
◆ INTRODUCTION◆

SUPPOSE we have a population of objects

labelled 1, 2, 3, ..., N with N unknown. From a
random sample X

1
, X

2
,X

3
, ...X

n
 of size n without

replacement from this population we consider how
to estimate N. One may estimate the number of
runners in a race, taxicabs in a city, or concession
booths at a fair, for instance, based upon a seeing
just a sample of these labelled items. Ruggles and
Brodie (1947) summarise Allied estimates of
German weapons production (e.g. tanks) during
World War II from factory serial number markings
using the above model and extensions of it.
Ruggles (1991) also indicates that German intelli-
gence “conducted extensive factory markings
analysis on Soviet military equipment” during
WWII and “factory markings on Soviet equipment
were also analysed” during the U.S.-Korean War.
In this article we present several estimates of N
using elementary arguments and show how
Minitab might be used to select which one is
“best.” At the end of the article we state some
results which could be verified by students with a
more advanced probability and statistics back-
ground.

◆THE ESTIMATES ◆

We now derive a number of estimates of N using
only a little common sense (c.f. Noether (1990),
pp.33 - 43). First of all, suppose we knew the
middle value m in the list 1, 2, ...,  N. Then there
would be m—1 values below m and m—1 values
above m in the list. So, including the middle value
m, we would have N = (m—1) + 1 + (m—1) = 2m—1.
Now, since we don’t know m, it is certainly rea-
sonable to replace it by an estimate of the middle

such as the median or mean. If     and     denote the
median and mean, respectively, of our observed
sample of labels X

1
, X

2
,X

3
,, ...X

n
 this gives the

estimates

(These estimates and subsequent estimates, if not
integers, should be rounded to the nearest integer.)
Unfortunately, both 

 
    and       can be less than the

largest label,        , that we see in our sample! (In
what follows we let
                                                          denote the
ordered values of our sample X

1
, X

2
,X

3
, ...X

n
). Note,

for instance, if X
1
= 2, X

2
 
= 10, and X

3 
= 3 in a

sample of size n = 3, then         = 5, and 
 
      = 9, but

N ≥   X
(3)

  = 10. We now derive some estimates
which are always at least as big as the largest
sample label we see. By symmetry, one would
suppose that the number of unobserved labels
above X

(n)
 
should be about equal to the number of

unobserved labels below X
(1)

. So, setting
N - X

(n)
 = X

(1)
 - 1 yields

Extending the above reasoning it would seem

reasonable to set the number of unobserved labels

above X
(n)

 
 to be the average of: the number of

unobserved labels below X
(1)

 , the number of

unobserved labels between X
(1)

 and X
(2) 

, the number

of unobserved labels between X
(2)

 and X
(3)

, ...,and

the number of unobserved labels between X
(n-1)

 and

X
(n)

. That is, set N - X
(n)

 equal to

which reduces to X

n
n( )







 −1

 giving
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Neither of the estimates  
 
    or        have the

undesirable property that they can be less than the
largest sample label seen.

◆COMPARING THE ESTIMATES ◆

To compare these estimates one can simulate draw-
ing from the population 1,2, ..., N with a known N
using almost any statistical package. (If a statistical
package is not available but one knows some pro-
gramming language with a random number genera-
tor, this simulation can be performed with the aid of
Bebbington (1976)). After computing each estimate
for a number of simple random samples of size n
from the population of size N, one would examine
the distribution of estimates obtained. This may be
accomplished using the Minitab commands below:

MTB > store ‘compare.mtb’
STOR> noecho
STOR> sample k1 c1 c2
STOR> let k2 = maximum(c2)
STOR> let k3 = minimum(c2)
STOR> let k4 = median(c2)
STOR> let k5 = mean(c2)
STOR> let k6 = 2*k4 - l
STOR> let k7 = 2*k5 - l
STOR> let k8 = k2 + k3 - l
STOR> let k9 = (kl+l)*k2/kl - 1
STOR> stack k6 c3 c3
STOR> stack k7 c4 c4
STOR> stack k8 c5 c5
STOR> stack k9 c6 c6
STOR> end
MTB > name c3 ‘NI’ c4 ‘N2’ c5 ‘N3’ c6 ‘N4’
MTB > erase cl—c6
MTB > set c1
DATA>l:5000
DATA> end
MTB > note: Here N=5000
MTB>let.kl = 100
MTB > note: Here n=l00
MTB > note: Now take, say, 50 simple random
MTB > note: samples of size k1 from our
MTB > note: population and compare the results:
MTB > execute ‘compare.mtb’ 50
MTB > print c3-c6
MTB > describe c3-c6
MTB > histogram c3-c6

The output of the describe command will
tend to provide evidence that each of the
estimates is unbiased, and that the standard
deviations of the estimates        decrease
with i (with those of 

 
     and       considerably

more than those of 
 
      and      ). Conse-

quently,        would appear to be the best
estimate.

◆THEORETICAL RESULTS◆

A student with a knowledge of elementary
combinatorics who is adept at manipulating
sums may verify the entries in Table 1 below.
Note that the estimates are unbiased, and that

the standard deviations of the estimates 
N̂ i

 do
decrease with i.

Table 1.
Expectation and Variance of Estimates.

i E(    ) Var(    )
1   N

        (n even)
2   N

3   N

4   N

In this article we will be content to verify
only that.                          (As a simple check
on the variance calculations, however, note
that they agree in the case n= 1, for which ,

                                  and correctly vanish
in the case n=N.)

As

to show                           it suffices to show,

Now, as we are taking a simple random
sample of size n from a population of size N,
each of the C(N,n) samples are equally
likely. (Here, C(r,s)=r!/( s!(r—s)!).
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The event {X(n) =j}  implies that
                                      must be selected from 1, 2,
... , j—l, and because there are C(j —1, n —1)
such selections,

P X j
C j n

C N nn( ) =( ) =
− −( )
( )

1 1,

,
   j = n, n+1, ... N

........... (1)

Consequently,

but

so the above sum becomes

      ......    (2)
To simplify this, note that the probabilities in (1)
must sum to 1. So

  which implies

............(3)
Combining (2) and (3) and going through some
simple algebra we see

as required.
Looking back at the table, we see that each of the
estimates is unbiased and, among the four,      is
the one with minimum variance. It can be shown,
in fact, that 

 
        is the uniformly minimum

variance unbiased estimate (UMVUE) of N. We
should also note that       is the method of moments
estimate of N, and 

 
     is a scaled and shifted

version of the maximum likelihood estimate, X
(n)

.
of N.

◆CONCLUDING COMMENTS◆

There are, of course, problems in which one would
like to estimate the size of a population but for which
the labels do not run from 1 to N. Suppose, for in-
stance, that the population elements are labelled
sequentially from S to N with both S and N unknown.
Ruggles and Brodie (1947, p81), for example, indicate
that this was the case with gearbox markings on the
German Mark V (“Panther”) tanks during WWII.

 Students may wish to consider how to estimate the

number of items in this population (here, X
(l)
 and X

(n)

are the sufficient statistics.)
Again, estimates could be analysed theoretically and/
or by simulation. The interested reader should see
Ruggles and Brodie (1947) for other, more compli-
cated, labellings of population elements.

We close with
an anecdote of
Colonel
Trevor Dupuy
(1991). “In
the Middle
East a few
years ago I
was given
permission by

Israeli military authorities to go through the entire
Merkava Tank production line. At one time I asked
how many Merkavas had been produced, and I was
told that this information was classified. I found it
amusing, because there was a serial number on each
tank chassis.”
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