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ABSTRACT. This is a set of lecture notes for a series of introductory courses in

Topology for undergraduate students at the University of Science, Vietnam Na-

tional University–Ho Chi Minh City. It is written to be delivered by myself, tai-

lored to my students. I did not write it with other lecturers or self-study readers in

mind.

In my experience many things here are much better explained in oral form

than in written form. Therefore in writing these notes I intend that more expla-

nations and discussions will be carried out in class. I hope by presenting only the

essentials these notes will be more suitable for classroom use. Some details are left

for students to fill in or to be discussed in class.

Since students in my department are required to take a course in Functional

Analysis, I try not to duplicate material in that course.

A sign
√

in front of a problem notifies the reader that this is an important

one although it might not appear to be so initially. A sign * indicates a relatively

more difficult problem.

This is a draft under development. The latest version is available on my web

page at

http://www.math.hcmus.edu.vn/∼hqvu.

September 9, 2013.

http://www.math.hcmus.edu.vn/~hqvu
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General Topology

1. Set

In General Topology we often work in very general settings, in particular we
often deal with infinite sets. We will not define what a set is. That means we will
work on the level of “naive set theory”. We will use familiar notions such as maps,
Cartesian product of two sets, . . . without giving precise definitions. We will not
go back to definitions of the natural numbers or the real numbers.

Even so we should be aware of certain problems in naive set theory. Until
the beginning of the 20th century, the set theory of George Cantor, in which set is
not defined, was thought to be a good basis for mathematics. Then some critical
problems were discovered.

Example (Russell’s paradox). Consider the set S = {x | x /∈ x} (the set of all sets
which are not members of themselves). Then whether S ∈ S or not is undecidable,
because answering yes or no to this question leads to contradiction. 1

Axiomatic systems for the theory of sets have been developed since then. In
the Von Neumann-Bernays-Godel system a more general notion than set, called
class (lớp), is used ([Dug66, p. 32]). In this course, in occasions where we deal with
“set of sets” we often replace the term set by the terms class or collection (họ).

Indexed collection. Suppose that A is a collection, I is a set and f : I → A is
a map. The map f is called an indexed collection, or indexed family (họ được đánh
chỉ số). We often write fi = f (i), and denote the indexed collection f by { fi}i∈I .
Notice that it can happen that fi = f j for some i 6= j.

Example. A sequence in a set A is a collection of elements of A indexed by the set
Z+ of positive integer numbers.

Relation. A relation (quan hệ) R on a set S is a non-empty subset of the set S× S.
When (a, b) ∈ R we often say that a is related to b.
A relation is:

(a) reflexive (phản xạ) if ∀a ∈ S, (a, a) ∈ R.
(b) symmetric (đối xứng) if ∀a, b ∈ S, (a, b) ∈ R⇒ (b, a) ∈ R.

1Discovered in 1901 by Bertrand Russell. A famous version of this paradox is the barber paradox: In
a village there is a barber; his job is to do hair cut for a villager if and only if the villager does not cut
his hair himself. Consider the set of all villagers who had their hairs cut by the barber. Is the barber
himself a member of that set?

1



2 GENERAL TOPOLOGY

(c) antisymmetric (phản đối xứng) if ∀a, b ∈ S, ((a, b) ∈ R ∧ (b, a) ∈ R) ⇒
a = b.

(d) transitive (bắc cầu) if ∀a, b, c ∈ S, ((a, b) ∈ R ∧ (b, c) ∈ R)⇒ (a, c) ∈ R.

An equivalence relation on S is a relation that is reflexive, symmetric and transitive.
If R is an equivalence relation on S then an equivalence class (lớp tương đương)

represented by a ∈ S is the subset [a] = {b ∈ S | (a, b) ∈ R}. Two equivalence
classes are either coincident or disjoint. The set S is partitioned (phân hoạch) into
the disjoint union of its equivalence classes.

Equivalent sets. Two sets are said to be equivalent if there is a bijection from one
to the other.

Example. Two intervals [a, b] and [c, d] on the real number line are equivalent. The
bijection can be given by a linear map x 7→ d−c

b−a (x− a) + c. Similarly, two intervals
(a, b) and (c, d) are equivalent.

The interval (−1, 1) is equivalent to R via a map related to the tan function:

x 7→ x√
1− x2

.

1

1

−1

0

x

Countable sets.

Definition. A set is called countably infinite (vô hạn đếm được) if it is equivalent
to the set of all positive integers. A set is called countable if it is either finite or
countably infinite.

Intuitively, a countably infinite set can be “counted” by the positive integers.
The elements of such a set can be indexed by the set of all positive integers as a
sequence a1, a2, a3, . . . .

Example. The set Z of all integer numbers is countable.

Proposition 1.1. A subset of a countable set is countable.

PROOF. The statement is equivalent to the statement that a subset of Z+ is
countable. Suppose that A is an infinite subset of Z+. Let a1 be the smallest
number in A. Let an be the smallest number in A \ {a1, a2, . . . , an−1}. Then an−1 <

an and the set B = {an| n ∈ Z+} is a countably infinite subset of A.



1. SET 3

We show that any element m of A is an an for some n, and therefore B = A.
Let C = {an | an ≥ m}. Then C 6= ∅ since B is infinite. Let an0 = min C.

Then an0 ≥ m. Further, since an0−1 < an0 we have an0−1 < m. This implies
m ∈ A \ {a1, a2, . . . , an0−1}. Since an0 = min

(
A \ {a1, a2, . . . , an0−1}

)
we must

have an0 ≤ m. Thus an0 = m. �

Proposition 1.2. If there is a surjective map from Z+ to a set S then S is countable.

PROOF. Suppose that there is a surjective map φ : Z+ → S. For each s ∈ S
the set φ−1(s) is non-empty. Let ns = min φ−1(s). The map s 7→ ns is an injective
map from S to a subset of Z+, therefore S is countable, by 1.1. �

Theorem 1.3. The union of a countable collection of countable sets is a countable set.

PROOF. The collection can be indexed as A1, A2, . . . , Ai, . . . (if the collection
is finite we can let Ai be the same set for all i starting from a certain index). The
elements of each set Ai can be indexed as ai,1, ai,2, . . . , ai,j, . . . (if Ai is finite we can
let ai,j be the same element for all j starting from a certain index).

This means there is a surjective map from the index set Z+ ×Z+ to the union⋃
i∈I Ai by (i, j) 7→ ai,j.

Thus it is sufficient for us, by 1.2, to prove that Z+ ×Z+ is countable.
We can index Z+ ×Z+ by the method shown in the following diagram:

(1, 1) // (1, 2)

{{

(1, 3) // (1, 4)

{{
(2, 1)

��

(2, 2)

;;

(2, 3)

{{
(3, 1)

;;

(3, 2)

{{

. . .

(4, 1)

��

(4, 2)

(5, 1)

;;

�

Theorem. The set Q of all rational numbers is countable.

PROOF. One way to prove this result is to write Q =
⋃∞

q=1
{ p

q | p ∈ Z
}

, then
use 1.3.

Another way is to observe that if we write each rational number in the form
p
q with q > 0 and gcd(p, q) = 1 then the map p

q 7→ (p, q) from Q to Z ×Z is
injective. �

Theorem 1.4. The set R of all real numbers is uncountable.
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PROOF. The proof uses the Cantor diagonal argument.
Suppose that set of all real numbers in decimal form in the interval [0, 1] is

countable, and is enumerated as a sequence {ai | i ∈ Z+}. Let us write

a1 = 0.a1,1a1,2a1,3 . . .

a2 = 0.a2,1a2,2a2,3 . . .

a3 = 0.a3,1a3,2a3,3 . . .

...

There are real numbers whose decimal presentations are not unique, such as
1
2 = 0.5000 . . . = 0.4999 . . . . Choose a number b = 0.b1b2b3 . . . such that bn 6=
0, 9 and bn 6= an,n. Choosing bn differing from 0 and 9 will guarantee that b 6=
an for all n (see more at 1.20). Thus the number b is not in the above table, a
contradiction. �

Theorem 1.5 (Cantor-Bernstein-Schroeder). If A is equivalent to a subset of B and B
is equivalent to a subset of A then A and B are equivalent.

PROOF. Suppose that f : A 7→ B and g : B 7→ A are injective maps. Let
A1 = g(B), we will show that A is equivalent to A1.

Let A0 = A and B0 = B. Define Bn+1 = f (An) and An+1 = g(Bn). Then
An+1 ⊂ An. Furthermore via the map g ◦ f we have An+2 is equivalent to An, and
An \ An+1 is equivalent to An+1 \ An+2.

Using the following identities

A = (A \ A1) ∪ (A1 \ A2) ∪ · · · ∪ (An \ An+1) ∪ . . . ∪ (
∞⋂

n=1

An),

A1 = (A1 \ A2) ∪ (A2 \ A3) ∪ · · · ∪ (An \ An+1) ∪ . . . ∪ (
∞⋂

n=1

An),

we see that A is equivalent to A1. �

Order. An order (thứ tự) on a set S is a relation R on S that is reflexive, anti-
symmetric and transitive.

Note that two arbitrary elements a and b do not need to be comparable; that is,
the pair (a, b) may not belong to R. For this reason an order is often called a partial
order.

When (a, b) ∈ R we often write a ≤ b. When a ≤ b and a 6= b we write a < b.
If any two elements of S are related then the order is called a total order (thứ tự

toàn phần) and (S,≤) is called a totally ordered set.

Example. The set R of all real numbers with the usual order ≤ is totally ordered.
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Example. Let S be a set. Denote by 2S the collection of all subsets of S. Then
(2S,⊆) is a partially ordered set, but is not totally ordered if S has more than one
element.

Example (Dictionary order). Let (S1,≤1) and (S2,≤2) be two ordered sets. The
following is an order on S1 × S2: (a1, b1) ≤ (a2, b2) if (a1 < a2) or ((a1 = a2) ∧
(b1 ≤ b2)). This is called the dictionary order (thứ tự từ điển).

In an ordered set, the smallest element (phần tử nhỏ nhất) is the element that is
smaller than all other elements. More concisely, if S is an ordered set, the smallest
element of S is an element a ∈ S such that ∀b ∈ S, a ≤ b. The smallest element, if
exists, is unique.

A minimal element (phần tử cực tiểu) is an element which no element is smaller
than. More concisely, a minimal element of S is an element a ∈ S such that ∀b ∈
S, b ≤ a⇒ b = a. There can be more than one minimal element.

A lower bound (chặn dưới) of a subset of an ordered set is an element of the set
that is smaller than or equal to any element of the subset. More concisely, if A ⊂ S
then a lower bound of A in S is an element a ∈ S such that ∀b ∈ A, a ≤ b.

The definitions of largest element, maximal element, and upper bound are
similar.

Cardinality. A genuine definition of cardinality of sets requires an axiomatic treat-
ment of set theory. Here we accept that for each set A there exists an object called
its cardinal (lực lượng, bản số) |A|, and there is a relation ≤ on the set of cardinals
such that:

(a) If a set is finite then its cardinal is its number of elements.
(b) Two sets have the same cardinals if and only if they are equivalent:

|A| = |B| ⇐⇒ (A ∼ B).

(c) |A| ≤ |B| if and only if there is an injective map from A to B.

Theorem 1.5 says that (|A| ≤ |B| ∧ |B| ≤ |A|)⇒ |A| = |B|.
The cardinal of Z+ is denoted by ℵ0,2 while the cardinal of R is denoted by c

(continuum). Since any infinite set contains a countably infinite subset, ℵ0 is the
smallest infinite cardinal. Since R is uncountable, we have ℵ0 < c.3

Theorem (No maximal cardinal). The cardinal of a set is strictly less than the cardinal
of the set of all of its subsets, i.e. |A| < |2A|.

This implies that there is no maximal cardinal. There is no “universal set”,
“the set which contains everything”, or “the set of all sets”.

PROOF. Let A 6= ∅ and denote by 2A the set of all of its subsets.

(a) |A| ≤ |2A|: The map from A to 2A: a 7→ {a} is injective.

2ℵ is read “aleph”, a character in the Hebrew alphabet.
3Georg Cantor put forward the Continuum hypothesis: There is no cardinal between ℵ0 and c.
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(b) |A| 6= |2A|: Let φ be any map from A to 2A. Let X = {a ∈ A | a /∈ φ(a)}.
Suppose that there is x ∈ A such that φ(x) = X. Then the question
whether x belongs to X or not is undecidable. Therefore φ is not surjec-
tive.

�

The Axiom of choice.

Theorem. The following statements are equivalent:

(a) Axiom of choice: Given a collection of non-empty sets, there is a function defined
on this collection, called a choice function, associating each set in the collection
with an element of that set.

(b) Zorn lemma: If any totally ordered subset of an ordered set X has an upper bound
then X has a maximal element.

Intuitively, a choice function “chooses” an element from each set in a given
collection of non-empty sets. The Axiom of choice allows us to make infinitely
many arbitrary choices in order to define a function. 4

The Axiom of choice is needed for many important results in mathematics,
such as the Tikhonov theorem in Topology, the Hahn-Banach theorem and Banach-
Alaoglu theorem in Functional analysis, the existence of a Lebesgue unmeasurable
set in Real analysis, . . . .

There are cases where this axiom could be avoided. For example in the proof
of 1.2 we used the well-ordered property of Z+ instead. See for instance [End77,
p. 151] for further material on this subject.

Zorn lemma is often a convenient form of the Axiom of choice.

Cartesian product. Let {Ai}i∈I be a family of sets indexed by a set I. The Carte-
sian product (tích Decartes) ∏i∈I Ai of this family is defined to be the collection of
all maps a : I → ⋃

i∈I Ai such that if i ∈ I then a(i) ∈ Ai. The statement “the Carte-
sian product of a family of non-empty sets is non-empty” is therefore equivalent
to the Axiom of choice.

An element a of ∏i∈I Ai is often denoted by (ai)i∈I , with ai = a(i) ∈ Ai being
the coordinate of index i, in analog to the finite product case.

Problems.

1.6. Check that (
⋃

i∈I Ai) ∩ (
⋃

j∈J Bj) =
⋃

i∈I,j∈J Ai ∩ Bj.

1.7. Which of the following formulas are correct?

(a) (
⋃

i∈I Ai) ∩ (
⋃

i∈I Bi) =
⋃

i∈I(Ai ∩ Bi).
(b)

⋂
i∈I(

⋃
j∈J Ai,j) =

⋃
i∈I(

⋂
j∈J Ai,j).

4Bertrand Russell said that choosing one shoe from each pair of shoes from an infinite collection of
pairs of shoes does not need the Axiom of choice (because in a pair of shoes the left shoe is different
from the right one so we can define our choice), but if in a pair of socks the two socks are same, then
choosing one sock from each pair of socks from an infinite collection of pairs of socks needs the Axiom
of choice.
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1.8. Let f be a function. Show that:

(a) f (
⋃

i Ai) =
⋃

i f (Ai).
(b) f (

⋂
i Ai) ⊂

⋂
i f (Ai). If f is injective (one-one) then equality happens.

(c) f−1(
⋃

i Ai) =
⋃

i f−1(Ai).
(d) f−1(

⋂
i Ai) =

⋂
i f−1(Ai).

1.9. Let f be a function. Show that:

(a) f ( f−1(A)) ⊂ A. If f is surjective (onto) then equality happens.
(b) f−1( f (A)) ⊃ A. If f is injective then equality happens.

1.10. Show that a union between a countable set and a finite set is countable.

1.11. If A is finite and B is infinite then A ∪ B is equivalent to B.

1.12. Show that two planes with finitely many points removed are equivalent.

1.13. Give another proof of 1.3 by checking that the map Z+ ×Z+ → Z+, (m, n) 7→ 2m3n

is injective.

1.14. Show that the set of points in Rn with rational coordinates is countable.

1.15. Show that if A has n elements then |2A| = 2n.

1.16. Show that the set of all functions f : A→ {0, 1} is equivalent to 2A.

1.17. A real number α is called an algebraic number if it is a root of a polynomial with
integer coefficients. Show that the set of all algebraic numbers is countable.

A real number which is not algebraic is called transcendental. For example it is known
that π and e are transcendental. Show that the set of all transcendental numbers is uncount-
able.

1.18. Show that the intervals [a, b], [a, b) and (a, b) are equivalent.

1.19. A continuum set is a set whose cardinal is c. Show that a countable union of contin-
uum sets is a continuum set.

1.20. Show that any real number could be written in base d with any d ∈ Z, d ≥ 2. However
two forms in base d could represent the same real number, as seen in 1.4. This happens only
if starting from certain digits, all digits of one form are 0 and all digits of the other form are
d− 1. (This result is used in 1.4.)

1.21 (2ℵ0 = c). We prove that 2N is equivalent to R.

(a) Show that 2N is equivalent to the set of all sequences of binary digits.
(b) Using 1.20, deduce that |[0, 1]| ≤ |2N|.
(c) Consider a map f : 2N → [0, 2], for each binary sequence a = a1a2a3 · · · define

f (a) as follows. If starting from a certain digit, all digits are 1, then let f (a) =

1.a1a2a3 · · · . Otherwise let f (a) = 0.a1a2a3 · · · . Show that f is injective.

Deduce that |2N| ≤ |[0, 2]|.

1.22 (R2 is equivalent to R). * Here we prove that R2 is equivalent to R, in other words, a
plane is equivalent to a line. As a corollary, Rn is equivalent to R.
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(a) First method: Construct a map from [0, 1)× [0, 1) to [0, 1) as follows. In view of
1.20, we only allow decimal presentations in which not all digits are 9 starting
from a certain digit. The pair of two real numbers 0.a1a2 . . . and 0.b1b2 . . . corre-
sponds to the real number 0.a1b1a2b2 . . .. Check that this map is injective.

(b) Second method: Construct a map from 2N × 2N to 2N as follows. The pair of
two binary sequences a1a2 . . . and b1b2 . . . corresponds to the binary sequence
a1b1a2b2 . . .. Check that this map is injective. Then use 1.21.

Note: In fact for all infinite cardinal ω we have ω2 = ω, see [Dug66, p. 52], [Lan93, p. 888].

1.23 (Transfinite induction principle). An ordered set S is well-ordered (được sắp tốt) if
every non-empty subset A of S has a smallest element, i.e. ∃a ∈ A, ∀b ∈ A, a ≤ b.

For example with the usual order, N is well-ordered while R is not.
Ernst Zermelo proved in 1904 that any set can be well-ordered, based on the Axiom of

choice.
The following is a generalization of the Principle of induction.
Let A be a well-ordered set. Let P(a) be a statement whose truth depends on a ∈ A. If

(a) P(a) is true when a is the smallest element of A
(b) if P(a) is true for all a < b then P(b) is true

then P(a) is true for all a ∈ A.
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2. Topological space

Briefly, a topology is a system of open sets.

Definition. A topology on a set X is a collection τ of subsets of X satisfying:

(a) The sets ∅ and X are elements of τ.
(b) A union of elements of τ is an element of τ.
(c) A finite intersection of elements of τ is an element of τ.

Elements of τ are called open sets of X in the topology τ.

In short, a topology on a set X is a collection of subsets of X which includes ∅
and X and is closed under unions and finite intersections.

A set X together with a topology τ is called a topological space, denoted by(X, τ)

or X alone if we do not need to specify the topology. An element of X is often called
a point.

Example. On any set X there is the trivial topology (tôpô hiển nhiên) {∅, X}. There
is also the discrete topology (tôpô rời rạc) whereas any subset of X is open. Thus on
a set there can be many topologies.

Remark. The statement “intersection of finitely many open sets is open” is equiv-
alent to the statement “intersection of two open sets is open”.

Metric space. Recall that, briefly, a metric space is a set equipped with a distance
between every two points. Namely, a metric space is a set X with a map d : X ×
X 7→ R such that for all x, y, z ∈ X:

(a) d(x, y) ≥ 0 (distance is non-negative),
(b) d(x, y) = 0 ⇐⇒ x = y (distance is zero if and only if the two points

coincide),
(c) d(x, y) = d(y, x) (distance is symmetric),
(d) d(x, y) + d(y, z) ≥ d(x, z) (triangular inequality).

A ball is a set of the form B(x, r) = {y ∈ X | d(y, x) < r} where r ∈ R, r > 0.
In the theory of metric spaces, a subset U of X is said to be open if for all x in

U there is ε > 0 such that B(x, ε) is contained in U. This is equivalent to saying
that a non-empty open set is a union of balls.

To check that this is indeed a topology, we only need to check that the in-
tersection of two balls is a union of balls. Let z ∈ B(x, rx) ∩ B(y, ry), let rz =

min{rx − d(z, x), ry − d(z, y)}. Then the ball B(z, rz) will be inside both B(x, rx)

and B(y, ry).
Thus a metric space is canonically a topological space with the topology gen-

erated by the metric. When we speak about topology on a metric space we mean this
topology.

Example (Normed spaces). Recall that a normed space (không gian định chuẩn) is
briefly a vector spaces equipped with lengths of vectors. Namely, a normed space
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is a set X with a structure of vector space over the real numbers and a real function
X → R, x 7→ ||x||, called a norm (chuẩn), satisfying:

(a) ||x|| ≥ 0 and ||x|| = 0⇐⇒ x = 0 (length is non-negative),
(b) ||cx|| = |c|||x|| for c ∈ R (length is proportionate to vector),
(c) ||x + y|| ≤ ||x||+ ||y|| (triangle inequality).

A normed space is canonically a metric space with metric d(x, y) = ||x− y||.
Therefore a normed space is canonically a topological space with the topology
generated by the norm.

Example (Euclidean topology). In Rn = {(x1, x2, . . . , xn) | xi ∈ R}, the Euclidean
norm of a point x = (x1, x2, . . . , xn) is ‖x‖ =

[
∑n

i=1 x2
i
] 1/2. The topology generated

by this norm is called the Euclidean topology (tôpô Euclid) of Rn.

A complement of an open set is called a closed set.

Proposition (Dual description of topology). In a topological space X:

(a) ∅ and X are closed.
(b) A finite union of closed sets is closed.
(c) An intersection of closed sets is closed.

Bases of a topology.

Definition. Given a topology, a collection of open sets is a basis (cơ sở) for that
topology if every non-empty open set is a union of members of that collection.

More concisely, let τ be a topology of X, then a collection B ⊂ τ is called a
basis for τ if for any ∅ 6= V ∈ τ there is C ⊂ B such that V =

⋃
D∈C D.

So a basis of a topology is a subset of the topology that generates the entire
topology via unions. Specifying a basis is a more “efficient” way to describe a
topology.

Example. In a metric space the collection of all balls is a basis for the topology.

Definition. A collection S ⊂ τ is called a subbasis (tiền cơ sở) for the topology τ if
the collection of finite intersections of members of S is a basis for τ.

Clearly a basis for a topology is also a subbasis for that topology.
Briefly, given a topology, a subbasis is a subset of the topology that can gener-

ate the entire topology by unions and finite intersections.

Example. Let X = {1, 2, 3}. The topology τ = {∅, {1, 2}, {2, 3}, {2}, {1, 2, 3}} has
a basis {{1, 2}, {2, 3} {2}} and a subbasis {{1, 2}, {2, 3}}.

Example 2.1. The collection of all open rays, that are, sets of the forms (a, ∞) and
(−∞, a), is a subbasis for the Euclidean topology of R.
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Comparing topologies.

Definition. Let τ1 and τ2 be two topologies on X. If τ1 ⊂ τ2 we say that τ2 is
finer (mịn hơn) (or stronger, bigger) than τ1 and τ1 is coarser (thô hơn) (or weaker,
smaller) than τ2.

Example. On a set the trivial topology is the coarsest topology and the discrete
topology is the finest one.

Generating topologies. Suppose that we have a set and we want certain subsets
of that set to be open, how do find a topology for that purpose?

Theorem. Let S be a collection of subsets of X. The collection τ consisting of ∅, X, and
all unions of finite intersections of members of S is the coarsest topology on X that contains
S, called the topology generated by S. The collection S∪ {X} is a subbasis for this topology

Remark. In several textbooks to avoid adding the element X to S it is required that
the union of all members of S is X.

PROOF. Clearly τ is closed under unions. We only need to check that τ is
closed under intersections of two elements, that is, to check that the intersection of
two unions of finite intersections of members of S is a union of finite intersections
of members of S. Let A and B be two collections of finite intersections of members
of S. We have (

⋃
C∈A C) ∩ (

⋃
D∈B D) =

⋃
C∈A, D∈B(C ∩ D). Since each C ∩ D is a

finite intersection of elements of S we get the desired conclusion. �

By this theorem, given a set, any collection of subsets generates a topology.

Example. Let X = {1, 2, 3, 4}. The set {{1}, {2, 3}, {3, 4}} generates the topol-
ogy {∅, {1}, {3}, {1, 3}, {2, 3}, {3, 4}, {1, 2, 3}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}}. A ba-
sis for this topology is {{1}, {3}, {2, 3}, {3, 4}}.

Example (Ordering topology). Let (X,≤) be a totally ordered set. The collection
of subsets of the forms {β ∈ X | β < α} and {β ∈ X | β > α} generates a topology
on X, called the ordering topology.

Example. The Euclidean topology on R is the ordering topology with respect to
the usual order of real numbers. (This is just a different way to state 2.1.)

Problems.

2.2 (Finite complement topology). The finite complement topology on X consists of the empty
set and all subsets of X whose complements are finite. Check that this is indeed a topology.

2.3. Let X be a set and p ∈ X. Show that the collection consisting of ∅ and all subsets of X
containing p is a topology on X. This topology is called the Particular Point Topology on X,
denoted by PPXp. Describe the closed sets in this space.

2.4. A collection B of open sets is a basis if for each point x and each open set O containing
x there is a U in B such that U contains x and U is contained in O.



12 GENERAL TOPOLOGY

2.5. Show that two bases generate the same topology if and only if each member of one
basis is a union of members of the other basis.

2.6. Let B be a collection of subsets of X. Then B ∪ {X} is a basis for a topology on X if and
only if the intersection of two members of B is either empty or is a union of some members
of B. (In several textbooks to avoid adding the element X to B it is required that the union
of all members of B is X.)

2.7. In a metric space the set of all balls with rational radii is a basis for the topology.

2.8. In a metric space the set of all balls with radii 1
2m , m ≥ 1 is a basis.

2.9 (Rn has a countable basis).
√

The set of all balls each with rational radius whose center
has rational coordinates forms a basis for the Euclidean topology of Rn.

2.10. In Rn let x = (x1, x2, . . . , xn) and consider the norms ‖x‖1 = ∑n
i=1|xi|, ‖x‖2 =

(∑n
i=1 xi

2)1/2, and ‖x‖∞ = max1≤i≤n|xi|. Draw the unit ball for each norm. Show that
these norms generate same topologies.

2.11. Let d1 and d2 be two metrics on X. If there are α, β > 0 such that for all x, y ∈ X,
αd1(x, y) ≤ d2(x, y) ≤ βd1(x, y) then the two metrics are said to be equivalent. Show that
two equivalent metrics generate same topologies.

Hint: Show that each ball in one metric contains a ball in the other metric with the same center.

2.12. Let (X, d) be a metric space. Let d1(x, y) = min{d(x, y), 1}. Show that d1 is a metric
on X generating the same topology as that generated by d.

2.13. Let (X, d) be a metric space. Let d1(x, y) =
d(x,y)

1+d(x,y) . Show that d1 is a metric on X
generating the same topology as that generated by d.

2.14 (All norms in Rn generate the Euclidean topology). In Rn denote by ‖·‖2 the Eu-
clidean norm, and let ‖·‖ be any norm.

(a) Check that the map x 7→ ‖x‖ from (Rn, ‖·‖2) to (R, ‖·‖2) is continuous.
(b) Let Sn be the unit sphere under the Euclidean norm. Show that the restriction

of the map above to Sn has a maximum value β and a minimum value α. Hence

α ≤
∥∥∥ x
‖x‖2

∥∥∥ ≤ β for all x 6= 0.

Deduce that any two norms in Rn are equivalent, hence all norms in Rn generate the Eu-
clidean topology.

2.15. Is the Euclidean topology on R2 the same as the ordering topology on R2 with respect
to the dictionary order? If it is not the same, can the two be compared?

2.16. Show that an open set in R is a countable union of open intervals.

2.17. The collection of all intervals of the form [a, b) generates a topology on R. Is it the
Euclidean topology?

2.18. On the set of all integer numbers Z, consider all arithmetic progressions

Sa,b = a + bZ,

where a ∈ Z and b ∈ Z+.

(a) Show that these sets form a basis for a topology on Z.
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(b) Show that with this topology each set Sa,b is closed.
(c) Show that if there are only finitely many prime numbers then the set {±1} is

open.
(d) Conclude that there are infinitely many prime numbers. (This proof was given by

Hillel Furstenberg in 1955.)
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3. Continuity

Continuous function.

Definition. Let X and Y be topological spaces. We say a map f : X → Y is
continuous at a point x in X if for any open set U of Y containing f (x) there is an
open set V of X containing x such that f (V) is contained in U.

We say that f is continuous on X if it is continuous at every point in X.

A neighborhood (lân cận) of a point x ∈ X is a subset of X which contains an
open set containing x. Note that a neighborhood does not need to be open. 5

Equivalently, f is continuous at x if for any open set U containing f (x), the set
f−1(U) is a neighborhood of x.

Theorem. A map is continuous if and only if the inverse image of an open set is an open
set.

PROOF. (⇒) Suppose that f : X → Y is continuous. Let U be an open set in
Y. Let x ∈ f−1(U). Since f is continuous at x and U is an open neighborhood
of f (x), there is an open set Vx containing x such that Vx is contained in f−1(U).
Therefore f−1(U) =

⋃
x∈ f−1(U) Vx is open.

(⇐) Suppose that the inverse image of any open set is an open set. Let x ∈
X. Let U be an open neighborhood of f (x). Then V = f−1(U) is an open set
containing x, and f (V) is contained in U. Therefore f is continuous at x. �

Example. Let X and Y be topological spaces.
(a) The identity function, idX : X → X, x 7→ x, is continuous.
(b) The constant function, with given a ∈ Y, x 7→ a, is continuous.

Proposition. A map is continuous if and only if the inverse image of a closed set is a
closed set.

Example (Metric space). Let (X, d1) and (Y, d2) be metric spaces. Recall that in
the theory of metric spaces, a map f : (X, d1) → (Y, d2) is continuous at x ∈ X if
and only if

∀ε > 0, ∃δ > 0, d1(y, x) < δ⇒ d2( f (y), f (x)) < ε.

In other words, given any ball B( f (x), ε) centered at f (x), there is a ball B(x, δ)

centered at x such that f brings B(x, δ) into B( f (x), ε).
It is apparent that this definition is equivalent to the definition of continuity

in topological spaces where the topologies are generated by the metrics.
In other words, if we look at a metric space as a topological space then continu-

ity in the metric space is the same as continuity in the topological space. Therefore
we inherit all results concerning continuity in metric spaces.

5Be careful that not everyone uses this convention. For instance Kelley [Kel55] uses this convention but
Munkres [Mun00] requires a neighborhood to be open.
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Homeomorphism. A map from one topological space to another is said to be a
homeomorphism (phép đồng phôi) if it is a bijection, is continuous and its inverse
map is also continuous.

Two spaces X and Y are said to be homeomorphic (đồng phôi), sometimes writ-
ten X ≈ Y, if there is a homeomorphism from one to the other.

Example. Any two open intervals in the real number line R under the Euclidean
topology are homeomorphic.

Proposition. If f : (X, τX) → (Y, τY) is a homeomorphism then it induces a bijection
between τX and τY.

PROOF. The map
f̃ : τX → τY

O 7→ f (O)

is a bijection. �

Roughly speaking, in the field of Topology, when two spaces are homeomor-
phic they are the same.

Topology generated by maps. Let (X, τX) be a topological space, Y be a set, and
f : X → Y be a map. We want to find a topology on Y such that f is continuous.

The requirement for such a topology τY is that if U ∈ τY then f−1(U) ∈ τX .
The trivial topology on Y satisfies that requirement. It is the coarsest topology

satisfying that requirement.
On the other hand the collection {U ⊂ Y | f−1(U) ∈ τX} is actually a topology

on Y. This is the finest topology satisfying that requirement.
In another situation, let X be a set, (Y, τY) be a topological space, and f : X →

Y be a map. We want to find a topology on X such that f is continuous.
The requirement for such a topology τX is that if U ∈ τY then f−1(U) ∈ τX .
The discrete topology on X is the finest topology satisfying that requirement.

The collection τX = { f−1(U) | U ∈ τY} is the coarsest topology satisfying that
requirement. We can observe further that if the collection SY generates τY then τX

is generated by the collection { f−1(U) | U ∈ SY}.

Problems.

3.1. If f : X → Y and g : Y → Z are continuous then g ◦ f is continuous.

3.2.
√

Suppose that f : X → Y and S is a subbasis for the topology of Y. Show that f is
continuous if and only if the inverse image of any element of S is an open set in X.

3.3. Define an open map to be a map such that the image of an open set is an open set. A
closed map is a map such that the image of a closed set is a closed set.

Show that a homeomorphism is both an open map and a closed map.

3.4. A continuous bijection is a homeomorphism if and only if it is an open map.

3.5. Show that (X, PPXp) and (X, PPXq) (see 2.3) are homeomorphic.
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3.6.
√

Let X be a set and (Y, τ) be a topological space. Let fi : X → Y, i ∈ I be a collection
of maps. Find the coarsest topology on X such that all maps fi, i ∈ I are continuous.

Note: In Functional Analysis this construction is used to construct the weak topology on a normed

space. It is the coarsest topology such that all linear functionals which are continuous under the norm

are still continuous under the topology. See for instance [Con90].

3.7. Suppose that X is a normed space. Prove that the topology generated by the norm is
exactly the coarsest topology on X such that the norm and the translations (maps of the
form x 7→ x + a) are continuous.
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4. Subspace

Subspace topology. Let (X, τ) be a topological space and let A be a subset of
X. The subspace topology on A, also called the relative topology (tôpô tương đối), is
defined to be the collection {A ∩O | O ∈ τ}. With this topology we say that A is
a subspace (không gian con) of X.

Thus a subset of a subspace A of X is open in A if and only if it is a restriction
of a open set in X to A.

Proposition. A subset of a subspace A of X is closed in A if and only if it is a restriction
of a closed set in X to A.

Remark. An open or a closed subset of a subspace A of a space X is not necessarily
open or closed in X. For example, under the Euclidean topology of R, the set
[0, 1/2) is open in the subspace [0, 1], but is not open in R.

When we say that a set is open, we must know which space we are talking about.

