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Extended gcd calculation has a long history and plays an im-
portant role in computational number theory and linear alge-
bra. Recent results have shown that finding optimal multipliers
in extended gcd calculations is difficult. We present an algo-
rithm which uses lattice basis reduction to produce small inte-
ger multipliers xq, ..., X, for the equation's = gcd (s1, ..., sm) =
X181 + =+ + XmSm, Where sy, ...,s;, are given integers. The
method generalises to produce small unimodular transforma-
tion matrices for computing the Hermite normal form of an
integer matrix.

1. INTRODUCTION

Let s1,...,58, be integers and s = ged (81, - .-, 8m)-
It is easy to find integer multipliers x,, ..., z,, such
that s = z;81 + --- + ,,5,, but not so easy to
find multiplier vectors X of small Euclidean length
|1X]| = (2 + --- + x2)Y/? [Majewski and Havas
1994; Rossner and Seifert 1996]. Such multipliers
may be found by performing, for example, Euclid’s
algorithm on sy, s5, to get ged (81, 82) = g2, then on
ga, 83 and so on. If the corresponding sequence of
integer row operations is performed on the identity
matrix I,,, the result will be an m X m unimodu-
lar matrix P such that PS = [0,...,0,s]”, where
S = [$1,---,8m]". Such a P is implicit in [Jacobi
1868, pages 26-28]. For some variations on this
theme see [Kertzner 1981], as well as [Ford and
Havas 1996] (where it is shown that one can en-
sure |z;| < 3 max(sy,...,s,)) and [Majewski and
Havas 1995] (the sorting ged algorithm). Also see
[Brentjes 1981, pages 22-24] for references to older
work.
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With a little matrix algebra, the equation P.S =
[0,...,0,8]" tells us that rows py,...,p, 1 of P
form a lattice basis for the (m — 1)-dimensional
lattice A formed by the vectors X = (z1,...,Zn)
with zy,...,z,, € Z, satisfying 15, +-- -+ Z,, 8, =
0. In other words, every such X can be expressed
as an integer linear combination X = zp; + - +
Zm—1Pm—1- The general multiplier vector is

Pm + Z21P1 + e+ Zm—1Pm—1,

with z1,...,2,.1 € Z.

Lattice basis reduction can be used to find good
multipliers. Such an approach dates back at least
to [Rosser 1941] and [Ficken 1943], where it was
used for some small examples. A particularly effec-
tive algorithm for lattice basis reduction is due to
Lenstra, Lenstra and Lovész [Lenstra et al. 1982].
For a brief description of the LLL algorithm, see
Section 2. Of importance in the LLL algorithm is
a parameter «, which is in the range (%,1]. The
complexity of the algorithm increases with «, as
does the quality guarantee on the basis vectors.

Earlier Approaches: Algorithm 1

One approach to the extended gcd problem, pro-
posed by Babai [Grotschel et al. 1988, page 144]
and Sims [1994, page 381], is to perform the LLL
algorithm on py, ..., p,,_1 to produce a lattice basis
of short vectors. Then size-reduce p,,, by adding
suitable multiples of these short vectors to p,,; this
reduces its entries in practice to small size. We call
this Algorithm 1. It has the drawback that an ini-
tial unimodular transforming matrix P has to be
calculated.

Preview of Algorithms 2 and 3

Another approach to the problem is to apply the
LLL algorithm to the lattice L spanned by the
rows of the matrix C = [I,,|yS], where v is a
positive integer. It is not difficult to show that if
v > ym=D2|| S|, with y = 4/(4a — 1) for 1 <a <
1, the reduced basis for C' must satisfy ¢ i1 =
0, ..., ¢mo1my1 = 0 and ¢pymy1 = £ys. Then
Cmis- -+ Cmm Will in practice be a small multiplier

vector of similar size to that produced by Algo-
rithm 1. We call this Algorithm 2. It has the
drawback that multiplying the entries in the last
column of the matrix by v leads to an increase in
the theoretical complexity and practical running
time of the algorithm.

Experimentally one finds that if -y is large, Algo-
rithm 2 seems to settle down to the same sequence
of row operations. It is not difficult to identify
these operations and perform them instead on the
matrix [I,,|S]. This is justified in Section 3.

Our limiting algorithm is called Algorithm 3 and
is described explicitly in Section 4.

