
Chapter 2

Forces

We consider here forces acting on a single particle, which may be an idealisation of an extended
body. Force is what appears on the right hand side of Newton’s second law, but one does use
Newton’s laws to determine whether a force acts: the force between bodies in any given theory is
defined as part of the theory.1 For example, in Newton’s theory of gravity, the force between two
particles is defined by the inverse square law (see section 2.4) and in electromagnetism the force on
a charged particle is the Lorentz force (section 2.3).

We can distinguish two different sorts of forces: contact forces and non-contact forces. A
non-contact force is one that acts at a distance. Examples are gravitational and electromagnetic
forces. A non-contact force pervades the whole of space: it exists at every point, whether or not
there is a particle at that point to feel it. Often, we will refer to such forces as force fields.

A contact force is one that the particle experiences by virtue of being in contact with another
body. Examples are friction and normal reaction. In fact, for two bodies, these are the only
examples: friction is the component of the force between two bodies that lies in the plane of
contact; normal reaction is the component of force in the normal direction. Contact forces also
occur when a particle moves through a fluid. Contact forces are caused by interactions between the
atoms of the two bodies, so are really just convenient idealisations of non-contact forces.2

2.1 Potentials

A force is a vector. In three dimensions, it has three components and is therefore determined by
three functions. In some very special, but very important cases, these three functions are related
and can be expressed in terms of a single function called a potential. Potentials are immensely
useful, because they are so much easier both to understand and to calculate.

2.1.1 Potentials in one dimension

We consider a force field F (x) acting on a particle. The work done (WD) by the force in moving
the particle from position x by an infinitesimal distance dx is, by definition, given by

WD = F (x)dx (‘force times distance moved by force’)

The work done by the force in moving the particle directly3 from x0 to x is therefore
∫ x

x0

F (x′)dx′.

The potential, φ(x), associated with F (x) is defined by

φ(x)− φ(x0) = −
∫ x

x0

F (x′)dx′. (2.1)

1Recall that in section 1.2.2, we took the view that Newton’s first law determines whether the frame is inertial,
which of course assumes that we know whether a force is acting.

2‘Contact’ has no meaning at the atomic level: atoms don’t touch each other. They interact via non-contact
forces such van der Waals forces. These forces are very short range compared with, say, gravitational forces which is
the essential difference.

3No going backwards and then forwards again.
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2 CHAPTER 2. FORCES

Thus the potential is a measure of the amount of work done on the particle and hence the ability
of the particle itself to do work (i.e. to give back the work done on it4.) Clearly, the potential is
only defined up to an additive constant.

2.1.2 Example: uniform gravitational potential

It is often helpful to think of the familiar example of a uniform gravitational field. For a particle
of mass m, the force field has magnitude mg and it acts downwards. The work done by the
gravitational field when a particle falls from height z0 to height z is

∫ z

z0

(−mg)dz = mg(z0 − z)

(the minus sign in the integral arises because z is measured upwards but the force acts downwards).
Thus

φ(z)− φ(z0) = −mg(z0 − z)

and φ(z) = mgz + constant.
End of example

2.1.3 Total energy

If we differentiate the equality (2.1) with respect to x, we obtain

dφ

dx
= −F (x) (2.2)

i.e.

‘force equals minus gradient of potential’.

For a particle of mass m moving in a force field F (x) with associated potential φ(x), we define
the total energy E of a particle of mass m moving in the potential φ by

E = 1
2mẋ2 + φ(x) (2.3)

the first term being the kinetic energy and the second being the potential energy.5

The total energy is conserved in the motion, i.e. independent of time:

dE

dt
= mẋẍ +

dφ

dt

= ẋF (x) +
dφ

dt
(using the equation of motion, namely Newton’s second law)

= ẋF (x) + ẋ
dφ

dx
(by the chain rule)

= 0. (by equation (2.2))

Thus the work done by the force contributes to the total energy of the particle, as one might expect.
The minus sign in the definition (2.1) means that the potential can be thought of as a form of energy
stored in the particle by virtue of its position in the force field which is reduced as the force does
work on the particle.

We have shown above that total energy, defined by equation (2.3), is a conserved quantity
when the force on the particle is derived from a time-independent potential according to (2.2).
We will find other conserved quantities (such as momentum and angular momentum). To see if a
quantity is conserved, all one has to do is differentiate it with respect to time and use the equations
of motion (Newton’s second law). Conserved quantities do not necessarily exist in more general
situations. For example, there is no conserved quantity that could be interpreted as energy in
General Relativity.6

A potential can provide an understanding of the motion of a particle without having to solve
the equations of motion. This is illustrated in the following example.

4Rather loosely speaking: particles are structureless objects and can’t really do anything
5In some situations, the potential is defined not in terms of the force, but in terms of the force on a particle of

unit unit mass in a gravitational field, or the force on a particle of unit charge in an electric field.
6Conserved quantities are related (by Noether’s theorem) to underlying symmetries of the theory. For Newtonian

dynamics, the underlying symmetry is the Galilean group (see section 1.1.8). Energy conservation relates to the time
translation, momentum conservation relates to spatial translations, and angular momentum conservation relates to
rotations.
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2.1.4 Example: particle in cubic potential

A particle of unit mass moves in a one-dimensional potential φ(x), where

φ(x) = x3 − 3x .

The force due to this potential is −dφ

dx
(‘minus the gradient of the potential’), so the equation of

motion of the particle is

d2x

dt2
≡ ẍ = −dφ

dx
= −3x2 + 3 . (2.4)

Multiplying by
dx

dt
and integrating with respect to time gives the first integral (the energy integral)

1
2 ẋ2 = −φ(x) + E

where E is a constant of integration (the total energy). This first order differential equation can
also be integrated in principle to obtain

∫
dx√

2E − 2(x3 − 3x)
= t.

