Inter-IC Sound (I²S) Bus

- Optimized for digital audio data transmission
- 3-line serial bus lines

SD: Two time-multiplexed data channels

WS: Word Select (0=left channel, 1 = right channel)

SCK: Clock

- Bus master generates SCK and WS
 - Bus master = transmitter or separate controller
- SCK synchronizes transmitter and receiver
- Serial data format
 - Two's complement, MSB sent first
 - If system word > #transmitted bits, truncate after LSB
 - If system word < #transmitted bits, add 0's after LSB

Philips I²S Specification:

http://www.classic.nxp.com/acrobat_download2/various/I2SBUS.pdf

I²S system configuration and timing

Source: Philips Semiconductor I²S bus specification

STM32 SPI/I²S Module

- Four supported I2S protocols:
 - I2S Phillips standard.
 - MSB-justified standard (left-justified),
 - LSB-justified standard (right-justified),
 - PCM standard (with short and long frame synchronization on 16-bit channel frame or 16-bit data frame extended to 32-bit channel frame)
- Data formats of 16-bit, 24-bit or 32-bit
- Packet frame is 16-bit (16-bit data frame) or 32-bit (16-bit, 24-bit, 32-bit data frame)
- Data direction is MSB first
- 16-bit register for transmission/reception with one data register for both channel sides
- DMA capability for transmission and reception (16-bit wide)
- Half or full duplex communication
- Master or slave operations

STM32 SPI/I²S Module

- 8-bit programmable linear prescaler to reach accurate audio sample frequencies (from 8 kHz to 192 kHz)
- Master clock may be output to drive an external audio component. Ratio is fixed at 256 × FS (where FS is the audio sampling frequency)
- Both I2S (I2S2 and I2S3) have a dedicated PLL (PLLI2S) to generate an even more accurate clock.
- I2S (I2S2 and I2S3) clock can be derived from an external clock mapped on the I2S_CKIN pin.
- Programmable clock polarity (steady state)
- Underrun flag in slave transmission mode, overrun flag in reception mode (master and slave), and Frame Error flag in reception and transmission mode (slave only)

STM32F4xx I²S registers

SPI_I2SCFGR

- I2SMOD: 0 = SPI mode, 1 = I2S mode \leftarrow Must set this bit to select SPI or I2S
- I2SE: 1 = enable I2S
- I2SCFG: 00 = slave xmit, 01 = slave rcv, 10 = master xmit, 11 = master rcv
- PCMSYNC: used in PCM mode
- I2SSTD I2S Standard: 00 = Philips, 01 = MSB justified 10 = LSB justified, 11 = PCM
- CKPOL: steady-state clock level (0/1)
- DATLEN: data length: 00 = 16-bit, 01 = 24-bit, 10 = 32-bit (16-bit data register => 2 reads for 24/32-bit data)
- CHLEN: word frame length: 0 = 16-bit, 1 = 32-bit
 - LSBs = 0 for 16/24-bit data in 32-bit frame

I^2S Philips protocol (CPOL = 0)

- WS latched on falling edge of CK
- Xmit: latch data on falling edge of CK
- Rcv: read on rising edge of CK

I²S MSB justified standard first data bit (MSB)

WS generated with

16/32 data in 16/32 frame

24 data in 32 frame

I²S LSB justified standard

16/32 data in16/32 frame

24 data in32 frame

I²S PCM standard

- No channel-side information
- Short and long frame formats (configure with PCMSYNC bit)
 - Long frame: WS asserted for 13 bits
 - Short frameLWS asserted for 1 bit

I²S clock generator

- Fs = audio sample frequency
- I2S bitrate = (#bits/channel) x (#channels) x Fs

Ex: 16-bit stereo (2 channels)

I2S bitrate = $16 \times 2 \times Fs$

F_S: Audio sampling frequency

12S clock generator

- I2SxCLK source = PLLI2S output or ext. input (I2S_CKIN)
- $F_s = 48kHz$, 96kHz or 192kHz
- Fs = I2SxCLK / [(CF*2) * (2*I2SDIV+ODD)*8)] CF = channel frame (16 or 32 bits)

