Introduction to SDL

TSP Stéphane Maag

2012-2013

Objectives

This course intends to make the participants discover:

SDL (with MSC) notations SDL v88 SDL on RTDS

Specification Description Language

Outline ∞SDL, a FDT for complex system specification ≥MSC to SDL ≥SDL system **SDL** notations SDL process »From the specification to the simulation **NRTDS**

... and conclusion.

SDL - a Formal Description Technique

∞FDTs (also called *specification language*):

specify the functional properties of a system according to its environment

are conceived to describe distributed systems composed by processes that are executed in parallel, synchronize themselves and communicate by messages

≫Other techniques: process algebra (CCS), finite state machines, temporal logic, Petri networks, ...

Briefly, SDL

SDL (Specification Description Language):

- Define and normalized by ITU(-T) (1988, 1992, 1996, 2000)
- based on the Extended Finite State Machines (EFSM), asynchronous
- Abstract data types, ASN.1

Let's go with SDL ... in details ...

➣To specify, to describe without ambiguities telecommunication systems

To represent functional properties of a system:
 structural properties: system architecture, its decomposition into interconnected functional blocks
 behavioral properties: system reactions after stimuli coming from the environment

 ∞ The architecture \neq The behavior

History

What is a Real-time system ?

A software-based system:

Capable of interacting with its environment...

- According to a response time compatible with the dynamics of the environment
- In order to supervise, to command or to communicate with the environment at any time

Distributed System

SDL for Reactive and Discrete Systems

Communication:

Message exchanges between the system and its environment
 Mainly asynchronous interactions, but synchronous ones also supported

∞ Nevertheless:

SDL is not adapted to cyclic data-driven inputs
 SDL is unable to describe non real-time aspects, such as:
 Data bases

> GUIs

SDL applications

Wide range of applications
 safety and mission critical communicating systems
 real-time applications

Wide range of architectures workstation-based distributed system, 32-bits communication board, 8-bits micro-controller embedded system

SDL Two normalized representations

 Graphical representation: GR
 Textual representation: PR
 Exchange format: PR+CIF (information+extensions)

MSC - to provide the behaviors

•SDL, a FDT for complex system specification •MSC to SDL •SDL system •SDL notations •SDL process •From the specification to the simulation •ObjectGEODE

Message Sequence Chart

≥Z.120 Recommendation managed by the ITU

Solution is to provide a trace language for the specification and description of the communication behavior of system components and their environment by means of message interchange"

System specification

Three aspects in order to specify:

The definition of the system structure with the interconnections

The dynamic behavior of each process (or machines) and their interaction with the other processes and the environment

➢operations on data (into the processes)

Semantic models -Hierarchy

System architecture:
 Decomposition by interconnected structural entities: system, block, channel, process
 System behavior:
 communicating processes: signals, variables as inputs/outputs: EFSM
 Data: variables, signals, sorts, ASN.1,

TELECOM SudParis

•SDL, a FDT for complex system specification •MSC to SDL •SDL system •SDL notations •SDL process •From the specification to the simulation •ObjectGEODE

System architecture

System SDL: example

Channels

Connections between blocks

The connections must be defined,

that which channels are linked, and which signals are transmitted.

•SDL, a FDT for complex system specification •MSC to SDL •SDL system •SDL notations •SDL process •From the specification to the simulation •ObjectGEODE

SDL predefined types

- INTEGER signed integer
- REAL
- NATURAL positive or null integer

real

- CHARACTER 1 character
- CHARSTRING charstring (string of characters)
 - BOOLEAN bo
- TIME

PID

٠

٠

٠

٠

- boolean
- absolute time (syntype of REAL)
- **DURATION** duration (syntype of REAL)
 - to identify a process instance

Operators on predefined types

Solution Solution Structure Structure Solution Structure Solution Structure Solution Structure Solution Structure Solution Structure Solution Structure Structure Solution Structure Solution Structure Solution Structure Solution Structure Solution Structure Structure Solution Structure Solution Structure Solution Structure Solution Structure Solution Structure Solution Structure Structure Solution Structure Solution Structure Solution Structure Solution Structure Solution Structure Solution Structure Structure Solution Structure Solution Structure Solution Structure Solution Structure Solution Structure Solution Structure Structure Solution Structure Solution Structure Solution Structure Solution Structure Solution Structure Structure Solution Structure Solution Structure Solution Structure Solution Structure Solution Structure Solution Structure Structure Solution Structure Solution Structure Solution Structure Solution Structure Solution Structure Solution Structure Structure Soluti Structure Solution Structure Solution Structure Solutio

REAL *→* -, +, *, /, >, <, >=, <=, Fix

Basic user-defined types

- Enumerated types
 NEWTYPE WeekDay
 LITERALS mon, tue, wed, thu, fri, sat, sun;
 ENDNEWTYPE;
- Range types (often used to index arrays)

SYNTYPE Index_T = Natural CONSTANTS 1:12 ENDSYNTYPE;