In Section 5, we show that with g < a <1 the
smallest multiplier for 3 numbers is one of the 7 val-
ues by +¢e1b; +e2bs, with |e;] <1, (e1,€9) # (£1,0),
where multiplier b3 and lattice basis by, b, for A are
produced by Algorithm 3. We also derive an upper
estimate in the general case of m numbers for the
length of the multiplier produced by Algorithm 3
with i <a<l.

Section 6 describes a LLL-based Hermite normal
form algorithm, which we also arrive at by limit-
ing considerations. In practice the method yields
transformation matrices with very small entries.
Such algorithms have applications in class group
calculations; see [Cohen 1993, pages 252, 288].

The paper finishes with some examples which
show how well the algorithms perform.

2. THE LLL ALGORITHM

In order to analyse Algorithms 2 and 3 we need to
briefly outline the LLL algorithm. More complete
descriptions are given in [Grotschel et al. 1988,
pages 139-150; Sims 1994, pages 360-382; Cohen
1993, pages 83-104; Pohst and Zassenhaus 1989,
pages 200-202].

Let C be an m X n matrix of integers, with
linearly independent rows cy,...,¢,. The Gram-

Schmidt basis is denoted by cj,...,c;,, where
k-1
cp - ct
* * * _ J
€L =C1, G =0Cp— E PiCis Hbs = 5o

j=1 VR
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We say ci,...,Cn is reduced if |py;| < 3 for 1 <
j<k<mand

v > (@ = M p1)Chimi * Chy (2-1)

for 1 <k <m. (Here ; < a <1.) We say ¢ is
size-reduced if |py;| < § for 1 < j < k.

Assume that rows 1 to k—1 have been processed.
The inductive step is as follows:

Do a partial size-reduction by

Cp < Cp — fuk k—1JCk—1,

where [6] is the nearest integer symbol, with [8] =
§—3, if 6 is a half-integer. If inequality (2-1) holds,
size-reduce ¢, completely by performing c;, < ¢ —
[prjlej for j =k —2,...,1 and increment k. Oth-
erwise swap ¢; and c;_; and decrement k.

3. ANALYSIS OF ALGORITHM 2

Algorithm 2 works for the following reasons. L
consists of the vectors

(X,a) = (21, «- oy Ty V(@181 + -+ + TiuSa)),

where zy,...,z,, € Z. Hence X € A & (X,0) € L.
Also, if (X,a) € L and X does not belong to A,
then a # 0 and

(X, a)|I> > > (3-1)

Further, the lemma of [Pohst and Zassenhaus
1989, page 200] implies that if by,...,b,_; form a
reduced basis for L, then

1651 < y ™22 max (|| Xal, .., [ Xpmall),  3-2)

if Xi,...
L.
But the m — 1 vectors

X1 :(—32,31,0,...,0,0)
X2 :(—83,0,81,0,...,0,0)

, Xm—1 are linearly independent vectors in

are linearly independent in L and satisfy ||.X;|| <
I51], so

ma‘X(||X1||7"'7||Xm—1||) S ”S“ (3-3)

Hence if v > y™=2/2|| S]], it follows from in-
equalities (3—1)—(3-3) that the first m—1 rows of a
reduced basis for L have the form (bj1,...,bjm,0).

The last vector of the reduced basis then has the

form (b1, --50mm,vg) for some g, and the equa-
tions
PS = m , S=p [0]
g g

(where P is a unimodular matrix) imply s|g and
g|s, respectively, and hence g = +s.

Now we justify our earlier assertion that if ~
is sufficiently large and the LLL algorithm is per-
formed on [I,,|7S], then the sequence of operations
is independent of ~.

Let ¢;my1 = 7va; and let C = [B|yA], where
initially B = I,, and A = §.

Let us assume that the first £ — 1 rows of C are
LLL-reduced (which implies a; = 0,...,a;, 2 =0
by the above argument) and examine the inductive
step of LLL.

