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Abstract—Reliability is an important factor to consider when
designing and deploying SSDs in storage systems. Both the
endurance and the retention time of flash memory are affected
by the history of low-level stress and recovery patterns in flash
cells, which are determined by the workload characteristics,
the time during which the workload utilizes the SSD, and the
FTL algorithms. Accurately assessing SSD reliability requires
simulating several years’ of workload behavior, which is time-
consuming. This paper presents a methodology that uses
snapshot-based sampling and clustering techniques to help
reduce the simulation time while maintaining high accuracy.
The methodology leverages the key insight that most of the
large changes in retention time occur early in the lifetime of
the SSD, whereas most of the simulation time is spent in its
later stages. This allows simulation acceleration to focus on the
later stages without significant loss of accuracy. We show that
our approach provides an average speed-up of 12X relative to
detailed simulation with an error of 3.21% in the estimated
mean and 6.42% in the estimated standard deviation of the
retention times of the blocks in the SSD.
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I. INTRODUCTION

Flash memory based solid-state drives (SSD) have gained
tremendous popularity in recent years. SSDs are widely used
in a variety of computing devices, from phones and tablets
to desktops and servers. SSDs offer several advantages over
hard disk drives (HDDs), including higher performance,
lower power, improved acoustics, and ruggedness. Despite
these positives, a major concern with SSDs is that the
underlying flash memory technology has a limited lifetime,
which affects both the number of writes that can be reliably
done to flash, referred to as endurance and quantified in
terms of program/erase (P/E) cycles, and the retention time
of stored data. The retention time is the period of time
during which data written to a flash memory cell can be read
reliably [1]. The retention time decreases with the number
of P/E cycles. These reliability concerns are paramount in
data centers, where workloads are I/O-intense, data integrity
requirements are high, and SSD replacement costs can be
significant [2].

Accurate estimation of SSD reliability is important in
data centers. Such accurate estimation cannot be obtained
by merely counting the number of P/E cycles and instead
requires capturing the pattern of stress and recovery to flash
memory cells over time under the influence of a workload

Table I: Simulation time of enterprise workloads for 5 years

Workload MSNFS EXCHANGE DAPPS RADIUS
Simulation Time 185.93 127.51 86.52 49.31

(hours)

[1]. Also, while SSD performance can be evaluated using
relatively short workload traces, accurate reliability assess-
ments require capturing the stress-recovery patterns over an
extended period of time, typically years, since endurance
and retention time depends on the history of stresses and re-
covery over time. Existing reliability estimation approaches
in the literature either merely count the number of P/E
cycles [3][4], simulate the workload for only a very short
interval of time, or use simplistic extrapolation of the results
from a short simulation to a longer duration [5][1]. Because
reliability is affected by the interplay of the workload
behavior, the flash-translation layer (FTL) algorithms for
page mapping, wear-leveling, garbage collection, and the
distribution of stress and recovery events, any simplistic
extrapolation of a short-duration simulation over a longer
timescale is inherently error-prone. On the other hand, sim-
ulating a workload over a long time-scale is time-consuming.
Having the means to perform reliability assessments of SSDs
for different workloads with low turnaround time can help
reduce the costs of capacity planning for deploying the
storage systems.

Table I shows the simulation time of several data center
workload traces [6] during a 5-year timescale in the DiskSim
simulator [7] with the SSD extension [3]. These simulations
were run on an 8-CPU quad-core 2.3 GHz Intel Xeon

TM

machine with 48 GB of RAM. We choose a 5-year timescale
because it represents the typical hardware refresh interval in
a data center [8]. We simulate 5 years worth of activity by
repeatedly replaying the I/O traces, each of which capture
one representative day’s I/O traffic. As the table indicates,
detailed simulation of years of workloads is very expensive
in terms of time. In this paper, we present an acceleration
framework to accurately measure SSD reliability by per-
forming sampling over time on carefully trimmed workloads.
Our methodology is generic and can be used for any
workload or SSD architecture, thereby allowing for flexible
design-space exploration studies.



In the rest of this paper, Section II describes the ex-
perimental setup and Section III characterizes the variation
in the retention time during a multi-year timescale and
motivates the sampling-based acceleration approach. Sec-
tion IV describes our simulation acceleration methodology
and Section V presents an evaluation of the accuracy and
speedup attained using our approach. Section VI concludes
the paper.