This is an elliptic integral — it cannot be expressed in terms of elementary functions, though its
properties have been well-studied.7

A more illuminating approach comes from considering the equation of motion (2.4) to be that
of a particle of unit mass rolling8 under the action of gravity in a landscape the height of which
above sea-level (say) is φ(x), as shown in the sketch. (Actually the height is φ(x)/g so that the
gravitational potential is g× φ(x)/g; but let’s just use units in which g = 1 so as not to complicate
to picture.) Of course, what the particle does is to move along the x-axis, but because the equation
of motion is exactly the same, we can translate the problem to that of the rolling particle.

This approach works even for much more complicated potentials, where the integration ap-
proach would be unhelpful, and also for potentials that are functions of two variables.

The kinetic energy, and hence speed, of the particle is represented by the difference between
the ‘height’ of the potential function and the fixed ‘height’ given by the total energy of the particle.
At the points where these two heights coincide, the particle has zero speed but non-zero acceleration
unless the point is a stationary point of the potential. For a smooth potential function, the particle
will reverse when reaching such a point or, if it is a stationary point, will take an infinite amount
of time to get there.9

7The result of doing the integral and then expressing x as a function of t gives an elliptic function. Elliptic functions
are very beautiful mathematical objects, being doubly periodic in the complex plane: they satisfy a relation of the
form F (z + ma + nb) = F (z), where z is any complex number (actually, almost any, since elliptic functions generally
have singularities), a and b are fixed complex numbers, and m and n are any integers. The functions can be thought
of as existing on lattices in the complex plane, or on toruses. The closest familiar analogy are the trigonometric
functions, which which are only singly periodic but can also be defined as the inverse of an integral similar to ours
(though quadratic rather than cubic or quartic in the square root in the denominator).

8Actually, sliding since particles have no size and therefore cannot really be said to roll; but it is normal to call
it rolling.

9You can easily check this assertion. For a smooth potential, by which I mean a potential with a Taylor series
about each point, the motion of the particle very close to the stationary point is determined approximately by the
first non-zero term of the Taylor series, i.e. by the equation ẋ2 = xn, where n is an integer greater than 1. Integrating
this shows that the time taken to reach x = 0 is infinite.
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From the diagram, we can see the following possibilities (there are many others), depending
on the initial conditions. For convenience, the initial conditions are given in terms of x0 and E,
rather than x0 and ẋ0.

(i) x0 < a, ẋ0 > 0, E = 1.
In this case, the particle slows down until its velocity is reversed when x = a (see diagram); it then
goes off to x = −∞.
(ii) x0 = a, E = 1.
The particle, initially stationary, sets off towards −∞, gathering speed.
(iii) a < x0 < b, E = 1.
This is not possible: the particle does not have sufficient energy (classically) to exist in this part of
the x-axis.
(iv) b ≤ x0 ≤ c, E = 1.
The particle oscillates between b and c.
(v) x0 > c, E = 1.
Again, not possible.
(vi) E = 3.
The particle ends up at −∞ either directly if ẋ0 ≤ 0, or after bouncing off the potential if ẋ0 > 0.
(vii) E = 2, x0 = −1. Note that the turning points of φ(x) are at ±1. In this case the particle has
no kinetic energy and just stays put. It is in unstable equilibrium, as is obvious from the diagram.
This can be checked analytically. Let x = −1+ε, where ε ¿ 1. Then, substituting into the equation
of motion (2.4), we have

d2

dt2
(−1 + ε) = −3(−1 + ε)2 + 3 ≈ +6ε

so ε ≈ ε0 cosh
√

6(t−t0), which grows grows exponentially. Small perturbations from the equilibrium
will therefore in general become large, which means the equilibrium is unstable.

End of example

2.1.5 Potentials in three dimensions

As mentioned before, we cannot in general expect to be able to express all three components of a
force F(r) in terms of a single potential. An obvious exception is a three-dimensional force that is
essentially one-dimensional, such as the uniform gravitational field discussed in a previous example.
There are in fact other exceptions, including many of the forces that arise in theoretical physics.

Following the treatment of the one-dimensional case we write the work done by the force in
moving a particle from r to r + dr as

WD = F.dr.
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The scalar product arises naturally here because we are only interested in the component of the
force in the direction of motion. The work done in moving the particle from r0 → r is

∫ r

r0

F(r′).dr′ =
∫ t

t0

F(r(t′)).
dr
dt′

dt′ (2.5)

where, in the second integral, t is a parameter (which could be time) along the path of integration.
This is a line integral, and in general its value depends on the path joining r0 to r. While the
integral makes perfect sense as a measure of work done, it does not define a potential function of
r, because of the path dependence.

However, for some forces, the value of the integral does not in fact depend on the path. Such
forces are said to be conservative. For conservative forces, we can define a potential φ(r) by10

φ(r)− φ(r0) = −
∫ r

r0

F(r′).dr′.

If the path is parameterised by t, we can differentiate this with respect to t, using the second from
of the integral in (2.5), to obtain

dφ

dt
= −F(r).

dr
dt

(2.6)

By the chain rule,

dφ

dt
=

∂φ

∂xi

dxi

dt
(summation convention)

= ∇φ.
dr
dt

Comparing this with (2.6) and remembering that
dr
dt

, which is the tangent vector to the path, is

arbitrary because the path is arbitrary (the value of the integral is the same for all paths), we have

∇φ = −F(r) (‘force equals minus gradient of potential’)

As in the one-dimensional case, we define the total energy E of a particle of mass m moving
in the potential φ by

E = 1
2mṙ.ṙ + φ (2.7)

and again this is conserved:

dE

dt
= mṙ.r̈ +

dφ

dt

= ṙ.F +
dφ

dt
(Newton’s second law)

= ṙ.F + ∇φ.ṙ (chain rule)

= 0 (using F = −∇φ)

When the potential occurs in the definition of total energy, as in equation (2.7), it is called
the potential energy of the particle.