Example. For n ∈ Z+ define the sphere Sn to be the subspace of the Euclidean
space Rn+1 given by {(x1, x2, . . . , xn+1) ∈ Rn+1 | x2

1 + x2
2 + · · ·+ x2

n+1 = 1}.

Proposition 4.1. Suppose that X is a topological space and Z ⊂ Y ⊂ X. Then the relative
topology of Z with respect to Y is the same as the relative topology of Z with respect to X.

Embedding. An embedding (or imbedding) (phép nhúng) from the topological
space X to the topological space Y is a map f : X → Y such that its restriction
f̃ : X → f (X) is a homeomorphism. This means f maps X homeomorphically
onto its image. If there is an imbedding from X to Y, i.e. if X is homeomorphic to
a subspace of Y then we say that X can be embedded in Y.

Example. The Euclidean line R can be embedded in the Euclidean plane R2 as a
line in the plane.

Example. Suppose that f : R → R2 is continuous under the Euclidean topology.
Then R can be embedded into the plane as the graph of f .

Example (Stereographic projection). The space Sn \ {(0, 0, . . . , 0, 1)} is homeo-
morphic to the Euclidean space Rn via the stereographic projection (phép chiếu nổi).
Each point x on the sphere minus the North Pole corresponds to the intersection
between the straight line from the North Pole to x with the plane through the
equator. We can easily find the formula for this projection to be:

Sn \ {(0, 0, . . . , 0, 1)} → Rn × {0}
(x1, x2, . . . , xn+1) 7→ (y1, y2, . . . , yn, 0)

where yi =
1

1− xn+1
xi. The inverse map is given by xi =

2yi

1 + ∑n
i=1 y2

i
, 1 ≤ i ≤ n,

and xn+1 =
−1 + ∑n

i=1 y2
i

1 + ∑n
i=1 y2

i
. Both maps are continuous. Thus the Euclidean space

Rn can be embedded onto the n-sphere minus one point.
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FIGURE 4.1. The stereographic projection.

Interior – Closure – Boundary. Let X be a topological space and let A be a subset
of X. Let x be a point in X.

The point x is said to be an interior point of A in X if there is a neighborhood
of x that is contained in A.

The point x is said to be a contact point (điểm dính) (or point of closure) of A
in X if any neighborhood of x contains a point of A.

The point x is said to be a limit point (điểm tụ) (or cluster point, or accumu-
lation point) of A in X if any neighborhood of x contains a point of A other than
x.

Of course a limit point is a contact point. We can see that a contact point of A
which is not a point of A is a limit point of A.

A point x is said to be a boundary point (điểm biên) of A in X if every neighbor-
hood of x contains a point of A and a point of the complement of A.

In other words, a boundary point of A is a contact point of both A and the
complement of A.

The set of all interior points of A is called the interior (phần trong) of A in X,
denoted by Å or int(A).

The set of all contact points of A in X is called the closure (bao đóng) of A in X,
denoted by A or cl(A).

The set of all boundary points of A in X is called the boundary (biên) of A in X,
denoted by ∂A.

Example. On the Euclidean line R, consider the subspace A = [0, 1) ∪ {2}. Its
interior is intA = (0, 1), the closure is clA = [0, 1] ∪ {2}, the boundary is ∂A =

{0, 1, 2}, the set of all limit points is [0, 1].

Remark. It is crucial to understand that the notions of interior, closure, boundary,
contact points, and limit points of a space A only make sense relative to a certain
space X containing A as a subspace (there must be a “mother space”).

Proposition. The interior of A in X is the largest open subset of X that is contained in
A. A subspace is open if all of its points are interior points.
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Proposition. The closure of A in X is the smallest closed subset of X containing A. A
subspace is closed if and only if it contains all of its contact points.

Problems.

4.2. Let X be a topological space and let A ⊂ X. Then the subspace topology on A is exactly
the coarsest topology on A such that the inclusion map i : A 7→ X, x 7→ x is continuous.

4.3.
√

Let X and Y be topological spaces and let f : X → Y.

(a) If Z is a subspace of X, denote by f |Z the restriction of f to Z. Show that if f is
continuous then f |Z is continuous.

(b) Let Z be a space containing Y as a subspace. Consider f as a function from X to
Z, that is, let f̃ : X → Z, f̃ (x) = f (x). Show that f is continuous if and only if f̃ is
continuous.

4.4 (Gluing continuous functions).
√

Let X = A ∪ B where A and B are both open or
are both closed in X. Suppose f : X → Y, and f |A and f |B are both continuous. Then f is
continuous.

Another way to phrase this is the following. Let g : A → Y and h : B → Y be continu-
ous and g(x) = h(x) on A ∩ B. Define

f (x) =

g(x), x ∈ A

h(x), x ∈ B.

Then f is continuous.
Is it still true if the restriction that A and B are both open or are both closed in X is

removed?

4.5.
√

Any two balls in a normed space are homeomorphic.

4.6.
√

A ball in a normed space is homeomorphic to the whole space.

Hint: Consider a map from the unit ball to the space, such as: x 7→ 1√
1− ||x||2

x.

4.7. Two finte-dimensional normed spaces of same dimensions are homeomorphic.

4.8. Is it true that any two balls in a metric space homeomorphic?

4.9. In the Euclidean plane an ellipse x2

a2 +
y2

b2 = 1 is homeomorphic to a circle.

4.10. In the Euclidean plane the upper half-plane {(x, y) ∈ R2 | y > 0} is homeomorphic
to the plane.

4.11. In the Euclidean plane:

(a) A square and a circle are homeomorphic.
(b) The region bounded by a square and the region bounded by a the circle are home-

omorphic.

4.12.
√

If f : X → Y is a homeomorphism and Z ⊂ X then X \ Z and Y \ f (Z) are
homeomorphic.

4.13. On the Euclidean plane R2, show that:

(a) R2 \ {(0, 0)} and R2 \ {(1, 1)} are homeomorphic.
(b) R2 \ {(0, 0), (1, 1)} and R2 \ {(1, 0), (0, 1)} are homeomorphic.
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4.14. Show that N and Z are homeomorphic under the Euclidean topology.
Further, prove that any two discrete spaces having the same cardinalities are homeo-

morphic.

4.15. Among the following spaces, which one is homeomorphic to another? Z, Q, R, each
with the Euclidean topology, and R with the finite complement topology.

4.16. Show that any homeomorphism from Sn−1 onto Sn−1 can be extended to a homeo-
morphism from the unit disk Dn = B′(0, 1) onto Dn.

4.17. Show that A is the disjoint union of Å and ∂A.

4.18. Show that X is the disjoint union of Å, ∂A, and X \ A.

4.19. The set {x ∈ Q | −
√

2 ≤ x ≤
√

2} is both closed and open in Q under the Euclidean
topology of R.

4.20. The map ϕ : [0, 2π) → S1 given by t 7→ (cos t, sin t) is a bijection but is not a homeo-
morphism, under the Euclidean topology.

4.21. Find the closures, interiors and the boundaries of the interval [0, 1) under the Eu-
clidean, discrete and trivial topologies of R.

4.22.
√

In a metric space X, a point x ∈ X is a limit point of the subset A of X if and only if
there is a sequence in A \ {x} converging to x.

Note: This is not true in general topological spaces.

4.23. In a normed space, show that the boundary of the ball B(x, r) is the sphere {y | d(x, y) =
r}, and so the ball B′(x, r) = {y | d(x, y) ≤ r} is the closure of B(x, r).

4.24. In a metric space, show that the boundary of the ball B(x, r) is a subset of the sphere
{y | d(x, y) = r}. Is the ball B′(x, r) = {y | d(x, y) ≤ r} the closure of B(x, r)?

4.25. Suppose that A ⊂ Y ⊂ X. Show that AY
= AX ∩ Y. Furthermore show that if Y is

closed in X then AY
= AX .

4.26. Let On = {k ∈ Z+ | k ≥ n}. Check that {∅} ∪ {On | n ∈ Z+} is a topology on Z+.
Find the closure of the set {5}. Find the closure of the set of all even positive integers.

4.27. Verify the following properties.

(a) X \ Å = X \ A.
(b) X \ A = ˚X \ A.
(c) If A ⊂ B then Å ⊂ B̊.

4.28. Which of the following equalities are correct?

(a) ˚A ∪ B = Å ∪ B̊.
(b) ˚A ∩ B = Å ∩ B̊.
(c) A ∪ B = A ∪ B.
(d) A ∩ B = A ∩ B.
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5. Connectedness

A topological space is said to be connected (liên thông) if it is not a union of two
non-empty disjoint open subsets.

Equivalently, a topological space is connected if and only if its only subsets
which are both closed and open are the empty set and the space itself.

Remark. When we say that a subset of a topological space is connected we implic-
itly mean that the subset under the subspace topology is a connected space.

Example 5.1. The Euclidean real number line minus a point is not connected.

Proposition (Continuous image of connected space is connected). If f : X → Y
is continuous and X is connected then f (X) is connected.

PROOF. Suppose that U and V are non-empty disjoint open subset of f (X).
Since f : X → f (X) is continuous (4.3), f−1(U) and f−1(V) are open in X, and are
non-empty and disjoint. This contradicts the connectedness of X. �

Connected component.

Proposition 5.2. If a collection of connected subspaces of a space has non-empty intersec-
tion then its union is connected.

PROOF. Consider a topological space and let F be a collection of connected
subspaces whose intersection is non-empty. Let A be the union of the collection,
A =

⋃
D∈F D. Suppose that C is subset of A that is both open and closed in A. If

C 6= ∅ then there is D ∈ F such that C ∩D 6= ∅. Then C ∩D is a subset of D, both
open and closed in D (we are using 4.1 here). Since D is connected and C∩D = ∅,
we must have C ∩ D = D. This implies C contains the intersection of F. Therefore
C ∩ D 6= ∅ for all D ∈ F. The argument above shows that C contains all D in F,
that is, C = A. We conclude that A is connected. �

Let X be a topological space. Define a relation on X whereas two points are
related if both belong to a connected subspace of X (we say that the two points are
connected). Then this relation is an equivalence relation, by 5.2.

Proposition. Any equivalence class under the above equivalence relation is connected.

PROOF. Consider the equivalence class [a] represented by a point a. By the
definition, b ∈ [a] if and only if there is a connected set Ob containing both a and
b. Thus [a] =

⋃
b∈[a] Ob. By 5.2, [a] is connected. �

Definition. Under the above equivalence relation, the equivalence classes are called
the connected components of the space.

Thus a space is a disjoint union of its connected components.
The following is another characterization of connected components:
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Proposition. The connected component containing a point x is the union of all connected
subspaces containing x, thus it is the largest connected subspace containing x.

Theorem 5.3. If two spaces are homeomorphic then there is a bijection between the col-
lections of connected components of the two spaces. In particular, if two spaces are homeo-
morphic and one space is connected then the other space is also connected.

For the above reason we say that connectedness is a topological property. We also
say that the number of connected components is a topological invariant. If two spaces
have different numbers of connected components then they must be different (not
homeomorphic).

PROOF. Let f : X → Y be a homeomorphism. Since f ([x]) is connected, we
have f ([x]) ⊂ [ f (x)]. For the same reason, f−1([ f (x)]) ⊂ [ f−1( f (x))] = [x]. Ap-
ply f to both sides we get [ f (x)] ⊂ f ([x]). Therefore f ([x]) = [ f (x)]. Similarly
f−1([ f (x)]) = [x]. Thus f brings connected components to connected compo-
nents, inducing a bijection on the collections of connected components. �

Proposition 5.4. A connected subspace with a limit point added is still connected. As a
consequence the closure of a connected subspace is connected.

PROOF. Let A be a connected subspace of a space X and let a /∈ A be a limit
point of A, we show that A ∪ {a} is connected. Suppose that A ∪ {a} = U ∪ V
where U and V are non-empty disjoint open subsets of A ∪ {a}. Suppose that
a ∈ U. Then a /∈ V, so V ⊂ A. Since a is a limit point of A, U ∩ A is non-empty.
Then U ∩ A and V are open subsets of A, by 4.1, which are non-empty and disjoint.
This contradicts the assumption that A is connected. �

Corollary. A connected component must be closed.

Connected sets in the Euclidean real number line.

Proposition. A connected subspace of the Euclidean real number line must be an interval.

PROOF. Suppose that a subset A of R is connected. Suppose that x, y ∈ A
and x < y. If x < z < y we must have z ∈ A, otherwise the set {a ∈ A | a < z} =
{a ∈ A | a ≤ z} will be both closed and open in A. Thus A contains the interval
[x, y].

Let a = inf A if A is bounded from below and a = −∞ otherwise. Similarly
let b = sup A if A is bounded from above and b = ∞ otherwise. Suppose that A
contains more than one element. There are sequences {an}n∈Z+ and {bn}n∈Z+ of
elements in A such that a < an < bn < b, and an → a while bn → b. By the above
argument, [an, bn] ⊂ A for all n. So (a, b) =

⋃∞
n=1[an, bn] ⊂ A ⊂ [a, b]. It follows

that A is either (a, b) or [a, b) or (a, b] or [a, b]. �

Proposition 5.5. The Euclidean real number line is connected.
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PROOF. Suppose that R contains a non-empty, proper, open and closed subset
C.

Let x /∈ C and let D = C ∩ (−∞, x) = C ∩ (−∞, x]. Then D is both open and
closed in R, and is bounded from above.

If D 6= ∅, consider s = sup D. Since D is closed and s is a contact point of D,
s ∈ D. Since D is open s must belong to an open interval contained in D. But then
there are points in D which are bigger than s, a contradiction.

If D = ∅ we let E = C ∩ (x, ∞), consider t = inf E and proceed similarly. �

Theorem. A subspace of the Euclidean real number line is connected if and only if it is
an interval.

PROOF. We prove that any interval is connected. By homeomorphisms we
just need to consider the intervals (0, 1), (0, 1], and [0, 1]. Note that [0, 1] is the
closure of (0, 1), and (0, 1] = (0, 3/4) ∪ [1/2, 1].

Or we can modify the proof of 5.5 to show that any interval is connected. �

Example. The Euclidean line R is connected. Since the Euclidean Rn is the union
of all lines passing through the origin, it is connected.

Path-connected space. Let X be a topological space and let a and b be two
points of X. A path (đường đi) in X from x to y is a continuous map f : [a, b] →
X such that f (a) = x and f (b) = y, where the interval [a, b] has the Euclidean
topology.

If α is a path defined on [a, b] then there is a path β defined on [0, 1] with
the same images (also called the traces of the paths), we can just use the linear
homeomorphism (1− t)a + tb from [0, 1] to [a, b] and let β(t) = α((1− t)a + tb).
For this reason for convenience we often assume the domains of paths to be [0, 1].

The space X is said to be path-connected (liên thông đường) if for any two dif-
ferent points x and y in X there is a path in X from x to y.

Example. A normed space is path-connected, and so is any convex subspace of
that space: any two points x and y are connected by a straight line segment x +

t(y− x), t ∈ [0, 1].

Example. In a normed space, the sphere S = {x | ||x|| = 1} is path-connected.
One way to show this is as follow. If two points x and y are not opposite then they
can be connected by the arc x+t(y−x)

||x+t(y−x)|| , t ∈ [0, 1]. If x and y are opposite, we can
take a third point z, then compose a path from x to z with a path from z to y.

Lemma. Let X be a topological space. Define a relation on X whereas a point x is related
to a point y if there is a path in X from x to y. Then this is an equivalence relation.

PROOF. If there is a path α : [0, 1]→ X from x to y then there is a path from y
to x, for example β : [0, 1]→ X, β(t) = α(1− t).
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If α : [0, 1] → X is a path from x to y and β : [0, 1] → X is a path from y to z
then there is a path from x to z, for example

γ(t) =

α(2t), 0 ≤ t ≤ 1
2 ,

β(2t− 1), 1
2 ≤ t ≤ 1.

This path follows α at twice the speed, then follow β at twice the speed and at half
of a unit time later. It is continuous by 4.4. �

An equivalence class is called a path-connected component.

Proposition. The path-connected component containing a point x is the union of all path-
connected subspaces containing x, thus it is the largest path-connected subspace containing
x.

Theorem 5.6. A path-connected space is connected.

PROOF. This is a consequence of the fact that an interval on the Euclidean
real number line is connected. Let X be path-connected. Let x, y ∈ X. There is a
path from x to y. The image of this path is a connected subspace of X. That means
every point y belongs to the connected component containing x. Therefore X has
only one connected component. �

A topological space is said to be locally path-connected if every neighborhood of
a point contains an open path-connected neighborhood of that point.

Example. Open sets in a normed space are locally path-connected.

Generally, the reverse statement of 5.6 is not correct. However we have:

Proposition 5.7. A connected, locally path-connected space is path-connected.

PROOF. Suppose that X is connected and is locally path-connected. Let C be
a path-connected component of X. If x ∈ X is a contact point of C then there is a
path-connected neighborhood U in X of x such that U ∩ C 6= ∅. By 5.23, U ∪ C
is path-connected , thus U ⊂ C. This implies that C is open and C is closed in X.
Hence C = X. �

Topologist’s sine curve. The closure in the Euclidean plane of the graph of the
function y = sin 1

x , x > 0 is often called the Topologist’s sine curve. This is a classic
example of a space which is connected but is not path-connected.

Denote A = {(x, sin 1
x ) | x > 0} and B = {0} × [−1, 1]. Then the Topologist’s

sine curve is X = A ∪ B.

Proposition. The Topologist’s sine curve is connected but is not path-connected.

PROOF. By 5.12 the set A is connected. Each point of B is a limit point of A,
so by 5.4 X is connected.

Suppose that there is a path γ(t) = (x(t), y(t)), t ∈ [0, 1] from the origin (0, 0)
on B to a point on A, we show that there is a contradiction.
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FIGURE 5.1. Topologist’s sine curve.

Let t0 = sup{t ∈ [0, 1] | x(t) = 0}. Then x(t0) = 0, t0 < 1, and x(t) > 0 for
all t > t0. Thus t0 is the moment when the path γ departs from B. We can see
that the path jumps immediately when it departs from B. Thus we will show that
γ(t) cannot be continuous at t0 by showing that for any δ > 0 there are t1, t2 ∈
(t0, t0 + δ) such that y(t1) = 1 and y(t2) = −1.

To find t1, note that the set x([t0, t0 +
δ
2 ]) is an interval [0, x0] where x0 > 0.

There exists an x1 ∈ (0, x0) such that sin 1
x1

= 1: we just need to take x1 = 1
π
2 +k2π

with sufficiently large k. There is t1 ∈ (t0, t0 +
δ
2 ] such that x(t1) = x1. Then

y(t1) = sin 1
x(t1)

= 1. We can find t2 similarly. �

The Borsuk-Ulam theorem. Below is a simple version of the Borsuk-Ulam theo-
rem:

Theorem (Borsuk-Ulam theorem). For any continuous real function on a sphere Sn

there must be two antipodal points on the sphere where the values of the function are same.
6

PROOF. Let f : Sn → R be continuous. Let g(x) = f (x) − f (−x). Then g
is continuous and g(−x) = −g(x). If there is an x such that g(x) 6= 0 then g(x)
and g(−x) have opposite signs. Since Sn is connected (see 5.10), the range g(Sn)

is a connected subset of the Euclidean R, and so is an interval, containing the
interval between g(x) and g(−x). Thererfore 0 is in the range of g (this is a form
of Intermediate value theorem). �

Problems.

5.8. A space is connected if whenever it is a union of two non-empty disjoint subsets, then
one of them must contain a contact point of the other one.

5.9. Here is a different proof of 5.5. Suppose that A and B are non-empty, disjoint subsets
of (0, 1) whose union is (0, 1). Let a ∈ A and b ∈ B. Let a0 = a, b0 = b, and for each n ≥ 1

6On the surface of the Earth at any moment there are two opposite places where temperatures are
same!
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consider the middle point of the segment from an to bn. If an+bn
2 ∈ A then let an+1 = an+bn

2
and bn+1 = bn; otherwise let an+1 = an and bn+1 = an+bn

2 . Then:

(a) The sequence {an | n ≥ 1} is a Cauchy sequence, hence is convergent to a number
a.

(b) The sequence {bn | n ≥ 1} is also convergent to a. This implies that (0, 1) is
connected.

5.10. Show that the sphere Sn is connected.

5.11 (Intermediate value theorem). If X is a connected space and f : X → R is continuous,
where R has the Euclidean topology, then the image f (X) is an interval.

A consequence is the following familiar theorem in Calculus: Let f : [a, b] → R be
continuous under the Euclidean topology. If f (a) and f (b) have opposite signs then the
equation f (x) = 0 has a solution.

5.12.
√

If f : R → R is continuous under the Euclidean topology then its graph is con-
nected in the Euclidean plane. Moreover the graph is homeomorphic to R.

5.13. Let X be a topological space and let Ai, i ∈ I be connected subspaces. If Ai ∩ Aj 6= ∅
for all i, j ∈ I then

⋃
i∈I Ai is connected.

5.14. Let X be a topological space and let Ai, i ∈ Z+ be connected susbsets. If Ai ∩ Ai+1 6=
∅ for all i ≥ 1 then

⋃∞
i=1 Ai is connected.

5.15. Is an intersection of connected subspaces of a space connected?

5.16. Let A be a subspace of X with the particular point topology (X, PPXp) (see 2.3). Find
the connected components of A.

5.17. Let X be connected and let f : X → Y be continuous. If f is locally constant on
X (meaning that every point has a neighborhood on which f is a constant map) then f is
constant on X.

5.18. Let X be a topological space. A map f : X → Y is called a discrete map if Y has the
discrete topology and f is continuous. Show that X is connected if and only if all discrete
maps on X are constant.

5.19. What are the connected components of N and Q on the Euclidean real number line?

5.20. What are the connected components of Q2 as a subspace of the Euclidean plane?

5.21. Show that if a space has finitely many components then each component is both open
and closed. Is it still true if there are infinitely many components?

5.22. Suppose that a space X has finitely many connected components. Show that a map
defined on X is continuous if and only if it is continuous on each components. Is it still true
if X has infinitely many components?

5.23. If a collection of path-connected subspaces of a space has non-empty intersection then
its union is path-connected.

5.24. If f : X → Y is continuous and X is path-connected then f (X) is path-connected.
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5.25. If two space are homeomorphic then there is a bijection between the collections of
path-connected components of the two spaces. In particular, if one space is path-connected
then the other space is also path-connected.

5.26. The plane with a point removed is path-connected under the Euclidean topology.

5.27. The plane with countably many points removed is path-connected under the Eu-
clidean topology.

5.28.
√

The Euclidean line and the Euclidean plane are not homeomorphic.

5.29. Show that R with the finite complement topology (see and R2 with the finite comple-
ment topology are homeomorphic.

5.30. Find as many ways as you can to prove that Sn is path-connected.

5.31. A topological space is locally path-connected if and only if the collection of all open
path-connected subsets is a basis for the topology.

5.32. The Topologist’s sine curve is not locally path-connected.

5.33. * Classify the alphabetical characters up to homeomorphisms, that is, which of the
following characters are homeomorphic to each other as subspaces of the Euclidean plane?

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Note that the result depends on the font you use!
Do the same for the Vietnamese alphabetical characters:

A Ă Â B C D Đ E Ê G H I K L M N O Ô Ơ P Q R S T U Ư V X Y
Hint: Use 4.4 to modify each letter part by part.

Further readings

Invariance of dimension. That the Euclidean spaces R2 and R3 are not homeomorphic is
not easy. It is a consequence of the following difficult theorem of L. Brouwer in 1912:

Theorem 5.34 (Invariance of dimension). If two subsets of the Euclidean Rn are homeomorphic
and one set is open then the other is also open.

This theorem is often proved using Algebraic Topology, see for instance [Mun00, p.
381], [Vic94, p. 34], [Hat01, p. 126].

Corollary. The Euclidean spaces Rm and Rn are not homeomorphic if m 6= n.

PROOF. Suppose that m < n. It is easy to check that the inclusion map Rm → Rn,
(x1, x2, . . . , xm) 7→ (x1, x2, . . . , xm, 0, . . . , 0) is a homeomorphism onto its image A ⊂ Rn. If
A is homeomorphic to Rn then by Invariance of dimension, A is open in Rn. But A is clearly
not open in Rn. �

This result allows us to talk about topological dimension.

Jordan curve theorem. The following is an important and deep result of plane topology.

Theorem (Jordan curve theorem). A simple, continuous, closed curve separates the plane into
two disconnected regions. More concisely, if C is a subset of the Euclidean plane homeomorphic to
the circle then R2 \ C has two connected components.

Nowadays this theorem is usually proved in a course in Algebraic Topology.
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Space filling curves. A rather curious and surprising result is:

Theorem 5.35. There is a continuous curve filling a rectangle on the plane. More concisely, there
is a continuous map from the interval [0, 1] onto the square [0, 1]2 under the Euclidean topology.

Note that this map cannot be injective, in other words the curve cannot be simple.
Such a curve is called a Peano curve. It could be constructed as a limit of an iteration of

piecewise linear curves.
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6. Separation

Definition. We define:

T1: A topological space is called a T1-space if for any two points x 6= y there
is an open set containing x but not y and an open set containing y but not
x.

T2: A topological space is called a T2-space or Hausdorff if for any two points
x 6= y there are disjoint open sets U and V such that x ∈ U and y ∈ V.

T3: A T1-space is called a T3-space or regular (chính tắc) if for any point x
and a closed set F not containing x there are disjoint open sets U and V
such that x ∈ U and F ⊂ V. 7

T4: A T1-space is called a T4-space or normal (chuẩn tắc) if for any two dis-
joint closed sets F and G there are disjoint open sets U and V such that
F ⊂ U and G ⊂ V.

These definitions are often called separation axioms because they involve “sep-
arating” certain sets by open sets.

Proposition. A space is a T1 space if and only if any subset containing exactly one point
is a closed set.

Corollary (T4 ⇒ T3 ⇒ T2 ⇒ T1). If a space is Ti then it is Ti−1, for 2 ≤ i ≤ 4.

Example. Any space with the discrete topology is normal.

Example. Let X = {a, b} and τ = {∅, {a}, {a, b}}. Then X is T0 but is not T1.

Example 6.1. The real number line under the finite complement topology is T1 but
is not T2.

Remark. There are examples of a T2-space which is not T3, and a T3-space which
is not T4, but they are rather difficult, see 6.10, 11.11, [Mun00, p. 197] and [SJ70].

Proposition. Any metric space is normal.

PROOF. We introduce the notion of distance between two sets in a metric
space X. If A and B are two subsets of X then we define the distance between
A and B as d(A, B) = inf{d(x, y) | x ∈ A, y ∈ B}. In particular if x ∈ X then
d(x, A) = inf{d(x, y) | y ∈ A}. Using the triangle inequality we can check that
d(x, A) is a continuous function with respect to x.

Now suppose that A and B are disjoint closed sets. Let U = {x | d(x, A) <

d(x, B)} and V = {x | d(x, A) > d(x, B)}. Then A ⊂ U, B ⊂ V (using the fact that
A and B are closed), U ∩V = ∅, and both U and V are open. �

Proposition 6.2. A T1-space X is regular if and only if given a point x and an open set
U containing x there is an open set V such that x ∈ V ⊂ V ⊂ U.

7We include T1 requirement for regular and normal spaces, as in Munkres [Mun00]. Some authors
such as Kelley [Kel55] do not include the T1 requirement.
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PROOF. Suppose that X is regular. Since X \U is closed and disjoint from {x}
there is an open set V containing x and an open set W containing X \U such that
V and W are disjoint. Then V ⊂ (X \W), so V ⊂ (X \W) ⊂ U.

Now suppose that X is T1 and the condition is satisfied. Given a point x and
a closed set C disjoint from x, let U = X \ C. There is an open set V containing x
such that V ⊂ V ⊂ U. Then V and X \V separate x and C. �

Similarly we have:

Proposition 6.3. A T1-space X is normal if and only if given a closed set C and an open
set U containing C there is an open set V such that C ⊂ V ⊂ V ⊂ U.

Problems.

6.4. If a finite set is a T1-space then the topology is the discrete topology.

6.5. Is the space (X, PPXp) (see 2.3) a Hausdorff space?

6.6. Prove directly that any metric space is a regular space.

6.7. A subspace of a Hausdorff space is a Hausdorff space.

6.8. Let X be Hausdorff and let f : X → Y be continuous. Is f (X) a Hausdorff space?

6.9. A closed subspace of a normal space is normal.

6.10. Show that the set R with the topology generated by all the subsets of the form (a, b)
and (a, b) ∩Q is Hausdorff but is not a regular space.

6.11. * Let X be normal, let f : X → Y be a surjective, continuous, and closed map. Prove
that Y is a normal space.
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7. Convergence

In metric spaces we can study continuity of functions via convergence of se-
quences. In general topological spaces, we need to use a notion more general than
sequences, called nets. Roughly speaking, sequences (having countable indexes)
might not be sufficient for describing the neighborhood systems at a point, we
need something of arbitrary index.

A directed set (tập được định hướng) is a (partially) ordered set such that for
any two indices there is an index greater or equal to both. In symbols: ∀i, j ∈
I, ∃k ∈ I, k ≥ i ∧ k ≥ j.

A net (lưới) (also called a generalized sequence) is a map from a directed set to
a space. In other words, a net on a space X with index set a directed set I is a map
x : I → X. It is an element of the set ∏i∈I X. Thus, writing xi = x(i), we often
denote the net as (xi)i∈I . The notation {xi}i∈I is also used.

Example. Nets with index set I = N with the usual order are exactly sequences.

Example. Let X be a topological space and x ∈ X. Let I be the family of open
neighborhoods of x. Define an order on I by U ≤ V ⇐⇒ U ⊃ V. Then I
becomes a directed set.

Convergence.

Definition. A net (xi)i∈I is said to be convergent (hội tụ) to x ∈ X if for each
neighborhood U of x there is an index i ∈ I such that if j ≥ i then xj belongs to U.
The point x is called a limit of the net (xi)i∈I and we often write xi → x.

Example. Convergence of nets with index set I = N with the usual order is exactly
convergence of sequences.

Example. Let X = {x1, x2, x3} with topology {∅, X, {x1, x3}, {x2, x3}, {x3}}. The
net (x3) converges to x1, x2, x3. The net (x1, x2) converges to x2.

Example. If X has the trivial topology then any net in X is convergent to any point
in X.

Proposition 7.1. A point x ∈ X is a limit point of a subset A ⊂ X if and only if there is
a net in A \ {x} convergent to x.

This proposition allows us to describe topologies in terms of convergences.
With it many statements about convergence in metric spaces could be carried to
topological spaces by simply replacing sequences by nets.

PROOF. (⇐) Suppose that there is a net (xi)i∈I in A \ {x} convergent to x. Let
U be an open neighborhood of x. There is an i ∈ I such that for j ≥ i we have
xj ∈ U, in particular xi ∈ U ∩ (A \ {x}).

(⇒) Suppose that x is a limit point of A. Consider the directed set I consisting
of all the open neighborhoods of x with the partial order U ≤ V if U ⊃ V.
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For any open neighborhood U of x there is an element xU ∈ U ∩ A, xU 6= x.
Consider the net {xU}U∈I . It is a net in A \ {x} convergent to x. Indeed, given an
open neighborhood U of x, for all V ≥ U, xV ∈ V ⊂ U. �

Remark. When can nets be replaced by sequences? By examining the above proof
we can see that the term net can be replaced by the term sequence if there is a
countable collection F of neighborhoods of x such that any neighborhood of x con-
tains a member of F. In this case the point x is said to have a countable neighborhood
basis. A space having this property at every point is said to be a first countable space.
A metric space is such a space, where for example each point has a neighborhood
basis consisting of balls of rational radii. See also 7.10.

Similarly to the case of metric spaces, we have:

Theorem. Let X and Y be topological spaces. Then f : X → Y is continuous at x if and
only if whenever a net n in X converges to x, the net f ◦ n converges to f (x).

In more familiar notations, f is continuous at x if and only if for all nets (xi), xi →
x ⇒ f (xi)→ f (x).

PROOF. The proof is simply a repeat of the proof for the case of metric spaces.
(⇒) Suppose that f is continuous at x. Let U is a neighborhood of f (x). Then

f−1(U) is a neighborhood of x in X. Since (xi) is convergent to x, there is an i ∈ I
such that for all j ≥ i we have xj ∈ f−1(U), which implies f (xj) ∈ U.

(⇐) We will show that if U is an open neighborhood in Y of f (x) then f−1(U)

is a neighborhood in X of x. Suppose the contrary, then x is not an interior point of
f−1(U), so it is a limit point of X \ f−1(U). By 7.1 there is a net (xi) in X \ f−1(U)

convergent to x. Since f is continuous, f (xi) ∈ Y \U is convergent to f (x) ∈ U.
This contradicts the assumption that U is open. �

Proposition 7.2. Suppose that τ1 and τ2 are two topologies on X. If for all nets xi and all
points x, xi

τ1→ x ⇒ xi
τ2→ x, then τ2 ⊂ τ1. In other words, if convergence in τ1 implies

convergence in τ2 then τ1 is finer than τ2. As a consequence, if convergence are same then
topologies are same.

PROOF. Consider the identity map on X. �

Proposition 7.3. If a space is Hausdorff then a net has at most one limit.

PROOF. Suppose that a net (xi) is convergent to two different points x and y.
Since the space is Hausdorff, there are disjoint open neighborhoods U and V of x
and y. There is i ∈ I such that for γ ≥ i we have xγ ∈ U, and there is j ∈ I such
that for γ ≥ j we have xγ ∈ U. Since there is a γ ∈ I such that γ ≥ i and γ ≥ j, the
point xγ will be in U ∩V, a contradiction. �

Problems.

7.4. Let I = (0, ∞) ⊂ R. For i, j ∈ I, define i ≤I j if i ≥R j (i less than or equal to j as
indexes if i is greater than or equal to j as real numbers). On R with the Euclidean topology,
consider the net (xi = i)i∈I . Is this net convergent?
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7.5. On R with the finite complement topology, consider the net (xi = i)i∈R. Where does
this net converge to?

7.6. Reconsider Problems 2.11, 2.12, and 2.13, using 7.2.

7.7. Let X be a topological space, R have the Euclidean topology and f : X → R be contin-
uous. Suppose that A ⊂ X and f (x) = 0 on A. Show that f (x) = 0 on A, by:

(a) using nets.
(b) not using nets.

7.8. Let Y be Hausdorff and let f , g : X → Y be continuous. Show that the set {x ∈
X | f (x) = g(x)} is closed in X, by:

(a) using nets.
(b) not using nets.

