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Abstract. The technology for building dependable computing systems
has advanced dramatically. Nevertheless, there is still no complete so-
lution to building software for critical systems in which every aspect
of software dependability can be demonstrated with high confidence. In
this paper, we present the results of a case study exploration of the
practical limitations on software dependability. We analyze a software
assurance argument for weaknesses and extrapolate a set of limitations
including dependence upon correct requirements, dependence upon reli-
able human-to-human communication, dependence upon human compli-
ance with protocols, dependence upon unqualified tools, the difficulty of
verifying low-level code, and the limitations of testing. We discuss each
limitation’s impact on our specimen system and potential mitigations.

1 Introduction

The past several decades have seen dramatic advances in technology for building
dependable computing systems. Proof of software functionality, for example, has
advanced from a costly manual exercise to a tool-aided endeavor that is becoming
practical for ever-larger systems [13, 22]. Using languages such as SPARK Ada
and approaches such as Correctness-by-Construction, it is possible to prove that
even large systems are demonstrably free of entire classes of defects including
unhandled runtime exceptions, inadvertent memory overwrites, flow errors, and
buffer overflows. These advances have not, however, provided practitioners with
a complete solution to building software for ultra-critical systems in which every
aspect of software dependability can be demonstrated with high confidence.

In this paper, we present the results of a case study conducted to explore the
practical limitations on software dependability. In prior work, we implemented
software for a specimen life-critical medical device and a developed a rigorous
argument showing how evidence arising from our effort supports the conclusion
that the software we developed is fit for use in the context of that device [6]. In
this work, we analyze that argument and extrapolate from its weaknesses a set
of practical limitations on the assurance of software dependability.

We describe the development effort and artifacts upon which our case study
is based in section 2 and the case study process in section 3. In section 4, we
discuss the limitations that we discovered, the effect of each upon the case study
target, and any potential mitigations we are aware of. We discuss related work
in section 5 and conclude in section 6.
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2 The UVA LifeFlow LVAD MBCS

In prior work [6], we introduced Assurance Based Development (ABD), an en-
gineering approach to the synergistic creation of software and assurance of the
software in the form of rigorous argument. In order to assess ABD and its unique
process synthesis mechanism, we conducted a case study development of Mag-
netic Bearing Control Software (MBCS) for a safety-critical system, the Univer-
sity of Virginia’s LifeFlow Left Ventricular Assist Device (LVAD). The details
of this case study are reported elsewhere [6].

2.1 The UVA LifeFlow LVAD

LifeFlow is a prototype artificial heart pump designed for the long-term (10–20
year) treatment of heart failure. LifeFlow has a continuous-flow, axial design.
The use of magnetic bearings and careful design of the pump cavity, impeller,
and blades reduce the damage done to blood cells, thus reducing the potential
for the formation of dangerous blood clots. Fig. 1 shows the placement of the
pump, the batteries and the controller, a cross-section of the pump, and the
overall structure of the controller. Control of the magnetic suspension bearings is
provided, in part, by software running on a Freescale MPC5554 microcontroller.
Table 1 summarizes the MBCS requirements.

2.2 The MBCS Development Process

As part of the case study evaluation of ABD, we developed an implementation
of the MBCS and completed a formal verification of its functionality. Briefly, our
software development process included:



Table 1. Magnetic bearing control software requirements

Functionality 1. Trigger and read Analog-to-Digital Converters (ADCs) to obtain
impeller position vector u.

2. Determine whether reconfiguration is necessary. If so, select
appropriate gain matrices A, B, D, and E.

3. Compute target coil current vector y and next controller state
vector x:

yk = D× xk + E× uk

xk+1 = A× xk + B× uk

4. Update DACs to output y to coil controller.

Timing Execute control in hard-real-time with a frame rate of 5 kHz.

Reliability No more than 10-9 failures per hour of operation.

1. Development of a formal specification in PVS [19] and an informal argument
showing that this specification refines the requirements.

2. Design of a cyclic executive structure to manage the real-time tasks.
3. Design of the bearing control task routines by functional decomposition.
4. Implementation of the MBCS in SPARK Ada.
5. Implementation of bootstrap code in PowerPC assembly language.
6. Use of AdaCore’s GNAT Pro compiler [1] to target the bare microcontroller.
7. Formal verification that the implementation refines the functional specifica-

tion using the PVS proof checker and the SPARK tools in accordance with
our Echo verification approach [21, 22].