First, from the equation

r—1
C: =Cr — Zurjcja (3_4)
Jj=1
we have ci,, ., = 0,...,¢;_5,,01 = 0. Also from
equation (3-4), with r = k—1, we have ¢;_; ,,,, =
Yag-1-
Further,
e Ch €5 Dogm ChaClq T VAKC) iy s
ki — & P m % % -
Cj ’ Cj Zq:l (ch)2 + (cj m+1)2
50, & py1 = 0,000, o my1 = 0 and equation
(3-5) give

s = Z;n:1 quc;q
= =41 e
T ()

the Gram-Schmidt coefficient for C with the last
column ignored.

for j=1,...,k—2,
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Next

m ; 2
" 2 g1 ChaCho1q T Y kK1
kk—1 — m - ) 2 2
Zq:l (ck:—l q) + Y0y

a .
N —E as vy — oo if ay_; # 0.
Q-1

(If ag—1 = 0, pg -1 reduces to the Gram—Schmidt
coefficient for C' with the last column ignored.)
Then (for a,_, #0) if t = [ay/ak_1 |, [prr—1] =1
if ay,/ay_; is not an odd multiple of %, ortort+1
otherwise, as ¥ — oc. Thus in the partial size-
reduction, ¢ or ¢ + 1 times row k — 1 is subtracted
from row k.

We now discuss the possible interchange of rows
k — 1 and k. This takes place if the inequality
(2-1) fails to hold. If ay_; = 0 = a4, then con-
dition (2-1) becomes the standard LLL condition
involving iy g_1-

If ay_; = 0 but a; # 0, then ¢}, ., = var and
condition (2-1) will be satisfied for v large and no
interchange of rows takes place.

If ay_y # 0, then since the c; did not change
under partial size-reduction, we see from

k-2

Cp =c — Zﬂkjcj — Mk k—1Cp_15

j=1
that with ¢}, ., =0,7 =1,...,k — 2 and the lim-
iting form of the old uyx—1, we have c;, ., ~ 0.
Consequently, as a — pj,_, > 0if a > I, (2-1)
will not be satisfied for v large, if o > i, thereby
resulting in an interchange of rows.

The py; are rational functions of v and, if not
constant, will tend to a limit strictly monotoni-
cally, thereby resulting in a limiting sequence of
row operations for large 7. Thus, for large ~, the
LLL algorithm will perform a version of the least-
remainder ged algorithm (LRA) on a; = $1,a9 =
Sq, until it arrives at a; = 0, a9 = go = ged (81, 82),
with (byy, bys) being the shortest multiplier vector
for ged (s1,82). It then eventually performs a ver-
sion of the LRA on ay = ¢»,a3 = s3, punctuated
by updating of the first three rows of B, till it
arrives at a; = 0,a, = 0,a3 = g3 = ged (g2, 83),

with (bs1, bss, bsz) being a short multiplier vector
for ged (s1, $2, 83); and so on.

4. ALGORITHM 3

The analysis of Section 3 leads to Algorithm 3 be-
low, the final LLL-based extended gcd algorithm.
Our implementation is a modification of de Weger’s
LLL algorithm [1987, pages 329-332], simplified in
that initial construction of the Gram—Schmidt ba-
sis is not needed, as we start with the identity ma-
trix I,,. De Weger works in terms of integers and
writes ||bf[|* = D;/D;_1, Do = 1 and \;; = Djp,;.
This allows algorithms to be implemented using
only integers, avoiding explicit calculation with ra-
tionals.

The algorithm works by successively producing
for k = 2,...,m, a multiplier vector (bgi,...,bxx)
for si,...,s; which is size-reduced with respect
to a LLL-reduced lattice basis (by1,...,b1%), --.,
(bg_11,---,bp_1x) for the lattice defined by x;s; +
et TS = 0.

Algorithm 3. (We denote by b, the i-th row of B.)

Input: Positive integers si,..., S,

Output: a,, = gcd(sy,...,8,); small multipliers
bty -5 bmm; small null space basis

B+ I,;

forr=2,...,m do

fors=1,...,r—1do A, < 0;
for:=0,...,mdo D; + 1;

fori=1,...,m do a; < s;
my <3, n 4 x a=my/ng */
k<« 2;

while £k < m do
Reducel(k, k — 1);
ifa,_; #0 or (ak_l =0and a;, =0 and
ni(Dy—oDy + A}y 1) <miD} ) then
Swap(k); if k > 2 then k + k — 1;
else
fori=k—2,...,1 do Reduce(k,1);
k+—k+1;
if a,, < 0 then
O — —Qp; by — —bpy;
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Reducel(k,1)

if a; # 0 then q < [ay/a;];

else
if 2|\yi| > D; then q < [Ai/D;];
else q + 0;

if ¢ # 0 then
a < ap — qay;
by < by —qby;
Aki < Ani — qDj;
for j =1,...,1—1do Ay < A\ — q)ij;