Show that, as a consequence, if f and g agree on a dense (trù mật) subspace of X (meaning
the closure of that subspace is X) then they agree on X.

7.9. The converse statement of 7.3 is also true. A space is Hausdorff if and only if a net has
at most one limit.

7.10 (Sequence is not adequate for convergence). * Let (A,≤) be a well-ordered uncount-
able set (see 1.23). If A does not have a biggest element then add an element to A and define
that element to be the biggest one. Thus we can assume now that A has a biggest element,
denoted by ∞. For a, b ∈ A denote [a, b] = {x ∈ A | a ≤ x ≤ b} and [a, b) = {x ∈ A | a ≤
x < b}. For example we can write A = [0, ∞].

Let Ω be the smallest element of the set {a ∈ A | [0, a] is uncountable} (this set is non-
empty since it contains ∞).

(a) Show that [0, Ω) is uncountable, and for all a ∈ A, a < Ω the set [0, a] is countable.
(b) Show that every countable subset of [0, Ω) is bounded in [0, Ω).
(c) Consider [0, Ω] with the order topology. Show that Ω is a limit point of [0, Ω].
(d) However, show that a sequence in [0, Ω) cannot converge to Ω.

7.11 (Filter). A filter (lọc) on a set X is a collection F of non-empty subsets of X such that:

(a) if A, B ∈ F then A ∩ B ∈ F,
(b) if A ⊂ B and A ∈ F then B ∈ F.

For example, given a point, the collection of all neighborhoods of that point is a filter.
A filter is said to be convergent to a point if any neighborhood of that point is an ele-

ment of the filter.
A filter-base (cơ sở lọc) is a collection G of non-empty subsets of X such that if A, B ∈ G

then there is C ∈ G such that G ⊂ (A ∩ B).
If G is a filter-base in X then the filter generated by G is defined to be the collection of

all subsets of X each containing an element of G: {A ⊂ X | ∃B ∈ G, B ⊂ A}.
For example, in a metric space, the collection of all open balls centered at a point is the

filter-base for the filter consisting of all neighborhoods of that point.
A filter-base is said to be convergent to a point if the filter generated by it converges to

that point.

(a) Show that a filter-base is convergent to x if and only if every neighborhood of x
contains an element of the filter-base.
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(b) Show that a point x ∈ X is a limit point of a subspace A of X if and only if there
is a filter-base in A \ {x} convergent to x.

(c) Show that a map f : X → Y is continuous at x if and only if for any filter-base F
that is convergent to x, the filter-base f (F) is convergent to f (x).

Filter gives an alternative way to net for describing convergence. For more see [Dug66, p.
209], [Eng89, p. 49], [Kel55, p. 83].
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8. Compact space

A cover of a set X is a collection of subsets of X whose union is X. A cover
is said to be an open cover if each member of the cover is an open subset of X. A
subset of a cover which is itself a cover is called a subcover.

Definition. A space is compact if every open cover has a finite subcover.

Example. Any finite space is compact. Any space whose topology is finite (that is,
the space has finitely many open sets) is compact.

Example. On the Euclidean line R the collection {(−n, n) | n ∈ Z+} is an open
cover without a finite subcover. Therefore the Euclidean line R is not compact.

Remark. Let A be a subspace of a topological space X. Let I be an open cover of A.
Each O ∈ I is an open set of A, so it is the restriction of an open set UO of X. Thus
we have a collection {UO | O ∈ I} of open sets of X whose union contains A. On
the other hand if we have a collection I of open sets of X whose union contains A
then the collection {U ∩ A | U ∈ I} is an open cover of A. For this reason we often
use the term open cover of a subspace A of X in both senses: either as an open
cover of A or as a collection of open subsets of the space X whose union contains
A.

Theorem (Continuous image of compact space is compact). If X is compact and
f : X → Y is continuous then f (X) is compact.

In particular, compactness is preserved under homeomorphism. We say that
compactness is a topological property.

Proposition. A closed subspace of a compact space is compact.

PROOF. Suppose that X is compact and A ⊂ X is closed. Let I be an open
cover of A. By adding the open set X \ A to I we get an open cover of X. This open
cover has a finite subcover. This subcover of X must contain X \ A, thus omitting
this set we get a finite subcover of A from I. �

Proposition 8.1. A compact subspace of a Hausdorff space is closed.

PROOF. Let A be a compact set in a Hausdorff space X. We show that X \ A
is open.

Let x ∈ X \ A. For each a ∈ A there are disjoint open sets Ua containing x
and Va containing a. The collection {Va | a ∈ A} covers A, so there is a finite
subcover {Vai | 1 ≤ i ≤ n}. Let U =

⋂n
i=1 Uai and V =

⋃n
i=1 Vai . Then U is an open

neighborhood of x disjoint from V, a neighborhood of A. �

Example. Any subspace of R with the finite complement topology is compact.
Note that this space is not Hausdorff (6.1).
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Characterization of compact spaces in terms of closed subsets. In the defi-
nition of compact spaces, writing open sets as complements of closed sets, we get a
dual statement: A space is compact if for every collection of closed subsets whose
intersection is empty there is a a finite subcollection whose intersection is empty.

A collection of subsets of a set is said to have the finite intersection property if
the intersection of every finite subcollection is non-empty.

Theorem 8.2. A space is compact if and only if every collection of closed subsets with the
finite intersection property has non-empty intersection.

Compact metric spaces. A space is called sequentially compact if every sequence
has a convergent subsequence.

Theorem 8.3 (Lebesgue’s number). In a sequentially compact metric space, for any
open cover there exists a number ε > 0 such that any ball of radius ε is contained in a
member of the cover.

PROOF. Let O be a cover of a sequentiallly compact metric space X. Suppose
the opposite of the conclusion, that is for any number ε > 0 there is a ball B(x, ε)

not contained in any of the element of O. Take a sequence of such balls B(xn, 1/n).
The sequence {xn}n∈Z+ has a subsequence {xnk}k∈Z+ converging to x. There is
ε > 0 such that B(x, 2ε) is contained in an element U of O. Take k sufficiently large
such that nk > 1/ε and xnk is in B(x, ε). Then B(xnk , 1/nk) ⊂ B(xnk , ε) ⊂ U, a
contradiction. �

Theorem. A metric space is compact if and only if it is sequentially compact.

PROOF. (⇒) Let {xn}n∈Z+ be a sequence in a compact metric space X. Sup-
pose that this sequence has no convergent subsequence. This implies that for any
point x ∈ X there is an open neighborhood Ux of x and Nx ∈ Z+ such that if
n ≥ Nx then xn /∈ Ux. Because the collection {Ux | x ∈ X} covers X, it has a finite
subcover {Uxk | 1 ≤ k ≤ m}. Let N = max{Nxk | 1 ≤ k ≤ m}. If n ≥ N then
xn /∈ Uxk for all k, a contradiction.

(⇐) First we show that for any ε > 0 the space X can be covered by finitely
many balls of radii ε (a property called total boundedness or pre-compact (tiền com-
pắc)). Suppose the contrary. Let x1 ∈ X, and inductively let xn+1 /∈ ⋃1≤i≤n B(xi, ε).
Since d(xm, xn) ≥ ε if m 6= n, the sequence {xn}n≥1 cannot have any convergent
subsequence, a contradiction.

Now let O be any open cover of X. By 8.3 there is a corresponding Lebesgue’s
number ε such that a ball of radius ε is contained in an element of O. The space X
is covered by finitely many balls of radii ε. The collection of finitely many corre-
sponding elements of O covers X. Thus O has a finite subcover. �

The above theorem shows that compactness in metric space as defined in pre-
vious courses agrees with compactness in topological spaces. We inherit all results
obtained previously on compactness in metric spaces. In particular we have the
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following results, which were proved using sequential compactness (it should be
helpful to review the previous proofs).

Proposition. If a subspace of a metric space is compact then it is closed and bounded.

PROOF. We give a proof using compactness. Suppose that X is a metric space
and suppose that Y is a compact subspace of X. Let x ∈ Y. Consider the open
cover of Y by balls centered at x, that is, {B(x, r} | r > 0}. Since there is a finite
subcover, there is an r > 0 such that Y ⊂ B(x, r), thus Y is bounded. That Y is
closed in X follows from 8.1. �

Theorem (Heine-Borel). A subspace of the Euclidean space Rn is compact if and only
if it is closed and bounded.

PROOF. It is sufficient to prove that the unit rectangle I = [0, 1]n is compact.
Suppose that O is an open cover of I. Suppose that no finite subset of O can cover
I. Divide each dimension of I by half, we get 2n subrectangles. Let I1 be one of
these rectangles that cannot be covered by a finite subset of O. Inductively, divide
Ik to 2n equal subrectangles and let Ik+1 be a subrectangle that is not covered by
a finite subset of O. We have a family of descending rectangles {Ik}k∈Z+ . The
dimension of Ik is 1/2k, going to 0 as k goes to infinity.

We claim that the intersection of this family is non-empty. Let Ik = ∏n
i=1[a

i
k, bi

k].
For each i, the sequence {ak

i }k∈Z+ is increasing and is bounded from above. Let
xi = limk→∞ ai

k = sup{ai
k | k ∈ Z+}. Then ai

k ≤ xi ≤ bi
k for all k ≥ 1. Thus the

point x = (xi)1≤i≤n is in the intersection of {Ik}k∈Z+ .
There is U ∈ O that contains x. There is a number ε > 0 such that B(x, ε) ⊂ U.

Then for k sufficiently large Ik ⊂ B(x, ε) ⊂ U. This is a contradiction. �

Example. In the Euclidean space Rn the closed ball B′(a, r) is compact.

Problems.

8.4. A discrete compact topological space is finite.

8.5. In a topological space a finite unions of compact subsets is compact.

8.6. In a Hausdorff space an intersection of compact subsets is compact.

8.7 (An extension of Cantor lemma in Calculus). Let X be compact and X ⊃ A1 ⊃ A2 ⊃
· · · ⊃ An ⊃ . . . be a descending sequence of closed, non-empty sets. Then

⋂∞
n=1 An 6= ∅.

8.8 (The extreme value theorem).
√

If X is a compact space and f : X → (R, Euclidean) is
continuous then f has a maximum value and a minimum value.

8.9 (Uniformly continuous).
√

A function f from a metric space to a metric space is uni-
formly continuous if for any ε > 0, there is δ > 0 such that if d(x, y) < δ then d( f (x), f (y)) <
ε. Show that a continuous function from a compact metric space to a metric space is uni-
formly continuous.

8.10.
√

If X is compact, Y is Hausdorff, f : X → Y is bijective and continuous, then f is a
homeomorphism.
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8.11. In a compact space any infinite set has a limit point.

8.12. In a Hausdorff space a point and a disjoint compact set can be separated by open sets.

8.13. In a regular space a closed set and a disjoint compact set can be separated by open
sets.

8.14. In a Hausdorff space two disjoint compact sets can be separated by open sets.

8.15. A compact Hausdorff space is normal.

8.16. The set of n× n-matrix with real coefficients, denoted by M(n; R), could be naturally
considered as a subset of the Euclidean space Rn2

by considering entries of a matrix as
coordinates, via the map

(ai,j) 7−→ (a1,1, a2,1, . . . , an,1, a1,2, a2,2, . . . , an,2, a1,3, . . . , an−1,n, an,n).

The General Linear Group GL(n; R) is the group of all invertible n × n-matrices with real
coefficients.

(a) Is GL(n; R) compact?
(b) Find the number of connected components of GL(n; R).
(c) Show that the product of two matrices is a continuous map.
(d) Show that taking inverse of a matrix is a continuous map.

A set with both a group structure and a topology such that the group oper-
ations are continuous is called a topological group. Thus GL(n; R) is a topological
group.

8.17. The Orthogonal Group O(n) is defined to be the group of matrices representing orthog-
onal linear maps of Rn, that is, linear maps that preserve inner product. Thus

O(n) = {A ∈ M(n; R)| A · AT = In}.

The Special Orthogonal Group SO(n) is the subgroup of O(n) consisting of all orthogonal
matrices with determinant 1.

(a) Show that any element of SO(2) is of the form(
cos(ϕ) − sin(ϕ)

sin(ϕ) cos(ϕ)

)
.

This is a rotation in the plane around the origin with an angle ϕ. Thus SO(2) is
the group of rotations on the plane around the origin.

(b) Is SO(2) path-connected?
(c) How many connected components does O(2) have?
(d) Is SO(n) compact?
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9. Product of spaces

Finite products of spaces. Let X and Y be two topological spaces, and consider
the Cartesian product X×Y. The product topology on X×Y is the topology gener-
ated by the collection F of sets of the form U ×V where U is an open set of X and
V is an open set of Y.

Since the intersection of two members of F is also a member of F, the collection
F is a basis for the product topology. Thus every open set in the product topology
is a union of products of open sets of X with open sets of Y.

Similarly, the product topology on ∏n
i=1(Xi, τi) is defined to be the topology

generated by the collection {∏n
i=1 Ui | Ui ∈ τi}.

Remark. Note that, as sets:

(a) (A× B) ∩ (C× D) = (A ∩ C)× (B ∩ D).
(b) (A × B) ∪ (C × D)  (A ∪ C) × (B ∪ D) = (A × B) ∪ (A × D) ∪ (C ×

B) ∪ (C× D).

Proposition. If each bi is a basis for Xi then ∏n
i=1 bi is a basis for the product topology on

∏n
i=1 Xi.

Example (Euclidean topology). Recall that Rn = R×R× · · · ×R︸ ︷︷ ︸
n copies of R

. Let R have

Euclidean topology, generated by open intervals. An open set in the product topol-
ogy of Rn is a union of products of open intervals.

Since a product of open intervals is an open rectangle, and an open rectangle
is a union of open balls and vice versa, the product topology on Rn is exactly the
Euclidean topology.

Infinite products of spaces.

Definition. Let {(Xi, τi)}i∈I be a family of topological spaces. The product topology
on the set ∏i∈I Xi is the topology generated by the collection F consisting of all sets
of the form ∏i∈I Ui, where Ui ∈ τi and Ui = Xi for all except finitely many i ∈ I.

Notice that the collection F above is a basis of the product topology. The sub-
collection of all sets of the form ∏i∈I Ui, where Ui ∈ τi and Ui = Xi for all except
one i ∈ I is a subbasis for the product topology.

Recall that an element of the set ∏i∈I Xi is written (xi)i∈I . For j ∈ I the projec-
tion to the j-coordinate pj : ∏i∈I Xi → Xj is defined by pj((xi)) = xj.

The definition of the product topology is explained in the following:

Theorem 9.1 (Product topology is the topology such that projections are continu-
ous). The product topology is the coarsest topology on ∏i∈I Xi such that all the projection
maps pi are continuous. In other words, the product topology is the topology generated by
the projection maps.
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PROOF. Notice that if Oj ∈ Xj then p−1
j (Oj) = ∏i∈I Ui with Ui = Xi for all i

except j, and Uj = Oj. The topology generated by all the maps pi is the topology
generated by all sets of the form p−1

i (Oi) with Oi ∈ τi, see 3.6. �

Theorem 9.2 (Map to product space is continuous if and only if each compo-
nent map is continuous). A map f : Y → ∏i∈I Xi is continuous if and only if each
component fi = pi ◦ f is continuous.

Remark 9.3. However continuity of a map from a product space is not the same
as continuity with respect to each variable, as we have seen in Calculus.

Theorem 9.4 (Convergence in product topology is coordinate-wise convergence).
A net n : J → ∏i∈I Xi is convergent if and only if all of its projections pi ◦ n are conver-
gent.

PROOF. (⇐) Suppose that each pi ◦ n is convergent to ai, we show that n is
convergent to a = (ai)i∈I .

A neighborhood of a contains an open set of the form U = ∏i∈I Oi with Oi are
open sets of Xi and Oi = Xi except for i ∈ K, where K is a finite subset of I.

For each i ∈ K, pi ◦ n is convergent to ai, therefore there exists an index ji ∈ J
such that for j ≥ ji we have pi(n(j)) ∈ Oi. Take an index j0 such that j0 ≥ ji for all
i ∈ K. Then for j ≥ j0 we have n(j) ∈ U. �

Tikhonov Theorem.

Theorem (Tikhonov theorem). A product of compact spaces is compact. 8

Example. Let [0, 1] have the Euclidean topology. The space ∏i∈Z+ [0, 1] is called
the Hilbert cube. By Tikhonov theorem the Hilbert cube is compact.

Applications of Tikhonov theorem include the Banach-Alaoglu theorem in
Functional Analysis and the Stone-Cech compactification.

Tikhonov theorem is equivalent to the Axiom of choice. The proofs we have
are rather difficult. However in the case of finite product it can be proved more
easily (9.19). Different techniques can be used in special cases of this theorem (9.23
and 9.7).

PROOF OF TIKHONOV THEOREM. Let Xi be compact for all i ∈ I. We will show
that X = ∏i∈I Xi is compact by showing that if a collection of closed subsets of X
has the finite intersection property then it has non-empty intersection (see 8.2).9

Let F be a collection of closed subsets of X that has the finite intersection prop-
erty. We will show that

⋂
A∈F A 6= ∅.

Have a look at the following argument, which suggests that proving the Tikhonov
theorem might not be easy. If we take the closures of the projections of the collec-
tion F to the i-coordinate then we get a collection {pi(A), A ∈ F} of closed subsets

8Proved by Andrei Nicolaievich Tikhonov around 1926. The product topology was defined by him.
His name is also spelled as Tychonoff.
9A proof based on open covers is also possible, see [Kel55, p. 143].
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of Xi having the finite intersection property. Since Xi is compact, this collection
has non-empty intersection.

From this it is tempting to conclude that F must have non-empty intersection
itself. But that is not true, see the figure.

In what follows we will overcome this difficulty by first enlarging the collec-
tion F.

(a) We show that there is a maximal collection F̃ of subsets of X such that F̃
contains F and still has the finite intersection property. We will use Zorn
lemma for this purpose.10

Let K be the collection of collections G of subsets of X such that G
contains F and has the finite intersection property. On K we define an
order by the usual set inclusion.

Now suppose that L is a totally ordered subcollection of K. Let H =⋃
G∈L G. We will show that H ∈ K, therefore H is an upper bound of L.

First H contains F. We need to show that H has the finite intersection
property. Suppose that Hi ∈ H, 1 ≤ i ≤ n. Then Hi ∈ Gi for some Gi ∈ L.
Since L is totally ordered, there is an i0, 1 ≤ i0 ≤ n such that Gi0 contains
all Gi, 1 ≤ i ≤ n. Then Hi ∈ Gi0 for all 1 ≤ i ≤ n, and since Gi0 has the
finite intersection property, we have

⋂n
i=1 Hi 6= ∅.

(b) Since F̃ is maximal, it is closed under finite intersection. Moreover if a
subset of X has non-empty intersection with every element of F̃ then it
belongs to F̃.

(c) Since F̃ has the finite intersection property, for each i ∈ I the collection
{pi(A) | A ∈ F̃} also has the finite intersection property, and so does the
collection {pi(A) | A ∈ F̃}. Since Xi is compact,

⋂
A∈F̃ pi(A) is non-empty.

(d) Let xi ∈
⋂

A∈F̃ pi(A) and let x = (xi)i∈I ∈ ∏i∈I [
⋂

A∈F̃ pi(A)]. We will
show that x ∈ A for all A ∈ F̃, in particular x ∈ A for all A ∈ F.

We need to show that any neighborhood of x has non-empty intersec-
tion with every A ∈ F̃. It is sufficient to prove this for neighborhoods of x
belonging to the basis of X, namely finite intersections of sets of the form
p−1

i (Oi) where Oi is an open neighborhood of xi = pi(x). For any A ∈ F̃,
since xi ∈ pi(A) we have Oi ∩ pi(A) 6= ∅. Therefore p−1

i (Oi)∩ A 6= ∅. By
the maximality of F̃ we have p−1

i (Oi) ∈ F̃, and the desired result follows.

10This is a routine step; it might be easier for the reader to carry it out instead of reading.
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�

Problems.

9.5. Check that in topological sense (i.e. up to homeomorphisms):

(a) R3 = R2 ×R = R×R×R.
(b) More generally, is the product associative? Namely, is (X × Y)× Z = X × (Y ×

Z)? Is (X×Y)× Z = X×Y× Z?

9.6. Show that the sphere S2 with the North Pole and the South Pole removed is homeo-
morphic to the infinite cylinder S1 ×R.

9.7. Let (Xi, di), 1 ≤ i ≤ n be metric spaces. Let X = ∏n
i=1 Xi. For x = (x1, x2, . . . , xn) ∈ X

and y = (y1, y2, . . . , yn) ∈ X, define

δ1(x, y) = max{di(xi, yi) | 1 ≤ i ≤ n},

δ2(x, y) =

(
n

∑
i=1

di(xi, yi)
2

)1/2

.

Show that δ1 and δ2 are metrics on X generating the product topology.

9.8. Show that a space X is Hausdorff if and only if the diagonal ∆ = {(x, x) ∈ X × X} is
closed in X× X, by:

(a) using nets,
(b) not using nets.

9.9. Show that if Y is Hausdorff and f : X → Y is continuous then the graph of f (the set
{(x, f (x)) | x ∈ X}) is closed in X×Y.

9.10. If for each i ∈ I the space Xi is homeomorphic to the space Yi then ∏i∈I Xi is homeo-
morphic to ∏i∈I Yi.

9.11.
√

Show that each projection map pi is a an open map, mapping an open set onto an
open set.

9.12. Is the projection pi a closed map?

9.13. Is it true that a map on a product space is continuous if it is continuous on each
variable?

9.14 (Disjoint union).
√

Let A and B be topological spaces. On the set (A× {0}) ∪ (B×
{1}) consider the topology generated by subsets of the form U× {0} and V × {1}where U
is open in A and V is open in B. Show that A× {0} is homeomorphic to A, while B× {1}
is homeomorphic to B. Notice that (A×{0})∩ (B×{1}) = ∅. The space (A×{0})∪ (B×
{1}) is called the disjoint union (hội rời) of A and B, denoted by A t B.

We use this construction when for example we want to consider a space consisting of
two disjoint circles.

9.15. Fix a point O = (Oi) ∈ ∏i∈I Xi. Define the inclusion map f : Xi → ∏i∈I Xi by

x 7→ f (x) with f (x)j =

Oj if j 6= i

x if j = i
.
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Show that f is a homeomorphism onto its image X̃i (an embedding of Xi).
Thus X̃i is a copy of Xi in ∏i∈I Xi. The spaces X̃i have O as the common point.
This is an analog of the coordinate system Oxy on R2.

9.16. Show that

(a) If each Xi, i ∈ I is a Hausdorff space then ∏i∈I Xi is a Hausdorff space.
(b) If ∏i∈I Xi is a Hausdorff space then each Xi is a Hausdorff space.

9.17. Show that

(a) If ∏i∈I Xi is path-connected then each Xi is path-connected.
(b) If each Xi, i ∈ I is path-connected then ∏i∈I Xi is path-connected.

9.18. Show that

(a) If ∏i∈I Xi is connected then each Xi is connected.
(b) If X and Y are connected then X×Y is connected.
(c) * If each Xi, i ∈ I is connected then ∏i∈I Xi is connected.

9.19. Show that

(a) If ∏i∈I Xi is compact then each Xi is compact.
(b) * If X and Y are compact then X×Y is compact.

9.20. Consider PPR2
(0,0) (the plane with the particular point topology at the origin, see 2.3).

Is it homeomorphic to PPR0 × PPR0? In other words, is it true that PPR2
(0,0) = (PPR0)

2?

9.21. Consider the Euclidean space Rn. Check that the usual addition (x, y) 7→ x + y is a
continuous map from Rn ×Rn to Rn, while the usual scalar multiplication (c, x) 7→ c · x is
a continuous map from R×Rn to Rn. This is an example of a topological vector space.

9.22 (Zariski topology). * Let F = R or F = C.
A polynomial in n variables on F is a function from Fn to F that is a finite sum of terms

of the form axm1
1 xm2

2 · · · x
mn
n , where a, xi ∈ F and mi ∈N. Let P be the set of all polynomials

in n variables on F.
If S ⊂ P then define Z(S) to be the set of all common zeros of all polynomials in S, thus

Z(S) = {x ∈ Fn | ∀p ∈ S, p(x) = 0}. Such a set is called an algebraic set.

(a) Show that if we define that a subset of Fn is closed if it is algebraic, then this gives
a topology on Fn, called the Zariski topology.

(b) Show that the Zariski topology on F is exactly the finite complement topology.
(c) Show that if both F and Fn have the Zariski topology then all polynomials on Fn

are continuous.
(d) Is the Zariski topology on Fn the product topology?

The Zariski topology is used in Algebraic Geometry.

9.23. Using the characterization of compact subsets of Euclidean spaces, prove the Tikhonov
theorem for finite products of compact subsets of Euclidean spaces.

9.24. Using the characterization of compact metric spaces in terms of sequences, prove the
Tikhonov theorem for finite products of compact metric spaces.

Further readings
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Strategy for a proof of Tikhonov theorem based on net. The proof that we will out-
line here is based on further developments of the theory of nets and a characterization of
compactness in terms of nets.

Definition 9.25 (Subnet). Let I and I′ be directed sets, and let h : I′ → I be a map such
that

∀k ∈ I, ∃k′ ∈ I′, (i′ ≥ k′ ⇒ h(i′) ≥ k).

If n : I → X is a net then n ◦ h is called a subnet of n.

The notion of subnet is an extension of the notion of subsequence. If we take ni ∈ Z+

such that ni < ni+1 then (xni ) is a subsequence of (xn). In this case the map h : Z+ → Z+

given by h(i) = ni is a strictly increasing function. Thus a subsequence of a sequence is a
subnet of that sequence. On the other hand a subnet of a sequence does not need to be a
subsequence, since for a subnet the map h is only required to satisfy limi→∞ h(i) = ∞.

A net (xi)i∈I is called eventually in A ⊂ X if there is j ∈ I such that i ≥ j⇒ xi ∈ A.

Definition 9.26. Universal net A net n in X is universal if for any subset A of X either n is
eventually in A or n is eventually in X \ A.

Proposition 9.27. If f : X → Y is continuous and n is a universal net in X then f (n) is a universal
net.

Theorem 9.28. The following statements are equivalent:

(a) X is compact.
(b) Every universal net in X is convergent.
(c) Every net in X has a convergent subnet.

The proof of the last two propositions above could be found in [Bre93].
Then we finish the proof of Tikhonov theorem as follows.

PROOF OF TIKHONOV THEOREM. Let X = ∏i∈I Xi where each Xi is compact. Suppose
that (xj)j∈J is a universal net in X. By 9.4 the net (xj) is convergent if and only if the
projection (pi(xj)) is convergent for all i. But that is true since (pi(xj)) is a universal net in
the compact set Xi. �
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10. Compactification

A compactification (compắc hóa) of a space X is a compact space Y such that X
is homeomorphic to a dense subspace of Y.

Example. A compactification of the Euclidean interval (0, 1) is the Euclidean in-
terval [0, 1]. Another is the circle S1. Yet another is the Topologist’s sine curve
{(x, sin 1

x ) | 0 < x ≤ 1} ∪ {(0, y) | − 1 ≤ y ≤ 1} (see 5.1).

Example. A compactification of the Euclidean plane R2 is the sphere S2. When R2

is identified with the complex plane C then S2 is often called the Riemann sphere.

One-point compactification. In some cases it is possible to compactify a non-
compact space by adding just one point, obtaining a one-point compactification. For
example the Euclidean interval [0, 1] is a one-point compactification of the Eu-
clidean interval [0, 1).

Let X be a space, let ∞ be not in X, and let X∞ = X ∪ {∞}. Let us see what
a topology on X∞ should be in order for X∞ to contain X as a subspace and to be
compact. If an open subset U of X∞ does not contain ∞ then U is contained in
X, therefore U is an open subset of X in the subspace topology of X, which is the
same as the original topology of X. If U contains ∞ then its complement X∞ \U
must be a closed subset of X∞, hence is compact, furthermore X∞ \U is contained
in X and is therefore a closed subset of X.

Theorem (Alexandroff compactification). The collection consisting of all open sub-
sets of X and all complements in X∞ of closed compact subsets of X is the finest topology
on X∞ such that X∞ is compact and contains X as a subspace. If X is not compact then X
is dense in X∞, and X∞ is called the Alexandroff compactification of X. 11

PROOF. We go through several steps.

(a) We check that we really have a topology.
Let I be a collection of closed compact sets in X. Then

⋃
C∈I(X∞ \

C) = X∞ \⋂C∈I C, where
⋂

C∈I C is closed compact.
If O is open in X and C is closed compact in X then O ∪ (X∞ \ C) =

X∞ \ (C \O), where C \O is a closed and compact subset of X.
Also O ∩ (X∞ \ C) = O ∩ (X \ C) is open in X.
If C1 and C2 are closed compact in X then (X∞ \ C1) ∩ (X∞ \ C2) =

X∞ \ (C1 ∪ C2), where C1 ∪ C2 is closed compact.
So we do have a topology. With this topology X is a subspace of X∞.

(b) We show that X∞ is compact. Let F be an open cover of X∞. Then an
element O ∈ F will cover ∞. The complement of O in X∞ is a closed
compact set C in X.

Then F \ {O} is an open cover of C. From this cover there is a finite
cover. This finite cover together with O is a finite cover of X∞.

11Proved in the early 1920s by Pavel Sergeyevich Alexandrov. Alexandroff is another way to spell his
name.
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(c) Since X is not compact and X∞ is compact, X cannot be closed in X∞,
therefore the closure of X in X∞ is X∞.

�

A space X is called locally compact if every point has a compact neighborhood.

Example. The Euclidean space Rn is locally compact.

Proposition. The Alexandroff compactification of a locally compact Hausdorff space is
Hausdorff.

PROOF. Suppose that X is locally compact and is Hausdorff. We check that
∞ and x ∈ X can be separated by open sets. Since X is locally compact there is a
compact set C containing an open neighborhood O of x. Since X is Hausdorff, C
is closed in X. Then X∞ \ C is open in the Alexandroff compactification X∞. So O
and X∞ \ C separate x and ∞. �

The need for the locally compact assumption is discussed in 10.11.

Proposition. If X is homeomorphic to Y then a Hausdorff one-point compactification of
X is homeomorphic to a Hausdorff one-point compactification of Y.

In particular, Hausdorff one-point compactification is unique up to homeo-
morphisms. For this reason we can talk about the one-point compactification of a
locally compact Hausdorff space.

PROOF. Suppose that h : X → Y is a homeomorphism. Let X ∪ {a} and
Y ∪ {b} be Hausdorff one-point compactifications of X and Y. Let h̃ : X ∪ {a} →
Y ∪ {b} be defined by h̃(x) = h(x) if x 6= a and h̃(a) = b. We show that h̃ is
a homeomorphism. We will prove that h̃ is continuous, that the inverse map is
continuous is similar, or we can use 8.10 instead.

Let U be an open subset of Y ∪ {b}. If U does not contain b then U is open
in Y, so h−1(U) is open in X, and so is open in X ∪ {a}. If U contains b then
(Y ∪ {b}) \U is closed in Y ∪ {b}, which is compact, so (Y ∪ {b}) \U = Y \U is
compact. Then h̃−1((Y ∪ {b}) \U) = h−1(Y \U) is a compact subspace of X and
therefore of X ∪ {a}. Since X ∪ {a} is Hausdorff, h̃−1((Y ∪ {b}) \U) is closed in
X ∪ {a}. Thus h̃−1(U) must be open in X ∪ {a}. �

Example. The Euclidean line R is homeomorphic to the circle S1 minus a point.
The circle is of course a Hausdorff one-point compactification of the circle minus a
point. Thus a Hausdorff one-point compactification (in particular, the Alexandroff
compactification) of the Euclidean line is homeomorphic to the circle.
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Stone-Cech compactification. Let X be a topological space. Denote by C(X)

the set of all bounded continuous functions from X to R where R has the Eu-
clidean topology. Define

Φ : X → ∏
f∈C(X)

[inf f , sup f ]

x 7→ ( f (x)) f∈C(X).

Thus for each x ∈ X and each f ∈ C(X), the f -coordinate of the point Φ(x) is
Φ(x) f = f (x). This means the f -component of Φ is f , i.e. p f ◦Φ = f , where p f is
the projection to the f -coordinate.

Since ∏ f∈C(X)[inf f , sup f ] is compact, the subspace Φ(X) is compact.

Definition. A space is said to be completely regular (also called a T3 1
2
-space) if it is

a T1-space and for each point x and each closed set A with x /∈ A there is a map
f ∈ C(X) such that f (x) = a and f (A) = {b} where a 6= b.

Thus in a completely regular space a point and a closed set disjoint from it can
be separated by a continuous real function.

Theorem 10.1. If X is completely regular then Φ : X → Φ(X) is a homeomorphism, i.e.
Φ is an embedding. In this case Φ(X) is called the Stone-Cech compactification of X. It is
a Hausdorff space.

PROOF. We go through several steps.

(a) Φ is injective: If x 6= y then since X is completely regular there is f ∈ C(X)

such that f (x) 6= f (y), therefore Φ(x) 6= Φ(y).
(b) Φ is continuous: Since the f -component of Φ is f , which is continuous,

the result follows from 9.2.
(c) Φ−1 is continuous: We prove that Φ brings an open set onto an open set.

Let U be an open subset of X and let x ∈ U. There is a function f ∈
C(X) that separates x and X \U. In particular there is an interval (a, b)
containing such that f−1((a, b)) ∩ (X \U) = ∅. We have f−1((a, b)) =

(p f ◦ Φ)−1((a, b)) = Φ−1(p−1
f ((a, b))) ⊂ U. Apply Φ to both sides, we

get p−1
f ((a, b)) ∩ Φ(X) ⊂ Φ(U). Since p−1

f ((a, b)) ∩ Φ(X) is an open set
in Φ(X) containing Φ(x), we see that Φ(x) is an interior point of Φ(U).
We conclude that Φ(U) is open.

That Φ(X) is a Hausdorff space follows from that Y is a Hausdorff space, by 9.16,
and 6.7. �

Theorem. A bounded continuous real function on a completely regular space has a unique
extension to the Stone-Cech compactification of the space.
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More concisely, if X is a completely regular space and f ∈ C(X) then there is a unique
function f̃ ∈ C(Φ(X)) such that f = f̃ ◦Φ.

X
Φ //

f
��

Φ(X)

f̃}}
R

PROOF. A continuous extension of f , if exists, is unique, by 7.8.
Since p f ◦Φ = f the obvious choice for f̃ is the projection p f . �

Problems.