8. Machine analysis of Worst-Case Execution Time (WCET) and stack usage.
9. Requirements-based functional testing to Modified Condition / Decision

Coverage (MC/DC) [9] was planned but not completed because of limited
resources. For the purposes of this study, we proceeded as if the testing had
been completed and the expected evidence gained. Had the testing proved
impossible to conduct as planned, we would have revised our testing plans,
possibly resulting in more limited testing evidence.

The resulting software consisted of 2,510 lines of SPARK Ada, of which
579 implement the control calculations and 114 implement the main program
and cyclic executive structure, with much of the remaining code implementing
interfaces to the MPC5554’s functional and peripheral units. The software also
includes implementations of the memcpy and memset library routines called from
compiler-generated code and a bootstrap routine consisting of 106 PowerPC
assembly language instructions.

2.3 The MBCS Fitness Argument

The MBCS fitness argument, recorded in the graphical Goal Structuring No-
tation (GSN) [11], explains how evidence from the MBCS development effort



supports the claim that the MBCS is fit for use in the context of the LifeFlow
LVAD. Fig. 2 illustrates the general form of the argument, which contains 348
GSN elements. After operationally defining “fit for use in the context of the
MBCS” to mean demonstrably satisfying the given software requirements, the
argument decomposes requirements obligations into real-time and non-real-time
requirements. Our argument that the real-time requirements of the MBCS have
been met rests largely upon the use of a WCET analysis tool to ensure that
scheduled tasks complete within their scheduled execution periods. We use two
independent lines of support to show that the MBCS’s non-real-time require-
ments have been satisfied. The first is an appeal to requirements-based func-
tional testing with MC/DC, and the second is a refinement argument based on
our Echo approach to practical formal verification [22].

3 Case Study Process

Our case study evaluation of the practical limitations on software dependability
was based upon and driven by the MBCS fitness argument. Dependability is
irreducibly a system property: software by itself cannot do any harm to people,
equipment, or the environment and so cannot be “unsafe.” In order for safety to
be a consideration, software has to be operating as part of a complete system for
which damage is possible. When a system includes software, that software must
have certain properties if the system is to be adequately dependable. Limita-
tions on software dependability preclude demonstrating that software possesses
such properties, and such limitations thus present threats to a software fitness
argument’s conclusion.

We identified two forms of threat to the MBCS fitness argument: (1) as-
sumptions in the argument, such as the assumption that the PVS proof checker
will not accept an invalid proof; and (2) reasoning steps in which the premises
do not actually entail the claim, such as the argument that requirements-based
functional testing with MC/DC supports the claim that the system meets its
functional requirements. For each threat, we: (a) identified the general limita-
tion of which the identified threat was a specific instance; (b) evaluated the
limitation’s impact on to the MBCS fitness argument; and (c) enumerated any
potential mitigations of which we were aware.

We do not claim that the list of limitations presented in section 4 is complete.
Other development efforts might be subject to limitations that did not affect
the MBCS effort, and others might find limitations in the MBCS effort that we
overlooked. The range and impact of the limitations facing this effort, however,
are one indication of the challenges of dependable software engineering generally.

4 Limitations Discovered

In this section, we present the limitations uncovered by our case study. These
limitations, which overlap somewhat, are pervaded by three major themes:
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Fig. 2. Excerpt from the LifeFlow MCBS fitness argument



1. Dependence upon fallible human beings.
2. Incomplete or immature tools or technologies.
3. Techniques that cannot practically ensure the needed dependability.

4.1 Reliance Upon Correct Requirements

The correctness of the requirements is assumed in many software development
efforts. Unfortunately, requirements gathering depends unavoidably on fallible
human beings. Requirement defects do occur: the majority of software defects
in critical embedded systems, in fact, stem from requirements defects [18].

MBCS manifestation. The correctness of the requirements is assumed in 336 of
348 elements (97%) of the MBCS fitness argument. With the exception of an
appeal to integration testing, the MBCS software fitness argument contends that
the MBCS is fit for use in the context of the LifeFlow LVAD system because the
MBCS meets the requirements imposed upon it by that system.