SYNTYPE Digit_T = Character CONSTANTS '0':'9' ENDSYNTYPE;

SYNTYPE WeekEnd = WeekDay DEFAULT sun; CONSTANTS sat:sun ENDSYNTYPE;

•SDL, a FDT for complex system specification •MSC to SDL •SDL system •SDL notations •SDL process •From the specification to the simulation •ObjectGEODE

The SDL process

It describes the behavior and extends the FSM concept:

- > the queue associated to each process is not necessarily a FIFO.
- > A transition (not necessarily of a null length) may contain:
 - receiving and sending data
 - analyzing variables to determine the next transition
 - execution of tasks
 - procedure call
 - dynamic creation of process
 - triggered timers

Major SDL elements in a process

Body of a process

Declaration in processes

Variables

- declared in a Text symbol of a process, service, procedure
- no global variables at system or block level
- ✤ can be initialized:

DCL

nbTransactions Integer := 0, v1, v2 MyType;

Stimuli types - inputs

"save" allows to save a signal and keeps it in the queue until the next state ... waiting for the next signal.

Input - Condition

Boolean expression

- signal can only be consumed if the condition is true, otherwise it is saved.
- The expression may not depend on current input signal parameters: only the *previous* value is accessible

Input - priority

Priority signals are processed prior to the other signals in the queue

Outputs

>>> Signal S with three associated values

∞ Signal S avec three expressions to be evaluated

The transmitted signal contains the values : 10, 20, 30

∞ Signal S with a undefined value

The transmitted signal contains the values : 10, undefined, 30

Decisions

Non-deterministic transitions

Non-deterministic transitions are used to describe random events

Express the Time in SDL

- ➢ A Timer is a meta-process able to transmit signals on demand to the process.
- ➣ The current time is given by the variable **NOW**.
- The RESET also removes the corresponding signal from the process queue (case of an expired TIMER, but the signal is not consumed yet.

RESET (T1, T2, T3)

Use of Timers

•Delete the process

Mapping with Marsages to thies process are lost

CONSTANTS

Solution They can be defined at any level of the SDL hierarchy

SYNONYM maxusers **INTEGER** = 10;

To ease the writing (1/2)

The transition associated to the state * is applicable with all the states, while the state *(A,B) is also applicable with all the states **except** A and B

To ease the writing (2/2)

➣To go back to the previous state

➢Input *: represents all other signals

Stephane.Maag@telecom-sudparis.eu

System simulation -Objectives

•SDL, a FDT for complex system specification •MSC to SDL •SDL system •SDL notations •SDL process •From the specification to the simulation •ObjectGEODE

The model is now syntactically correct and semantically consistent. But it is good ?

From low costs to high quality:

∞ debugging

- >> evaluation of alternative solutions
- ∞ verification, detection of errors, comparison with MSC requirements.

∞ Test generation

\Rightarrow to minimize the final costs

Two kind of simulation

Interactive

 step-by-step (debugging)
 access to all data
 MSC generation
 SDL tracking Exhaustive

 fully automatic
 measures state and transitions coverage
 check properties
 reachability graph generation

•SDL, a FDT for complex system specification •MSC to SDL •SDL system •SDL notations •SDL process •From the specification to the simulation •RTDS

Real Time Developer Studio (RTDS)

- 🔊 A Pragmadev tool
- >>> The tool allowing the edition from the requirements
- » Architectural and behavioral design
- >>> Model checking capabilities,
- >>> Traceability information.
- ∞ Code generation
- 🔊 Testing
- ℵ TTCN3

How to connect to RTDS?

Solving an xterm, connect in ssh −X on the "ouindose" server:

RTDS tool location to be checked

GUI - RTDS

Graphical User Interface

Then:

- Save As (in your Home dir!)
- Right click -> add
 component (system, then
 block then process)

e Edit View Element Genera	ate Windo	ws Help
New	•	SDL-RT project
Open	•	SDL-RT project + system
History	Ctrl+W	SDL project
Close Delete		SDL project + system Source file
Import SDL-PR/CIF file		
Import MSC-PR file		
Import XMI file		
Export as PR		
Export as IF		
Convert to SDL-RT		
Generate TTCN		
Save	Ctrl+S	
Save as		
Save a copy		
Save as ZIP file		
Save all		
Revert		
Show project warnings		
Preferences		
Tools	•	
Page setup		
Print	Ctrl+P	
Export as HTML		
Export all publications		
Documentation display options		
Documentation export options		
Export documentation options		
Import documentation options		
Quit	Ctrl+Q	

Conclusion

 SDL, a language to specify complex systems. User-friendly with its PR/GR
 Powerful to express important protocols
 Allows to simulate system behaviors

FSM - EFSM

Short Exercices Specification using FSM/EFSM

Create a deterministic FSM representing the language based on the words {0, 1} that contains all the words in which sequences containing **no more** than 4 consecutive '1' may be read.

