not to consume in period t, each agent holds successive
bidding competitions in its two classifier sets. The
classifiers that submit the highest bid in their respective
competitions win ~- call these winning classifiers E. and Ce
respectively. Of course, the consumption competition occurs
after the action specified by E. has been carried out.

Agents learn through changes in strength to the classifiers
that win the competitions in each period.®5 As uswval, winners
lose strength when they pay out their bids, and they gain
strength from the payments of the bids of the winners of the
“next" competition (C. pays Ey, and Es; wildl in turn pay C.).S%6

63 1 am supposing that agents know which type of good has positive
utility for them. “Reasonable" agents will always exchange for this good
and then consume it {assuming, of course, that the utility they derive
from consumption is greater than the storage cost of the good they
produce as a replacement). And since agents do not produce the good
they like, the only way they can end up with the good they neither like
nor produce is to exchange for it (if they don't start with it} or keep
it {if they do) -- and then not consume.

5% Note that all actions are "external”, so the system does not use the
standard classifier message list. Instead, its short-term nemory only
records which classifier of each type won the last competition.

53  Because the possible choices for agents are so limited —— even
without assuming “reasonableness" -- MM$ could represent all possible
strategies with computationally tractable classifier sets. They also
considered variant models with some standard replacements-operators
(Cover Detectors, Cover Effectors, specification mutations and
recombination) .

€6 Note that the action of Ey leaves the agent with the good that
matches the condition of Ct, whose actien in turn leawves the agent with
the good that matches the condition of Ey41. So this is just the usual
"payment to supplier" idea, without the usual message list. MMS do not
use the standard bucket brigade to determine the magnitude of strength
cthanges. With their strength updating algerithm, strength reflects
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Reward comes from consumption. If C.'s action is "consume",
it is credited with the utility gain the agent experiences
from consumption, and its strength increases as a result. In
addition, storage costs have to be paid. Since C.'s action
determines which .type of good the system holds between
pericods t and t+1, its strength is reduced as a function of
the cost of storing this goog.6?

What happens in the MMS aW? First, the agents develop
coherent behavior patterns: they trade to cbtain goeds they
like to consume or to lower their storage costs, and they
consume for the same reasons. As a result, "money" emerges
in this AW: in every transaction, an agent either obtains a
good he wants to consume or “money”, that is, the good with
lowest storage cost. Thus, organization occurs at hoth
levels of this hierarchical AW: the agents develop coherent
economic identities, and the economy they form is
characterized by structured patterns of trade.

Second, the stable trading structure that emerges in this
AW does not necessarily correspond to a Markovian Nash
equilibrium. 1In particular, classifier system agents are

reluctant to speculate —— that is, to hold a good with high
Storage costs in the hopes of trading it in the next period
for a desired consumption good -~ even when it is "rational®™

for them to do so. Thus, the classifier system agents deo not
organize themselves into an equilibrium trading pattern in
Kiyotaki-Wright environments that support only speculative
equilibria. Rather, they "prefer" to trade only for
immediate consumption or “cash™, 58 As a result, the idea to
use classifier system agents in a mere supporting role in
equilibrium theory seems a dead end,

average payeff per activation, rather than total payoff as in Holland's
system. For a justification of this change in terms of canvergence
properties, see Arthur {1990) .

8T peculiar feature of the MMS dynamics is that they impese the same
classifier systems on every agent of a given type. This means that when
strengths are modified as a result of an interaction between any twe
agents, changes are made to all agents of the same type as the two
interactors. MM$ justify this imposition of “representative agents" in
terms of savings in computer time and space, but it viglates the spirit
of AW modelling. 1In particular, it means that MMS could not probe the
extent to which (path-dependent}) heterogeneity between initially
homogenecus agents can arise in their economic environment.

