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Abstract

Complex biomolecules such as proteins can respond to changes in their environment
through a process called allostery, which plays an important role in regulating the func-
tion of these biomolecules. Allostery occurs when an event at a specific location in a
macromolecule produces an effect at a location in the molecule some distance away.
An important component of allostery is the coupling of protein sites. Such coupling
is one mechanism by which allosteric effects can be transmitted over long distances.
To understand this phenomenon, molecular dynamic simulations are carried out with
a large number of atoms, and the trajectories of these atoms are recorded over time.
Simple correlation methods have been used in the literature to identify coupled mo-
tions between protein sites. We implement a recently developed statistical method
for dimension reduction called principal fitted components (PFC) in the statistical
programming language R to identify both linear and non-linear correlations between
protein sites while dealing efficiently with the high dimensionality of the data. PFC
models reduce the dimensionality of data while capturing linear and nonlinear depen-
dencies among predictors (atoms) using a flexible set of basis functions. For faster
processing, we implement the PFC algorithm using parallel computing through the
Programming with Big Data in R (pbdR) package for R. We demonstrate the meth-
ods’ effectiveness on simulated datasets, and apply the routine to time series data from
Molecular Dynamic (MD) simulations to identify coupled motion among the atoms.

Key words. Sufficient Reduction, Principal Fitted Components, parallel computing,
Molecular Dynamics.

1 Introduction

Complex data are routinely generated by researchers across the applied sciences. These data
create challenges for analysis due to their high dimensionality. As a prototypical example, we
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consider Molecular Dynamics (MD) simulations of complex biomolecules such as proteins.
Steady improvements in computational power and algorithm efficiency have dramatically
increased the capability and scope of MD simulations, facilitating their use in understanding
important problems in chemistry and biology. In the face of this progress, a new challenge
has emerged — that of analyzing the large amounts of data generated from such simulations.
The high dimensionality of protein conformations sampled during MD simulations calls for
efficient and adaptable methods for analysis. One widely studied problem in this scientific
domain is that of identifying motional correlations that occur between distinct sites in pro-
teins. Such correlations are known to play important functional roles in these molecules
[1]. Of particular interest are correlations that occur between distant protein sites. These
distant correlations form the basis of allostery, the process by which an event at one location
perturbs the properties of another location in a biomolecule [28]. Allostery is important be-
cause it allows complex macromolecules such as proteins to sense and respond to changes in
their environment. This phenomenon occurs because different regions of macromolecules are
structurally or thermodynamically coupled, allowing information to be communicated over
long distances [11]. There is still much that is not understood about allostery, particularly as
it relates to regulation of protein function [33]. Open questions include: How can allosteric
principles be used to rationally alter the functionality of proteins [16]7 Which models of
allostery are most relevant in biological systems [11, 19]? What are the evolutionary con-
straints that govern allostery [32, 5, 6, 21, 13]?7 Recently, there has been renewed interest in
uncovering allosteric interactions in proteins and in discovering new allosteric sites due to
their role in protein regulation and their potential as novel sites for drug discovery [18].

The standard tool to assess motional correlations in proteins has been the covariance
map, in which correlations between motions in different sites on a molecule i and j are
represented by the covariance computed for motions involving these sites. The result of this
calculation is a matrix (M) in which each cell (m;;) contains the covariance value computed
for sites ¢ and j. This simple, widely used tool has provided much insight into the role that
correlated motions can play in protein function [34, 3, 14, 22, 12, 31]. Such maps compactly
display motional correlations within a molecular structure and the degree of this correlation.
Despite their utility, covariance maps do exhibit disadvantages. Primary among these is
that correlation methods such as covariance, while well suited to detect linear relationships
among sites, can fail to detect nonlinear statistical dependency [15, 24].

To circumvent the limitations of simple covariance, more elaborate procedures have been
proposed. Among these are the mutual information approach of McClendon et al. [18], which
identifies statistically significant correlated motions from equilibrium molecular dynamics. It
is an entropy-based method that requires large sample sizes and does not address specifically
nonlinear relationships among molecules. Another approach is the quasi-anharmonic analysis
of Ramanathan et al. [24], which uses higher-order statistics of protein motions to identify
sub-states in the conformational landscape. Statistical coupling analysis (SCA) of Lockless
and Ranganathan [17] is another approach that involves nonlinear dimensionality reduction
of the protein coordinate space [27, 9, 10].