10.2. Find the one-point compactification of (0, 1)∪ (2, 3) with the Euclidean topology, that
is, describe this space more concretely.

10.3. Find the one-point compactification of { 1
n | n ∈ Z+} under the Euclidean topology?

10.4. Find the one-point compactification of Z+ under the Euclidean topology? How about
Z?

10.5. Show that Q is not locally compact (under the Euclidean topology of R). Is its Alexan-
droff compactification Hausdorff?

10.6. What is the one-point compactification of the Euclidean open ball B(0, 1)? Find the
one-point compactification of the Euclidean space Rn.

10.7. What is the one-point compactification of the Euclidean annulus {(x, y) ∈ R2 | 1 <

x2 + y2 < 2}?

10.8. Define a topology on R∪ {±∞} such that it is a compactification of the Euclidean R.

10.9. Consider R with the Euclidean topology. Find a necessary and sufficient condition
for a continuous function from R to R to have an extension to a continuous function from
the one-point compactification R∪ {∞} to R.

10.10. If a subset of X is closed will it be closed in the Alexandroff compactification of X?

10.11. If there is a topology on the set X∞ = X ∪ {∞} such that it is compact, Hausdorff,
and containing X as a subspace, then X must be Hausdorff, locally compact, and there is
only one such topology – the topology of the Alexandroff compactification.

10.12. We could have noticed that the notion of local compactness as we have defined is
not apparently a local property. For a property to be local, every neighborhood of any
point must contain a neighborhood of that point with the given property (as in the cases of
local connectedness and local path-connectedness). Show that for Hausdorff spaces local
compactness is indeed a local property, i.e., every neighborhood of any point contains a
compact neighborhood of that point.

10.13. Any locally compact Hausdorff space is a regular space.

10.14. In a locally compact Hausdorff space, if K is compact, U is open, and K ⊂ U, then
there is an open set V such that V is compact and K ⊂ V ⊂ V ⊂ U. (Compare with 6.3.)
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10.15. A space is locally compact Hausdorff if and only if it is homeomorphic to an open
subspace of a compact Hausdorff space.

10.16. Any completely regular space is a regular space.

10.17. Prove 10.1 using nets.

10.18. A space is completely regular if and only if it is homeomorphic to a subspace of a
compact Hausdorff space. As a corollary, a locally compact Hausdorff space is completely
regular.

Further readings

By 10.18 if a space has a Hausdorff Alexandroff compactification then it also has a
Hausdorff Stone-Cech compactification.

In a certain sense, for a noncompact space the Alexandroff compactification is the
“smallest” Hausdorff compactification of the space and the Stone-Cech compactification
is the “largest” one. For more discussions on this topic see for instance [Mun00, p. 237].
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11. Real functions and spaces of functions

Urysohn lemma. Here we consider real functions, i.e. maps to the Euclidean R.

Theorem 11.1 (Urysohn lemma). If X is normal, F is closed, U is open, and F ⊂ U,
then there exists a continuous map f : X → [0, 1] such that f (x) = 0 on F and f (x) = 1
on X \U.

Equivalently, if X is normal, A and B are two disjoint closed subsets of X, then there
is a continuous function f from X to [0, 1] such that f (x) = 0 on A and f (x) = 1 on B.

Thus in a normal space two disjoint closed subsets can be separated by a con-
tinuous real function.

Example. It is much easier to prove Urysohn lemma for metric space, using the
function

f (x) =
d(x, A)

d(x, A) + d(x, B)
.

PROOF OF URYSOHN LEMMA. Recall 6.3: Because X is normal, if F is closed, U
is open, and F ⊂ U then there is an open set V such that F ⊂ V ⊂ V ⊂ U.

(a) We construct a family of open sets in the following manner.
Let U1 = U.

n = 0: F ⊂ U0 ⊂ U0 ⊂ U1.
n = 1: U0 ⊂ U 1

2
⊂ U 1

2
⊂ U1.

n = 2: U0 ⊂ U 1
4
⊂ U 1

4
⊂ U 2

4
= U 1

2
⊂ U 2

4
⊂ U 3

4
⊂ U 3

4
⊂ U 4

4
= U1.

Inductively we have a family of open sets:

F ⊂ U0 ⊂ U0 ⊂ U 1
2n
⊂ U 1

2n
⊂ U 2

2n
⊂ U 2

2n
⊂ U 3

2n
⊂ U 3

2n
⊂ · · · ⊂

⊂ U 2n−1
2n
⊂ U 2n−1

2n
⊂ U 2n

2n
= U1.

Let I = { m
2n | m, n ∈ N; 0 ≤ m ≤ 2n}. We have a family of open sets

{Ur | r ∈ I} having the property r < s⇒ Ur ⊂ Us.
(b) We can check that I is dense in [0, 1] (this is really the same thing as that

any real number in [0, 1] can be written in binary form, compare 1.20).
(c) Define f : X → [0, 1],

f (x) =

inf{r ∈ I | x ∈ Ur} if x ∈ U,

1 if x /∈ U.

In this way if x ∈ Ur then f (x) ≤ r, while if x /∈ Ur then f (x) ≥ r. So f (x)
gives the “level” of x on the scale from 0 to 1, while Ur is like a sublevel
set of f .

We prove that f is continuous, then this is the function we are look-
ing for. It is enough to prove that sets of the form {x | f (x) < a} and
{x | f (x) > a} are open.

(d) If a ≤ 1 then f (x) < a if and only if there is r ∈ I such that r < a and
x ∈ Ur. Thus {x | f (x) < a} = {x ∈ Ur | r < a} = ⋃

r<a Ur is open.
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F U0 Ur

Us U1 = U

fx

0 1r f (x) s

(e) If a < 1 then f (x) > a if and only if there is r ∈ I such that r > a and
x /∈ Ur. Thus {x | f (x) > a} = {x ∈ X \Ur | r > a} = ⋃

r>a X \Ur.
Now we show that

⋃
r>a X \ Ur =

⋃
r>a X \ Ur, which implies that⋃

r>a X \Ur is open. Indeed, if r ∈ I and r > a then there is s ∈ I such
that r > s > a. Then Us ⊂ Ur, therefore X \Ur ⊂ X \Us.

�

Uniform convergences. Let X and Y be two topological spaces. We say that a
net ( fi)i∈I of functions from X to Y converges point-wise to a function f : X → Y if
for each x ∈ X the net ( fi(x))i∈I converges to f (x).

Now let Y be a metric space. Recall that a function f : X → Y is said to be
bounded if the set of values f (X) is a bounded subset of Y. We consider the set
B(X, Y) of all bounded functions from X to Y. If f , g ∈ B(X, Y) then we define
a metric on B(X, Y) by d( f , g) = sup{d( f (x), g(x)) | x ∈ X}. The topology gen-
erated by this metric is called the topology of uniform convergence. If a net ( fi)i∈I

converges to f in the metric space B(X, Y) then we say that ( fi)i∈I converges to f
uniformly.

Proposition. Suppose that ( fi)i∈I converges to f uniformly. Then:

(a) ( fi)i∈I converges to f point-wise.
(b) If each fi is continuous then f is continuous.

PROOF. The proof of part (2) is the same as the one for the case of metric
spaces. Suppose that each fi is continuous. Let x ∈ X, we prove that f is continu-
ous at x. The key step is the following inequality:

d( f (x), f (y)) ≤ d( f (x), fi(x)) + d( fi(x), fi(y)) + d( fi(y), f (y)).

Given ε > 0, fix an i ∈ I such that d( fi, f ) < ε. For this i, there is a neighborhood
U of x such that if y ∈ U then d( fi(x), fi(y)) < ε. The above inequality implies
that for y ∈ U we have d( f (x), f (y)) < 3ε. �
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Let X and Y be two topological spaces. Let C(X, Y) be the set of all continuous
functions from X to Y. The topology on generated by all sets of the form

S(A, U) = { f ∈ C(X, Y) | f (A) ⊂ U}

where A ⊂ X is compact and U ⊂ Y is open is called the compact-open topology on
C(X, Y).

Proposition. Let X be compact and Y be a metric space, then on C(X, Y) the compact-
open topology is the same as the uniform convergence topology.

Tiestze extension theorem. We consider real functions again.

Theorem (Tiestze extension theorem). Let X be a normal space. Let F be closed in
X. Let f : F → R be continuous. Then there is a continuous map g : X → R such that
g|F = f .

Thus in a normal space a continuous real function on a closed subspace can be ex-
tended continuously to the whole space.

PROOF. First consider the case where f is bounded.

(a) The general case can be reduced to the case when infF f = 0 and supF f =

1. We will restrict our attention to this case.
(b) By Urysohn lemma, there is a continuous function g1 : X → [0, 1

3 ] such
that

g1(x) =

0 if x ∈ f−1([0, 1
3 ])

1
3 if x ∈ f−1([ 2

3 , 1]).

Let f1 = f − g1. Then supX g1 = 1
3 , supF f1 = 2

3 , and infF f1 = 0.
(c) Inductively, once we have a function fn : F → R, for a certain n ≥ 1 we

will obtain a function gn+1 : X → [0, 1
3
( 2

3
)n
] such that

gn+1(x) =

0 if x ∈ f−1
n ([0, 1

3
( 2

3
)n
])

1
3
( 2

3
)n

if x ∈ f−1
n ([

( 2
3
)n+1

,
( 2

3
)n
]).

Let fn+1 = fn − gn+1. Then supX gn+1 = 1
3
( 2

3
)n

, supF fn+1 =
( 2

3
)n+1

,
and infF fn+1 = 0.

(d) The series ∑∞
n=1 gn converges uniformly to a continuous function g.

(e) Since fn = f − ∑n
i=1 gi, the series ∑n

n=1 gn|F converges uniformly to f .
Therefore g|F = f .

(f) Note that with this construction infX g = 0 and supX g = 1.

Now consider the case when f is not bounded.

(a) Suppose that f is neither bounded from below nor bounded from above.
Let h be a homeomorphism from (−∞, ∞) to (0, 1). Then the range of f1 =

h ◦ f is a subset of (0, 1), therefore it can be extended as in the previous
case to a continuous function g1 such that infx∈X g1(x) = infx∈F f1(x) = 0
and supx∈X g1(x) = supx∈F f1(x) = 1.
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If the range of g1 includes neither 0 nor 1 then g = h−1 ◦ g1 will be
the desired function.

It may happens that the range of g1 includes either 0 or 1. In this case
let C = g−1

1 ({0, 1}). Note that C ∩ F = ∅. By Urysohn lemma, there is
a continuous function k : X → [0, 1] such that k|C = 0 and k|F = 1. Let
g2 = kg1 + (1− k) 1

2 . Then g2|F = g1|F and the range of g2 is a subset
of (0, 1) (g2(x) is a certain convex combination of g1(x) and 1

2 ). Then
g = h−1 ◦ g2 will be the desired function.

(b) If f is bounded from below then similarly to the previous case we can use
a homeomorphism h : [a, ∞)→ [0, 1), and we let C = g−1

1 ({1}).
The case when f is bounded from above is similar.

�

Problems.

11.2. A normal space is completely regular. So: normal⇒ completely regular⇒ regular.
In other words: T4 ⇒ T3 1

2
⇒ T3.

11.3. A space is completely regular if and only if it is homeomorphic to a subspace of a
compact Hausdorff space. As a corollary, a locally compact Hausdorff space is completely
regular.

11.4. Show that the Tiestze extension theorem implies the Urysohn lemma.

11.5. The Tiestze extension theorem is not true without the condition that the set F is closed.

11.6. Show that the Tiestze extension theorem can be extended to maps to the space ∏i∈I R

where R has the Euclidean topology.

11.7. Let X be a normal space and F be a closed subset of X. Then any continuous map
f : F → Sn can be extended to an open set containing F.

11.8. Prove the following version of Urysohn lemma, as stated in [Rud86]. Suppose that X
is a locally compact Hausdorff space, V is open in X, K ⊂ V, and K is compact. Then there
is a continuous function f : X → [0, 1] such that f (x) = 1 for x ∈ K and supp( f ) ⊂ V,
where supp( f ) is the closure of the set {x ∈ X | f (x) 6= 0}, called the support of f .

Hint: Use 10.13 and 8.13.

11.9 (Point-wise convergence topology). Now we view a function from X to Y as an ele-
ment of the set YX = ∏x∈X Y. In this view a function f : X → Y is an element f ∈ YX , and
for each x ∈ X the value f (x) is the x-coordinate of the element f .

(a) Let ( fi)i∈I be a net of functions from X to Y, i.e. a net of points in YX . Show that
( fi)i∈I converges to a function f : X → Y point-wise if and only if the net of points
( fi)i∈I converges to the point f in the product topology of YX .

(b) Define the point-wise convergence topology on the set YX of functions from X to Y
as the topology generated by sets of the form

S(x, U) = { f ∈ YX | f (x) ∈ U}

with x ∈ X and U ⊂ Y is open. Show that the point-wise convergence topology is
exactly the product topology on YX .
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11.10. Let X and Y be two topological spaces. Let C(X, Y) be the set of all continuous func-
tions from X to Y. Show that if a net ( fi)i∈I converges to f in the compact-open topology of
C(X, Y) then it converges to f point-wise.

11.11 (Niemytzki space). * Let H = {(x, y) ∈ R2 | y ≥ 0} be the upper half-plane. Equip H

with the topology generated by the Euclidean open disks (i.e. open balls) in K = {(x, y) ∈
R2| y > 0}, together with sets of the form {p} ∪ D where p is a point on the line L =

{(x, y) ∈ R2| y = 0} and D is an open disk in K tangent to L at p. This is called the
Niemytzki space.

(a) Check that this is a topological space.
(b) What is the subspace topology on L?
(c) What are the closed sets in H?
(d) Show that H is Hausdorff.
(e) Show that H is regular.
(f) Show that H is not normal.

Further readings

Metrizability. A space is said to be metrizable if its topology can be generated by a metric.

Theorem 11.12 (Urysohn Metrizability Theorem). A regular space with a countable basis is
metrizable.

The proof uses the Urysohn lemma [Mun00].
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12. Quotient space

In this section we consider the operation of gluing parts of a space to form
a new space. For example when we glue the two endpoints of a line segment
together we get a circle.

Mathematically, gluing points mean to let them be equivalent. For a set X
and an equivalence relation ∼ on X, the quotient set X/ ∼ is exactly what we get
byidentifying equivalent elements of X into one element.

We also want the gluing to be continuous. That means we equip the quotient
set X/ ∼ with the finest topology such that the projection map (the gluing map)
p : X → X/ ∼, x 7→ [x] is continuous. Namely, a subset U of X/ ∼ is open if
and only if the preimage p−1(U) is open in X (see 3.6). The set X/ ∼ with this
topology is called the quotient space of X by ∼.

In a special case, if A is a subspace of X then there is this equivalence relation
on X: x ∼ x if x /∈ A, and x ∼ y if x, y ∈ A. The quotient space X/ ∼ is often
written as X/A, and we can think of it as being obtained from X by collapsing the
whole subspace A to one point.

Theorem 12.1. Let Y be a topological space. A map f : X/ ∼→ Y is continuous if and
only if f ◦ p is continuous.

X
p
//

f ◦p ""

X/ ∼

f
��

Y

PROOF. The map f ◦ p is continuous if and only if for each open subset U
of Y, the set ( f ◦ p)−1(U) = p−1( f−1(U)) is open in X. The latter statement is
equivalent to that f−1(U) is open for every U, that is, f is continuous. �

The following result will provide us a tool for identifying many quotient spaces:

Theorem. Suppose that X is compact and ∼ is an equivalence relation on X. Suppose
that Y is Hausdorff, and f : X → Y is continuous and onto. Suppose that f (x1) = f (x2)

if and only if x1 ∼ x2. Then f induces a homeomorphism from X/ ∼ onto Y.

PROOF. Define h : X/ ∼→ Y by h([x]) = f (x). Then h is onto and is injective,
thus it is a bijection.

X
p
//

f ""

X/ ∼

h
��

Y
Notice that f = h ◦ p (in such a case people often say that the above diagram is
commutative, and the map f can be factored). By 12.1 h is continuous. By 8.10, h is
a homeomorphism. �
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Example (Gluing the two end-points of a line segment gives a circle). More pre-
cisely [0, 1]/0 ∼ 1 is homeomorphic to S1:

[0, 1]
p
//

f
%%

[0, 1]/0 ∼ 1

h
��

S1

Here f is the map t 7→ (cos(2πt), sin(2πt)).

Example (Gluing a pair of opposite edges of a square gives a cylinder). Let X =

[0, 1]× [0, 1]/ ∼ where (0, t) ∼ (1, t) for all 0 ≤ t ≤ 1. Then X is homeomorphic
to the cylinder [0, 1] × S1. The homeomorphism is induced by the map (s, t) 7→
(s, cos(2πt), sin(2πt)).

Example (Gluing opposite edges of a square gives a torus). Let X = [0, 1] ×
[0, 1]/ ∼ where (s, 0) ∼ (s, 1) and (0, t) ∼ (1, t) for all 0 ≤ s, t ≤ 1, then X is
homeomorphic to the torus12 (mặt xuyến) T2 = S1 × S1.

FIGURE 12.1. The torus.

The torus T2 is homeomorphic to a subspace of R3, in other words, the torus
can be embedded in R3. The subspace is the surface of revolution obtained by
revolving a circle around a line not intersecting it.

FIGURE 12.2. The torus embedded in R3.

Suppose that the circle is on the Oyz-plane, the center is on the y-axis and the
axis for the rotation is the z-axis. Let a be the radius of the circle, b be the distance

12The plural form of the word torus is tori.
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from the center of the circle to O, (a < b). Let S be the surface of revolution, then
the embedding can be given by

[0, 2π]× [0, 2π] //

f
++

T2 = ([0, 2π]/0 ∼ 2π)× ([0, 2π]/0 ∼ 2π)

h
��

S

where f (φ, θ) = ((b + a cos θ) cos φ, (b + a cos θ) sin φ, a sin θ).
We can also obtain an implicit equation: (

√
x2 + y2 − b)2 + z2 = a2.

φ

θ

y
a

b

x

O

z

Example (Gluing the boundary circle of a disk together gives a sphere). More
precisely D2/∂D2 is homeomorphic to S2. We only need to construct a continuous
map from D2 onto S2 such that after quotient out by the boundary ∂D2 it becomes
injective.

Example (The Mobius band). Gluing a pair of opposite edges of a square in oppo-
site directions gives the Mobius band (dải, lá Mobius). More precisely the Mobius
band is X = [0, 1]× [0, 1]/ ∼ where (0, t) ∼ (1, 1− t) for all 0 ≤ t ≤ 1.

The Mobius band could be embedded in R3. It is homeomorphic to a subspace
of R3 obtained by rotating a straight segment around the z-axis while also turning
that segment “up side down”. The embedding can be induced by the map (s, t) 7→
((a + t cos(s/2)) cos(s), (a + t cos(s/2)) sin(s), t sin(s/2)), with 0 ≤ s ≤ 2π and
−1 ≤ t ≤ 1.
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FIGURE 12.3. The Mobius band embedded in R3.

a

s

s/2

t

FIGURE 12.4. The embedding of the Mobius band in R3.

Example (The projective plane). Identifying opposite points on the boundary of a
disk (they are called antipodal points) we get a topological space called the projective
plane (mặt phẳng xạ ảnh) RP2. The real projective plane cannot be embedded in
R3. It can be embedded in R4.

More generally, identifying antipodal boundary points of Dn gives us the pro-
jective space (không gian xạ ảnh) RPn. With this definition RP1 is homeomorphic
to S1. See also 12.10.

Example (Gluing a disk to the Mobius band gives the projective plane). In other
words, deleting a disk from the projective plane gives the Mobius band. See Figure
12.5

Example (The Klein bottle). Identifying one pair of opposite edges of a square
and the other pair in opposite directions gives a topological space called the Klein
bottle . More precisely it is [0, 1]× [0, 1]/ ∼ with (0, t) ∼ (1, t) and (s, 0) ∼ (1−
s, 1).

This space cannot be embedded in R3, but it can be immersed in R3. An im-
mersion (phép nhúng chìm) is a local embedding. More concisely, f : X → Y is an
immersion if each point in X has a neighborhood U such that f |U : U → f (U) is a
homeomorphism. Intuitively, an immersion allows self-intersection (tự cắt).

Problems.
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a a

a

a

a

a

a a

a
a

b

b

b

b b

b b b
b

b b

c

c

c

c

c c

c c
c c

c

FIGURE 12.5. Gluing a disk to the Mobius band gives the projec-
tive plane.

FIGURE 12.6. The Klein bottle.

12.2. Describe the space [0, 1]/ 1
2 ∼ 1.
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FIGURE 12.7. The Klein bottle immersed in R3.

12.3. On the Euclidean R define x ∼ y if x− y ∈ Z. Show that R/ ∼ is homeomorphic to
S1. The space R/ ∼ is also described as “R quotient by the action of the group Z”.

12.4. On the Euclidean R2, define (x1, y1) ∼ (x2, y2) if (x1 − x2, y1 − y2) ∈ Z×Z. Show
that R2/ ∼ is homeomorphic to T2.

12.5. Show that the following spaces are homeomorphic (one of them is the Klein bottle).

a a

b

a

a

b

bb

12.6. Describe the space that is the sphere S2 quotient by its equator S1.

12.7. If X is connected then X/ ∼ is connected.

12.8. The one-point compactification of the open Mobius band (the Mobius band without
the boundary circle) is the projective space RP2.

12.9. Show that the projective space RPn is a Hausdorff space.

12.10. * Show that identifying antipodal boundary points of Dn is equivalent to identify-
ing antipodal points of Sn. In other words, the projective space RPn is homeomorphic to
Sn/x ∼ −x.

12.11. In order for the quotient space X/ ∼ to be a Hausdorff space, a necessary condition
is that each equivalence class [x] must be a closed subset of X. Is this condition sufficient?
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Guide for further reading

The book by Kelley [Kel55] has been a classics and a standard reference al-
though it was published in 1955. Its presentation is rather abstract. The book
contains no figure!

Munkres’ book [Mun00] is presently a standard textbook. The treatment there
is somewhat more modern than that in Kelley’s book, with many examples, figures
and exercises. It also has a section on Algebraic Topology.

Hocking and Young’s book [HY61] contains many deep and difficult results.
This book together with Kelley’s and Munkres’ books contain many topics not
discussed in our lectures.

For General Topology as a service to Analysis, [KF75] is an excellent textbook.
[Cai94] and [VINK08] are other good books on General Topology.

A more recent textbook by Roseman [Ros99] works mostly in Rn and is more
down-to-earth. The new textbook [AF08] contains many interesting applications
of Topology.

If you want to have some ideas about current research in General Topology
you can visit the website of Topology Atlas [Atl], or you can browse the journal
Topology and Its Applications, available on the web.





Algebraic Topology

13. Structures on topological spaces

Topological manifold. If we only stay around our small familiar neighborhood
then we might not be able to recognize that surface of the Earth is curved, and
to us it is indistinguishable from a plane. When we begin to travel farther and
higher, we can realize that the surface of the Earth is a sphere, not a plane. In
mathematical language, a sphere and a plane are locally same although globally
different. Briefly, a manifold is a space that is locally Euclidean.

Definition. A topological manifold (đa tạp tôpô) of dimension n is a topological
space each point of which has a neighborhood homeomorphic to the Euclidean
space Rn.

Remark. In this chapter we assume Rn has the Euclidean topology unless we men-
tion otherwise.

An equivalent definition of manifold is:

Proposition. A manifold of dimension n is a space such that each point has a neighbor-
hood homeomorphic to an open subset of Rn.

We can think of a manifold as a space which could be covered by a collection
of open subsets each of which homeomorphic to Rn.

Remark. By Invariance of dimension 5.34, Rn and Rm are not homeomorphic un-
less m = n, therefore a manifold has a unique dimension.

63
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Example. Any open subspace of Rn is a manifold of dimension n.

Example. If f : R → R is continuous then the graph of f is a one-dimensional
manifold. More generally, let f : D → R be a continuous function where D ⊂ Rn

is an open set, then the graph of f , the set {(x, f (x)) | x ∈ D} as a subspace of
Rn+1 is an n-dimensional manifold.

Example. The sphere Sn is an n-dimensional manifold. One way to show this is to
cover Sn with two neighborhoods Sn \ {(0, 0, . . . , 0, 1)} and Sn \ {(0, 0, . . . , 0,−1)}.
Each of these neighborhoods is homeomorphic to Rn via stereographic projec-
tions. Another way is covering Sn by hemispheres {(x1, x2, . . . , xn+1) ∈ Sn | xi >

0} and {(x1, x2, . . . , xn+1) ∈ Sn | xi < 0}, 1 ≤ i ≤ n + 1.

Example. The torus is a two-dimensional manifold. Let us consider the torus as
the quotient space of the square [0, 1]2 by identifying opposite edges. Each point
has a neighborhood homeomorphic to an open disk, as can be seen easily in the
following figure, though explicit description would be time consuming. We can

FIGURE 13.1. The sets with same colors are glued to form a neigh-
borhood of a point on the torus. Each such neighborhood is home-
omorphic to an open ball.

also view the torus as a surface in R3, given by the equation (
√

x2 + y2 − a)2 +

z2 = b2. As such it can be covered by the open subsets of R3 corresponding to
z > 0, z < 0, x2 + y2 < a2, x2 + y2 > a2.

Remark. The interval [0, 1] is not a manifold, it is a “manifold with boundary”.
We will not give a precise definition of manifold with boundary here.

A two-dimensional manifold is often called a surface.

Simplicial complex. For an integer n ≥ 0, an n-dimensional simplex (đơn hình) is
a subspace of a Euclidean space Rm, m ≥ n, which is the convex linear combination
of (n + 1) points v0, v1, . . . , vn where v1 − v0, v2 − v0, . . . , vn − v0 are n linearly
independent vectors (it can be checked that this condition does not depend on the
order of the points). As a set it is given by {t0v0 + t1v1 + · · ·+ tnvn | t0, t1, . . . , tn ∈
[0, 1], t0 + t1 + · · ·+ tn = 1}. The points v0, v1, . . . , vn are called the vertices of the
simplex.
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Example. A 0-dimensional simplex is just a point. A 1-dimensional simplex is
a straight segment in Rm, m ≥ 1. A 2-dimensional simplex is a triangle in Rm,
m ≥ 2. A 3-dimensional simplex is a tetrahedron in Rm, m ≥ 3.

In particular, the standard n-dimensional simplex (đơn hình chuẩn) ∆n is the con-
vex linear combination of the (n + 1) vectors (1, 0, 0, . . . ), (0, 1, 0, 0, . . . ), . . . in the
standard linear basis of Rn+1. Thus

∆n = {(t0, t1, . . . , tn) | t0, t1, . . . , tn ∈ [0, 1], t0 + t1 + · · ·+ tn = 1}.

The convex linear combinations of any subset of the set of vertices of a simplex
is called a face of the simplex.

Example. For a 2-dimensional simplex (a triangle) its faces are the vertices, the
edges, and the triangle itself.

An n-dimensional simplicial complex (phức đơn hình) in Rm is a finite collection
S of simplexes of dimensions at most n in Rm such that:

(a) any face of an element of S is an element of S,
(b) the intersection of any two elements of S is a common face,
(c) at least one element of S is of dimension n.

The union of all elements of S is called its underlying space, denoted by |S|. Such a
space is called a polyhedron (đa diện).

Example. A 1-dimensional simplicial complex is a graph.

Triangulation. A triangulation (phép phân chia tam giác) of a topological space X
is a homeomorphism from the underlying space of a simplicial complex to X, the
space X is then said to be triangulated.

For example, a triangulation of a surface is an expression of the surface as a
union of finitely many triangles, with a requirement that two triangles are either
disjoint, or have one common edge, or have one common vertex.

FIGURE 13.2. A triangulation of the 2-dimensional sphere.

It is known that any two or three dimensional manifold can be triangulated,
and that there exists a 4-dimensional manifold with no triangulation. The situa-
tions in higher dimensions are still being studied.
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FIGURE 13.3. A triangulation of the torus.
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FIGURE 13.4. Another triangulation of the torus.

FIGURE 13.5. A triangulation of the projective plane.

A simplicial complex is specified by a finite set of points. If a space can be
triangulated then we can study that space combinatorially, using constructions
and computations in finitely many steps.

Cell complex.

Definition. A 0-dimensional cell (ô) is a point. For n ≥ 1 an n-dimensional cell is
an open ball in the Euclidean space Rn.



13. STRUCTURES ON TOPOLOGICAL SPACES 67

By an n-dimensional disk we mean a closed ball in the Euclidean space Rn. In
particular the unit disk centered at the origin B′(0, 1) is denoted by Dn. Thus the
boundary ∂Dn is the sphere Sn−1 and the interior int(Dn) is an n-cell.

Definition. Let X be a topological space and let. By attaching a cell to a space X we
mean taking a continuous function f : ∂Dn → X then forming the quotient space
(X t Dn)/(x ∼ f (x), x ∈ ∂Dn). Intuitively, we glue a disk to the space by gluing
each point on the boundary of the disk with a point on the space. We can attach
many cells simultaneously in the same way.

A (finite) cell complex (phức ô) or CW-complex X is a topological space built as
follows:

(a) X0 is a finite discrete space.
(b) For each 1 ≤ i ≤ n ∈ Z+, Xi is obtained from Xi−1 by attaching finitely

many i-cells.
(c) X = Xn.

Briefly, a cell complex is a topological space which can be built by attaching cells.
The subspace Xn is called the n-dimensional skeleton (khung) of X.

Example. A topological circle has a cell complex structure as a triangle with three
0-cells and three 1-cells. There is another cell complex structure with only one
0-cell and one 1-cell.

Example. The 2-dimensional sphere has a cell complex structure as a tetrahedron
with four 0-cells, six 1-cells, and four 2-cells. There is another cell complex struc-
ture with only one 0-cell and one 2-cell.

Example. The torus has a cell complex structure with one 0-cells, two 1-cells, and
one 2-cells.

It’s intutively easy to be convinced that a simplicial complex gives a cell com-
plex:

Proposition. Any polyhedron is a cell complex.

PROOF. Let X be a simplicial complex. Let Xi be the union of all simplexes
of X of dimensions at most i. Then Xi+1 is the union of Xi with finitely many
(i + 1)-dimensional simplexes. Let ∆i+1 be such an (i + 1)-dimensional simplex.
The faces of ∆i+1 are simplexes of X, so the union of those faces, which is the
boundary of ∆i+1, belongs to Xi. There is a homeomorphism from an (i + 1)-disk
to ∆i+1, bringing the boundary of the disk to the boundary of ∆i+1. Thus including
∆i+1 means attaching an (i + 1)-cell to Xi. �

The example of the torus indicates that cell complexes may require less cells
than simplicial complexes. On the other hand we loose the combinatorial setting,
because we need to specify the attaching maps.



68 ALGEBRAIC TOPOLOGY

It is known that any compact manifold of dimension different from 4 has a cell
complex structure. Whether that is true or not in dimension 4 is not known yet
[Hat01, p. 529].

Problems.

13.1. Show that if two spaces are homeomorphic and one space is an n-dimensional mani-
fold then the other is also an n-dimensional manifold.

13.2. Show that RPn is an n-dimensional topological manifold.

13.3. Draw a cell complex structure on the torus with two holes.

13.4. Find a cell complex structure on RPn.

Further readings

Bernard Riemann proposed the idea of manifold in his Habilitation dissertation. A
translation of this article is available in [Spi99].

Two conditions are often added to the definition of a manifold: it is Hausdorff, and it
has a countable basis. The first condition is useful for doing Analysis on manifolds, and the
second condition guarantees the existence of Partition of Unity.

Theorem 13.5 (Partition of Unity). Let U be an open cover of a manifold M. Then there is a
collection F of continuous real functions f : M→ [0, 1] such that

(a) For each f ∈ F, there is V ∈ U such that supp( f ) ⊂ V.
(b) For each x ∈ M there is a neighborhood of x such that there are only finitely many f ∈ F

which is non-zero on that neighborhood.
(c) For each x ∈ M,

∑
f∈F

f (x) = 1

A Partition of Unity allows us to extend some local properties to global ones, by “patch-
ing” neighborhoods. It is needed for such important results as the existence of a Riemann-
ian metric on a manifold in Differential Geometry, the definition of integration on manifold
in Theory of Differential Forms. It is also used in the proof of the Riesz Representation
Theorem in Measure Theory [Rud86].

13.6. Check that Rn has a countable basis.

13.7. Any subset of Rn is Hausdorff and has a countable basis.

With the above additional assumptions we can show:

13.8. A manifold is locally compact.

13.9. A manifold is a regular space.

By the Urysohn Metrizability Theorem 11.12 we have:

13.10. Any manifold is metrizable.
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14. Classification of compact surfaces

In this section by a surface (mặt) we mean a two-dimensional manifold (with-
out boundary).

Connected sum. Let S and T be two surfaces. From each surface deletes an
open disk, then glue the two boundary circles. The resulting surface is called the
connected sum (tổng liên thông) of the two surfaces, denoted by S#T.

S \
◦

D2 T\
◦

D2 S #T

It is known that the connected sum does not depend on the choices of the
disks.

Example. If S is any surface then S#S2 = S.

Classification.

Theorem (Classification of compact surfaces). A connected compact surface is home-
omorphic to either the sphere, or a connected sum of tori, or a connected sum of projective
planes.

We denote by Tg the connected sum of g tori, and by Mg the connected sum of
g projective planes. The number g is called the genus (giống) of the surface.

The sphere and the surfaces Tg are orientable (định hướng được) surface , while
the surfaces Mg are non-orientable (không định hướng được) surfaces. We will not
give a precise definition of orientability here.

FIGURE 14.1. Orientable surfaces: S2, T1, T2, . . .

Notice that at this stage we have not yet been able to prove that those surfaces
are distinct.

The Classification theorem is a direct consequence of the following:

Theorem 14.1. A connected compact surface is homeomorphic to the space obtained by
identifying the edges of a polygon in one of the following ways:
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(a) aa−1,
(b) a1b1a−1

1 b−1
1 a2b2a−1

2 b−1
2 · · · agbga−1

g b−1
g ,

(c) c2
1c2

2 · · · c2
g.

Proof of 14.1. Let S be a triangulated surface. Cut S along the triangles. Label the
edges by alphabet characters and mark the orientations of each edge. In this way
each edge will appear twice on two different triangles.

