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STATE OF THE ART

Problem: Find ∆v-efficient Earth-to-Moon trajectories.

• WSB: Belbruno [1987], [1993] exploited the dynamics of the Sun-Earth-Moon
system. The Moon is approached from the far side (L2). Koon et al [2001]
explained the capture mechanism by a dynamical system approach.

• L1 : Transfers through L1 defined in the Earth-Moon R3BP.

- Targeting: Bolt and Meiss [1995], Schroer and Ott [1997], Macau [1998],
Ross [2003] using a sequence of small perturbations;

- Numerical Search: Pernicka et al [1995], Yagasaki [2004], Mengali and
Quarta [2005] patching trajectories at a mid-point or solving TPBVPs

⇒ The general idea is to exploit intrinsic features (chaotic dynamics, ballistic
capture) of in n-body models in order to lower the cost of the transfers
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MINIMUM THEORETICAL ∆v

Sweetser [1991], in the frame of the R3BP, quantified the minimum theoretical
∆v necessary to link a hE = 167 km circular Earth orbit with a hM = 100 km
circular Moon orbit. The total cost is the sum of two maneuvers:

• ∆vth,e = 3099 m/s at Earth departure

• ∆vth,m = 627 m/s at Moon arrival

• ∆vth = ∆vth,e + ∆vth,m = 3726 m/s

The two maneuvers must be carried out parallel to the velocity in the synodic
frame in order to maximize the variation of the Jacobi constant. Unfortunately,
the associated trajectory does not exist since it requires, theoretically, an infinite
time to approach L1 and to depart from it.
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DYNAMICS

R3BP equations of motion:



















Ẍ − 2Ẏ = ΩX

Ÿ + 2Ẋ = ΩY

Z̈ = ΩZ

(1)

with Ω(X,Y,Z) =
1

2
(X2 + Y 2) +

1 − µ

R1

+
µ

R2

+
1

2
µ(1 − µ),

R2

1
= (X + µ)2 + Y 2 + Z2 and R2

2
= (X − 1 + µ)2 + Y 2 + Z2

Jacobi constant C = 2Ω(X,Y,Z) − (Ẋ2 + Ẏ 2 + Ż2) (2)

Conventions: sum of the Earth and Moon masses, Earth-Moon distance and
Earth-Moon angular velocity set to 1 (the orbital period is 2π).
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LINEARIZED DYNAMICS AROUND L1

In a L1 centered frame and scaled lengths, system 1 can be linearized as:



















ẍ − 2ẏ − (1 + 2c2)x = 0

ÿ + 2ẋ + (c2 − 1)y = 0

z̈ + c2z = 0

(3)

and its solution is:























x(t) = A1e
λt + A2e

−λt + A3 cosωt + A4 sinωt

y(t) = −k1A1e
λt + k1A2e

−λt − k2A3 sinωt + k2A4 cosωt

z(t) = A5 cos νt + A6 sin νt

with Ai (i = 1, ..., 6) arbitrary amplitudes; constants depend just on µ.
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LINEAR TRANSIT ORBITS

Linear transit orbits can be obtained by selecting non-trivial amplitudes A1

and A2 of the hyperbolic part. Conley [1968] showed that transit hyperbolic orbit
are those orbits with A1A2 < 0. Such orbits are the only ones able to link the
Earth and Moon neighborhoods and shadow L1 stable and unstable manifolds as
A1 or A2 → 0. Setting x(0) = 0 results in A2 = −A1 and so just A1 is used to
parameterize the transit orbits.



















x(t) = A1e
λt + A2e

−λt

y(t) = −k1A1e
λt + k1A2e

−λt

z(t) = 0
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NONLINEAR TRANSIT ORBITS

In analogy with the generation of the manifolds, linear transit orbits are used
to supply an initial condition to flow under R3BP dynamics. The whole family of
transit orbits is parameterized with the amplitude A1 being such initial condition
X0(A1) = dx0(A1) + {l1, 0, 0, 0, 0, 0}

T with d and l1 constants.
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Figure 1: Synodic frame (A1 = 0.01)
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Figure 2: Earth-centered frame
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MOON RESONANCES

Transit orbits are close to 5:2 resonant orbits with the Moon. Resonances
occur roughly every 55 days when the line of apsides is close to the Earth-Moon
line (X-axis in the synodic frame).

• osculating orbital elements swiftly change at each resonance (next slide)

• the s/c is ”pumped-up” by the Moon’s gravitational attraction

! in a short time (less than 400 days) transit orbits do not approach LEOs

! no direct injection (single burn) exists between LEOs and transit orbits

! no minimum theoretical ∆v Earth-Moon transfers exist

! additional maneuvers are required to perform this link
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Figure 3: Semi-major axis
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Figure 4: Eccentricity
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Figure 5: Pericenter anomaly
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Figure 6: Period
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DESIGN STRATEGY

• fix an initial amplitude A1 associated to the linear transit orbit

• generate the nonlinear transit orbit flowing (fw / bk) X0(A1) under R3BP
dynamics

• choose a hE and hM Earth and Moon circular orbits

• use a Lambert’s three-body arc to perform the link between the transit orbit
and the circular orbits

The Lambert’s three-body arc is computed

solving a TPBVP within R3BP dynamics.