Other nonlinear dimensionality reduction methods have been widely used recently to
determine the collective motions from molecular dynamics and to capture nonlinear rela-
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tionships. These methods include kernel PCA [26], complete isometric feature mapping, or
Isomap [29], Locally Linear Embedding or LLE [25], and the diffusion map [7]. However,
these are essentially unsupervised methods that attempt to unfold curved manifolds into flat
spaces. They often require large sample sizes and are typically not equipped to furnish ex-
plicit transformations between the input variables and the low-dimensional embedding, mak-
ing interpretation difficult. Moreover, some of these methods employ non-orthogonal basis
sets that further complicate comparison with conventional correlation analyses [24, 27, 9].

Recent development of dimension reduction methodologies in Statistics pioneered by
Cook [8] capture linear and/or nonlinear dependencies between statistical variables through a
likelihood-based approach. We adapt these principal fitted components methodologies to the
complex, high-dimensional data of protein dynamics in molecular simulations. Two features
of our approach make it relevant. First, linear dimension reduction procedures extract
information contained in large datasets and avoid the difficulties of high dimensionality in
the subsequent analysis while maintaining ease of interpretation. Second, the methodology
is well equipped to uncover nonlinear motional relationships.

In the remainder of this report, we provide a description of the statistical methodology
(Section 2), including results of the method on simulated small-scale data sets. In addition,
we provide details on the parallel implementation; how the methodology was applied to the
time series MD simulation data (Section 2.2). Finally, we review the specifics of PFC as
applied to MD simulation data (Section 3).

2 Statistical Methods

2.1 Statistical Techniques: Principal Fitted Components

Principal fitted components is a statistical methodology with the primary goal of reducing
the dimensionality of a data set. It is an inverse regression methodology with a set of p
predictors X = (x1,...,2,)" and a response Y. The inverse regression model is concerned
with the conditional distribution of predictors X on the response Y. That is, we model X|Y
rather than Y|X. The general form of the PFC model, as in [2], is

E(X|Y) - E(X) =Ty + A ze. (2.1)

In this equation, vy is an unknown function of Y, e ~ N(0, ), and A is the conditional
variance function assumed to be independent of Y. The most important choice made when
constructing the PFC model is in approximating vy with a set of basis functions vy ~ Sfy,
where fy is a collection of functions used to approximate the underlying structure of the
data and [ is an unconstrained parameter. A good basis approximation requires a flexible
set of functions; common basis functions are polynomial, Fourier series, piecewise linear, and
piecewise continuous functions. Here, we limit our analysis to polynomial basis functions.

In addition to primary structures in the data, we must identify the error structure the
model will have. Several structures are possible; isotropic, anisotropic, and unstrutured
error. Isotropic error structure assumes that each predictor is independent, and on the



same measurement scale; thus A = o[, [2, 8]. Anisotropic error structure assumes that
the conditional response variables are not on the same measurement scales; so that A =
[01,...,0,)7 I, [2]. Unstructured error makes no assumptions of this kind, and allows error
to be structured in any way; For our purposes, namely, analyzing MD simulation data, we
will assume an isotropic error structure. Under the isotropic structure, I'" X is the sufficient
reduction of X, that is, '’ X retains all the regression information about Y that is contained
in X. Thus, X is not needed once I'’ X is obtained.

Clearly then, our primary goal is obtaining an accurate estimate of I'. Such an estimate
can be constructed using the eigenvectors of the fitted covariance matrix of X. We represent
the data as the n x p matrix X where p is the number of predictor variables, and n is the
number of observations. The fitted covariance matrix (flﬁt) is the result of projecting X onto
the space spanned by the basis function fy and is given by

- 1
e = — X' PrX. (2.2)
n

The term P = fy(fy"fy) " 'fy” is the projection operator, and fy is an n x r matrix
where 7 is the number of components of the basis function. Here, since we have limited
ourselves to polynomial basis functions, r is the highest degree polynomial we will fit to the
data. By choosing to express and reduce our data in terms of the dominant eigenvectors of
iﬁt, we are making a classical assumption in dimension reduction methodology; we assume
that the directions of greatest variance are the structures on interest.

