
Lesson 3

Application’s Life Cycle

Victor Matos
Cleveland State University

Portions of this page are reproduced from work created and shared by Google and used according to terms
described in the Creative Commons 3.0 Attribution License.

http://code.google.com/policies.html
http://creativecommons.org/licenses/by/3.0/

2

Anatomy of Android Applications

An Android application consists of one or more core components.

In the case of apps made of multiple parts, collaboration among the
independent core components is required for the success of the
application.

A core component can be:

1. An Activity
2. A Service
3. A broadcast receiver
4. A content provider

2

3

Anatomy of Android Applications

1. Activity

• A typical Android application consists of one or more activities.

• An activity is roughly equivalent to a Windows-Form .

• An activity usually shows a single visual user interface (GUI).

• Only one activity (known as main) is chosen to be executed first when the

application is launched.

• An activity may transfer control and data to another activity through an
interprocess communication protocol called intents.

3

4

Anatomy of Android Applications

4

Weather Channel app
GUI-1- Activity 1

Weather Channel app
GUI-2- Activity 2

Weather Channel app
GUI-3- Activity 3

5

2. Service

• Services are a special type of activity that do not have a visual user interface.

• Services usually run in the background for an indefinite period of time.

• Applications start their own services or connect to services already active.

• Examples:
 Your background GPS service could be set to inconspicuosly run in the

backgroud detecting satellites, phone towers or wi-fi routers location
information. The service periodically broadcast location coordinates to any
application listening for that kind of data. An application may opt for binding
to the running GPS service.

 5

Anatomy of Android Applications

Background

Foreground

6

In this example a music service (Pandora Radio) and GPS location run in the
background. The selected music station is heard while other GUIs are show
on the device’s screen. For instance, our user –an avid golfer- may switch
between occasional golf course reading (using the GolfShot app) and “Angry
Birds” (some of his playing partners could be very slow).

2. Example: Service

GPS

7

3. Broadcast receiver

• A BroadcastReceiver is a dedicated listener that waits for system-wide or
locally transmitted messages.

• Broadcast receivers do not display a user interface.

• They tipically register with the system by means of a filter acting as a key.
When the broadcasted message matches the key the receiver is activated.

• A broadcast receiver could respond by either executing a specific activity or
use the notification mechanism to request the user‘s attention.

7

Anatomy of Android Applications

Background Services

8

3. Broadcast receiver

Broadcast Receiver

Foreground Activity

Method()

Work to be done
after receiving an
ORANGE message

Waiting for ORANGE
signals. Ignoring all
others.

Send an ORANGE
signal

9

4. Content provider

• A content provider is a data-centric service that makes persistent datasets

available to any number of applications.

• Common global datasets include: contacts, pictures, messages, audio files,
emails.

• The global datasets are usually stored in a SQLite database (however the
developer does not need to be an SQLexpert)

• The content provider class offers a standard set of “database-like“ methods
to enable other applications to retrieve, delete, update, and insert data
items.

9

Anatomy of Android Applications

10

Content Provider

‘Real’
Data Sets

query(…)

insert(…)

delete(…)

update(…)

User Application

A Content Provider is a wrapper that hides the actual physical data. Users interact
with their data through a common object interface.

4. Content provider

11

Application’s Life Cycle

Each Android application runs inside its own instance of a Dalvik

Virtual Machine (DVM).

At any point in time several parallel DVM instances could be active.

Unlike a common Windows or Unix process, an Android application

does not completely controls the completion of its lifecycle.

Occasionally hardware resources may become critically low and the OS could
order early termination of any process. The decision considers factors such as:

1. Number and age of the application’s components currently running,
2. relative importance of those components to the user, and
3. how much free memory is available in the system.

11

12

Component Lifecycles

12

All components execute according to a master plan that consists of:

1. A beginning - responding to a request to instantiate them

2. An end - when the instances are destroyed.

3. A sequence of in between states – components sometimes are
active or inactive, or in the case of activities - visible or invisible.

Life as an Android Application:
Active / Inactive
Visible / Invisible

Start End

13

Activty Stack

13

• Activities in the system are scheduled using an activity stack.