II. EXPERIMENTAL SETUP

We carried out our simulations using Disksim[7] with the
SSD extension module developed by Microsoft Research[3].
We modified Disksim to record statistics that impact reliabil-
ity, such as the recovery time between successive stresses to
flash, and augmented it with reliability models to calculate
the retention time [1][8]. We simulate an enterprise-class
64GB 2-bit MLC SSD. The FTL of this SSD uses a greedy-
based garbage collection approach with wear-leveling aware
heuristics and cold data migration to distribute stress events
evenly across all blocks [3]. The FTL uses a hybrid page-
mapping policy that combines static and dynamic mapping
mechanisms, with an allocation pool that operates at the
granularity of a flash element. Although we use Disksim to
model a specific SSD in this paper, we believe our statistical
acceleration methodology is generic enough to be applied
to other FTLs, SSD organizations, and potentially other
simulators.

To the best of our knowledge, there are no recent publicly
available workload traces that span multiple years of activity.
Cello [9] is the longest trace that we know of; it spans one
year. However, it is relatively old and its I/O activity might
not be representative of modern data center workloads. The
workloads we choose in this paper consist of four enterprise-
class block I/O traces captured from modern Microsoft’s data
centers [6]. Because each trace spans only between 6 hours
and 1 day of representative I/O activity, we repeatedly replay
each I/O trace until the simulation time reaches 5 years,
which aligns with the typical hardware refresh period in a
data center. We believe that this approach is reasonable be-
cause prior research has shown that disk I/O traffic exhibits
spatial and temporal self-similarity characteristics [10][6].

III. THE OPPORTUNITY FOR SIMULATION
ACCELERATION

The retention time of the flash memory cells is affected
by the pattern of stresses and recovery periods over time.
These patterns are governed by the workload, page-mapping,
wear-leveling, and cleaning operations in the FTL. Disksim
simulates all these characteristics. In the simulator, we track
the retention times at the granularity of individual flash
memory blocks. We simulate each of our workloads using
the methodology described in Section II for a 5-year period
and take snapshots of the entire system state, including all
metrics related to retention time, every 15 days of simulated

Figure 1: Retention time histograms over 5 years of sim-
ulated time. Curves on the right represent retention time
histograms early in the lifetime of an SSD.

Figure 2: Ratio of simulation time between Phase I and
Phase II of the usage period of the SSD.

time. The histograms of the retention times over each 15-day
period for one representative workload is shown in Figure
1. (The trends are similar for the other workloads). Each
curve in the graph shows the histogram of the number of
blocks in the SSD with a given retention time value at each
15-day interval. The x-axis in the graph is retention time.
As noted in Section I, retention time decreases as P/E cycles
increase, so the curves on the right represent retention time
histograms early in the lifetime of an SSD.

The retention times of the blocks decrease rapidly early
in the lifetime (denoted as Phase I in the figures) and then
the retention times decrease at a much slower rate afterward
(designated as Phase II). The Phase I and Phase II markers
in Figure 1 are not the actual duration of these phases;
rather, they show when the retention time distributions show
a marked change in trends. The key reason for this trend is



that δVth,s has a power-law relationship with the number of
P/E cycles [1]:

δVth,s =
(A.cycle0.62 +B.cycle0.3).q

Cox
(1)

where A and B are constants, cycle is the number of P/E
cycles, q is the charge of an electron, and Cox is the oxide
capacitance. Therefore, the rate of change of the retention
time decreases with cycling. The ratio of the total simulated
time in the two phases is shown in Figure 2.

The graph highlights two key trends that directly influence
the ability to accelerate the simulation:

• It is important to simulate in detail the activity during
Phase I. Otherwise, even small inaccuracies in the
reliability estimation potentially can accumulate into
large errors in the result.

• The bulk of the simulation time is spent in Phase II,
where potential opportunity exists to skip regions of
the simulation and extrapolate the behavior without
resulting in large errors.

We use these two observations to develop a sampling-
based approach to accelerate the simulation. This approach
consists of two simulation modes: a detailed mode and a
fast-forward functional mode in which the change in the
reliability metrics are approximated. Detailed simulation is
performed only during certain intervals, which we refer to as
sampling units, whereas functional simulation is performed
between the sampling units.