68 of course, it is not particularly surprising that MMS agents do not
speculate, since to do 80, they would have to form linkeg chains of
actions —- and as we saw in Section 4.4, these are unlikely to emerge
without system rules that promote them, like Triggered Chaining
Operators. In addition, the "representation agent" constraint described
in the previous footnote makes it impossible to explore variant within-
type agent behavior. With within-type agent hetercgeneity and scme
provision for differential replication rates for agents with different
behaviors, perhaps more interesting behaviors might arise in a Kiyotaki-
Wright environment.
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ificial l ;

The second example of an economic AW w;th classifier system
agents is currently being developed by Brian Arthur, JohnGE
Holland, Richard Palmer and Paul Tayler.(hergafter %HPT).
Their AW models a simple stock market, in w@1§h a 51ng}e
security is traded. This security pays a leléend( which
varies stochastically with respect to the outside interest
rate. Each period, agents can place order to buy or sell a
single unit of stock, or they can do.nothlng.‘ They base )
their decisions just on the informatlQn ceontained in the time
series of past prices, dividends and interest raies. When
the buy and sell corders are in, a specialist fulfllls all
trades and uses an algorithm based on current price apd
excess demand to declare a new price for thg pext period.

An AHPT agent consists of a set of classifiers that code
for predictions of future price movem?nt§, based on past ) ]
stock prices and returns. These predictions have forms like:
“IF last pericd price exceeds twice fgndamental Yalue"
(dividend/interest rate) THEN pric? will go down™ or "IF the
average price of the last five periods exceeds the avergge.of
the last 50 periods THEN price wil; go up". At the begl?nlng
of each period, a bidding competition amongst gacy agent's
matched classifers determines the agent'g predzctl?n for.the
next period's price. If the prediction is that prices will
rise next pericd, the agent places a buy order; if the
prediction is that prices will fallc Fhe agent sells;
otherwise, he holds. Winning classifiers are rewarded on the
basis of the (one period) profits that result from the
transaction they initiate. Current verséons of the.A@
consist of 100 agents, each with 60 predictor clags;f;ers.
Genetic algorithms periodically generate new predictors for

nt. .
eaiﬁliﬁZ‘;HPT world, stock price is determingd eqch period on
the basis of the action of all the agents, w?lch in Furn
reflect complicated interactions between their ?onstltuent
predictors. How well any given predictor fgnctlons depends
in turn on the market's overall price dynamics. As a result
of this complexity of interaction and fgedback between
levels, the hehavior that emerges in this system, both at the
level of the individual agents and at the leve} of the \
market's price dynamics, is very rich. AccoFdlng tg Axthur's
summary account of experiments with AHPT, price Eeglns by
fluctuating around fundamental value: But then_ mu?ually .
reinforcing trend~following or technlcal—anal¥5ls—llke rules
establish themselves in the predictor populations. Later,
other phenomena, such as speculative bubbles and crashes, can
be observed to occur. Moreover, the market does not seem Lo
settle down to any stationary state, as in the MMS AW. AHPT

8  Unfortunately, there is not yet any detailed description of the RHPT
AW in print. My account is based primarily on prel%mlnary material
given ir Arthur (1992} and perscnal conversations with AHP?. 'As a
result, it is even more sketchy than the other model descriptions
reported in this paper.
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test for this by cloning and "freezing" successful agents and
then reintroducing them much later into the system, where
they turn out to perform poorly, since they are no longer
adapted to the behavior of the other agents in the market.
This may happen despite the fact that the price series itself
appears stationary to an “outside observer®.

AHPT's primary purpose in designing their artificial stock
market was to gain insight intoc the reasons why real-world
traders perceive their markets as they do. According to
Arthur, "traders talk about the 'mcood of the market', its
'nervousness’, or ‘confidence' for example; they take
technical trading rules or ‘chartism® seriously; they see
temporary svrges and crashes as more than randomnm
fluctvations." HNone of this makes sense from the point of
view of neoclassical economics. AHPT's hope was to design a
system in which such features arise as the result of the
interactions amongst heterogenecus agents, each capable of
learning about the world their joint actions are creating,
but exploiting different frames of reference that generate
different "local" opportunities for successful action. They
seem Lo be succeeding in this enterprise. The next step is
to figure out how to carry out experiments with their AW that
will shed some light on how and under what circumstances
these kinds of phenomena emerge.

