
Towards Adaptive GPU Resource Management
for Embedded Real-Time Systems

Junsung Kim and Ragunathan (Raj) Rajkumar

Department of Electrical and Computer Engineering
Carnegie Mellon University

Shinpei Kato

Department of Computer Science
University of California, Santa Cruz

Abstract

In this paper, we present two conceptual frameworks for
GPU applications to adjust their task execution times based
on total workload. These frameworks enable smart GPU
resource management when many applications share GPU
resources while the workloads of those applications vary.
Application developers can explicitly adjust the number of
GPU cores depending on their needs. An implicit adjust-
ment will be supported by a run-time framwork, which dy-
namically allocates the number of cores to tasks based on
the total workload. The runtime support of the proposed
system can be realized using functions which measure the
execution times of the tasks on GPU and change the number
of GPU cores. We motivate the necessity of this framework
in the context of self-driving technologies, and we believe
that our frameworks for GPU programming are useful con-
tributions given the increasing emphasis on parallel hetero-
geneous computing.

1 Introduction

Graphics processing units (GPUs) are becoming more
and more commonplace in many application domains
widely ranging from high-performance computing to em-
bedded mobile computing. For example, three of the top
five supercomputers on the TOP500 list [12], announced
as of March 2012, use GPUs to accelerate computations,
while recent tablets, such as ASUS Eee Pad Transformer
Prime, also leverage embedded GPUs, like Tegra 3 [9], to
enhance performance under power constraints. This trend
is expected to continue.

One notable application domain of GPUs is automotive
engineering. Modern automobiles employ several tens of
processing units. Further advances in safe-driving features,
such as adaptive cruise control, stop-and-go cruise con-
trol, lane keeping, and assisted lane change, would require
even larger computing capabilities. For vehicles to become
fully or semi-autonomous, a multitude of computer vision,

sensor fusion, signal processing, and graphics sub-systems
must operate and communicate in real-time. Given their
highly data-parallel and compute-intensive workloads, par-
allel computing is a useful solution. As technology stands
today, the GPU is the most well-suited platform. In fact,
NVIDIA GPUs will be used for infotainment systems plat-
forms in future product lines of BMW vehicles [10].

Automatic safety features require smart planning and in-
telligent processing of data obtained from many sensors
equiped in the vehicle, including LIDAR (LIght Detection
And Ranging), radar, camera, and ultrasonic sensors. One
common characteristic in these types of processing is that
GPUs can accelerate their processing speeds significantly.
For example, autonomous driving should ideally follow the
best path among many potential paths, whose calculations
can happen in parallel. Calculating as many potential paths
to follow as possible will yield better quality of driving. As
a matter of fact, CMU’s autonomous vehicle team showed
that their motion planning algorithm was sped up by 40
times [6], using an NVIDIA GTX 260 GPU that integrates
192 compute cores on a chip.

In addition to motion planning, a perception algorithm
as well as sensor data processing can benefit from the GPU.
The perception system of a self-driving car should be able
to detect, classify and track the obstacles around itself. Var-
ious types of sensors will generate voluminous amount of
information that must be processed in order to understand
the vehicle’s surroundings. For example, a self-driving car
at CMU manages 1536 objects from LIDAR sensors before
they are fused with other types of sensor data. There has
been on-going research using GPU to build a perception
system [1], and their GPU implementation yielded 30,000-
times-faster performance compared to the case of using
only one CPU.

As described above, there has been research on apply-
ing GPU to different applications on self-driving cars, and
it is clear that GPU can provide great benefits on realiz-
ing safer or self-driving car technologies. However, not
much research has been done when those technologies are
deployed together on self-driving cars, where the loads of



each application dynamically vary depending on the envi-
ronment. The period and the computation time of the plan-
ning algorithms for autonomous driving highly depend on
the vehicle speed, so the planning algorithms can be heav-
ily loaded when the car is (say) on a highway. The load of
the perception algorithms mainly depends on the number of
obstacles around the car. Hence, the perception system re-
quires more computing resources when the car is driving in
an urban area. Therefore, an intelligent method of sharing
many cores on GPU would be essential when we use GPUs
on self-driving cars. For example, if a self-driving car has
a 96-core GPU, the planning algorithm of the car can use
72 cores on the highway and use 12 cores in the urban envi-
ronment. A self-driving car [13] requires tens of tasks, and
the dynamic core management should be fulfilled across all
tasks if those tasks utilize GPU.

