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Abstract. Algorithms of the new “cyclotomic AKS class” determine rigorously and in
polynomial time whether an input integer is prime. Herein are discussed implementation is-
sues, with a focus on techniques such as asymptotically fast polynomial manipulations, the
possible use of floating-point arithmetic, and special powering ladders. We implemented
various of the ideas herein on an Apple G4, Mac OS X system, and report performance for
one particular AKS variant. We note two performance issues: a) although single-precision
vector floats were not employed in this test implementation, double-precision float perfor-
mance was quite impressive (we quantify this), and b) there are many additional ways to
invoke vectorization, if one so desires, for further speedups.
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1. Introduction

In August 2002 the number-theoretical world was pleasantly surprised at the an-
nouncement of a paper simply titled “PRIMES is in P” [Agrawal et al. 2002]. Now known
as the “cyclotomic AKS test,” or just AKS test—in honor of the three authors—the idea is
that the prime (or composite) character of an input integer is determined without doubt, in
polynomial time. This in turn means that the time to prove or reject primality is O(logµ p)
for some constant power µ; i.e., the run time is bounded by a polynomial function of the
number of bits in p. In previous years there had appeared primality tests that “seemed
to” run in polynomial time, or nearly so, or statistically so, but the AKS algorithm is the
first deterministic, rigorous, polynomial-time instance. In the words of P. Leyland:

One reason for the excitement within the mathematical community is not
only does this algorithm settle a long-standing problem, it also does so
in a brilliantly simple manner. Everyone is now wondering what else has
been similarly overlooked.

We refer herein to the “AKS class” of algorithms, because in recent months there have
appeared new analyses and variants, notably those of [Lenstra 2002], [Pomerance 2002],
[Berrizbeitia 2003], [Cheng 2003], [Bernstein 2003a, b][Lenstra and Pomerance 2003]. The
general trend is the lowering of the complexity exponent k, which began as an uncondi-
tional k = 12+ε with the original AKS paper- and now stands at k = 4+ε for certain input
integers, or a similar low exponent for general input integers but with a possible, minuscule
chance of the answer “maybe.” The precise complexity exponent depends, in these various
treatments, on whether one is proceeding unconditionally, or heuristically, or under the
GRH, and so on. Incidentally, the current best bound—for unconditional complexity with
effectively computable big-O constant—is the O(log6+ε p) result of [Lenstra and Pomer-
ance 2003]; we stress that in some treatments there are either conditions or an ineffective
constant—e.g. the original AKS result did not involve an effective constant. On the prac-
tical side, the speed improvements over the original AKS breakthrough are already—in
just a matter of months—orders of magnitude [Bernstein 2003a] (see also Section 4 for
estimates and projections).

We chose the [Lenstra 2002] variant—outlined below—for the purpose of assessing
various numerical approaches and machine performance. This variant, a compromise be-
tween speed and ease of implementation, has provable runtime O(log12+ε p) or O(log8+ε p)
(the former with an effective implied big-O constant) but heuristically expected to scale
as O(log6+ε p). Indeed, with our optimizations applied, we found runtime T to behave
empirically as

T ∼ C log6 p,

where C is roughly constant over the applicable range of p (see later section for numerical
values). It is understood that the O(log4+ε p) conditional variants—and whatever comes
in future, including marriages of AKS- and elliptic-curve- methods—will be much faster; in
fact we predict in loose terms how fast these would run with our kind of implementation.
Moreover, the ideas presented herein can be expected to be relevant also to faster, future
variants, at least as long as the cyclotomic-ring notions still apply.
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2. Algorithmic issues

In the Lenstra variant of AKS, we establish that p is not a proper prime power q(s>1),
then choose r such that the multiplicative order of p modulo r exceeds v, where

v = round(lg2 p).

