
1

ECE 474a/575a
Susan Lysecky

1 of 21

ECE 474A/57A
Computer-Aided Logic Design

Lecture 6
Algorithmic State Machines (ASMs)

ECE 474a/575a
Susan Lysecky

2 of 21

Control and Datapath Interaction

Binary information in digital system
can be classified into two categories

Data
Discrete elements of information
manipulated by arithmetic, logic,
shift, and other data processing
Operations implemented via digital
components such as adders,
decoders, muxes, etc.

Control
Provides command signals that
coordinate the execution of various
operations in data section to
accomplish desired task

Controller
(FSM)

DatapathInput signal
(external)

Input data

Control
Signals

Status
Signals

Output
data

ECE 474a/575a
Susan Lysecky

3 of 21

What Control Path Implements?

Sequencing of control signals to execute algorithm implemented by circuit
Algorithm

Finite set of instructions/steps to solve a problem
Terminates in finite time at a known end state

Many representations

Recipe Flowchart Computer Program

Ingredients
1/3 cup unsweetened cocoa
1/4 cup cornstarch
2 tablespoons butter
2 2/3 cups skim milk

Steps
1. Combine all ingredients in a small saucepan.
2. Heat over low heat, stirring constantly, until

mixture boils. Boil gently, stirring constantly,
for one minute.

3. Pour into serving dishes and chill until
thickened.

int fib(int n)
{

if (n < 2)
return n;

else
return fib(n-1) + fib(n-2);

}

Lamp doesn’t
work

Buy new lamp

Lamp plugged
in?

Bulb burned
out?

Plug in lamp

Replace bulb

Yes

Yes

No

No

2

ECE 474a/575a
Susan Lysecky

4 of 21

Flowcharts and Algorithmic State Machines (ASM)

Flowchart
Convenient way to graphically specify sequence of procedural steps and decision
paths for algorithm
Enumerates sequence of operations and conditions necessary for execution

Algorithmic State Machine (ASM)
Flowchart defined specifically for digital hardware algorithms

Flowchart vs. ASM
Conventional flowchart

Sequential way of representing procedural steps and decision paths for algorithm
No time relations incorporated

ASM chart
Representation of sequence of events together with timing relations between states of
sequential controller and events occurring while moving between steps

ECE 474a/575a
Susan Lysecky

5 of 21

ASM Chart

Three basic elements
State box
Decision box
Conditional box

State and decision boxes used in conventional flowcharts
Conditional box characteristic to ASM

State name Binary code

Register operations
Moore-type output signals

State Box

Exit path

Condition

Exit path
Exit path

Decision Box Conditional Box

From exit path of decision box

Register operations
Mealy-type output signals

ECE 474a/575a
Susan Lysecky

6 of 21

State box

Used to indicate states in control sequence
State name and binary code placed on top
of box
Register operations and names of output
signals generated in state placed inside box

Example
State name: S_pause
Binary encoding: 0101
Register operation: R ← 0

Register R is to be cleared to 0

Output signal asserted: Start_OP = 1
Launches some operation in datapath

State name Binary code

Register operations
Moore-type output signals

S_pause 0101

R ← 0
Start_OP

3

ECE 474a/575a
Susan Lysecky

7 of 21

Decision Box

Reflects the effect of an input
external or internal, input or status

Diamond shaped box
Condition to be tested inside
Two or more outputs represent exit paths
dependant on value tested

In binary case one path represents true the
other false, represented by 1 and 0
respectively

Example
Check B

If B is true (=1), take path marked 1
If B is false (=0), take path marked 0

Exit path

Condition

Exit path
Exit path

1 B 0

ECE 474a/575a
Susan Lysecky

8 of 21

Conditional Box

Unique to ASM

Inputs come from one of exit paths of
decision boxes
Register operation or outputs listed inside
box generated during given state

Generated as Mealy-type signals
Associated with the state transition

Example
Status of input B checked
Conditional operation executed depending
on result coming from decision box

If B = 1, assert Incr_Reg signal
Otherwise Incr_Reg remains unchanged

From exit path of decision box

Register operations
Mealy-type output signals

1 B

Incr_Reg

0

ECE 474a/575a
Susan Lysecky

9 of 21

ASM Block

Structure consisting of
One state box
All decision and conditional boxes
associated with its exit paths

