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Introduction 

Historians interested in the evolution of Science will probably be very surprised 
when they will analyse all the strange fashions that have struck the scientific 
community in the second part of this century. They will certainly be aware of the 
political orientation of those who had launched many of these fake new ideas 
and wonder why mathematicians had not been more rational in their behaviour. 
Will they find another example of political censorship than the one that had 
suppressed two pages of the introduction of an article where I had described my 
scientific ideas [1] ? Will everyone agree that it was indeed slanderous that I had 
thanked there two of my teachers, Laurent Schwartz and Jacques-Louis Lions 
and that this part should definitely be cut? Had the censors thought that they 
could suppress the mention of other political facts and avoid me describing them 
elsewhere [2] ? Historians may wonder at the stupidity of these censors and ponder 
if they had even understood the meaning of the few lines that they had spared 
at the beginning: "Il y a une différence énorme entre l'étude des singularités 
d'équations aux dérivées partielles (linéaires ou non) et celle de leurs oscillations: 
c'est la différence entre la physique classique et la physique quantique". 

In this article I had described my point of view that the study of oscillating 
solutions of partial differential equations was the key mathematical question to 
investigate in order to shed some light on the strange rules invented by physicists 
for explaining natural phenomena. Every specialist of differential equations is 
aware of the distinction between finite and infinite dimensional effects and it is 
only the result of an intensive propaganda that so many have adopted a point 
of view about mechanics which was adequate in the eighteenth century when 
partial differential equations had not yet found their place and that continuum 
mechanics and electromagnetism were not even thought of. However, even if all 
the extensive knowledge about linear partial differential equations contained in 
the treatise of L. Hörmander [3] had been available at the beginning of the 
century, it would not have helped so much the physicists puzzled as they were 
by the spectroscopic measurements of light absorbed and emitted in some gases. 
One cannot blame then those who have invented the strange rules of quantum 

1 There is a huge difference between the study of singularities of partial differential 
equations (be them linear or not) and that of their oscillations : it is the difference between 
classical and quantum physics. 
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mechanics for their lack of knowledge of partial differential equations but one 
should blame those who have transformed these rules into dogma. As R. Penrose 
once wrote "Quantum theory, it may be said, has two things in its favour and 
only one against. First, it agrees with all the experiments. Second, it is a theory of 
astonishing and profound mathematical beauty. The only thing to be said against 
the theory is that it makes absolutely no sense" . In order to give a rational 
explanation of the puzzling measurements made in these experiments one needs 
an increased knowledge of partial differential equations and there are a few new 
mathematical questions that should be understood for that purpose. 

As light is involved we know that there will be some hyperbolic equations, the 
wave equation or Maxwell's system or some even larger system, and we expect 
that the linearised system will only have the velocity of light as characteristic 
speed so that we may reasonably restrict our attention to semilinear systems. Even 
standard questions as the relation between the wave equation and geometrical 
optics needs to be thought again. Fifteen years ago it was already clear why the 
mathematical results now found in [3] were not adapted to the goal that I was 
pointing at and a first reason was that one cannot expect to understand the partial 
differential equations of continuum mechanics without accepting discontinuous 
coefficients; even if one was ready to make smoothness assumptions and stay 
away from interfaces one definitely had to avoid assuming the coefficients to be 
infinitely differentiable or analytic. There is however a more important drawback 
of the linear theory of propagation of singularities which became more apparent 
once I had obtained my personal version of propagation using the tool of H-
measures [4] which I will describe in a moment. What the linear theory is really 
interested in is the propagation of regularity and this leads to a quite negative 
concept of a singularity which is not defined as a quantitative object; of course, 
measuring the propagation of Hs regularity instead of C00 regularity does not 
correct this defect in any way. The physically intuitive idea of a beam of light 
is then absolutely not described by the theory of "propagation of singularities" 
for partial differential equations and the inadequacy is hidden by the fact that 
the bicharacteristic rays which have appeared in the linear theory are precisely 
those which physicists had thought important in their formal computations. One 
should then criticise this approach of propagation of singularities for describing 
the properties of light as not making more sense than some physicists' rules; a 
better test for a mathematical tool than making the bicharacteristic rays appear 
is to be able to measure what is transported along them and tell what happens 
along the bicharacteristic rays to important quantities for physics like energy and 
momentum. 