Then we check the polynomial relation

(x− a)p = xp − a (mod (xr − 1, p))

for a ∈ [1, φ(r)− 1]. Then p is prime iff the polynomial relation holds for each such a.
Again, very recent variants seek to lower the effective size of polynomials (in the above

algorithm the polynomial degree is typically r−1), or reduce the size of the set of a values,
and so on. Being as (very roughly, and heuristically) r ≈ log2 p, the polynomial relation
to be checked requires the following computational effort:

(number of polynomial squares/muls for p-th power of degree-(r − 1) polynomial) ×
(number of ops per polynomial mul/square) ×

(time per op modulo p) ×
(number of loop passes, i.e. values of a)

which multiplies out respectively (again very roughly) as

(log p) · r · (log p) · r ≈ log6 p,

where we are dropping log . . . log p factors and so the complexity exponent here is really
(6 + ε).

We next provide implementation notes that were valuable in optimizing our own
machine tests of the Lenstra variant above (see final section of this paper for specific notes
on the Apple G4 running MacOS X). However we stress that many of the observations
below should apply also to the newer implementations, e.g. those of [Berrizbeitia 2002],
[Cheng 2002], [Bernstein 2002, 2003].

It is to be stressed that many of the notions below are already resident in prevailing
large-integer and algebra packages. However, for the AKS class there are some special con-
siderations, such as the idea of intervening in some classical algorithm loops, the symbiosis
of disparate algorithms with a view to an ultimately faster variant, and the exploitation of
what has been learned in the last decade about floating-point dominance for large-integer
arithmetic.

• Detecting proper powers. There are many ways to proceed; perhaps the most elegant
is to check bp1/bcb 6= p for all 2 ≤ b < log p, but employ an integer Newton method for the
truncated 1/b power, as in:

int root(p, b) { /* Returns bp1/bc. */
x = 2dB(p)/be; /* B(n) = number of bits in n. */
while(1) {

y = b((b− 1)x + bp/xk−1c)/bc;
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if(y > x) return x;
x = y;

}
}

This procedure can be further optimized; e.g., if int root() returns an even value, there
is no need to take the b-th power, and so on. However, for almost any—even sluggish—
implementation of this proper-power checking, the time spent for this initial step in the
AKS-class algorithms is negligible in practice, so we shall not analyze this procedure fur-
ther.

• Mod p operations. The time-consuming loop over parameters a in the checking of

(x− a)p = xp − a (mod (xr − 1, p))

is the necessary focus of optimization. We envision polynomials of degree (r − 1) with
coefficients typically of size p. In the powering algorithm that resolves (x − a)p we have
to reduce all coefficients modulo p, and to do so successively after each internal square
or multiply within the powering ladder. One way to effect mod p operations is to avoid
explicit division altogether; the Montgomery method, or the Barrett method and some
recent extensions [Crandall and Pomerance 2002] allow such avoidance (except perhaps
for some one-time initialization). We describe here an extension of the Barrett method,
for which multiplication and shifting is all one requires to effect the mod operation. In
fact, for the AKS-class algorithms there may be additional, interesting and unique reasons
to use the Barrett method, as we discuss later. The Barrett idea is to forge a one-time
“generalized reciprocal”

R = b4B(p−1)/pc,

where B(n) is the number of bits in n. Happily, it turns out that even though the formula
above implies a divide, this, too, can be avoided via a Newton-method algorithm for
calculating R [Crandall and Pomerance 2002]. Next, we define s = 2(B(R)− 1). Now, one
effects a mod operation as:

n mod p = n− pb(Rn) >> sc − δ,

where δ has to be 0 or p, and so can be found with one simple compare (of the mod estimate
to p itself). There are ways to speed all this up further, for example by splitting the shift
operation here into two smaller shifts, or observing that part of the usual grammar-school
multiplication parallelogram is demolished by the shift, and so said part need not be
computed, and so on.

