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Abstract

Existing real-time garbage collectors are either unable to scale to
large multiprocessors, or unable to meet hard real-time require-
ments even with specialized hardware support.

These limitations are rapidly becoming unacceptable: hardware
improvements have brought multi-gigabyte heaps and ubiquitous
multi-core parallelism; applications have increasingly stringent
real-time requirements; and non-embedded, highly parallel server
applications form an increasing percentage of real-time workloads.

We present Staccato, an algorithm that supports both hard- and
soft-real-time garbage collection on stock hardware and both real-
time and stock operating systems. The algorithm is incremental,
concurrent, and parallel. Defragmentation can be performed on
a per-object basis using a lock-free algorithm which requires no
atomic mutator operations in the common case. On a real-time
operating system it is capable of meeting hard real-time bounds.

We have implemented Staccato in IBM’s J9 virtual machine
and present an evaluation on IBM’s real-time variant of Linux.
Staccato is able to achieve maximum pause times of 753 us and an
MMU of 85% over a Sms time window, out-performing both IBM’s
Metronome-based product and Azul’s soft real-time, hardware-
assisted collector.

1. Introduction

Significant advances in the state of the art in real-time garbage
collection have begun to move from research into practice. The
Metronome collector [4] has been incorporated into a real-time Java
virtual machine product from IBM [21] and adopted by Raytheon
for use in hard real-time applications on the Navy’s new DDG 1000
Destroyer [22]. Other vendors have delivered systems with various
levels of soft real-time behavior [13, 7].

However, trends in both hardware technology and software sys-
tems are continuing to put pressure on the capabilities deliverable
by real-time garbage collection. Financial arbitrage has reached the
point where automated trading strategies can exploit differentials of
a few milliseconds, telephony and video-conferencing are being in-
tegrated into mainstream applications, and many other domains are
rapidly increasing their real-time requirements. Many of these new
applications are not embedded systems, as was common for most
real-time systems in the past. Instead they are large, server-based
systems with abundant parallelism.

At the same time, rapidly increasing multi-core parallelism and
large heaps enabled by 64-but architectures are creating pressures
for highly scalable garbage collector implementations.

While there has been abundant work on parallel collection, and
even on parallel collection with low latencies [17, 8, 6, 14, 26], it
has been primarily concerned with providing good throughput and
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moderate pause times (in the 50-100 ms range) with a low prob-
ability (below 1%) of outliers. However, the types of applications
we are targeting require absolute worst-case pause times on the or-
der of 1 millisecond, coupled with a high and consistent minimum
mutator utilization (or MMU [12]).

In previous work on the Metronome collector [4] (originally
built on top of Jikes RVM [23]), we achieved worst-case pauses
of 12.2ms and an MMU of 45% at 22ms. Designed for embedded
applications, we explicitly chose to built a uniprocessor collector
to focus on hard real-time behavior and avoid complications due
to concurrency. In the process of re-implementing the technology
for a product based on IBM’s J9 virtual machine [21], we extended
the algorithm to allow collector/collector parallelism and execu-
tion across a multiprocessor, but collector pauses were always per-
formed synchronously between barriers, an approach we refer to
as “stop-the-worldlet”. This system runs well on small-scale blade-
based multiprocessors, achieving worst-case pause times of 1 mil-
lisecond with an MMU of 70% over a 10ms time window.

However, because of the technology and business trends, we
need a collector that can scale to very large multiprocessors while
simultaneously reducing worst-case pause times by another order
of magnitude. This paper describes our work on that collector,
which we call Staccato. The contributions of this work are:

¢ An algorithm for performing incremental, parallel, and concur-
rent garbage collection on stock multiprocessors. The algorithm
is based on lock-free data structures and ragged barriers, does
not depend on custom hardware support, and does not suffer
from MMU-reducing trap storms.

An algorithm that allows objects to be moved during com-
paction without requiring any locks, and without requiring any
atomic operations (e.g. compare and swap) by the mutators
except in very rare cases. The algorithm is suitable for both
strongly and weakly ordered multiprocessors.

