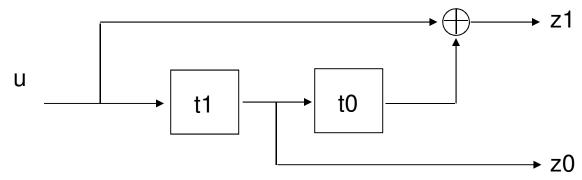
ENSC 861 – Source Coding in Digital Communications Trellis Coded Quantization

Jie Liang
Engineering Science
Simon Fraser University
JieL@sfu.ca

Outline

- General TCQ theory
- TCQ in JPEG 2000



- Computationally efficient form of vector quantization
- Theoretical advantage:
 - Entropy coded TCQ can achieve within 0.2dB of the D(R) function at all rates for any smooth pdf.
- Perceptual advantage is often higher
- Based on Trellis Coded Modulation (TCM)
- TCQ is used in JPEG 2000 Part II

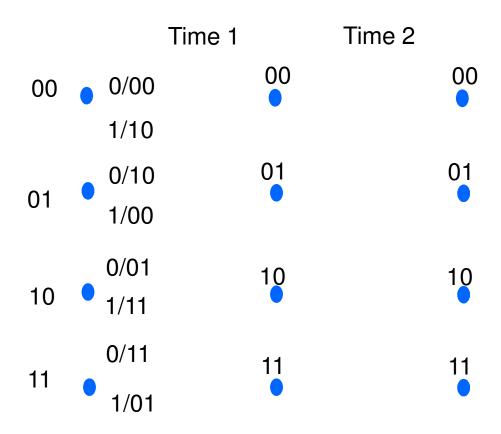
Trellis Coding

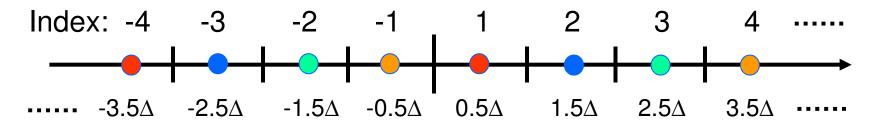
- A trellis is the evolution of a finite state machine over time.
- Example: a 4-state finite state machine with binary I/O

- t0 and t1 are shift registers:
 - \Box The state is denoted as t1 t0 \Rightarrow 4 states in this example.

State Transition Diagram (Finite State Machine)

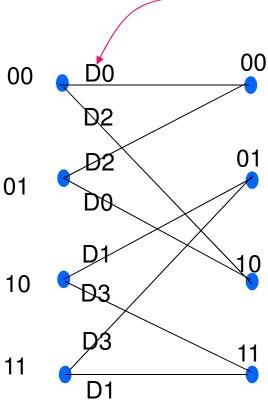
Notation: u / z1 z0 (input / output)




Trellis Coding

Redraw the state transition diagram to incorporate time:

■ To use TCQ:



- To get quantization ratio of R bits / symbol, first create a (R+1) bits quantizer:
 - □ Partition all recon. levels into 4 subsets: D0, D1, D2, D3:
 - From left to right, assign to D0, D1, D2, D3, D0, D1, D2, D3, ...
 - (The left-most codeword is assigned to D0)
 - Each subset has 2^{R-1} codewords, needs R-1 bits.

- Associate the 4 subsets to different branches of the trellis:
 - Note: the two branches leading to each state use different subsets.
- Each stage of the trellis quantizes one input symbol.

Di: The current input symbol will only be quantized by subset Di if we choose this branch → R-1 bits.

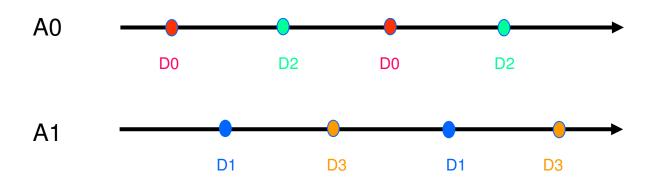
Output of each stage of the trellis: R bits

B
$$\underbrace{xx \dots x}_{R-1 \text{ bits}}$$

B:

0: use the first output branch of the starting state.

