
The equipment was state of the art,
but having a room cluttered with
assorted computer terminals was like
having a den cluttered with several
television sets, each dedicated to a
different channel. “It became obvi-
ous,” [ARPA IPTO Director Robert]
Taylor said many years later, “that
we ought to find a way to connect
all these different machines.”

Where the Wizards Stay Up Late
—Katie Hafner and Matthew Lyon

In the beginning, there was Arpanet
—commissioned not, as popular myth
has it, to provide survivable military
command and control, but rather to
reduce ARPA’s grant overhead of buy-
ing every fledgling computer science
department its own computer.

Time-sharing had already demon-
strated that a single computer could
service an entire research group; net-
working would allow the nation’s
researchers to work together off of
specialized machines. Ma Bell, of
course, could already install dedicat-
ed data circuits to link terminals
directly to remote hosts, like the
three teletypes to MIT, Berkeley, and

RAND in Robert Taylor’s office. The
promise of packet-switching technol-
ogy, by contrast, was to allow any
terminal to access any host.

In fact, Telnet was the first applica-
tion demonstrated on the four-IMP
(Interface Message Processor) net-
work installed by the end of 1969. It
took one more year to make a real
host-to-host protocol and another
year for the “glitch-cleaning commit-
tee” to complete its work. Request for
Comments #97, “First Cut at a
Proposed Telnet Protocol” by J.T.
Melvin and R.W. Watson, was finally
published on February 15, 1971.

The final edition took 12 more
years to develop, culminating in
Internet Standard #8 in 1983, three
years after the final TCP specifica-
tion was ratified. Arguably, Telnet
even predates internetworking and
the modern IP packet and TCP
transport layers.

Table 1 describes the six drafts in
the canonical Telnet standards suite.
As simple as Telnet seems in retro-
spect (it’s barely a tenth the size of
the HTTP 1.1 specification), it rep-
resents decades of experience in
application-layer protocol design.

Telnet’s true value is not the
abstraction of how-to-wire-termi-
nals-to-hosts (standardizing connec-
tions); instead, it’s the abstraction of
terminals (standardizing endpoints).
Telnet’s application-level semantics
are captured in its external interface,
the Network Virtual Terminal. Its
internal interfaces have close ties to
TCP transport facilities, an option
negotiation scheme, and symmetric
treatment of client and server roles.

Notice that none of these three
internal functions has any bearing on
remote-login, the most popular
application of Telnet. Instead, in con-
sidering Telnet against the taxonom-
ic criteria set forth in the premiere
installment of Seventh Heaven
(IEEE Internet Computing, Vol. 2,
No. 2, Mar.-Apr. 1998, pp. 80-82),
we need to separate Telnet from the
services it can access. That helps
highlight the enduring lessons of
Telnet for future seventh-layer proto-
col designers.

What: The NVT
The original spectrum of host com-
puters connected to the Arpanet
formed a motley crew: varying key-
boards, character sets, display sizes,
line lengths, and speeds—and those
were just the physical incompatibili-
ties. The terminal sessions themselves
were governed by time-sharing sys-
tems, each with its own peculiar
ways of stopping and starting
processes, controlling the flow of
output, and so on.

Rather than writing pairwise
adaptors in the form of idiosyncratic
terminal drivers for each host system,
the Network Virtual Terminal pro-
vided a common baseline: 7-bit US
ASCII, three mandatory control
characters (Table 2), five optional
control characters (Table 3), and a
basic signal set (Table 4).

The fundamental characteristic
that an NVT can’t abstract away
from a “real” terminal is latency.
Characters take time to be delivered,
unsynchronized and with variable
delay. Rather than two points of con-
trol—the dataflow in and out of a
terminal—there are four: two at the
local and two at the remote ends of
each connection in each direction.

SE
V

EN
TH

 H
EA

V
EN

TELNET:
THE MOTHER OF

ALL (APPLICATION)
PROTOCOLS

Rohit Khare • University of California, Irvine • www.ics.uci.edu/~rohit/

88 MAY • JUNE 1998 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

.

