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Background
Humans have practised gambling at all times. The
archaeologists have made excavations in prehistoric
sites and found large numbers of roughly dice-shaped
bones. Different types of games, sports events, other
types of events and gambling are connected because
it has always been challenging to make bets on differ-
ent outcomes of a game.

Experiences and simple statistics used more or less
unconsciously made in old times the basis for the
gamblers and their betting. Until the 16th century the
mathematics was not applied on gambling and proba-
bility problems.

This paper shows how gambling problems initiated
the mathematical theory of probability and gives an
overview of the establishment of the mathematical
theory of probability. The lines are drawn from the
mathematical theory of probability to the establish-
ment of the queuing/teletraffic theory more than 200
years later. And the pioneers in developing the queu-
ing/ teletraffic theory were Agner Krarup Erlang and
Tore Olaus Engset!

(Stordahl, 2006) identified that The Gambler’s Ruin
Problem was solved by using the same difference
equations as for the M/M/1 queuing systems, only
200 years earlier. This paper investigates and
explains the incitements for the development of the
queuing/teletraffic theory which was mainly caused
by introduction of telephone switching systems.
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Before starting, a quotation from the famous mathe-
matician Marquis Pierre-Simon de Laplace in his book
Thèorie Analytique des Probabilitiés (Laplace, 1812)
is in its place: “It is remarkable that a science which
began with consideration of games of chance should
have become the most important object of human life
... The most important questions of life are, for the
most part, really only problems of probability.”

The History Behind the Evolution
of the Mathematical Theory of
Probability
The most important sources used in this chapter are:
(Todhunter, 1865), (Ore, 1953), (Ore, 1960), (King,
1990) and (Mahoney, 1994). The book by Isaac
Todhunter from 1865, containing 1062 notes, is con-
sidered to be the real bible of the mathematical theory
of probability. The book has on different subjects
been shaded and supplemented by Anders Hall (Hall,
1990).

The very early start of the history of the mathematical
theory of probability is strongly influenced by Gero-
lamo Cardano, Blaise Pascal, Pierre de Fermat and
Christian Huygens.

Gerolamo Cardano (1501 – 1576)

Gerolamo Cardano is said to be the father of the
mathematical theory of probability. Øystein Ore has
written a very interesting book (Ore, 1953) where he
analyses the many abilities of the unusual man and
scientist Cardano. The last part of the book contains
Cardano’s book Liber de Ludo Aleae (The Book on
Games of Chance) which Ore had translated from
Latin.

Gerolamo Cardano’s father, Fazio Cardano, was a
lawyer, but he had excellent knowledge in medicine
and mathematics. He was also consulted by Leonardo
da Vinci regarding analysis in geometry.

The life of Gerolamo Cardano is very well described
in his autobiography De Propria Vita. He was a well
educated medical doctor. While studying he gambled
to finance his studies. He also carried on gambling
for many years. Cardano had many different interests
and he published books in mathematics, physics,
astronomy, probability theory, moral, upbringing,
music, chess, dreams, death; but most of his books
dealt with medical questions. In his autobiography he
counted 131 printed works after having burned 170
manuscripts which he judged not to be good enough.
Cardano’s first book On the Bad Practices of
Medicine in Common Use was published in 1536.
The book was written because Cardano applied for
but did not get a position at the hospital in Milan.
However, after the publication the medical doctors
were frightened and gave him a position. During the
course of a few years he got the top position at the
hospital. He was a skilful medical doctor and was
often used by the aristocracy. He was also a unique
debater who was impossible to beat in the duels held
at that time.

In 1545 Cardano issued Ars Magna, a textbook in
arithmetic, where the solutions of the third and fourth
degree equation were published for the first time. The
solution of the third degree equation was originally
found by Scipione del Ferro about 1500, but he did
not publish his solution. At that time teachers at the
universities in Italy could be challenged for their
position through competitions where each duellist put
up a set of questions to be solved by the other. Hence,
it was better to have and to hide knowledge than to

Early queuing system. Edvard Hicks (1780 – 1849): “Noah’s Ark”

Gerolamo Cardano (1501 – 1576) is said to be the
father of the mathematical theory of probability
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share it. The solution of the fourth degree equation
was found by Cardano’s brilliant scholar Lodovico
Ferrari.

Cardano wrote several books about gambling. The
book Liber de Ludo Aleae is a handbook for gam-
blers. The book shows that Cardano was an experi-
enced gambler. A lot of advice is presented about
tricks and cheating, and recommendations are given
to avoid cheating. Cardano applies basic principles
for the probability theory. He defines probability as
the number of favourable (outcomes) divided by the
number of possible (outcomes). He states that the
probability of a set of independent events is equal to
the product of the probability of each of the events.
He also touches the mathematical expectation and the
law of large numbers. Cardano shows a complete
sample space for throws with two and with three dice.
His methods would in principle solve the Chevalier
de Mère’s problem, which, as will be seen was dis-
cussed by de Mère and Pascal about 100 years later.

The main part of the manuscript for the book was
written at an early stage of Cardano’s career, but
some parts were included later. Unfortunately, he was
not allowed to publish the book because in 1570 he
was arrested by the Inquisition and denied further
publishing. Regrettably, the book Liber de Ludo
Aleae was not published until 1663, and then as a
minor part of a large ten cover volume of Cardano’s
publications.

Therefore, Liber de Ludo Aleae did not make the
impact on the evolution of the mathematical theory
of probability as it could have done!

Blaise Pascal (1623 – 1662)

Blaise Pascal was taken very ill when he was one
year old. Sickness followed Pascal through his life
and he only lived to be 39 years old. When he was
16 he published a remarkable thesis on conic cuts.
At the age of 18 he made the world’s first calculation
machine for addition and subtraction – in fact for
helping his father with tax calculations, which was
part of his job. He also carried out a series of pressure
measurements and concluded on the existence of
vacuum. Pascal was also an excellent author with a
specific talent for polemics.