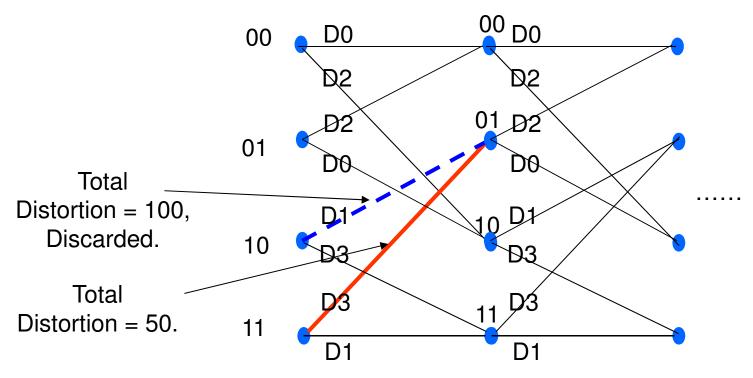
1: use the second branch of the starting state.


R-1 bit index of the best codewords of the allowed subset to encode the current symbol.

- Union codebooks:
 - ☐ Each state can use two subsets (in two branches):

$$A_0 = D_0 \cup D_2.$$

$$A_1 = D_1 \cup D_3.$$



- Goal:
 - Try different quantizer choices for each sample.
 - ☐ Find a path through the trellis that minimizes the total distortion.
- Why TCQ is better?
 - ☐ The optimal quantization choice of each sample can be determined after the encoding of a sequence of samples.
 - □ Each individual choice may not be optimal, but the joint choice can achieve the minimal distortion:
 - TCQ is a vector quantization.
 - ☐ Two subsets for each state \rightarrow 2 x $2^{R-1} = 2^R$ possible choices for each state.
 - ☐ A path through an m-stage trellis can have 2^{mR} possibilities.
 - □ Viterbi algorithm can be used to reduce the search complexity, if symbol-by-symbol distortion is used:

$$d(\mathbf{x}, \hat{\mathbf{x}}) = \sum_{i=1}^{m} d(x_i, \hat{x}_i).$$

The Viterbi Algorithm

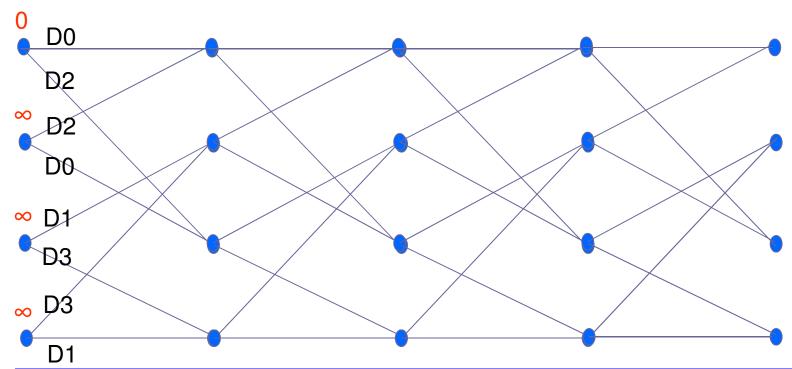
Whenever two paths merge at a state, we can discard the one with higher distortion.

→ Only need to keep track of N paths at any time. (N: # of states)

The final sequence can be obtained by tracing back after final decision.

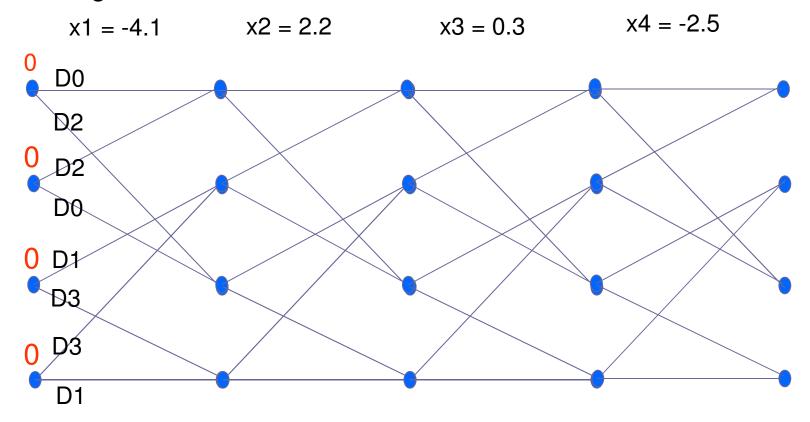
- **Example:** xi = -4.1, 2.2, 0.3, -2.5.
- Codebook: $-7, -5, -3, -1, 1, 3, 5, 7 \rightarrow R = 2 \text{ bits/sample}$ D0: (-7, 1), D1: (-5, 3), D2: (-3, 5), D3: (-1, 7).
- Distortion: $|x-\hat{x}|$
- - □ Codebook: -7, -3, 1, 5
 - -4.1 →
 - \square 2.2 \rightarrow
 - \bigcirc 0.3 \rightarrow
 - \square -2.5 \rightarrow
- Total distortion:

- If D0 & D2 is used directly:
 If D1 & D3 is used directly:
 - □ Codebook: -5, -1, 3, 7
 - □ -4.1 →
 - \square 2.2 \rightarrow
 - \bigcirc 0.3 \rightarrow
 - □ -2.5 →
 - Total distortion: 4.5.


- **Example:** xi = -4.1, 2.2, 0.3, -2.5.
- Codewords: D0: (-7, 1), D1: (-5, 3), D2: (-3, 5), D3: (-1, 7).
- Distortion: $|x \hat{x}|$
- Initialization: start from S₀, cost: $(0, \infty, \infty, \infty)$.

$$x1 = -4.1$$

$$x2 = 2.2$$


$$x3 = 0.3$$

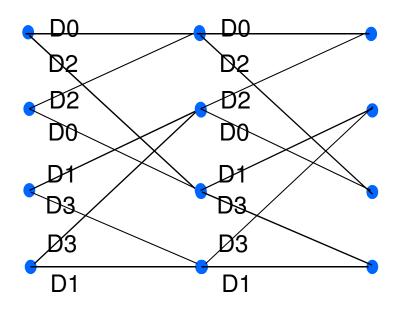
$$x1 = -4.1$$
 $x2 = 2.2$ $x3 = 0.3$ $x4 = -2.5$

- The previous result is not optimal since we start from state 0. (The effect becomes negligible for long sequence).
- Alternatively, we can allow any starting state, but need to send the starting state to the decoder:

More flexibilities than the two scalar quantizers.

Memory Requirement of TCQ

- N: number of states
- M: number of input symbols


- Each stage:
 - □ Perform 4 scalar quantizers with D0, D1, D2, D3.
- Memory requirement is proportional to MN:
 - Need to store all trellis stages for tracing back purpose.
- Memory can be reduced by limiting the maximal delay to be L (L > 5 log₂N is enough):
 - Only keep the past L samples in the buffer.
 - \Box Output the decision for x(n-L).
 - Discard "inconsistent" survivor paths at current stage:
 - Those do not merge with the best path when traced back.

TCQ is VQ

Consider two steps starting from State 0:

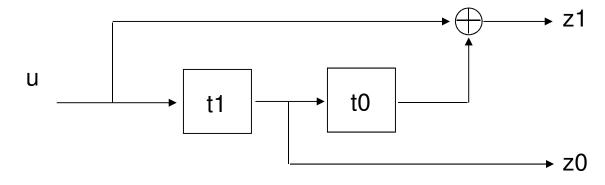
15

Codebook: -7, -5, -3, -1, 1, 3, 5, 7.

D0: (-7, 1), D1: (-5, 3),

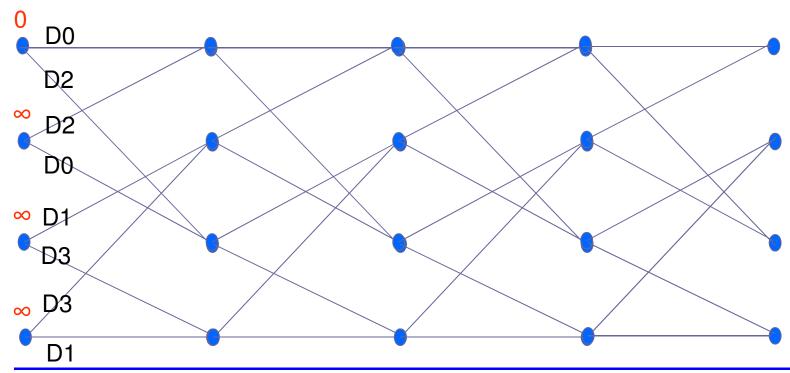
D2: (-3, 5), D3: (-1, 7).