• When a new activity is started, it is placed on top of the stack
to become the running activity

• The previous activity is pushed-down one level in the stack,
and may come back to the foreground once the new activity
finishes.

• If the user presses the Back Button the current activity
is terminated and the next activity on the stack moves up to
become active.

14

Activity Stack

14

New Activity

Activity 1

Activity 2

Activity 3

Last Running
Activity

Activity n-1

. . .

Running Activity

New Activity
started

Back button pushed or
running activity closed

Activity Stack
Previous

Activities Removed to
free resources

Figure 1.

15

15 15

Life Cycle Events

15

Life Cycle States

When progressing from one state to the other, the OS notifies the
application of the changes by issuing calls to the following protected
transition methods:

 void onCreate(Bundle savedInstanceState)
 void onStart()
 void onRestart()
 void onResume()

 void onPause()
 void onStop()
 void onDestroy()

16 16 16

Life Cycle Callbacks

16

public class ExampleActivity extends Activity {
 @Override
 public void onCreate (Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 // The activity is being created.
 }
 @Override
 protected void onStart() {
 super.onStart();
 // The activity is about to become visible.
 }
 @Override
 protected void onResume() {
 super.onResume();
 // The activity has become visible (it is now "resumed").
 }
 @Override
 protected void onPause() {
 super.onPause();
 // Another activity is taking focus (this activity is about to be "paused").
 }
 @Override
 protected void onStop() {
 super.onStop();
 // The activity is no longer visible (it is now "stopped")
 }
 @Override
 protected void onDestroy() {
 super.onDestroy();
 // The activity is about to be destroyed.
 }
}

Most of your code
goes here

Save your
important data

here

Reference:
http://developer.android.com/reference/android/app/Activity.html

http://developer.android.com/reference/android/app/Activity.html

17

Life Cycle States

17

An activity has essentially
three states:

1. It is active or running
2. It is paused or
3. It is stopped .

Figure 2.

Image from: http://ganiworldofandroid.blogspot.com/2011/07/complete-understanding-of-activity-life.html

http://ganiworldofandroid.blogspot.com/2011/07/complete-understanding-of-activity-life.html
http://ganiworldofandroid.blogspot.com/2011/07/complete-understanding-of-activity-life.html
http://ganiworldofandroid.blogspot.com/2011/07/complete-understanding-of-activity-life.html
http://ganiworldofandroid.blogspot.com/2011/07/complete-understanding-of-activity-life.html
http://ganiworldofandroid.blogspot.com/2011/07/complete-understanding-of-activity-life.html
http://ganiworldofandroid.blogspot.com/2011/07/complete-understanding-of-activity-life.html
http://ganiworldofandroid.blogspot.com/2011/07/complete-understanding-of-activity-life.html
http://ganiworldofandroid.blogspot.com/2011/07/complete-understanding-of-activity-life.html
http://ganiworldofandroid.blogspot.com/2011/07/complete-understanding-of-activity-life.html

18 18

Life Cycle States

18

An activity has essentially three states:

1. It is active or running when it is in the foreground of the screen
 (at the top of the activity stack).

 This is the activity that has “focus” and its graphical interface is

responsive to the user’s interactions.

19 19

Life Cycle States

19

An activity has essentially three states (cont.) :

2. It is paused if it has lost focus but is still visible to the user.

 That is, another activity seats on top of it and that new activity either is

transparent or doesn't cover the full screen.

 A paused activity is alive (maintaining its state information and

attachment to the window manager).

 Paused activities can be killed by the system when available memory

becomes extremely low.

20 20

Life Cycle States

20

An activity has essentially three states (cont.):

3. It is stopped if it is completely obscured by another activity.

 Continues to retains all its state information.

 It is no longer visible to the user (its window is hidden and its life cycle

could be terminated at any point by the system if the resources that it
holds are needed elsewhere).

21 21

Application’s Life Cycle

Your turn!
EXPERIMENT 1.

