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Abstract—The coming age of “big data” has been a recent
focus of IT companies, governments, and even the World Eco-
nomic Forum (WEF). The rapid, exponential growth of global
data outpaces Moore’s law improvements in computing and
storage efficiency, creating a growing “energy wall” in coping
with global data. We observe in this paper that this problem
is significantly exacerbated by (needed) security mechanisms.
We propose for more systematically designed energy-aware
security mechanisms.
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I. INTRODUCTION

Transistor scaling, as described by Moore’s Law, has
continued exponentially for several decades. Dennard S-
caling [9], which relies upon lowering operating voltage,
has helped keep chips within practical power envelopes as
transistor counts and operating frequencies have increased.
Unfortunately, Dennard Scaling has ended and Moore’s Law
is slowing down.

On the other hand we have also seen an exponential
growth in data triggered by the increasing popularity of user-
generated content and crowd-sourcing applications. This gi-
gantic amount of data has started to go beyond our capability
of storing and processing, leading to a vast inefficiency
gap between silicon technology and the big data. Figure
1 shows the data warehouse growth rate compared to the
silicon growth rate guided by Moores Law, estimated in
2003 and projected to today. The current worlds largest data
warehouse is about 3 petabytes from IBM DB2. We can see
that there has been a fast increasing gap between the two,
leading to significant inefficiency and demand to energy. If,
as the World Economic Forum proposes [1], leveraging this
data is key to economic growth in this century, then we face
some severe technical challenges.

The energy wall, however becomes even worse when
security becomes another important design metric other than
performance. Not only do we have all kinds of personal
devices that all require various levels of security, but we also
have large amounts of private data in the cloud which needs
to be protected. Todays security approaches are mostly ad-
hoc: each computing device is protected with some hardware
security features as well as software anti-virus tools and
firewall. Network traffic are secured by various security pro-
tocols and spam filtering techniques. As the global internet

Figure 1. Size of largest data warehouse growing trend from Winter Top
Ten Survey 2003 [20], compared to Moore’s Law. Such large and still
increasing gap indicates a serious energy inefficiency problem in dealing
with the large volume of data.

data volume keeps increasing as shown in Figure 1, the
overhead in security will grow as well and soon becomes a
nontrivial portion of the total energy budget. These security
mechanisms cannot be designed independently in an ad-hoc
manner any more and energy-aware systematic security will
play an important role in system design.

Our end goal of this work is to provide an understanding
of how security mechanisms at different levels interact with
energy from the perspective of internet data growth, so as
to emphasize the importance of systematic energy-aware
security. As a first step, in this short paper we survey the
energy cost of several major security mechanisms applied
in both individual devices and the cloud. We estimate their
impact to the energy budget today and also predict the future
trend. We hope this work serves as a complementary analysis
to existing work towards green security [16], [5], [6], as well
as a reference for future study on energy-aware security.

In the rest of the paper, we survey the following secu-
rity mechanisms that contribute to the majority of energy
overhead in security: anti-virus software (mostly PCs, more
mobile devices in the future), spam filtering (on the cloud),
hardware primitives (all kinds of devices), network security
(mostly protocol overhead, spent on every bit of data). In
order to compare them with computation energy, we try to
normalize them into energy consumption per byte of data.



Figure 2. Global Spam Email Volume since 2002 [18]. It has gone through a steady increase since the beginning and a quick jump around 2007. We
have also seen a big drop since 2010 after several major internet bots taken-down.

II. ENERGY COST OF SECURITY

A. Spam Filtering

About 90-95% of all emails in the web are spam emails.
Those spam emails can cause significant problem for both
individual users and businesses if not filtered properly. Due
to the large volume, spam filtering can consume a large
amount of energy itself. Many different parts in the internet
are involved in spam filtering collaboratively, from filtering
spam emails at ISPs to more advanced learning schemes at
mail servers such as Gmail.

Based on a report from McAfee [15], about 5,542 million
kWh energy is spent annually (2008) on spam filtering. The
amount of spam emails sent on 2008 is about 62 trillion.
The energy consumption per spam email filtering can be
estimated as the following:

Energy Per Spam = Total Energy ÷ Spam Count

= 5542× 106kWh÷ (62× 1012)

= 8.94× 10−5kWh

= 321.84 Joule

Roughly 321.84Joule energy is required to filter a single
spam email. Figure 2 shows the amount of global spam email
volume in the past 8 years. Although the spam email growth
speed seems to be much slower than the global internet data
growth rate shown later in Figure 6, a large portion of the
spams in fact have shifted into different forms. The amount
of spam users and accounts now have shown up on various
social network platforms such as Facebook and Twitter,
which becomes a much more effective method compared to
traditional email spam, and they are much harder to detect
and filter as well [12], [11]. Hence the total amount of effort
required for spam filtering will still grow proportionally to
the global data volume in general. Given the amount of
global data volume as 2.55 zettabytes in 2012, the energy

per byte (EPB) for spam filtering can be estimated as:

EPBspam = Energy Per Spam× Spam Count

÷Data V olume

= 321.84× (11× 1012)÷ (2.55× 1021)

= 1.39× 10−6

B. Anti-virus

Anti-virus software has been heavily used in desk-
top/laptop PCs for many years. It has been well known that
anti-virus software are using significant computing resource
as well as consuming large amount of energy. Although it is
difficult to precisely determine the carbon footprint impact
from anti-virus software, it can still be estimated based on
system performance impact. Anti-virus software has major
impacts to system boot time, application launch time and
file I/O operations. Many independent organizations are
running performance tests on major commercial anti-virus
software yearly. Table I shows the summarized results from
AntiVirus Ware Report [3] on 15 anti-virus software. The
system performance is affected in many different ways, all
leading to extra energy consumption. The major overhead
lies in I/O operations, that antivirus software is involved
in all file accesses through scanning and signature checks.
As a representative, the energy overhead can be estimated
based on the ”File Conversion Time Increase” in Table I. We
estimate the energy spent in the extra time during file conver-
sion by estimating the unit energy for typical computation.
The experiment in the paper was performed on typical Mp3
files with an average size of 4MB. Processor frequency is
2GHz Dual-Core (4GHz maximum computation capability).
Assuming an average CPI of 1.0 and energy per instruction
(EPI) of 11nJ [10], the energy overhead per byte can be



Memory Usage 30 MB

Installation Size 400MB

Reboot Time Increase 18.25s

Initial Scan Speed 26.58M/s

Subsequent Scan Speed 150.7M/s

Initial App Launch Time Increase 0 46sInitial App Launch Time Increase 0.46s

Subsequent App Launch Time Increase 0.23s

File Conversion Time Increase 0.7s

Table I
AVERAGE PERFORMANCE IMPACT OF 15 ANTI-VIRUS SOFTWARE,

SUMMARIZED FROM [3].

Figure 4. Energy overhead in adding extra security features to the
memory [8]. Memory Authentication protects integrity, while Memory
Encryption protects secrecy.

derived as:

EPBAV = Time÷ Size× Frequency ÷ CPI × EPI

= 0.7÷ (4× 106)× (4× 109)÷ 1× (11× 10−9)

= 7.7× 10−6

An important trend in personal computing is the perva-
sive availability of mobile devices. As the complexity of
mobile operating system becomes more complex, anti-virus
software as well as software firewall will start to become an
increasing demand for mobile users. A recent study [4] on
the energy consumption of mobile anti-virus software shows
that they can contribute up to 40% of overall energy under
ping floods (1KB payload, 100 times per second), shown in
Figure 3. In the “Normal - UP” case when users are actively
using the device with wifi on, the energy per byte consumed
by mobile antivirus tools can be estimated as:

EPBMobileAV = Power ÷ (Payload× Frequency)

= 0.461÷ (1024× 100)

= 4.5× 10−6

C. Hardware Security

Many security mechanisms are implemented at the hard-
ware level as primitives, in order to provide a much stronger
guarantee in a more efficient way, such as Trusted Platform
Modules that are available from many chip vendors. Fur-
thermore, as the exponential increase in the availability of
pins on chip, hardware resource has become rich enough
for more aggressive security approaches implemented in the
hardware. Most previous research that focuses on the energy
breakdown of computing devices are only considering the
major energy hungry components such as CPU, cache and
memory. However the increasing complexity of hardware
security primitives indicates that energy consumption of
hardware security needs to be an important factor in hard-
ware design.

As an example of security mechanisms embedded in
various hardware components, main memory has been one
of the most widely targeted component for enhanced security
policy. Research in [8] studies the energy overhead of two
potential types of security strategies implemented in the
memory: memory authentication that protects the integrity of
code and data, and memory encryption that prevents private
data leaking and ensures privacy. The results are shown
in Figure 4. It can be seen from the figure that advanced
security mechanisms embedded in the memory can impose
an average energy overhead of 13.42%. The experiments
were performed on SPEC 2000 benchmark suite, which has
an average instruction count of 131 billion, CPI of 1.97 and
data set size of 128MB [13]. Assuming a typical processor
with 65W power consumption and 2.8GHz frequency from
the paper, we can estimate the energy per byte consumed in
hardware memory security as:

EPBHDW = Power Overhead÷Data Process Speed

= 65× 13.42%÷ (128× 106÷
(131× 109 × 1.97÷ (2.8× 109)))

= 6.28× 10−6

More aggressively, security can be enforced from ground
up through every logic gate in the hardware, providing a
strong guarantee to the system above. Recent approaches
such as GLIFT [19] and Caisson [14] both tackle the
problem through massive changes to the hardware design
with dynamic or static information flow tracking techniques.
The energy overhead of such systematic hardware security
approaches can vary from 9% up to 180% for a simple
processor design, which is expected to further increase when
the complexity of hardware grows.