The literary style of Pascal was influenced by
Antoine Gombaud Chevalier de Mère (1607 – 1684)
who he got acquainted with in 1651/1652. Many
books on the history of the mathematical theory of
probability start with: “A gambler named Chevalier
de Mère presented two gambling problems to Blaise
Pascal”. (Ore, 1960) tells that “Chevalier de Mère
would have turned in his grave at such a characterisa-

Gerolamo Cardano’s book Liber de Ludo Aleae was
not published until 1663, then as part of Opera
Omnia, a ten cover volume of Cardano’s publications

Blaise Pascal (1623 – 1662)
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tion of his main occupation in life”. Chevalier de
Mère had received a good classical education and had
experience from the army. He served in the court in
Paris. He was a philosopher and a writer and he
rapidly became a prominent figure at the court of
Louis XIV where he was adviser in delicate situations
and arbiter in conflicts.

Chevalier de Mère made Pascal aware of The dice
problems which had been well known during the last
centuries. One of the dice problems is described as

follows: How many times do you have to throw two
dice to have probability higher than 0.5 to get at least
one double 6 in the sequence? Pascal solved the prob-
lem in the following way:

He stated that the probability not to get a double 6 in
one throw is 35/36. Then he postulated the same as
Cardano did a hundred years earlier, that throws with
dice are independent events and expressed that the
probability not to get one double 6 in n throws is
(35/36)n. Hence, the probability to get at least a dou-
ble 6 in n throws is pn = 1 - (35/36)n. Then, Pascal
calculates p24 = 0.491 and p25 = 0.506. Hence, the
limit is between throw 24 and throw 25.

At that time Pascal made contact with Fermat to get
confirmation of his theories and this process is con-
sidered by many to be the start of the evolution of the
mathematical theory of probability.

Pierre de Fermat (1601 – 1665)

Pierre de Fermat came from a wealthy merchant
family on his father’s side and a lawyer family on his
mother’s side. He studied law at the universities of
Toulouse and Orléans and mathematics at the univer-
sity of Bordeaux. He made a career as a lawyer and
got continuously higher positions. It could be said
that his professional career was as a lawyer, but he
had mathematics as a lifelong hobby! Fermat was
known for showing his mathematical results, but he
did not always show his proofs. The reason was that
he did not consider communicating his proofs to be
his primary tasks in life. Significant parts of Fermat’s
scientific work have been found in the margins of
manuscripts and in letters to his friends. In other
words, he was not very interested in documentation
and publication of his mathematical works. However,
at a later stage of his life, in August 1654, he sug-
gested to Carcavi that Carcavi and Pascal should pub-
lish his scientific work. His son made this possible 14
years after his death, in 1679.

The dice problem: How many times do you have to
throw two dice to have a probability higher than 0.5
to get at least one double 6 in the sequence?

Pierre de Fermat (1601 – 1665), contemporary engraving

In 2000, the ‘World Mathematical Year’, The
Czech Republic issued a stamp showing Fermat’s
last theorem, also showing that Andrew Wiles
proved it in 1995
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Fermat became known for making the foundation of
the analytical geometry. He made significant contri-
butions to the calculus through calculations of tan-
gent, maximum and minimum and to the number the-
ory. Fermat is also famous for his last theorem (how-
ever from 1637) where he states that there exist no
integers which satisfy xn + yn = zn where n > 2. The
proof is said to be made in the margin of one of his
manuscripts.

Anyhow, the statement generated a fantastic story
of how the best brains in mathematics over a period
of more than 350 years tried to develop this proof
(Singh, 1997). Then in 1993, based on seven years
work in isolation, Professor Andrew Wiles from
Princeton University, NJ, USA, publishes the proof at
a mathematical conference in Cambridge. The event
caused enormous publicity. However, a month later, it
was shown that there was a ‘hole’ in the proof – it was
incomplete. It was a catastrophe for Andrew Wiles.

He had isolated himself like the Pythagorean did
2000 years earlier when they developed mathematics
as a religion – but only for the initiated! In spite
of the enormous pressure from the media, Andrew
Wiles succeeded one year later to complete the proof.
In the completion he also used the Selmer groups. The
Selmer groups were developed at the beginning of the
1950s by the Norwegian professor Ernst Selmer, who
regrettably died on 8 November 2006.

Start of the Mathematical Theory of

Probability

The start of the mathematical theory of probability
is by many considered to be the exchange of letters
between Pascal and Fermat in 1654.

Pascal wanted at that time to get confirmation on
some of his proofs on gambling problems. He made
contact with the well known mathematician Roberval,
but he did not get any support, only criticism. Rober-
val was described as “the greatest mathematician in
Paris, and in conversation the most disagreeable man
in the world”. Pascal then consulted Fermat, who was
living in Toulouse. Fermat was isolated from the
mathematical environment and was happy to have
contact with Pascal, which was reciprocated. There
then followed an exchange of minimum seven letters,
and this is by many considered as the real start of the
mathematical theory of probability.

In the correspondence Fermat confirms Pascal’s solu-
tions on the dice problems.

However, the correspondence starts with the classical
Point problem, which was well known from several
centuries back. So far, nobody had found the solution.

There were different variants and wrappings of the
problem. In the following is shown Pascal’s solution
to a simple Point problem.

Two players A and B each put 32 gold coins (also
called pistols) in the pot. The first player who gets
three points has won the game and will get all the
gold coins. The winner of each round gets one point.
Each player has equal probability, 1:2, to win a
round. However, the game is disrupted when player
A has two points and player B one point. The ques-
tion is: How should the pot be divided in a fair way?

Pascal allocates probabilities to different realisations
and reasons as follows: The probability for player A
to win the next round is 1:2. Because of that he
should have 32 gold coins. The probability for player
B to win the next round is 1:2. Then, player A and B
both have two points and they should of course
divide the remaining 32 gold coins equally, getting
16 gold coins each. Hence, player A should have a
total of 48 gold coins and player B 16.

Fermat generalises the point
problem and finds solutions
for more complicated cases
also when there are several
players. He uses permuta-
tions, which can be used as
long as the probability of
winning is equal for each
player. Fermat also finds
some failures in Pascal’s rea-
soning which he corrects.