In this paper, we present two conceptual frameworks
for GPU applications to adjust their task execution times
given current workload conditions. These frameworks en-
able smart GPU resource management when many appli-
cations share GPU resources while the workloads of those
applications vary. These frameworks support both explicit
and implicit adjustment. With support for explicit adjust-
ment, application developers can adjust the number of GPU
cores depending on their needs. A run-time framwork will
dynamically allocate the number of cores to tasks based on
current workloads. The runtime support of our proposed
system can be realized using functions which measure the
execution times of the tasks on GPU and change the number
of cores.

The rest of paper is organized as follows. Section 2 de-
scribes how our proposed system is modeled. Section 3
presents the methods for adaptively managing GPU re-
sources, and we conclude our paper in Section 4.

2 System Model

We assume real-time embedded systems that contain
CPU and one or more GPUs as compute devices. An ap-
plication task starts execution on the CPU, and offloads
its data-parallel compute-intensive workload onto the GPU
when needed. Once offloaded onto the GPU, the task be-
comes non-preemptive due to many reasons. In fact, it
is technically possible to preempt the running task on the
GPU by loading and restoring its context, but it requires
additional firmware, runtime, and OS support, and the pre-
emption cost would be non-trivial due to a very large set
of GPU registers and states. We, hence, restrict our atten-
tion to a non-preemptive execution model for GPU comput-
ing. GPUs may also pose some constraints in multi-tasking.
Even the NVIDIA Fermi architecture [8], one of the most
popular GPU product lines, allows only one context to use
GPU resources at once, though this context may spawn mul-

tiple GPU kernels (jobs) simultaneously. In other words,
if task-level parallelism is required, the entire system must
run in the same context. We, however, believe that this con-
straint will not limit the concepts we describe in this paper.
The same GPU context can be used to exploit concurrent
parallel job executions, to serve at least as a proof of con-
cept. We also expect that future product lines will remove
this concern.

We consider real-time applications where each task runs
in a periodic or sporadic manner under deadline constraints.
Such a task set may include motion planning and vision-
based perception in state-of-the-art autonomous driving ve-
hicles, where the periods often correspond to frame-rates,
and the deadlines occur at the end of the period. We
also presume that the computing demand of each task is
highly variable. For example, the performance of planning
and perception tasks is usually governed by the number of
objects, the size of data, and the desired quality of out-
put. These workloads are also very parallelizable using the
GPU. The contributions of this paper are not limited to au-
tonomous driving tasks but are also generally applicable to
highly variable workloads running on the GPU.

3 Adaptive GPU Resource Management

In this section, we describe adaptivity support for GPU
applications. We particularly focus on solving resource al-
location problems. The goal is to support embedded real-
time systems that exhibit highly variable workloads. Since
GPUs integrate a large number of cores on a chip, we aim
to enable the execution of highly variable workloads in a
timely manner by adjusting allocated cores at runtime.

Several approaches have been studied for adaptive GPU
resource management. Some work [3, 4, 5] took time-
driven approach that controls timings and the duration of
time allowed to access GPU resources,i.e., scheduling and
reservation. In these time-driven approaches, application
tasks need not to be aware of what is happening in GPU
resource management, because it is handled by the OS or
runtime scheduler. However, they can not manage task ex-
ecution times. They also limit the number of contexts that
can access the GPU simultaneously to remove performance
interference. Therefore, GPU resources could be wasted if
a running context does not fully use compute cores.

We consider a different approach than previous work
that enables GPU applications to adjust their task execution
times. The number of cores used in the program is a major
factor that affects the execution time. Hence, we explore
how to adjust the core allocation at runtime. It is important
to note that the programmer is typically responsible for al-
locating the number of cores (or threads mapped to cores) in
GPU programming. In order to adjust the number of cores
at runtime, it is essential to provide the programmer with an



Figure 1. The proposed conceptual architec-
ture for GPU resource management.

interface to obtain the information on the number of cores
available or allocated for the program at runtime. The pro-
grammer is then responsible for making the program adap-
tive to the number of cores.