Swap(k)

Qg <> Qp—1;

by <> by_y;

for j=1,...,k—2do Ay <> A1 3

fori=k+1,...,mdo
b Nip—1Dp — AigApp—1;
Aik—1 < (Nig—1App—1 + XixDr—2)/Dy_1;
ity <= t/Dy_1;

D1 < (Dy—oDy, + A} 1)/ Di—1;

5. MULTIPLIER ESTIMATES

Even when m = 3, our LLL-based gcd algorithm
does not always produce the shortest multiplier:
in the example 4,6,9, LLL (for all 1 < a < 1)
produces the multiplier b3 = (—2,0,1), whereas
the shortest is bs + by + by = (1,1, —1).

After much numerical experiment we were led to
the following result:

Theorem 5.1. If B is a unimodular 3 X 3 integer
matriz such that the first 2 rows by, by form a LLL-
reduced basis for the lattice A with % < a <1,
while bs is size-reduced and is a multiplier vector
for s1, 89, 83, then the smallest multiplier is one of
seven vectors bz + £,b1 + €3b,y, where g, = —1,0,1
fori=1,2 and (e1,¢e2) # (£1,0).

Proof. We have
by = by + 13205 + 13167

and

by = by + pan by,

where |p;;| < 3. Then, if u,v € Z, recalling that
bs +uby + vb, is the general multiplier, we have the
following expression for the square of its length:

f(u,v)
= ||bs +uby +vb, ||?
= |65+ (u+ prs1 +v 21 )by + (4 s ) b3 ||
= (103117 + (ut par +opan) (107 [+ (v+pa32) [ 05 1.

Suppose f(z,y) < f(0,0). Then
163 + by +ybs[|* < ||bs]|*,
or, equivalently,

103112+ (@4 prry 31105 12+ (Y + ps2)* |65 ||
< 105117 4 a3 1165 11>+ 3, 16311

Hence, noting that ||b5||* > ||b1]|? (o — p3, ), we have

o 1512, s
31 ||b;||2 +/1’327

(y + p32)® <
(y+ﬂ32)2< 8+i:%7 1f042%a

1
4
ly+psel <3 =yl <2=ly <1
Then, since y(y + 2us2) > 0if y € Z,

(z + pory + ps1)?|ba |2
< (@ + pony + psn) (b1 1P+ y (y + 2p80) |05
< 13117
hence
1T+ poay + paa| < |paal,
|z| < |pa1y + par| + pan],  (5-1)

|| < |por| + 2ps| < 5 41,
lz| < 1.

Also from inequality (5-1), y = 0 implies x = 0. O
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Remarks. 1. We can be more specific about the

optimum multipliers, in terms of the signs of ps;,
p31, and pgo:

Mo1  M31 p3o  Optimum multiplier

+ + 4+ bz or by —by
+ — — bs or bs + by
bs or bs + b,
— - + bs or by — by
— bs or by — by or bs + by + by

|
4
|

‘I‘ + — b30rb3—b20rbg—b1+b2
- + + b30rb3—|—b20rbg—b1—b2
=+ — —+ b30rb3+b20rbg+b1—b2

All cases occur for suitable choices of (s, S, $3).

2. The theorem is not true for all o > i. For

with (s, 82, 83) = (1000003, 1000021, 1000073) and

__ 100001 . A
@ = Joo0000 the optimum multiplier is

bz + 1710b, — 3421b, = (11088, 4306, —15393),

where b, = (—222224,222219,1), b, = (—111099,
111092, 5), and by = (—55551, 55548, 2).

Corollary 5.2. Qur LLL extended gcd algorithm is
the basis of a practical polynomial-time algorithm
for finding an optimal solution to the extended gcd
problem for 3 numbers.