Then, Pascal develops
solutions by using Pascal’s
triangle. Pascal’s arithmetic

Andrew Wiles, professor at Princeton University, NJ,
USA, finally was able to prove Fermat’s last theorem
in 1995

The point problem.
A fair division of
gold coins (pistols)
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triangle was well known, but got Pascal’s name
because he discovered new properties of the triangle
which were previously not known. Pascal shows how
binomial coefficients are used to calculate the proba-
bility of player A to win (and B) when A needs m
points and B needs n points. Fermat also did the same
using the Binomial distribution.

The exchange of letters stopped at the end of 1654
when Pascal sacrificed himself, as the rest of his
family, for the Jansenism1). His last years were spent
mainly working with religious questions and in 1656
he wrote Lettres Provinciales opposing the Jesuits’
attack on Jansenism.

The Gambler’s Ruin Problem

The correspondence between Pascal and Fermat was
renaissanced a short period in 1656. Here, Pascal puts
a question forward to Fermat which was known as the
Gambler’s Ruin problem. Fermat and Pascal solved
the problem for some distinct values of the para-
meters, but it is not known that they solved the
general problem.

The Gambler’s Ruin problem is as follows: Player A
starts with m points and player B with n points. The
probability of player A winning one round is p, while
the probability of player B winning a round is q =
1 - p. The winner of one round receives one point
from the other player. The question is: What is the
probability of player A winning the game; that is, to
get n + m points? And in general, what is the proba-
bility of player A winning the game when he has i
points?

Christiaan Huygens (1629 – 1695) was next to im-
prove the mathematical theory of probability signifi-
cantly. In 1657 he published Libellus De Ratiociniis
in Ludo Aleae (The Value of all Chances in Games of
Fortune), a book on probability theory. The book was
published six years before Cardano’s book and con-

Pascal’s triangle is a geometric arrangement of the
binomial coefficients

Christiaan Huygens (1629 – 1695), engraving of
Frederik Ottens, 18th centuryThe Gambler’s Ruin problem

1) Jansenism was a branch of Catholic thought that emphasized original sin, human depravity, the necessity of divine grace, and
predestination. Originating in the writings of the Flemish theologian Cornelius Otto Jansen, Jansenism formed a distinct movement
within the Roman Catholic Church from the 16th to 18th centuries, but was condemned by the Roman Catholic Church as heretical
(http://en.wikipedia.org/wiki/Jansenism)
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tains, among other things a precise definition of the
concept of mathematical expectation. Huygens also
puts up five unsolved probability problems; one of
them, Huygens fifth problem, is The Gambler’s Ruin
problem which Huygens only solved for some values
of the parameters.

Some more years passed before the general solution
was found. In fact the solution was found by different
approaches by James Bernouilli (1708), Montmort
(1708), de Moivre (1712) and Struyck (1716), see
(Hald, 1990). The process is a random walk with
absorbing barriers in 0 and n + m.

A complete proof based on difference equations was
first given by Struyck (1716), see (Hald, 1990, page
203). He finds the explicit solution of the difference
equations first for n = m and then for n different from
m. Let p(i) be the probability for player A to win the
game given that he has i points. Then, the difference
equations can be expressed by:

p(i) = p p (i - 1) + q p (i + 1),
i = 1, 2, ..., m + n - 1 (1)

p(0) = 0
p(m + n) =1

The first equation expresses that the probability of
winning the game given that the player has i point is
equal to p multiplied by the probability to win given
that the player has i - 1 points pluss q multiplied by
the probability that the player has i + 1 points. The
two last equations are the edge conditions stating that
the probability of player A winning is 0 if he has no
points left (he is ruined) and the probability of win-
ning when he has n + m points is of course 1.

Now, we know that p + q = 1. The equation will not
be changed when the left hand side is multiplied with
(p + q). Hence the equation is:

(p + q) p(i) = p p (i - 1) + q p (i + 1),
i = 1, 2, ..., m + n - 1 (2)

This difference equation is exactly the same as the
difference equation which describes the M/M/1
queuing system in statistical equilibrium. However,
the development of the queuing theory was not in
place until 200 years later. The history of the evolu-
tion and the incitements for the evolution is treated
in the last part of the paper.

Queuing Models and Queuing Theory
Queuing theory is the mathematical study of waiting
lines or queues. The theory enables mathematical
analysis of several related processes, including arriv-

ing at the queue, waiting in the queue, and being
served by the server(s) at the front of the queue.
The theory permits the derivation and calculation of
several performance measures including the average
waiting time in the queue or the system, the expected
number waiting or receiving service and the probabil-
ity of encountering the system in certain states, such
as empty, full, having an available server or having
to wait a certain time to be served.

The simplest form of queuing models are based
on the birth and death process, where the birth pro-
cess describes the inter-arrival time (time between
two arrivals) to the queue and the death process
describes the service or holding time in the queue.

For queuing theory, it has been found convenient, if
possible, to work with probability distributions which
exhibit the memorylessness property, as this com-
monly simplifies the mathematics involved.

The memorylessness property is often denoted a
Markovian property and a process with a Markovian
property is called a Markov process, which means
that the probability distribution of future states of the

process, given the
present state and
all past states,
depends only
upon the present
state and not on
any past states.

As a result, queu-
ing models are
frequently mod-
eled as Poisson
processes through
the use of the
exponential dis-
tribution.

Birth-death processes have many applications in

demography, queuing theory, and in biology, for

example to study the evolution of bacteria. The state,

i, of the process represents the current size of the

population. The transitions are limited to births and

deaths. When a birth occurs, the process goes from

state i to i + 1. When a death occurs, the process goes

from state i to state i - 1.

The Markov process is named after the famous

Russian mathematician Andrej Markov (1856 – 1922).