For example, typing a character
doesn’t result automatically in an
echoed response to display back. RFC
857 outlines options for echoing
characters at any of those four control
points (as well as a fifth, none at all).
Similarly, software flow control can be
gated in three places: locally, in the
Telnet client application, or at the
server side (RFC 1080).

New features can be activated
between consenting Telnet processes to
upgrade the NVT to more closely
approximate the actual terminal. For
example, internationalization demands
broader character set support; RFC
2066 presents how Telnet can initiate
negotiation over character sets, then
subnegotiate over actual sets and trans-
lation tables.

The effort of converting in and out
of such a character set may also need
to be shifted. Using Telnet to emulate
a 3270 or 5250 terminal connected to
an IBM mainframe centralizes the
burden of mapping EBCDIC to
ASCII. A TN3270 client offers to
cook the data at the client (RFC 1647
and others).

Still, the NVT can accommodate fair-
ly obscure terminal features. Interested
readers are directed to RFC 1097,
“Telnet subliminal-message option.”

Finally, there are out-of-band sig-
nals for controlling the NVT session
itself, usually issued by typing a local
escape sequence (typically Ctrl-]).
Table 4 enumerates commands to
interrupt processes and erase informa-
tion from terminal buffers.

How: The Implementation
The Telnet application is one of the
simplest and more straightforward of
all TCP/IP applications for end users.

TCP/IP Clearly Explained
—Pete Loshin

Simple as Telnet may seem to use, its
internal implementation depends on
understanding TCP, a careful ballet of
option-negotiation steps, and symme-
try as a design principle. A “textbook”
implementation of the Telnet finite
state machine weighs in at 70 pages
(Internetworking with TCP/IP, Vol. 3,
by Douglas Comer and David Stevens,
Chpts. 25 and 26).

S E V E N T H H E A V E N

89IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ MAY • JUNE 1998

Table 1. The canonical Telnet standard suite, published on 1 May 1983 by
Jon Postel and Joyce K. Reynolds.

RFC STD Title Comments
854 8 Telnet Protocol Specification NVT, commands, and

negotiation
855 26 Telnet Option Specifications How to register and

document options
856 27 Telnet Binary Transmission Allow 8-bit clean

connections
857 28 Telnet Echo Option Activate remote/local

echo on each way
858 29 Telnet Suppress Go Ahead Option Full-duplex NVT (rather

than half)
859 30 Telnet Status Option Recap current options

state
860 31 Telnet Timing Mark Option End-to-end

synchronization point
861 32 Telnet Extended Options-List Option Reserve option 255 to

allow future options

Table 2. Characters that normatively control output of an NVT. (All other
control characters and high-bit set characters are undefined.)

No. Code Name Meaning
0 NUL Null No operation
10 LF Line Feed Move down one line, same

horizontal position
13 CR Carriage Return Set horizontal position to the left

margin

Table 3. Characters that may optionally control output of an NVT.

No. Code Name Meaning
7 BEL Bell Audible or visible signal; no cursor movement
8 BS Backspace Move the cursor to the previous print position
9 HT Horizontal Tab Move cursor right toward the next tab stop

(setting unspecified)
11 VT Vertical Tab Move cursor down toward the next tab stop

(setting unspecified)
12 FF Form Feed Move cursor down to the next page,

preserving horizontal position

Table 4. The basic commands abstracting control of an NVT.

Code Name Meaning
255 IAC Interpret As Command The next byte is a command,

or an escaped 0xFF
244 IP Interrupt Process Suspend, interrupt, or abort the

remote process
245 AO Abort Output Suspend, interrupt, or abort the

remote process’s output
246 AYT Are You There Check that the remote Telnet process

is alive
247 EC Erase Character Delete the previous “print position”
248 EL Erase Line Delete the previous “line”
249 GA Go Ahead Turn over control, for half-duplex

terminal equipment

.

Transport Dependence. Many later
application-layer protocols, such as the
X Window System, state a require-
ment for “full-duplex, byte-oriented
transport.” Their semantics are specific
enough that correct implementations
always read and write information
appropriately within finite buffer space.

