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It starts as a thought experiment. You imagine an

arbitrary quadrilateral with its four midpoints connected

to form another quadrilateral nested inside. You wonder

whether this inner quadrilateral possesses any special

properties, and if these properties continue to hold

when the vertices of the outer quadrilateral assume

different locations.

Almost instinctively, you move to your computer

and launch a dynamic geometry software program such

as The Geometer’s Sketchpad (Jackiw, 1995) or Cabri

Geometry (Texas Instruments, 1994). With a few clicks

and movements of your mouse, the construction is

complete: there on your screen is a model of the

quadrilaterals that can be freely manipulated, just as in

your thought experiment. Some dragging of the outer

quadrilateral’s vertices convinces you there is a

behavior worth noticing; the inner quadrilateral appears

to remain a parallelogram.

The scenario described here is by now a common

one. In an age when we become surprised if something

on our computer screen doesn’t move, it might seem

natural, even obvious, that the static figures from

Euclidean geometry should give way to dynamic ones.

But “obvious” would be an inappropriate word to

describe the foundations of dynamic geometry. Despite

the similarity of ruler-and-compass geometry to its

software counterpart, the crafting of Sketchpad and

Cabri was not a straightforward matter of transporting

Euclid’s axioms to the computer. Jean-Marie Laborde,

one of four Cabri authors, explains that some departures

from Euclidean axioms were inevitable:

The general principle was to make the distance
[between Cabri and Euclid] as small as possible, but
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at the very beginning I was not aware that it would
remain finally at some distance...People weren’t

happy at all [with the] expression ‘Cabri geometry.’
But we decided nevertheless to introduce that

concept to make definite the point that what comes

from the screen is not Euclidean geometry, it’s not

projective geometry...It has to be different.

Nicholas Jackiw, the designer and programmer of

Sketchpad, echoes these comments in a November 1994

posting to the online Swarthmore Geometry Forum:

‘Why hasn’t anyone done this before?’ is the most
common initial reaction to seeing something like

Sketchpad. But then...one realizes something
strange is going on behind the curtain—something

that may seem intuitive, but which is by no means
obvious, and by no means predetermined by the

geometry and mathematics we understood before
the advent of these programs. (http://forum.

swarthmore.edu/epigone/geom.software-dynamic/3/

smoke-0711941827100001@olmo.swarthmore.edu)

This article aims to peer “behind the curtain” to see

how educational software ideas that are clever and

powerful come into being. Largely, it is an historical

account of one particular implementation of dynamic

geometry, The Geometer’s Sketchpad, assembled from

early design documents and interviews with its creators.

But to spotlight the places where design choices could

have been made differently—there is no single model

of what it  means for geometry to be

“dynamic”—references are also included to Cabri and

the Geometry Inventor (Logal Software, 1994).

The Early History

Sketchpad began as an outgrowth of the Visual Ge-

ometry Project (VGP) at Swarthmore College, directed

by Eugene Klotz and Doris Schattschneider. In the mid

1980’s, the project proposed the development of a

videotape series that would focus on three-dimensional

geometry. Klotz says that as an “article of blind faith”

he included interactive computer programs in the pro-

Lifting the Curtain:

The Evolution of The Geometer's Sketchpad
Daniel Scher

Daniel Scher is a doctoral student in mathematics education in the

Department of Teaching and Learning at New York University. His

homepage, http://members.xoom.com/dpscher, contains a Java

Sketchpad-based curriculum in conic sections. His e-mail address

is  dscher@mac.com



Vol. 10 No. 1, Winter 2000 43

posal description, as he felt video was a transient me-

dium that would one day be replaced by the computer.

For programming, Klotz turned to Nicholas Jackiw,

a student he advised in Jackiw’s freshman year of

college. Jackiw’s interests included both English and

computer science (he began programming at the age of

nine) but not, surprisingly, mathematics. Indeed he

avoided mathematics courses entirely in college.

Jackiw’s first work for the VGP was a software

program called Cavalieri. Jackiw describes the program

as a foreshadowing of the dynamic element of

Sketchpad. It allowed users to take a shaping

tool—essentially a virtual bulldozer—and "plow" into a

figure from the left or right, reconfiguring its shape

dynamically (see Figure 1).

Figure 1. Using Cavalieri to “bulldoze” a face.