2.1.6 Central forces

A force field F(r) is said to be central if it depends only on the distance between the point at
which the force is acting (call it r) and a fixed point. If we take the fixed point to be the origin
of coordinate, we can write a central force in the form F(r), where r is the usual spherical polar
coordinate.

10The definition of a conservative force is one for which the work done by the force is independent of the path for
all paths between any two fixed points. We should specify that the fixed points and the paths must lie in some given
volume V , which might be the whole of R3. A consequence (see below) is that there exists a function φ(x) such that
F = −∇φ in V , and it is easily seen that, if such a function exists, F is conservative. As will be shown in the Vector
Calculus course a necessary and sufficient condition for F to be conservative is ∇ × F = 0 in V (i.e. F is curl-free,
or irrotational).
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A stronger definition of a central force, which is the one we will adopt, is that it acts towards
or away from the fixed point. In this case, we can write the force in the form f(r)r̂, where r̂ is the
unit vector in the radial direction.

For such a force, we can have hopes that it is conservative, since it depends on one function
only; and our hopes are fulfilled. Recall11 that

∇r = r̂.

Thus if we define φ(r) (up to an additive constant of integration) by f(r) = −dφ

dr
, we have

F(r) = f(r)r̂ = −dφ

dr
∇r = −∇φ

using the chain rule for the last equality.
Therefore, any central force can be written in terms of a potential, and the total energy

(potential plus kinetic) is conserved.

2.2 Friction

As mentioned earlier, friction is a contact force. It is a convenient way of describing the complicated
interactions between the atoms of different bodies but is not itself a fundamental force12

There are two sorts of friction: dry friction and wet friction or drag. Dry friction occurs
when two bodies are in contact; a particle resting or sliding on an inclined plane, for example. The
governing equation is

F = µR,

where R is the normal reaction and µ is the coefficient of friction. This applies both in static friction
(a body at rest) and sliding friction, though the coefficient of friction between two given bodies will
be different in the two cases. This sort of friction is not particularly relevant to this course.

2.2.1 Fluid drag

Drag occurs when a body is moving through a fluid. Drag is velocity dependent, being normally
either linear or quadratic in speed and parallel to velocity.

Linear drag is caused by the stickiness of the fluid and takes the form

F = −kv

where k is independent of velocity. Stokes’s law for a spherical body gives k = 6πηR, where η is
the viscosity and R is the radius of the body. Drag is approximately linear when viscous forces
predominate, for example a rock in lava or a bacterium in water.

Quadratic drag takes the form
F = −k|v|v (2.8)

where k is now depends on the density of the fluid and the cross-sectional area of the body. This
occurs when the resistance to motion is due to the body having to push the fluid aside, for example
projectiles in air13 and submarines.

Linear friction dominates when the speed of the body is small in the following sense:

ρ|v|R2

η
≈ 1.

The dimensionless quantity on the left hand side is called the Reynolds number.14

11This is most easily verified using the expression for ∇ in polar coordinates:

∇f =
∂f

∂r
br +

1

r

∂f

∂θ
bθ +

1

r sin θ

∂f

∂φ
bφ.

Otherwise, one can conveniently consider ∇r2 in Cartesians.
12The fundamental forces are gravitation, electromagnetic forces, and weak and strong nuclear forces.
13Including stones being dropped from leaning towers — see section 4.
14The Reynolds number measures the relative importance of inertial forces and viscous forces in fluid flow: if it is

less than about 2000, the flow is laminar; if it is greater than about 4000 the flow is turbulent.
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2.2.2 Example: vertical motion under gravity with quadratic friction

A particle of mass m moves vertically under the influence of gravity (assumed uniform) and a
quadratic resistance force of magnitude mkv2, where v is the velocity15 of the particle. In what

follows, we take z to measure distance vertically upwards. By definition, v =
dz

dt
, so v > 0 if the

particle is moving upwards and v < 0 if the particle is moving downwards, and similarly
d2z

dt2
> 0

if v is (strictly) increasing.

(i) Upwards motion
The equation of motion is ‘vector’ equation — we have to worry about direction just as if we

were working in three dimensions. Gravity acts downwards and, when the particle moves upwards,
the resistive force also acts downwards. The equation of motion is therefore

m
dv

dt
= −mg −mkv2, i.e.

dv

dt
= −g − kv2.

Integrating this will give us v as a function of t. Alternatively, we could write the equation of
motion, using the chain rule, as

v
dv

dz
= −g − kv2 i.e. 1

2

d(v2)
dz

= −g − k(v2) (2.9)

which will give us v2 as a function of height z.
Suppose the particle is projected upwards from z = 0 with speed V and we want to find the

maximum height H. We can obtain the form of the expression for H by considering dimensions.
The dimension of k is L−1, as can be seen from the equation of motion (2.9). The other relevant
quantities are g and V . Since that makes three in total, and they all involve only two dimensions,
L and T , there is one dimensionless parameter, call it η. The choice of η is not, of course, unique;
one possibility is η = kV 2/g (and any function of this quantity would do). We therefore expect
that H can be written in the form

H = k−1f(η),

where the function f(η) cannot be determined by dimensional analysis.
Integrating equation (2.9), and noting that the particle reaches its maximum height when

v = 0, gives ∫ 0

V

d(v2)
g + kv2

=
∫ H

0

−2dz

so

2H = −1
k

log
(

g

kV 2 + g

)
=

1
k

log (1 + η) . (2.10)

Now suppose that effect of friction is weak compared with the effect of gravity. Since the
effect of friction is greatest at the point of projection, weak friction corresponds to kV 2 ¿ g, i.e.
η ¿ 1. Expanding the log in the expression for H (2.10) gives

H =
1
2k

(η − 1
2η2 + · · · ) = Ho(1− 1

2η + · · · ),

where Ho is the height that the particle would have attained in the absence of friction. Note that
we have to expand to second order in the small parameter to see the affect of friction.