As matter is also involved we face much more trouble because the question 
of what matter could be is at stake anyway and, even if the rules of quantum 
mechanics are indeed wrong, one cannot forget about the real defects of the 
classical concepts of light and matter. A probably good mathematical model to 
understand is the coupled Maxwell-Dirac system where matter is described by a 
complex four dimensional vector field and light is described by the electromagnetic 
field, the coupling, involving quadratic terms with the famous Planck constant 
h appearing as a coupling parameter between light and matter and not as this 
mysterious parameter that the dogma wants to attach to every hamiltonian. 

2 This is the first paragraph of a review by R. Penrose of a book by J.C. Polkinghorne 
"The Quantum World" in The Times Higher Education Supplement, March 23, 1984. 
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If we were to follow this indication we would be interested in understanding 
some mathematical properties of semilinear hyperbolic systems with quadratic 
interaction and the special role played by the four dimensional space-time where 
we apparently live would probably be linked to Sobolev's embedding theorem, but 
before playing such a game which accepts too much of the physicists' dogmatic 
postulates, we should look at a more rational explanation of the mathematical 
difficulties encountered in the spectroscopic measurements. 

Even if we do not know what atoms really are they do appear as tiny obstacles 
and we have then to face the difficulty of working with at least two scales, a 
microscopic one and a macroscopic one. In some way the practical goal of 
quantum physics is to compute corrections in the effective equations satisfied by 
the macroscopic quantities from a fine and possibly wrong description of what 
equation the microscopic quantities do satisfy. As mathematicians we should 
describe a general framework in order to understand more of this question and 
there are indeed choices to make and difficulties to overcome. 

The first obvious choice that we have already made is to work with partial 
differential equations and not with ordinary differential equations; this can be 
considered a lesson learned from A. Einstein about the defects of I. Newton's 
classical approach. There has been much propaganda in recent years for works 
emphasising finite dimensional effects in partial differential equations and one 
may indeed be attracted by some of the difficult and interesting mathematical 
questions which had led H. Poincaré to introduce so many tools and ideas before 
the development of quantum physics. It was another great mathematician who 
formalised some of the rules followed by physicists in their quantic games but 
it is surprising that J. Von Neuman would show that no ordinary differential 
equation could produce the same results as the rules of quantum mechanics and 
forget to question the very nature of that set of rules. Certainly if one believed 
that one should create a game that will generate a sequence of numbers one 
might be tempted by the mathematical properties of spectra of linear operators. 
Was then the dogma already well accepted before it became obvious that the 
spectroscopic experiments were not generating mere lists of numbers? Were 
mathematicians so impressed by this apparent success of functional analysis? 
Had there been an intentional effort of propaganda around functional analysis 
in order to avoid that mathematicians study more relevant partial differential 
equations of continuum physics in the spirit of what S. Sobolev and J. Leray 
had already been doing in the 1930s? Certainly, and L. Hörmander [3] is right 
in pointing at some misconceptions created by L. Schwartz's approach, but some 
other misconceptions have been propagated by his own approach to partial 
differential equations. Is there indeed a classical treatise on partial differential 
equations which does mention these properties of partial differential equations 
related to the strange effects observed in spectroscopy or more simply which does 
quote the relation between microscopic and macroscopic levels which is such a 
crucial question in physics? 