In the following, we present two frameworks that could
be used to implement the proposed approach. We plan to
implement a real system as a proof-of-concept, leveraging
open-source software [2]. The proposed architecture is also
illustrated in Figure 1.

3.1 Explicit Adjustment

In our explicit adjustment framework, the programmer
is responsible for adjusting the number of cores to relax or
tighten the computing demand. There will be no adjustment
unless the programmer explicitly takes an action. A typical
usage of this framework with periodic real-time tasks is as
follows.

At the end of each period, the programmer calls a func-
tion provided by our framework that returns the latest task
execution time. The programmer next calls either of the
following two API functions. One increases the number of
cores to be used by the next GPU execution to speed up the
program. The other decreases it to slow down the program.
This framework is usable in practice because the program-
mer often knows the desired task execution time to meet the
frame-rate or deadline. It is also flexible in that the pro-
grammer can determine when to increase or decrease the
number of cores.

A downside of this framework is that a task may misbe-
have and interfere with other contending application tasks,
if the programmer fails to call the API functions correctly.
We can cap the maximum number of cores available for an
individual task to prevent it from abusing GPU resources,

but the adaptivity of computing depends on the program-
mer, and outside system control.

3.2 Implicit Adjustment

Our second approach to adaptive resource management
is an implicit adjustment framework. In this framework,
the number of cores to be allocated for the program is set
by the runtime system. Hence, the adaptivity of computing
does not really depend on the programmer. If the program
is not aware of this framework, however, it may fail to run,
since the number of core allocated for the program may be
different from what the program assumes.

The programmer specifies the desired task execution
time as a set point before the task starts. If this set point is
not specified, the runtime system tries to derive it internally
as time goes by. When the task uses the GPU, the runtime
system consistently updates the number of cores available
for the corresponding task in the next period based on the
previous execution time records. It is still the programmer’s
duty to check the number of available cores before offload-
ing the computation onto the GPU.

This implicit adjustment framework is more preferable
to the explicit adjustment framework, as it can enforce adap-
tive GPU resource management. However, it requires con-
sensus in the programming model that the number of cores
allocated for the program could be changed every time it is
offloaded onto the GPU, and the programmer must be aware
of it to make the program work. We claim that this is a nat-
ural trade-off between the generality of programming and
needed adaptivity of service.

3.3 Runtime System Support

The runtime system provides the API for real-time GPU
programmers. In order to support adaptive GPU resource
management, we must provide some additional API func-
tions.

• Our adaptive GPU resource management frameworks
require a function to measure the execution time of
each job running on the GPU. This function is easy
to implement. Since we assume that job execution on
the GPU is non-preemptive, the amount of time in run-
to-completion can be accounted as job execution time.
This accounting method is also known to work from
previous studies [5, 11]. For the explicit adjustment
framework, this function must be exposed to the pro-
grammer, while it is used internally by the implicit ad-
justment framework.

• We also need several functions to change the number
of cores to be allocated for the program. Some existing
programming languages for GPGPU,e.g., CUDA [7],



provide the API to allow the programmer to specify the
shape of the grid structure and the number of threads
mapped to compute cores. We can use this API as it
is, or provide a corresponding API if the underlying
programming language does not support it.

In addition to these API functions, the runtime system
must be able to detect when the program is offloaded onto
the GPU and when it is completed on the GPU. Since the
programmer calls a specific API function to launch the GPU
program in most GPU programming models, it is very easy
to record the start time of GPU execution. The detection of
the completion time of GPU execution, on the other hand,
is not straightforward. We would need to use an interrupt
to notify the runtime system of the completion of GPU ex-
ecution. Polling on a particular register is an alternative,
but it would not be suitable for latency-sensitive real-time
systems, as previous work demonstrated [5].

Finally, runtime system support must be integrated with
the API so that the programmer can make use of our frame-
works under a single unified programming model. We plan
to extend our CUDA runtime library developed in previous
work [2] to support our adaptive frameworks. While this is
our planned prototype implementation, and our frameworks
can also be integrated with other programming models be-
yond CUDA.