Potential mitigations. Many techniques have been suggested and used to re-
duce the incidence of requirements defects. Requirements can, for example, be
structured in such a way as to make omissions and contradictions more obvious,
thereby increasing the likelihood that they will be caught and corrected [10].
Prototypes can be built to demonstrate an understanding of the requirements so
that stakeholders have the opportunity to correct misconceptions. None of these
techniques, however, will yield demonstrably adequate requirements.

Requirements for embedded software are derived from the design of the sys-
tem in which the software is embedded. This replaces reliance upon a subject
matter expert to enumerate requirements with a reliance upon the derivation
process. Embedded software requirements can be no more trustworthy than the
process used to derive them: defects in hazard analysis, fault tree analysis, Haz-
Op studies, or FMECA could all contribute to erroneous software requirements.

4.2 Reliance Upon Reliable Human-To-Human Communication

The construction of software requires precise communication of complex con-
cepts, frequently between people with different backgrounds and expertise. Sys-
tems engineers, for example, must communicate software requirements com-
pletely and correctly to software engineers. Such communication again relies
upon fallible humans and is fraught with the potential for error. In the worst
case, the recipient of communication will be left with an understanding other
than that which the originator intended and will be unaware of the error.

MBCS manifestation. The MBCS fitness argument does not explicitly address
the sufficiency of human-to-human communication. The argument does, how-
ever, reference 16 documents written in whole or in part in natural language,
including the requirements, the specification, test plans, inspection protocols,
various reports, and tool manuals. Of these, the strength of the main fitness



claim rests most heavily upon correct understanding of the requirements. The
potential for a misunderstanding of the requirements is mitigated somewhat by
the use of an independent test team: unless the test team and the drafters and
reviewers of the specification made the same mistake, the miscommunication
would likely result in either a failed test case or a falsely failing test case.

Potential mitigations. The use of formal languages can partially address this
problem. However, while formal semantics define precisely one meaning for a
given formal text, it is impossible to formalize all engineering communication.
Since formal languages are semantically void, natural language is unavoidable
even if its use is restricted to binding formal tokens to real-world meanings.

Research has addressed the problem of communication deficiencies in engi-
neering. The CLEAR method, for example, addresses misunderstandings of the
terms used in requirements by building definitions that are demonstrably free
of certain classes of common defects [8, 20]. Unfortunately, we are aware of no
method that can demonstrably reduce the incidence of miscommunication to an
adequate level when the consequences of miscommunication are severe.

4.3 Reliance Upon Understanding Of The Semantics Of Formalisms

In every software development effort, human beings read and write artifacts in
at least one formal language, such as a programming language or specification
language. Even if these languages contained no deliberate ambiguities (e.g. un-
specified integer storage sizes in C), and even if their specifications were not given
in natural language, the engineering processes surrounding them require fallible
humans to accurately identify the meaning of each artifact written in them. As
a result, a developer’s misunderstanding of a language’s semantics could lead to
error. For example, a developer writing a formal specification in Z might forget
which decorated arrow symbol corresponds with which type of relationship and
so express a relationship other than that intended. Such errors become hard to
reveal if the same misunderstanding is propagated to multiple artifacts (e.g. the
specification and the source code) during development.

MBCS manifestation. Several formal artifacts appear in the MBCS fitness argu-
ment: the PVS specification, SPARK annotations, Ada and assembly language
source code, the linker script, annotations for the WCET and stack usage anal-
ysis tools, and various tool configurations. Of these, the strength of the main
fitness claim rests most heavily upon human understanding of the formal specifi-
cation. While the result of a misunderstanding of the semantics of Ada or of the
SPARK annotation language should be caught during Echo formal verification,
there is no more authoritative artifact against which the specification can be
mechanically checked.

Potential mitigations. Developers should be adequately trained and skilled in the
languages that they employ, but training cannot guarantee perfect understand-
ing. Mechanical verification of each formal artifact against a more authoritative



artifact cannot address errors in the most authoritative artifacts. Moreover, the
use of independent personnel in inspections and hand proofs, while helpful, can-
not guarantee a sufficiently low rate of misunderstanding-based errors.