Take one triangle. Pick a second triangle which has one common edge with
the first one, then glue the two along the common edge following the orientation
of the edge. Continue this gluing process in such a way that at every step the
resulting polygon is planar. This is possible if at each stage the gluing is done in
such a way that there is one edge of the polygon such that the entire polygon is on
one of its side. The last polygon P is called a fundamental polygon of the surface.

The boundary of the fundamental polygon consists of labeled and oriented
edges. Choose one edge as the initial one then follow the edge of the polygon in a
predetermined direction. This way we associate each polygon with a word w.

We consider two words equivalent if they give rise to homeomorphic surfaces.
In the reverse direction, the surface can be reconstructed from an associated

word. We consider two words equivalent if they give rise to homeomorphic sur-
faces. In order to find all possible surfaces we will find all possible associated
words up to equivalence.

Theorem 14.1 is a direct consequence of the following:

Proposition 14.2. An associated word to a connected compact without boundary surface
is equivalent to a word of the forms:

(a) aa−1,
(b) a1b1a−1

1 b−1
1 a2b2a−1

2 b−1
2 · · · agbga−1

g b−1
g ,

(c) c2
1c2

2 · · · c2
g.

We will prove 14.2 through a series of lemmas.
Let w be the word of a fundamental polygon.

Lemma 14.3. A pair of the form aa−1 in w can be deleted, meaning that this action will
give an equivalent word corresponding to a homeomorphic surface.

PROOF. If w is not aa−1 then it can be reduced as illustrated in the figure. �

Lemma 14.4. The word w is equivalent to a word whose all of the vertices of the associated
polygon is identified to a single point on the associated surface (w is “reduced”).

PROOF. When we do the following operation, the number of P vertices is de-
creased.

When there is only one P vertex left, we arrive at the situation in Lemma 14.3.
�

Lemma 14.5. A word of the form −a− a− is equivalent to a word of the form −aa−.
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a

a a−1

FIGURE 14.2. Lemma 14.3.
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FIGURE 14.3. Lemma 14.4.

Lemma 14.6. Suppose that w is reduced. Assume that w has the form −aαa−1− where
α is a non-empty word. Then there is a letter b such that b is in α but the other b or b−1 is
not.

PROOF. If all letters in α appear in pairs then the vertices in the part of the
polygon associated to α are identified only with themselves, and are not identi-
fied with a vertex outside of that part. This contradicts the assumption that w is
reduced. �

Lemma 14.7. A word of the form −a− b− a−1 − b−1− is equivalent to a word of the
form −aba−1b−1−.

Lemma 14.8. A word of the form −aba−1b−1 − cc− is equivalent to a word of the form
−a2 − b2 − c2−.
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FIGURE 14.4. Lemma 14.5.
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FIGURE 14.5. Lemma 14.7.

PROOF. Do the operation in the figure, after that we are in a situation where
we can apply Lemma 14.5 three times.

�

PROOF OF 14.2. The proof follows the following steps.
1. Bring w to the reduced form by using 14.4 finitely many times.
2. If w has the form −aa−1− then go to 2.1, if not go to 3.
2.1. If w has the form aa−1 then stop, if not go to 2.2.
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FIGURE 14.6. Lemma 14.8.

2.2. w has the form aa−1α where α 6= ∅. Repeatedly apply 14.3 finitely many
times, deleting pairs of the form aa−1 in w until no such pair is left or w has the
form aa−1. If no such pair is left go to 3.

3. w does not have the form −aa−1−. Repeatedly apply 14.5 finitely many
times until w no longer has the form −aαa− where α 6= ∅. Note that if we apply
14.5 then some pairs of of the form −aαa− with α 6= ∅ could become a pair of the
form −a− a−1−, but a pair of the form −aa− will not be changed. Therefore 14.5
could be used finitely many times until there is no pair −aαa− with α = ∅ left.

Also it is crucial from the proof of 14.5 that this step will not undo the steps
before it.

4. If there is no pair of the form −aαa−1 where α 6= ∅, then stop: w has the
form a2

1a2
2 · · · a2

g.
5. w has the form −aαa−1 where α 6= ∅. By 14.6 w must has the form −a−

b− a−1 − b−1−, since after Step 3 there could be no −b− a−1 − b−.
6. Repeatedly apply 14.7 finitely many times until w no longer has the form

−aαbβa−1γb−1− where at least one of α, β, or γ is non-empty.
7. If w is not of the form−aa− then stop: w has the form a1b1a−1

1 b−1
1 · · · agbga−1

g b−1
g .

8. w has the form −aba−1b−1− cc−. Use 14.8 finitely many times to transform
w to the form a2

1a2
2 · · · a2

g. �

Euler Characteristics. The Euler Characteristics (đặc trưng Euler) χ(S) of a trian-
gulated surface S is the number V of vertices minus the number E of edges plus
the number F of triangles (faces):

χ(S) = V − E + F.

Theorem 14.9. The Euler Characteristics with respect to two triangulations of the same
surface are equal.
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By this theorem the Euler Characteristics of a surface is defined and does not
depend on the choice of triangulation. Since the Euler Characteristics does not
change under homeomorphisms, just like the number of connected components,
it is said to be a topological invariant (bất biến tôpô). If two surfaces have different
Euler Characteristics, then they are not homeomorphic.

Example. By Theorem 14.9 we have χ(S2) = 2. A consequence is the famous
formula of Leonhard Euler: For any convex polyhedron, V − E + F = 2.

Example. From any triangulation of the torus, we get χ(T2) = 0. For the projective
plane, χ(RP2) = 1. As a consequence, the sphere, the torus, and the projective
plane are not homeomorphic to each other: they are different surfaces.

Problems.

14.10. Show that T2#RP2 = K#RP2, where K is the Klein bottle.

14.11. Show that gluing two Mobius bands along their boundaries gives the Klein bottle.
In other words, RP2#RP2 = K. 13

14.12 (Surfaces are homogeneous). A space is homogeneous (đồng nhất) if given two points
there exists a homeomorphism from the space to itself bringing one point to the other point.

(a) Show that the sphere S2 is homogeneous.
(b) Show that the torus T2 is homogeneous.

It is known that any manifold is homogeneous, see 30.1.

14.13. (a) Show that Tg#Th = Tg+h.
(b) Show that Mg#Mh = Mg+h.
(c) What is Mg#Th?

14.14. Show that χ(S1#S2) = χ(S1) + χ(S2)− 2.

14.15. Compute the Euler Characteristics of all connected compact without boundary sur-
faces.

Deduce that the orientable surfaces S2 and Tg, for different g, are distinct, meaning not
homeomorphic to each other. Similarly the non-orientable surfaces Mg are all distinct.

14.16. From 14.1, describe a cell complex structure on any given compact without boundary
surface.

13There is a humorous poem:
A mathematician named Klein
Thought the Mobius band was divine
Said he, “If you glue
The edges of two,
You’ll get a weird bottle like mine.”
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15. Homotopy

Homotopy of maps. Let X and Y be topological spaces and f , g : X → Y. We say
that f and g are homotopic (đồng luân) if there is a continuous map

F : X× [0, 1] → Y

(x, t) 7→ F(x, t)

such that F(x, 0) = f (x) and F(x, 1) = g(x) for all x ∈ X. The map F is called a
homotopy (phép đồng luân) from f to g.

We can think of t as a time parameter and F as a continuous process in time
that starts with f and ends with g. To suggest this view F(x, t) is often written as
Ft(x).

Proposition. Being homotopic is an equivalence relation on the set of continuous maps
between two given topological spaces.

Homotopic spaces.

Definition. Two topological spaces X and Y are homotopic if there are continuous
maps f : X → Y and g : Y → X such that g ◦ f is homotopic to IdX and f ◦ g is
homotopic to IdY. Each of the maps f and g is called a homotopy equivalence.

Immediately we have:

Proposition. Homeomorphic spaces are homotopic.

So being homotopic is a weaker notion than being homeomorphic.
We can check that homotopy between spaces is a relation with these proper-

ties: reflective, symmetric, and transitive.
A space which is homotopic to a space containing only one point is called a

contractible space (thắt được).

Example. Any ball in a normed space is contractible.

Let X be a space, and let A be a subspace of X. We say that A is a retract (rút)
of X if there is a continuous map r : X → A such that r|A = idA, called a retraction
(phép rút) from X to A. In other words A is a retract of X if the identity map idA

can be extended to X.
A deformation retraction (phép rút biến dạng) from X to A is a homotopy F on

X that starts with idX , ends with a retraction from X to A, and fixes A throughout,
i.e., F0 = idX , F1(X) = A, and Ft|A = idA, ∀t ∈ [0, 1]. If there is such a deformation
retraction we say that A is a deformation retract (rút biến dạng) of X.

In such a deformation retraction each point x ∈ X \ A “moves” along the path
Ft(x) to a point in A, while every point of A is fixed.

Example. A normed space minus a point has a deformation retraction to a sphere.
Indeed a normed space minus the origin has a deformation retraction Ft(x) =

(1− t)x + t x
||x|| to the unit sphere at the origin.
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Example. An annulus S1 × [0, 1] has a deformation retract to one of its circle
boundary S1 × {0}.

Proposition. If a space X has a deformation retraction to a subspace A then X is homo-
topic to A.

PROOF. Suppose that Ft is a deformation retraction from X to A. Consider
F1 : X → A and the inclusion map g : A→ X, g(x) = x. Then idX is homotopic to
g ◦ F1 via Ft, while F1 ◦ g = idA. �

Example. The letter A is homotopic to the letter O, as subspaces of the Euclidean
plane.

Example. The circle, the annulus, and the Mobius band are homotopic each other
but are not homeomorphic to each other.

Example. A subset A of Rn is called star-shaped if there is a point x0 ∈ A such that
for any x ∈ A the straight segment from x to x0 is contained in A. Since A has a
deformation retraction to x0, it is contractible.

Homotopy of paths. Recall that a path (đường đi) in a space X is a continuous
map α from the Euclidean interval [0, 1] to X. The point α(0) is called the initial
end point, and α(1) is called the final end point. In this section for simplicity of
presentation we assume the domain of a path is the Euclidean interval [0, 1] instead
of any Euclidean closed interval as before.

Definition. Let α and β be two paths from a to b in X. A path-homotopy (phép đồng
luân đường) from α to β is a continuous map F : [0, 1]× [0, 1]→ X, F(s, t) = Ft(s),
such that F0 = α, F1 = β, and for each t the path Ft goes from a to b, i.e. Ft(0) = a,
Ft(1) = b.

If there is a path-homotopy from α to β we say that α is path-homotopic (đồng
luân đường) to β.

Remark. A homotopy of path is a homotopy of maps defined on [0, 1], with the fur-
ther requirement that the homotopy fixes the initial point and the terminal point. To em-
phasize this we have used the word path-homotopy, but some sources (e.g. [Hat01,
p. 25]) simply use the term homotopy, taking this further requirement implicitly.

Example. In a normed space any two paths α and β with the same initial points
and end points are homotopic, via the homotopy (1− t)α + tβ. This is also true
for any convex subset of a normed space.

Proposition. Homotopic relation on the set of all paths from a to b is an equivalence
relation.

PROOF. If α is path-homotopic to β via a path-homotopy F then we can easily
find a homotopy from β to α, for instance Gt = F1−t.
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F0 = α

F1 = β

a b

Ft

FIGURE 15.1. We can think of a path-homotopy from α to β as a
way to continuously brings α to β, similar to a motion picture,
keeping the endpoints fixed.

We check that if α is homotopic to β via a homotopy F and β is homotopic to
γ via a homotopy G then α is homotopic to γ. Let

Ht =

F2t, 0 ≤ t ≤ 1
2

G2t−1, 1
2 ≤ t ≤ 1.

Note that continuity of a map is not the same as continuity with respect to each
variable (see 9.3). To see the continuity of H it is better to write it as

H(s, t) =

F(s, 2t), 0 ≤ s ≤ 1, 0 ≤ t ≤ 1
2

G(s, 2t− 1), 0 ≤ s ≤ 1, 1
2 ≤ t ≤ 1

then use 4.4. So H is a homotopy from α to γ. �

A loop (vòng) or a closed path (đường đi đóng) based at a point a ∈ X is a path
whose initial point and end point are a. In other words it is a continuous map
α : [0, 1]→ X such that α(0) = α(1) = a. The constant loop at a is the loop α(t) = a
for all t ∈ [0, 1].

A space is said to be simply connected (đơn liên) if it is path-connected and any
loop is path-homotopic to a constant loop.

Example. As in a previous example, any convex subset of a normed space is sim-
ply connected.

Problems.

15.1. Show that the Mobius band has a deformation retract to a circle.

15.2. Show that the homotopy type of the Euclidean plane with a point removed does not
depend on the choice of the point.

15.3. Show that contractible spaces are path-connected.

15.4. Show that deformation retract to a point⇒ contractible.

15.5. Let X be a topological space, and Y be a subspace of X.

(a) Show that if Y is a retract of X then any map from Y to a topological space Z can
be extended to X.

(b) Show that a subset consisting of two points cannot be a retract of R2.
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Note: This shows that the Tiestze extension theorem cannot be automatically generalized to maps

to general topological spaces.

15.6. Show that if B is contractible then A× B is homotopic to A.

15.7. Classify the alphabetical characters according to homotopy types, that is, which of the
characters are homotopic to each other as subspaces of the Euclidean plane? Do the same
for the Vietnamese alphabetical characters. Note that the result depends on the font you
use.

Further readings

One of the most celebrated achievements in Topology is the resolution of the Poincaré
conjecture:

Theorem (Poincaré conjecture). A compact manifold that is homotopic to the sphere is homeo-
morphic to the sphere.

The proof of this statement is the result of a cumulative effort of many mathematicians,
including Stephen Smale (for dimension ≥ 5, early 1960s), Michael Freedman (for dimen-
sion 4, early 1980s), and Grigory Perelman (for dimension 3, early 2000s).
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16. The fundamental group

Let α be a path from a to b. Then the inverse path of α is defined to be the path
α−1(t) = α(1− t) from b to a.

Let α be a path from a to b, and β be a path from b to c, then the composition
(hợp) of α with β is defined to be the path

γ(t) =

α(2t), 0 ≤ t ≤ 1
2

β(2t− 1), 1
2 ≤ t ≤ 1.

The path γ is often denoted as α · β. By 4.4, α · β is continuous.

Lemma 16.1. If α is path-homotopic to α1 and β is path-homotopic to β1 then α · β is
path-homotopic to α1 · β1.

PROOF. Let F be the first homotopy and G be the second homotopy. Consider
Ht = Ft · Gt. �

Lemma 16.2. If α is a path from a to b then α · α−1 is path-homotopic to the constant loop
at a.

PROOF. Our homotopy from α · α−1 to the constant loop at a can be described
as follows. At a fixed t, the loop Ft starts at time 0 at a, goes along α but at twice the
speed of α, until time 1

2 −
t
2 , stays there until time 1

2 + t
2 , then catches the inverse

path α−1 at twice its speed to come back to a.
More precisely,

Ft(s) =


α(2s), 0 ≤ s ≤ 1

2 −
t
2

α( 1
2 −

t
2 ),

1
2 −

t
2 ≤ s ≤ 1

2 + t
2

α−1(2s), 1
2 + t

2 ≤ s ≤ 1.

�

Lemma 16.3 (reparametrization). If ϕ : [0, 1] → [0, 1] is a continuous map such that
ϕ(0) = 0 and ϕ(1) = 1 then for any path α the path α ◦ ϕ ( a “reparametrization” of α)

is path-homotopic to α.

Roughly speaking, a reparametrization does not change the homotopy class.

PROOF. Let Ft = (1− t)ϕ + tId[0,1]. Then α · Ft gives a path-homotopy from
α ◦ ϕ to α. �

The fundamental group. Consider the set of loops based at a point x0 under the
path-homotopy relation, denoted by π1(X, x0). On this set we define a multiplica-
tion operation [α] · [β] = [α · β]. By 16.1 this operation is well-defined.

Theorem 16.4. The set of all path-homotopy classes of loops of X based at a point x0 is a
group under the above operation.
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This group is called the fundamental group (nhóm cơ bản) of X at x0, denoted
by π1(X, x0). The point x0 is called the base point.

PROOF. Let’s write 1 as the constant loop at x0. By Lemma 16.3 1 · α is path-
homotopic to α, thus [1] · [α] = [α]. So [1] is the identity in π1(X, x0).

We define [α]−1 = [α−1]. It is easy to check that this is well-defined. By 16.2
[α]−1 is indeed the inverse element of [α].

Since (α · β) · γ is a reparametrization of α · (β · γ), we have associativity: ([α] ·
[β]) · [γ] = [α] · ([β] · [γ]). �

Example. If X is a convex subset of a normed space then π1(X, x0) is trivial.
A simply connected space is precisely as path-connected space with trivial

fundamental group.

The dependence of the fundamental group on the base point is explained in
the following proposition.

Proposition 16.5 (dependence on base point). If there is a path from x0 to x1 then
π1(X, x0) is isomorphic to π1(X, x1).

PROOF. Let α be a path from x0 to x1. Consider the map

hα : π1(X, x1) → π1(X, x0)

[γ] 7→ [α · γ · α−1]

Using 16.1 we can check that this is a well-defined map, a group homomorphism
with an inverse homomorphism:

h−1
α : π1(X, x1) → π1(X, x0)

[γ] 7→ [α−1 · γ · α]
�

For a path-connected space the fundamental group is the same up to group
isomorphism for any choice of the base point. Therefore if X is a path-connected
space we often drop the base point in the notation, and write π1(X).

Induced homomorphisms on fundamental groups. Let X and Y be topological
spaces, and f : X → Y. Then f induces the following map

f∗ : π1(X, x0) → π1(Y, f (x0))

[γ] 7→ [ f ◦ γ]

It can be checked that this is a well-defined map. Furthermore f∗([γ1] · [γ2]) =

f∗([γ1 ·γ2]) = [ f ◦ (γ1 ·γ2)]. It can be checked directly that f ◦ (γ1 ·γ2) = ( f ◦γ1) ·
( f ◦ γ2), thus f∗([γ1] · [γ2]) = f∗([γ1]) · f∗([γ2]), therefore f∗ is a homomorphism.

Proposition ((g ◦ f )∗ = g∗ ◦ f∗). If f : X → Y and g : Y → Z then (g ◦ f )∗ =

g∗ ◦ f∗ : π1(X, x0)→ π1(Z, g( f (x0))).
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PROOF. (g ◦ f )∗([γ]) = [(g ◦ f ) ◦γ] = [g ◦ ( f ◦γ)] = g∗([ f ◦γ)]) = g∗( f∗([γ])).
�

Lemma. If f : X → X is homotopic to the identity then f∗ : π1(X, x0)→ π1(X, f (x0))

is an isomorphism.

PROOF. We will show that f∗([γ]) = [ f ◦ γ] = [α · γ · α−1], where α is a path
from f (x0) to x0. In other words f∗ = hα, where hα is the map used in the proof of
16.5, which was shown there to be an isomorphism.

f (x0)

α(t) = Ft(x0)

x0
γ

Ft(γ)

f (γ)

βt

From the assumption there is a homotopy F from f to idX . Then Ft(x0), 0 ≤
t ≤ 1 is a continuous path from f (x0) to x0. Denote this path by α. For each fixed
0 ≤ t ≤ 1, let βt be the path that goes along α from α(0) = f (x0) to α(t), namely
βt(s) = α(st), 0 ≤ s ≤ 1. Let Gt = βt · Ft(γ) · β−1

t . That G is continuous can be
checked by writing down the formula for G explicitly. Then G is a path-homotopy
from f (γ) to α · γ · α−1. �

Theorem. If f : X → Y is a homotopy equivalence then f∗ : π1(X, x0)→ π1(Y, f (x0))

is an isomorphism.

PROOF. Since f is a homotopy equivalence there is g : Y → X such that
g ◦ f is homotopic to idX and f ◦ g is homotopic to idY. By the above lemma, the
composition

π1(X, x0)
f∗→ π1(Y, f (x0))

g∗→ π1(X, g( f (x0)))

is an isomorphism, which implies that g∗ is surjective. Similarly the composition

π1(Y, f (x0))
g∗→ π1(X, g( f (x0)))

f∗→ π1(Y, f (g( f (x0))))

is an isomorphism, which implies that g∗ is injective. Since g∗ is bijective from the
first composition we see that f∗ is bijective. �

Corollary (homotopy invariance). If two path-connected spaces are homotopic, then
their fundamental groups are isomorphic.

We say that for path-connected spaces, the fundamental group is a homotopy
invariant.
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Problems.

16.6. If X0 is a path-connected component of X and x0 ∈ X0 then π1(X, x0) is isomorphic
to π1(X0, x0).

16.7. Show that a topological space is simply-connected if and only if it is path-connected
and its fundamental group is trivial.

16.8. Let X and Y be topological spaces, f : X → Y, f (x0) = y0. Show that the induced
map

f∗ : π1(X, x0) → π1(Y, y0)

[γ] 7→ [ f ◦ γ]

is a well-defined.

16.9. Suppose that f : X → Y is a homeomorphism. Show that the induces homomorphism
f∗ : π1(X, x0)→ π1(Y, f (x0)) is an isomorphism.
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17. The fundamental group of the circle

Theorem (π1(S1) ∼= Z). The fundamental group of the circle is infinite cyclic.

Let γn be the loop (cos(n2πt), sin(n2πt)), 0 ≤ t ≤ 1, the loop on the circle S1

based at the point (1, 0) that goes n times around the circle at uniform speed in
the counter-clockwise direction if n > 0 and in the clockwise direction if n < 0.
Consider the map

Φ : Z → π1(S1, (1, 0))

n 7→ [γn].

This map associates each integer n with the path-homotopy class of γn. We will
show that Φ is a group isomorphism, where Z has the usual additive structure.
This implies that the fundamental group of the circle is generated by a loop that
goes once around the circle in the counter-clockwise direction, and the homotopy
class of a loop in the circle corresponds to an integer representing the “number of
times” that loop goes around the circle, with the counter-clockwise direction being
the positive direction.

PROOF. First we check that Φ is a group homomorphism. This means γm+n

is path-homotopic to γm · γn. This is true because the two paths are reparametriza-
tions of each other. This is not difficult, the details can be given as follows.

Let p : R→ S1, p(t) = (cos(2πt), sin(2πt)), a map that wraps the line around
the circle countably infinitely many times in the counter-clockwise direction. This
is related to the usual parametrization of the circle by angle. Then γn is the path
p(nt), 0 ≤ t ≤ 1. Let

γ̃m+n : [0, 1] → [0, m + n]

t 7→ (m + n)t,

then γm+n = p ◦ γ̃m+n. Let

γ̃m · γn : [0, 1] → [0, m + n]

t 7→

m2t, 0 ≤ t ≤ 1
2 ,

n(2t− 1) + m, 1
2 ≤ t ≤ 1,

then γm · γn = p ◦ γ̃m · γn. Let ϕ = γ̃m+n
−1 ◦ γ̃m · γn (here γ̃m+n

−1 denotes the
inverse map), then γ̃m+n ◦ ϕ = γ̃m · γn:

[0, 1]
γ̃m+n// [0, m + n]

[0, 1]

ϕ

OO

γ̃m ·γn

::
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This implies p ◦ (γ̃m+n ◦ ϕ) = (p ◦ γ̃m+n) ◦ ϕ = γm+n ◦ ϕ = γm ·γn = p ◦ (γ̃m · γn).
Thus γm · γn is a reparametrization of γm+n.

Now we prove that Φ is surjective. This means every loop γ on the circle based
at (1, 0) is path-homotopic to a loop γn. Our is based on the fact that there is a path
γ̃ on R starting at 0 such that γ = p ◦ γ̃. This is an important result in its own right
and will be proved separatedly below at 17.1. Then γ̃(1) is an integer n. Since R is
simply-connected, γ̃ is path-homotopic to the path γ̃n(t) = nt, 0 ≤ t ≤ 1, namely
through a path-homotopy such as F(s, t) = (1− s)γ̃(t) + sγ̃n(t), 0 ≤ s ≤ 1. Then
γ = p ◦ γ̃ is path-homotopic to γn through the path-homotopy G = p ◦ F.

Finally we check that Φ is injective. This is reduced to showing that if γm

is path-homotopic to γn then m = n. Our proof is based on another important
result below, 17.2, which claims that if γm is path-homotopic to γn then γ̃m is path-
homotopic to γ̃n. This implies the terminal point m of γ̃m must be the same as the
terminal point n of γ̃n. �

Covering spaces. The map p : R→ S1, p(t) = (cos(2πt), sin(2πt)) is called the
covering map associated with of the covering space R of S1. For a path γ : [0, 1] →
S1, a path γ̃ : [0, 1]→ R such that p ◦ γ̃ = γ is called a lift of γ.

R

p
��

[0, 1]

γ̃
==

γ
// S1

Lemma 17.1 (existence of lift). Every path in S1 has a lift to R. Furthermore if the
initial point of the lift is specified then the lift is unique.

PROOF. Let us write S1 = U ∪ V with U = S1 \ {(0,−1)} and V = S1 \
{(0, 1)}. Then p−1(U) =

⋃
n∈Z(n − 1

4 , n + 3
4 ) and p−1(V) =

⋃
n∈Z(n + 1

4 , n +
5
4 ). The key observation is that the preimage p−1(U) consists of infinitely many
disjoint open subsets of R, each of which is homemorphic to U via p, i.e. p :
(n− 1

4 , n + 3
4 )→ U is a homeomorphism, in particular the inverse map exists and

is continuous. The same thing happens with respect to V.
Let γ : [0, 1] → S1, γ(0) = (1, 0). We can divide [0, 1] into sub-intervals with

endpoints 0 = t0 < t1 < · · · < tn = 1 such that on each sub-interval [ti−1, ti],
1 ≤ i ≤ n, the path γ is either contained in U or in V. This is guaranteed by
the existence of a Lebesgue number 8.3 with respect to the open cover γ−1(U) ∪
γ−1(V) of [0, 1].

Suppose a lift γ̃(0) is chosen (which is an integer). Suppose that γ̃ has been
constructed on [0, ti−1] for a certain 1 ≤ i ≤ n. If γ([ti−1, ti]) ⊂ U then there
is a unique ni ∈ Z such that γ̃(ti−1) ∈ (ni − 1

4 , ni +
3
4 ). There is only one way

to continuously extend γ̃ to [ti−1, ti], that is by defining γ̃ = p|−1
(ni− 1

4 ,ni+
3
4 )
◦ γ.

Similarly, if γ([ti−1, ti]) ⊂ V there is ni ∈ Z such that γ̃(ti−1) ∈ (ni +
1
4 , ni +

5
4 ),
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ti−1 ti

γ̃

γ

p

R

S1

(1, 0)

ni ni+1

0 1

U

V

p−1(U)

p−1(V)

then on [ti−1, ti] we define γ̃ = p|−1
(ni+

1
4 ,ni+

5
4 )
◦ γ. In either case we obtain a unique

continuous lift γ̃ on [0, ti]. In this way γ̃ is extended continuously to [0, 1]. �

Examining the above proof we can see that the key property of the covering
space p : R → S1 is the following: each point on the circle has an open neighbor-
hood U such that the preimage p−1(U) is the disjoint union of open subsets of R,
each of which is homeomorphic to U via p. This is the defining property of general
covering spaces. This is also the property used in the next proof.

Lemma 17.2 (homotopy of lifts). Lifts of path-homotopic paths with same initial points
are path-homotopic.

PROOF. The proof is similar to the above proof of 17.1. Let F : [0, 1]× [0, 1]→
S1 be a path-homotopy from the path F0 to the path F1. If the two lifts F̃0 and F̃1

have same initial points then that initial point is the lift of the point F((0, 0)).
As we noted earlier, the circle has an open cover O such that each U ∈ O we

have p−1(U) is the disjoint union of open subsets of R, each of which is homeo-
morphic to U via p. The collection F−1(O) is an open cover of the square [0, 1]×
[0, 1]. By the existence of Lebesgue’s number, there is a partition of [0, 1] × [0, 1]
into sub-rectangles such that each sub-rectangle is contained in an element of
F−1(O). More concisely, we can divide [0, 1] into sub-intervals with endpoints
0 = t0 < t1 < · · · < tn = 1 such that for each 1 ≤ i, j ≤ n there is U ∈ O such that
F([ti−1, ti]× [tj−1, tj]) ⊂ U.

We already have F̃((0, 0)). Suppose that F̃((ti−1, tj−1)), 1 ≤ i, j ≤ n is already
defined. Suppose that F((ti−1, tj−1)) ∈ F([ti−1, ti]× [tj−1, tj]) ⊂ U for some U ∈ O.
We can write p−1(U) = ∪k∈KUk with Uk ∩Ul = ∅ if k 6= l, and each Uk is an open
subset of R such that p|Uk : Uk → U is a homeomorphism. Suppose that the
known lift of the point F((ti−1, tj−1)) is in Uk for some k ∈ K. Then we define F̃ on
the sub-rectangle [ti−1, ti]× [tj−1, tj] to be p|−1

Uk
◦ F.
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We need to check F̃ is continuous on the extended domain. Since we extend
one sub-rectangle at a time in this way, the intersection of the previous domain
of F̃ and the sub-rectangle [ti−1, ti] × [tj−1, tj] is connected. That implies F̃ must
bring the entire common domain to a unique Uk for some k ∈ K, therefore on this
common domain F̃ is p|−1

Uk
◦ F, agreeing with the new definition.

Thus we obtained a continuous lift F̃ of F. Since the initial point is given, by
uniqueness of lifts of paths in 17.1, the restriction of F̃ to [0, 1]×{0} is F̃0 while the
restriction of F̃ to [0, 1]× {1} is F̃1. Thus F̃ is a path-homotopy from F̃0 to F̃1. �

Applications.

Corollary. The circle is not contractible.

Corollary. The plane minus a point is not simply connected.

Problems.

17.3. Find the fundamental groups of the Mobius band and the cylinder.
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18. Van Kampen theorem

Van Kampen theorem is about giving the fundamental group of a union of
subspaces from the fundamental groups of the subspaces.

Example. Two circles with one common point (the figure 8) is called a wedge
product S1 ∨ S1. Let x0 be the common point, let a be a loop starting at x0 going
once around the first circle and let b the a loop starting at x0 going once around
the second circle. Then a and b generate the fundamental groups of the two circles
with based points at x0. Intuitively we can see that π1(S1 ∨ S1, x0) consists of path-
homotopy classes of loops like a, ab, bba, aabab−1a−1a−1, . . . This is a group called
the free group generated by a and b, denoted by 〈a, b〉.

a b

x0

Free group. Let S be a set. Let S−1 be a set having a bijection with S. Correspond-
ing to each element x ∈ S is an element in S−1 denoted by x−1. A word with letters
in S is a finite sequence of elements in S or S−1. The sequence with no element is
called the empty word. In a word, if two elements x and x−1 are consecutive then
they can be cancelled, i.e. they can be replaced by the empty word. Given two
words we form a new word by juxtaposition (đặt kề): (s1s2 · · · sn) · (s′1s′2 · · · s′m) =
s1s2 · · · sns′1s′2 · · · s′m. With this operation the set of all words with letters in S be-
comes a group. The identity element 1 is the empty word. The inverse element
of a word s1s2 · · · sn is the word s−1

n s−1
n−1 · · · s

−1
1 . This group is called the free group

generated by the set S, denoted by 〈S〉.

Example. The free group 〈{a}〉 generated by the set {a} is often written as 〈a〉. As
a set 〈a〉 can be written as {an | n ∈ Z}. The product is given by am · an = am+n.
The identity is a0. Thus as a group 〈a〉 is an infinite cyclic group, isomorphic to
(Z,+).

Let G be a set and let R be a set of words with letters in G, i.e. a finite subset of
the free group 〈G〉. Let N be the smallest normal subgroup of 〈G〉 containing R.
The quotient group 〈G〉 /N is written 〈G | R〉. Elements of G are called generators
of this group and elements of R are called relators of this group. We can think of
〈G | R〉 as consisting of words in G subjected to the relations r = 1 for all r ∈ R.

Example.
〈

a | a2〉 = {a0, a} ∼= Z2.
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Free product of groups. Let G and H be groups. Form the set of all words with
letters in G or H. In such a word, two consecutive elements from the same group
can be reduced by the group operation. For example ba2ab3b−5a4 = ba3b−2a4. In
particular if x and x−1 are next to each other then they will be cancelled. So the
identities of G and H can be reduced. For example abb−1c = a1c = ac.

As with free group, given two words we form a new word by juxtaposition.
For example (a2b3a−1) · (a3ba) = a2b3a−1a3ba = a2b3a2ba. This is a group op-
eration, with the identity element 1 being the empty word, the inverse of a word
s1s2 · · · sn is the word s−1

n s−1
n−1 · · · s

−1
1 . This group is called the free product of G with

H.

Proposition. If
G = 〈g1, g2, . . . , gm1 | r1, r2, . . . , rn1〉

and
H = 〈h1, h2, . . . , hm2 | s1, s2, . . . , sn2〉

then

G ∗ H = 〈g1, g2, . . . , gm1 , h1, h2, . . . , hm2 | r1, r2, . . . , rn1 , s1, s2, . . . , sn2〉 .

Example (G ∗ H 6= G× H). We have

〈g〉 ∗ 〈h〉 = 〈g, h〉 = {gm1 hn1 gm2 hn2 · · · gmk hnk | m1, n1, . . . , mk, nk ∈ Z, k ∈ Z+}.

Compare that to 〈g〉 × 〈h〉 = {(gm, hn) | m, n ∈ Z} with component-wise multi-
plication. This group can be identified with 〈g, h | gh = hg〉 = {gmhn | m, n ∈ Z}.
Thus Z ∗Z 6= Z×Z.

For more details on free group and free product, see textbooks on Algebra
such as [Gal10] or [Hun74].

Van Kampen theorem.

Theorem (Van Kampen theorem). Suppose that X = U ∪ V with U, V open, path-
connected, U ∩ V is path-connected, and x0 ∈ U ∩ V. Let iU : U ∩ V ↪→ U and
iV : U ∩V ↪→ V be inclusion maps. Then

π1(U ∪V, x0) ∼=
π1(U, x0) ∗ π1(V, x0)

〈(iU)∗(α)(iV)∗(α−1) | α ∈ π1(U ∩V, x0)〉
.

Corollary. If X = U ∪ V with U, V open, path-connected, U ∩ V is simply connected,
and x0 ∈ U ∩V, then π1(X, x0) ∼= π1(U, x0) ∗ π1(V, x0).