Block has one entrance and any
number of exits paths
Each block in ASM dedicated to state
of system during one clock cycle

Simplifications
ASM Block not usually drawn because
blocks are well defined
Can label just the “1” and omit the “0”

ASM chart consists of one or more
interconnect ASM Blocks

S_0 001

A ← A + 1

Reset_b

Clear_B

0 E 1

0 F 1

S_2 011S_1 010 S_3 100

4

ECE 474a/575a
Susan Lysecky

10 of 21

Interpretation of Timing Operations

Conventional flowchart, evaluation of
each follows one another

Reg A incremented
Condition E evaluated

If E= 1

clear B
Go to state S_3

In ASM the entire block considered as
one unit

All operations within block occurring
during single edge transition
The next state evaluated during the
same clock
System enters next state S_1, S_2, or
S_3 during transition of next clock

S_0 001

A ← A + 1

Reset_b

Clear_B

0 E 1

0 F 1

S_2 011S_1 010 S_3 100

ECE 474a/575a
Susan Lysecky

11 of 21

ASM Example

Convert pseudo code to ASM chart

Example
Want to detect the number of 1’s in a 2-
bit register called Input
start input indicates when to begin
comparison
busy output indicates when comparison in
progress
ones hold count value
F outputs result

S0:
busy = 0;
ones = 0;

if(start == 1)
goto S1

else
goto S0

S1:
busy = 1;
if(Input[1] == 1)

ones ++;

goto S2
S2:

busy = 1;
if(Input[0] == 1)

ones ++;

goto S3
S3:

busy = 0;
F = ones;

goto S0

ECE 474a/575a
Susan Lysecky

12 of 21

ASM Example Continued

S0:
busy = 0;
ones = 0;

if(start == 1)
goto S1

else
goto S0

S1:
busy = 1;
if(Input[1] == 1)

ones ++;

goto S2
S2:

busy = 1;
if(Input[0] == 1)

ones ++;

goto S3
S3:

busy = 0;
F = ones;

goto S0

S_0 001
busy = 0
ones = 0

Reset_b

start == 1

1

S_1 010

busy = 1

ones++

Input[1] == 1
1

ones++

Input[0] == 1
1

S_2 011
busy = 1

S_3 111
busy = 0
F = ones

5

ECE 474a/575a
Susan Lysecky

13 of 21

ASM – Mux

Describe a 4x1 MUX using a ASM

s1 s0 f
0 0
0 1
1 0
1 1

x1
x2
x3
x4

4x1 mux

f

0 1

x1 x2

2 3

x3 x4

s1
s0

S_0 001

s1
1

s0
1

s0
1

F = x4 F = x3 F = x2 F = x1

ECE 474a/575a
Susan Lysecky

14 of 21

ASM – Full Adder

Describe a 1-bit full adder using
an ASM chart

cin

A B

FAcout

F

cinba f cout

000 0 0
100 1 0
010 1 0
110 0 1
001 1 0
101 0 1
011 0 1
111 1 1

S_0 001

a
1

b1 b1

cin1

f = 0
cout = 1

f = 1
cout = 0

cin1

f = 0
cout = 1

f = 1
cout = 0

cin1

f = 1
cout = 1

f = 0
cout = 1

cin1

f = 1
cout = 0

f = 0
cout = 0

ECE 474a/575a
Susan Lysecky

15 of 21

Smaller Multiplier

+ (5-bit)

+ (6-bit)

+ (7-bit)

00

000

0

a0a1a2a3

b0

b1

b2

b3

0

p7..p0

pp
1

pp
2

pp
3

pp
4

Multiplier in array style
Fast, reasonable size for 4-bit: 4*4 = 16 partial product AND terms, 3 adders
Rather big for 32-bit: 32*32 = 1024 AND terms, and 31 adders

a

a

32-bit adder would have 1024 gates here

... and 31 adders here (big adders)

6

ECE 474a/575a
Susan Lysecky

16 of 21

Smaller Multiplier -- Sequential (Add-and-Shift) Style

Smaller multiplier: Basic idea
Don’t compute all partial products simultaneously
Rather, compute one at a time (similar to by hand), maintain running sum

