
Software Spotlight
Software Profile: Journaling Flash File System, Version 2 (JFFS2)

PDF: 09005aef845f5d56/Source: 09005aef845f5d68 Rev. B, 03/11
© 2011 Micron Technology, Inc. Micron and the Micron logo are trademarks of Micron Technology, Inc. OneNAND™ is a trademark
of Samsung Electronics Co., Ltd. All other trademarks are the property of their respective owners. All information is provided on an
“AS IS” basis, without warranties of any kind.

Software Profile: Journaling Flash File System, Version 2 (JFFS2)
By Luca Boschetti
Micron Software Engineer

The Journaling Flash File System, version 2 (JFFS2) is a log-structured open-source file
system that is distributed under the terms of a General Public License (GPL). JFFS2 was
widely designed and used for embedded devices. Originally developed to support NOR
Flash memory, JFFS2 has been included with the Linux kernel since version 2.4.10.
Currently, it supports NAND and OneNAND™ Flash memory devices.

JFFS2 is developed and maintained within the Memory Technology Device (MTD) layer,
which provides support in Linux for Flash devices. For further information about the MTD,
refer to the Enabling a Flash memory device into the Linux MTD technical note.

Unlike file systems that are not specifically designed to work with Flash memory, JFFS2
does not rely on a glue logic layer to fit Flash needs (such as a Flash Translation Layer that
turns Flash devices into standard block devices). Instead, JFFS2 directly uses low-level
driver calls, which are provided by the MTD itself in Linux.

• As a Flash file system, JFFS2 provides:
• Block management for “dirty” blocks (garbage collection)
• The use of Flash blocks to preserve endurance (wear leveling)
• Robustness against power loss (power loss recovery)

JFFS2 Log
In JFFS2, all files operations (file creation, write/update requests, file rename and deletion)
are represented as a new entry in the log. Physically, data representing these entries are
written in Flash sequentially on a current block, until the block is full. Then, a new free block
is chosen, and so on. Entries in the log are called nodes. All nodes have a common header
that specifies the node type, length and a Cyclic Redundancy Check (CRC) value for the
header itself.

Figure 1. JFFS2 node content

Node payloads differ according to their use. Nodes representing directory entries (files and
directories) store the name, inode and parent inode numbers, creation time and CRCs for
the node and name. Inode nodes store a slice of file data, information about compression,
all file-system-related attributes (such as permissions, user and group) and CRCs for the
node and data.

Software Spotlight
Software Profile: Journaling Flash File System, Version 2 (JFFS2)

PDF: 09005aef845f5d56/Source: 09005aef845f5d68 Rev. B, 03/11
© 2011 Micron Technology, Inc. Micron and the Micron logo are trademarks of Micron Technology, Inc. OneNAND™ is a trademark
of Samsung Electronics Co., Ltd. All other trademarks are the property of their respective owners. All information is provided on an
“AS IS” basis, without warranties of any kind.

For example, when creating a new 1KB file, the log’s organization of data and metadata
results in a write in two nodes. One represents the creation of a new file system entry, which
stores the file’s name, creation time and location within the file system tree. The other node
stores the 1KB of data.

All log entries also have a version number. Each update to the file system creates a new
node with a higher version number, which carries the modifications. This means that
updating 100 bytes of the 1KB file in our example would make JFFS2 write to Flash a new
inode node that stores only the updated bytes and the offset information for locating the new
data. Similarly, renaming a file creates a new directory entry node that stores the new name,
while moving a file produces a node that updates its parent inode number. Thus, a file is
made up of the history stored in its nodes, and modifications borne by nodes with higher
version numbers prevail over those of obsolete nodes, as long as their CRCs are correctly
verified.

JFFS Log Organization
The robustness of JFFS2 lies in its log organization, which allows for easy recovery if the
system fails. Each node is valid if its CRCs are correct. If the CRC is not correct because of
a failure while writing, the node is simply discarded and will not contribute to the file history.
With this architecture, JFFS2 is immune to system failures where file system integrity is
concerned.

A JFFS2 partition will never be unable mount, and a file will never fail to be accessed.
However, from user’s file I/O point of view, the file system does not provide any transactional
capability. Any write operation larger than the page size, which is architecture and machine
model dependent, is split up in several nodes in the log. As a result, if power is lost during
the write operation, part of user’s write request has already been served and no mechanism
will invalidate it afterwards. This leaves the file in an intermediate state, and on next power
up, the log will be played back and most likely only the node being written will be corrupted,
while the other nodes will be considered valid.

