
Reprinted from the

Proceedings of the
Linux Symposium

July 23th–26th, 2003
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Alan Cox,Red Hat, Inc.
Andi Kleen,SuSE, GmbH
Matthew Wilcox,Hewlett-Packard
Gerrit Huizenga,IBM
Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Martin K. Petersen,Wild Open Source, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

Ugly Ducklings
Resurrecting unmaintained code

Dave Jones
SuSE Labs

davej@suse.de

Abstract

Throughout the development of the 2.5 kernel,
a number of drivers and pieces of infrastruc-
ture that had been left to stagnate finally got a
long overdue cleanup. In some cases, code that
hadn’t been touched for several years got over-
hauled. Each time another area got the cleanup
treatment, patterns started to emerge.

This paper attempts to document some of these
patterns so that hopefully by keeping them in
mind, future driver authors don’t fall into the
pitfalls that some of these have fixed up such as
over-abstracting, and massive duplication. By
way of examples, it covers several areas that
got cleaned up in the 2.5 series, but focuses on
the bulk of the work the paper author did on the
agpgart driver.

1 Introduction

It has been a long-standing philosophy that
bending an existing driver to work on a new
piece of hardware is much favoured over a new
implementation which ends up with 99% the
same code as the old. The typical life-cycle of
a driver is as follows.

• Driver is written for hardware vendors A’s
new widget

• Vendor B makes a compatible widget.

• Id’s for Vendor B’s product get added to
the driver

• (Repeat for several other vendors/other
register compatible widgets)

• Slightly different widgets start appearing,
which are still mostly compatible. Driver
starts to take on new form where it needs
to special case certain widgets in different
code paths.

• Repeat for several more new widgets.

• Driver is now 100K+ of spaghetti.

• Original driver maintainer moves on to
new project, leaving driver in current
state.

• New widget Id’s get added.

• Most people too scared to change too
much of the code in fear of subtly break-
ing support for other widgets.

2 Cleanups overview

Throughout the development of the 2.5 kernel,
a number of drivers and pieces of infrastruc-
ture that had been left to stagnate finally got a
long overdue cleanup. Each time another area
got the cleanup treatment, patterns started to
emerge.

256 • Linux Symposium

2.1 The splitting up of multiple instances

The “support all hardware all in the same driver
.c file” approach is flawed. If you want to
change how vendor B’s products work, you
shouldn’t be touching any code for other ven-
dors devices. With hundreds or thousands of
lines of irrelevant code, it’s also a pain to nav-
igate your way around the source. By split-
ting the driver into multiple vendor.c files,
you also start to notice patterns such as “this
function is duplicated in all vendor files, so be-
longs in a generic.c file.” Sometimes, how-
ever, things go the other way. In 2.4, we have
several separate RNG (Random Number Gen-
erator) drivers. Jeff Garzik found that by merg-
ing all of these to the same file, lots of code
duplication got removed. Whilst the number of
RNG drivers is quite low, if there comes a day
when the driver supports many more, it may
make sense to abstract them back out into sep-
arate files again.

2.2 Reorganising directory structures

The whole idea of directories is to keep sim-
ilar things together. One simple cleanup that
happened in 2.5 was the introduction of the
drivers/char/watchdog directory. Pre-
viously, drivers/char contained over 200
.c and .h files. By introducing the watch-
dog subdirectory, you can instantly find all rel-
evant drivers. Useful when you have to make
changes that affect all watchdog drivers (as was
the case in 2.4 when a security bug had been
copied through all drivers).

2.3 Simplification of abstraction layers

Sometimes, after introducing support for mul-
tiple widgets to a driver, people over-abstract.
A prime example of this was the agpgart cache
flush routine, which ended up calling through
4–5 function pointers before it actually got to

do anything useful.

2.4 Moving to new APIs to decrease LOC

With code lying dormant and unmaintained for
several years, it tends to miss the opportunity to
take advantage of easier or faster ways of call-
ing kernel-supplied functionality. As helper
functions get continually added, the number of
lines of code needed to be duplicated in drivers
goes down.