Andrej Markov was created honorary doctor at the

University of Oslo at the Abel jubilee in 1902 (Nils

Henrik Abel (1802 – 1829))

Andrej Markov (1856 – 1922)
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Suppose that the inter-arrival time is described by an
exponential distribution with parameter λ (traffic inten-
sity), and the holding time is described by an exponen-
tial distribution with parameter µ. Then the transient
behavior of the queuing system is expressed by:

pi’(t) = λ pi-1(t) + (λ + µ)pi(t) + µ pi+1(t) (3)

where pi’(t) is a derivative to pi(t) which is the proba-
bility to have i in the queue system at time t. The
system is described as a function of time and can be
solved when we know the starting value at time 0.

Suppose that the system reaches statistical equilib-
rium. Then the solution is independent of the starting
values. In addition, it has a balance between inter-
arrivals and services which implies λ/µ < 1. Then
pi’(t) = 0.

Letting pi(t) = pi , we get:

(λ + µ)pi = λpi-1 + µpi+1 (4)

which is identical to the Gambler’s Ruin problem
equation (2), but with different notations.

This queuing system is denoted M/M/1: Exponential
inter-arrival time and holding time and one server.
The classification of queuing systems follows
Kendell’s definition (Kendell, 1953). The solution is
found by expressing all the {pi} as a function of p0
and then normalize based on the summing up of all
the probabilities to 1. The same procedure is done for
the Gambler’s Ruin problem, but the edge conditions
are also taken into account.

To show the equality in the solutions the following
notations are used:

p(i) = pi (5)

ρ = λ/µ = p/q (6)

K = n + m (7)

Solutions of different queuing systems and the Gam-
bler’s Ruin problem:

The Gambler’s Ruin problem:
p(i) = (1 - ρi) / (1 - ρK) (8)

M/M/1: p(i) = (1 - ρ) ρi (9)

M/M/1/K: p(i) = ρi (1 - ρ) / (1 - ρK+1) (10)

M/M/    : p(i) = (ρ i / i!) e -ρ (11)

M/M/K/K:

(12)

Erlang’s B loss formula:

(13)

Here, A/B/C/D follows the notation of (Kendell,
1953) and (Kleinrock, 1975) where:

A: Interarrival time distribution
B: Service time distribution
C: Number of servers
D: Waiting room capacity

It could be noted that the solution of queuing models
with more than one server uses (i+1)µ instead of µ in
equation (4).

It is interesting to note that most books in queuing the-
ory use equation (4) as a standard formula because it is
derived from the transient equation (3). The stationary
state equations can be interpreted as follows: The traffic
stream out of state i is equal to the traffic stream into
state i. Looking at the original work of Erlang (Erlang
1917) (Brockmeyer, 1948) he uses another approach.
Instead of assuming that the traffic stream out of a
state is equal to the traffic stream into the state, he
postulates that the traffic stream is equal both ways
between a cut of states. He then gets the simplified
equation:

λ p(i) = (i + 1)µ p(i + 1) (14)

where he also uses (i + 1)µ as a more general expres-
sion. Arne Jensen uses the same approach in his
paper (Jensen, 1954). A complete proof is given in
(Morris, 1961). The possibility of using the cut is a
much more powerful approach for modelling more
complicated stationary queuing systems. This is
shown in (Stordahl, 1972).

Let us go back and look at the real incentives for
developing the queuing and teletraffic theory. The
whole thing started with the telephone!

∞

p(i) = (ρi/i!)/

(
K∑

k=1

ρk/k!

)

p(K) = (ρK/K!)/

(
K∑

k=1

ρk/k!

)

The Poisson process, discovered by the French mathematician Siméon-

Denis Poisson (1781 – 1840) is a pure-birth process, the simplest example

of a birth-death process. The Poisson distribution is a discrete probability

distribution. It expresses the probability, p(i, λ), of a number of events i,

occurring in a fixed period of time, if these events occur with a known

average rate λ, and are independent of the time since the last event.

p(i, λ) =
e−λλi

i!
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The Telephone and the Manual
Switches
The Italian Antonio Meucci (1808 – 1889), who had
already created the first model of a telephone in Italy
in 1834, tested electric transmission of the human
voice in Cuba in 1849 and demonstrated his electric
telephone in New York, USA in 1850. He had paid
for a ‘caveat’ for the telephone in 1871. In the sum-
mer of 1872 Meucci asked Edward B. Grant (Vice
President of American District Telegraph Co. of New
York) permission to test his telephone apparatus on
the company’s telegraph lines. He gave Grant a
description of his prototype and copy of his caveat.
Up to 1874 Meucci only had enough money to renew
his caveat while looking for funding for a true patent.
After waiting two years without receiving an answer,
Meucci went to Grant and asked him to be given back
his documents, but Grant answered that he had lost
them. The same year the caveat expired because
Meucci lacked the money to renew it.

In 2002 the American Congress announced that
Antonio Meucci (not Alexander Graham Bell)
was the real inventor of the telephone.
(Kunnskapsforlaget, 2007)

Meanwhile, in 1867 the following could be read in an
American newspaper: “The 46 years old, Joshua Cop-
persmith has been arrested in New York for attempt-
ing to extort funds from ignorant and superstitious
people by exhibiting a device which he says will
convey the human voice over metallic wires, so that
it will be heard by the listener at the other end. He
calls the instrument a telephone, which is obviously
intended to imitate the word ‘telegraph’, and win the
confidence of those who know of the success of the
latter instrument without understanding the principles
on which it is based. Well-informed people know
that it is impossible to transmit the human voice over

wires as may be done with dots and dashes and sig-
nals of the Morse Code, and that were it possible to
do so, the thing would be of no practical value. The
authorities who apprehended this criminal are to be
congratulated, and it is to be hoped that it may serve
as an example to other conscienceless schemers who
enrich themselves at the expense of their fellow crea-
tures.”

Eight years later Alexander Graham Bell and his
assistant Thomas Watson started to work on a device
they called A musical telegraph, and on 10 March
1876 they succeeded in completing the device, which
was eventually named the telephone. Bell applied for
a patent for the invention and got it, but it was a close
race since another American, Elisha Gray, applied for
patent of a similar device only two hours later!