IV. ACCELERATION METHODOLOGY

As mentioned in Section III, our sampling-based simu-
lation approach consists of two modes: a detailed mode
and a fast-forward functional mode in which the change
in the reliability metrics are approximated. To obtain high
accuracy, sampling is performed only in Phase II of a
simulation, where the changes in the retention time stabi-
lize. To decrease simulation time further, we augment our
systematic sampling-based approach with a snapshot-based
clustering technique to reduce the size of the workload
so that only a subset of requests are simulated during the
detailed simulation mode. We will show that our trimmed
workload is representative of the original workload in terms
of its stress behavior and impact on SSD reliability.

The overall simulation acceleration framework is shown
in Figure 3. The framework consists of three major compo-
nents: simulator, workload trimmer and snapshots analyzer.
The simulator, integrated with reliability models, performs
simulation in the detailed and fast-forward modes. It takes
workloads as inputs and periodically dumps snapshots to
track the reliability-related characteristics. The simulation
flow is also depicted in Figure 3. The simulation begins
with detailed mode on the full workload (the dotted region)
with no acceleration techniques applied. The stress behavior
collector in the workload trimmer collects information about

Figure 3: Overview of the acceleration framework

the stress patterns of the full workload as the simulation
runs. As soon as sufficient information is collected, the
clustering analyzer in the workload trimmer is triggered
to perform a K-means clustering-based analysis on the
information collected and reduce the size of the workload
by selecting representative requests from the full workload.
The rest of the simulation takes trimmed workload as
inputs. During simulation, the simulator consults the phase-
transition decider inside the snapshots analyzer periodically
to see whether the simulation has entered Phase II and
whether sampling can be performed. The phase-transition
decider uses earth mover’s distance (EMD) as a metric
to quantify the distance between retention time histograms
and an EMD threshold to decide whether the simulation
has transitioned from Phase I to Phase II. The snapshots
analyzer is also responsible for interpreting the snapshots
to report the reliability metrics. Except for the beginning of
the simulation (dotted region), the bulk of the simulation
flow alternates between detailed simulation on the trimmed
workload (striped region) and the fast-forward functional
simulation (blank region), which speeds up the original
simulation.

V. EVALUATION OF THE ACCELERATION FRAMEWORK

In this section, we evaluate the accuracy of our accelera-
tion techniques and the speed-up achieved in the simulation
time. We evaluate accuracy by comparing the histograms of
the data retention times of the all the blocks in the SSD after
a simulation period of 5 years for the accelerated variants
to the base detailed simulation runs. The only exception
is the EXCHANGE workload, which we simulate for only
3.5 years because this workload experiences block retention
failures that exceed the capacity of the over-provisioning
space of the SSD with the FTL algorithm we exploit. As



mentioned earlier, we simulate the multi-year timescale by
repeatedly playing back the workload trace. We call each
such repetition a simulation round.

Figure 4 compares the retention time distribution across
blocks after 5 years of simulated time among the detailed-
simulation mode, sampling-simulation mode on full work-
loads, and sampling-simulation mode trimmed workloads.
We compare these approaches to a simplistic extrapolation
of retention time after the detailed simulation phase (the
approach used in [1]). Our simulation framework generates
estimates much closer to detailed simulation compared to
the simplistic extrapolation in terms of the position, shape,
and height of the retention time distribution. The histograms
of the accelerated versions are very similar to the detailed
simulation versions for DAPPS, EXCHANGE, and RA-
DIUS. On average, our acceleration framework achieves a
mean estimation error of 3.21% and a standard deviation
estimation error of 6.42%.

Figure 5 shows the speed-up achieved using the sampling
simulation mode on the full workload and trimmed workload
with respect to the detailed simulation mode. Significant
acceleration is achieved for all workloads except RADIUS.
RADIUS is not write-intensive and does not incur as large a
simulation time as the other workloads. With our sampling
framework on the trimmed workload, an average of 12X
speed-up is achieved.

VI. CONCLUSION

Accurate estimation of SSD reliability is important for
data centers. However, accurately measuring the reliability
of SSD requires capturing the impact of workload access
patterns on flash memory over timescales that span several
years, which requires long simulation times. Simplistic ex-
trapolation of reliability from short simulations is inherently
error-prone and can lead to incorrect conclusions. To address
this problem, we present a framework to accelerate SSD
reliability simulation while still providing high accuracy.
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