Example. Consider the sphere Sn, n ≥ 2. Let A = Sn \ {(0, 0, . . . , 0, 1)} and B =

Sn \ {(0, 0, . . . , 0,−1)}. Then A and B are contractible. By Van Kampen theorem,
π1(S2) ∼= π1(A) ∗ π1(B) = 1.

Thus we obtain:
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Corollary.

π1(Sn) ∼=

Z, n = 1

1, n > 1.

Corollary. The spheres of dimensions greater than one are simply connected.

Example. Consider the wedge of two circles. Let U be the union of the first circle
with an open arc on the second circle containing the common point. Similarly let
V be the union of the second circle with an open arc on the first circle containing
the common point. Clearly U and V have deformation retractions to the first and
the second circles respectively, while U ∩ V has a deformation retraction to the
common point. Applying the Van Kampen theorem we get

π1(S1 ∨ S1) ∼= π1(S1) ∗ π1(S1) ∼= Z ∗Z.

The fundamental group of a cell complex. A simple application of the Van
Kampen give us:

Theorem 18.1. Let X be a topological space and consider the space X t f Dn obtained by
attaching an n-dimensional cell to X via the map f : ∂Dn = Sn−1 → X. Let the base
point x0 ∈ f (∂Dn). Then

π1(X t f Dn, x0) ∼=

π1(X, x0)/[ f (∂Dn)], n = 2,

π1(X, x0) n > 2.

Intuitively, gluing a 2-disk destroys the boundary circle of the disk homotopi-
cally, but gluing disks of dimensions greater than 2 does not affect the fundamental
group.

PROOF. In view of 16.6, we can assume X is path-connected, otherwise we
can focus on the path-connected component containing x0. Let Y = X t f Dn. Let
U = X t f {x ∈ Dn | ‖x‖ > 1

2} ⊂ Y. Let V = {x ∈ Dn | ‖x‖ < 1} ⊂ Y. Then
U ∩ V = {x ∈ Dn | 1

2 < ‖x‖ < 1} ⊂ Y. Let y0 ∈ U ∩ V. We apply Van Kampen
theorem to the pair (U, V).

Consider the case n = 2. Let γ be a loop starting at y0 going once around
the annulus U ∩ V. Then [γ] is a generator of π1(U ∩ V, y0). In V the loop γ is
homotopically trivial since V has a deformation retraction to y0. Thus π1(Y, y0) ∼=
π1(U, y0)/([γ] = 1). Since there is a path from x0 to y0, we have π1(Y, y0) ∼=
π1(Y, x0). Since U has a deformation retraction to X we have π1(U, y0) ∼= π1(X, x0).
Under this deformation retraction, the image of γ becomes f (∂D2). Therefore
π1(Y, x0) ∼= π1(X, x0)/([ f (∂D2)] = 1).

When n = 2 the space U ∩V is contractible, therefore π1(Y, y0) ∼= π1(U, y0) ∼=
π1(X, x0). �

This result shows that the fundamental group only gives information about
the two-dimensional skeleton of a cell complex, it does not give information on
cells of dimensions greater than 2.
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The fundamental groups of surfaces. By the classification theorem, any com-
pact without boundary surface is obtained by identifying the edges of a polygon
following a word as in 14.1. As such it has a cell complex structure with a two-
dimensional disk glued to the boundary of the polygon under the equivalence
relation, which is a wedge of circles. An application of 18.1 gives us:

Theorem. The fundamental group of a connected compact surface S is isomorphic to one
of the following groups:

(a) trivial group, if S = S2,
(b)

〈
a1, b1a2, b2, . . . , ag, bg | a1b1a−1

1 b−1
1 a2b2a−1

2 b−1
2 · · · agbga−1

g b−1
g

〉
, if S is the

orientable surface of genus g,
(c)

〈
c1, c2, . . . , cg | c2

1c2
2 · · · c2

g

〉
, if S is the unorientable surface of genus g.

Problems.

18.2. Find the fundamental groups of the following spaces:

(a) The Mobius band.
(b) The cylinder.
(c) A wedge of finitely many circles.
(d) S1 ∨ S2.
(e) S2 ∨ S3.
(f) The plane minus finitely many points.
(g) The Euclidean space R3 minus finitely many points.

18.3. Give a rigorous definition of the wedge product of two spaces. For example, what
really is S1 ∨ S1?

18.4. Is the fundamental group of the Klein bottle abelian?

18.5. Show that the fundamental groups of the one-hole torus and the two-holes torus are
not isomorphic. Therefore the two surfaces are different.

18.6. Find a space whose fundamental group is isomorphic to Z3.

18.7. Find a space whose fundamental group is isomorphic to Z ∗Z5.
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19. Simplicial homology

Oriented simplex. Consider the relation on the collection of ordered sets of ver-
tices of a simplex whereas two order sets of vertices are related if they differ by
a even permutation. This is an equivalence relation. Each of the two equivalence
classes is called an orientation of the simplex. If we choose an orientation, then the
simplex is said to be oriented.

Example. A 1-dimensional simplex in Rn is a straight segment connecting two
points. Choosing one point as the first point and the other point as the second
gives an orientation to this simplex. Intuitively, this is the same as to give a direc-
tion to the straight segment.

Chain. Let X be a simplicial complex in a Euclidean space. For each integer n, let
Sn(X) be the free abelian group generated by all n-dimensional oriented simplexes
in X modulo the relation that if σ and σ′ are the same simplex with opposite orien-
tations, then σ = −σ′. Each element of Sn(X), called an n-dimensional chain (xích),
is a finite sum of integer multiples of n-dimensional oriented simplexes, i.e. of the
form ∑m

i=1 niσi where σi is an n-dimensional oriented simplex of X and ni ∈ Z. If
n is less than 0 or bigger than the dimension of X then Sn(X) is assigned to be the
trivial group 0.

Boundary. Let σ be an n-dimensional oriented simplex, i.e., a convex hull of (n +

1) ordered points v0, v1, . . . , vn where v1 − v0, v2 − v0, . . . , vn − v0 are n linearly
independent vectors. Denote such a convex hull by [v0, v1, . . . , vn]. Define the
boundary of σ to be the following (n− 1)-dimensional chain, the alternating sum
of the (n− 1)-dimensional faces of σ:

∂nσ =
n

∑
i=0

(−1)i[v0, v1, . . . , vi−1, v̂i, vi+1, . . . , vn],

where the notation v̂i is traditionally used to indicate that this point is dropped.
This map is extended linearly to become an operator from Sn(X) to Sn−1(X),

namely

∂n

(
m

∑
i=1

niσi

)
=

m

∑
i=1

ni∂nσi.

Remark. When n = 0, we assign ∂0 = 0. This is consistent with the convention
that S−1(X) = 0. Similarly if n is bigger than the dimension of X then ∂n = 0.

Example. An oriented 1-dimensional simplex in Rn is a straight segment v0v1. Its
boundary of this simplex is the 0-dimensional chain v1 − v0.

Example. An oriented 2-dimensional simplex in Rn is a triangle with three vertices
v0, v1, v2 in this order. The boundary of this simplex is the 1-dimensional chain
v2v3 − v1v3 + v1v2 = v2v3 + v3v1 + v1v2.
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Example. From the previous two examples, if [v0, v1, v3] is a an oriented 2-simplex,
then

∂1(∂2([v0, v1, v3])) = ∂1(v2v3 + v3v1 + v1v2) = (v3− v2)+ (v1− v3)+ (v2− v1) = 0.

This example illustrates that intuitively “a boundary has empty boundary”:

Proposition 19.1 (boundary of boundary is zero). ∂n−1 ◦ ∂n = 0 for all n ≥ 2.

PROOF. Let σ = [v0, v1, . . . , vn], an oriented n-simplex. As defined,

∂n(σ) =
n

∑
i=0

(−1)i[v0, v1, . . . , vi−1, v̂i, vi+1, . . . , vn].

Then

∂n−1∂n(σ) =
n

∑
i=0

(−1)i∂n−1([v0, v1, . . . , vi−1, v̂i, vi+1, . . . , vn])

=
n

∑
i=0

(−1)i(
i−1

∑
j=0

(−1)j[v0, . . . , v̂j, . . . , v̂i, . . . , vn] +

+
n−1

∑
j=i

(−1)j[v0, . . . , v̂i, . . . , v̂j+1, . . . , vn])

= ∑
0≤j<i≤n

(−1)i+j[v0, . . . , v̂j, . . . , v̂i, . . . , vn] +

+ ∑
0≤i≤j≤n−1

(−1)i+j[v0, . . . , v̂i, . . . , v̂j+1, . . . , vn]

= ∑
0≤j<i≤n

(−1)i+j[v0, . . . , v̂j, . . . , v̂i, . . . , vn] +

+ ∑
0≤i<k≤n, (k=j+1)

(−1)i+k−1[v0, . . . , v̂i, . . . , v̂k, . . . , vn]

= ∑
0≤j<i≤n

(−1)i+j[v0, . . . , v̂j, . . . , v̂i, . . . , vn] +

+ ∑
0≤j<i≤n

−(−1)i+j[v0, . . . , v̂j, . . . , v̂i, . . . , vn]

= 0.

�

The above result can be interpreted as

Im(∂n+1) ⊂ ker(∂n), ∀n ≥ 0.

In general, a sequence of groups and homomorphisms

· · · ∂n+2→ Sn+1
∂n+1→ Sn

∂n→ Sn−1
∂n−1→ · · · ∂1→ S0

satisfying Im(∂n+1) ⊂ ker(∂n), ∀n ≥ 0 is called a chain complex (phức xích). If
furthermore Im(∂n+1) = ker(∂n), ∀n ≥ 0 then the chain complex is called exact
(khớp).
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Notice that if the group Sn are abelian then Im(∂n+1) is a normal subgroup of
ker(∂n).

Definition. The n-dimensional simplicial homology group (nhóm đồng điều) of a
simplicial complex X is defined to be the quotient group

Hn(X) =
ker(∂n)

Im(∂n+1)
.

For more on simplicial homology one can read [Mun84]. In [Hat01] Hatcher
used a modified notion called ∆-complex, different from simplicial complex.
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20. Singular homology

A singular simplex (đơn hình suy biến, kì dị) is a continuous map from a stan-
dard simplex to a topological space. More precisely, an n-dimensional singular
simplex in a topological space X is a continuous map σ : ∆n → X.

Let Sn(X) be the free abelian group generated by all n-dimensional singular
simplexes in X. As a set

Sn(X) = {
m

∑
i=1

niσi | σi : ∆n → X, m ∈ Z+, k ∈ Z}.

Each element of Sn(X) is a finite sum of integer multiples of n-dimensional singu-
lar simplexes, called a singular n-chain .

Boundary. Let σ be an n-dimensional singular simplex in X, i.e., a map

σ : ∆n → X

(t0, t1, . . . , tn) 7→ σ(t0, t1, . . . , tn).

For 0 ≤ i ≤ n define the ith face of σ to be the (n− 1)-singular simplex

δiσ : ∆n−1 → X

(t0, t1, . . . , tn−1) 7→ σ(t0, t1, . . . , ti−1, 0, ti, . . . , tn−1).

This map is extended linearly to become an operator from Sn(X) to Sn−1(X),
namely

δi

(
m

∑
j=1

njσj

)
=

m

∑
j=1

njδiσj.

Define the boundary of σ to be the singular (n− 1)-chain ∂nσ = ∑n
i=0(−1)iδiσ.

More generally, ∂n is defined on Sn(X) by ∂n = ∑n
i=0(−1)iδi. Clearly ∂n is a group

homomorphism from Sn(X) to Sn−1(X).

Example. A 1-dimensional singular simplex in Rn is a continuous map σ(t0, t1)

with t0, t1 ∈ [0, 1] and t0 + t1 = 1. Its image is a curve between the points A =

σ(1, 0) and B = σ(0, 1). Its boundary is −A + B.
A 2-dimensional singular simplex in Rn is a continuous map σ(t0, t1, t2) with

t0, t1, t2 ∈ [0, 1] and t0 + t1 + t2 = 1. Its image is a “curved triangle” between the
points A = σ(1, 0, 0), B = σ(0, 1, 0), and C = (0, 0, 1). Intuitively, the image of the
face δ0 is the “curved edge” BC, the image of δ1 is CA, and the image of δ2 is AB.
The boundary is δ0 − δ1 + δ2.

Similar to the case of simplicial complex 19.1, we have

Proposition. ∂n−1 ◦ ∂n = 0, ∀n ≥ 2.

So like the case of simplicial complex we make the following definition:
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Definition. The n-dimensional singular homology group (nhóm đồng điều) of a
topological space X is defined to be the quotient group

Hn(X) =
ker(∂n)

Im(∂n+1)
.

Induced homomorphism. Suppose X and Y are topological spaces and f : X →
Y is continuous. Then f induces the following group homomorphism:

f# : Sn(X) → Sn(Y)

σ 7→ f ◦ σ.

It can be checked straightforwardly that

Proposition. ∂( f ◦ σ) = f ◦ (∂σ).

A consequence of this result is that f# induces a group homomorphism f∗ :
Hn(X)→ Hn(Y).

Proposition. (g ◦ f )∗ = g∗ ◦ f∗.

Theorem. If f : X → Y is either a homeomorphism or a homotopy equivalence then
f∗ : Hn(X)→ Hn(Y) is an isomorphism.

Thus the homology groups are not only topological invariants, they are homo-
topy invariants of topological spaces.

Mayer-Vietoris sequence.

Theorem. Let X be a topological space. Suppose U, V ⊂ X and int(U) ∪ int(V) = X.
Then the following chain complex, called the Mayer-Vietoris sequence, is exact:

· · · → Hn(U ∩V)
φ∗→ Hn(U)⊕ Hn(V)

ψ∗→ Hn(U ∪V)
∆→ Hn−1(U ∩V)→ · · ·

· · · → H0(U ∪V)→ 0.

The Mayer-Vietoris sequence allows us to study the homology of a space from
the homologies of subspaces, in a similar manner to the Van Kampen theorem.

Using the Mayer-Vietoris sequence we get:

Theorem.

Hn(Sm) ∼=

Z, if n = 0, m

0, otherwise.

Corollary 20.1. For n ≥ 2 there cannot be any retraction from the disk Dn to its boundary
Sn−1.

PROOF. Suppose there is a retraction r : Dn → Sn−1. Let i : Sn−1 ↪→ Dn be

the inclusion map. From the diagram Sn−1 i→ Dn r→ Sn−1 we have r ◦ i = idSn−1 ,
therefore on the (n − 1)-dimensional homology groups (r ◦ i)∗ = idHn−1(Sn−1)

is non-trivial. On the other hand (r ◦ i)∗ = r∗ ◦ i∗, where r∗ : Hn−1(Dn) →
Hn−1(Sn−1) is trivial for n > 1, since Dn is contractible. This is a contradiction. �
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A proof of this result in differentiable setting using Differential Topology is
presented in 28.1.

The important Brouwer fixed point theorem follows from that simple result:

Theorem 20.2 (Brouwer fixed point theorem). A continuous map from the disk Dn

to itself has a fixed point.

PROOF. Suppose that f : Dn → Dn does not have a fixed point, i.e. f (x) 6= x
for all x ∈ Dn. The straight line from f (x) to x will intersect the boundary ∂Dn at
a point g(x). Then g : Dn → ∂Dn is a retraction. That is impossible. �

For more on singular homology, one can read [Vic94].

Problems.

20.3. If X is a path-connected space then H0(X) ∼= Z. If X has k path-connected compo-
nents then H0(X) ∼= Zk.

20.4. Show that if X has two connected components A and B then Hi(X) ∼= Hi(A)⊕ Hi(B)
for all i ≥ 0.

20.5. Show that if A ∩ B is contractible then Hi(A ∪ B) ∼= Hi(A)⊕ Hi(B) for i ≥ 1. Is this
true if i = 0?

20.6. Compute the homology groups of S2 × [0, 1].

20.7. Compute the fundamental group and the homology groups of the Euclidean space
R3 minus a straight line.

20.8. Compute the fundamental group and the homology groups of the Euclidean space
R3 minus two intersecting straight lines.

20.9. Compute the fundamental group and the homology groups of R3 \ S1.
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21. Cellular homology

Degrees of maps on spheres. A continuous map f : Sn → Sn induces a homo-
morphism f∗ : Hn(Sn) → Hn(Sn). We know Hn(Sn) ∼= Z, so there is a generator
a such that Hn(Sn) = 〈a〉. Then f∗(a) = ma for a certain integer m, called the
topological degree of f , denoted by deg f .

Example. If f is the identity map then deg f = 1. If f is the constant map then
deg f = 0.

Relative homology groups. Let A be a subspace of X. Viewing each singular
simplex in A as a singular simplex in X, we have a natural inclusion Sn(A) ↪→
Sn(X). In this way Sn(A) is a normal subgroup of Sn(X). The boundary map ∂n

induces a homomorphism ∂n : Sn(X)/Sn(A)→ Sn−1(X)/Sn−1(A), giving a chain
complex

· · · → Sn(X)/Sn(A)
∂n→ Sn−1(X)/Sn−1(A)

∂n−1→ Sn−2(X)/Sn−2(A)→ · · ·

The homology groups of this chain complex is called the relative homology groups
of the pair (X, A), denoted by Hn(X, A).

If f : X → Y is continuous and f (A) ⊂ B then as before it induces a homo-
morphism f∗ : Hn(X, A)→ Hn(Y, B).

Homology of a cell complex. Let X be a cellular complex. Recall that Xn denote
the n-dimensional skeleton of X. Suppose that Xn is obtained from Xn−1 by attach-
ing the n-dimensional disks Dn

1 , Dn
2 , . . . , Dn

k . Let en
1 , en

2 , . . . , en
k be the corresponding

cells. Then

Hn(Xn, Xn−1) ∼= 〈en
1 , en

2 , . . . , en
k 〉 = {

k

∑
i=1

mien
i | mi ∈ Z}.

Consider following sequence

C(X) = · · · dn+1→ Hn(Xn, Xn−1)
dn→ Hn−1(Xn−1, Xn−2)

dn−1→ · · ·

· · · d2→ H1(X1, X0)
d1→ H0(X).

Here the map dn is given by

dn(en
i ) = ∑

j
di,jen−1

j ,

where the sum is taken over all (n− 1)-dimensional cells and the integer number
di,j is given as the degree of the map on spheres:

Sn−1
i = ∂Dn

i → Xn−1 → Xn−1/Xn−2 = Sn−1
1 ∨ Sn−1

2 ∨ · · · → Sn−1
j .

Theorem. The sequence C(X) is a chain complex and its homology coincides with the
homology of X.

Homology groups of surfaces. As an application we get:
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Theorem. The fundamental group of a connected compact orientable surface S of genus
g ≥ 0 is

Hn(S) ∼=

Z, if n = 0, 2

Zg if n = 1.

For more on cellular homology one can read [Hat01, p. 137].

Problems.

21.1. Using cellular homology compute the homology groups of the following spaces:

(a) The Klein bottle.
(b) S1 ∨ S1.
(c) S1 ∨ S2.
(d) S2 ∨ S3.
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Guide for further reading

The book [Vas01] gives a modern overview of many aspects of both Algebraic
and Differential Topology, aims at undergraduate students. Although it often only
sketch proofs, it introduces the general ideas very well.

The book of Munkres [Mun00], also aims at undergraduate students, has a
part on Algebraic Topology, but stops before homology.

For homology the book of Hatcher [Hat01] is very popular, but it aims at grad-
uate students, and sometimes one needs to read other sources too.

Recently Algebraic Topology has begun to be applied to science and engineer-
ing. One can read the book [EH10].





Differential Topology

22. Smooth manifolds

In this chapter we always assume that Rn has the Euclidean topology.
Roughly, a smooth manifold is a space that is locally diffeomorphic to Rm. This

allows us to bring the differential and integral calculus from Rm to manifolds.

Smooth maps on Rn. Recall that for a function f from a subset D of Rk to Rl

we say that f is smooth (or infinitely differentiable) at an interior point x of D if all
partial derivatives of all orders of f exist at x.

If x is a boundary point of D, then f is said to be smooth at x if f can be extended
to be a function which is smooth at every point in an open neighborhood in Rk of
x. Precisely, f is smooth at x if there is an open set U ⊂ Rk containing x, and
function F : U → Rl such that F is smooth at every point of U and F|U∩D = f .

If f is smooth at every point of D then we say that f is smooth on D, in other
words f ∈ C∞(D).

Let X ⊂ Rk and Y ⊂ Rl . Then f : X → Y is a diffeomorphism if it is bijective
and both f and f−1 are smooth. If there is a diffeomorphism from X to Y then we
say that they are diffeomorphic.

Example. Any open ball B(x, r) in Rn is diffeomorphic to Rn.

Smooth manifolds.

Definition. A subspace M ⊂ Rk is a smooth manifold of dimension m ∈ Z+ if
every point in M has a neighborhood in M which is diffeomorphic to Rm.

Recall that by Invariance of dimension 5.34, Rm cannot be homeomorphic to
Rn if m 6= n, therefore a manifold has a unique dimension.

Remark. A diffeomorphism is a homeomorphism, therefore a smooth manifold
is a topological manifold. In this chapter unless stated otherwise manifolds mean
smooth manifolds.

The following is a simple but convenient observation:

Proposition. A subspace M ⊂ Rk is a smooth manifold of dimension m if every point in
M has an open neighborhood in M which is diffeomorphic to an open subset of Rm.

Although this proposition seems to be less intuitive than our original defini-
tion, it is technically more convenient to use, therefore from now on we will usually
take it as the definition.

101
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PROOF. Suppose that (U, φ) is a local coordinate on M where U is a neighbor-
hood of x in M and φ : U → Rm is a diffeomorphism. There is an open subset U′

of M such that x ∈ U′ ⊂ U. Since φ is a homeomorphism, φ(U′) is an open neigh-
borhood of φ(x). There is a ball B(φ(x), r) ⊂ φ(U′). Let U′′ = φ−1(B(φ(x), r)).
Then U′′ is open in U′, so is open in M. Furthermore φ|U′′ : U′′ → B(φ(x), r) is a
diffeomorphism.

We have just shown that any point in the manifold has an open neighborhood
diffeomorphic to an open ball in Rm. For the reverse direction, we recall that any
open ball in Rm is diffeomorphic to Rm. �

By this result, each point x in a manifold has an open neighborhood U in M
and a diffeomorphism ϕ : U → V where V is an open subset of Rm. The pair
(U, ϕ) is called a local coordinate at x. The pair (V, ϕ−1) is called a local parametriza-
tion at x.

Example. Any open subset of Rm is a smooth manifold of dimension m.

Example. The graph of a smooth function y = f (x) for x ∈ (a, b) (a smooth curve)
is a 1-dimensional smooth manifold.

More generally:

Proposition. The graph of a smooth function f : D → Rl , where D ⊂ Rk is an open set,
is a smooth manifold of dimension k.

PROOF. Let G = {(x, f (x)) | x ∈ D} ⊂ Rk+l be the graph of f . The map
x 7→ (x, f (x)) from D to G is smooth. Its inverse is the projection (x, y) 7→ x. This
projection is the restriction of the projection given by the same formula from Rk+l

to Rk, which is a smooth map. Therefore D is diffeomorphic to G. �

Example (The circle). Let S1 = {(x, y) ∈ R2 | x2 + y2 = 1}. It is covered by four
neighborhoods which are half circles, each corresponds to points (x, y) ∈ S1 such
that x > 0, x < 0, y > 0 and y < 0. Each of these neighborhoods is diffeomorphic
to (−1, 1). For example consider the projection from U = {(x, y) ∈ S1 | x > 0} →
(−1, 1) given by (x, y) 7→ y. The map (x, y) 7→ y is smooth on R2, so it is smooth
on U. The inverse map y 7→ (

√
1− y2, y) is smooth on (−1, 1). Therefore the

projection is a diffeomorphism.

Remark. By convention, a manifold of dimension 0 is a discrete subspace of a
Euclidean space.

Remark. We are discussing smooth manifolds embedded in Euclidean spaces.
There is a notion of abstract smooth manifold, but we do not discuss it now.

Problems.

22.1. From our definition, a smooth function f defined on D ⊂ Rk does not necessarily have
partial derivatives defined at boundary points of D. However, show that if D is the closure
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of an open subspace of Rk then the partial derivatives of f are defined and are continuous
on D. For example, f : [a, b] → R is smooth if and only if f has right-derivative at a and
left-derivative at b, or equivalently, f is smooth on an open interval (c, d) containing [a, b].

22.2. If X and Y are diffeomorphic and X is an m-dimensional manifold then so is Y.

22.3. The sphere Sn = {(x1, x2, . . . , xn+1) ∈ Rn+1 | x2
1 + x2

2 + · · ·+ x2
n+1 = 1} is a smooth

manifold of dimension n, covered by the hemispheres.
There is a another way to see that Sn as a manifold, by using two stereographic projec-

tions, one from the North Pole and one from the South Pole.

22.4. Show that the hyperboloid x2 + y2− z2 = 1 is a manifold. Is the surface x2 + y2− z2 =

0 a manifold?

22.5. The torus can be obtained by rotating around the z axis a circle on the xOz plane not
intersecting the z axis. Show that the torus is a smooth manifold.

22.6. Consider the union of the curve y = sin 1
x , x > 0 and the segment {(0, y)| − 1 ≤ y ≤

1} (the Topologist’s sine curve, see Section 5.1). Is it a manifold?

22.7. Consider the union of the curve y = x3 sin 1
x , x 6= 0 and the point (0, 0). Is it a smooth

manifold?

22.8. Is the trace of the path γ(t) = ( 1
2 sin(2t), cos(t)), t ∈ (0, 2π) (the figure 8) a smooth

manifold?

22.9. A simple closed regular path is a map γ : [a, b]→ Rm such that γ is injective on [a, b),
γ is smooth, γ(k)(a) = γ(k)(b) for all integer k ≥ 0, and γ′(t) 6= 0 for all t ∈ [a, b]. Show that
the trace of a simple closed regular path is a smooth 1-dimensional manifold.

22.10. The trace of the path((2+ cos(1.5t)) cos t, (2+ cos(1.5t)) sin t, sin(1.5t)), 0 ≤ t ≤ 4π

is often called the trefoil knot. Draw it (using computer). Show that the trefoil knot is a
smooth 1-dimensional manifold (in fact it is diffeomeorphic to the circle S1, but this is more
difficult).

22.11. Show that any open subset of a manifold is a manifold.

22.12. Show that a connected manifold is also path-connected.

22.13. Show that any diffeomorphism from Sn−1 onto Sn−1 can be extended to a diffeomor-
phism from Dn = B′(0, 1) onto Dn.

22.14. Show that our definition of smooth manifold coincides with the definitions in [Spi65,
p. 109] and [Mun91, p. 196].
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23. Tangent spaces and derivatives

Derivatives of maps on Rn. We summarize here several results about derivatives
of functions defined on open sets in Rn. See for instance [Spi65] or [Lan97] for
more details.

Let U be an open set in Rk and V be an open set in Rl . Let f : U → V be
smooth. We define the derivative of f at x ∈ U to be the linear map d fx such that

d fx : Rk → Rl

h 7→ d fx(h) = limh→0
f (x + th)− f (x)

t
.

Thus d fx(h) is the directional derivative of f at x in the direction of h.
The derivative d fx is a linear approximation of f at x.
Because we assumed that all the first order partial derivatives of f exist and

are continuous, the derivative of f exists. In the canonical coordinate system of Rn

the derivative map d fx is represented by an l× k-matrix J fx = [ ∂ fi
∂xj

(x)]1≤i≤l, 1≤j≤k,

called the Jacobian of f at x, thus d fx(h) = J fx · h.

Theorem (The chain rule). Let U, V, W be open subsets of Rk, Rl , Rp respectively, let
f : U → V and g : V →W be smooth maps, and let y = f (x). Then

d(g ◦ f )x = dgy ◦ d fx.

In other words, the following commutative diagram

V
g

  
U

f
??

g◦ f
// W

induces the commutative diagram

TVy
dgy

##
TUx

d fx
==

d(g◦ f )x

// TWg(y)

Proposition. Let U and V be open subsets of Rk and Rl respectively. If f : U → V is a
diffeomorphism then the derivative d fx is a linear isomorphism, and k = l.

Remark. As a corollary, Rk and Rl are not diffeomorphic if k 6= l.

Tangent spaces of manifolds.

Example. To motivate the definition of tangent spaces of manifolds we recall the
notion of tangent spaces of surfaces. Consider a parametrized surface in R3 given
by ϕ(u, v) = (x(u, v), y(u, v), z(u, v)). Consider a point ϕ(u0, v0) on the surface.
Near to (u0, v0) if we fix v = v0 and only allow u to change then we get a parametrized
path ϕ(u, v0) passing through ϕ(u0, v0). The velocity vector of the curve ϕ(u, v0)
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is a “tangent vector” to the curve at the point ϕ(u0, v0), and is given by the partial
derivative with respect to u, that is, ∂ϕ

∂u (u0, v0). Similarly we have another “tan-

gent vector” ∂ϕ
∂v (u0, v0). Then the “tangent space” of the surface at ϕ(u0, v0) is the

plane spanned the above two tangent vectors (under some further conditions for
this notion to be well-defined).

We can think of a manifold as a multi-dimensional surface. Therefore our
definition of tangent space of manifold is a natural generalization.

Definition. Let M be an m-dimensional manifold in Rk. Let x ∈ M and let ϕ :
U → M, where U is an open set in Rm, be a parametrization of a neighborhood
of x. Assume that x = ϕ(u0) where u ∈ U. We define the tangent space of M at
x, denoted by TMx, to be the vector space in Rk spanned by the vectors ∂ϕ

∂ui
(u0),

1 ≤ i ≤ m.

Since ∂ϕ
∂ui

(u0) = dϕ(u0)(ei), we can see that TMx = dϕu(TUu) = dϕu(Rm).

Example. Consider a surface z = f (x, y). Then the tangent plane at (x, y, f (x, y))
consists of the linear combinations of the vectors (1, 0, fx(x, y)) and (0, 1, fy(x, y)).

Example. Consider the circle S1. Let (x(t), y(t)) be any path on S1. The tangent
space of S1 at (x, y) is spanned by the velocity vector (x′(t), y′(t)) if this vector
is not 0. Since x(t)2 + y(t)2 = 1, differentiating both sides with respect to t we
get x(t)x′(t) + y(t)y′(t) = 0, or in other words (x′(t), y′(t)) is perpendicular to
(x(t), y(t)). Thus the tangent space is perpendicular to the radius.

Proposition. The tangent space does not depend on the choice of parametrization.

PROOF. Consider the following diagram, where U, U′ are open, ϕ and ϕ′ are
parametrizations of open neighborhood of x ∈ M.

M

U

ϕ
>>

ϕ′−1◦ϕ

// U′

ϕ′
``

Notice that the map ϕ′−1 ◦ ϕ is to be understood as follows. We have that ϕ(U) ∩
ϕ′(U′) is a neighborhood of x ∈ M. Restricting to ϕ−1(ϕ(U) ∩ ϕ′(U′)), the map
ϕ′−1 ◦ ϕ is well-defined, and is a diffeomorphism. The above diagram gives us,
with any v ∈ Rm:

dϕu(v) = dϕ′
ϕ′−1◦ϕ(u)

(
d(ϕ′−1 ◦ ϕ)u(v)

)
.

Thus any tangent vector with respect to the parametrization ϕ is also a tangent
vector with respect to the parametrization ϕ′. We conclude that the tangent space
does not depend on the choice of parametrization. �

Proposition (Tangent space has same dimension as manifold). If M is an m-
dimensional manifold then the tangent space TMx is an m-dimensional linear space.



106 DIFFERENTIAL TOPOLOGY

PROOF. Since a parametrization ϕ is a diffeomorphism, there is a smooth map
F from an open set in Rk to Rm such that F ◦ ϕ = Id. So dFϕ(0) ◦ dϕ0 = IdRm . This
implies that the dimension of the image of dϕ0 is m. �

Derivatives of maps on manifolds. Let M ⊂ Rk and N ⊂ Rl be manifolds of
dimensions m and n respectively. Let f : M → N be smooth. Let x ∈ M. There is
a neighborhood W of x in Rk and a smooth extension F of f to W. The derivative
of f is defined to be the restriction of the derivative of F. Precisely:

Definition. The derivative of f at x is defined to be the linear map

d fx : TMx → TN f (x)

h 7→ d fx(h) = dFx(h).

Observe that d fx = dFx|TMx .
We need to show that the derivative is well-defined.

Proposition. d fx(h) ∈ TN f (x) and does not depend on the choice of F.

PROOF. We have a commutative diagram

W
F // N

U

ϕ

OO

ψ−1◦ f ◦ϕ

//

f ◦ϕ
>>

V

ψ

OO

Let us explain this diagram. Assume that ϕ(u) = x, ψ(v) = f (x), h = dϕu(w).
Take a parametrization ψ(V) of a neighborhood of f (x). Then f−1(ψ(V)) is an
open neighborhood of x in M. From the definition we can find an open set W in
Rk such that W ∩ M is an open neighborhood of x in M parametrized by ϕ(U),
and f has an extension to a function F defined on W which is smooth.

The diagram induces that if w ∈ Rm then d fx(dϕu(w)) = dFx
(
dϕu(w)

)
=

dψv
(
d(ψ−1 ◦ f ◦ ϕ)u(w)

)
. From this identity we get the desired conclusion. �

Thus, although as noted in the previous section a smooth map defined on a
general subset of Rk may not have derivatives, on a manifold the derivative can
be defined, in a natural manner as the restriction of the derivative of the extension
map to the tangent space of the manifold.

Proposition (The chain rule). If f : M → N and g : N → P are smooth functions
between manifolds, then

d(g ◦ f )x = dg f (x) ◦ d fx.

PROOF. There is an open neighborhood V of y in Rl and a smooth extension
G of g to V. There is an open neighborhood U of x in Rk such that U ⊂ F−1(V)

and there is a smooth extension F of f U. Then d(g ◦ f )x = d(G ◦ F)x|TMx =

(dGy ◦ dFx)|TMx = dGy|TNy ◦ dFx|TMx = dgy ◦ d fx. �
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Definition. If M and N are two smooth manifolds in Rk and M ⊂ N then we say
that M is a submanifold of N.

Proposition. If f : M → N is a diffeomorphism then d fx : TMx → TN f (x) is a linear
isomorphism. In particular the dimensions of the two manifolds are same.

PROOF. Let m = dim M and n = dim N. Since d fx ◦ d f−1
f (x) = IdTN f (x)

and

d f−1
f (x) ◦ d fx = IdTMx we deduce, via the rank of d fx that m ≥ n. Doing the same

with d f−1
f (x) we get m ≤ n, hence m = n. From that d fx must be a linear isomor-

phism. �

Problems.