4.4 Reliance Upon Reviews Or Inspections

Reviews or inspections, properly performed, can be an effective tool for finding
and eliminating defects [14]. Unfortunately, inspections, however performed, are
performed by fallible humans and cannot guarantee the absence of a defect.

MBCS manifestation. We rely upon inspection to validate: (1) a separate argu-
ment showing that the specification refines the requirements; (2) the loop bounds
and other configuration of the WCET tool; (3) the hand-generated bootstrap
code; (4) the linker script; (5) the (non-SPARK) memset and memcpy routines;
(6) the hardware interface routines, some written in assembly language; and
(7) our usage of floating-point arithmetic.

In our fitness argument, shown in Fig. 2, the refinement sub-argument rooted
at ST ArgOverRefinement relies solely upon inspection to establish the cor-
rectness of non-SPARK code, including the absence of side effects that would
invalidate the assumption of non-interference made during formal verification
of the remaining code. However, functional testing evidence complements this
sub-argument as shown in the figure.

Potential mitigations. Inspections can be limited to specific parts of specific ar-
tifacts, focused on answering specific questions, and structured so as to force
a thorough and systematic examination of the artifacts [14]. While these im-
provements increase the overall rate at which inspectors find specific kinds of
defects in specific work products, their use cannot justify concluding with high
confidence that the inspected work products are free of the defects in question.

4.5 Reliance Upon Human Compliance With Protocols

In many software development efforts, fallible human developers are required
to precisely follow certain protocols. A configuration management protocol, for
example, might require that a developer use configuration management software
to label the version of source code to be built or ensure that the build machine
is configured with the required version of the compiler and any libraries used.
These protocols establish important properties, e.g. which versions of the source
artifacts correspond with a given version of the executable. Should the developer
fail to follow the protocol precisely, the property might not be established.

MBCS manifestation. The MBCS fitness argument requires human compliance
with: (1) an integration testing protocol; (2) an argument review protocol; (3) a
configuration management protocol; and (4) source code and tool configuration
inspection protocols. In the cases of (1), (2), and (4), compliance is forced by
requiring developers to sign off on the completion of protocol steps. Compliance



with the configuration management protocol is cited in many areas of the fitness
argument, as the protocol is used to guarantee that the various testing and
analysis activities were conducted on the correct version of the correct artifact.

Potential mitigations. Checklists and sign-off sheets can help to ensure that
developers are aware of the responsibilities imposed upon them by a protocol.
However, even if they are taken seriously rather than treated as meaningless
paperwork, a developer might still misunderstand the protocol’s implications and
sincerely indicate compliance without actually establishing the needed property.

4.6 Reliance Upon Unqualified Tools

The fitness of software often relies on one or more of the tools used in its pro-
duction. A defective compiler, for example, might produce an unfit executable
from source code that has been mechanically proven to refine a correct formal
specification. Clear and convincing evidence that tools are demonstrably fit for
the use to which they are put is, unfortunately, rarely available. Even when
available, such evidence will necessarily be limited in the same ways as evidence
of the fitness of any software product.

MBCS manifestation. The MBCS fitness argument contains 14 instances of a
“correct use of correct tool” argument pattern, explicitly denoting reliance upon
the WCET tool, the test coverage tool, the test trace collection mechanism, the
test execution and reporting tool, the PVS theorem prover, the Echo specifica-
tion extractor [22], the SPARK Examiner, the SPARK POGS tool, the SPADE
Simplifier, the SPADE proof checker, the Echo code transformer [22], the stack
usage tool, the compiler (including its Ada compiler, PowerPC assembler, and
linker), and the disassembler. In some of these cases, a defect in the tool or
its configuration is unlikely to result in unfit software. A defective Echo trans-
former, for example, would be unlikely to produce transformed source code that
did not preserve the semantics of the original and yet satisfied formal proofs of
functional correctness. In other cases, correctness of a given tool is relied upon
more heavily. The only provisions we made for catching an error introduced by
a defective compiler, for example, are the functional and integration testing.

Potential mitigations. Ideally, developers of critical software systems would be
able to choose from a range of tools, each accompanied by assurance of correct-
ness that is adequate given the use to which the tool will be put. In the absence
of such tools, developers must employ a development process in which an error
introduced by an unqualified tool is adequately likely to be caught.