The original aim of the VGP was to produce

computer programs to accompany each videotape of a

three-dimensional geometry concept. But given the

time it took to complete just Cavalieri and the difficulty

of programming three-dimensional models, Klotz and

Schattschneider decided to shift their focus and create a

single, two-dimensional graphics program.

One of the earliest vector graphics programs to

showcase the graphical capabilities of the computer was

Ivan Sutherland’s “Sketchpad.” A hand-held light pen

allowed the user to draw and manipulate points, line

segments, and arcs on a cathode ray tube monitor

(Franklin Institute Online, 2000). Klotz also wanted to

mine the graphics potential of the computer, and in

honor of Sutherland’s work, named their new program-

to-be, “The Geometer’s Sketchpad.”

The Dragging Story

The ability to “drag” objects and manipulate them

dynamically is perhaps the most defining feature of

Sketchpad and Cabri. Yet from a historical perspective,

the ideas of dragging and motion did not arise in a

vacuum. Colette Laborde (1994) writes,

The idea of movement in geometry is not new—the
Greek geometers devised various instruments to

describe mechanically defined curves—but the use
of movement was nonetheless ‘prohibited in strict

geometric reasoning’ for reasons that were more

metaphysical than scientific. The 17th century
marked a break with Greek tradition, and the use of

movement to establish a geometric property or carry
out a geometric construction became explicit. One

can find numerous examples starting then....

This idea was first expressed in school geometry by

the replacement of the geometry of Euclid’s Ele-

ments by the geometry of transformations (which
continues to be the only kind of geometry taught in

some countries)—quite some time, one must point
out, after the characterization of geometry as the

study of the invariants of transformation groups,
and also quite some years after a daring proposition

made in France by Meray (Nouveaux éléments de

géométrie, first edition 1874)...Meray’s idea was to
teach geometry through movement: translational

movement allowed for the introduction of the
notion of parallelism; rotational movement led to

perpendicularity. (pp. 61-62, French original)

Writing in 1945, Syer describes the ability of film

to create “continuous” geometric images. His advocacy

of the moving picture reads much as a modern-day

justification for dynamic geometry:

In addition to true-life demonstrations of solid
geometry, it would be interesting to make greater

use of the peculiar advantage of moving pictures
over ordinary models. In plane geometry films, we

used figures that changed shapes, position, and
color without distracting pauses or outside aid. This
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continuous and swift succession of illustrations is
fast enough to keep up with a spoken description, or

even as fast as the thought processes that are devel-

oping the idea. Thus no time is lost erasing pictures
from the blackboard, changing lantern slides, or

holding up illustrations, because the illustrations

and thought move simultaneously. (p. 344)

Given the historical antecedents of dynamic geometry’s

dragging feature, it is easy to picture these as factors

pivotal in its creation. The actual development of

dragging, however, tells otherwise.

Sketchpad

Early design plans for Sketchpad did not include a

dragging component. Klotz envisioned the program as a

way for students to draw accurate, static figures from

Euclidean geometry:

Basic motor skills were keeping [students] from
being able to draw. I thought we needed to have
something that allowed people to make the basic

constructions. So to me, [Sketchpad] was a drawing
tool. You’d make a geometric drawing that was

precise and accurate, and scroll over the page to see

what was going on.

Drawing and selecting objects was to occur via the

mouse or by issuing menu commands. Many of the

proposed menu items and selection methods would be

unfamiliar to today’s user of Sketchpad. Table 1 lists

several of them.

Table 1

Drawing and selection options considered for

Sketchpad

Drawing Options Selection Options

draw point by typing

coordinates

select point by giving

coordinates

draw line segment by

giving a point, direction,

and distance

select circle by giving

name (its label)

draw circle by giving the

coordinates of three non-

collinear points

select figure by listing

part names

These options were sufficiently different from the

standard Macintosh user interface to cause Jackiw to

wonder whether there could be a better alternative.

With the Macintosh, one could select objects and drag

them directly with a mouse. Jackiw wanted to extend

this notion to Sketchpad. His interest and experience in

programming video games for the Macintosh helped

inform his sense of what a computer geometry program

could be:

It’s the video game aspect that gives me my sense
of  in terac t iv i ty  when deal ing  wi th

geometry...Looking at the input devices of video
games is a tremendously educational experience. In

the old days, you had games with very interesting

controls that were highly specific...[The video
game] Tempest had a marvelous input device...The

types of games they would write to suit this bizarre
and unique device were always interesting

experiments in what does this hand motion transport

you to in your imagination. I wanted to have a good

feel in all of my games.