2-D Voronoi region is close to hexagon!


→ TCQ is a low complexity vector Q.

TCQ can be within 0.2dB to the R-D bound.

Error Propagation in TCQ

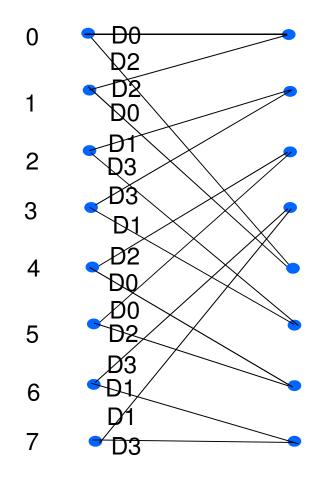

- Error propagation is not as serious as it appears in TCQ.
- If a bit error happens in the last R-1 bits in each stage, only one reconstruction point is affected:
 - ☐ Trellis path is still decoded correctly.
- If a bit error happens in the first bit in each stage:
 - Only (log₂N + 1) samples will be affected.
 - □ Because the state transition machine have no feedback.

Error Propagation in TCQ

- Example:
- Correct decoder input bits: 10 01 11 10
- Wrong decoder input bits: 00 01 11 10
- Only three decoding errors!

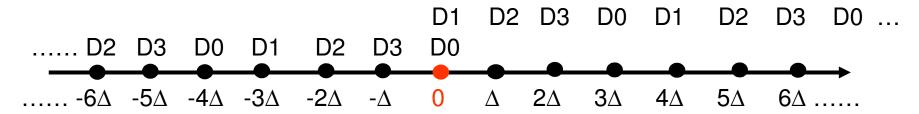
Outline

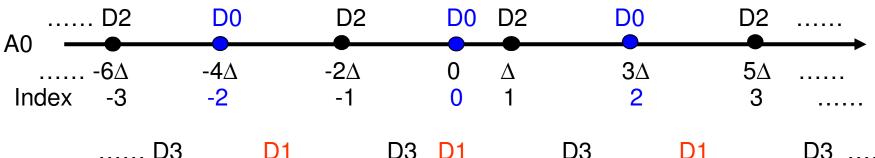
- General TCQ theory
- TCQ in JPEG 2000

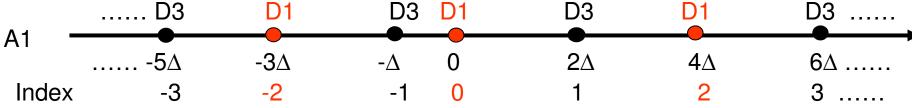

TCQ in JPEG 2000

- Defined in JPEG 2000 Part II (not baseline)
- TCQ is applied after wavelet transform:
 - More small coefficients to encode.
- Entropy coding is applied after TCQ:
 - □ Performance is only limited by the shape of the Voronoi cell of the TCQ (granular error)
- Embedded decoding is possible.
- Can be decoded by scalar quantizer.

TCQ Trellis in JPEG 2000

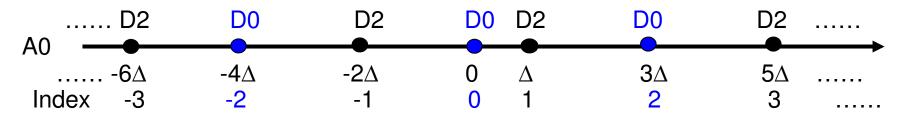

■ 8-state trellis

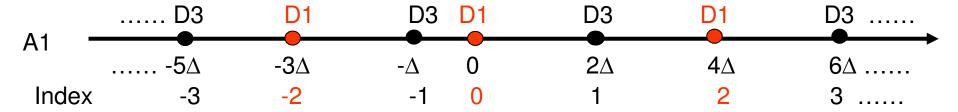



TCQ Codebooks in JPEG 2000

Subsets (from a uniform midtread quantizer):

- ■Note: 0 are included in both D0 and D1.
- Union quantizers: A0: D0 & D2, A1: D1 & D3.





Note: this is not the final indices used in JPEG 2000, see sign flip slide later.

Signaling the Trellis Path

Union quantizers: A0: D0 & D2, A1: D1 & D3.