The mathematical tool of H-measures which I have introduced [4, 5] is a 
new step toward a better understanding of these questions and I have chosen 
the prefix H as a reminder that these objects had arisen naturally in the theory 
of homogenisation, a term to which I attribute a more general meaning than 
which is usually given in the rare books related to the subject like those of A. 
Bensoussan, J.-L. Lions and G. Papanicolaou [6] or of E. Sanchez-Palencia [7] 
where periodicity assumptions often obscure the methods which I had developed 
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for more general situations [8], partly in collaboration with F. Murat [9] and as 
an extension of earlier results of S. Spagnolo [10, 11]. The H-measures added to 
my previous description of the role of oscillations in partial differential equations 
[1] that of concentration effects whose importance in continuum physics I had 
not foreseen before the work of P.-L. Lions, R. DiPerna and A. Majda [12-16]. 
My initial purpose for introducing H-measures was to derive small amplitude 
homogenisation theorems [4, 5, 17] in order to explain why some particular 
formula obtained by.physicists [18] was indeed accurate despite the fact that the 
arguments used in its derivation did not make any sense. I can trace back my 
intuitive understanding about these objects to some formula for computing an 
exact quadratic correction term [19] appearing in a model which I had introduced 
earlier in order to understand some averaging question in hydrodynamics. It was 
only later that I found a way to use the same H-measures for describing the 
propagation of oscillations and concentration effects in some partial differential 
equations [4, 5] obtaining then a quantitative transport property in the form of 
partial differential equations in x and Ç satisfied by the H-measures. I wanted 
to avoid the standard theory of pseudo-differential operators [3] and construct 
what I needed for my quadratic microlocal tool of H-measures in order to 
be able to study partial differential equations of continuum mechanics without 
making spurious hypotheses of smoothness for the coefficients. However even for 
those who have devoted a long time reading [3] H-measures may still appear 
to be natural as they have been introduced independently by P. Gérard [20, 21] 
although the name of microlocal defect measures which he has chosen for them 
may reflect a negative attitude inherent in [3]. 

Of course H-measures are only a step toward the mathematical understanding 
of these questions of physics which I had sketched at the beginning and there 
are other pieces of that scientific puzzle which should not be left aside like the 
apparition of memory effects by homogenisation, which seems the mathematical 
explanation of what physicists attribute to their strange rules of spontaneous 
absorption and emission; it must be emphasised that these homogenisation 
results are obtained without any postulate of a probabilistic nature. There are 
some more or less classical cases of memory effects induced by homogenisation 
like viscoelasticity which can be found in Sanchez-Palencia [7] but the effects 
which I was mentioning are related to hyperbolic situations and have not received 
much attention apart from my own tentatives [22, 23] and that of Y Amirat, K. 
Hamdache and A. Ziani [24, 25] and so a lot remains to be done. 

H-Measures 

Contrary to wave front sets which can be attached to general distributions but 
are mere geometric sets endowed with a negative property of lack of smoothness, 
H-measures are only defined for sequences of functions converging weakly to zero 
in L2(RN) and express in a quantitative way the limit of quadratic quantities, 
the H-measure being zero in the case of strong convergence in L2(RN) and, 
because they are measures on RN x S^-1, they can see the action of a class of 
pseudo-differential operators of order zero. 

Definition 1. An admissible symbol s is a continuous function on RN x SN~X 

admitting a decomposition s(x, Ç) = Znan(Ç)bn(x) with the functions an being 
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continuous on SN~l, thé functions bn being continuous on RN and converging 
to zero at infinity, and such that £„||fl„||.||b„|| < oo where the norms are sup 
norms. The standard operator S with symbol s is the continuous operator on 
L2(RN) defined by F(Su)(Ç) = Enan(£/\i\)F{bnu)(£) where F denotes the Fourier 
transform . A continuous operator L on L2(RN) is said to have symbol s if L — S 
is a compact operator on L2(RN) . 

The only technical point to check is that the commutator L1L2 — L2Z4 of two 
such operators is a compact operator on L2(RN). 

Proposition 2. / / Un is a sequence converging weakly to zero in (L2(RN))P, then 
there is a subsequence and measures p1,j on RN x S^ - 1 , i,j = l„.,p, such that for 
every operators L\, Li with symbols s\, Si the limit of Li(Uf)L2(U1j)* is a measure 
v on RN defined by < v,0 > = < pSJ9<j)S\S2* > for every test function $ continuous 
with compact support in RN . 