23.1. Calculate the tangent spaces of Sn.

23.2. Calculate the tangent spaces of the hyperboloid x2 + y2 − z2 = a, a > 0.

23.3. Show that if Id : M→ M is the identify map then d(Id)x is Id : TMx → TMx.

23.4. Show that if M is a submanifold of N then TMx is a subspace of TNx.

23.5. In general, a curve on a manifold M is a smooth map c from an open interval of R to
M. The derivative of this curve is a linear map dc

dt (t0) : R → TMc(t0), represented by the
vector c′(t0) ∈ Rk, this vector is called the velocity vector of the curve at t = t0.

Show that any vector in TMx is the velocity vector of a curve in M.

23.6. Show that if M and N are manifolds and M ⊂ N then TMx ⊂ TNx.

23.7 (Cartesian products of manifolds). If X ⊂ Rk and Y ⊂ Rl are manifolds then X×Y ⊂
Rk+l is also a manifold. Furthermore T(X×Y)(x,y) = TXx × TYy.

23.8. (a) Calculate the derivative of the map f : (0, 2π)→ S1, f (t) = (cos t, sin t).
(b) Calculate the derivative of the map f : S1 → R, f (x, y) = ey.
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24. Regular values

Let f : M→ N be smooth. A point in M is called a regular point (điểm thường,
điểm chính qui) of f if the derivative of f at that point is surjective. Otherwise the
point is called a critical point (điểm dừng, điểm tới hạn) of f .

A point in N is called a critical value of f if it is the value of f at a critical point.
Otherwise the point is called a regular value of f .

Thus y is a critical value of f if and only if f−1(y) contains a critical point. In
particular, if f−1(y) = ∅ then y is considered a regular value.

Example. If f : M → N where dim(M) < dim(N) then every x ∈ M is a critical
point and every y ∈ N is a critical value of f .

Example. Let U be an open set in Rn and let f : U → R be smooth. Then x ∈ U is
a critical point of f if and only if ∇ f (x) = 0.

The Inverse function theorem and the Implicit function theorem. First we
state the Inverse function theorem in Multivariables Calculus.

Theorem 24.1 (Inverse function theorem). Let f : Rk → Rk be smooth. If d fx is
bijective then f is locally a diffeomorphism.

More concisely, if det(J fx) 6= 0 then there is an open neighborhood U of x and an
open neighborhood V of f (x) such that f |U : U → V is a diffeomorphism.

Remark 24.2. For a proof, see for instance [Spi65]. Usually the result is stated
for continuously differentiable function (i.e. C1), but the result for smooth func-
tions follows, since the Jacobian matrix of the inverse map is the inverse matrix
of the Jacobian of the original map, and the entries of an inverse matrix can be
obtained from the entries of the original matrix via smooth operations, namely
A−1 = 1

det A A∗, where A∗i,j = (−1)i+j det(Aj,i), and Aj,i is obtained from A by
omitting the ith row and jth column.

Theorem 24.3 (Implicit function theorem). Suppose that f : Rm+n → Rn is smooth
and f (x) = y. If d fx is onto then locally at x the level set f−1(y) is a graph of dimension
m.

More concisely, suppose that f : Rm×Rn → Rn is smooth and the matrix [Dm+j fi(x0, y0)],
1 ≤ i, j ≤ n is non-singular, then there is a neighborhood U ×V of (x0, y0) such that for
each x ∈ U there is a unique g(x) ∈ V satisfying f (x, g(x)) = 0. The function g is
smooth.

The Implicit function theorem is obtained by setting F(x, y) = (x, f (x, y)) and
applying the Inverse function theorem to F.

Theorem 24.4 (Inverse function theorem for manifolds). Let M and N be two man-
ifolds of the same dimensions, and let f : M → N be smooth. If x is a regular point of f
then there is a neighborhood in M of x on which f is a diffeomorphism onto its image.
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PROOF. Consider

M
f
// N

U

ϕ

OO

ψ−1◦ f ◦ϕ
// V

ψ

OO

Since d fx is surjective, it is bijective. Then d(ψ−1 ◦ f ◦ ϕ)u = dψ−1
f (x) ◦ d fx ◦ dϕu is an

isomorphism. The Inverse Function Theorem can be applied to ψ−1 ◦ f ◦ ϕ, giving
that it is a local diffeomorphism at u, so f is a local diffeomorphism at x. �

Preimage of a regular value.

Proposition 24.5. If dim(M) = dim(N) and y is a regular value of f then f−1(y) is a
discrete set. In other words, f−1(y) is a zero dimensional manifold. Furthermore if M is
compact then f−1(y) is a finite set.

PROOF. If x ∈ f−1(y) then there is a neighborhood of x on which f is a bi-
jection. That neighborhood contains no other point in f−1(y). Thus f−1(y) is a
discrete set.

If M is compact then the set f−1(y) is compact. If it the set is infinite then
it has a limit point x0. Because of the continuity of f , we have f (x0) = y. That
contradicts the fact that f−1(y) is discrete. �

The following theorem is the Implicit function theorem for manifolds.

Theorem 24.6 (Preimage of a regular value is a manifold). If y is a regular value of
f : M→ N then f−1(y) is a manifold of dimension dim(M)− dim(N).

PROOF. Let m = dim(M) and n = dim(N). The case m = n is already
considered in 24.5. Now we assume m > n. Let x0 ∈ f−1(y0). Consider the
diagram

M
f
// N

O

ϕ

OO

g
// W

ψ

OO

where g = ψ−1 ◦ f ◦ ϕ and ψ(w0) = y0.
Since d fx0 is onto, dgϕ−1(x0)

is also onto. If needed we can change g, O and ϕ by
permuting variables appropriately such that the matrix [Djgi(ϕ−1(x0))], 1 ≤ i ≤
n, m− n + 1 ≤ j ≤ m is non-singular. Denote ϕ−1(x0)) = (u0, v0) ∈ Rm−n ×Rn.
By the Implicit Function Theorem applied to g there is an open neighborhood U of
u0 in Rm−n and an open neighborhood V of v0 in Rn such that U×V is contained
in O and on U × V we have g(u, v) = w0 if and only if v = h(u) for a certain
smooth function h : U → V. In other words, on U × V the equation g(u, v) = w0

determines a graph (u, h(u)).
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Now we have ϕ(U × V) ∩ f−1(y0) = {ϕ(u, h(u)) | u ∈ U}. Let ϕ̃(u) =

ϕ(u, h(u)) then ϕ̃ is a diffeomorphism from U onto ϕ(U × V) ∩ f−1(y0), a neigh-
borhood of x0 in f−1(y0). �

Example. To be able to follow the proof more easily the reader can try to work
it out for an example, such as the case where M is the graph of the function z =

x2 + y2, and f is the height function f ((x, y, z)) = z defined on M.

Example. The n-sphere Sn is a subset of Rn+1 determined by the implicit equa-
tion ∑n+1

i=1 x2
i = 1. Since 1 is a regular value of the function f (x1, x2, . . . , xn+1) =

∑n+1
i=1 x2

i we conclude that Sn is a manifold of dimension n.

Lie groups. The set Mn(R) of n × n matrices over R can be identified with the
Euclidean manifold Rn2

.
Consider the map det : Mn(R) → R. Let A = [ai,j] ∈ Mn(R). Since det(A) =

∑σ∈Sn(−1)σa1,σ(1)a2,σ(2) · · · an,σ(n) = ∑j(−1)i+jai,j det(Ai,j), we can see that det is
a smooth function.

Let us find the critical points of det. A critical point is a matrix A = [ai,j] at
which ∂ det

∂ai,j
(A) = (−1)i+j det(Ai,j) = 0 for all i, j. In particular, det(A) = 0. So 0 is

the only critical value of det.
Therefore SLn(R) = det−1(1) is a manifold of dimension n2 − 1.
Furthermore we note that the group multiplication in SLn(R) is a smooth map

from SLn(R) × SLn(R) to SLn(R). The inverse operation is a smooth map from
SLn(R) to itself. We then say that SLn(R) is a Lie group.

Definition. A Lie group is a smooth manifold which is also a group, for which
the group operations are compatible with the smooth structure, namely the group
multiplication and inversion are smooth.

Let O(n) be the group of orthogonal n× n matrices, the group of linear trans-
formation of Rn that preserves distances.

Proposition. The orthogonal group O(n) is a Lie group.

PROOF. Let S(n) be the set of symmetric n × n matrices. This is clearly a
manifold of dimension n2+n

2 .
Consider the smooth map f : M(n) → S(n), f (A) = AAt. We have O(n) =

f−1(I). We will show that I is a regular value of f .
We compute the derivative of f at A ∈ f−1(I):

d fA(B) = lim
t→0

f (A + tB)− f (A)

t
= BAt + ABt.

We note that the tangents spaces of M(n) and S(n) are themselves. To check
whether d fA is onto for A ∈ O(n), we need to check that given C ∈ S(n) there is a
B ∈ M(n) such that C = BAt + ABt. We can write C = 1

2 C + 1
2 C, and the equation

1
2 C = BAt will give a solution B = 1

2 CA, which is indeed a solution to the original
equation. �
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Problems.

24.7. Let f : R2 → R, f (x, y) = x2 − y2. Show that if a 6= 0 then f−1(a) is a 1-dimensional
manifold, but f−1(0) is not. Show that if a and b are both positive or both negative then
f−1(a) and f−1(b) are diffeomorphic.

24.8. Let f : R3 → R, f (x, y) = x2 + y2 − z2. Show that if a 6= 0 then f−1(a) is a 2-
dimensional manifold, but f−1(0) is not. Show that if a and b are both positive or both
negative then f−1(a) and f−1(b) are diffeomorphic.

24.9. Show that the equation x5 + y4 + z3 = 1 determine a manifold in R3.

24.10. Is the intersection of the two surfaces z = x2 + y2 and z = 1− x2 − y a manifold?

24.11. Show that the height function (x, y, z) 7→ z on the sphere S2 has exactly two critical
points.

24.12. Show that if f achieves local extremum at x then x is a critical point of f .

24.13. Show that a smooth function on a compact manifold must have at least two critical
points.

24.14. Let dim(M) = dim(N), M be compact and S be the set of all regular values of
f : M → N. For y ∈ S, let | f−1(y)| be the number of elements of f−1(y). Show that the
map

S → N

y 7→ | f−1(y)|.
is locally constant. In other words, each regular value has a neighborhood where the num-
ber of preimages of regular values is constant.

24.15. Let M be a compact manifold and let f : M → R be smooth. Show that the set of
regular values of f is open.

24.16. Use regular value to show that the torus T2 is a manifold.

24.17. Find the regular values of the function f (x, y, z) = [4x2(1− x2)− y2]2 + z2 − 1
4 (and

draw a corresponding level set).

24.18. Find a counter-example to show that 24.5 is not correct if regular value is replaced
by critical value.

24.19.
√

If f : M → N is smooth, y is a regular of f , and x ∈ f−1(y), then ker d fx =

T f−1(y)x.

24.20. Show that S1 is a Lie group.

24.21. Show that the set of all invertible n× n-matrices GL(n; R) is a Lie group and find its
dimension.

24.22. In this problem we find the tangent spaces of SLn(R).

(a) Check that the derivative of the determinant map det : Mn(R) → R is repre-
sented by a gradient vector whose (i, j)-entry is (−1)i+j det(Ai,j).

(b) Determine the tangent space of SLn(R) at A ∈ SLn(R).
(c) Show that the tangent space of SLn(R) at the identity matrix is the set of all n× n

matrices with zero traces.
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25. Critical points and the Morse lemma

Partial derivatives. Let f : M → R. Let U be an open neighborhood in M
parametrized by ϕ. For each x = ϕ(u) we define the first partial derivatives:(

∂

∂xi
f
)
(x) =

∂

∂ui
( f ◦ ϕ)(u).

In other words,
(

∂
∂xi

f
)
(ϕ(u)) = ∂

∂ui
( f ◦ ϕ)(u). Of course this definition depends

on local coordinates.
If f is defined on Rm then this is the usual partial derivative.
To understand

(
∂

∂xi
f
)
(x) better, we can think that the parametrization ϕ brings

the coordinate system of Rm to the neighborhood U, then
(

∂
∂xi

f
)
(x) is the rate of

change of f (x) when the variable x changes along the path in U which is the com-
position of the standard path tei along the ith axis of Rm with ϕ.

We can write(
∂

∂xi
f
)
(x) =

∂

∂ui
( f ◦ ϕ)(u) = d( f ◦ ϕ)(u)(ei)

= (d f (x) ◦ dϕ(u)) (ei) = d f (x)(dϕ(u)(ei)).

Thus
(

∂
∂xi

f
)
(x) is the value of the derivative map d f (x) at the image of the

unit vector ei of Rm.

Gradient vector. The tangent space TMx inherits the Euclidean inner product
from the ambient space Rk. In this inner product space the linear map d fx :
TMx → R is represented by a vector in TMx which we called the gradient vec-
tor ∇ f (x). This vector is determined by the property 〈∇ f (x), v〉 = d fx(v) for any
v ∈ TMx. Notice that the gradient vector ∇ f (x) is defined on the manifold, not
depending on local coordinates.

In a local parametrization the vectors dϕ(u)(ei) = ∂ϕ
∂ui

(u) , 1 ≤ i ≤ m consti-
tutes a vector basis for TMx. In this basis the coordinates of ∇ f (x) are

〈∇ f (x), dϕ(u)(ei)〉 = d fx(dϕ(u)(ei)) =
∂ f
∂xi

(x).

In other words, in that basis we have the familiar formula∇ f = 〈 ∂ f
∂x1

, ∂ f
∂x1

, . . . , ∂ f
∂xm
〉.

This formula depends on local coordinates. It implies that ∇ f : M → Rm is a
smooth function.

We have several simple observations:

Proposition. A point is a critical point if and only if the gradient vector at that point is
zero.

Proposition. At a local extremum point the gradient vector must be zero.

Second derivatives. Since ∂
∂xi

f is a smooth function on U, we can take its partial
derivatives. Thus we define the second partial derivatives:
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∂2 f
∂xi∂xj

(x) =
∂

∂xi

(
∂

∂xj
f

)
(x).

In other words,

∂2 f
∂xi∂xj

(ϕ(u)) =
∂

∂xi

(
∂

∂xj
f

)
(ϕ(u)) =

∂

∂ui

(
∂ f
∂xj
◦ ϕ

)
(u)

=
∂

∂ui

(
∂

∂uj
( f ◦ ϕ)

)
(u) =

∂2

∂ui∂uj
( f ◦ ϕ)(u).

Non-degenerate critical points. Consider the Hessian matrix of second partial
derivatives:

H f (x) =

(
∂2 f

∂xi∂xj
(x)

)
1≤i,j≤m

.

If this matrix is non-degenerate, then we say that x is a non-degenerate critical point
of f .

Lemma 25.1. The non-degeneracy of a critical point does not depend on choices of local
coordinates.

PROOF. We can see that the problem is reduced to the case of functions on
Rm. If f : Rm → R and ϕ is a change of variables (i.e. a diffeomorphism) of Rm

then we have

∂

∂ui
( f ◦ ϕ)(u) = ∑

k

∂ f
∂xk

(x) · ∂ϕk
∂ui

(u).

Then

∂2

∂uj∂ui
( f ◦ ϕ)(u) = ∑

k

[(
∑

l

∂2 f
∂xl∂xk

(x) · ∂ϕl
∂uj

(u)

)
· ∂ϕk

∂ui
(u) +

∂ f
∂xk

(x) · ∂2 ϕ

∂uj∂ui
(u)

]

= ∑
k,l

∂2 f
∂xl∂xk

(x) · ∂ϕl
∂uj

(u) · ∂ϕk
∂ui

(u).

In other words: H( f ◦ ϕ)(u) = Jϕ(u)t[H f (ϕ(u))]Jϕ(u). This formula immediately
gives us the conclusion. �

Morse lemma.

Theorem (Morse’s lemma). Suppose that f : M → R is smooth and p is a non-
degenerate critical point of f . There is a local coordinate ϕ in a neighborhood of p such that
ϕ(p) = 0 and in that neighborhood

f (x) = f (p)− ϕ(x)2
1 − ϕ(x)2

2 − · · · − ϕ(x)2
k + ϕ(x)2

k+1 + ϕ(x)2
k+2 + · · ·+ ϕ(x)2

m.

In other words, in a neighborhood of 0,
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( f ◦ ϕ−1)(u) = ( f ◦ ϕ−1)(0)− u2
1 − u2

2 − · · · − u2
k + u2

k+1 + u2
k+2 + · · ·+ u2

m.

If we abuse notations by using local coordinates and write xi for ui = ϕ(x)i then

f (x) = f (p)− x2
1 − x2

2 − · · · − x2
k + x2

k+1 + x2
k+2 + · · ·+ x2

m.

The number k does not depend on the choice of such local coordinates and is called the
index of the non-degenerate critical point p.

Example. Non-degenerate critical points of index 0 are local minima, and the ones
with maximum indexes are local maxima.

PROOF. Since we only need to prove the formula for f ◦ ϕ−1, we only need to
work in Rm.

First, we write

f (x) = f (0) +
∫ 1

0

d
dt

f (tx) dt

= f (0) +
m

∑
i=1

∫ 1

0

(
∂ f
∂xi

(tx)
)

xi dt

= f (0) +
m

∑
i=1

xi

∫ 1

0

(
∂ f
∂xi

(tx)
)

dt.

A result of Analysis (see for example [Lan97, p. 276]) tells us that the functions
gi(x) =

∫ 1
0

(
∂

∂xi
f (tx)

)
dt are smooths. Notice that gi(0) = ∂ f

∂xi
(0) = 0. Further-

more
∂gi
∂xj

(x) =
∫ 1

0

∂2 f
∂xj∂xi

(tx)t dt,

therefore ∂gi
∂xj

(0) = 1
2

∂2 f
∂xj∂xi

(0).

Apply this construction once again to gi we obtain smooth functions gi,j such

that gi,j(0) = 1
2

∂2 f
∂xi∂xj

(0) and

f (x) = f (0) +
m

∑
i,j=1

xixjgi,j(x).

Set hi,j = (gi,j + gj,i)/2 then hi,j = hj,i, hi,j(0) = 1
2

∂2 f
∂xi∂xj

(0), and

f (x) = f (0) +
m

∑
i,j=1

xixjhi,j(x).

The rest of the proof is a simple completing the square. Since the matrix(
hi,j(0)

)
is non-degenerate by a permutation of variables if necessary, we can as-

sume that h1,1(0) 6= 0. Then there is a neighborhood of 0 such that h1,1(x) does not
change its sign. In that neighborhood, if h1,1(0) > 0 then
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f (x) = f (0)+ h1,1(x)x2
1 + ∑

1<j
(h1,j(x) + hj,1(x))x1xj + ∑

1<i,j
hi,j(x)xixj

= f (0)+ h1,1(x)x2
1 + 2 ∑

1<j
h1,j(x)x1xj + ∑

1<i,j
hi,j(x)xixj

= f (0)+
(√

h1,1(x)x1

)2
+ 2
√

h1,1(x)x1
∑1<j h1,j(x)xj√

h1,1(x)
+ ∑

1<i,j
hi,j(x)xixj

= f (0)+

[√
h1,1(x)x1 + ∑

1<j

h1,j(x)√
h1,1(x)

xj

]2

−
(

∑
1<j

h1,j(x)√
h1,1(x)

xj

)2

+ ∑
1<i,j

hi,j(x)xixj.

Similarly, if h1,1(0) < 0 then

f (x) = f (0)−
[√
−h1,1(x)x1 −∑

1<j

h1,j(x)√
−h1,1(x)

xj

]2

+

(
∑
1<j

h1,j(x)√
−h1,1(x)

xj

)2

+ ∑
1<i,j

hi,j(x)xixj.

Combining both cases, we define the new variables:

v1 =
√
|h1,1(x)|x1 + sign(h1,1(0)) ∑

1<j

h1,j(x)√
|h1,1(x)|

xj,

vi = xi, i > 1.

Since
∂v1

∂x1
(0) =

√
|h1,1(0)| 6= 0

the Jacobian matrix
(

∂vi
∂xj

(0)
)

is non-singular. By the Inverse function theorem,

there is a neighborhood of 0 where the correspondence x 7→ v is a diffeomorphism,
that is, a change of variables. With the new variables we have

f (v) = f (0) + sign(h1,1(0))v2
1 + ∑

1<i,j
h′i,j(v)vivj.

By a direct calculation, we can check that in these variables

H f (0) =

(
sign(h1,1(0)) 0

0 (2h′i,j(0))1<i,j≤m

)
.

Using 25.1 we conclude that the matrix (h′i,j(0))1<i,j≤m must be non-singular. Thus
the induction process can be carried out. Finally we can permute the variables such
that in the final form of f the negative signs are in front.

�

Problems.
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25.2. Show that the gradient vector is always normal to level surfaces.

25.3. Give a generalization of the method of Lagrange multipliers to manifolds.

25.4. For the specific case of f (x) = ∑1≤i,j≤m ai,jxixj where ai,j are real numbers, to prove
the Morse’s lemma we can use a diagonalization of a quadratic form or a symmetric matrix,
considered in Linear Algebra. The change of variables corresponds to using a new vector
basis consisting of eigenvectors of the matrix.

25.5. Recover the classification of critical points from Calculus.
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26. Flows

Vector fields.

Definition. A smooth tangent vector field on a manifold M ⊂ Rk is a smooth map
V : M→ Rk such that V(x) ∈ TMx for each x ∈ M.

Example. If f : M → R is smooth then the gradient ∇ f is a smooth vector field
on M.

An integral curve at a point x ∈ M with respect to the vector field V is a smooth
path γ : (a, b) → M such that 0 ∈ (a, b), γ(0) = x, and γ′(t) = V(γ(t)) for all
t ∈ (a, b). It is a path going through x and at every moment taking the vectors of
the given vector field as velocity vectors. In picture, an integral curve is tangent to
the vector field. Integral curves are also called solution curves, trajectories, or flow
lines.

In a local coordinate around x, a vector field on that neighborhood corre-
sponds to a vector field on Rm, and an integral curve in that neighborhood cor-
responds to an integral curve on Rm. Thus, by using local coordinate, we can
consider a local integral curve as a solution to the differential equation γ′(t) =

V(γ(t)) in Rm subjected to the initial condition γ(0) = x.

Flows. For each x ∈ M, let φ(t, x), or φt(x), be an integral curve at x, with t belongs
to an interval J(x). We have a map

φ : D = {(t, x) | x ∈ M, t ∈ J(x)} ⊂ R×M → M

(t, x) 7→ φt(x),

with the properties φ0(x) = x, and d
dt (φ)(t, x) = V(φ(t, x)). This map φ is called a

flow (dòng) generated by the vector field V.

Theorem. For each smooth vector field there exists a unique smooth flow, in the sense that
any two integral curves at the same point must agree on the intersection of their domains.
The domain of this flow can be taken to be an open set.

This theorem is just an interpretation of the theorem in Differential Equations
on the existence, uniqueness, and dependence on initial conditions of solutions to
differential equations, see for example [HS74], [Lan97].

Theorem (Group law). Any flow satisfies

φt+s(x) = φt(φs(x)).

PROOF. Define γ(t) = φt+s(x). Then γ(0) = φs(x), and γ′(t) = d
dt (φ)(t +

s, x) = V(φ(t + s, x)) = V(γ(t)). Thus γ(t) is an integral curve at φs(x). But
φt(φs(x)) is another integral curve at φs(x). By uniqueness of integral curves, γ(t)
must agree with φt(φs(x)) on their common domains. �
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When every integral curve can be extended without bound in both directions,
in other words, for all x the map φt(x) is defined for all t ∈ R, we say that the flow
is complete.

Theorem. On a compact manifold any flow is complete.

PROOF. Although generally each integral curve has its own domain, first we
will show that for compact manifolds all integral curves can have same domains.
Since the domain D of the flow can be taken to be an open subset of R×M, each
x ∈ M has an open neighborhood Ux and a corresponding interval (−εx, εx) such
that (−εx, εx) × Ux is contained in D. The collection {Ux | x ∈ M} is an open
cover of M therefore there is a finite subcover. That implies there is a positive real
number ε such that for every x ∈ M the integral curve φt(x) is defined on (−ε, ε).

Now φt(x) can be extended by intervals of length ε/2 to be defined on R. For
example, if t > 0 then there is n ∈N such that n ε

2 ≤ t < (n + 1) ε
2 , then define

φt(x) = φt−n ε
2

(
φn ε

2
(x)
)

,

where φn ε
2
(x) = φ ε

2

(
φ(n−1) ε

2
(x)
)

if n ≥ 1. �

Theorem. If the map φt : M→ M is defined then it is a diffeomorphism.

For example, if the flow is complete then φt is defined for all t ∈ R, we can
think of φt as moving every point along integral curves for an amount of time t.

PROOF. Since the flow φ is smooth the map φt is smooth. Its inverse map φ−t

is also smooth. �

Theorem. Let M be a compact smooth manifold and f : M → R be smooth. If the
interval [a, b] only contains regular values of f then the level sets f−1(a) and f−1(b) are
diffeomorphic.

PROOF. The idea of the proof is to construct a diffeomorphism from f−1(a) to
f−1(b) by pushing along the flow lines of the gradient vector field of f . However
since ∇ f (x) can be zero outside of f−1([a, b]) we need a modification to ∇ f .

Suppose that a < b. By 24.15 there are intervals [a, b] ⊂ (c, d) ⊂ [c, d] ⊂ (h, k)
such that (h, k) contains only regular values of f . Thus on f−1((h, k)) the vector
∇ f (x) never vanish.

By 26.4 there is a smooth function ψ that is 1 on f−1([c, d]) and is 0 outside
f−1((h, k)). Let F = ψ

∇ f
||∇ f ||2 , then F is a well-defined smooth vector field on M.

Notice that F is basically a rescale of ∇ f .
Let φ be the flow generated by F. We have:

d
dt

f (φt(x)) = d fφt(x)

(
d
dt

φt(x)
)
= 〈∇ f (φt(x)), F(φt(x))〉 = ψ(φt(x)).

Fix x ∈ f−1(a). Since φt(x) is continuous with respect to t and φ0(x) = x, there is
an ε > 0 such that φt(x) ∈ f−1((c, d)) for t ∈ [0, ε). Let ε0 be the supremum (or
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∞) of the set of such ε. Then for t ∈ [0, ε0) we have φt(x) ∈ f−1((c, d)), and so

d
dt

f (φt(x)) = ψ(φt(x)) = 1.

This means the flow line is going at constant speed 1. We get f (φt(x)) = t + a for
t ∈ [0, ε0). If ε0 ≤ b − a then by continuity f (φε0(x)) = ε0 + a ≤ b < d. This
implies there is ε′ > ε0 such that f (φt(x)) < d for t ∈ [ε0, ε′), a contradiction.
Thus ε0 > b− a. We now observe that f (φb−a(x)) = b. Thus φb−a maps f−1(a) to
f−1(b), so it is the desired diffeomorphism. �

Theorem 26.1 (Homogeneity of manifolds). On a connected manifold there is a self
diffeomorphism that brings any given point to any given point.

PROOF. First we can locally bring any point to a given point without outside
disturbance. That translates to a problem on Rn: we will show that for any c ∈
B(0, 1) there is a diffeomorphism h : Rn → Rn such that h|Rn\B(0,1) = 0 and
h(0) = c.

By 26.2 there is a smooth function f : Rn → R such that f |B′(0,||c||) = 1 and
f |Rn\B(0,1) = 0. Consider the vector field F : Rn → Rn, F(x) = f (x)c. This is a
smooth vector field with compact support. The flow generated by this vector field
is a smooth map φ : R×Rn → Rn such that

φ0(x) = x,
d
dt

φt(x) = F(φt(x)).

�

Problems.

26.2.
√

The following is a common smooth function:

f (x) =

e−1/x, if x > 0

0, if x ≤ 0.

(a) Show that f (x) is smooth.
(b) Let a < b and let g(x) = f (x− a) f (b− x). Then g is smooth, g(x) is positive on

(a, b) and is zero everywhere else.
(c) Let

h(x) =

∫ x
−∞ g(x) dx∫ ∞
−∞ g(x) dx

.

Then h(x) is smooth, h(x) = 0 if x ≤ a, 0 < h(x) < 1 if a < x < b, and h(x) = 1 if
x ≥ b.

(d) The function

k(x) =
f (x− a)

f (x− a) + f (b− x)
also has the above properties of h(x).

(e) In Rn, construct a smooth function whose value is 0 outside of the ball of radius
b, 1 inside the ball of radius a, where 0 < a < b, and between 0 and 1 in between
the two balls.
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26.3 (Smooth Urysohn lemma). Let A ⊂ U ⊂ Rn where A is compact and U is open. We
will show that there exists a smooth function ϕ : Rn → R such that 0 ≤ ϕ(x) ≤ 1, ϕ|A = 1,
ϕ|Rn\U = 0.

26.4 (Smooth Urysohn lemma for manifolds). Let M be a smooth manifold, A ⊂ U ⊂ M
where A is compact and U is open in M. Show that there is a smooth function ϕ : M → R

such that 0 ≤ ϕ(x) ≤ 1, ϕ|A = 1, ϕ|M\U = 0.
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27. Manifolds with boundaries

The closed half-space Hm = {(x1, x2, . . . , xm) ∈ Rm | xm ≥ 0} ⊂ Rm whose
topological boundary is ∂Hm = {(x1, x2, . . . , xm) ∈ Rm | xm = 0} is our model for
a manifold with boundary.

Definition. A subspace M of Rk is called a manifold with boundary of dimension m
if each point in M has a neighborhood diffeomorphic to either Rm or Hm, where
in the second case the point is sent to ∂Hm. The set of all points of the first type
is called the interior of M. The set of all points of the second type is called the
boundary of M, denoted by ∂M.

A point belongs to either the interior or the boundary, not both, because of the
following:

Lemma. Hm is not diffeomorphic to Rm.

PROOF. Suppose f : Rm → Hm is a diffeomorphism. For any x ∈ Rm, d fx

is non-singular, therefore by the Inverse function theorem f is a diffeomorphism
from an open ball containing x onto an open ball containing f (x). Thus f (x) must
be an interior point (in topological sense) of Hm. This implies that f cannot be
onto Hm, a contradiction.

Alternatively we can use Invariance of dimension 5.34. �

Remark. The boundary of a manifold is generally not the same as its topological
boundary.

Remark. On convention, when we talk about a manifold we still mean a manifold
as earlier defined, that is, with no boundary. A manifold with boundary can have
empty boundary, in which case it is a manifold.

Proposition. The interior of an m-manifold with boundary is an m-manifold without
boundary. The boundary of an m-manifold with boundary is an (m− 1)-manifold without
boundary.

PROOF. The part about the interior is clear. Let us consider the part about the
boundary.

Let M be an m-manifold and let x ∈ ∂M. Let ϕ be a diffeomorphism from a
neighborhood U of x in M to Hm. We can check that if y ∈ U then ϕ(y) ∈ ∂Hm

if and only if y ∈ ∂M. Thus the restriction ϕ|U∩∂M is a diffeomorphism from a
neighborhood of x in ∂M to ∂Hm, which is diffeomorphic to Rm−1. �

The tangent space of a manifold with boundary M is defined as follows. It x is an
interior point of M then TMx is defined as before. If x is a boundary point then
there is a parametrization ϕ : Hm → M, where ϕ(0) = x. Notice that by continuity
ϕ has well-defined partial derivatives at 0. This implies that the derivative dϕ0 :
Rm → Rk is well-defined. Then TMx is still defined as dϕ0(R

m). The Chain rule
still holds. The notion of critical point is defined exactly as for manifolds.
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Theorem 27.1. Let M be an m-dimensional manifold without boundary. Let f : M→ R

be smooth and let y be a regular value of f . Then the set f−1([y, ∞)) is an m-dimensional
manifold with boundary f−1(y).

PROOF. Let N = f−1([y, ∞)). Since f−1((y, ∞)) is an open subspace of M, it
is an m-manifold without boundary.

The crucial case is when x ∈ f−1(y). Let ϕ be a parametrization of a neigh-
borhood of x in M, with ϕ(0) = x. Let g = f ◦ ϕ. As in the proof of 24.6, by
the Implicit function theorem, there is an open ball U in Rm−1 containing 0 and
an open interval V in R containing 0 such that in U × V the set g−1(y) is a graph
{(u, h(u)) | u ∈ U} where h is smooth.

y
f

g

U

V

x

ϕ

Since (U × V) \ g−1(y) consists of two connected components, exactly one of
the two is mapped via g to (y, ∞), otherwise x will be a local extremum point
of f , and so d fx = 0, violating the assumption. In order to be definitive, let us
assume that W = {(u, v) | v ≥ h(u)} is mapped by g to [y, ∞). Then ϕ(W) =

ϕ(U × V) ∩ f−1([y, ∞)) is a neighborhood of x in N parametrized by ϕ|W . On
the other hand W is diffeomorphic to an open neighborhood of 0 in Hm. To show
this, consider the map ψ(u, v) = (u, v − h(u)) on U × V. Then ψ is a smooth
bijection on open subspaces of Rm, whose Jacobian is non-singular, therefore is
a diffeomorphism. The restriction ψ|W is a diffeomorphism to ψ(U × V) ∩Hm.
Thus x is a boundary point of N. �

Example. Let f be the height function on S2 and let y be a regular value. Then the
set f−1((−∞, y]) is a disk with the circle f−1(y) as the boundary.

Example. If y is a regular value of the height function on D2 then f−1(y) is a
1-dimensional manifold with boundary on ∂D2.

Example. The closed disk Dn is an n-manifold with boundary.

Theorem 27.2. Let M be an m-dimensional manifold with boundary, let N be an n-
manifold with or without boundary. Let f : M → N be smooth. Suppose that y ∈ N is
a regular value of both f and f |∂M. Then f−1(y) is an (m− n)-manifold with boundary
∂M ∩ f−1(y).
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PROOF. That f−1(y) \ ∂M is an (m − n)-manifold without boundary is al-
ready proved in 24.6.

We consider the crucial case of x ∈ ∂M ∩ f−1(y).

y
fx

U

Ũ

g̃ϕ

Tg̃−1(y)u

∂Hm

FIGURE 27.1.

y
fx

U

Ũ

g̃ϕ

Tg̃−1(y)u

∂Hm

FIGURE 27.2.