2.2 Parallel Implementation of PFC

To implement the PFC model described in 2.1, the statistical programming language R was
used. The advantages of R include its high level syntax and native plotting functions, and it
is freely available. We adapted the PFC function initially written in the R library package
‘Idr’ that is available on CRAN to our problem for the parallel implementation.

The PFC implementation found in the CRAN library ‘Idr’ quickly produced a correct
solution for small (e.g., 300 x40) data sets, but for larger sets (e.g., 1500 x 100) the calculation
took several hours. With this in mind a parallel wrapper was created in order to speed up
the computation of correlations. The final program calculated correct correlation matrices
were calculated within seconds rather than hours; thus providing a more efficient way to
uncoverg accurate correlations, both linear and non-linear.

To enable analysis of large data sets, the program was implemented using the ‘SNOW’
and ‘pbdMPT’ libraries. The SNOW library [30] allows a cluster to be called in a master-slave
configuration. While helpful for simple, repetitive computations, SNOW does not allow for
direct communications between processes. The ‘pbdMPT’ library [4] provides a complete R
interface for the Message Passing Interface, making it the more effective approach for our
program.

Computations were carried out on the 86 node computing cluster tara located in the
UMBC High Performance Computing Facility. Each node features two quad core Intel
Nehalem X5550 processors (2.66 GHz, 8192 kB cache) and 24 GB of memory. Attached
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to the cluster is 160 TB of central storage. More information about the cluster and its
use can be found at the webpage www.umbc.edu/hpcf. Documentation on running pbd MPI
programs on tara is available in [23].

Since MD simulation data is a time series, is has some intrepretations that other data
may not have. In particular, motional dependencies between protein sites may not be in-
stantaneous. For example, there may be a slight delay between a molecule binding to a
protein, and the change in motion in another part of the protein. To search for time delayed
correlations, the observations must be shifted relative to one another. Simply by comparing
response values with values of the predictors further forward in time, we can search for the
same correlations while including a time lag. Our program is capable of a finding maximum
correlations for all lags up to a specified value, and of finding correlations for a single, fixed
time lag.

The primary output of the code is a scaled matrix © that describes the strength of
correlation between the variables over over a span of time. This matrix can be represented as
a false color plot; this representation makes interpretation fast and intuitive. Some challenges
remain; the program’s I/O and plotting operations are both serial. While some parallel I/O
implementations such as ‘pbdNCDF4’ [20] exist, they are not commonly used.

2.3 Simulations

We performed a simulation study on smaller scaled data to assess the effectiveness of the
implementation. We generated a sample data set with known correlations between each
variables. The simulated data had n = 300 observations and p = 100 predictors. The data
set was obtained as follows. We first generated the vector Y from the normal distribution
with mean 0 and standard deviation 4. We then formed I" = (I';, 'y, I'3), where

F,{ = (U1, ~-~>U207080)>
I'2 = (0g9,v1, ..., V20, Og0),

T _
I's = (040, w1, ..., wag, 04p).

The terms wu;’s, v;’s, w;’s are uniformly distriputed between 0.5 and 1 for all 1 <7 < 10 and
uniformly distributed between —1 and —0.5 for all 11 < ¢ < 20. With this I', we then form
the final simulated data matrix X = (Y, Y2 Y cos(67Y))['" + ¢ where € is a n x p matrix
of observations from the standard normal distribution. In this data set, the columns, which
are based on based on I'y,I'5, '3, are correlated among themselves. In addition, there are
correlations between the sets. For example, terms of I'; and I's are quadratically correlated.
These are the patterns the methodology is intended to show.

Once the data set was generated, we proceed as explained in Section 3.1. Each variable
is used as a response and the remaining is used as predictors. We form the basis function
using the response. Different basis functions were considered to help uncover the correlation
among the variables. Among these were fy = Y, fy = (Y, Y2 Y3),fy = (Y,Y?), and fy =
(Y, Y2 Y cos(67Y)), and the basis functions corresponding to the correlation plots.