3 Case study #1: IA32 CPU setup
routines

This started out life as arch/i386/
kernel/setup.c , and in 2.4, currently
stands at 84KB of code which handles setting
up of the CPU in terms of working around er-
rata, enabling CPU specific features, and doing
some detective work such as finding out the
cache sizes. Initially supporting Intel CPUs,
the clones started to follow. Today it supports
dozens of different types of x86 CPU, from 10
different vendors. In 2.5, Patrick Mochel split
this file up into per-vendor support files, and
a few generic files.arch/i386/kernel/
cpu/ is a much simpler place to navigate, and
is a lot nicer to hack on than its predecessor as
a result.

4 Case study #2: IA32 MTRR
driver

This monster has been around a few years,
and it shows. 71KB of monolithic code, with
multiple implementations built on top of each
other. Each time, with the abstraction layer
bent and twisted into something new. Ini-
tially supporting generic Intel MTRRs, it was
bent into shape to deal with AMD K6’s vari-
ants. Then Cyrix’s ARR’s. Then a myriad

Linux Symposium 2003 • 257

of other clones which did things slightly dif-
ferent. Again, chopping this into per-vendor
pieces makes things a lot simpler, and reduces
the chance of breaking one vendor when fixing
something for another (which has been the case
in the past on more than one occasion).

5 Case study #3: Bluesmoke

Bluesmoke is the IA32 machine check excep-
tion handling support. As usual, it first only
supported Intel P5 and P6 CPUs. Over time,
things were changed to support AMD proces-
sors, Intel Pentium 4, IDT Winchips, and some
additional features such as background check-
ing. This all started to blow up the file size, and
it became a pain to find your way around a file
with a half dozen similarly named functions.
Time for the split-up treatment. 2.5 now has 7
separate C files for the implementations, with
a central ‘generic’ file which calls the specific
per-vendor/model implementations.

Whilst it’s theoretically possible that you could
hack the Makefiles now to only build in (for
example) the Intel code if you don’t own any
non-Intel parts, the added complexity and re-
duction in functionality for the net-gain of just
a few KB of object wasn’t deemed worth it. A
bigger challenge which would benefit from this
change came in the form of the final case study.

6 Case study #4: AGPGART

6.1 History of AGPGART

AGP support was added to Linux back in
1999. Subsequent updates were somewhat in-
frequent. The bulk of the code never really
changed much. Each update just added PCI
ID’s of new devices, or occasionally a new agp-
gart implementation when things were just too
different to the existing agpgarts.

6.2 How I got involved

During 2002, I was asked by SuSE to im-
plement AGP support for the AMD x86-64.
Thinking this would be easy basing assump-
tions on what I’d previously seen happen to
agpgart (thinking it would be just adding some
new PCI idents or the likes), I (foolishly?)
agreed to do it. Shortly afterwards, I dis-
covered the GART I was writing support for
was unlike anything Linux currently supported.
Firstly, the north-bridge was on-CPU, which
meant on an SMP box, there would be more
than one of them, and they would have to be
kept coherent with each other. Secondly, it was
the first GART to support version 3.0 of the
AGP standard. Whilst this is backwards com-
patible for the most part, there are some ad-
ditional features that need to be taken care of
(such as the transfer speed selector working in
completely different ways to how it did in pre-
vious versions of the standard). This was quite
a lot to take on board, so I started staring at the
134KB of agpgart back-end code (there’s also
25KB of front-end code).

6.3 More problems. . .

Getting up to speed on a driver of this size,
which supports over 50 different AGP chipsets,
is not a task that happens overnight. Lots of
those implementations are either the same, or
very similar, but it still leaves around a dozen
or so separate code paths. Now to find out
which one is most similar to the GART I’m
writing for. I eventually gave up trying to
find one similar enough, and just started from
scratch. My mails for “help” to the original
maintainer of agpgart went to/dev/null ,
which meant I had to figure out how a lot of
it worked, the hard way. After finally getting
things working, I had decided that enough was
enough, and for 2.5, I was going to give this
code a major overhaul.

258 • Linux Symposium

6.4 How things were cleaned up

• As usual, first things first, split
drivers/char/agp/agpgart_
be.c (134KB) into lots of smaller source
files. One per chipset vendor. This was an
instant cleanup, which had no problems
being merged. Shortly afterwards, Greg
Kroah-Hartman converted the chipset
probing routines over partially to some
of the ‘new’ PCI API, killing off a bunch
more useless, ugly code.