4.7 Reliance Upon Tools That Lack Complete Hardware Models

Ideally, an embedded system developer would specify the desired system behavior
in terms of signals visible at the boundary between the computer and the larger
system and then use mechanical tools to prove that the software, running on the



target computer, refines that specification. Unfortunately, the present generation
of analysis tools typically models the hardware more abstractly and cannot easily
be used to verify software functionality in this complete end-to-end sense.

MBCS manifestation. As part of the Echo formal verification to which we sub-
jected the MBCS, we documented the behavior required of the implementation’s
subprograms using SPARK annotations. We then used the SPARK tools to prove
that our implementations satisfied these specifications. (We used PVS proofs to
complete the verification by showing that the subprograms, taken together, refine
the formal specification.)

Unfortunately, this approach did not allow us to verify all aspects of the
MBCS’s hardware interface routines. We could not prove, for example, that a
loop waiting on a hardware flag indicating the completion of analog-to-digital
conversion would terminate in bounded time. Such a proof would require knowl-
edge that the writes to memory-mapped variables that preceded the blocking
loop would cause the hardware to set the flag in question in bounded time.
Lacking an end-to-end solution for formally verifying this code, we relied upon
a combination of testing and inspection to establish the needed properties.

Potential mitigations. Formal models of the behavior of computing hardware
almost certainly exist, as they would be indispensable in the verification of the
hardware. If these models could be extracted and translated into a form that
could be used by software verification tools, it might be possible to extend formal
verification to routines that interact with peripherals.

We note that a complete approach to end-to-end formal verification of em-
bedded software might require using multiple tools. Tools such as the SPARK
tools, which are based on a pre- and post-condition model, might need to be
complemented by a tool such as a model checker that supports Linear Temporal
Logic modeling. Such a combination would allow us to prove a more complete
set of properties provided techniques were developed to permit the synergistic
operation of the proof systems and a machine checked synthesis of the results.

4.8 The Unavoidable Use Of Low-Level Code

High-level languages operate on an abstract model of the machine. When this
model is inadequate, either because it does not permit control over some aspect of
machine state that has been abstracted away or because efficiency needs preclude
the use of a compiler, developers must write code in a low-level language such
as the target assembly language. The verification technique chosen for the high-
level code may not be applicable to this low-level language, the nature of which
might limit the available analysis tools and techniques.

MBCS manifestation. We used the GNAT Pro Ada compiler to target the bare
microcontroller with no Ada run-time library. While this obviated the need to
procure a suitably-qualified operating system and standard libraries, it created
the need for a startup routine that would configure the microcontroller to the



state required for executing compiler-generated code. Our startup routine, writ-
ten in PowerPC assembly language, configured the memory controller and en-
abled the microcontroller’s floating-point unit. This choice also obliged us to
supply implementations of the memcpy and memset library routines that are
called by compiled code. Because implementing these routines required using
access types, they had to be coded in plain Ada rather than SPARK Ada and
verified via inspection (and testing) rather than formal verification.

Potential mitigations. Verification of assembly-level code and hardware interac-
tions has been shown to be feasible [2, 3]. A hybrid verification using multiple
tools and techniques would allow the developer to exploit the unique capabili-
ties of each tool, again with the difficulty of showing that the combination of
techniques selected permits complete verification of the entire program.

4.9 The Ability To Verify Floating-Point Arithmetic

Functional requirements for computations are often conceived of in terms of real-
valued or integer-valued arithmetic, but digital computers can only implement
arithmetic on finite types. In the case of integer arithmetic, the practical dis-
tinction is well understood by programmers, who take care to allocate enough
storage to handle the largest and smallest values a given variable might take on.
The distinction between real-valued arithmetic and its floating-point approxi-
mation is less-well understood by average programmers. Even if each step is
required to be correct by the IEEE-754 standard, the floating-point semantics
(rounding and exceptions) might make the behavior of a program difficult to
foresee and analyze.

MCBS manifestation. The Echo approach to formal verification treats floating-
point arithmetic as if it were real-valued arithmetic with a bounded range. It
tells us that our implementation does not use one variable when another was
meant or multiplication where addition was meant. It cannot, however, tell us
whether single-precision floating-point arithmetic is adequately precise for this
application. We are forced to assume that it is.