(ii) Downwards motion – e.g. a raindrop
This time the equation of motion is of the particle

dv

dt
= −g + kv2,

because now the resistive force acts upwards.
Suppose the particle is dropped from (i.e. released from rest at) a great height. As we know

from experience, there is a terminal speed which cannot be exceeded; in fact, as we shall see, it
cannot be attained.

15Note: velocity not speed — it can be either positive or negative
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We can find the speed v at any time t by integrating directly16:

∫ t

0

dt = −
∫ v

0

dv

g − kv2
.

Setting
√

k v =
√

g tanh θ gives

t = − 1√
gk

tanh−1(
√

k/g v) =
1√
gk

tanh−1(
√

k/g |v|)

(remember that v is negative for a falling particle).
It is a good idea to pause occasionally and check that all is dimensionally in order. Since

[k] = L−1 and [g] = LT−2, we find that [
√

gk] = T−1 and [
√

k/g] = L−1T , which means that the
above equation is dimensionally correct.

Thus
v = −

√
g/k tanh(

√
gkt).

Note that as t →∞, v →
√

g/k, though this speed is never attained. The quantity
√

g/k is
called the terminal velocity (more properly, the terminal speed).

The quantity 1/
√

gk is the only combination of parameters that has the dimension of time,
so it must provide a timescale analogous to the half-life of exponential decay. My calculator give
tanh 1 ≈ 0.76, so 1/

√
gk is the time taken for the particle to reach about 3/4 of the terminal velocity,

starting from rest.
The terminal velocity for a sky diver in the free fall position (limbs outstretched) is about 55

metres per second — call it 50 metres per second. Taking g = 10 metres per second per second,
we see that k−1 = 250 metres and the timescale is 5 seconds. Very roughly, the terminal velocity
is proportion to the square root of its area (see the remark following equation (2.8) regarding the
dependence of k on area). The terminal velocity for a mouse17 is much smaller than for a human,
so it is more likely to have a happy landing.18

End of example

2.2.3 Example: projectile with linear drag, using vectors

As mentioned above, typical projectiles in air are subject to quadratic drag, so the one we are
thinking about here must be in water or maybe even treacle.

A particle of mass m is projected from the origin at velocity u. The gravitational acceleration
is denoted by g and the drag force is −mkv, where k is a constant (the m is included here for
convenience).

The equation of motion (Newton’s second law) is

m
dv
dt

= mg −mkv

i.e.
dv
dt

+ kv = g.

16Note the lazy convention of not using a dummy variable in the integral; the only excuse for this is that there is
no scope for confusion here.

17J.B.S. Haldane in his essay On Being the Right Size summarises the situation nicely but not delicately: ‘You
can drop a mouse down a thousand-yard mine shaft; and, on arriving at the bottom, it gets a slight shock and walks
away, provided that the ground is fairly soft. A rat is killed, a man is broken, a horse splashes.’

18Curiously, cats survive big drops better than small drops according to a 1987 study from the Journal of the
American Veterinary Medical Association wherein two vets examined 132 cases of cats that had fallen out of high-
rise windows and were brought to the Animal Medical Center, a New York veterinary hospital, for treatment.

The vets postulated that cats sense acceleration, rather than speed. When a cat starts falling it begins accelerating
at something close to g and it accordingly assumes its ‘panic’ posture: head tucked in; paws under body, arched
back. This protects its vital organs, but unfortunately makes it more aerodynamic i.e. smaller k, corresponding to
a bigger terminal velocity at which it is likely to be killed if it strikes a hard surface.

However, the acceleration reduces considerably as terminal velocity is approached, and the cat adopts a different
strategy. This tends to happen after the cat has fallen about 8 storeys. It stretches out its legs and neck, like a
flying fox, increasing its surface area, which increases k, decreases the terminal velocity, and so slows the cat down.
At this lower terminal velocity it can survive the fall — from any height greater than 8 storeys, though apparently
32 stories is the highest on record. No cats were harmed in the making of this footnote.
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We can solve this equation using an integrating factor, as if it were an ordinary (non-vector)
differential equation. We first rewrite it as

d

dt

(
ektv

)
= ektg

then integrate and multiply by e−kt:

v =
1
k
g + C e−kt

where C is a constant (vector) of integration which can be identified using the initial condition
v = u at t = 0. Thus

v =
1
k
g + (u− 1

k
g)e−kt.

This equation can be integrated directly to give r:

r =
1
k
gt− 1

k
(u− 1

k
g)e−kt + d

where d is a (vector) constant of integration which can be identified using the initial condition r = 0
at t = 0. Thus

r =
t

k
g +

1
k

(u− 1
k
g)(1− e−kt). (2.11)

This is the complete solution. Choosing axes such that

r =




x
y
z


 g =




0
0
−g


 and u =




u cos α
0

u sinα


 ,

the solution is

x =
1
k

u cosα
(
1− e−kt

)
, y = 0, z = −gt

k
+

1
k

(
u sin α +

g

k

) (
1− e−kt

)
.

This looks a bit more complicated than the k = 0 case, but it is has some expected features.
For very large t, in the sense kt À 1, the exponential terms can be ignored and the particle drops
vertically at its terminal speed of g/k. The horizontal component of velocity has been completely
eroded by the drag force.