One immediately finds that p is hermitian nonnegative and has a few other 
obvious properties, one of them being the following localization principle for H-
measures, which is analogous to the information on the wave front sets derived 
from application of the stationary phase method. 

Proposition 3. / / a sequence Un converges weakly to zero in (L2(RN))P, corre
sponds to a H-measure p, and is such that Ijjd^bijU^) converges strongly to zero 
in Hfol(RN) where the functions by are continuous, then one has ZjjÇibjjp3'1* = 0 
for k = l,..,p. 

Before describing the more technical property of propagation let us give a 
few examples of what was just mentioned. 

Example 4. Let w"(x) = V(X,X/E) where e is a sequence converging to zero with 
v defined on RN x RN and v(x, y) having period 1 in each component y7-, j = 
1,..,N; denoting by Y the unit cube, we assume that v is continous in x with 
values in L2(Y) and decompose v in Fourier series in y, v(x,y) = Hmvm(x)e2in^hy\ 
assuming moreover that vo is zero. Under these hypotheses, without extraction 
of a subsequence, the H-measure p associated to w" is defined by < p, <P > = 
%m J \vm(x)\20(x,m/\m\)dx for every continuous function 0 on RN x SN~{ with 
compact support in x. 

Example 5. Let w"(x) = E~N^2V(X/E) where e is a sequence converging to zero 
and v belongs to L2(RN). Without extraction of a subsequence the H-measure 
p associated to w" is defined by < p, 0 > = J|Ft;(^)|2^(0, Ç/\Ç\)dÇ for every 
continuous function $ on RN x SN~{ with compact support in x. 

Example 6. Let w" be a sequence converging weakly to zero in L2(RN) and 
corresponding to a H-measure p; assume moreover that for some continuous 

3 I use L. Schwartz's notations so that F(Su)(Ç) = f s(x, t;/\£\)e~2in(x-®u(x)dx for u smooth 
with compact support. 
4 z* denotes the complex conjugate of z. 
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functions bj, j = 1,.-5N, Zjdj(bjUn) converges to zero in H^(RN) strong. Then p 
satisfies P(x, Ç)p = 0 with P defined by P(x, Ç) — Zjbj(x)Çj . 

Example 7. Assume that the sequence Un converges weakly to zero in (L2(RN))N 

corresponds to a H-measure p and satisfies dtUj = djUf for i, j = 1,..,N. Then 
there exists a scalar nonnegative measure v on RN x SN~X such that pi,j = ^jV 
for i, j = 1,..,N. 

Example 8. Let un be a sequence converging weakly to zero in Hx(RN+i) and 
assume that for some continuous functions Q and ay, i, j = 1,..,N independent of 
xo, gdlun - Iijdi(aijdjUn) converges to zero in #/~c

1(RJV+1) strong; assume moreover 
that Un defined by Uf = d{Un for i = 0,..,N, corresponds to a H-measure p. Then 
piiJ = ÇtÇjV for i, j = 0,..,N and v satisfies Q(x, £)v = 0 with Q defined by Q(x, Ç) 
= Q(*Ko - Zijaij(x)ÇiÇj . 

The propagation effects for H-measures are related to the existence of 
quadratic balance laws and they take the form of partial differential equations 
in (x, Ç) satisfied by the H-measures. This is more quantitative than what can 
be said for wave front sets where it is the complementary property of regularity 
which is actually propagated. A precise commutation lemma is needed. 

Proposition 9. Under additional regularity hypotheses, if S\ and S2 are the standard 
operators of symbols s\ and S2 then dj(S\S2 — S2S1) is a continuous operator on 
L2(RN) with symbol £j{si,S2} where {,} denotes the usual Poisson bracket. 

In particular if si = a(Ç) and S2 — b(x) then the formula is valid for a smooth 
and b merely of class C1, thanks to a result of A. Calder on [26]. In the case of 
the scalar equation of Example 6 one can obtain then a propagation result under 
some natural regularity hypotheses. 