Potential mitigations. Using floating-point computation to adequately substi-
tute for real-valued arithmetic is quite complicated. Programmers might know
rules of thumb such as “don’t test for equality” and “avoid adding numbers of
vastly-dissimilar exponent,” but most programmers are not experts in the nu-
merical field and we should not rely on the programmers’ knowledge to produce
correct floating-point arithmetic. Formal methods have been successfully used
both for hardware-level and high-level floating-point arithmetic. If the rounding
and approximation semantics are built into verification condition generation for
the source code, one might be able to reason about the bound between floating-
point results and the real-value results that they approximate. Such a technique
does exist [4] and has been demonstrated to be useful for small C programs.



4.10 Reliance Upon Testing

Requirements-based testing is used in all software projects to establish that the
software meets its requirements, either alone or in parallel with formal verifica-
tion evidence. Demonstrably adequate testing, however, is difficult or impossible
for many critical software projects for several reasons:

1. Toy examples aside, complete input space coverage is unattainable. Further-
more, testing sufficient to establish high levels of reliability is infeasible [5].

2. The strength of testing evidence is limited by the degree to which one can
trust the test oracle not to pass a test that should fail.

3. Instrumentation of the tested software might be required, making it uncer-
tain that the results apply to the software which will be released.

4. Special computing hardware might be required, making it uncertain that the
results apply to software running on the target hardware.

5. Test sequencing and test result collection tools may be defective.
6. Human developers may fail to follow the testing protocol faithfully.

MBCS manifestation. Functional testing evidence complements formal verifica-
tion evidence in the MBCS fitness argument as shown in Fig. 2. We avoid in-
strumentation and assume that standard precautions such as the use of skilled,
independent testers and test kit with an established history are sufficient. Since
the functional correctness of the MBCS is also established by formal verification,
some risk that the functional testing will miss an error can be tolerated.

Potential mitigations. Much has been written on the subject of testing, and
there are many ways in which testing can be improved in one respect or another.
However, we are aware of no approach to testing that can positively establish
functionality where ultra-high levels of assurance are required.

4.11 Reliance Upon Human Assessment Of Dependability

Were the evidence of dependability perfect — the requirements, test results, and
so on completely trustworthy — there would still be practical limitations on the
degree to which adequate dependability could be assured. Safety cases and other
rigorous assurance arguments have gained attention recently as a means of unit-
ing and explaining dependability evidence, but the technology for validating such
arguments is both immature and reliant upon fallible humans.

MBCS manifestation. Our confidence in the fitness of the MBCS rests entirely
upon the sufficiency of its fitness argument. If the fitness argument were to
contain a logical fallacy, for example, this confidence might be misplaced.

Potential mitigations. Validation of assurance arguments is an area of active re-
search interest. Researchers have proposed argument review techniques [12] and
taxonomies of argument fallacies to avoid [7]. In addition, research into improv-
ing the dependability of natural language communication in other domains [8]
might prove useful if adapted to arguments. Nevertheless, we are aware of no
approach than can positively establish the soundness of the assurance argument.



5 Related Work

The related work in specific areas of limitation have been discussed in section 4.
The practical and theoretical limits of software dependability assurance have
been the subject of numerous papers and discussions, e.g. [15–17], and the lim-
itations discussed in this paper are known in isolation or related groups. Our
contribution lies in analyzing the MBCS fitness argument to derive the depend-
ability limitations affecting the MBCS and to assess the impact of each.

6 Conclusion

Analysis of our assurance argument revealed 11 major practical limitations on
software dependability that affected our specimen software development effort.
Each of these limitations embodied one or more of three themes: (1) dependence
upon fallible human beings; (2) incomplete or immature tools or technologies;
and (3) techniques that cannot practically ensure the needed dependability.

While time and investment may mitigate problems embodying only the sec-
ond theme, the first and third themes reflect fundamental problems. Addressing
these limitations in a given engineering effort requires structuring the develop-
ment process so that the resulting weaknesses in dependability assurance are
compensated for by the use of complementary efforts.

This case study demonstrates a significant benefit of assurance arguments:
they convey comprehensively and intuitively precisely what the dependability
of each software system depends upon. Furthermore, an argument explicitly
documents where developers are relying upon the independence of evidence.
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