• With everything in per-vendor files now,
things were a lot cleaner, but there was
still some real bad mess that needed clean-
ing. The agpgart_be.c file still ex-
isted, which acted as a generic part which
had all the bits to call the routines in
the per-vendor files. One particular ugly
that stuck out was the 350-line struct that
matched known PCI IDs to init routines.
The redundancy in this struct was really
bad.

static struct {
unsigned short device_id;
unsigned short vendor_id;
enum chipset_type chipset;
const char *vendor_name;
const char *chipset_name;
int (*chipset_setup) (struct

pci_dev *pdev);
} agp_bridge_info[]

__initdata = {
\#ifdef CONFIG_AGP_ALI

{ PCI_DEVICE_ID_AL_M1541_0,
PCI_VENDOR_ID_AL,
ALI_M1541,
"ALi",
"M1541",
ali_generic_setup },

... (Continue for dozens
more entries) ...

With this wasteful struct, if 20 out of those
50 entries are for Intel GARTs, we dupli-
cate the vendor ID, vendor name string,

and in a lot of cases, the setup routine too.
This was cleaned up in several steps.

– Split the structs out from
agpgart_be.c to $vendor.h
(I.e., move all the ALi entries to
ali.h , AMD entries to amd.h ,
etc.)

– Remove all duplication from each of
these structs.

– Replace the duplication with a
‘header struct’ containing the ven-
dor ID, vendor name string, and a
pointer to the remaining data.

– Replace the struct inagpgart_
be.c with a struct that points to
the various split out structures in the
$vendor.h files.

6.5 The “new” PCI API

Somewhat pleased with myself, I mailed off
the changes to Linus, who told me to start
again, this time using the pci_driver function-
ality. As GregKH had done part of the work
here already, it wasn’t actually that much work
to bend what I had already into shape. This
did, however, bring about a big change over
2.4’s agpgart. With each of the per-chipset
drivers now containing a pci_driver struct, they
worked independently of the agpgart core as
stand-alone modules. I wasn’t initially happy
with this, but Linus liked it, so it stayed that
way. It did, however, mean a rewrite in module
locking was needed, which nicely coincided
with Rusty Russell rewriting how module lock-
ing worked.

6.6 Maintainership

By this point, I had completely gutted the way
the agpgart backends worked. I felt I had made
significant enough change to adopt the code,

Linux Symposium 2003 • 259

and make an entry for myself in the MAIN-
TAINERS file. Which was probably my sec-
ond biggest mistake so far. Within just a few
days of doing so, my mailbox was flooded with
bug reports, stagnant patches, thank-you’s, and
insults. One thing that I hadn’t anticipated
was just how far-reaching this code was. Not
only did I now have to follow and understand
what was going on in the agpgart code, but
also found myself digging further into DRI to
follow its interaction with AGPGART. Sub-
sequently, even parts of XFree86 came under
scrutiny, and even FreeBSD (which interest-
ingly did the ‘separate-file-per-vendor’ thing
from Day One) to see just how much I could
or couldn’t change without breaking things too
much from a userspace point of view.

6.7 Taking AGPGART forward: AGP 3.0 sup-
port

After getting on top of the various patches,
and fixing the various problems the new code
brought about, AGPGART had been dragged
kicking and screaming into something that re-
sembled a modern driver. Well, almost. I then
moved on to start tackling the next big thing for
agpgart: generic AGP 3.0 support. Matthew
Tolentino from Intel had come up with a patch
for Intel’s AGP3.0 chipset (the I7505), and had
re-implemented a bunch of code that I had writ-
ten for the x86-64. After factoring out the
common parts, this got to a state where things
looked just fine.

6.8 Return of the previous maintainer

Just when things were beginning to go quiet
(apart from additional AGP3 GARTs turn-
ing up needing implementing), Jeff Hartmann,
the original maintainer of the 2.4 AGPGART,
reappeared with a 130KB patch against the
original 2.4 code. It offered various function-
ality, supporting AGP3, and cleaning up a lot
of code in the process. In a lot of other ways,

however, it was a huge step backwards. Split-
ting Jeff’s huge patch into smaller pieces was
a massive job. Bits of it went in, and Linus re-
jected a bunch of them, but there was worse
to come (more diffs). At the time of writ-
ing, Jeff’s outstanding diffs vs. 2.5.59 is around
380KB. A lot of this is unlikely to be merged
before 2.6 without considerable rewriting.