Proposition 10. Let un be a sequence converging weakly to zero in L2(RN) and 
assume that EjbjdjUn + cun = fn with fn converging weakly to zero in L2(RN), the 
coefficients bj being assumed to be real and of class C1 while c is only assumed to 
be continuous. Assume moreover that (un,fn) corresponds to a H-measure p. Then 
p1'1 satisfies the following transport equation < piil,{^,P} — 4>divb + 2$Ree > 
= < 2 Re/11 '2,0 > for every function 0 of class C1 in (x,£) with compact support 
in x, with P defined by P(x,£) = Zjbj(x)Çj . 

In the case of the wave equation of Example 8 one finds a similar result. 

Proposition 11. Let un be a sequence converging weakly to zero in H 1(RN+Ì) and as
sume that QÔQU11 - Eijdi(aijdjUn) = / " with fn converging weakly to zero in L2(RN), 
the coefficient Q being real positive independent ofxo and of class C1, the matrix a 
with entries ay, i,j = 1,..JS[ being hermitian positive independent ofxo and of class 
C1. Let Un be defined by Uf = d^ for i = 0,..,N, and assume that (Un,fn) corre
sponds to a H-measure p. Then phj = &Ç/V1,1 for i,j = 0,..,N, and pl,N+1 = &v1,2 

for i = 0,..,N and v1,1 satisfies the following transport equation < vlfl,{4>, Q] > = 
< 2 Rev1 '2 ,0 > for every function 0 of class C1 in (x,Ç) with compact support in 
x, with Q defined by Q(x,Ç) = Q(X)Ç% - Zya^x)^. 
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One can complete Proposition 10 as in [4] by proving a trace theorem on a 
noncharacteristic hyperplane and from that deduce a result of change of variables 
for H-measures under local C1 diffeomorphism, so that a theory on manifolds 
could be developed. A more interesting question lies in understanding the effect 
of semilinearity, that is when / " does depend upon w" or U" in the framework 
of Proposition 10 or 11. The difficulty lies in the fact that H-measures are 
intrinsically quadratic objects and do not then predict anything about the limits 
of trilinear quantities for instance. H-measures do provide an improvement on 
the method of compensated compactness that I had developed with F. Mural 
[27, 28] but so far have not provided an alternative approach for quasilinear 
hyperbolic systems of conservation laws in order to replace the method that I 
had introduced [28] based on Young measures and compensated compactness, a 
method which had been successfully applied by R. DiPerna [29, 30, 31, 32]. Ron 
DiPerna had pointed out many years ago the defects of that old method and the 
need for a dynamic way of describing oscillations; H-measures is still the best 
answer to that quest and it is obviously not sufficient. It is important to point out 
that results like Proposition 11 correspond to the possibility of preparing initial 
data as a beam concentrated at a point and pointing in some direction and then 
follow where the energy goes; in the spirit of Example 4 one can also prepare 
initial data that correspond to a H-measure concentrated at a point in space and 
charging a countable number of points of the unit sphere and still follow the 
energy along each of these countably many small beams of light; as wave front 
sets are closed they cannot even see only a countable dense set of the sphere. 

Other Results 

It would be unfair not to point out that P. Gérard has introduced quite interesting 
variants which I cannot cover here [20, 21]. I cannot either discuss of other 
applications like the relation with homogenisation [4, 17]. 

Conclusion 

In conclusion I was quite wrong in that small paragraph spared by the political 
censors [1] where I associated the study of "propagation of singularities" with 
classical physics as much better mathematical results connected to the propaga
tion of light are like the above Proposition 11. I was also partly wrong in my 
previous ideas on quantum physics and oscillations as I had forgotten to include 
concentration effects in my description. Both these conclusions were learned from 
the possibilities created by the new mathematical tool of H-measures but a lot 
remains to be done on the way to a better understanding of physics through 
increased knowledge of some precise aspects of partial differential equations. 

Obviously none of these new results are difficult and they could have been 
proved a long time ago by any of the best specialists of partial differential 
equations had they been interested in Science. 
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