It links two given points in a given time.
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L1-Moon Leg

The cost and the time of flight of the L1-Moon leg are:

∆vm(t1,m, t2,m, θm) = ∆v1,m + ∆v2,m

∆tm = t1,m + t2,m

• ∆v1,m: performs the passage from the transit orbits to the Lambert’s arc

• ∆v2,m: needed to circularize the trajectory around the Moon

• t1,m: time on the transit orbit

• t2,m: time of the Lambert’s arc

• θm: anomaly along the hM circular orbit
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L1-Moon Leg
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Figure 7: Synodic frame
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Figure 8: Moon-centered frame

• Sometimes a very-small ∆v maneuver (first mark) is used to lower to total
cost of the Lambert’s arc
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L1-Earth Leg

The cost and the time of flight of the L1-Earth leg are:

∆ve(t
∗

i , ∆v∗i , t1,e, t2,e, θe) =
∑n

i=1
∆v∗i + ∆v1,e + ∆v2,e

∆te =
∑n

i=1
t∗i + t1,e + t2,e

• ∆v1,e, ∆v2,e, t1,e, t2,e, θe: same meaning as in the L1-Moon case

• ∆v∗i and t∗i : cost and time of the i-th intermediate maneuver

• n: maximum number of allowed maneuvers (usually n = 4)
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L1-Earth Leg
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Figure 9: Synodic frame
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Figure 10: Earth-centered frame

• In this case finding an acceptable solution is much more difficult than in the
L1-Moon case. It is due to multiple revolutions, long times, higher number of
variables.

F. Topputo, M. Vasile and F. Bernelli-Zazzera – New Trends in Astrodynamics and Applications II, 3-5 June 2005 14



Patched Trajectory

Once the two legs have been designed independently, the whole Earth-to-Moon
trajectory can be obtained by patching them together. Just legs parameterized
with the same A1 amplitude can be patched together because only in this case
the continuity is assured at the patching point X0(A1). The total cost and the
time required to the Earth-Moon transfers are:

∆v = ∆vm + ∆ve

∆t = ∆tm + ∆te

(4)

• The whole problem is split into two subproblems having a reduced number of
variables. Hence, low energy solutions can be found more easily (especially for
the L1-Moon case)

• Altitudes of the departure and arrival orbits: hE = 167 km and hM = 100 km

• Look for short-medium transfers: ∆t ≤ 200 days
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Results: L1-Moon Leg

The minimum theoretical cost for the L1-Moon leg is ∆vth,m = 627 m/s

• solution 1 (A1 = 0.01): ∆vm = 629.9 m/s, ∆tm = 40.7 days

• solution 2 (A1 = 0.1 ): ∆vm = 634.9 m/s, ∆tm = 49.5 days

In the case of L1-Moon leg the problem,

as stated above, reveals very efficient

because solutions very close to the

minimum have been found. Best solutions

are associated to A1 = 0.01.
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Results: L1-Earth Leg

The minimum theoretical cost for the L1-Earth leg is ∆vth,e = 3100 m/s

• solution 1 (A1 = 0.01): ∆ve = 3301.4 m/s, ∆te = 145.9 days

• solution 2 (A1 = 0.1 ): ∆ve = 3265.1 m/s, ∆te = 144.2 days

In the case of L1-Earth leg solutions

close to the minimum have not been found.

It is much more difficult wrt the previuos

case because of the higher number of

variables, long times of flight and

difficulties in solving the 2PBVP between

the transit and the circular Earth orbits. 130 140 150 160 170 180 190 200 210 220
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Solution 2 (A1 = 0.01)
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Figure 11: Synodic frame

−4 −3 −2 −1 0 1 2 3 4

x 10
5

−4

−3

−2

−1

0

1

2

3

4
x 10

5

x (km)

y 
(k

m
)

Figure 12: Earth-centered frame

• ∆v = 3900.0 m/s and ∆t = 193.7 days

• several close-Earth passages, 3 Moon swing-by’s, L1 passage and Moon orbit
insertion
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Solution 1 (A1 = 0.1)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

X (adim.)

Y
 (

ad
im

.)

Figure 13: Synodic frame
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Figure 14: Earth-centered frame

• ∆v = 3931.3 m/s and ∆t = 186.6 days

• spacecraft bounded within the Moon’s orbit, ∆v∗i + Moon resonances raise
the perigee and apogee until the transit occur
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Final Remarks

• dynamical features of L1 nonlinear transit orbit have been analyzed

• very cheap solutions found for the L1-Moon leg (close to the theoretical
minimum)

• L1-Earth leg does not seem to be convenient as the L1-Moon (solutions far
from the minimum)

• approx 100 m/s could be saved wrt Hohmann transfer

Future Works

• targeting the L1 transit orbits with low thrust propulsion

• evaluation of the fourth-body perturbations (Sun) on the designed trajectories
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