The mouse of a Macintosh was not an ideal input

device for games, but it was suitable for manipulable

environments where objects could be dragged. The

illustration program MacDraw, in particular, contained

the rudimentary features of dynamic geometry, as one

could draw and move a segment with the mouse and

change its length. When Jackiw took the basic premise

of MacDraw and applied it (with considerable

reworking) to Euclidean geometry, Klotz found the

results striking:

I remember how shocked I was when I first saw it.
[Jackiw] had played with a Macintosh long enough

to know that you should be able to drag the vertex
or a side [of a triangle] and protrude the figure. I

was flabbergasted. I mean, he made the connection,

and I didn’t.

Once Jackiw had decided to make Sketchpad

“dynamic,” he did not want any of its elements—even

something as seemingly innocuous as labels—to

suggest a static state. He says,

I resisted labeling for a long time because I wanted
the user to be engaged in the world of graphics. I
didn’t want things that made [the program] seem

like it was representational, which labels seemed to
me to do. They turned it into an illustration,

whereas I wanted it to be a world.
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Cabri

As with Sketchpad, the early motivations behind

the dragging feature of Cabri were not tied to mathe-

matical pedagogy. Jean-Marie Laborde maintains there

was no curricular goal, learning theory, or educational

research agenda that sparked the original idea.

Int: What did you imagine was going to happen
with this world [of Cabri Geometry]? Were

you thinking of it as pedagogy, or...

J-ML: No, at the very beginning it was just for fun,
to have such a tool in geometry...For myself,

it was just thinking back to those figures

from [high school or university] geometry
and thinking it would be nice to [explore

them] in the dragging mode, just ‘for fun,’ in

quotation marks.

While “drag mode” was an agreed upon aspect of

Cabri, its status was not immediately clear. For

Laborde, it was central—he had a strong interest in the

“desk” metaphor and direct manipulation concept2 as a

way to replace particular diagrams with an infinite

number of diagrams—but others were not initially

convinced that it should be the default behavior. The

first implementation of Cabri did not grant it freely; one

had to access the menu to drag a point. The elevation of

dragging to default status followed experience with the

new tool: as people played with the early version, they

nearly always wanted to drag points dynamically.

As a postscript, it is worth noting that the dragging

features of Cabri and Sketchpad were both well

underway before either knew of the other. Klotz recalls

his first encounter with Cabri:

We had just that Fall got into our dragging bit, and
were very proud of what we had. We thought, God,

people are going to really love this. But [Cabri] had

scooped us, and we had scooped them. It was one of
these, you know, just amazing things where...maybe

you can sort out the exact moment, maybe there

was a passing meteor, or something.3

Menu Items: Many or Few?

For better or worse, constructing a parallelogram or

building a circle through three given points are both

multi-step procedures with a ruler and compass. Trans-

porting geometry to a computer presents other possi-

bilities. One could imagine a tool that instantly gener-

ates a parallelogram on the screen. The shape of the

parallelogram could then be altered, but the actual work

of building the parallel sides would already have been

done. Likewise, one could provide a tool that encapsu-

lates the entire circle construction into the single step of

selecting three points. In fact, these options appear in at

least one dynamic geometry program, The Geometry

Inventor (Logal Software, 1994).

While one could conceivably provide a user with a

host of tools to automate the most specific of construc-

tions, it was not clear to the Sketchpad designers that

more tools meant a better program. Says Klotz,

I sort of wore two hats; one of them was minimalist
Euclid and the other was trying to make things user

convenient. Depending on what hat I wore, I said
well, let them construct the damn thing, and you

learn something from that. On the other hand, I

realized, even then, you’ve got to listen to user

interests and so forth.

Jackiw faced this issue from both a programmer’s

and a learner’s perspective. Providing menu options to

automate an assortment of geometric construction tasks

meant that Sketchpad would become a hefty program.

All totaled, Jackiw faced a daunting wish list of near

400 menu items—an amount, he joked, that would

require 21 volumes of documentation. In a memo to the

Sketchpad project staff, he explains,

I and the other students in my geometry class would
far rather have sat down with graph paper, a pencil,
and a protractor and meticulously done by hand just

about anything that could reasonably be assigned to
us than to have read the instruction manual for a

program that does everything listed here...I don’t

think that having 40 items in a tool palette and

another 60 in menus is either logical or intuitive.