The telephone was demonstrated at the World exhibi-
tion in Philadelphia in May 1876. In one of the juries
at the exhibition was a Norwegian, Joak Andersen,

Antonio Meucci (1808 – 1889), the real inventor of
the telephone was portrayed on an Italian stamp in
2005

Alexander Graham Bell, the later inventor of the tele-
phone (1847-1922). The picture shows a well-known
scene were Bell speaks on the phone between New
York and Chicago in 1892. (Gilbert H. Grosvenor
Collection, Prints and Photographs Division, Library
of Congress)

Alexander Graham Bell (1847 – 1922) was a scientist and innovator. Born and

bred in Scotland, he emigrated to Canada in 1870, and the following year to

the United States. Bell is widely acclaimed for developing and patenting the

telephone (at the same time but independently from Elisha Gray, and with

prior efforts from Antonio Meucci and Philipp Reis). In addition to Bell’s work in

telecommunications, he was responsible for important advances in aviation

and hydrofoil technology.
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vice-consul to Denmark, who got two telephones
which he sent to his son in Ålesund. However, the
first public demonstration of the telephone in Norway
was done in Bergen on 22 July 1877. The painter
Johan Eimrich Rein had received two telephones
from a friend who got them from Alexander Graham
Bell. Then the engineer Jens Hopstock started a tour
of Norway where he demonstrated the new invention.
He also demonstrated the telephone in Stockholm and
was even invited to King Oscar II to demonstrate it.
Jens Hopstock was later appointed The International
Bell Telephone Company’s representative for Scandi-
navia (Bestorp, 1990).

Already in the autumn 1877 imitations of the tele-
phone were made by Siemens & Halske in Germany.
This prototype was the inspiration to the young
instrument maker Lars Magnus Ericsson who started
production of telephones later that year. He also
founded the company L.M. Ericsson.

The problem up till now was the one-to-one tele-
phone line correspondence between subscribers.

Therefore, the next important step was the develop-
ment of the manual switching system to reduce the
size of the mesh network. The first manual switching
system was opened on 28 January 1878 in New
Haven, Connecticut. The same year manual switches
were installed in London and Paris. The International
Bell Telephone Company installed the first manual
switch in Kristiania (the former name of Oslo), Nor-
way in June 1880.

The International Bell Telephone Company was
established by Bell’s father-in-law, Gardiner Hubbard
in 1879. The company installed switches and access
networks in several large cities in Europe. The Euro-
pean headquarters was in Antwerp where the com-
pany in cooperation with Western Electric built a
large factory for telephone equipment. The company
got a strong position, especially in Belgium, The
Netherlands and Russia. The company charged their
customers heavily and prevented a natural evolution
of the telephone penetration in these countries.

In Kristiania, the Bell Company started by charging
100 NOK per year for a subscription, which corre-
sponded to a two month salary for a telephone opera-
tor. The price was raised continuously and in the
spring 1881 the subscription price was 200 NOK. The
company received a lot of criticism. The prices were
too high, the company did not cooperate sufficiently
with the authorities regarding the telephone line
tracks, and the building owners complained about the
installers. The Government in Kristiania, as opposed
to several other large European cities, had not given
The International Bell Telephone Company sole
rights for the telephone system. Therefore, Carl
Söderberg and 12 businessmen from Kristiania
founded Christiania Telefonforening on 24 May
1881. Söderberg had the L.M. Ericcson agency for

Manual telephone exchange (Bestorp, 1990)

Lars Magnus Ericsson (1846 – 1926), the founder of
L.M. Ericsson
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telephone equipment in Norway, but telephone
devices also from other telephone manufacturers
were available. Carl Söderberg established in 1882
the independent Norwegian company, Elektrisk
Bureau (EB); a competitor to L.M. Ericsson, which
some years later had a yearly production capacity of
25,000 telephone sets and a considerable export.

Christiania Telefonforening’s annual subscription
price was set to 40 NOK, with 220 NOK for the
installation. The Bell Company had to respond and
reduced their subscription fee to 125 NOK, then to
100 NOK and later to 50 NOK.

The two competitors fought very hard to capture mar-
ket share. The consequence was increased telephone
penetration. The Bell Company did not succeed in
getting sole rights in other Norwegian cities (Bestorp,
1990), (Rinde, 2005).

In 1885, the number of telephone subscriptions was 995
from Bell and 634 from Christiania Telefonforening.
230 subscribers had subscriptions in both networks.
At that time the city government in Kristiania made
it clear that the two companies had to merge because
of the mess of telephone lines ‘everywhere’ and the
possibilities for rationalisation and coordination.

The companies also got an ultimatum that they were
not allowed to expand until a merger had taken place.
The new company was the private stock company,
Christiania Telefonselskap, which was established
on 1 January 1886. A telephone monopoly was then
established in Kristiania. However, the telephone
subscription prices were on a reasonable level and the
prices stayed constant for many years (Bestorp, 1990).

The International Bell Telephone Company, which
originally was a threat to the telephone availability in
Kristiania, had generated hard competition, low tele-
phone prices and high demand. What happened in

Kristiania also influenced the evolution in other
places in Norway.

The table gives an overview of the telephone penetra-
tion in Europe in year 1900. The table shows that the
Scandinavian countries together with Switzerland had
the highest penetration. The penetration in Norway
was 4.5 times higher than in The Netherlands and
5.8 times higher than in Belgium and about 3 times
higher than the penetration in the well developed
countries Germany and the UK.

The very special telephone growth in the Scandina-
vian countries during the first years could be called
the Scandinavian wonder (Christensen, 2006). This
observation is strengthened through the later mobile
and broadband evolution in the Nordic countries. The
Nordic countries have been pioneers in introducing

Telephone penetration per 1000 inhabitants in
European countries in 1900 (Rinde, 2005)

Sweden 15.6

Norway 15.0

Switzerland 12.4

Denmark 11.0

Germany 5.1

UK 5.1

Netherlands 3.3

Belgium 2.6

France 1.8

Austria 1.2

Spain 1.0

Hungary 0.9

Romania 0.3

Russia 0.3

The evolution of the telephone penetration in Kristiania 1901 – 1925 (Bestorp, 1990)
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the Nordic Mobile System, NMT, already in the early
1980s, many years before other countries got the ser-
vice. At the end of 2006 all five Nordic countries are
among the eight OECD countries with the highest
broadband penetration. As a conclusion all Nordic
countries start very early to adopt new telecommuni-
cation technology.