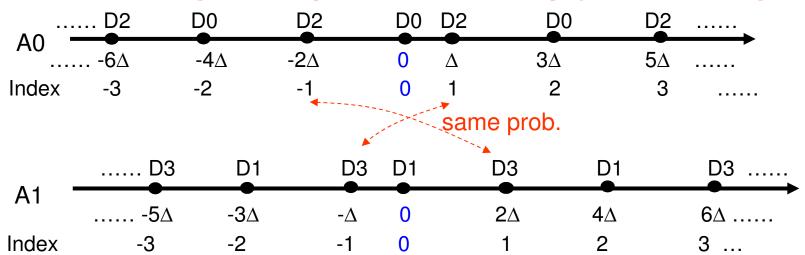


- Observation: Indices of the two subsets within each union quantizer differs only in the LSB (Not true in previous def.)
- The index itself is sufficient to signal the trellis path:
 - No need to send 1 bit at the beginning of each stage to specify the branch:
 - Equivalent to send the 1 bit at the end of each stage.
 - Allow embedded coding.
 - Allow decoding by regular scalar quantizer.

Embedded TCQ

The index assignment in JPEG 2000 allows embedded coding

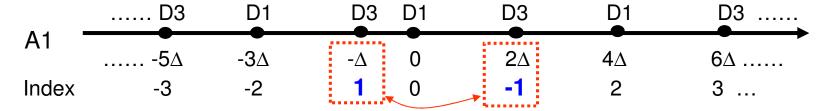
- If the LSB is not available:
 - Cannot differentiate the two subsets within each union quantizer.
 - Cannot reconstruct the trellis path.
 - But there are only 4 possible choices.
- Example: received index is +1x


Embedded TCQ

- In general: If the last p LSB bits are missing
 - 1. Set the missing bits to 0 to get an index qo.
 - 2. Choose the reconstruction level to be

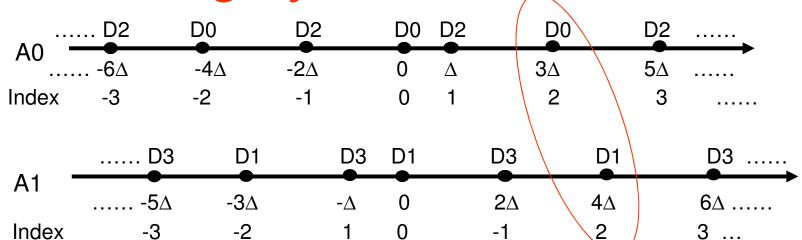
$$\hat{x} = 2q_0 \Delta.$$

Index Sign Flip for Entropy Coding


- Observation: Index k in A0 has same prob as index -k in A1.
 - Switching the indices in A0 or A1 can simplify context modeling in entropy coding, because there is no need to consider trellis state
- But switch all indices prevent embedded decoding:
 - Example: received index is +1x

Index Sign Flip for Entropy Coding

The final indices used in JPEG 2000:



- In JPEG 2000, only 1 and -1 in A1 are switched
 - Trellis state is not considered in entropy coding
 - pdf mismatch is not too much, because prob of 0, 1, and -1 are dominant.
- This has no impact on embedding, since 1 and -1 are only sent in the last bit plane. At this point the decoder can reconstruct the trellis path.

J. Liang SFU ENSC861

Decoding by Scalar Quantizer

- To the decoder, there are two possible codewords for each index generated by the TCQ:
 - One from A0 and one from A1.
 - ☐ The ambiguity can be resolved by TCQ through trellis.
- If decoded by a scalar quantizer:
 - \square Equivalent to a scalar quantization with stepsize 2Δ .

Reference

- Taubman JPEG 2000 book: Chap 3.5.
- M. W. Marcellin, M. A. Lepley, A. Bilgin, T. J. Flohr, T. T. Chinen, J. H. Kasner, ``An Overview of Quantization in JPEG-2000," *Signal Processing: Image Communications, Special Issue on JPEG-2000*, Vol.17/1, pp. 73-84, December 2001. http://www-spacl.ece.arizona.edu/Publications/Papers/R_23.ps
- Ali Bilgin, Philip J. Sementilli, and Michael W. Marcellin, Progressive Image Coding Using Trellis Coded Quantization, IEEE Trans Image Processing, Vol. 8, No. 11, pp. 1638-1643, Nov. 1999.