The following figure shows an example of file I/O and related nodes created in Flash. Notice
how requesting a data write operation whose size is larger than system page size (4KB in
this example, where 6KB of data is requested to be written) generates two inode nodes in
the log.

Software Spotlight
Software Profile: Journaling Flash File System, Version 2 (JFFS2)

PDF: 09005aef845f5d56/Source: 09005aef845f5d68 Rev. B, 03/11
© 2011 Micron Technology, Inc. Micron and the Micron logo are trademarks of Micron Technology, Inc. OneNAND™ is a trademark
of Samsung Electronics Co., Ltd. All other trademarks are the property of their respective owners. All information is provided on an
“AS IS” basis, without warranties of any kind.

Figure 2. File I/O and related nodes created in Flash memory

Resource Consumption
The log paradigm provides a high degree of reliability, even though this takes its toll on
performance and memory consumption. In fact, references to all nodes of all inodes in the
file system are kept in RAM to provide immediate access to all valid fragments needed to
access file system entries. Building this table requires scanning at initialization all blocks in
the partition, discarding obsolete nodes and allocating the RAM structures needed to keep
track of fragments. RAM allocation grows linearly with the number of files in the file system
and the degree of fragmentation of these files. However, once it has been built, keeping the
table of indexes in RAM allows a throughput for file system I/O that is limited only by
underlying Flash bandwidth. The following table shows examples of RAM usage for root
partitions of different sizes.

Software Spotlight
Software Profile: Journaling Flash File System, Version 2 (JFFS2)

PDF: 09005aef845f5d56/Source: 09005aef845f5d68 Rev. B, 03/11
© 2011 Micron Technology, Inc. Micron and the Micron logo are trademarks of Micron Technology, Inc. OneNAND™ is a trademark
of Samsung Electronics Co., Ltd. All other trademarks are the property of their respective owners. All information is provided on an
“AS IS” basis, without warranties of any kind.

Table 1: RAM Usage for Root Partitions of Different Sizes

Partition Size # Inodes RAM After Mount Max RAM at Mount

10MB 1400 110KB 142KB

27MB 2500 198KB 256KB

64MB 5500 384KB 512KB

In addition to memory consumption, the scan process is expensive in terms of time needed,
which also grows linearly. These are the root of a well-known scalability problem of JFFS2,
which originally was designed for small Flash memory densities. In fact, while mounting a
64MB partition with hundreds of files and thousands of directories could take tenths of
seconds. The same operation on a NAND device larger than 1GB could take up to several
minutes. For this reason, using JFFS2 with partitions larger than 128MB requires careful
evaluation.

Micron has worked on JFSS2 resource optimizations. Some of this effort has been aimed at
removing the maximum fragment size limit that is related to the system page size. This was
done to reduce the space overhead due to node metadata, the RAM needed for tables and
the time needed to mount and access the file system. For more information, please contact
your Micron representative.

Erase Block Summary (EBS)
To overcome the slow mount time, the Erase Bock Summary (EBS) was introduced in
version 2.6.15 of the Linux kernel. At the end of each block, a set of nodes summarizes
block content, which avoids the need to scan the entire block to create the table of indexes.
This summary information is created during write operations, speeding up the mount
process – especially in large NAND Flash memory devices. If the summary nodes are
missing (for example, as a result of a power low that occurred before its creation), the mount
process scans the entire block.

EBS improves mount time. However, it still is not the solution to make JFFS2 a real scalable
file system because it does not reduce resource consumption. Additional RAM is needed to
hold summary information at run time, and some Flash memory storage is wasted to save
new EBS nodes.

Mount time and resource consumption depends on partition size, compression, etc.
However, on average, mount time is reduced by a factor of four or five on large partitions,
while required space overhead on Flash is around 5%.

JFFS2 Compression Support
Three algorithms are available in JFFS2 to support compression: zlib, rubin and rtime. File
data is compressed in chunks as large as the hardware page size. This is done to facilitate
quick decompression. The benefits of compression depend on use models. Media files that
are already compressed (such as jpg images, mpg videos, zipped documents, etc.) result in
wasted CPU cycles when they are recompressed. However, when applicable, compression
also improves resource overhead, as the number of fragments is reduced. This reduces the
space required for metadata, both on Flash and in RAM.