D. Network Security

Other than providing security guarantees locally on de-
vices and systems, another important but hidden energy sink
is the cost of securing every piece of data while they are
been transmitted in the network. The integrity and secrecy



Standby – DOWN Normal – DOWN Standby – UP Normal – UP

No security tools 135mW 150mW 752mW 1142mW

Anti-virus 162mW 217mW 892mW 1486mW

Anti-virus & firewall 179mW 291mW 950mW 1603mW

Figure 3. Anti-virus and firewall software energy consumption on mobile devices [4]. DOWN/UP indicates the state of the Wi-Fi. Typical smartphones
should spend the majority of time in a standby mode with Wi-Fi up, which gives a 200mW overhead in running security software.

(b)�Energy�Cost�of�Key�Exchange�Algorithms

(a)�Energy�Cost�of�Digital�Signature�Algorithms

(c)�Energy�Consumption�Characteristics�of�Hash�Functions

(e)�Energy�consumption�data�for�various�symmetric�ciphers(d)�Energy�Costs�of�AES�Variants

Figure 5. Energy Overhead Analysis of Network Security Protocol [17].

of all the data flowing around the internet is enforced through
a combination of many different security protocols, includ-
ing various encryption/decryption mechanisms and signature
systems. A recent study [17] analyzes the energy overhead
of all major network security protocols. A summary of the
results is shown in Figure 5. More frequently performed
cryptographic and hash algorithms typically cost micro-
joule per byte, while signature/key exchange algorithms
cost milli-joule per byte. It is estimated that 50mJ energy
overhead is required for a mobile client side to communicate
1 Megabytes over SSL. Typical mobile processors consume
less than 1/120 (eg. 0.5W for ARM CortextTM-A9) power
compared to desktop counterparts, hence the energy per
byte consumed in network security for typical PCs can be
estimated as:

EPBNET = 50× 10−3 × 120÷ 106

= 6× 10−6

E. Summary

To put things together, Table II shows the energy con-
sumption per byte for each security mechanism we have
discussed. To have a sense of how much overhead security
mechanisms contribute to compared with computation, we
look at energy efficiency for typical data center computation
such as Hadoop Sort. It is estimated that under default

Security Mechanism Energy (µJ per byte)

Spam Filtering 1.39

Anti!Virus 7.7

Mobile Anti!Virus 4.5

Hardware Security 6.28

Network Security 6Network Security 6

Total 25.87

Table II
SUMMARY: ENERGY CONSUMPTION PER BYTE OF DIFFERENT

SECURITY MECHANISMS.

configurations Hadoop sort can process 100 records per
Joule energy (each record contains 100 bytes value and 10
bytes key) [7]. we can estimate the energy per byte for
computation as:

EPBCOM = 1÷ (100× (100 + 10))

= 90.9× 10−6

Compared with the total energy consumption of 25.87µJ/B
for security, security mechanisms cost almost 30% of energy
consumed in useful computation. Such significant overhead
makes the energy wall we have been facing even worse. The
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Figure 6. The Rapid Growth of Global Data [2].

overhead of security mechanisms is also expected to further
increase as the data volume increases, as shown in Figure 6
which gives the global data growth up to 2020 [2]. Based on
the data growth rate, we can estimate the amount of energy
consumed by pure computation compared to the total energy
with security overhead included. The results are shown in
Figure 7. We also include the imaginary energy consumed by
computation if data grows at the same rate as Moore’s Law.
We can see that there is already a big gap between Moore’s
Law and the reality, while the massively applied security
mechanisms further increase such gap. We shall pay more
attention to energy-aware security mechanisms with more
systematic design methodologies.

III. CONCLUSION

Global data has been growing much faster than Moores
Law, creating an “energy wall” in designing systems to ex-
ploit that data. This problem is exacerbated by the increasing
demand for security to ensure both secrecy and integrity of
all the data in the cloud. Those security mechanisms can con-
sume significant energy overhead if designed in an ad-hoc
manner. In this work we estimate the energy consumption
per byte for several major security mechanisms, and compare
them with the energy consumed in useful computation.
We estimate that security mechanisms can consume almost
30% of computation energy, becoming a giant target for
energy efficiency and optimization. We propose that more
systematic energy-aware security mechanism designs should
merit more attention and will play an important role in green
IT.
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