Proof. Apply Algorithm 3 (with a = 2, say) and

then check which of the possibilities is optimal. [

Theorem 5.3. Let B be a unimodular m X m integer
matriz such that the first m — 1 rows form a LLL-
reduced basis for the lattice A with i < a <1,
while b, 1s size-reduced and is a multiplier vector
for si,...,8y. Then with y = 4/(4a — 1), we have

1B ]l* < 1+ 3(m — 1)y™ 2|51,

Proof. We have b,,, = b}, + Z;’:ll pm;b;- The vector
ST is orthogonal to by,...,b,, 1 and we see from
BS =0,...,0,s]" that b*, = sS7/||S||>. Then

sST X .
7j=1

with [py,,] <3 forj=1,...,m—1.
But ||b7]] < ||b;]|- Hence

1m—1 .
ol <14+ 3 DI <1+

j=1

|

m—1
> lbsl* 5-2)
7j=1

Repeating the argument for inequalities (3-2)
and (3-3) we deduce that

1b,[1 < y™=272|8|), for j=1,...,m—1,

and inequality (5-2) gives

B[l < 1+ §(m = y™ 2||S]17,

as required. O

Remark. Knuth [1969, Section 4.5.3, Problem 33;
1981, Section 4.5.3, Problem 45] posed research-
level problems on the analysis of algorithms for
computing the greatest common divisor of three
or more integers. The theorems and corollary of
this section resolve aspects of these problems. Al-
gorithm 3 and its analysis provide much further
information.

6. A LLL-BASED HERMITE NORMAL-FORM
ALGORITHM

An m X n integer matrix H is said to be in row
Hermite normal form if

(i) the first » rows of H are nonzero;

(ii) for 1 < ¢ <, if h;;, is the first nonzero entry in
row ¢ of H, then j; < jo < -+ < J,;

(i) hyj, > 0 for 1 < <r;

(ivif 1 <k <i<r,then 0 < hy; < hyj,.

Let G be an m x n integer matrix. Then there are
various algorithms for finding a unimodular ma-
trix P such that PG = H is in row Hermite nor-
mal form. These include those of Kannan—Bachem
[1994, pages 349-357] and Havas—Majewski [1994],
which attempt to reduce coefficient explosion dur-
ing their execution.
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By considering the limiting behaviour of the LLL
algorithm on the matrix

G() =[In | V"G1 | Y 'Ga | -+ | 1G]

(where G; is the i-th column of G) as v — oo, we
are led to the following LLL-based Hermite normal
form algorithm, generalising the earlier gcd case
where n = 1. (We have omitted Swap(k) because
it is the same as in Algorithm 3, with a; replac-
ing a;.) It is an easy extension of the argument in
Section 1 to show that for large v, on LLL reduc-
ing G(v), the last n columns form a matrix whose
rows, starting from the bottom, are in row echelon
form, corresponding to the indices j,...,j,- This
algorithm gives as output A, which is the Hermite
normal form of G, but in reverse order. It is trivial
to turn A and the transforming matrix B into the
standard H and P.

Algorithm 4 (LLL-based Hermite normal form).

Input: An m X n integer matrix G

Output: A, the Hermite normal form of G (upside
down), and B, the corresponding transformation
matrix

B+ I,;

forr=2,...,m do
fors=1,...,r—1do A, < 0;

A+ G,

fori=0,...,m do D; « 1;

my 3, n 4 x a=my/ng */

if there is exactly one nonzero element a;; in the
first nonzero column of A and ¢ = m and

A < 0 then
a,, < —Qp; bm,m = _1?
k< 2;

while £ < m do
Reduce2(k, k — 1);
if coll <min(col2,n) or (coll =col2=n+1
and ny(Dy_sDy+X},_,) <myD?_,) then

Swap(k); if k > 2 then k + k — 1;

else
fori =k —2,...,1 do Reduce2(k,1i);
k—k+1;

Reduce2(k, 1)

if there is j such that a; ; # 0 then
coll < least j such that a; ; # 0;
if Q; coll < 0 then

Minus(i); a; < —a;; b; < —b;;

else coll + n +1;

if there is j such that ay; # 0 then
col2 < least j such that a; ; # 0;

else col2 «+ n+1;

if coll < n then q < [ag coin/icon ];

else
if 2|Ak,1‘ > Di then q < I—)\kz/DzJ7
else g < 0;

if ¢ # 0 then
a, < ap — qa;;
by < by — qby;
Aki < A — qDs;
for j =1,...,i —1do Ay < Ay — q)ij;

Minus(j)
forr=2,...,m do
for s=1,...,r—1do
ifr =7 or s =j then A\, + —\.;

We remark that if a row of G has to be multiplied
by —1, there is a necessary adjustment for the A;;.
Hence the function Minus(i).