Software Spotlight
Software Profile: Journaling Flash File System, Version 2 (JFFS2)

PDF: 09005aef845f5d56/Source: 09005aef845f5d68 Rev. B, 03/11
© 2011 Micron Technology, Inc. Micron and the Micron logo are trademarks of Micron Technology, Inc. OneNAND™ is a trademark
of Samsung Electronics Co., Ltd. All other trademarks are the property of their respective owners. All information is provided on an
“AS IS” basis, without warranties of any kind.

Garbage Collection
The garbage collection process (also known as reclaim) is the trickiest task performed by
JFFS2. Garbage collection creates free space by scanning Flash blocks and determining
which nodes can still be considered valid for file history, and which are obsolete (substituted
by newer nodes) or invalid (corrupted by a power loss while being written). All valid data is
relocated to a new block, until only old invalid data remains, at which point the block can be
erased.

Garbage collection activities may start in one of two ways:

• When needed: For example, when there are insufficient spare clean blocks
remaining and a write request cannot be served, garbage collection is performed
repeatedly until a block can be erased and then used for future writes.

• In the background: For example, when free space goes below a predetermined
threshold, garbage collection attempts to free space while the file system is not
otherwise being used.

In both cases, the garbage collection process will not start if the file system is mounted in
read-only mode or until all nodes read from Flash during the first scan have been checked
through their CRC correctness check. The CRC check is delayed to speed up the mount
process, but is mandatory before garbage collection starts, as it would be useless to move
around corrupted nodes. Garbage collection picks a block and performs steps to prepare the
block to be erased by moving valid nodes to the currently active block and marking it to be
erased. This way, all wasted (invalid) space is left behind. By each call, only one node is
moved at a time and one block is chosen for erasing, if possible.

Essential for garbage collection, JFFS2 constantly updates a series of lists by which it keeps
track of the global statistical information listed in the following table:

Table 2: Global Statistical Information

List Blocks

Clean Blocks are 100 percent full of clean data.

Very dirty Blocks contain a large amount of dirty space.

Dirty Blocks contain some dirty space.

Erasable Blocks are completely dirty, and need erasing.

Erasable pending
wbuf

Blocks require erasing, but only after the current write buffer is flushed.

Erasing Blocks are currently being erased.

Erase checking Blocks are being checked and marked.

Erase pending Blocks must be erased now.

Erase complete Blocks are erased and need a clean marker written to them.

Free Blocks are free and ready to be used.

Bad Blocks are bad.

Software Spotlight
Software Profile: Journaling Flash File System, Version 2 (JFFS2)

PDF: 09005aef845f5d56/Source: 09005aef845f5d68 Rev. B, 03/11
© 2011 Micron Technology, Inc. Micron and the Micron logo are trademarks of Micron Technology, Inc. OneNAND™ is a trademark
of Samsung Electronics Co., Ltd. All other trademarks are the property of their respective owners. All information is provided on an
“AS IS” basis, without warranties of any kind.

List Blocks

Bad used Blocks are bad, but contain valid data.

An algorithm relies on these lists and some thresholds set beforehand to determine when
and how garbage collection should step in to try and free dirty space.

The next step is to choose the block to start from. Blocks from the “bad used” list are taken
only when the number of available (Free) blocks is not greater than a conservative
threshold. This is done because collecting a bad block does not result in more free space.
Aside from the “bad used” list, the garbage collection process chooses blocks randomly.
Blocks are taken from the “erasable” list 40% of the time. Because most of the blocks in this
list will be erased directly, their chance of being picked for garbage collection is reduced
compared to blocks in the “Dirty” and “Very dirty” lists. Blocks in these lists are selected
nearly 60% of the time.

Occasionally, (approximately 1% of the time), blocks are selected from the “clean” list. This
is done by JFFS2 to ensure Static Wear Leveling among all blocks, including clean blocks
that would not typically be selected for garbage collection.

When moving pristine nodes from a block during garbage collection, the garbage collection
process also attempts to optimize the space taken by valid data by merging adjacent
fragments belonging to the same inode. This strategy leads to reduced Flash use due to the
merging of the metadata of the nodes.