5. cea s . : R

Perhaps the most surprising thing about an economy is that
there is suck a “thing" at all. From one point of view, an
economy appears totally disaggregated: every firm separately
decides what to produce, every consumer what to buy, and all
these decisions are based just on agent-specific needs,
interests and information. Why should anything coherent
result from such a process? Yet it does: an econonmy

exhibits large-scale structure -- with organized markets,
mutually dependent but distinct industries, trade
associations, labor unions and so on —- and relatively stable

macroeconomic descriptors that vary slowly compared te the
rate of change of the underlying microeconomic decisions over
whose conseguences they aggregate. The problem of
coordination is: where does this order come from? That is,
what are the mechanisms whereby Adam Smith's Invisible Hand
accomplishes its task?

5.1 Iwo Approaches to the Probiem of Coordination
Neoclassical economic theory places at the center of its

account of coordination a single concept: Walrasian price

equilibrium.’® In a Walrasian equilibrium, the market

0 A Walrasian equilibrium is a system of prices for commodities such
that, if agents exchange freely at these prices, (i) each agent will
ocbtain a set of commodities that provides him with the maximum
attainable value {given his initia:l endowment), and (ii) all markets
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efficiently coordinates the actions of agents, through the
prices it assigns to the various commodities: The great
triumphs of neoclassical theory are mthematlga% t?eorems
that guarantee the existence of WalraSLap equilibria, when
competition is "perfect" and agents “rational®.7”! an
algorithms for computing equilibria, given assumptions about
production capabilities and agents' endowment; and values.

On the other hand, there are several unsatlsfacto;y aspects
of the equilibrium account of coordination. F%rst, it does
not explain how the market arrives at a Walrasian price
equilibriuvm. Quite the contrary: attempts to proylde a
dynamic account of put-of-equilibriuvm price formation have
yilelded more and more general counter-examples to the
proposition that price adjustments to over—-supply or over—
demand result in convergence to equilibrium prices. Second,
it is based on unrealistic assumptions about agent behavior
and market conditions. Firms and consumers do not f9rm
expectations about the future or decide what to do‘lg th?
rational manner that the theory posits, and competition is
frequently far from perfect. Third, and wmost imp9rtant, many
of the most striking aspects of real-world economic
coordination play no role at all in the theory. _In
particular, the real economy is constantly changing: new
kinds of commedities are developed, then produced and t¥aded,
and richer institutional linkages connect agents over wider
and wider geographical areas. It is hard to see how the
problem of the coherence of such a system can be addressed
with a theory that fails to assign a central role to
processes of innovation and change, in what economic agents
can do and the structures through which they act.

Artificial Worlds provide another approach to the problem
of coordination. In this approach, economic coordination is
regarded as a special kind of EHO, and the central question
is to find the attributes of specifically economic objects
and interactions that result in specifically economic forms
of aggregate pattern and structure. Artificial Econom%es are
Artificial Worlds whose microentities represent economic
agents and products. Interactions between these‘
microentities model fundamental economic activities -
production, exchange and consumption. Unlike the Artlfl?lal
World models described in Section 4.5, Artificial Economies
are meant to represent "entire" economies. Thus, they have
certain closure properties: for example, what consumers

will clear {(that is, the supply for each commodity will™exactly egqual
the demand for that commodity).

T 1pn perfect competition, agents may take prices as given when they
decide what to buy and sell, ignoring the effects of their acFions on
the prices that obtain. Rational agents are able to form rational
expectations about future contingencies and they always act so as to
maximize their own expected utility. Even with these assumptions, the
"equilibrium guarantee™ only covers certain conditions on production
functions and agent's values.
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spend in one market of an Artificial Economy, they are paid
in another.

When an Artificial Economy is populated with an initial set
of agents endowed with an inventory of products, and the
values of its system parameters have been fixed,? the economy
can be "run". Under some conditions on population and
parameters, the resulting economy exhibits such emergent
features as stable growth paths for the Artificial Economy's
analog of GDP, Pareto-law distributions for firm size, ang
characteristic product life-cycle curves —- under others, no
sustained growth or orderly industrial structure at all takes
place. The purpose of Artificial Economy experimentation is
to discover what kinds of structured economic regimes can
occur and to see how they depend on system parameters and the
chavacteristics of the constituent agents.