Telnet, though, connects arbitrary
processes, raising the specter of dead-
lock if information backs up. Hence,
it carefully requires TCP, a richer
transport facility. In particular, Telnet
has URGent delivery of out-of-order
segments. It resynchronizes a connec-
tion by sending an urgent packet
ahead to warn the other end to dump
its buffers and throw away all the
now-extraneous data until the match-
ing Data Mark arrives.

There are other ways for transport
facilities to address terminal latency.
While an NVT defaults to line-by-
line buffering, it can be set to charac-
ter mode. On a LAN, it makes sense
to allow interactive use, even if a lone
keystroke triggers an entire 41-byte
TCP segment.

Across slow wide-area links,
though, the TCP layer should coa-
lesce segments. This Telnet behavior
inspired the Nagle algorithm of limit-
ing low-bandwidth connections to a
single outstanding segment (and col-

lecting outbound characters while the
ACK is pending).

Negotiation. Latency also affects how
negotiation proceeds. Even without
worrying about symmetry—designers
usually rely on a master-slave relation-
ship to decide who moves first and
how to break ties—the fact that data
can be in flight in both directions
ambiguates requests and responses.
It’s sufficiently complex and prone to
infinite looping that Experimental
RFC 1143, “The Q Method of
Implementing Telnet Option
Negotiation,” was published in 1990.

Telnet options affect each direction
of dataflow separately. Either party
can announce that it wants to begin
using (DO), that it wants the other
side to begin using (WILL), it refuses
to use (DON’T), or refuses to let the
other side use (WON’T) an option.

After first ascertaining that both
parties understand the option and
want to apply it, there’s typically a sub-
negotiation over the actual parameters
(arbitrary data bracketed by IAC SB ...
IAC SE). Since both sides could initiate
discussion simultaneously, the Q
Method maintains six bits of informa-
tion for each option in each direction:
on, off, wanted-on, wanted-off, and
which party initiated negotiation.

There are 255 possible option
codes. Each new option should be
documented in the RFC series accord-
ing to the procedure outlined in RFC
855. However, if there’s ever a 256th
option, the designers planned ahead
by reserving the last code for subnego-
tiating in an expanded code space
(RFC 861). There’s also an option for
reporting which options are activated,
allowed, or prohibited on the current
connection (RFC 859).

Symmetry. Once established, there’s
nothing inherently client-server about
a Telnet connection. True, the TCP
port-numbering scheme can disam-
biguate who initiated the connection
(that’s the end connected to the well-
known port—for example, 23 for
Telnet; the reverse channel is random-
ly assigned). The designers carefully
eliminated master and slave roles
from Telnet’s own semantics.

In fact, they wrote “The Telnet
protocol is based on three main ideas,
[one of which is] a symmetric view of
terminals and processes.” In other
words, Telnet can connect users as
well as programs, seemingly stretching
Unix pipelines across the Internet.

Why: Telnet as a TP
It may seem odd to have dissected
Telnet at such length without once
mentioning logins, passwords, and all
the other details of establishing a ter-
minal connection. In fact, Telnet is
entirely silent on this point—not that
later writers haven’t tried to shove
authentication into this layer anyway
(see RFC 1416). Telnet is entirely
separate from the applications it
accesses (unlike, say, the Unix rlogin
program or the File Transfer Protocol,
which do define accounts, passwords,
and trusted hosts).

That separation is well hidden
because there’s only one category of
Telnet client programs: login tools.
By contrast, HTTP is routinely used
and abused in myriad software pack-
ages to send Web pages, audio, print
jobs, news tickers, even distributed
RPC messages. Telnet itself can be
used by many application programs
beyond a login: library catalogs,
router configuration panels, multi-
user games, and more.

C O L U M N

90 MAY • JUNE 1998 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

Table 5. Negotiation messages in Telnet.