For small k (i.e. kt ¿ 1) we should retrieve the projectile-without-drag solution. At first sight,
this limit looks bad because of the k in the denominator. However, if we expand the exponential in
the vector form of the solution (2.11) as far as the quadratic terms we see that the limit is in fact
defined (as it must be):

r =
t

k
g +

1
k

(u− 1
k
g)(1− 1 + kt− 1

2 (kt2) + · · · )
= ut + 1

2gt2 + O(kt).

This is of course19 the solution that we would have obtained by solving the equations of motion
with k = 0.

End of example

2.3 Motion in an electromagnetic field

2.3.1 The Lorentz force

The Lorentz force20 is the force experienced by a charged particle in an electromagnetic field. It is
given by

F = e (E + v ×B) (2.12)
19It is not quite ‘of course’. We are asking if two processes commute: is solving an equation and taking a limiting

value of the solution the same as taking the limit in the equation then solving it. This is the sort of thing one has to
worry about when studying the theory of differential equations, and partial differential equations in particular, but
we needn’t let it detain us here.

20It was introduced by the Dutch physicist Hendrik Lorentz (after whom the Lorentz transformations of special
relativity are named) in 1892, though a more or less equivalent equation occurs in the works of Maxwell thirty years
earlier. Lorentz was awarded the Nobel prize in 1902 for his work on the Zeeman effect.
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where e is the charge on the particle, v is the velocity of the particle, E is the electric field and B
is the magnetic field. The term eE is called the electric force and the term ev ×B is called the
magnetic force.21

Generally, E and B depend on both position and time, though in the simple examples con-
sidered here, both these forces are likely to be uniform and constant. Note that the force is defined
everywhere in space and time, regardless of whether a charge is present to experience the force.

A positively charged particle will be accelerated in the same direction as the electric field, but
will curve perpendicularly to both the instantaneous velocity and the magnetic field according to
the right-hand rule.

If we take the scalar product of equation (??) with v, we see that

F · v = eE · v.

The left hand side of this equation is the rate at which work is done by the force F on the particle,
and so we see that the magnetic field does not contribute at all the work done; it is all done by the
electric part of the force field.

Like drag force, the electromagnetic force F depends on the velocity of the particle (explicitly),
as well as on its position (implicitly, via the dependence of E and B on position) so it is not in
general conservative; though it may be conservative in special cases22

2.3.2 Electric field of a point charge

The electric field of a particle of stationary charge q is given by

E =
q

4πε0

r
r3

. (2.13)

where ε0 is a constant called the permittivity of free space. It relates the units of electric charge
to the mechanical quantities M, L and T. Its value is 8.8541878210−12m−3kg−1s4A, where A is the
basic electric unit (amperes). Since ∇rn = nrrn−2 (see the Vector Calculus course), we can write
E as a gradient:

E = −∇
(

q

4πε0r

)
.

The quantity
q

4πε0r
is called the electrostatic potential for the point charge.

When B = 0, as in the case for a stationary charge, the Lorentz force (2.12) is proportional
to E, so the force on a particle moving in the field of a point electric charge is conservative. The
field of a point charge is very similar (identical really) to that of a point gravitational mass, as we
shall see in the next section.

It is worth noting that since there are no free point magnetic charges (magnetic charges
occur in pairs as in a bar magnet), there is no corresponding field for a point magnetic charge.
The simplest magnetic field (that is not constant) is called a dipole field, which is the result of
superposing a positive magnetic charge and a negative magnetic charge.

2.3.3 General motion of a charged particle in an electromagnetic field

In general, E and B are functions of both time t and position r; in Cartesian coordinates, they are
functions of xi, where r = (x1, x2, x3), and t. We assume that the electromagnetic fields are given
and are not affected by the presence of a charged particle. 23

Writing the trajectory of the particle as r(t), the equation of motion becomes

mr̈(t) = F = e

(
E

(
r(t), t)

)
+ ṙ(t)×B

(
r(t), t

))
,

which represents three coupled second-order ordinary non-linear (in general) differential equations
with three dependent variables, and can in principle be solved, given suitable initial conditions.

21You don’t have to know anything about electric and magnetic fields for this course: that comes in Part IB. The
Lorentz force is included in this course as an exercise — an important exercise — in handling vector equations of
motion.

22Electromagnetic fields are governed by the Maxwell equations, one of which is ∇×E = − ∂B
∂t

. Thus the Lorentz
force is conservative if (and only if) B = 0.

23Of course, this is an idealisation: a moving charged particle will create its own electromagnetic fields and these
might well affect the source (whatever it is) of the given E and B.
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2.3.4 Example: motion in a uniform electromagnetic field

Here we consider the case when the electromagnetic field is both constant (in time) and uniform
(same at all points in space), so that

∂E
∂t

=
∂B
∂t

= 0 ;
∂E
∂xi

=
∂B
∂xi

= 0 .

Recall that a vector is (e.g.) time-independent if and only if its Cartesian components are time-
independent.

The equation
F ≡ e(E + ṙ×B) = mr̈. (2.14)

can be tackled in a number of ways. Below, we will solve it entirely in components and also entirely
in vectors. Neither method is optimal: a judicious mixture would serve us better.

(i) Component method
The practical way to integrate the questions is to work in components; BUT it is essential

to choose sensible axes. Since the lines of B are everywhere parallel, we can choose axes such that
the z-axis is parallel to B:

B = (0, 0, B)

If E.B = 0, we can choose axes such that E = (E, 0, 0), but in general the best we can do (by
rotating the x and y axes, which is the only freedom left after fixing the z axis) is

E = (E1, 0, E3).