Let C denote the submatrix of H formed by the
7 nonzero rows and write P = [g] , where Q and R
have r and m—r rows, respectively. (@ corresponds
to the bottom r rows of A in reverse order. R
comprises the top m—r rows of A.) Then QG = C
and RG = 0 and the rows of R will form a Z
basis of short vectors for the sublattice N(G) of
Z™ formed by the vectors X satisfying XG = 0.
The rows of ) are size-reduced with respect to the
short lattice basis vectors for N(G).

7. EXAMPLES

We have applied the methods described here to nu-
merous examples, all with excellent performance.
Note that there are many papers which study ex-
plicit input sets for the extended gcd problem and
a number of these are listed in the references of
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[Brentjes 1981] and [Majewski and Havas 1994].
We illustrate algorithm performance with a small
selection of interesting examples and make some
performance comparisons.

Many parameters can affect the performance of
LLL lattice basis reduction algorithms (this has
been observed by many others; see [Schnorr and
Euchner 1991], for example). Foremost is the value
of a. Smaller values of « tend to give faster exe-
cution times but worse multipliers; however this is
by no means uniform. Also, the order of input may
have an effect.

Example 7.1. As input to an extended gcd algo-
rithm, take s; = 116085838, s, = 181081878, s3 =
314252913, s4 = 10346840. Algorithm 3 produces
a final matrix

—103 146 —58 362

B —603 13 220 —144
N 15 —1208 678 381
—88 352 —167 —101

The multiplier vector (—88,352,—167,—101) is
the unique multiplier vector of least length. In
fact, LLL-based methods give this optimal mul-
tiplier vector for all a € (3,1].

Earlier algorithms which aim to improve on the
multipliers do not fare particularly well. Blankin-
ship’s algorithm [1963] gives the multiplier vector

(0,355043097104056, 1, —6213672077130712).

The algorithm of [Bradley 1970] gives (27237259,
—17460943, 1, 0). (This shows that Bradley’s def-
inition of minimal is not useful.)

Example 7.2. Take

$1 = 763836, s, =1066557, s;= 113192,
ss = 1785102, s5 = 1470060, s; = 3077752,
s;= 114793, sy = 3126753, s, = 1997137,

S10 = 2603018.

Algorithm 3 gives, for various values of a, the mul-
tiplier vectors shown at the top of the next column.
Also shown are the lengths-squared.

a multiplier vector x [|]|?

ool 71 -5-1-1 0-4 0 0 0] 93

-1 0 6-1-1 1 0 2-3 0|53

-3 0 3 0-1 1 0 1 -4 2|4
1-3 2-1 5 0

1-3 2-1 5 0 1 1-2-1|47

3 3-2-2 2|42

1 1 -2 -1 47

=AW Wi = W=

-1 0 1 -3 1
The unique shortest multiplier vector is
(37 _]-7 17 27 _]-7 _27 _27 _27 2’ 2)7

with length-squared 36. Other methods give the
following results:
Jacobi:

(_1475,_2,37_1527_4705 _250), ||‘/1:||2 = 259

recursive ged:

(1936732230, —1387029291, -1, 0,0,0,0,0,0,0,0)

Kannan—-Bachem:
(44537655090, —31896527153,0,0,0,0,0,0,0,—1)

Blankinghip:
(3485238369, 1, —23518892995, 0, 0,0, 0,0, 0, 0)

Bradley: (—135282,96885,—1,0,0,0,0,0,0,0)

Example 7.3. The following example involving the
Fibonacci number F; and the Lucas numbers L; =
F; | + F;;, [Hoggatt 1969] has theoretical signifi-
cance. Take si,...,s, to be the Fibonacci num-
bers

Fo..Fq,...,Fy,
FnaFn+17"'aF2n—1

for n > 5 odd,

for n > 4 even.

Using the identity F;L; = F;,; + (—1)/F;_;, it can

be shown that the vectors

—j9

(_Ln737 Lnf4a LR _L2a L17 _]-7 1a 07 O)
and

(Ln73a —Ln,4, R _L2a L1+1a _1, 07 0)
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3 7 13 21 31
11 36 7 134 207

31 113 249 439 683

69 262 583 1032 1609
131 507 1133 2009 3135
223 872 1953 3466 5411
351 1381 3097 5499 8587
521 2058 4619 8204 12813
739 2927 6573 11677 18239

| 1011 4012 9013 16014 25015

43
296
981

2314
4511
7788
12361
18446
26259
36016

a7
401
1333
3147
6137
10597
16821
25103
35737
49017

Input matrix G of Example 7.4.

are multipliers in the case of n odd or even, re-
spectively. These multipliers are the unique vec-
tors of least length. (This is a special case of a
more general result from [Matthews 1996], where
F,,...,F, ., is treated.) The length-squared of
the multipliers is Ls,_5+ 1 in both cases. (In prac-
tice, the LLL-based algorithms compute these min-
imal multipliers.)