6.9 Useless abstractions

Furthering the cleanup mantra, agpgart code
has been described in many ways by many peo-
ple (including shit by Linus himself). Pre-
cleanup, however, my pet-name for this mon-
ster was “abstraction hell.” As an excellent
HOWNOTTO in abstraction, here’s how agp-
gart used to flush the cache.

• At strategic parts of the code there are
CACHE_FLUSH(); calls.

• CACHE_FLUSH turns out to be
a macro which expands toagp_
bridge.cache_flush

• agp_bridge.cache_flush in 99%
of cases, points toglobal_cache_
flush . The remaining case could have
been special-cased inglobal_cache_
flush .

• On SMP,global_cache_flush is a
define forsmp_flush_cache . On UP,
it’s a define forflush_cache .

• smp_flush_cache just does ansmp_
call_function on flush_cache .

• Finally, flush_cache does a “wbinvd”
on IA32/X86_64, “mb” on IA64, or
#error s on anything else.

260 • Linux Symposium

7 Future directions

7.1 AGPGART

There is still a lot of work to be done on AGP-
GART. All the work so far concentrated on the
back end (which is where all the chipset magic
happens).

• The front-end of the driver (ioctl interface,
etc.) is almost as crufty, and needs a lot
of work to rid it of silly things like open-
coded list handling routines instead of us-
ing the genericlist.h routines. (Yet
more proof that duplicating functionality
is a bad thing: it gets its double-linked list
implementation horribly wrong.)

• More work on making the AGP3.0 sup-
port transparent.

• Inevitably more support for additional
chipsets.

• Multiple AGP bridge support.

• sysfs migration to get away from the
horrible ioctl interface. This will unfortu-
nately make the Linux AGPGART com-
pletely incompatible with the FreeBSD
implementation. The only people this
causes concern for are XFree86 develop-
ers, who have to support an additional in-
terface.

7.2 Other kernel work

• APIC drivers. The IA32 APIC code is
quite horrible, and quite fragile. It sup-
ports a lot of different types of setup,
from lots of different generic PCs, to
the weird and wonderful bigger machines
like NUMA-Q, Summit, and more. The
x86 sub-architecture support cleaned up
some of this by introducing the possibility

for each sub-arch to implement their own
APIC code, but it hasn’t really improved
readability or maintainability of the APIC
code to any great length.

• Watchdogs. Small scale cleanup oc-
curred already in 2.5, which was to
just group all the watchdog drivers from
drivers/char into a new subdirectory
called imaginativelywatchdog/ . A lot
of these drivers are duplicating lots of
code, sometimes subtly differently, when
they should be using the same code. For
2.7 a nice cleanup would be to abstract out
the generic parts of this to a layer above
the watchdog drivers in a similar way to
what happened with AGPGART. In 2.4
there was a security hole which meant ev-
ery single watchdog driver needed to be
audited and fixed. By moving all this
functionality out of the drivers, this could
have been fixed in a single place.

8 Summary

• Split out multiple implementations to
their own files unless they are small and/or
similar enough to the existing implemen-
tation.

• Don’t re-implement code unnecessarily,
even if you think you may need some-
thing extra that the generic code doesn’t
give you. Build on top of the generic code
rather than re-implementing.

• Use modern interfaces where possible.
This isn’t always easy if you want your
driver to compile on earlier kernel ver-
sions as well (especially true for out-of-
tree drivers).

• Before abstracting something out, think
about why you actually need it abstracted.
What will the callers of the abstraction do
in the common case?

Linux Symposium 2003 • 261

• Directories are there to keep similar things
together. Use them. (Obviously, only
when they make sense; a directory for 2–3
drivers is perhaps going too far).

• Don’t disappear for four years and reap-
pear with a 380KB patch against the last
code you maintained. You may find that a
lot has changed whilst you were gone, and
merging will be anightmare—especially
if you didn’t keep individual per-change
changesets.

262 • Linux Symposium