In contrast to General Equilibrium models, Artificial
Economies are inherently dynamic.’ While General Equilibrium
modellers start by assuming a desired outcome state
(Walrasian equilibrium), the designer of an Artificial
Economy is first of all concerned to model how economic
agents interact —— the institutional arrangements through
which interactions take place, as well as the ways in which
agents take advantage of the opportunities these arrangements
afford. The more plausible are the assumptions about agents
and institutions buvilt into an Artificial Economy, the
better:? the argument that emergent aggregate regularities in
the Artificial Econemy are causally related to observable
macrofeatures of real economies depends on the match between
the characteristics of the microinteractions built into the
Artificial Economy and those that actually take place in real
economies. .

Artificial Economy have to be "playable" —— and so a lot of
institutional details have to be explicitly specified. For
example, events have to be scheduled to occur in a logically
meaningful and physically realizable order -- a firm cannot
produce until it has hired the workers it will use to do so.
Also, market rules have to spell out how prices are formed
and who ends up trading with whom, as a function of the
allowable actions of the agents who trade in the market., And

72 por example, in the Artificial Economy described in section 5.2
below, most of these parameters control features of the economic
environment that affect innovation, such as technological opportunity,
degree of appropriability of new technologies, cumulativeness of
research, and extent of learning-by-using,

T3 By "dynamic®, I do not mean merely "time-indexed", &s the term is
used in the literature on intertemporal equilibria. Rather, I mean that
the model specifies transition laws that govern how its state at time t
transforms into its state at time t+l, and these laws are not a function
of future states {as they axe in rational expectations theory).

*  In particular, agents in an Artificial Economy are constrained to
make their decisions in a psychologically plausible way, in the face of
future contingencies about which they can be no better equipped to form
rational expectations than is the designer himself!
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if firms can borrow, some form of bankruptcy law has to be
implemented, since a firm might find itself unable to make
good on the terms of its loans. One of the most interesting
experiences in designing and experimenting with an Artificizl
Economy is coming to realize that these institutional details
matter -~ and that any theory that leaves them ocut is
sweeping scmething crucial under the rug.

5.2 An Artificial Fconcmy

In this section, I describe an Artificial Economy developed
by myself in collaboration with Giovanni Desi, Marco Lippi,
Jim Pelkey and Paul Tayler (hereafter DLLPT} .’ This model
extends work reported in Chiaromonte, Dosi and Orsenige
{1992), which in turn was inspired by models in Nelson and
Winter ({(1982). Perhaps the most ambitious and well-
documented rmodel that could be considered an Artificial
Economy is the MOSES model of the Swedish economy described
in Eliasson (1985, 1989). 2all of these models (again in
contrast with equilibrium theory)} are inspired by
Schumpeterian insights into the disequilibrating effects of
competition, and assign a central role to processes of
innovation -- both successful and "mistaken™ --'in their
accounts of economic coordination.

Here are brief descriptions of the microentities in the
DLLPT Artificial Economy and their principal modes of
interaction:

* Microentities: There are five types of agents (Sector 1
and Sector 2 firms, a bank, researchers, and laborers) and
two types of products (machines and consumer good). Sector 1
firms hire laborers to produce machines.’ In addition, they
hire researchers to develop new types of machines. Sector 2
firms buy machines from Sector 1 firims and use them, together
with labor, to produce a consumer good. Researchers and
laborers use their wages to purchase this good, which they
then consume. The bank pays interest on savings from firms
and workers, lends to firms at an interest rate that it sets,
and funds the formation of new firms.

75 I chose this model to summarize because I am most familiar with it
—~= and because its inferential difficulties, discussed in the next
section, are generic. A program implementing this model was written by
Francesca Chiaromonte at the Santa Fe Institute.

76 A1l their other production inputs are free.
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* Innovation: Sector 1 research is designed to discover
machine types that can perform better than the machines the
firm is currently capable of producing. Each machine type is
described by two positive numbers: one measures how much it
costs to produce, the other its efficiency in production. The
Artificial Economy's model of technolegical innovation then
corresponds to a controlleg stochastic process moving through
R?*, where the control variables are the amounts z firm
invests in each of three types of innovative activities.