1. Write an Android app to show the different cycles followed by an application.
2. The main.xml layout should include a Button (text: “Finish”, id: btnFinish) and

an EditText container (txt: “” and id txtMsg).
3. Use the onCreate method to connect the button and textbox to the program.

Add the following line of code:
Toast.makeText(this, "onCreate", 1).show();

4. The click method has only one command: finish(); called to terminate the

application.
5. Add a Toast-command (as the one above) to each of the remaining six main

events. To simplify your job use the Eclipse’s top menu: Source >
Override/Implement Methods…

6. On the option window check mark each of the following events: onStart,
onResume, onPause, onStop, onDestry, onRestart

 (notice how many onEvent… methods are there!!!)
6. Save your code.

Teaching notes

22 22

Application’s Life Cycle

Your turn!
EXPERIMENT 1 (cont.)

7. Compile and execute application.
8. Write down the sequence of messages displayed by the Toast-commands.
9. Press the FINISH button. Observe the sequence of states.
10. Re-execute the application
11. Press emulator’s HOME button. What happens?
12. Click on launch pad, look for icon and return to the app. What sequence of

messages is displayed?
13. Click on the emulator’s CALL (Green phone). Is the app paused or stopped?
14. Click on the BACK button to return to the application.
15. Long-tap on the emulator’s HANG-UP button. What happens?

Teaching notes

23 23

Application’s Life Cycle

Your turn!
EXPERIMENT 2

7. Run a second emulator.

1. Make a voice-call to the first emulator that is still showing our app. What
happens on this case? (real-time synchronous request)

2. Send a text-message to first emulator (asynchronous attention request)

8. Write a phrase in the EditText box (“these are the best moments of my life….”).

9. Re-execute the app. What happened to the text?

Teaching notes

24 24

Application’s Life Cycle

Your turn!
EXPERIMENT 3

Provide data persistency.

18. Use the onPause method to add the following fragment
 SharedPreferences myFile1 = getSharedPreferences("myFile1",

 Activity.MODE_PRIVATE);

 SharedPreferences.Editor myEditor = myFile1.edit();

 String temp = txtMsg.getText().toString();

 myEditor.putString("mydata", temp);

 myEditor.commit();

18. Use the onResume method to add the following frament
SharedPreferences myFile = getSharedPreferences("myFile1",

 Activity.MODE_PRIVATE);

if ((myFile != null) && (myFile.contains("mydata"))) {

 String temp = myFile.getString("mydata", "***");

 txtMsg.setText(temp);

}

19. What happens now with the data previously entered in the text box?

Teaching notes

25 25

25

Application’s
Life Cycle

Figure 3.

Reference:
http://developer.android.com/reference/android/app/Activity.html

http://developer.android.com/reference/android/app/Activity.html

26 26

Application’s Lifetime

26

Complete / Visible / Foreground Lifetime

• An activity begins its lifecycle when entering the onCreate() state .
• If not interrupted or dismissed, the activity performs its job and

finally terminates and releases its acquired resources when
reaching the onDestroy() event.

onCreate() ⟶ onStart ⟶ onResume() ⟶ onPause() ⟶ onStop() ⟶ onDestroy

Complete cycle

Visible cycle

Foreground
cycle

27

Life Cycle Events

27

Associating Lifecycle Events with Application’s Code
Applications do not need to implement each of the transition methods,
however there are mandatory and recommended states to consider

(Mandatory)
All activities must implement onCreate() to do the initial setup
when the object is first instantiated.

(Highly Recommended)
Activities should implement onPause() to commit data changes in
anticipation to stop interacting with the user.

28

Life Cycle Methods

28

Method: onCreate()

• Called when the activity is first created.
• Most of your application’s code is written here.
• Typically used to define listener’s behavior, initialize

data structures, wire-up UI view elements (buttons,
text boxes, lists) with local Java controls, etc.

• It may receive a data Bundle object containing the
activity's previous state (if any).

• Followed by onStart()

29

Life Cycle Methods

29

Method: onPause()

1. Called when the system is about to transfer

control to another activity.
2. Gives you a chance to commit unsaved data,

and stop work that may unnecessarily burden
the system.