The map g can be extended to g̃ defined on an open neighborhood Ũ of 0 in
Rm. As before, g̃−1(y) is a graph of a function of (m − n) variables so it is an
(m− n)-manifold without boundary.

Let p : g̃−1(y) → R be the projection to the last coordinate (the height func-
tion). We have g−1(y) = p−1([0, ∞)) therefore if we can show that 0 is a regular
value of p then the desired result follows from 27.1 applied to g̃−1(y) and p. For
that we need to show that the tangent space Tg̃−1(y)u at u ∈ p−1(0) is not con-
tained in ∂Hm. Note that since u ∈ p−1(0) we have u ∈ ∂Hm.

Since g̃ is regular at u, the null space of dg̃u on TŨu = Rm is exactly Tg̃−1(y)u,
of dimension m− n. On the other hand, g̃|∂Hm is regular at u, which implies that
the null space of dg̃u restricted to T(∂Hm)u = ∂Hm has dimension (m − 1) − n.
Thus Tg̃−1(y)u is not contained in ∂Hm. �
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Problems.

27.3. Check that Rm cannot be diffeomorphic to Hm.

27.4. Show that the subspace {(x1, x2, . . . , xm) ∈ Rm | xm > 0} is diffeomorphic to Rm.

27.5. A simple regular path is a map γ : [a, b] → Rm such that γ is injective, smooth, and
γ(k)(t) 6= 0 for all t ∈ [a, b]. Show that the trace of a simple closed regular path is a smooth
1-dimensional manifold with boundary.

27.6. Suppose that M is an n-manifold without boundary. Show that M× [0, 1] is an (n+ 1)-
manifold with boundary. Show that the boundary of M× [0, 1] consists of two connected
components, each of which is diffeomeorphic to M.

27.7. Let M be a compact smooth manifold and f : M → R be smooth. Show that if
the interval [a, b] only contains regular values of f then the sublevel sets f−1((−∞, a]) and
f−1((−∞, b]) are diffeomorphic.
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28. Sard theorem

Sard theorem. We use the following result from Analysis:

Theorem (Sard Theorem). The set of critical values of a smooth map from Rm to Rn is
of Lebesgue measure zero.

For a proof see for instance [Mil97]. Sard theorem also holds for smooth func-
tions from Hm to Rn. This is left as a problem.

Since a set of measure zero must have empty interior, we have:

Corollary. The set of regular values of a smooth map from Rm to Rn is dense in Rn.

An application of Sard theorem for manifolds is the following:

Theorem. If M and N are two manifolds with boundary and f : M→ N is smooth then
the set of all regular values of f is dense in N. In particular f has a regular value in N.

PROOF. Consider any open subset V of N parametrized by ψ : V′ → V. Then
f−1(V) is an open submanifold of M. We only need to prove that f | f−1(V) has a
regular value in V. Let C be the set of all critical points of f | f−1(V).

We can cover f−1(V) (or any manifold) by a countable collection I of parametrized
open neighborhoods. This is possible because a Euclidean space has a countable
topological basis (see 2.9).

For each U ∈ I we have a commutative diagram:

U
f
// V

U′

ϕU

OO

gU // V′

ψ

OO

where U′ is an open subset of Hm and V′ is an open subset of Hn. From this
diagram, x is a critical point of f in U if and only if ϕ−1

U (x) is a critical point of gU .
Thus the set of critical points of gU is ϕ−1

U (C ∩U).
Now we write

f (C) =
⋃

U∈I
f (C ∩U) =

⋃
U∈I

ψ(gU(ϕ−1(C ∩U))) = ψ

(⋃
U∈I

gU(ϕ−1(C ∩U))

)
.

By Sard Theorem the set gU(ϕ−1
U (C ∩U)) is of measure zero. This implies that the

set D =
⋃

U∈I gU(ϕ−1
U (C ∩U)) is of measure zero, since a countable union of sets

of measure zero is a set of measure zero. As a consequence D must have empty
topological interior.

Since ψ is a homeomorphism, ψ(D) = f (C) must also have empty topological
interior. Thus f (C)  V, so there must be a regular value of f in V. �

If N ⊂ M and f : M → N such that f |N = idN then f is called a retraction
from M to N and N is a retract of M.
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Lemma 28.1. Let M be a compact manifold with boundary. There is no smooth map
f : M → ∂M such that f |∂M = id∂M. In other words there is no smooth retraction from
M to its boundary.

PROOF. Suppose that there is such a map f . Let y be a regular value of f .
Since f |∂M is the identity map, y is also a regular value of f |∂M. By Theorem 27.2
the inverse image f−1(y) is a 1-manifold with boundary f−1(y) ∩ ∂M = {y}. But
a 1-manifold cannot have boundary consisting of exactly one point. This result is
contained in the classification of compact one-dimensional manifolds. �

Theorem 28.2 (Classification of compact one-dimensional manifolds). A smooth
compact connected one-dimensional manifold is diffeomorphic to either a circle, in which
case it has no boundary, or an arc, in which case its boundary consists of two points.

See [Mil97] for a proof.

Brouwer fixed point theorem.

Theorem 28.3 (Smooth Brouwer fixed point theorem). A smooth map from the disk
Dn to itself has a fixed point.

This is a repeat of the proof for the continuous case using Algebraic Topology
in 20.2.

PROOF. Suppose that f does not have a fixed point, i.e. f (x) 6= x for all
x ∈ Dn. The straight line from f (x) to x will intersect the boundary ∂Dn at a point
g(x). Then g : Dn → ∂Dn is a smooth function which is the identity on ∂Dn. That
is impossible, by 28.1. �

Actually the Brouwer fixed point theorem holds true for continuous maps. A
proof can start by approximating a continuous function by smooth ones then use
the smooth version of the theorem, see for instance [Mil97].

Problems.

28.4. Show that Sard theorem also holds for smooth functions from Hm to Rn.

28.5. Show that a smooth loop on S2 (i.e. a smooth map from S1 to S2) cannot cover S2.
Similarly, there is no smooth surjective maps from R to Rn with n > 1. In other words,
there is no smooth space filling curves, in contrast to the continuous case (compare 5.35).

28.6. Prove the Brouwer fixed point theorem for [0, 1] directly.

28.7. Check that the function g in the proof of 28.3 is smooth.

28.8. Is the Brouwer fixed point theorem correct for open balls?

28.9. Is the Brouwer fixed point theorem correct for spheres?

28.10. Is the Brouwer fixed point theorem correct for tori?

28.11. Show that the Brouwer fixed point theorem is correct for any space homeomorphic
to a disk.
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28.12. Let A be an n× n matrix whose entries are all nonnegative real numbers. We will
derive the Frobenius theorem which says that A must have a real nonnegative eigenvalue.

(a) Suppose that A is not singular. Check that the map v 7→ Av
||Av|| brings Q =

{(x1, x2, . . . , xn) ∈ Sn−1 | xi ≥ 0, 1 ≤ i ≤ n} to itself.
(b) Prove that Q is homeomorphic to the closed ball Dn−1.
(c) Use the continuous Brouwer fixed point theorem to prove that A has a real non-

negative eigenvalue.
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29. Orientation

Orientation on vector spaces. On a finite dimensional real vector space, two
vector bases are said to determine the same orientation of the space if the change
of bases matrix has positive determinant. Being of the same orientation is an equiv-
alence relation on the set of all bases. With this equivalence relation the set of all
bases is divided into two equivalence classes. If we choose one of the two classes
as the prefered one, then we say the vector space is oriented and the chosen equiv-
alence class is called the orientation (or the positive orientation).

Thus any finite dimensional real vector space is orientable (i.e. can be oriented)
with two possible orientations.

Example. The standard positive orientation of Rn is represented by the basis

{e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1)}.

Unless stated otherwise, Rn is always oriented this way.

Let T be an isomorphism from an oriented finite dimensional real vector space
V to an oriented finite dimensional real vector space W. Then T brings a basis of
V to a basis of W. There are only two possibilities. Either T brings a positive basis
of V to a positive basis of W, or T brings a positive basis of V to a negative basis
of W. In the first case we say that T is orientation-preserving, and in the second case
we say that T is orientation-reversing.

Orientation on manifolds. Roughly, a manifold is oriented if at each point an
orientation for the tangent space is chosen and this orientation should be smoothly
depended on the point.

Definition. A manifold M is said to be oriented if at each point x an orientation for
the tangent space TMx is chosen and at each point there exists a local coordinate
(U, ϕ) such that for each x in U the derivative dϕx : TMx → Rm is orientation-
preserving.

Thus in this local coordinate the orientation of TMx is given by the basis{ ∂ϕ
∂x1

(x), ∂ϕ
∂x2

(x), . . . , ∂ϕ
∂xm

(x)
}

where ∂ϕ
∂x1

(x) = dϕ−1
ϕ(x)(ei). Roughly, the local coor-

dinate brings the orientation of Rm to the manifold.
If a manifold is oriented then the set of orientations of its tangent spaces is

called an orientation of the manifold and the the manifold is said to be orientable.
Another approach to orientation of manifold is to orient each parametrized

neighborhood then require that the orientations on overlapping neighborhood
agree. Concisely, suppose that ϕ : U → M is a parametrization of a neighborhood
in M. At each point, the orientation on TMx is given by the image of the standard
basis of Rn via dϕu, i.e. it is given by the basis

{ ∂ϕ
∂u1

(u), ∂ϕ
∂u2

(u), . . . , ∂ϕ
∂un

(u)
}

where
∂ϕ
∂ui

(u) = dϕu(ei). Suppose that ψ : V → M parametrizes an overlapping neigh-
borhood. Since dψv = d(ψ ◦ ϕ−1)v ◦ dϕu, the consistency requirement is that the
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map d(ψ ◦ ϕ−1)v must be orientation preserving on Rm. In other words, we can
say that the change of coordinates must be orientation preserving.

Example. If a manifold is parametrized by one parametrization, that is, it is cov-
ered by one local coordinate, then it is orientable, since we can take the unique
parametrization to bring an orientation of Rm to the entire manifold. In particular,
any open subset of Rk is an orientable manifold.

Example. The graph of a smooth function f : D → Rl , where D ⊂ Rk is an open
set, is an orientable manifold, since this graph can be parametrized by a single
parametrization, namely x 7→ (x, f (x)).

Proposition. If f : Rk → R is smooth and a is a regular value of f then f−1(a) is an
orientable manifold.

PROOF. Let M = f−1(a). If x ∈ M then ker d fx = TMx, so the gradient vector
∇ f (x) is perpendicular to TMx. In other words the gradient vector is always per-
pendicular to the level set. In particular, ∇ f (x) does not belong to TMx. Choose
the orientation on TMx represented by a basis b(x) = {b1(x), . . . , bk−1(x)} such
that the ordered set {b1(x), . . . , bk−1(x),∇ f (x)} is a positive basis in the standard
orientation of Rk. That means det (b1(x), . . . , bk−1(x),∇ f (x)) > 0.

We check that this orientation is smoothly depended on the point. Let ϕ :
Rk−1 → U ⊂ M be a local parametrization of a neighborhood U of x, with
ϕ(0) = x. We can assume that basis

{ ∂ϕ
∂u1

(0), ∂ϕ
∂u2

(0), . . . , ∂ϕ
∂uk−1

(0)
}

is in the same
orientation as b(x), if that is not the case we can interchange two variables of ϕ. We
can check that

{ ∂ϕ
∂u1

(u), ∂ϕ
∂u2

(u), . . . , ∂ϕ
∂uk−1

(u)
}

is in the same orientation as b(ϕ(u))

for all u ∈ Rk−1. Indeed, consider det
(

∂ϕ
∂u1

(u), ∂ϕ
∂u2

(u), . . . , ∂ϕ
∂uk−1

(u),∇ f (ϕ(u))
)

.

This is a continuous real function on u ∈ Rk−1 whose value at 0 is positive, there-
fore its value is always positive. �

Example. The sphere is orientable.

Example. The torus is orientable.

Proposition. A connected orientable manifold has exactly two orientations.

PROOF. Suppose the manifold M is orientable. There is an orientation o on
M. Then −o is a different orientation on M. Suppose that o1 is an orientation on
M, we show that o1 is either o or −o.

If two orientations agrees at a point they must agree locally around that point.
Indeed, from the definition there is a neighborhood V of x and a local coordinates
ϕ : V → Rm that brings the orientation o1 to the standard orientation of Rm,
and a local coordinates ψ : V → Rk that brings the orientation o to the standard
orientation of Rm. Assuming ϕ(x) = ψ(x) = 0, then det J(ψ−1 ◦ ϕ) is smooth on
Rm and is positive at 0, therefore it is always positive. That imples o1 and o agree
on V.
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Let U be the set of all points x in M such that the orientation of TMx with
respect to o1 is the same with the orientation of TMx with respect to o. Then U is
open in M. Similarly the complement M \U is also open. Since M is connected,
either U = M or U = ∅. �

Orientable surfaces. A two dimensional manifold in R3 is called a surface. A
surface is two-sided if there is a smooth way to choose a unit normal vector N(p)
at each point p ∈ S. That is, there is a smooth map N : S → R3 such that at each
p ∈ S the vector N(p) has length 1 and is perpendicular to TSp.

FIGURE 29.1. The Mobius band is not orientable and is not two-sided.

Proposition. A surface is orientable if and only if it is two-sided.

PROOF. If the surface S is orientable then its tangent spaces could be oriented
smoothly. That means at each point p ∈ S there is a local parametrization r(u, v)
such that {ru(u, v), rv(u, v)} gives the orientation of TSp. Then the unit normal

vector
ru(u, v)× rv(u, v)
||ru(u, v)× rv(u, v)|| is defined smoothly on the surface.

Conversely, if there is a smooth unit normal vector N on the surface then we
orient each tangent plane TSp by a basis {v1, v2} such that {v1, v2, N(p)} is in the
same orientation as the standard orientation of R3. For each point p take a local
parametrization r : R2 → S, r(0, 0) = p, such that {ru(0, 0), rv(0, 0)} is in the orien-
tation of TSp (take any local parametrization, if it gives the opposite orientation at
p then just switch the variables). Since 〈ru(u, v)× rv(u, v), N(r(u, v))〉 is smooth,
its sign does not change, and since the sign at (0, 0) is positive, the sign is always
positive. Thus {ru(u, v), rv(u, v)} is in the orientation of TSr(u,v). That means the
orientation is smooth. �

Orientation on the boundary of an oriented manifold. Suppose that M is a
manifold with boundary and the interior of M is oriented. We orient the boundary
of M as follows. Suppose that under an orientation-preserving parametrization ϕ

the point ϕ(x) is on the boundary ∂M of M. Then the orientation {b2, b3, . . . , bn}
of ∂Hn such that the ordered set {−en, b2, b3, . . . , bn} is a positive basis of Rn will
induce the positive orientation for T∂Mϕ(x) through dϕ(x). This is called the outer
normal first orientation of the boundary.
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Problems.

29.1. Show that two diffeomorphic manifolds are are either both orientable or both unori-
entable.

29.2. Suppose that f : M → N is a diffeomorphism of connected oriented manifolds with
boundary. Show that if there is an x such that d fx : TMx → TN f (x) is orientation-preserving
then f is orientation-preserving.

29.3. Let f : Rk → Rl be smooth and let a be a regular value of f . Show that f−1(a) is an
orientable manifold.

29.4. Consider the map −id : Sn → Sn with x 7→ −x. Show that −id is orientation-
preserving if and only if n is odd.
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30. Topological degrees of maps

Let M and N be boundaryless, oriented manifolds of the same dimensions m.
Further suppose that M is compact.

Let f : M → N be smooth. Suppose that x is a regular point of f . Then
d fx is an isomorphism from TMx to TN f (x). Let sign(d fx) = 1 if d fx preserves
orientations, and sign(d fx) = −1 otherwise.

For any regular value y of f , let

deg( f , y) = ∑
x∈ f−1(y)

sign(d fx).

Notice that the set f−1(y) is finite because M is compact (see 24.5).
This number deg( f , y) is called the Brouwer degree (bậc Brouwer) 14 or topolog-

ical degree of the map f with respect to the regular value y.
From the Inverse Function Theorem 24.4, each regular value y has a neighbor-

hood V and each preimage x of y has a neighborhood Ux on which f is a diffeo-
morphism onto V, either preserving or reversing orientation. Therefore we can
interpret that deg( f , y) counts the algebraic number of times the function f covers the
value y.

Example. Consider f : R → R, f (x) = x2. Then deg( f , 1) = 0. This could
be explained geometrically from the graph of f , as f covers the value 1 twice in
opposite directions at x = −1 and x = 1.

Example. Consider f (x) = x3− x with the regular value 0. From the graph of f we
see that f covers the value 0 three times in positive direction at x = −1 and x = 1
and negative direction at x = 0, therefore we see right away that deg( f , 0) = 1.

On the other hand, if we consider the regular value−1 then f covers this value
only once in positive direction, thus deg( f , 1) = 1.

Homotopy invariance. In this section we will show that the Brouwer degree
does not depend on the choice of regular values and is invariant under smooth
homotopy.

Lemma. Let M be the boundary of a compact oriented manifold X, oriented as the bound-
ary of X. If f : M → N extends to a smooth map F : X → N then deg( f , y) = 0 for
every regular value y.

PROOF. (a) Assume that y is a regular value of F. Then F−1(y) is a 1-dimensional
manifold of dimension 1 whose boundary is F−1(y) ∩ M = f−1(y), by Theorem
27.1.

By the Classification of one-dimensional manifolds, F−1(y) is the disjoint union
of arcs and circles. Let A be a component that intersects M. Then A is an arc with
boundary {a, b} ⊂ M.

14L. E. J. Brouwer (1881–1966) is a Dutch mathematician. He had many important contributions in the
early development of topology, and founded Intuitionism.
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We will show that sign(det(d fa)) = − sign(det(d fb)). Taking sum over all arc
components of F−1(y) would give us deg( f , y) = 0.

An orientation on A. Let x ∈ A. Recall that TAx is the kernel of dFx : TXx →
TNy. We will choose the orientation on TAx such that this orientation together
with the pull-back of the orientation of TNy via dFx is the orientation of X. Let
(v2, v3, . . . , vn+1) be a positive basis for TNy. Let v1 ∈ TAx such that {v1, dF−1

x (v2), . . . , dF−1
x (vn+1)}

is a positive basis for TXx. Then v1 determine the positive orientation on TAx.
At x = a or at x = b we have d fx = dFx|TMx . Therefore d fx is orientation-

preserving on TMx oriented by the basis {d f−1
x (v2), . . . , d f−1

x (vn+1)}.
We claim that exactly one of the two above orientations of TMx at x = a or

x = b is opposite to the orientation of TMx as the boundary of X. This would
show that sign(det(d fa)) = − sign(det(d fb)).

Observe that if at a the orientation of TAa is pointing outward with respect to
X then b the orientation of TAb is pointing inward, and vice versa. Indeed, since
A is a smooth arc it is parametrized by a smooth map γ(t) such that γ(0) = a and
γ(1) = b. If we assume that the orientation of TAγ(t) is given by γ′(t) then it is
clear that at a the orientation is inward and at b it is outward.

(b) Suppose now that y is not a regular value of F. There is a neighborhood
of y in the set of all regular values of f such that deg( f , z) does not change in this
neighborhood. Let z be a regular value of F in this neighborhood, then deg( f , z) =
deg(F, z) = 0 by (a), and deg( f , z) = deg( f , y). Thus deg( f , y) = 0. �

Lemma. If f is smoothly homotopic to g then deg( f , y) = deg(g, y) for any common
regular value y.

PROOF. Let I = [0, 1] and X = M × I. Since f be homotopic to g there is a
smooth map F : X → N such that F(x, 0) = f (x) and F(x, 1) = g(x).

The boundary of X is (M× {0}) t (M× {1}). Then F is an extension of the
pair f , g from ∂X to X, thus deg(F|∂X , y) = 0 by the above lemma.

Note that one of the two orientations of M× {0} or M× {1} as the boundary
of X is opposite to the orientation of M (this is essentially for the same reason
as in the proof of the above lemma). Therefore deg(F|∂X , y) = ±(deg( f , y) −
deg(g, y)) = 0, so deg( f , y) = deg(g, y). �

Lemma 30.1 (Homogeneity of manifold). Let N be a connected boundaryless manifold
and let y and z be points of N. Then there is a self diffeomorphism h : N → N that is
smoothly isotopic to the identity and carries y to z.

We do not present a proof for this lemma. The reader can find a proof in
[Mil97, p. 22].

Theorem 30.2. Let M and N be boundaryless, oriented manifolds of the same dimensions.
Further suppose that M is compact and N is connected. The Brouwer degree of a map from
M to N does not depend on the choice of regular values and is invariant under smooth
homotopy.
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Therefore from now on we will write deg( f ) instead of deg( f , y).

PROOF. We have already shown that degree is invariant under homotopy.
Let y and z be two regular values for f : M → N. Choose a diffeomorphism h

from N to N that is isotopic to the identity and carries y to z.
Note that h preserves orientation. Indeed, there is a smooth isotopy F : N ×

[0, 1] → N such that F0 = h and F1 = id. Let x ∈ N, and let ϕ : Rm → N be
an orientation-preserving parametrization of a neighborhood of x with ϕ(0) = x.
Since dFt(x) ◦ dϕ0 : Rm ×R is smooth with respect to t, the sign of dFt(x) does not
change with t.

As a consequence, deg( f , y) = deg(h ◦ f , h(y)).
Finally since h ◦ f is homotopic to id ◦ f , we have deg(h ◦ f , h(y)) = deg(id ◦

f , h(y)) = deg( f , h(y)) = deg( f , z). �

Example. Let M be a compact, oriented and boundaryless manifold. Then the
degree of the identity map on M is 1. On the other hand the degree of a constant
map on M is 0. Therefore the identity map is not homotopic to a constant map.

Example 30.3 (Proof of the Brouwer fixed point theorem via the Brouwer de-
gree). We can prove that Dn+1 cannot retract to its boundary (this is 28.1 for the
case of Dn+1) as follows. Suppose that there is such a retraction, a smooth map
f : Dn+1 → Sn that is the identity on Sn. Define F : [0, 1]× Sn by F(t, x) = f (tx).
Then F is a smooth homotopy from a constant map to the identity map on the
sphere. But these two maps have different degrees.

Theorem (The fundamental theorem of Algebra). Any non-constant polynomial
with real coefficients has at least one complex root.

PROOF. Let p(z) = zn + a1zn−1 + a2zn−2 + · · · + an−1z + an, with ai ∈ R,
1 ≤ i ≤ n. Suppose that p has no root, that is, p(z) 6= 0 for all z ∈ C. As a
consequence, an 6= 0.

For t ∈ [0, 1], let

qt(z) = (1− t)nzn + a1(1− t)n−1tzn−1 + · · ·+ an−1(1− t)tn−1z + antn.

Then qt(z) is continuous with respect to the pair (t, z). Notice that if t 6= 0
then qt(z) = tn p((1− t)t−1z), and q0(z) = zn while q1(z) = an.

If we restrict z to the set {z ∈ C | |z| = 1} = S1 then qt(z) has no roots, so qt(z)
|qt(z)|

is a continuous homotopy of maps from S1 to itself, starting with the polynomial
zn and ending with the constant polynomial an

|an | . But these two polynomials have
different degrees, a contradiction. �

Example. Let v : S1 → R2, v((x, y)) = (−y, x), then it is a nonzero (not zero
anywhere) tangent vector field on S1.

Similarly we can find a nonzero tangent vector field on Sn with odd n.

Theorem 30.4 (The Hairy Ball Theorem). If n is even then every smooth tangent vector
field on Sn has a zero.



30. TOPOLOGICAL DEGREES OF MAPS 135

PROOF. Suppose that v is a nonzero tangent smooth vector field on Sn. Let
w(x) = v(x)

||v(x)|| , then w is a unit smooth tangent vector field on Sn.
Notice that w(x) is perpendicular to x. On the plane spanned by x and w(x)

we can easily rotate vector x to vector −x. Precisely, let Ft(x) = cos(t) · x + sin(t) ·
w(x) with 0 ≤ t ≤ π, then F is a homotopy on Sn from x to −x. But the degrees of
these two maps are different, see 30.14. �

Problems.

30.5. Find the topological degree of a polynomial on R. Notice that although the domain
R is not compact, the topological degree is well-defined for polynomial.

30.6. Let f : S1 → S1, f (z) = zn, where n ∈ Z. We can also consider f as a vector-valued
function f : R2 → R2, f (x, y) = ( f1(x, y), f2(x, y)). Then f = f1 + i f2.

(a) Recalling the notion of complex derivative and the Cauchy-Riemann condition,
check that det(J fz) = | f ′(z)|2.

(b) Check that all values of f are regular.
(c) Check that deg( f , y) = n for all y ∈ S1.

30.7. Show that deg( f , y) is locally constant on the subspace of all regular values of f .

30.8. What happens if we drop the condition that N is connected in Theorem 30.2? Where
do we use this condition?

30.9. Let M and N be oriented boundaryless manifolds, M is compact and N is connected.
Let f : M → N. Show that if deg( f ) 6= 0 then f is onto, i.e. the equation f (x) = y always
has a solution.

30.10. Let ri : Sn → Sn be the reflection map

ri((x1, x2, . . . , xi, . . . , xn+1)) = (x1, x2, . . . ,−xi, . . . , xn+1).

Compute deg(ri).

30.11. Let f : Sn → Sn be the map that interchanges two coordinates:

f ((x1, x2, . . . , xi, . . . , xj, . . . , xn+1)) = (x1, x2, . . . , xj, . . . , xi, . . . , xn+1).

Compute deg( f ).

30.12. Suppose that M, N, P are compact, oriented, connected, boundaryless m-manifolds.

Let M
f→ N

g→ P. Then deg(g ◦ f ) = deg( f )deg(g).

30.13. Let M be a compact connected smooth manifold. Let f : M→ M be smooth.

(a) Show that if f is bijective then deg f = ±1.
(b) Let f 2 = f ◦ f . Show that deg( f 2) ≥ 0.

30.14. Let r : Sn → Sn be the antipodal map

r((x1, x2, . . . , xn+1)) = (−x1,−x2, . . . ,−xn+1).

Compute deg(r).

30.15. Let f : S4 → S4, f ((x1, x2, x3, x4, x5)) = (x2, x4,−x1, x5,−x3). Find deg( f ).
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30.16. Find a map from S2 to itself of any given degree.

30.17. If f , g : Sn → Sn be smooth such that f (x) 6= −g(x) for all x ∈ Sn then f is smoothly
homotopic to g.

30.18. Let f : M → Sn be smooth. Show that if dim(M) < n then f is homotopic to a
constant map.

30.19 (Brouwer fixed point theorem for the sphere). Let f : Sn → Sn be smooth. If
deg( f ) 6= (−1)n+1 then f has a fixed point.

30.20. Show that any map of from Sn to Sn of odd degree carries a certain pair of antipodal
points to a pair of antipodal point.



GUIDE FOR FURTHER READING 137

Guide for further reading

We have closely followed John Milnor’s masterpiece [Mil97]. Another excel-
lent text is [GP74]. There are not many textbooks such as these two books, pre-
senting differential topology to undergraduate students.

The book [Hir76] is a technical reference for some advanced topics. The book
[DFN85] is a masterful presentation of modern topology and geometry, with some
enlightening explanations, but it sometimes requires knowledge of many topics.
The book [Bre93] is rather similar in aim, but is more like a traditional textbook.

An excellent textbook for differential geometry of surfaces is [dC76].





Suggestions for some problems

1.11: There is an infinitely countable subset of B.
1.12: Use 1.11.
1.19:

⋃∞
n=1[n, n + 1] = [1, ∞).

1.23: Proof by contradiction.
4.8: Consider a metric space with only two points.
4.20: Compare the subinterval [1, 2π) and its image via ϕ.
5.27: Let A be countable and x ∈ R2 \ A. There is a line passing through x that does

not intersect A (by an argument involving cardinalities of sets).
5.28: Delete a point from R. Use 4.12 and 5.3.
6.10: Consider the set of all irrational numbers.
7.9: Suppose that there are two points x and y that could not be separated by open

sets. Consider the directed set whose elements are pairs (Ux, Vy) of open neigh-
borhoods of x and y, under set inclusion. Take a net n such that n(Ux, Vy) is a
point in Ux ∩Vy.

7.10: (b) Let C be a countable subset of [0, Ω). The set
⋃

c∈C[0, c) is countable while
the set [0, Ω) is uncountable.

8.9: Use Lebesgue’s number.
8.12: See the proof of 8.1.
8.14: Use 8.12.
8.15: Use 8.14.
9.5: Look at their bases.
9.11: Only need to show that the projection of an element of the basis is open.
9.15: Use 9.2 to prove that the inclusion map is continuous.
9.16: Use 9.15.
9.17: Let (xi) and (yi) be in ∏i∈I Xi. Let γi(t) be a continuous path from xi to yi. Let

γ(t) = (γi(t)).
9.18: (b) Use 9.15. (c) Fix a point x ∈ ∏i∈I Xi. Use (b) to show that the set Ax

of points that differs from x at at most finitely many coordinates is connected.
Furthermore Ax is dense in ∏i∈I Xi.

9.19: Use 9.15. It is enough to prove for the case an open cover of X×Y by open sets
of the form a product of an open set in X with an open set in Y. For each “slice”
{x} × Y there is finite subcover {Ux,i × Vx,i | 1 ≤ i ≤ nx}. Take Ux =

⋂nx
i=1 Ux,i.

The collection {Ux | x ∈ X} covers X so there is a subcover {Uxj | 1 ≤ j ≤ n}. The
collection {Uxj ,i ×Vxj ,i | 1 ≤ i ≤ nxj , 1 ≤ j ≤ n} is a finite subcover of X×Y.

10.4: Use10.3.
10.12: Use 8.12
10.13: Use 10.12.
10.15: (⇐) Use 8.15 and 6.2.
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10.18: (⇐) Use 8.15 and the Urysohn lemma 11.1.
11.3: (⇐) Use 8.15 and the Urysohn lemma 11.1.
11.7: Use 11.6.
11.9: See 9.1 and 9.4.
11.11: Any real function on L is continuous. The cardinality of the set of such func-

tion is cc. A real function on H is continuous if and only if it is continuous on the
dense subset of points with rational coordinates, so the cardinality of the set of
such functions is at most cℵ0 . Since cc > cℵ0 , the space H cannot be normal, by
Tiestze Extension Theorem.

12.10: The idea is easy to be visualized in the cases n = 1 and n = 2. Let S+ =

{x = (x1, x2, . . . , xn+1) ∈ Sn | x1 ≥ 0}, the upper hemisphere. Let S0 = {x =

(x1, x2, . . . , xn+1) ∈ Sn | x1 = 0}, the equator. Let f : Sn → S+ be given by
f (x) = x if x ∈ S+ and f (x) = −x otherwise. Then the following diagram is
commutative:

Sn f //

��

p◦ f

((

S+

p
��

Sn/x ∼ −x
f̃ // S+/x ∼ −x, x ∈ S0

Then it is not difficult to show that S+/x ∼ −x, x ∈ S0 is homeomorphic to
RPn = Dn/x ∼ −x, x ∈ ∂Dn.

13.6: The set of all balls with rational radius whose center has rational coordinates
forms a basis for the Euclidean topology of Rn.

13.9: By 10.13.
14.14: Deleting an open disk is the same as deleting the interior of a triangle.
18.6: See [Hat01, p. 52].
20.5: Use Mayer-Vietoris sequence.
20.8: First take a deformation retraction to a sphere.
20.9: Show that R3 \ S1 is homotopic to Y which is a closed ball minus a circle inside.

Show that Y = S1 ∨ S2, [Hat01, p. 46]. Or write Y as a union of two halves, each
of which is a closed ball minus a straight line, and use the Van Kampen theorem.

22.5: The torus is given by the equation (
√

x2 + y2 − b)2 + z2 = a2 where 0 < a < b.
22.6: Consider a neighborhood of a point on the y-axis. Can it be homeomorphic to

an open neighborhood in R?
22.12: See 5.7.
22.13: See 4.16 and 26.2.
22.14: Use the Implicit function theorem.
24.14: Each x ∈ f−1(y) has a neighborhood Ux on which f is a diffeomorphism. Let

V = [
⋂

x∈ f−1(y) f (Ux)] \ f (M \⋃x∈ f−1(y) Ux). Consider V ∩ S.
24.22: Use Problem 24.19.
26.2: Show that f (n)(x) = e−1/xPn(1/x) where Pn(x) is a polynomial.
26.3: Cover A by finitely many balls Bi ⊂ U. For each i there is a smooth function ϕi

which is positive in Bi and is zero outside of Bi.
30.19: If f does not have a fixed point then f will be homotopic to the reflection map.
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30.17: Note that f (x) and g(x) will not be antipodal points. Use the homotopy

Ft(x) =
(1− t) f (x) + tg(x)
||(1− t) f (x) + tg(x)|| .

30.18: Using Sard Theorem show that f cannot be onto.
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topological, 22, 74

Jacobian, 104

Jordan curve theorem, 27
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Lebesgue’s number, 36

Lie group, 110

lift of path, 84

local coordinate, 102

local parametrization, 102

loop, 77

manifold

orientable, 128

orientation, 128

smooth, 101

submanifold, 107

topological, 63

with boundary, 121

map
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discrete, 26

homotopic, 75

open, 15

smooth, 101
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net, 31
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standard, 65
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singular simplex, 94

space
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first countable, 32

Hausdorff, 29

homeomorphic, 15
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regular, 29

subspace, 17

tangent, 105

Space filling curve, 28

sphere, 17

star-shaped, 76

stereographic projection, 17
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Stone-Cech compactification, 47
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support, 53

surface, 69

connected sum, 69

fundamental polygon, 70

genus, 69

non-orientable, 69

orientable, 69

two-sided, 130

The fundamental theorem of Algebra, 134

Tiestze extension theorem, 52

topological degree, 97, 132

topological dimension, 27

topological group, 38
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topological space
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connected component, 21

topological vector space, 43

Topologist’s sine curve, 24

topology

coarser, 11

compact-open, 52

discrete, 9

Euclidean, 10

finer, 11

finite complement, 11

generated by subsets, 11

ordering, 11

product, 39

quotient, 55

relative, 17

subspace, 17

trivial, 9

Zariski, 43

torus, 56

total boundedness, 36

triangulation, 65

union

disjoint, 42

Urysohn lemma, 50

manfiold, 120

smooth, 120

Urysohn Metrizability Theorem, 54

vector field, 117

Zorn lemma, 6



You may say I’m a dreamer

But I’m not the only one

I hope someday you’ll join us ...

John Lennon, Imagine.
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