Request Response Interpretation

DO WILL Initiator begins using option
WON’T Responder must not use option

WILL DO Responder begins using option after sending DO
DON’T Initiator must not use option

DON’T (WON’T) Warning or notification Initiator deactivated option;
respond if it’s a change

WON’T (DON’T) Warning or notification Responder should deactivate;
respond if it’s a change

There’s only one category of Telnet client
programs: login tools. But Telnet itself

can be used by many applications.

.

Before the Web, Telnet was the
most popular way to proselytize a new
application, from the Line Mode
Browser installation at info.cern.ch, to
WAIS, to Archie, even back to the
Stanford AI Lab’s Adventure server.
Furthermore, you can point a Telnet
client at another TP’s port and debug
it directly.

One of the classical virtues of IETF
protocols is plain-text design: protocol
messages are spelled out in natural lan-
guage rather than packed binary struc-
tures. This makes it very easy to experi-
ment with Internet information
services (for example, typing in an
HTTP GET message on port 80 or an
SMTP MAIL command on port 25).

As open-ended as it is, it helps to
think of Telnet as just another mes-
sage transfer protocol. Rather than
the crisply identifiable lump-of-data
in a file transfer or e-mail message,
though, a Telnet session is now
smeared-out in space-time, a pair of
synchronized input and output logs
with interspersed commands. As
unfamiliar as that seems, it’s only a
bidirectional equivalent of a
RealAudio broadcast stream or
QuickTime video, other kinds of
“messages” with temporal structure.

The message is exchanged between
NVTs, which are addressed as hosts
(by domain name or IP number)
since Telnet is an end-to-end proto-
col. The actual rules governing the
contents are known only by the port
number, so the port determines the
name of the session (“it’s connected to
port 119, so it’s an NNTP message
stream”). Data transfer is bidirectional
and synchronous, and uses the
URGent interrupt facility of TCP.

Lessons Telnet Teaches
In the fast-paced world of Internet
engineering, it’s hard to accept that
Telnet is older than I am. Its remark-
able stability deserves close study.

Simplicity alone is held up as a
classic cause: the NVT is an artful
balance of features that can span the
range from half-duplex teletypes to
cell phone PCs. On the other hand,
the steady march of whiz-bang
progress would have upset that bal-
ance and triggered periodic reengi-

neering of the protocol; e-mail reveals
this tendency.

Instead, I’d hold up evolvability as
its key survival skill. Option negotia-
tion was a farsighted addition in its
time; it did not become a hallmark of
IETF protocol design until the late
1980s. True, many other systems had
hooks for new headers, new verbs,
and so on, but few planned ahead
with administrative procedures for
managing the option space. There are
now 93 RFCs that describe Telnet
and its options—almost 3 percent of
the entire IETF fossil record!

File transfer is an equally ancient
Internet application, and its protocol
has been almost as stable, but doesn’t
exhibit such evolvability. More on
that paradox in the next Seventh
Heaven.

Rohit Khare is a graduate student in computer
science at the University of California,
Irvine. His personal Web site is at
http://xent.ics.uci.edu.

S E V E N T H H E A V E N

91IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ MAY • JUNE 1998

URLs for this column
Anne and Lynn Wheeler have put together an excellent resource for surfing the RFC
archives at http://www.garlic.com/~lynn/rfcietff.htm.

Coming next issue in IEEE Internet Computing

Articles include:

❖ Ora Lassila, Specification Editor, RDF Model and Syntax Working Group,
on Web metadata,

❖ Steve Lawrence and C. Lee Giles, NEC Research Institute, on context-based
Web searching, and

❖ Ivo Vollrath, Wolfgang Wilke, and Ralph Bergmann, Informatik, on intelligent
sales support on the Web.

Also coming in 1998 . . .
September • October
Software Engineering over the Internet
Guest Editors Frank Maurer, University of Calgary,
and Gail Kaiser, Columbia University

November • December
Internet Security in the Age of Mobile Code
Guest Editors Gary McGraw, Reliable Software Technologies,
and Edward Felten, Princeton University

Internet Search Technologies
Guest Editors Robert Filman, Lockheed Martin, and Sangam Pant, Lycos

.