With this choice, the equations of motion (2.14) become

mẍ = eE1 + eBẏ (2.15)
mÿ = − eBẋ (2.16)
mz̈ = eE3 (2.17)

which can be solved by elementary means or by using matrices.
The solution to third equation (2.17) can be written down:

z = (e/2m)E3t
2 + at + b (2.18)

where a and b are constants obtainable from initial conditions.
A neat way to solve the first two equations (2.15) and (2.16), which happens to work in this

case, is to set ξ = x + iy, and add i times equation (2.16) to equation (2.15); of course, one could
always do this to obtain a single complex equation containing both ξ and ξ̄, but the special feature
of our equations is that the result does not contain ξ̄:

mξ̈ = eE1 − ieBξ̇ .

This can be integrated straight away:

ξ = pe−iωt − iE1t/B + q

where ω = eB/m and the complex constants p and q can be obtained from the initial conditions.24

If the particle is initially at the origin, and moving in the y-direction, we find

ξ = p(e−iωt − 1)− ikt ,

where k = E1/B and p is real, so

x = p(cos ωt− 1) , y = −p sin ωt− kt .

This is roughly (exactly if k = p) a cycloid, so the motion of the particle is, somewhat counter-
intuitively, a uniform acceleration parallel to B (but due to the component of the electric field
parallel to B) and cycloidal motion in the plane perpendicular to B.

24ω is called the Larmor frequency after the physicist Joseph Larmor, senior wrangler in 1880, Lucasian Professor
from 1903–1932. Larmor published the complete Lorentz transformations if special relativity in the Philosophical
Transactions of the Royal Society in 1897 some two years before Hendrik Lorentz (1899, 1904) and eight years before
Albert Einstein (1905). Larmor predicted the phenomenon of time dilation, at least for orbiting electrons, and
verified that the FitzGerald-Lorentz contraction (length contraction) should occur for bodies whose atoms were held
together by electromagnetic forces. This however was all in the context of an aether theory of space-time.
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(ii) Vector algebra method
Now we resolutely refuse to use choose axes at all.
We first dot equation (2.14) with B to obtain

mr̈.B = eE.B.

This can be integrated directly since r̈.B =
d2(r.B)

dt2
:

r.B = (e/2m)E.Bt2 + at + b . (2.19)

This is equivalent, in the coordinate-dependent method, to the z-equation (2.18).
What now? To be sure that no information is lost, we should really next cross equation

(2.14) with B. We would then have taken first the component of the equation parallel to B and
subsequently the component perpendicular to B. That would be a systematic approach. We could
also dot with ṙ, and integrate:

1
2 ṙ.ṙ = eE.r + constant

giving an energy-like conservation equation, which may or may not be helpful (it isn’t particularly
helpful for present purposes).25

However, the easiest way forward in this particular case is to integrate the vector equation
once directly, giving:

mṙ = eEt + er×B + C

where C is a vector constant of integration.26 Now that we have an expression for ṙ, we can
substitute it into the right hand side of the equation of motion (2.14) to obtain an equation of the
form (the details are getting messy, so the constant vectors are just called Ai):

mr̈ =A1 + A2t + (e2/m)(r×B)×B

=A1 + A2t + (e2/m) ((r.B)B− (B.B)r)

=A3 + A4t + A5t2 − (e2B2/m)r

=− (e2B2/m)r + other stuff

where we have used in the penultimate equation the expression (2.19) for r.B. This is just the
vector simple harmonic motion equation (or three individual simple harmonic motion equations
if we wrote it out in Cartesian coordinates) with additional forcing terms. The solution to this
equation can more or less be written down:

r = C1 cos ωt + C2 sin ωt + Particular integral

in agreement with what was obtained rather more easily in components.

End of example

2.4 Gravitational forces

2.4.1 Newton’s universal law of gravitation

Newton’s law of gravitation (published in Principia in 1687)27 states that the gravitational force
experienced by a particle of mass m2 due to a particle of mass m1 at distance r has magnitude

Gm1m2

r2
. (2.20)

This is the inverse square law of gravitational attraction. The constant G in this expression is
Newton’s gravitational constant, aka the universal gravitational constant or just ‘big G’. It has a

25It is not exactly conservation of energy because there is no potential for the Lorentz force in this case, and hence
no potential energy. It is instead a statement about the work done by the force on the particle: the element of force
due to the magnetic field is perpendicular to the velocity and hence does no work.

26Recall that
d(r×B)

dt
= ṙ×B.

27There is some controversy about whom credit for this law should be attributed. Certainly, Hooke, Halley and
Christopher Wren had all discussed it. What is not controversial is that Newton demonstrated that planets would
move in ellipses, in agreement with observations, if moving under the influence of an inverse square law.
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value of 6.6730010−11m3kg−1s−2. Note the dimensions: L3M−1T−2. Its value is quite hard to
measure because gravitational forces are comparatively very weak.28 For example, the ratio of
the strength of the gravitational force between a proton and an electron to the strength of the
electrostatic force between a proton and an electron (2.13) the same distance apart is

G×mprotonmelectron

qprotonqelectron/4πε0
=

(6.6× 10−11)× (1.6× 10−27)× (9× 10−31)
1.6× 10−19)× (1.6× 10−19)/4π × 8.8× 10−12

≈ 10−39

Combinations of the form GMS and GME , where MS and ME are the mass of the sun and the
Earth, respectively, are much easier to determine: they can be deduced from the period and radius
of the orbits of the Earth and the Moon (see section 3.3).

The gravitational force between to particles is central (which means that it is directed from
one particle towards the other) and attractive, so can be expressed in vector form as

F12 = −Gm1m2

r3
r (2.21)

where r is the vector from particle 1 to particle 2 and F12 is the force exerted by the particle of
mass m1 on the particle of mass m2. . In more general notation,

F12 = − Gm1m2

|r2 − r1|3 (r2 − r1) .