In 1900 the number of subscribers in Kristiania was
9,864. There were 11,503 telephone sets, and each
subscriber made in average 10.5 calls per working
day. A total of 27.8 million calls were carried
through the main switch in Kristiania that year. The
telephone traffic was considerable (Bestorp, 1990).

Heavy investments in the national long distance
network because of the increased traffic cleared the
way for the start of a national telecommunication
monopoly. The minister in charge of telecom, Jørgen
Løvland, argued for the monopoly and in 1899 a law
was passed giving Telegrafverket the exclusive rights
to run telecom networks in Norway (Rinde, 2005),
(Christensen, 2006).

Telegrafverket took over Christiania Telefonselskap
on 1 January 1901. However, it turned out to be very

expensive for the state to buy all the private telephone
companies. As late as in the mid 1970s all private
telephone companies in Norway were bought and
embodied in Televerket (Telenor).

The subscription growth in Kristiania stagnated in
the first years of the new century with only a few
hundred new subscriptions each year. From 1907 the
growth increased again and the total number of tele-
phone subscriptions reached about 22,000 in 1913.
During this period the government did not release
sufficient investment means and problems with the
traffic started to occur.

Start of the Automation

In 1914 only few subscribers could be connected to
the telephone system in Kristiania. The situation was
predicted several years earlier by Telegrafverket. The
traffic increased and subscriber lines had to be moved
from one switching group to another. Bestorp gives
a detailed description of the situation in Kristiania
caused by the increased traffic (Bestorp, 1990). A lot
of subscriber complaints were received and the flood
of complaints started in 1910. The subscribers were
also irritated because the government used Tele-
grafverket as a money machine without giving back
necessary investment means. The situation grew
worse over the next years. From time to time parts
of the network were totally blocked because of heavy
traffic. In 1914 the Norwegian Parliament decided to
increase the investments, but later lack of available
equipment because of World War I limited the possi-
bilities for expansion of the access network. The
Ministry of Trade in cooperation with Telegrafverket
appointed in 1918 a committee for withdrawing sub-
scriptions from the subscribers. During a two year
period 1,100 telephone sets were withdrawn in Kris-
tiania and in the autumn of 1920 there were about
6,000 people on the waiting list. Copenhagen had
about 5,000 people on the waiting list for telephone
subscription.

This situation with considerable traffic problems and
waiting lists for subscriptions was the backdrop for
the pioneer work of Tore Olaus Engset and Agner
Krarup Erlang. The development of traffic models for
dimensioning of the switches and the access network
was extremely important in a situation without suffi-
cient investment means or available equipment.

The manual switches also had limitations. When the
number of subscribers and traffic per subscriber
increased, the capacity, including the number of tele-
phone operators had to be increased. For a period the
physical limits of the telephone company’s premises
prevented further expansion. And in July 1918 the
Spanish flu hit Kristiania. Many telephone operators

The first automatic telephone exchange in Norway was installed and
operational in Skien in 1921 (Telektronikk, 61 (1-2), 1965, p 17)
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became infected causing significant traffic problems
because of the lack of ‘womanpower’ at the switches.

In parallel, work was being done to start ordering new
telephone switches. A three man committee with Tele-
phone Director Iversen, Head of Department Engset,
and Chief Engineer Abild was appointed in 1910. The
committee’s mandate was to give recommendations to
the choice of a future switching system for Kristiania,
either manual, semi-automatic or fully automatic. They
spent 48 days travelling around Europe and 71 in the
United States in 1911/1912. The recommendation was
finalised in 1913, proposing fully automatic switching
systems with primary and secondary exchanges. This
envisaged a plan for 30,000 lines with a potential for
90,000 lines for Frogner exchange in Kristiania. The
Norwegian Parliament sanctioned the plan in 1916 and
Western Electric got the contract the same year. The
first automatic exchange in Norway was to have been
installed in 1917, but the ship Kristianiafjord trans-
porting the exchange sank in June 1917. Because of
World War I the project was delayed and the exchange
was finally installed in 1921. At that time the private
telephone companies in Skien and Bergen had already
installed automatic exchanges, while a city like
Stockholm still only had manual switches.

The figure above shows that investments for the
establishment of automatic exchanges were very high

in the first part of the 1920s. On the other hand, the
investments also caused a significant reduction in the
number of telephone operators. The number was
reduced from 610 persons to 347 persons during the
period 1924 – 1925.

The figure below shows that the automatisation costs
were completely dominating the other investment
costs at the beginning of the 1920s.

Because of the very high investments, it was extreme-
ly important to have traffic dimensioning models
which were fitted to the observed traffic. The very
high investments in telephone exchanges underline
the importance of having available traffic models and
dimensioning tools.

Development of the Queuing Theory
and the Teletraffic Theory

The Start of Work on Queuing Theory

Fr. Johannsen was appointed managing director of
Copenhagen Telephone Company in 1903. He real-
ized that the manual switches were not dimensioned
in the right way. He published some pioneering work
on this subject where he used the mathematical the-
ory of probability (Johannsen, 1908 and 1910-11).
From an economic point of view he stated:

Annual expenses for ordinary installations and automation in Kristiania 1915 – 1925 (Bestorp, 1990)

Proportion of costs of the automation compared with total costs 1915 – 1925 (Bestorp, 1990)
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The overloading of the subscribers resulted in
considerable extra expenses on account of the tele-
phone operators having to make repeated attempts
to establish a connection.