This stochastic process specifies, for each type of
innovative activity, the probability of successful outcome of
a given research project and the performance indices of the
machine type that results from a successful project. The
probability of success depends on: how much money the firm
invests in the project; system parameters that measure the
degree of appropriability of innovations and the
technological opportunity for each type of innovative
activity; and firm-specifit parameters that reflect cumulated
research know-how from prior investment .

The three types of research activity in which Sector 1
firms can choose to engage are radical innovation,
ircremental innovation and imitation. Radical innovation, if
successful, produces a machine type belonging to a new family
or "technological trajectory”™ of machine types. Successful
incremental innovation leads to a new machine in the same
"technological trajectory” as one the firm currently knows
how to produce. For the same investment, radical innevation
has a lower probability of success than incremental )
innovation; but when radical search succeeds, it typically
produces a machine type whose performance characteristics
Tepresent a greater advance than what is dchieved from an
incremental innovation. Imitative search targets a machine
type currently produced by & competing Sector 1 firm. The
search succeeds if the imitating firm learns how £0 produce a
machine type on the same “technological trajectory" as the
targetted type (though not necessarily as efficient as the
target) .

* Market Rules: There are three markets in the Artificial
Economy: the market in which Sector 2 firms buy machines
produced by Sector 1; the market in which workers buy the
consumer good produced by Sector Z2; and the labor market, in
which Sector 1 and Sector 2 firms hire laborers and
researchers.

The machine market features production to order. Sector 1
firms issue catalogues listing the machine typed they produce
along with machine prices, and Sector ? firms place orders
for the machines they wish to purchase. Machines are payable
on delivery, so a Sector 1 firm may receive more orders than
they can fill, in which case they accept orders on a first—
come, first-served basis. Sector 2 firms whose orders are
not accepted may place orders for their second and third
choices before the market closes.
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Consumer goods are sold at a fair held at the end of the
production year. Each firm determines how much of the g?od
to bring to the fair and what prices to chaFge for what it
brings. Workers have full access Fo the prices asked by each
seller, and they buy, first-come flrst-§erved, frem the
cheapest to-the more expensive. The fair closes when all the
good is sold or there is no more consumer demand.

The labor market operates as a hiring @all, at the
beginning of each year. Each firm determines the wage rates
they are willing to pay (one for researchgrs and one_for
laborers), and the workers sign up on a flrsttcome.flrst—
served basis, from the highest- to lowest-paying flrms.l
Firms may fail to hire their desired quota of workers,‘ln
which case they invest the unspent research or prodyctlog
dollars in the bank; or there may be unemplement, in which
case unemployed workers forego all consumption for_the year,

Note that in none of these three markets are prices
negotiated. Markets that allow pFige negot%atlong require
more complicated inputs from par?zc%pants: in gddltlon to
quantity and price inputs, negotiating strategies have to be

supplied.

* Banking_Rules: The Artificial Economy has only a

rudimentary banking sector. There is a single bank thgt sets
an interest rate for savings and another for loans., Firms
must exhaust savings before they can borrow. Loan§ are
issued for fixed periods that depend on the bgrrowlng'flrm.
Each firm faces a credit cap that depends on its previous
year's net turnover. Annual interest and principal payments
are due at the end of every year.

Firms that cannot meet the required annual paymengs are
allowed to postpone payment for one year. ?uring this year,
the bank will issue an emergency loan covering some
production costs. This loan must be paid back over the next
two years and no other emergency loans will be granted during
this period. Two successive failures to repay all
cutstanding loans force a firm into bankruptcy. The assets
of a bankrupt firm are scrapped.

