

June 2012

Azipod[®] C Propulsion and Thruster Units for 1300 – 4500 kW

Azipod[®] C for Low Power Applications in Azipod[®] Product Family

- Azipod CO is intended for open water ship applications between 1300 ...4500 kW, such as
 - Offshore Supply Vessels
 - Mega Yachts
 - Ferries
 - Wind Turbine Installation Vessels
 - Tankers
 - Research Vessels etc
- Azipod CZ is a thruster unit (3300 & 4500 kW designs, up to 60...84* tons thrust) with a nozzle intended for high thrust applications such as
 - Drilling rigs and ships
 - Pipe layers and other DP vessels

- A fully 360 degrees steerable propulsion unit
- No rudders needed
- Supplied by 690 V frequency converter
- Fixed-pitch propeller, directly mounted on the motor shaft
- Simple and environmental friedly construction

- Electric power transmission
 - No gear losses
 - No gear lubrication oil
 - Less maintenance
- Permanent magnet synchronous motor
 - Very high efficiency over a wide power range
- Thruster unit directly cooled to surrounding sea water
 - No separate cooling system

- Fully electric steering gear
- Simple installation at the yard
- Safe, silent and environmentally friendly

- Double shaft seal system with 2 step leakage follow up
- Positive air pressure toward sea
- Water lubricated outer seal
- No leakages

Functional Elements of the Azipod C

Azipod[®] C - Modular Construction

3 Standard Steering Modules 4 Standard Propulsors Modules Propeller Motor module Strut module

Steering drive cabinet, 2 units/propulsor

Azipod[®] C - Propulsion Module

- Strut module:
- Strut casting
- Cabling
- Piping (hoses)

Motor module:

- Propulsion motor
- Stator frame tube
- Thrust bearing assembly
- Propeller bearing assembly
- Shaft sealing
- Propeller
- Rope guard

Motor and strut modules are assembled by means of bolted joints.

Azipod[®] CO - Sizes

ABB

Azipod[®] CO - Main Dimensions

Figure	CO0980	CO1250	CO1400
	000000	001230	001400
Outer diameter of the motor	1039	1310	1470
D2 [mm] Propeller diameter (min. – max.)	1900 – 2600	2400 - 3500	2700 - 4000
D3 [mm] Connection flange outer diameter	2300	2780	2780
L3 [mm] Length of the Propulsion Module	4800	5730	6200
H1 [mm] Height from motor shaft line to the ship bottom	1950	2710	3090
H2 [mm] Height of slewing bearing assembly to the connection flange lower surface	495	650	650
H3 [mm] Height from connection flange lower surface to the top of the steering module	1980	1980	1980
H4 [mm] Maintenance area	2300	2300	2300
L4 back [mm] Maintenance area	1400	1700	1700
L4 front [mm] Maintenance area	2100	2250	2250
W [mm] Maintenance area	4000	4000	4000
M1 [ton] Total weight of complete Azipod	27	49	60
M2 [ton] Weight of the Steering Module	7	11	11
M3 [ton] Mass of the Propulsion Module (including approximate max. weight of propeller)	20	38	49
V [m ³] Displacement of the Propulsion Module (at assumed draft)	4	8,5	11
v [knots] Maximum water speed at the Azipod	18	19	21
R [mm] Azipod turning radius	2700	3050	3350

Azipod CZ

- Designed e.g. for drilling vessels.
- Available for power ratings of up to 4500 kW.
- Static thrust up to 84 metric tons (at zero speed)
- Underwater mountable
- Optimized for DP operations

Azipod CZ retractable unit

- Available for Azipod CZ 1400 L
- Based on canister design
- Thruster unit is underwater mountable
- Two different concepts
 - Space optimized concept
 - Maintenance optimized concept

Azipod[®] CZ – Hydrodynamic Benefits

- Rig version (= Pushing Azipod[®] C with Nozzle) with 7 degrees tilt angle in full scale - Minimized interaction with pontoons
- -Tilting the motor module gives hydrodynamically
 - 4 6 % advantage to the thruster where only the nozzle is tilted

 over 20 – 30 % advantage in thrust compared to non tilted thruster/nozzle (depends on thrust angle) Note: Above values when thruster jet stream is in the direction of the rig's pontoon or towards other thrusters.

Azipod[®] CZ – Model Sizes

Rated power/kW	Effective thrust/tons	Max transit speed/ knots
3300	63	9
3800	73	9
3800- 4500	72 - 84	14

Thrust / kW factor ~0,185kN/kW

© ABB Group July 3, 2012 | Slide 15

Azipod[®] CZ – Dimensions

Azipod CZ1400S

Azipod[®] C Experience, June 2012

Units delivered or on order	86 pcs
 Azipod® CO 	61 pcs
 Azipod® CZ 	25 pcs
Vessels, total number	29 vessels
 Supply vessels 	4
 Ferries 	4
 Research vessels 	5
 Yachts 	7
 Tankers 	1
 Drilling rigs 	2
 Crane and Heavy Lift vessels 	3
 Wind Turbine Installation vessels 	2
 Accommodation vessel 	1

Azipod[®] C – Summary of Benefits

Low operation cost

Benefits of electric propulsion and power plant principle High hydrodynamical efficiency High internal efficiency Minimum need for maintenance

Environmentally friendly

Minimum amount of lubricants

Low noise and vibrations

High reliability

Simplicity, low number of components Minimum amount of wearing parts Short installation and commissioning time

Power and productivity for a better world™