By advocating for a leaner Sketchpad, Jackiw

aimed to trim the construction commands down to their

“atoms” and eliminate the majority of automated

constructions that could be accomplished by more

primitive techniques. This is not to say, however, that a

student would need to rebuild a square from scratch

each time one was needed. Jackiw viewed the scripting

feature of Sketchpad as a way for students to start from

the “atoms” and gradually build their own collection of

reusable, multi-step constructions. He writes in a May

1995 posting to the Geometry Forum,
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In my ideal vision, students author their own tools,
which forces them to confront and think through the

geometry implicit in a construction before making

the result available to them in the future, as a magic
recipe for achieving their larger construction goals.

(http://forum.swarthmore.edu/epigone/geom.softwa
re-dynamic/17/njackiw-2305951359370001

@198.95.207.164)

Ultimately, the scripting feature in versions 1 and 2

of Sketchpad did not receive heavy use. To construct a

square using a script, the user needed to match two

points on the screen with the two “givens” of the

script—a multi-step procedure. Version 3 of Sketchpad

streamlined the process by allowing the user to create a

script tool button. With this new design, clicking two

points on the screen automatically constructed a square

with the points as neighboring vertices.

Sketchpad as a Visual Spreadsheet

As Jackiw refined his model of how geometric objects

would respond to dragging, he developed a deeper

sense of Sketchpad’s underlying structure. He

comments,

The birth of dynamic geometry as a concept, as
opposed to just an artifact of trying to be like the

Mac, consisted of two sorts of parallel

understandings of what Sketchpad would be. One
was the notion that it was a spreadsheet, but a

spreadsheet that worked with graphics.

In the traditional spreadsheet paradigm,

visualization—graphing or plotting the data
set—comes as an optional postscript to an often

tedious exercise in data generation. Could
Sketchpad dispense with the externalization of

numeric data, and allow users to work at all times

directly with a visual model...?

Sketchpad, as a visual spreadsheet, would share some

of the characteristics of a traditional numerical

spreadsheet. With an Excel spreadsheet, a user might

indicate that cell Z = cell Y + 1. Any changes then

made to the value of cell Y would affect the value of

cell Z. Such dependencies exist in Sketchpad, too, only

in graphical form. For an arbitrary ∆ABC, dragging

vertex A affects the location of AB and AC.

This spreadsheet analogy worked well for Jackiw,

but it was not as robust as he would have liked. His

other desire for Sketchpad was that it allow for

reversibility. In the formula given above (cell Z = cell

Y + 1), a user cannot input the value of cell Z and ask

the spreadsheet to work backwards to calculate cell Y.

Put another way, imagine a user has entered a formula

that calculates profit in terms of two variables: number

of widgets sold and price per widget. The spreadsheet

operates in only one direction—given values of the two

variables, it calculates profit. Jackiw imagined what

would happen if the program had a reversibility feature

built in:

With reversibility, having given it that model, you
can say, ‘How do I make a million bucks?’ And it

would run the whole model in reverse and say, ‘Ah,

you need to sell this many widgets at this price.’

Of course, the solution might not be unique. There

could be more than one combination of widget quantity

and cost that produces the desired profit.

Geometric Reversibility

How does this notion of reversibility apply to a

geometric setting? Jackiw offers an acoustics example

to explain. Imagine you are in a room with two stereo

speakers placed on the floor. Somewhere in the room is

a location where the music reaching your ears will

provide the optimum listening experience—what’s

commonly known as the “sweet spot.” While the music

plays, you move the speakers by trial and error,

attempting to get the sweet spot to coincide with the

location of your easy chair.

By contrast, suppose you’re resting comfortably on

the easy chair and have no intention of moving about to

fiddle with the speakers. If every location of the speak-

ers defines a sweet spot, then why not reverse that logic

and say that every location of the sweet spot defines a

(possibly non-unique) placement of the stereo speakers.

So relax in your chair—from a logical standpoint, the

speakers should be able to relocate themselves!

Shifting now to a Sketchpad environment, Jackiw

describes the following investigation: Using Sketchpad

2.0 or higher, draw a circle with center A and place

three points, C , D , and E, at random locations on the

circle. Connect the points to form ∆CDE, and then draw

medians connecting the triangle’s three vertices to the

midpoints of their opposite sides. The medians meet at

the triangle’s centroid, point I, as shown in Figure 2. By
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experimenting with this construction, what can you say
about ∆CDE when points I and A coincide?