Figures 2.1-2.2 were obtained using the linear and a cubic polynomial bases fy = Y
and fy = (Y, Y2 Y3), respectively. In Figure 2.1, there is a clear linear correlation shown
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Figure 2.1: Correlation plot of simulated data with fy =Y.

between variables, as shown by the blocks of stronger correlation along the diagonal. These
correlations were expected due to the arrangement of I'. The first 10 predictors are positively
linearly correlated with each other and negatively linearly correlated with the next 10 predic-
tors. This pattern continues with predictors 21 to 30 being positively linearly correlated with
each other and negatively linearly correlated with predictors 31 to 40. The pattern continues
in the next block. This is exactly what was expected due to the deliberate assignment of T'.

In Figure 2.2, there is an association between variables 20 to 40 and variables 0 to 20
which was not seen when only looking at the linear correlation plot. Additionally, a very faint
association can be seen between variables 20 to 40 and variables 40 to 60. These additional
associations appear because of the existance of the y? term in the basis function here.

It appears that the adequate choice of the basis function is crucial is detecting the corre-
lations among the variables. Other bases such as spline basis and trigonometrical basis will
be explored in the future.

2.4 Parallel PFC Performance

A performance study was run using n = 100 observations and p = 531 predictors. Table 2.1
summarizes the program’s performance on various numbers of processes.

Figure 2.3 (a) depicts a near linear speedup, substantially dropping off starting at 256
processes. Similarly, Figure 2.3 (b) shows that efficiency drops down below 50% only for 256
and 512 processes. This study demonstrates the effectiveness of the parallel implementation
and its scalability.
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Figure 2.2: Correlation plot of simulated data with fy = (Y, Y2 Y?3).

Table 2.1: Scalability study with n = 100 and p = 531. (a) Observed wall clock time in
HH:MM:SS, (b) observed speedup, (c) observed efficiency.

No. Processes (a) wall time (b) speedup (c) efficiency

1 02:22:52 1.00 1.00

2 01:14:28 1.92 0.96

4 00:39:24 3.63 0.91

8 00:20:36 6.94 0.87
16 00:10:50 13.19 0.82
32 00:05:25 26.38 0.82
64 00:02:55 48.98 0.77
128 00:01:40 85.72 0.67
256 00:01:02 138.26 0.54
512 00:00:43 199.35 0.39

3 Application to the Allosteric Data Set

3.1 PFC in the Context of Protein Dynamics

To describe the use of PFC in the context of protein dynamics, let Vi, ..., V,, be p configura-
tional variables. Consider V) and its relationship to the remaining p — 1 variables. Let X
be the (p — 1)-vector of all variables except Vi, and let Y = Vj. The term I' captures the
statistical dependency between X and Y be it linear or nonlinear. For example, suppose
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Figure 2.3: Plots of (a) speedup and (b) efficiency with n = 100 and p = 531.

that vy = Z and I = (7,0, ...,0)7. Then the expected value of V;, E(V;) = vV, and 7, is
proportional to the correlation between V; and V. Similarly, if vy = (Vj, (V4)2)" and T has
two columns given by (711, 0, ...,0)7 and (72,0, ...,0)T, then V; = 411 Vi +722(Vi)?%. Thus, the
statistical dependency between V; and Vj can be readily established. The proper choice of
basis function determines the adequacy of the method in capturing the relationship between
X and Y. For example, if vy is a quadratic function of Y and a linear approximation is
used, the method may fail to capture the proper dependency.

With the atoms on the same measurement scale, the magnitude of the row elements of
I' indicates the strength of the correlation between individual predictors and the response.
And thus, it suffices to estimate I' and evaluate these dependencies.

Given the data with p predictors, each predictor is used once as the response, and I' is
estimated. The process is therefore run p times. Let I'; be the estimate of I' when the k-th
predictor is used. We then form the p x p matrix © = (I'1,I'y,--- ,I,) that is scaled and
plotted. When the dimension d of I is one and fyy = Y, then © can be obtained as the usual
correlation matrix.

3.2 Molecular Dynamic Simulations and the Data Set

To obtain data for allosteric MD simulations, 400 ns simulations were run, with NS5B
in explicit solvent with and without inhibitor VGI (PubChem ID 4177750) bound to the
thumb domain. Covariance analysis was used to determine patterns of correlated motion.
Distinct patterns of correlation were evident in the free enzyme that were eliminated when
ligand is bound. This results in accord with other studies that suggest the function of
related viral polymerases is mediated by specific long range correlations. Moreover, this
observation supports the hypothesis that allosteric inhibitors such as VGI inhibit the enzyme
by disrupting specific correlated motions. The current study strives to determine whether
additional correlations exist that were not revealed using simple covariance.