• Special p. This could be important in future speed-record-making, so we set it off
as its own topic: Primes of special form can sometimes allow extremely rapid modular
operations. The well known category of Mersenne primes p = 2q − 1 allows a simple shift-
add procedure for the mod. We admit, probably nothing can beat the polynomial-time
Lucas-Lehmer test for these primes (after all the largest proved prime is a Mersenne of
about 13 million bits), but there is also the less well known but also effective Gallot shifting
scheme for Proth prime moduli p = k2q + c [Crandall and Pomerance 2002].
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• Polynomial arithmetic. Various means exist for the multiplication of two polynomials.
The one we selected for our own tests of the Lenstra variant may not be the fastest, but
it is quite straightforward and leads to some intriguing future possibilities for the AKS
class. The selected method is binary-segmentation multiply. To multiply two polynomials
f =

∑
i fix

i and g =
∑

i gix
i each of degree (r − 1), one may forge two (typically large)

integers:
F = 0 . . . 0fr−10 . . . 0fr−20 . . . . . . 0f0,

G = 0 . . . 0gr−10 . . . 0gr−20 . . . . . . 0g0,

where the “0 . . . 0” parts indicate zero-pads of a length one may rigorously calculate so
that the coefficients of the polynomial product fg can be read directly off the integer
product FG. Said integer product will appear as a set of “coefficient cells” with small zero-
pads between each coefficient. Note that a typical coefficient cell will have on the order
of lg r + 2 lg p bits plus any remaining zero-pad bits, and this is the starting observation
for designing the integer sizes and zero-pad lengths (see [Crandall and Pomerance 2002]
for details on the binary-segmentation algorithm). The zero-padding prevents coefficient
sums from spilling over and interfering with each other during the integer multiply. This
intriguing reduction of a polynomial operation to one involving large-integer arithmetic has
various advantages such as: Ease of implementation, referral of software optimization issues
to the excellent, prevailing integer packages, and true exploitation of reduced complexity
for squaring. On this last point, if f = g then we simply do a large-integer square F 2, and
even if FFT multiplication is used, there is a gain of 3/2 for squares over general multiplies.

• Reduction modulo xr−1. An interesting issue is whether to perform the (mod xr−1)
reduction after all modulo p coefficient reduction, or to operate on the integer FG to effect
(mod xr − 1) reduction first, and then reduce the coefficients. One can obtain the reduced
integer in a fashion reminiscent of fast Mersenne-mod: Extract the first r coefficient cells
from the integer FG (think of this as an “and” operation with 2kr − 1 where k is the
bit-width of a coefficient cell). Then shift the discarded part of FG to the right by kr bits
and add to the extracted part. Keep shifting and adding to exhaust all cells of the integer
FG.

• Possible algorithm symbiosis. Our implementation used an extended-Barrett mod
and binary-segmentation multiply. There are advantages to the Barrett scheme for mod
p reductions; for example, if yet more zero-padding is used in the binary-segmentation
scheme, then one could in principle multiply the integer FG by the generalized reciprocal
R and then shift compartmentally to obtain the desired coefficients modulo p. One could
argue that processors do not like compartmental shifts; however that is not so for the newer
vector processors that can perform Barrett shifting by load/stores of coefficient cells with
intermediate shifting-off of bits.

And here is yet another chance for algorithm symbiosis: Consider invoking not an
integer multiply for binary segmentation products, but an integer multiply modulo 2kr −1
(to take care of the mod xr−1 operation) so that shorter run lengths in whatever transform
based multiply can be effected, much in the same way that the irrational-base discrete
weighted transform (IBDWT) has been used for Mersenne prime searches [Crandall and
Fagin 1994]. Modern extensions of the basic ideas are found in [Percival 2003].
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By “algorithm symbiosis” in this context, we refer to the notion of getting as much
of the calculation as possible into large-integer format by combining various large-integer
expedients of the past. Some of the newer AKS variants use different polynomial mod
operations (i.e. not quite as simple as mod xr − 1) and these could also allow symbiosis.