Internal node representation is also simplified, thus reducing memory consumption and
improving the efficiency of data location. Even compression benefits from this because the
compression algorithms take nodes as isolated compression units. This means that the less
data they convey, the poorer compression results, whereas larger nodes are more likely to
occupy less Flash space. In this case, the number of free blocks available to allow data
merging is a threshold that is set beforehand.

JFFS2 Efficiency
With its log structure, JFFS2 can make a Flash memory device appear to be out of space,
even when the logical device size has not yet been filled. If the file system changes too
rapidly, the garbage collection thread may not be able to keep up.

Typically, logs or databases cause inefficiency, as many small file operations are requested
continuously, wasting much space for the metadata related to small chunks of data (space
overhead could reach as much as twice the space needed for data only). This worsens
when the spare blocks available for the garbage collection process are limited. This means
that that the partition has not been allocated enough space over and above space needed
for foreseen data. As a result, the garbage collection process could not be performed at all.

Among the thresholds calculated to support garbage collection, one sets when the garbage
collection thread should run in the background. Once the number of free blocks goes below
this threshold, the garbage collection thread operates. Its value is set to:

Software Spotlight
Software Profile: Journaling Flash File System, Version 2 (JFFS2)

PDF: 09005aef845f5d56/Source: 09005aef845f5d68 Rev. B, 03/11
© 2011 Micron Technology, Inc. Micron and the Micron logo are trademarks of Micron Technology, Inc. OneNAND™ is a trademark
of Samsung Electronics Co., Ltd. All other trademarks are the property of their respective owners. All information is provided on an
“AS IS” basis, without warranties of any kind.

Because this threshold determines when garbage collection starts, it may be wise to
consider at least this as the amount of extra space over and above space required for data.
For example, a 64MB Flash memory device with 256KB blocks would require an extra space
of 8 blocks on the total amount of 256. Writing new data that exceeds the 248th block may
result in a “no space left” error being reported.

Of course, the accuracy of this estimate depends on write access granularity (smaller writes
result in higher metadata overhead). Nonetheless, it is legitimate to consider that with such
extra space, once all available blocks have been filled up with non-critical write operations
(too rapid or too small), the garbage collection algorithm can keep up and allow users to
continue and operate on the file system normally.

Conclusion
JFFS2 is a good compromise between performance, space overhead and robustness, as
long as the choice to use JFFS2 fits your Flash memory device and use cases. The
following list provides a discussion of some of the use cases for JFFS2:

• NOR Flash memory devices: JFFS2 was originally designed for NOR Flash
memory devices and is a good choice when using NOR. JFFS2 is typically not used
for boot images, for which read-only eXecute in Place (XiP) file systems are a better
choice. However, JFFS2 is a good option for embedded systems whose data is not
too fragmented (log files, DBs) or updated frequently. Excluding these latter cases, it
is rare to experience mount time or RAM consumption issues, even on resource-
constrained systems.

• Small to medium sized NAND devices: Typically, this includes NAND devices up
to 128/256MB. What is true of JFFS2 for NOR is typically true for NAND. In general,
JFFS2 a good choice, even for larger density devices in which the file system does
not change too frequently, systems with larger and fewer files and those that do not
require critical performance. However, performance must considered when
choosingeJFFS2 for slightly larger partitions. Of course, moving far beyond these
constraints can make mount time, RAM consumption and performance issues
increase dramatically.

• Very large NAND devices: Customers should carefully consider JFFS2 mount time,
RAM usage and performance for NAND devices with densities beyond 256MB. Other
file systems may be a better choice for large NAND devices. For more information
about choosing the right file system on Linux, please refer to the article Choosing a
Linux file system for Flash memory devices.

Linux Support for Micron Flash Memory Devices
NOR an NAND devices are enabled in the Linux kernel MTD drivers. Micron works to
ensure support is available in the mainline kernel for Micron Flash memory devices. Since
there are variations in distributions and kernel version, contact your Micron representative
for additional information regarding your configuration.

	Software Profile: Journaling Flash File System, Version 2 (JFFS2)
	JFFS2 Log
	JFFS Log Organization
	Resource Consumption
	Erase Block Summary (EBS)
	JFFS2 Compression Support
	Garbage Collection
	JFFS2 Efficiency
	Conclusion
	Linux Support for Micron Flash Memory Devices