0 1 1 0
0 0 11

0 0 0 0

+

Step 1

0 1 1 0
0 1 0 0 1 0
+

0 1 1 0
0 01 1

0 0 1 1 0

+

Step 2

0 0 0 0
0 0 1 0 0 1 0
+

0 1 1 0
0 0 1 1

0 1 0 0 1 0

+

Step 3

0 0 0 0
0 0 0 1 0 0 1 0
+

0 1 1 0
0 0 1 1

0 0 1 0 0 1 0

+

Step 4

0 1 1 0+(partial product)
0 0 1 1 0(new running sum)

(running sum)

a

ECE 474a/575a
Susan Lysecky

17 of 21

Smaller Multiplier -- Sequential (Add-and-Shift) Style

Design circuit that computes one
partial product at a time, adds to
running sum

Note that shifting running sum
right (relative to partial product)
after each step ensures partial
product added to correct running
sum bits

0 1 1 0
0 0 1 1

0 0 0 0

+

Step 1

0 1 1 0
0 1 0 0 1 0
+

0 1 1 0
0 0 1 1

0 0 1 1 0

+

Step 2

0 0 0 0
0 0 1 0 0 1 0
+

0 1 1 0
0 0 1 1

0 1 0 0 1 0

+

Step 3

0 0 0 0
0 0 0 1 0 0 1 0
+

0 1 1 0
0 0 1 1

0 0 1 0 0 1 0

+

Step 4

0 1 1 0+ (partial product)
0 0 1 1 0 (new running sum)

(running sum)

mr3

mrld

mdld

mr2
mr1
mr0

rsload
rsclear
rsshr

start

load

load
clear
shr

product

running sum
register (8)

multiplier
register (4)

multiplier

multiplicand
register (4)

multiplicand

load

4-bit adder

co
nt

ro
lle

r

ECE 474a/575a
Susan Lysecky

18 of 21

Smaller Multiplier -- Sequential (Add-and-Shift) Style

mr3

mrld

mdld

mr2
mr1
mr0

rsload
rsclear
rsshr

start

load

load
clear
shr

product

running sum
register (8)

multiplier
register (4)

multiplier

multiplicand
register (4)

multiplicand

load

4-bit adder

co
nt

ro
lle

r

00000000

Step 0
• Set running sum to 0
• Load values

0011

0110

Step 1
• Check multiplier bit 0 (mr0)

• mr0=1, add multiplicand to running sum
• Shift running sum right 1 position

Step 2
• Check multiplier bit 1 (mr1)

• mr0=1, add multiplicand to running sum
• Shift running sum right 1 position

Step 3
• Check multiplier bit 2 (mr2)
• Shift running sum right 1 position

Step 4
• Check multiplier bit 3 (mr3)
• Shift running sum right 1 position

011000000011000010010000010010000010010000010010

0011001100110011

7

ECE 474a/575a
Susan Lysecky

19 of 21

ASM – Sequential Multiplier

mr3

mrld

mdld

mr2
mr1
mr0

rsload
rsclear
rsshr

start

load

load
clear
shr

product

running sum
register (8)

multiplier
register (4)

multiplier

multiplicand
register (4)

multiplicand

load

4-bit adderco
nt

ro
lle

r

S_0

Reset_b

start

1

S_1

mdld = 1
mrld = 1
rsclear = 1

S_2

rsload = 1

mr0 1

S_3

rsshr = 1

rsload = 1

mr1 1

S_4

rsshr = 1

rsload = 1

mr2 1

S_5

rsshr = 1

rsload = 1

mr3 1

S_6

rsshr = 1

ECE 474a/575a
Susan Lysecky

20 of 21

ASMs to FSMDs

Able to convert between formats
Once we have a FSMD, we’ve already seen how to implement in hardware

S_pause 0101

R ← 0
Start_OP

S_pause

R = 0
Start_OP = 1

S_0 001

A ← A + 1

Reset_b

Clear_B

0 E 1

0 F 1

S_2 011S_1 010 S_3 100

S_0

S_1 S_3S_2

A = A + 1

E’F’
E’F

E / Clear_B = 1

Incr_Reg

1 B 0

A1 0101

A1

B B’ / Incr_Reg = 1

ECE 474a/575a
Susan Lysecky

21 of 21

Not Used Much, But …

There are commerical ASM Editors
Mentor Graphics
Summit Design, Inc.
Others…