• The big multiply. If one uses binary segmentation and other ideas mentioned pre-
viously, one depends completely on a good integer multiply. We have already mentioned
FFT methods (including the IBDWT) but then we live in a state of sin, in the sense that
the FFT has roundoff errors and yet the whole point of AKS-class algorithms is rigor-
ous proving. Here is a splendid option: Use Nussbaumer (pure-integer) convolution, in
fact Nussbaumer cyclic, which is in practice faster than negacyclic, modulo 2kr − 1 as
above. There is an extra bonus for such a choice: The small negacyclic (of say order 4,
at the bottom of Nussbaumer recursion) which takes 16 ring operations, can be changed
to a spectacular 9 operations in the case of negacyclic squaring. Other options include
Schönhage multiplication (for which the usual transform speedups for squaring are al-
lowed), fast Galois transform (FGT), and so on (see [Crandall and Pomerance 2002] for
pseudocode).

Generally speaking, the fastest floating-point FFT-based multiplies are significantly
faster than their pure-integer counterparts. (See Section 3 for some timing data.)

Incidentally there is a cultural scenario in which the “nonrigor” of floating-point FFT
is not so troublesome. Namely, if you really want to resolve a large prime, say for crypto-
graphic purposes, use the FFT to get a positive AKS output, and then invoke a pure-integer
convolution, which may be slower but one is now focused on a very likely prime. This kind
of idea—to use slower, rigorous-integer programs to “chase and verify” a “floating-point
wavefront” was used to advantage in tie resolution of F24 as composite [Crandall et al.
2003]. In the wavefront regard, it might even be appropriate to have pure-integer machin-
ery recreating, in parallel fashion, various parts of the painful loop over a values. That is,
floating-point machinery could deposit partial results at periodic junctures within the big
loop, whence the integer machinery would check these partials. The whole point is that
the floating-point wavefront may finish way ahead of the integer-verification apparatus.
(Indeed, in the actual F24 resolution the integer-checking procedure ran, literally, months
longer than the overall floating-point (wavefront) run.)

• Windowed power ladders. For AKS-class algorithms, being as polynomial powering
as in: (y − a)p is involved, it turns out to be a substantial improvement to use so-called
windowed power ladders. One reason for this is that by windowing, one drives the com-
putational work more toward squaring as opposed to general multiplication. There are
many variants of windowed power ladders [Crandall and Pomerance 2002] but we did find
a good compromise between complexity of coding and performance (not unlike the classical
compromise in differential-equation solving presented by 4-th order Runge–Kutta). Say
we have a 12-bit exponent for a construct:

H = hw3w2w1w0 ,

where each word wi is 3 bits. Then

H = (((hw3)8 · hw2)8 · hw1)8 · hw0 ,
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so that only 9 squarings and 3 multiplies are required if one has stored hw for all w ∈ [0, 7]
in a table. This compares quite favorably with simpler ladders. It turns out that one only
need store powers for odd values of w, whence one modifies slightly the pattern of squaring.
Such windowing allows one to exploit the relative simplicity of squaring, which is a factor
of 2 in speed over grammar-school multiply, or a factor of 3/2 for FFT squaring, or a factor
greater than this for pure-integer transform squaring, say.

These is one other feature of interest: If one is invoking FFT multiply/square and
were to choose a very wide window (much wider than the 3 bits above) and have a great
deal of available memory, one might be tempted to store the transforms of hw to render
the occasional multiplies yet faster.

• AKS-class is “embarrallel.” It is an obvious observation that AKS-class algorithms,
what with their loops on some a parameter, are “embarrallel,” meaning embarrassingly
parallel, meaning in turn that M equivalent machines can each work independently toward
an answer that will thus arise in 1/M of the time required by 1 machine. In fact, one can
just dole out a set of a values over which a given machine will loop. What is less clear
is how to dole out loops in such a way that memory can also be reduced; that is, we see
immediately how to go parallel in time, but going parallel in space appears difficult.

3. Implementation

We implemented many of the techniques expressed in Section 2, including enhanced
Barrett mod and binary-segmentation polynomial multiply/square. Virtually all of the
runtime for an AKS-class test is spent performing modular exponentiation operations on
polynomials of high degree, and so in our implementation almost all of the time is spent
multiplying (and squaring) large integers.