One approach to this question is to vary the loca-

tions of C, D, and E in an attempt to get I to move onto

A. This method frames points C, D, and E as independ-

ent variables whose placements on the circle determine

the location of the dependent centroid I. Drawing on the

stereo example, points C, D, and E can be imagined as

the speakers we move by trial and error to reposition

the sweet spot I to land at our easy chair, point A.

A
C

E D

I

Figure 2. A circle with inscribed ∆CDE and triangle

centroid I.

Jackiw explains that I, in fact, can assume the role

of the independent variable. Since we wish to know

what happens when I overlaps A , drag I onto A and

watch ∆CDE reconfigure itself to become equilateral

(see Figure 3). In doing so, we reverse the notion that

the location of ∆CDE must determine the location of I,

and instead examine how I’s location can determine
∆CDE.

AA

C

E

D
C

E D

I

I

Figure 3. Dragging I onto A causes ∆CDE to become

equilateral.

Since the vertices in Figure 3 cannot mimic I’s

precise path as it is dragged from one location to

another, programming decisions needed to be made

about how the points would move. Notably, for a given

location of point I, the placements of C, D, and E on the

circle are not uniquely determined. Drag I onto point A,

release the mouse, and note the locations of C, D, and

E. Now reach for the mouse again, drag I away from A,

and then drag it back. Most likely, the locations of C,

D, and E will have changed.

A Democracy of Points and Segments

A user who draws an arbitrary polygon ABCDE with

Sketchpad can construct it in several ways. Vertex A

might get drawn first, or it could very well be the last

point placed on the screen. In this simple example, the

order of the construction does not confer any hierarchy

or special behavior on the vertices. The user expects to

be able to drag any vertex of the polygon and deform

the figure into different shapes. Jackiw refers to this

behavior as the “democracy” of vertices in a polygon.

While Jackiw found this democracy desirable, it

was not simple to achieve. One way to reflect the equal

nature of the triangle’s vertices was to represent them

internally as a looping cyclic graph with no beginning

and end. But in such a model, programming the

constraints of the triangle meant representing them

algebraically as a system of simultaneous linear

equations. The time it took for the computer to solve

the equations would not have allowed the program to be

interactive.

As another option, Jackiw considered using an

acyclic graph. Figure 4 shows a triangle ABC with point

D  on side B C, along with its acyclic graph

representation on the right. In this model, each

geometric object in the triangle—its vertices, its

segments, and the point on its segment—becomes a

node of the graph. Arrows flow from node to node,

indicating the chronology of the construction and its

dependencies. Vertices A  and B , for example, define

segment k, and thus their nodes come together with an

arrow pointing toward node k.

An acyclic graph did have its problems: Jackiw

wanted a motion on segment l to percolate to A and C,

but the directionality of the arrows did not allow it.

Dispensing with the arrows altogether was also

troublesome, as an action on a node would then

propagate throughout the graph without a clear idea of

where to end.

After thinking through these issues, Jackiw devised

a variation on the acyclic graph that gave him the
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desired behavior. He viewed the graph as a tree whose

roots and dependencies could change:

Imagine this computational tree was composed out
of thread and objects. If I picked up C, everything

would hang from it, and I could make C become
essentially the new root of the tree. And that’s the

algorithm Sketchpad uses, which is very different
than simply saying, ‘Here’s the graph implied by

the chronology of how the user put things together,
and I’m always going to follow the arrows in the

same direction he did.’

Sketchpad does not use this algorithm in every

situation, but the notion of being able to move any

component of a figure is a defining feature of the

program.

l
j

k
A B

C

D

A B C

D

jk

l

Figure 4. ∆ABC with its acyclic graph representation.

Conclusion

This overview of Sketchpad’s evolution, from the

origins of dragging to the nature of its menu items,

suggests there was very little about the program that

was inevitable from the start. The underlying

mathematics of geometry and algebra certainly guided

its development, but did not dictate how features would

operate, nor even which features to include. Jackiw

emphasizes this point when characterizing the overall

nature of the program:

The totality of [my] decisions forms, to my mind,
more of an aesthetic entity than a mathematical one.
We should not lose sight of that. Part of the reason

students respond so well to these environments has
nothing to do with the [software’s] mathematics; it

has to do with the functional, balanced appeal of

their industrial design.

Because Sketchpad’s design features invite exploration

and play, users sense their own role in shaping and

crafting their understanding of mathematics.

Ultimately, they come to see mathematics less as a

collection of rules and procedures and more as an

ongoing human endeavor.
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