4 Summary

In this paper, we have discussed adaptivity requirements
in embedded real-time systems with GPUs, and presented
two frameworks for adaptive GPU resource management.
We conjecture that the generality of programming may need
to be compromised to achieve adaptivity of resource allo-
cation on the GPU. Nonetheless, adaptive resource man-
agement is a key solution in optimizing performance un-
der resource-constrained environments. We believe that our
frameworks for GPU programming are useful contributions
in this line of work, given the increasing emphasis in highly
parallel heterogeneous computing.

References

[1] J. Ferreira, J. Lobo, and J. Dias. Bayesian real-time perception algo-
rithms on gpu.Journal of Real-Time Image Processing, 6:171–186,
2011. 10.1007/s11554-010-0156-7.

[2] S. Kato, S. Brandt, Y. Ishikawa, and R. Rajkumar. Operating Sys-
tems Challenges for GPU Resource Management. InProceedings
of the International Workshop on Operating Systems Platforms for
Embedded Real-Time Applications, pages 23–32, 2011.

[3] S. Kato, K. Lakshmanan, Y. Ishikawa, and R. Rajkumar. Resource
Sharing in GPU-accelerated Windowing Systems. InProceedings
of the IEEE Real-Time and Embedded Technology and Aplications
Symposium, pages 191–200, 2011.

[4] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa,and
R. Rajkumar. RGEM: A Responsive GPGPU Execution Model for
Runtime Engines. InProceedings of the IEEE Real-Time Systems
Symposium, pages 57–66, 2011.

[5] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa. TimeGraph:
GPU Scheduling for Real-Time Multi-Tasking Environments.In
Proceedings of the USENIX Annual Technical Conference, 2011.

[6] M. McNaughton, C. Urmson, J.M. Dolan, and Jin-Woo Lee. Motion
planning for autonomous driving with a conformal spatiotemporal
lattice. InRobotics and Automation (ICRA), 2011 IEEE International
Conference on, pages 4889 –4895, may 2011.

[7] NVIDIA. CUDA C Programming Guide.
http://developer.nvidia.com/
nvidia-gpu-computing-documentation.

[8] NVIDIA. NVIDIA’s Next Generation CUDA Compute Architecture:
Fermi (Whitepaper). http://www.nvidia.com/content/
PDF/fermi_white_papers/NVIDIA_Fermi_Compute_
Architecture_Whitepaper.pdf.

[9] NVIDIA. Tegra 2 and Tegra 3 super chip processors.http://
www.nvidia.com/object/tegra-superchip.html seen
on March 7th, 2012.

[10] NVIDIA Press. NVIDIA GPUs to Be the Infotainment Cen-
terpiece Across BMW’s Next-Generation of Cars. http:
//pressroom.nvidia.com/easyir/customrel.do?
easyirid=A0D622CE9F579F09&version=live&prid=
704317&releasejsp=release_157&xhtml=true seen on
March 7th, 2012.

[11] C. Rossbach, J. Currey, M. Silberstein, B. Ray, and E. Witchel.
PTask: Operating system abstractions to manage GPUs as compute
devices. InProc. of the ACM Symposium on Operating Systems Prin-
ciples, 2011.

[12] Top500 Supercomputing Sites.http://www.top500.org/.

[13] C. Urmson, J. Anhalt, H. Bae, D. Bagnell, C. Baker, R. Bittner,
T. Brown, M. Clark, M. Darms, D. Demitrish, J. Dolan, D. Dug-
gins, D. Ferguson, T. Galatali, C. Geyer, M. Gittleman, S. Har-
baugh, M. Hebert, T. Howard, S. Kolski, M. Likhachev, B. Litkouhi,
A. Kelly, M. McNaughton, N. Miller, J. Nickolaou, K. Peterson,
B. Pilnick, R. Rajkumar, P. Rybski, V. Sadekar, B. Salesky, Y-W.
Seo, S. Singh, J. Snider, J. Struble, A. Stentz, M. Taylor, W.Whit-
taker, Z. Wolkowicki, W. Zhang, and J. Ziglar. Autonomous Driving
in Urban Environments: Boss and the Urban Challenge.Journal of
Field Robotics, 25(8):425–466, 2008.