* Eirm Decision-Making —- Sector 1: Firms make their

decisions according to "organizational routines" that are
modelled as particular forms of decision rules. These rules
are typically functions of three types_of argumeyts:
adjustable environmental parameters, firm-specific para@eFErs
that describe aspects of the firm’s “psychology” of decision-
making (risk-aversion, time-discounting, etg.).mand past
observables such as the firm’s previocus period sales, degree
of labor rationing experienced, orders received and so forth.
The rules are based either on the empirical litergture on
firm decision-making or on approximations to ?opFlmal
decision-making under uncertainty®, with heurlstlc'mgthods
for forming expectations of future aggregate guantities.
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Sector 1 firms decide how much to pay workers, which
machines to list in their catalogues and how much ta charge
for them, how many research workers to hire and what tasks to
assign them, how many laborers to hire, how much to borrow,
and how much to produce of which type of machine.

How much to pay workers: Firms of both sectors try to
maintain their position in the labor markets, so if they paid
a bonus in excess of the average overall wage rates ip the
previous period, they offer at least the same bonus in the
following period. They raise their bonus only if they
experienced laber rationing in the previous period, in which
case the increase is a fixed function of the extent of that
rationing.

How much to charge for listed machines: A new machine is
priced according to a mark-up rule: that is, it is priced at
a firm-specific multiplier times the machine's production
cost. For previcusly listed machines, the firms adjust the
previous period price in response to three factors: change
in productien costs (that is, wage rates), change in sales,
and the quantity of unfilled orders {(which represents a kind
of backlog of demand for the machine). The adjustment rule
depends on firm-specific "reactivity" parameters. If the
adjustment rule determines a price below a firm-specific
minimum acceptable mark—up rate, the firm ignores the rule
and uses this minimal mark-up rate to set its price.

¥Which machines to list: Firms want to produce machines
that will be attractive to their customers. To Sector 2
firms, evaluating a machine involves trading off between its
price and its productivity in use. The Sector 2 firms
accomplish this trade-off through a payback period criterion,
in which they estimate the profit they will obtain by
operating the machine for a firm-specific length of time.

The longer this length, the more they are willing to pay to
obtain a more productive machine. Sector 1 firms then use
the same evaluation Functional to decide whether to go into
production with new machine types their researchers have
designed; they use pay-back pericds that are reported to them
by their own customers. (This allows a certain amount of
"market segmentation" to emerge: some Sector 1 firms
producing low-cost, low-productivity machines for their
customers who favor short pay-back periods, while others
produce high-cost, high-productivity machines for a different
set of customers.)

How many research workers to hire and what tasks to assign
them: Firms invest a firm-specific proportion of their
previous year's net turnover in research. Total research
investment is allocated to the three types of search activity
according te a formula determined by two firm-specific
parameters. Which machine types to incrementally improve or
imitate are determined by calculating expected returns for
the investment, where the expectations are based on the
firm's experience with previous incremental and imitative
research preojects.
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How many laborers to hire. how much to borrow and how much
to produce of what: All orders are filled up to the firm's
credit ceiling. This determines how much the firm borrcows
and how many laborers it can hire. If it receives more
orders thanr it can fill, it produces the most profitable
machines first.

* Eirm Decisjon-Making —- Sector 2: Like Sector 1 firms,

Sector 2 firms have to decide what wages to offer to laborers
and how much to borrow from the bank. In addition, they have
to decide how much to produce and what prices they will
charge, which of their current stock of machines to use in
production, how many and which new machines to order, and
which machines to scrap.

Determining prices: First, the firm calculates the costs
of production with each machine in stock and those it
considers purchasing. Next, using a statistical procedure
together with data from previous years, it forecasts the
highest price that will paid at this year's consumer good
fair. It then decides compares production costs with
anticipated sales, machine by machine, to determine which
machines t¢ use in production. Finally, it sets its prices
by reducing its estimated cutoff price by a safety margin
that depends on a firm-specific "timidity factor". This
process simultanecusly determines price and selects which
machines to employ in production.

v ing i w machines: After deciding {(as above) which
of its current machines to use in production, the firm.
calculates how much cash and credit it could apply to
expanding its machine stock. It evaluates machines offered
for sale according to the payback periocd criterion already
described, and it orders the available machines for which it
projects a profit over its payback peried. If it can afford
its first choice, it orders it; else it orders its second
choice if it can afford that one. It then iterates this
process until it can no longer afford any desired machine.

i Any machine that is not used in
prcduction in three successive periods is removed from the
firm's capital stock.