A comparison of the increased cost due to an extra
line and the reduced costs of the telephone opera-
tors, since attempts were needed to establish a con-
nection for different numbers of lines, gave a sound
foundation for how many lines the company should
require for the single subscriber. (Jensen, 1996)

To be able to develop more precise dimensioning Fr.
Johannsen established a scientific laboratory where
he engaged the mathematician Agner Krarup Erlang.
Erlang started to work on the holding times in a tele-
phone switch (Erlang, 1909) and he identified that the
number of telephone conversations which satisfied a
Poisson distribution as well as the telephone holding
time was exponential distributed.

Tore Olaus Engset (1865 – 1943)

The next important step in the queuing theory was
done by the Norwegian Tore Olaus Engset.

The life of Tore Olaus Engset is very well described
in the book Tore Olaus Engset – The man behind the
formula (Myskja, 2002). He was for a long period
Head of the Administrative Department in Telegraf-
verket, which also contained a traffic unit. The posi-
tion was directly below the General Director (DG).
He also functioned as DG for a period in the 1920s.
In 1930, the Government for the first time appointed
a person inside Telegrafverket as General Director
and the most natural choice was Tore Olaus Engset.
He held that position until he retired in 1935. He was

also honoured with the Commander of Second Order
of Dannebrog and Knight of the Legion of Honour
(Myskja, 2002).

It is very understandable that the primary work of this
man during normal working hours was not queuing
theory and traffic dimensioning models. As pointed
out both in (Natvig, 2000) and in (Myskja, 2002),
“The work of Tore Olaus Engset is extremely impres-
sive, partly because it was carried out in late night
hours outside the traditional working hours and also
because he did not have access to our modern mathe-
matical theory of probability and numerical methods
organised for computers”.

As described in this paper traffic in the telephone
systems grew significantly from 1910 onwards in
Norway, and especially in Kristiania, causing over-
flow and blocking of calls in the networks. Hence, it
was extremely important to make the right plans for
extending the networks based on the available grants
from the Government. Tore Olaus Engset’s work was
fundamental. He developed queuing models or tele-
traffic loss models for finite sources which could be
used for dimensioning manual, semi-automatic and
automatic telephone exchanges.

His approach to the dimensioning is extremely ele-
gant! The documentation of the work is done through
an unpublished 128 page report in 1915 – which was
recovered by Villy Bæk Iversen in 1996 (Iversen,
1996). Engset also published his methodology in
1918 (Engset, 1918). His elegant approach, valid for
many queuing systems, is mainly based on combina-
torial modelling. He calculates the probabilities for
having i lines in an exchange occupied, given statisti-
cal equilibrium, based on individual inter-arrival
times and individual holding times for each of the N
subscribers in the access area. The model is based on
using all permutations in drawing i individual sub-
scribers out of N. Then, Engset calculates the loss
probability as a function of different sizes of K, the
number of lines in the exchange. Of course, it is not
very practical to do dimensioning based on different
traffic characteristics of each subscriber, but it is very
convenient to do so for different groups of sub-
scribers where subscribers in the different groups
have different ‘traffic’ behaviour.

Engset’s methodology produces surprisingly general
results, which up to this day are perfectly applicable
in queuing theory (ITU, 2005), even if the methodol-
ogy is not based on the traditional approaches used in
queuing theory! Villy Bæk Iversen underlines that the
model is insensitive to both inter-arrival distribution
and the holding time distribution (Iversen, 1996).

Tore Olaus Engset (1865 – 1943)
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A simplification of Engset’s general model gives the
well known Engset distribution, which is a truncated
Binomial model. Here it is assumed that all sub-
scribers have identical inter-arrival distribution with
parameter λ, and all subscribers have identical ser-
vice time distribution with the mean 1/µ. Let K be
the number of lines and N the number of subscribers.
Then Engset’s distribution, where p(i) is the probabil-
ity for i occupied lines, is given by:

It should be noted that the famous Erlang B formula
is a further simplification of Engset’s distribution.
Here, the number of sources is considered to be infi-
nite, which of course is an approximation. Engset’s
simplified model is more precise because it assumes
that the inter-arrival intensity, when i lines are occu-
pied by the subscribers is (M - i)λ , while Erlang
assumes that inter-arrival intensity is independent of
the number of subscribers being serviced in the
exchange.

Agner Krarup Erlang (1878 – 1929)

Agner Krarup Erlang’s life is well documented in
(Brockmeyer, 1948). He finished his studies at the
University of Copenhagen in 1901 acquiring the
degree of candidatus magisterii (MA) with mathe-
matics as principle subject. In 1908 the Copenhagen
Telephone Company engaged Erlang. As pointed out
he started to examine the holding times and published
his first results in 1909 (Erlang, 1909).

Then in 1917, he published his most important work
(Erlang, 1917). In section 1-7 he develops his famous
Erlang B loss formula. As pointed out, the solution is
based on considering equality of traffic streams
through a cut between states.

Both Erlang and Engset have earlier been criticised
when it comes to the validity of their models because
they did not assume exponential holding time distri-
butions. However, this criticism has been showed to
be wrong, because the models are valid for different
holding time distributions as long as there is a distinct
mean (ITU, 2005).

Agner Krarup Erlang made a set of additional pub-
lications on teletraffic models in the 1920s and his
famous loss formula, which was very applicable,
got extremely popular for traffic engineers.

Erlang and Engset

This paper describes the incitements for developing
teletraffic models. The telephone penetrations in the
Scandinavian countries and Switzerland were signifi-

cantly higher than in all other European countries at
the start of the 20th century. However, from 1910
onwards the situation in Norway, and especially in
Kristiania changed because of traffic congestions, a
lot of complaints from the subscribers, limited invest-
ment grants, waiting lists for getting a telephone sub-
scription etc. As mentioned earlier waiting lists were
established – 5,000 potential subscribers were on the
list in Copenhagen in 1920 and 6,000 in Kristiania.
This situation was the backdrop for the real start of
development of the queuing theory. And the pioneers
were Agner Krarup Erlang and Tore Olaus Engset!

Erlang was employed by the Copenhagen Telephone
Company in 1908 and Engset was already in 1894
Head of Traffic and Operations in Telegrafverket.