As proved in section 2.1, all central forces are conservative. The potential for the force (2.21)
is given by (recall that ∇rn = nrn−2r)

φ(r) = −Gm1m2

r
; (∇φ = −F)

In more general notation,

φ12(r1, r2) = − Gm1m2

|r2 − r1| .

We can take the gradient of this expression for the potential with respect to r2, regarding r1 as
fixed, to obtain the force on particle 2 due to particle 1, or vice versa; the difference will only be
minus sign (as expected from Newton’s third law).

2.4.2 Important note

It is normal when considering gravitational potentials to omit the mass of the particle being acted
on (the passive particle). Thus the gradient of the potential would give the acceleration of the
passive particle not the force acting on it. I will distinguish between the two usages by using lower
case φ for the potential which is equal to the potential energy of the particle (the gradient of the
which gives the force), and upper case Φ for the potential more commonly used for gravitational
and electric fields, the gradient of which gives the acceleration. Thus for a particle of mass M at
the origin, the gravitational potential Φ is given by

Φ(r) = −GM

r

whereas a particle of mass m moving in this potential would experience a force derived (‘force =
minus gradient of potential’) from the potential function

φ(r) = −GMm

r
.

2.4.3 Addition of gravitational fields

Newtonian gravitational potentials are linear in the sense that the total potential due to two particles
is just the sum of the potentials of the individual potentials. This is an observationally determined

28It was measured by Henry Cavendish in 1798 using a torsion balance.
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result and does not hold for all types of potential.29 Thus the potential at the point r due to point
masses at points ri (i = 1, 2, . . .) is

Φ(r) = −
∑

i

Gmi

|r− ri|

and the total gravitational force on a particle of mass m at r is

−m∇Φ = −
∑

i

Gmim(r− ri)
|r− ri|3 .

If all the masses are smeared out into a mass distribution with density ρ(r), so that the mass in
a volume dV of space is ρdV , the sums can be replace by a volume integrals30 to obtain the total
potential at the point r:

Φ(r) = −
∫

Gρ(r′) dV ′

|r− r′| (2.22)

and the total gravitational force on a particle of mass m at r is

−
∫

Gmρ(r′) (r− r′) dV ′

|r− r′|3 .

This is obtained by simply differentiating under the integral sign in (2.22), noting that r′ is a dummy
variable and is therefore a constant as far as differentiation with respect to r is concerned.

2.4.4 Gravitational field of a spherically symmetrical body

This is an important example: what we shall show is that the external gravitational field of a
spherically symmetric body, such as a planet, of mass M is the same as that of a particle of mass M
located at the centre of the body. BUT important though this result is, you should not regard the
following calculation as being part of this course; it is really just an example of a volume integral
as might be calculated in the Vector Calculus course, so you should stop reading this now, and
come back to it when you are revising Vector Calculus. Though actually, the calculation is not very
difficult.

We will demonstrate the result by evaluating the integral (2.22) to find the gravitational
potential. Let the density of the body be ρ(r) (which just depends on r, the distance from the
centre, because the body is spherically symmetric), and let the radius of the body be a. We will
calculate the gravitational field at a fixed point with position vector R, a distance R from the
centre, where R ≥ a.

The first step is to choose coordinates. Obviously, we will use spherical coordinates, but the
trick is to choose the polar direction θ = 0 in the direction of R. This means that for a position
vector r, the scalar product R.r = Rr cos θ. Further,

|R− r|2 = (R− r).(R− r) = R2 + r2 − 2r.R = R2 + r2 − 2Rr cos θ.

29A more modern view (19th century — more modern than Newton) is that the forces of nature can be derived
from potentials that satisfy Laplace’s equation (∇2φ = 0). Since this equation is linear, solutions can be superposed.
Einstein’s equations for general relativity are non-linear and solutions cannot, in general, be added to obtain a new
solution.

30You will come across volume integrals in the Vector Calculus course; we will not need to perform complicated
integrals in this course.
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Thus

Φ(R) = −
∫

|r|≤a

Gρ(r)dV√
R2 + r2 − 2rR cos θ

= −
∫ a

0

∫ π

0

∫ 2π

0

Gρ(r)r2 sin θdφdθdr√
R2 + r2 − 2rR cos θ

(remembering to put in the Jacobian)

= −
∫ a

0

∫ π

0

2πGρ(r)r2 sin θdθdr√
R2 + r2 − 2rR cos θ

(doing the trivial φ-integral)

= −
∫ a

0

∫ 1

−1

2πGρ(r)r2drdc√
R2 + r2 − 2rRc

(setting cos θ = c)

=
∫ a

0

2πGρ(r)r
[√

R2 + r2 − 2rRc
]c=1

c=−1
dr

R
(doing the c integral)

= −
∫ a

0

2πGρ(r)r (|R + r| − |R− r|) dr

R
(evaluating at c = ±1)

= −
∫ a

0

4πGρ(r)r2dr

R
(using r ≤ a ≤ R)

= −GM

R

as required.

End of example

2.5 Escape velocity

For a particle moving in a force field, the escape velocity is just the velocity that the particle must
have to get out of the influence of the field; which normally means out to infinity. Often, one is
thinking of projecting a particle from the surface of the Earth (say): the escape velocity tells you
how fast you must project it for it to escape the Earth’s gravitational pull.

For a general force field, the concept of escape velocity is not very helpful: the escape velocity
would depend on the trajectory, and would not be possible to calculate without completely solving
the equations of motion.