Table 3.1: Molecular dynamics data structure.

Time Steps H L1, X2, ..., T531 \ Y1,Y2,---,Y531 Rly 225 --,2531
t1 6.22,14.17,...,17.67 | —10.52,-14.12,...,—-14.84 | 18.1 §8,14.69,...,15.99
to 10.07,18.42,...,21.59 | —10.26,-17.09,...,—-16.94 | 18. 06,12.96,...,10.93
t100 12.82,20.47,...,18.47 | —10.44,-15.09,...,—-12.60 15.36,7.76,...,9.95

3.3 The Data Set

The MD simulation data is best represented as a large matrix. Fach atom, or each coor-
dinate of each atom is a variable of the data set, and each time step of the simulation is
an observation furnishing a value for each variable. Every variable forms a column of the
matrix, and the set of observations at each time step form the rows of the matrix. Typically,
a simulation consists of 100s of atoms, and between 100 and 10000 time steps. In this case,
the simulation has 531 atoms, and each coordinate is considered to be a predictor; thus the
data matrix has p = 1593 columns. The entire simulation consists of 3000 time steps, but
we will consider only the first n = 100 steps. Table 3.1 illustrates the data structure.

3.4 Application to MD Data Set

Because MD simulations simulate the motion of physical bodies, it should be noted that
atoms repsonse to changes in ther surrondings may not be instantaneous. To address this
issue from a data analysis perspective, we have implemented a method to systematically
compare observations of the response variable with observations of the predictors at previous
time steps. The PFC methodology is unaffected, it is simply applied to data that is shifted

in this way.
Consider the kth column of the data matrix X to be the response, which is denoted by
Vi = [U1k, V2p, -, Un k)T If we wish to know the correlations between the response Vj and

the predictor values ¢ time steps ago, then we shift each entry in Vj, column up by one row, so
that the value of v; is now in the location of V;_;. Before applying PFC, we remove the last
n —t rows from all columns other than Vj, these values have no corresponding observations
in Vi, just as the first ¢ observations of V} have no corresponding predictors.

This shifting is carried out for each ¢ up to some specified maximum ¢y. For each
predictor-response combination, the correlation value with the greatest magnitude over all
time shifts is saved, so that if predictors produce effects with different lags, they will all be
captured. Thus, the plot produced will represent the maximum correlations present over all
time shifts up to t;. This methodology has the unfortunate effect of acumulating noise; by
taking the maximum in this way, it may appear that there are more meaningful relationships
among the data than there actually is.

This shifting methodology was applied to our molecular dynamics simulation data, and
we show the result of the first 531 variables in Figure 3.1. This correlation plot uses a basis
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Figure 3.1: Correlation plot of MD simulation data with fy = Y.

function of fy = Y3.

4 Conclusions

PFC methodology was found to be quite amenable to parallel computation. A wrapper, writ-
ten using the ‘pbdMPT’ R library used existing R code and provided significant speedup. The
resulting program and allowed both instantaneous and delayed correlations to be uncovered,
making PFC methodology useful in the context of MD simulation analysis.

PFC demonstrated these advantages on data with known correlations, successfully iden-
tifying linear and polynomial associations, supplanting some popular regression methods
(e.g., PCA). The final program also produced correlations maps that provided an effective
qualatative tool for data analysis.

These correlation maps are useful for analyzing MD simulation data, but previously have
been available only for linear correlations. Producing these maps for higher-order correlations
represents a significant improvement in our ability to quickly analyze MD simulation data
for allosteric sites. Because the code may be run in parallel on many different size systems,
the program also represents an improvement in our ability to analyze even larger data sets,
consisting of even 1000s of atoms.

While our program repersents an improved method for analyzing MD simulation data, it
has significant drawbacks. Data [/O and plotting operations are bottlenecks, and increase
total program runtime. Implementing parallel file I/O is possible using existing R libraries,
and would avoid one of these bottlenecks.

The biochemical implications of these improvements are all the implications that an
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improved understanding of allostery itself provides; the oppertunity for better understanding
of how allosteric sites affect protein structure and function. This would present oppertunities
for novel drug design using these sites.
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