These results give bounds for extended gcd mul-
tipliers in terms of Euclidean norms. Since

L2n75 + ]- ~ (;02”_5 ~ 90_5\/5F2n7

where ¢ = %(1 + 5 ), a general upper bound
for the Euclidean norm of the multiplier vector in
terms of the initial numbers s; must be at least

O(v/ma(ed).

Also, the length of the vector (F,, Fyy1,. .., Fsy,) is
of the same order of magnitude as F5,,, so a general
upper bound for the length of the multipliers in
terms of the Euclidean length of the input, ||.S]], is

at least O(+1/]|S]))-

A range of random type extended gcd examples is
presented in [Havas and Majewski 1995], showing
excellent performance.

Example 7.4. For a Hermite normal form example,
take G = [g;;] to be the 10 x 10 matrix defined by
gi; = 1°j* + i+ j, and spelled out at the top of the

73
522
1739
4108
8013
13838
21967
32784
46673
64018

91
659
2199
5197
10139
17511
27799
41489
59067
81019

1117
812
2713
6414
12515
21616
34317
51218
72919
100020 |
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page. The Hermite normal form H of G has three
NoNzero rows:

1 0 7 22 45

01 4

9 16 25
0 0 12 36 72 120 180 252 336 432

36 49 64

76 115 162 217 280
81

The unimodular matrix provided by the Kannan—
Bachem algorithm is

—48 47 —12 000000O0DO0T
-8 10 -5 1000000
—62 57 —12 —-1000000
982 —2620 2295 —-6358 1 00000
1684 —4495 3940 —1130 0 1 0 0 0 O
2662 —7108 6233 —1788 0 0 1 0 0 0|’
3962 —10582 9282 —2663 0 0 01 0 0O
5630 —15040 13195 —3786 0 0 0 0 1 O
7712 —20605 18080 —5188 0 0 0 0 0 1
-3 8 -7 2000000]
whereas that supplied by our algorithm is
-100 -8 -5 1 2 3 5 3 0 —47
-2 -1 0 1 -1 0 1 0 1-1
—-15 -1 -4 0 4 5 4 3 1 -5
1 -1-1 0 2-1 0 0 0 O
0 1-1-1 1-1 2-1 0 0
1 0-1-1-1 2 0 1-1 0
1 0-2 1-1 1-1 1 1-1
-1 0 1 0 1 1-1-2 0 1
1 -1 0-1 1 0 0-1 2 -1
1 -2 1 1-2 0 2-1 0 0




134  Experimental Mathematics, Vol. 7 (1998), No. 2

Kannan-Bachem LLL HNF
Mg 77710953119323250210825968427763925730604 2
Mg 19688024435949960842280085386879376037295267254 2
M5 32807912677637850341882990335 4
M130 258209178730643422634648900270488370181908068255159901037863837761499488802313834227 5
M4 8877061573605684598479855792299 9
M50 143547860664185870781020896285 9

Entry of maximal magnitude for the transforming matrices obtained by applying the Kannan—Bachem algorithm

and ours to the matrices of Example 7.5.

Example 7.5. An interesting family of matrices arises
in the work of Daberkow [1995]. In some situations
involving ideal class groups, matrices arise with k
rows and 10 columns for k ranging from 100 to
150 in steps of 10. We designate the matrix with
k rows by M. The maximal magnitude entry in
M, is of the order 11(k=90)/10  Daherkow needs
to compute both the Hermite normal form and a
transforming matrix. We tabulate above the max-
imal magnitude entry in the transforming matrix
(which includes many entries of this size) for our
algorithm using o = 1 in comparison with that of
Kannan-Bachem.

It can be seen from these examples that the al-
gorithm we propose here often dramatically out-
performs earlier methods in the search for good
multipliers and transforming matrices.
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ELECTRONIC AVAILABILITY

Implementations of these algorithms are available
in Matthews’ number theory calculator program
CALC at http://www.maths.uqg.edu.au/~krm/.

Variants of the algorithms are available in GAP
[Schonert et al. 1996] and Magma [Bosma et al.
1997].
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