+ Agent Demography: The number of researchers and laborers

grow exponentially. New firms are created according to
several different schemes; the rate of creation depends on
average profitability rates in the two sectors. New firms
are funded by the bank for a fixed period to engage in
product research {Sector 1) and to purchase capital stock
(Sector 2). Their attributes are selected according to the
empirical distribution of currently existing firms. Firms
die when they no longer generate positive net turnover and
cannot qualify for bank loans.

In all, there are 15 system parameters in the Artificial
Economy. In addition, the behavior of each Sector 1 firm is
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determined by 8 firm-specific parameters, while 3 suffice far
each Sector 2 firm. Sensible initialization of such a large
parameter set, while difficult, is made easier by the fact
that almost all of these parameters have a direct economic or
psychelogical intgrpretation, and it is possible to define
c¢lusters of related parameter values that form “"natural"
metaparameterizations of "economic regimes™.

5.3 Some Difficulties with Artificial Fconamies

As the last section makes clear, there really is not such a
thing as a short summary description of an Artificial Economy
- A lot of details are required to specify "playable™
institutional arrangements and the agents who have to operate
in them. Clearly, there is more than one way to specify any
of these details. In the DLLPT Artificial Economy, for
example, why organize the consumer good market as a fair
instead of an auvction? Does it matiter that machine
marufacturers produce to order instead of building up
inventories? Why should firms use payback-period accounting
and mark-up pricing rules? And so on, on and on. As a
result, any Artificial Economy is open to criticism on the
grounds that its design is arbitrary.

A first response might be that it is necessary to start
somewhere: if you can show that “macroeconcmic" stability
can emerge from the dynamics of “"microeconomic® interaction
in any recognizably “economic" environment,?? then vou have
increased the plausibility of the propesition that real-world
economic coordination is an instance of EHO.T8 Unfortunately,
this response does not go very far. Artificial Economies,
unlike the Arrow-Debreu model, lack the virtues associated
with a high level of abstraction -- simplicity and
mathematical tractability. This produces a real barrier to
their social extension. The more richly detailed a model is,
the more intriguing it is to its designers -- but the less
likely it is to capture anyone else's imagination or
interest, which flags at the first ad hoc and unshared
assumption. Without mastering the microlevel details built
into an Artificial World, it is simply impossible to come to
@ reasoned judgement on whether an observed aggregate~level
property is in fact emergent —— or merely a conseguence
easily derived from the superposition of some particular
microlevel features. And without this judgement, the whole
point of the Artificial World is lost.

Tf arbitrariness cannot be abstracted away, what then?
Here are two complementary research strategies for coping
with the problem. First, building on ideas already in the

" More particularly: in one that does not assume away the question by
invoking "representative agents" (see Kirman, 1%$92),

7 This rexistence proof" justification is similar to that frequently
given for taking the Arrow-Debreu model seriously: the Arrow-Debreu
model shows that at least one kind of "economic" environment (surely as
remete from a real economy as the Artificial Econony described in the
last section) supports Walrasian equilibrium,
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economic "mechanism design" literature, one could at least
delimit degrees of arbitrariness by developing functional
taxonomies of the various institutional arrangements that
have to be introduced into an Artificial Economy. For
example, is there a minimal characterization of the
functionally different types of market rules or bankruptey
laws? Similarly, one might try to coastruct a typology of
"nonoptimizing" decision-making strategies ({(or perhaps
orientations) that are economically relevant. Such
taxonomies would help to define the set of Artificial
Economies that have to be investigated to make general
assertions about EHO in real economies.