In 1910 Telegrafverket appointed a three man com-
mittee with Engset as one of the members to consider
modernisation of the manual telephone systems in
Kristiania by studying semi- and fully automatic tele-
phone systems. The recommendation by the commit-
tee was finalised in 1913. During this period Engset
had visited the Copenhagen Telephone Company and
been aquainted with Erlang and P.V. Christensen who
were active in traffic engineering. Hence, there are
reasons to believe that Erlang and Engset exchanged
views and knowledge on traffic modelling and
dimensioning of the exchanges.

However, it is astonishing to realise that Erlang and
Engset developed completely different approaches to

p(i) =

(
N
i

) (
λ
µ

)i

∑K

k=1

(
N
k

) (
λ
µ

)k

Agner Krarup Erlang (1878 – 1929)
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calculating loss probabilities and dimensioning. Both
methods are excellent and history has shown that the
methods are still ‘future proof’ (ITU, 2005).

We now know that Erlang’s blocking formula is a
simplification of Engset’s model. A natural question
is of course: Why is Erlang’s work so well known
and Engset’s work is not?

Engset had for a long period developed his dimen-
sioning method, which he documented (128 pages)
in 1915. He sent the documentation to Copenhagen
Telephone Company and probably also to Stockholm
(Iversen, 1996). However, time elapsed and he did
not get his work published until 1918 (Engset, 1918).
The question is of course – why?

Engset was a very busy man. His main work was not
teletraffic and queuing theory – even if these aspects
were very important. The main thing for him could be
only to develop the results, like Fermat did, and not
use too much energy to publish his results.

Another reason could be the comments he got from
Erlang via Fr. Johannsen, which made him aware of
the fact that his formula is just an approximation to
the model. Engset even quotes this as a footnote in
his paper (Engset, 1918), (Jensen, 1992). The discus-
sion was about offered traffic and carried traffic
based on Engset’s assumption regarding the observed
traffic which he handles in the first part of his paper.
This is a more general aspect, how to interpret the
measurements and fit them to the modelling. The
same arguments are also valid on Erlang’s loss for-
mula!

Exchange of Information

Nowadays it is easy to access scientific information.
There is a number of sources like traditional text
books, university courses, journals, libraries, search
engines like Google, tailored conferences and of
course, establishment of personal networks.

Search and exchange of information is carried out
rapidly by using Internet and e-mail. Therefore, it is
difficult to understand the situation 300 years ago or
even 100 years ago when information was sent by
letter. The most crucial point in old times must have
been the accessibility to research and scientific infor-
mation and especially information between different
scientific areas.

Going back to (Struyck, 1716) and his solution of the
Gambler’s Ruin Problem, it is documented in this
paper that he found the solution based on the same
difference equations which 200 years later are used
for solving the queuing system M/M/1. Engset used

a completely different approach to solve the queuing
systems, while Erlang used a similar approach. As
mentioned in this paper, Erlang uses iµ instead of µ
because of several servers instead of one. However, it
must be pointed out that, while one thing is to solve
the difference equations, another important thing is
to deduce the equations itself.

Now, it is recognized that Erlang’s B formula was
immediately used by traffic engineers, while Engset’s
more general formula seems not to have been applied
the first years. The main reason is probably that his
solution simply was not known. Another reason could
be that the formula is more complicated. The Engset
loss formula admits the subscribers to have individual
inter-arrival time distributions and holding time dis-
tributions. However, the simplification of his model
assuming that all the subscribers have the same inter-
arrival time and holding time distribution includes an
additional parameter – the number of subscribers in
the area compared to Erlang’s B formula. Hence, the
table becomes larger. At that time, there were no
computers available for the calculations, so all rele-
vant tables had to be produced ‘by hand’.

Epilogue
This paper has briefly looked at the start of the math-
ematical theory of probability, the invention of the
telephone and the start of the teletraffic/queuing
theory. The following points have been drawn to
attention:

Gerolamo Cardano was the real inventor of the math-
ematical theory of probability. However, he was not
allowed by the Inquisition to publish his important
work Liber de Ludo Aleae – The Book on Games of
Chance. His work on probabilities was published in
1663, 87 years after his death, and inside a rather
large ten cover volume of Cardano’s publications.

Hence, Blaise Pascal and Pierre de Fermat are con-
sidered by many to be the real founders of the mathe-
matical theory of probability. The exchange of letters
between Pascal and Fermat in 1654 was known and had
impact on the future evolution of the probability theory!

Andrew Wiles isolated himself for seven years to
prove Fermat’s last theorem. He published his proof,
but there turned out to be a ‘hole’ in the proof.
Happily, nobody managed to utilise the knowledge
and Andrew Wiles completed the proof one year later!

Alexander Graham Bell has been considered to be the
inventor of the telephone. This is not true. The Italian
Antonio Meucci invented the telephone nearly 40
years before. He even tried to introduce the telephone
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and have it patented in the American market, but did
not succeed.

Then, Alexander Graham Bell obtained the patent
and utilised all economic and commercial possibili-
ties in an excellent way. Antonio Meucci did not get
anything – except that the American Congress 113
years after his death declared that he was the real
inventor of the telephone!

Agner Krarup Erlang and Tore Olaus Engset were the
real founders of the teletraffic/queuing theory. Erlang
developed his famous B loss formula in 1917. Engset
developed a more general loss formula in 1915 based
on a completely different approach, which also was
sent to Erlang’s company. Erlang’s model is a radical
simplification of Engset’s model.

Erlang became very famous for his work, and his
loss formula has been widely used by teletraffic engi-
neers. Engset’s work was rather unknown for a long
period and has recently been appreciated.

History is complicated, but it shows that some are
lucky and succeed, while others do not. Sometimes
there are a lot of random elements which affect evo-
lution. But, there may also be other factors. Regard-
ing Pierre de Fermat and Tore Olaus Engset, they
held important positions in society which at that time
were given a higher priority than their more theoreti-
cal work.
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