On an Apple G4, Mac OS X platform, gcc compiler, we did not employ vectorization
(note, though that many of the ideas of Section 2 could certainly leverage Altivec). Instead,
our work was an experiment into the world of large-array double-precision computation,
at which the G4 does well (and vectorization can indeed be used to enhance what we
have done, as explained below). We used the “glucas” package with its double-precision-
float FFT multiply, written by G. Ballester-Vamor (see [glucas homepage]) and being first
and foremost a tool for performing Lucas-Lehmer primality tests. The package includes a
large and complex library for the large-integer FFT arithmetic such tests require, and also
includes a generic interface that lets applications use this library. More specifically, the
FFT multiply code in glucas is specialized for real signals that need not be a power of two
in size, needs no scratch space or bit-reversals, accounts for the cache and memory latency
effects of modern microprocessors, includes machine-specific and compiler-specific code
for fast arithmetic- rounding and prefetching, and incorporates balanced representation
[Crandall and Fagin 1994] to reduce FFT roundoff error. No other publicly available integer
multiplication library incorporates so many features in such a portable (mostly ANSI C)
form, and so glucas is a natural choice for accelerating our AKS implementation. We
note that various OS X libraries may also be invoked for further speedups. Technically,
vecLib/vDSP has optimized functions for such as scalar-vector dyadic multiply (vamD
function) and more implementation labor would certainly exploit such library calls to

7



advantage. Beyond this, one might contemplate single-precision, vectorized FFT—the
present authors settled on the glucas package because of its having been tuned to the
kinds of gargantuan integer sizes in question.

Integrating the glucas library was relatively simple. The only subtlety stemmed from
the fact that our proof-of-concept AKS implementation used a large-integer library whose
internal format stored numbers as arrays of 16-bit integers. This was incompatible with
the glucas interface, which expected input arrays of at least 32-bit integers and so had to
be modified.

4. Performance

As mentioned in the opening section, we found empirically that

T ∼ C log6 p,

and a working value is C ≈ 1000 clocks. A 30-decimal-digit prime thus took, on a 1 GHz.
Apple G4 machine, “about a day” to be resolved. Of course, the C constant really should
have log log . . . factors, but an approximate constancy happens over a wide range of prime
candidates p.

The “glucas” FFT-multiply which allows this kind of C value in clocks turned out to
be quite impressive indeed. Whereas the popular GMP library squares an integer in about
100 clocks per output bit, a cursory check shows the glucas code squaring an integer in
about 13 clocks per output bit. Such is the possible difference between floating-point and
pure-integer convolution schemes (though we do recognize that the glucas code has been
optimized in many ways that have nothing to do with the float/integer dichotomy).

We did not attempt to implement any newer, say O(log4+ε p) schemes, but casual
analysis of these newest schemes would allow us to resolve, on the same 1 GHz. machine,
a 700-decimal-digit prime (actually, perhaps even larger—it is difficult to estimate an
implementation’s performance without having implemented it) in “about a day.” We admit
we did not effect all of the suggestions of Section 2, and again we realize many of the
suggestions may not be optimal. (Note: Very recently (Mar 2003) D. Bernstein announced
the resolution of an about-300 decimal digit integer likewise in about a day on an 800
MHz. Pentium III, via a casual GMP implementation, so our extrapolation into hundreds
of digits for 1-day runs on modern machinery seems reasonable.)

Incidentally, by the “mole rule”—that about 1024 CPU operations have been per-
formed in all of human history (perhaps we are closing in on 1025), and neglecting memory
constraints but using our runtime estimates above, one of the newer AKS-class variants
might have resolved a 100000-digit random prime with such CPU effort. Being as the cur-
rent largest explicit prime has about 4000000 digits, we see that—the new and spectacular
polynomial-time discoveries notwithstanding—there is a long way to go in the matter of
algorithm development.
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