3. The next activity waits until completion of this
state.

4. Followed either by onResume() if the activity
returns back to the foreground, or by onStop()
if it becomes invisible to the user.

5. A paused activity could be killed by the system.

30

Life Cycle Methods

30

Killable States

• Activities on killable states can be terminated by the system when

memory resources become critically low.

• Methods: onPause(), onStop(), and onDestroy()are killable.

• onPause() is the only state that is guaranteed to be given a
chance to complete before the process is killed.

• You should use onPause()to write any pending persistent data.

As an aside…

Android Preferences

Preferences is a simple Android persistence mechanism used to store and
retrieve <key,value> pairs, where key is a string and value is a primitive data
type. Similar to a Java HashMap. Appropriate for storing small amounts of state
data.

SharedPreferences myPrefSettings =
 getSharedPreferences(MyPreferrenceFile, actMode);

• A named preferences file could be shared with other components in the
same application.

• actMode set to Activity.MODE_PRIVATE indicates that you cannot
share the file across applications.

31

Life Cycle Methods

31

As an aside…

Android Preferences

32 32

Key Value

SharedPreference files are permanently stored
in the application’s process space.
Use DDMS file explorer to locate the entry:
data/data/your-package-name/shared-prefs

33

LifeCycle App

EXAMPLE: LifeCycle app

The following application demonstrates the transitioning of a
simple activity through the Android’s sequence of Life-Cycle states.

1. A toast-msg will be displayed showing the current event’s name.
2. An EditText box is provided for the user to indicate a background color.
3. When the activity is paused the selected backg color value is saved to a

SharedPreferences container.
4. When the application is re-executed the last choice of background color

should be applied.
5. An EXIT button should be provide to terminate the app.
6. You are asked to observe the sequence of messages when the application:

1. Loads for the first time
2. Is paused after clicking HOME button
3. Is re-executed from launch-pad
4. Is terminated by pressing BACK and its own EXIT button
5. Re-executed after a background color is set

34

Layout: atcivity_main.xml

<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/myScreen1"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical"
 tools:context=".MainActivity" >

 <EditText
 android:id="@+id/editText1"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:hint="Pick background (red, green, blue, white)"
 android:ems="10" >
 <requestFocus />
 </EditText>

 <Button
 android:id="@+id/button1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Exit" />

 <TextView
 android:id="@+id/textView1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text=" spy box - try clicking HOME and BACK" />

</LinearLayout>

LifeCycle App (1)

35

LifeCycle App (2)

package csu.matos.lifecycle;

import java.util.Locale;
. . . //other libraries omitted for brevity

public class MainActivity extends Activity {
 //class variables
 private Context context;
 private int duration = Toast.LENGTH_SHORT;
 //Matching GUI controls to Java objects
 private Button btnExit;
 private EditText txtColorSelected;
 private TextView txtSpyBox;
 private LinearLayout myScreen;
 private String PREFNAME = "myPrefFile1";

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 //display the main screen
 setContentView(R.layout.activity_main);

 //wiring GUI controls and matching Java objects
 txtColorSelected = (EditText)findViewById(R.id.editText1);
 btnExit = (Button) findViewById(R.id.button1);
 txtSpyBox = (TextView)findViewById(R.id.textView1);
 myScreen = (LinearLayout)findViewById(R.id.myScreen1);

36

LifeCycle App (3)

 //set GUI listeners, watchers,...
 btnExit.setOnClickListener(new OnClickListener() {
 @Override
 public void onClick(View v) {
 finish();
 }
 });

 //observe (text) changes made to EditText box (color selection)
 txtColorSelected.addTextChangedListener(new TextWatcher() {
 @Override
 public void onTextChanged(CharSequence s, int start, int before, int count) {
 // nothing TODO, needed by interface
 }

 @Override
 public void beforeTextChanged(CharSequence s, int start, int count,
 int after) {
 // nothing TODO, needed by interface
 }

 @Override
 public void afterTextChanged(Editable s) {
 //set background to selected color
 String chosenColor = s.toString().toLowerCase(Locale.US);
 txtSpyBox.setText(chosenColor);
 setBackgroundColor(chosenColor, myScreen);
 }
 });