For a force field derived from a potential, such as a gravitational field, the concept is more
useful because there is some chance that the escape velocity can be expressed in terms of the
potential, without having to solve the equations of motion. If the particle has sufficient energy to
overcome the potential it will escape. This is what is illustrated in the example on the motion of a
particle in a cubic potential in section 2.1.

Even for a gravitational field, the concept only works well in the simplest case, the field of a
single spherically symmetrical body such as (to good approximation) the Earth or the Sun. Even
in the case of just two gravitating bodies, the escape velocity can depend critically on the direction
of projection of the particle. For example, interplanetary probes use what is called the ‘slingshot’
effect to give the probe extra momentum by choosing the direction of projection so that the probe
passes close to other planets. Voyager 1, which is now the furthest human-made object from Earth,
is in the boundary zone between the Solar System and interstellar space. It gained the energy
to escape the Sun’s gravity completely by performing slingshot manoeuvres around Jupiter and
Saturn. The energy gained was of course taken from the two planets, which perhaps slowed down31

or moved further apart.
For a spherically symmetric planet of radius R, the gravitational potential at the surface is

−GM

R

31But not by much.
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(see the example in section 2.5). Thus a particle of mass m projected with speed v from the surface
has total energy E given by

E = 1
2mv2 − GMm

R

which is conserved. The potential energy of the particle if it escaped to infinity would be zero, so
in order to have sufficient energy to escape,

E > 0,

i.e.

v >

√
2GM

R
≡ vesc.

The minimum value of v, namely vesc, is the escape velocity; or, more properly, the escape speed
since it is independent of direction.

Clearly a particle that has less than this speed on projection cannot escape and will fall back
to the point of projection. A particle that has at least this speed will escape and eventually (taking
infinite time) reach infinity. This last statement is perhaps not quite obvious: clearly, the particle
can reach infinity if it is projected radially outwards, because it could only turn round if its speed
(and hence its kinetic energy) reduced to zero which, by conservation of energy, is impossible if
E > 0. But what if it is projected tangentially? As we shall see in chapter 3, it then follows a
parabolic or hyperbolic path, again out to infinity.

2.6 Three kinds of mass

This is an extended footnote: interesting, I hope, and relevant; but not strictly part of the course.
We can recognise three different sorts of mass that arise in Newtonian dynamics:

• Inertial mass, which occurs in Newton’s second law:

force = inertial mass × acceleration.

• Passive gravitational mass, which measures the response of a particle to a gravitational field.
For example, at the surface of the Earth, the vertical force on a particle is given by

passive gravitational mass× g.

• Active gravitational mass, which measures the magnitude of the gravitational field produced
by a massive body.

All three kinds of mass occur simultaneously in the formula for the acceleration a of particle
1 of inertial mass m

(1)
i and passive gravitational mass m

(1)
p moving with acceleration a in the

gravitational field of particle 2 of active gravitational mass m
(2)
a :

m
(1)
i a = −Gm

(1)
p m

(2)
a r

r3

The fact that we only use one kind of mass, that is, we assume that the three apparently
different kinds of mass are the same, needs explanation.

2.6.1 Equality of active and passive gravitational mass

According to the law of universal gravitation, the gravitational force on particle 1 due to particle
2, F12, is given by

F12 =
Gm

(1)
p m

(2)
a (r2 − r1)

|r2 − r1|3
and the gravitational force on particle 2 due to particle 1, F21 is given by

F21 =
Gm

(1)
a m

(2)
p (r1 − r2)

|r1 − r2|3 .
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Newton’s third law demands that these forces are equal in magnitude, so we require

m
(1)
a

m
(1)
p

=
m

(2)
a

m
(2)
p

and furthermore that this relationship holds for all particles. Since the ratio of active and passive
gravitational masses is equal for all particles, we can choose it to be unity (which would just involve
scaling G).

2.6.2 Equality of inertial and gravitational mass

This is more difficult: we have so far in this course encountered no law or principle that would
determine or even suggest a relationship between inertial and gravitational mass. Nevertheless,
inertial and gravitational mass have been found in a number of celebrated experiments to coincide
to a very high degree. It is, for example, what Galileo was trying to demonstrate by (supposedly)
dropping objects from the top of the leaning tower of Pisa.

If you slide a particle down a slope and measure the acceleration a, you have

mia = mpg sin θ,

where θ is the angle of the slope to the horizontal. If the acceleration is found to be the same for
different particles then the only varying quantity in the above equation, namely the ratio mp/mi

must in fact be the same for the different particles and, as before, it can be normalised to one.
The Hungarian physicist Eötvös32 spend much of his working life demonstrating the equality of

inertial and gravitational mass. His method was to suspend two heavy spheres made from different
material from a torsion balance, which consists of a horizontal rod suspended from a fixed point
by a quartz fibre attached to its midpoint. The two spheres experience the Earth’s gravitational
force and also a centrifugal force due to the rotation of the Earth (see chapter 3), The spheres
were arranged so that the rod was exactly horizontal, which means that the gravitational masses
balanced exactly. If the inertial masses did not balance, the rod would rotate. It didn’t.

This experiment was improved by Robert Dicke, an American physicist, using the effect of
the Sun’s gravitational field, which would have given a 24-hour periodic oscillation if the inertial
mass and gravitational masses were inequivalent; this is extremely sensitive and established the
equivalence to an accuracy of 1 part in 1012.

The equivalence of inertial and gravitational mass (the principle of equivalence) is a funda-
mental pillar of modern physics; without it General Relativity, which interprets gravitational forces
as fictitious forces (i.e. like centrifugal forces) due to motion in a curved space-time, would collapse.

32Vásárosnaményi Bárö Eötvös Loránd, 1848–1919; his surname is pronounced, roughly, utvush (u as in ‘put’).