Second, one could change the notion of what an Artificial
Economy is, away from the idea of a single parameterized
model that specifies a priori its instituticnal forms and
agent behaviors. Instead, imagine an Artificial Economy as
an experimental environment in which users can easily tailor
models designed to suit their own particular research
agendas. Object—oriented programming technigues can be used
to construct such an envirenment, which would consist of a
library of different kinds of modelled institutions and agent
types, together with an interface that makes it easy for
users to combine different items from this library to make
particular experimental economies. The interface might also
feature statistical and graphical features that aid in the
discovery of emergent properties in these experiments —— andg
procedures for summarizing experimental designs and relevant
results in a way that they can be assimilated intoc a gata-
base that all users could access and analvze.’ With such a
tool, assuming a sufficient number of users found it
attractive, Artificial Economy research might become better
characterized as diversified than arbitrary.

There is another, more serious, difficulty with current
Artificial Econoniies. They offer only very limited scope to
the emergence of new structures —- and, so far, none at all
to the emergence of higher-level entities. What do emerge
are patterns —- in macroeconcmic variables like GDP, in
aggregate descriptors of industrial organmization (like firm
size) and innovative demography (like innovation rate as a
function of age and size distributions of firms), and in
product life-cycles. But no Artificial Economy yet has a way
of representing the kinds of innovations in entity structure
at the level of the firm and of the industry that are
sketched in Section 3.3. In fact, even the entities that the
current Artificial Economies do represent are not capable of
much change in what they do or how they do it.8® Nor do any

-

L preototype that implements these ideas is currently under
development.

80 MOSES firms can engage in new kinds of activities (for them), but
they do not develop novel ways of carrying these out. Firms represented
by parameterized behavioral rules for their "behavioral routines" hardiy
change at all -~ at most, their parameters may respond adaptively to the
firm*s experiences in the marketplace.
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of the Artificial Economies represent products in such & way
that new "kinds of" commodities (as opposed to the sort of
technological development described in the previcus section)
arise endogenously; to do so would require even more
elaborate representations for agents, since really new
products must coevolve with “tastesg® for them. Thus,
Artificial Economies are not open—ended computaticnally, even
to the extent of the other principal Artificial Worlds
reviewed in Sections 3 and 4. Though there are some obvious

ways to improve this situation -- for example, using adaptive
representations for agents, like classifier systems or even
neural nets -— real progress will require new insights in

ecenomics about the nature of the structures that need to be
represented as well as new computational techniques for the
representations themselwves.

6. BAn_Afterword

As we have seen, Artificial Worlds differ substantially
from the kind of "minimalist® models on which much of
neoclassical economic theory is based. Structurally,
Artificial Worlds are populated with a variety of
heterogeneous microlevel "agents" who enter into complex
interactions with one ancther. The "agents" must respond to
an environment that is formed in part as a result of the
collective history of their interactions. Their response
potential is programmed into the Artifjicial World, but for
the World to work, there must be scome degree of open-
endedness in the way this potential manifests itself. From a
computational point of view, this is the great challenge in
designing Artificial Worlds, and we have seen a variety of
approaches to this problem, from FOG's intensional functional
representation, to the genetic operators used in EPD, through
the whole gamut of replacement operators and "bidding
competition" structvres in classifier systems .8l

Of course, the difference between Artificial Worlds and
moSt neoclassical economic models is more than structural:
they are designed to explore different kinds of questions.
Artificial Worlds are about EHO, and if EHO is an jimportant
kind of phenomenon in real economies, then Artificial Worlds
will have a place in economic theory. I have argued that
there is a variety of economic phenomena that seem to
manifest the characteristic features of EHO, from the
processes through which individual agents learn how to act in
hew situations, through the coevolution of new .products and
industrial structure, to the emergence of "herd behavior" in

81 I think we can eXpect more and more approaches to the problem of
designing open-ended computer programs to emerge from the computer
science community —- see, for example, Forrest {1990) and Huberman
{1288) . In additien, object-oriented programming, with its emphases on
medularity andg extendability, provides a natural environment for
building programs of sufficient complexity that they can manifest EHO.
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markets and macroeconomic metastability. I have a}so
described some existing Artificial Worlds thap, suitably
modified or extended, have the potential go give scome
insights into these economic processes. The match between
problems and metheds is not yet very good. The‘purpose of
this paper is to promote such a match, by pOLQt}ng to a
promising direction for workers with the requisite
familiarity with economic institutions and behav19rs who
might not have considered whit alternative modelling style.
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