37

LifeCycle App (4)

 //show the current state's name
 context = getApplicationContext();
 Toast.makeText(context, "onCreate", duration).show();
 } //onCreate

 @Override
 protected void onDestroy() {
 super.onDestroy();
 Toast.makeText(context, "onDestroy", duration).show();
 }

 @Override
 protected void onPause() {
 super.onPause();
 //save state data (background color) for future use
 String chosenColor = txtSpyBox.getText().toString();
 saveStateData(chosenColor);

 Toast.makeText(context, "onPause", duration).show();
 }

 @Override
 protected void onRestart() {
 super.onRestart();
 Toast.makeText(context, "onRestart", duration).show();
 }

38

LifeCycle App (5)

 @Override
 protected void onResume() {
 super.onResume();
 Toast.makeText(context, "onResume", duration).show();
 }

 @Override
 protected void onStart() {
 super.onStart();
 //if appropriate, change background color to chosen value
 updateMeUsingSavedStateData();

 Toast.makeText(context, "onStart", duration).show();
 }

 @Override
 protected void onStop() {
 super.onStop();
 Toast.makeText(context, "onStop", duration).show();
 }

39

LifeCycle App (6)

 private void setBackgroundColor(String chosenColor, LinearLayout myScreen) {
 //hex color codes: 0xAARRGGBB AA:transp, RR red, GG green, BB blue

 if (chosenColor.contains("red"))
 myScreen.setBackgroundColor(0xffff0000); //Color.RED
 if (chosenColor.contains("green"))
 myScreen.setBackgroundColor(0xff00ff00); //Color.GREEN
 if (chosenColor.contains("blue"))
 myScreen.setBackgroundColor(0xff0000ff); //Color.BLUE
 if (chosenColor.contains("white"))
 myScreen.setBackgroundColor(0xffffffff); //Color.BLUE
 } //setBackgroundColor

 private void saveStateData(String chosenColor) {
 //this is a little <key,value> table permanently kept in memory
 SharedPreferences myPrefContainer = getSharedPreferences(PREFNAME,
 Activity.MODE_PRIVATE);
 //pair <key,value> to be stored represents our 'important' data
 SharedPreferences.Editor myPrefEditor = myPrefContainer.edit();
 String key = "chosenBackgroundColor";
 String value = txtSpyBox.getText().toString();
 myPrefEditor.putString(key, value);
 myPrefEditor.commit();
 }//saveStateData

40

LifeCycle App (7)

 private void updateMeUsingSavedStateData() {
 // (in case it exists) use saved data telling backg color
 SharedPreferences myPrefContainer =
 getSharedPreferences(PREFNAME, Activity.MODE_PRIVATE);

 String key = "chosenBackgroundColor";
 String defaultValue = "white";

 if ((myPrefContainer != null) &&
 myPrefContainer.contains(key)){
 String color = myPrefContainer.getString(key, defaultValue);
 setBackgroundColor(color, myScreen);
 }

 }//updateMeUsingSavedStateData

} //Activity

41

LifeCycle App (8)

42

LifeCycle App (9)

43

LifeCycle App (10)

User selects a green
background and clicks Exit.
When the app is paused the
user’s selection is saved and
the app finally terminates.

The app is re-executed

Saved state information defining
background color is reused by the
new app’s instance. Life cycle begins
on the onCreate state

44

LifeCycle App (11)

User selects a green
background and clicks the
HOME key. When the app is
paused the user’s selection is
saved, the app is still active
but it is not visible.

The app is re-executed

The app is re-started and becomes
visible again, showing all the state
values previously set by the user
(see the text boxes)

Life Cycle – QUESTIONS ?

45

Appendix
Using Bundles to Save State

@Override
public void onCreate(Bundle savedInstanceState) {
 ... somevalue = savedInstanceState.getString(SOME_KEY);
 ...
}
...
@Override protected void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);
 outState.putString(SOME_KEY, "blah blah blah");
}