A single implementation methodology for hard- and soft- real-
time systems, based on mutator-driven self-scheduling, that
eliminates context switches, removes dependencies on RTOS
features, enables collector quanta smaller than the operating
system scheduling limits, and improves multiprocessor scaling.
e A scheduler that allows minimum mutator utilization (MMU) to
be specified on a per-thread basis. This makes it possible to have
high-priority, high-MMU threads that nevertheless have high
allocation rates; the extra collection load can be absorbed by
lowering the MMU of lower-priority threads and/or performing
collection on otherwise idle processors.
e An implementation in IBM’s J9 virtual machine. The ma-
jor phases of collection are lock-free. Currently, some phases



(about 9-17% of collection time) have not been converted to
lock-free data structures and still use barrier synchronization.

e An evaluation of our implementation on IBM’s real-time Linux
kernel, and a direct comparison against the Metronome col-
lector in IBM’s real-time Java product. Despite the limitations
mentioned above, Staccato has much better real-time perfor-
mance than the Metronome collector and has worst-case pause
times that are more than an order of magnitude less than the best
reported results for other low-latency compacting collectors.

Section 2 describes how Metronome’s data structures and col-
lection algorithm were extended for Staccato. Sections 3 and 4
present the two central innovations in Staccato: lock-free concur-
rent compaction and per-thread MMU-based scheduling. Section 5
describes shortcomings in our current implementation of Staccato
in the J9 virtual machine. The performance and latency character-
istics of Staccato are empirically compared to those of Metronome
in Section 6. Finally we discuss related work and conclude.

2. Collection Algorithm

Like the Metronome collector [4], Staccato is a mostly non-moving
mark and sweep garbage collector. The overall structure of the two
collectors are similar; therefore in this paper we focus on those as-
pects that are unique to Staccato. In both algorithms, the collec-
tor’s work is divided into three main phases: marking reachable
objects, sweeping away unmarked objects, and compacting frag-
mented objects into contiguous pages. Staccato occasionally inter-
rupts the mutator for short periods of time to incrementally perform
these collection phases. Aside from allocation costs, the only other
effects on the mutator are a write barrier to track pointer updates
during the mark phase as well as a read barrier to forward pointers
to objects that have been moved during compaction.

It is important to keep in mind that all interruptions to the
mutator are either bounded in time (in the case of the read and
write barriers) or they can be scheduled at arbitrary times, for
arbitrary lengths of time (in the case of the collection phases), as
long as the collector is able to keep up with the allocation rate.
As described below, all data structures that are accessed by both
collector and mutator threads are lock-free, therefore no mutator
doing allocation or read/write barriering will ever have to wait for
a garbage collecting thread. These properties guarantee that the
Staccato algorithm has almost arbitrarily low pause times (bounded
by the costs of allocation and the barriers).

We begin by describing the lock-free page list that is the central
data structure shared between mutator and collector threads. The
next two subsections describe the marking and sweeping phases of
collection. Because efficient concurrent compaction is one of the
main innovations of the Staccato algorithm it is described sepa-
rately in Section 3.

To simplify the exposition we first present the algorithm as it
should ideally be implemented. We then highlight in Section 5
those areas in which our initial implementation of Staccato in the
J9 virtual machine fails to meet this ideal.

2.1 Page Lists

Like Metronome, Staccato organizes the heap into fixed-size pages
(16 KB in the J9 implementation) and each page is divided into
blocks of a particular size. Objects are allocated from the smallest
size class that can contain the object. Associated with every page
in the heap is a PageInfo object that contains collector meta-
data describing the state of the page. PageInfos are organized in
doubly-linked lists. Each PageInfo belongs to exactly one list at
any time (except while a PageInfo is being moved from one list
to another during which it is momentarily only in a local variable).
The collector maintains several PageInfo lists for each size class,

representing the pages assigned to that size class that are available
for allocation, waiting to be swept, or waiting to be compacted.

Mutator threads move PageInfos from the available list for
a size class to thread-local allocation contexts in the off-branch
of the allocation sequence. Collector threads move PageInfos
among the various lists, including the available list, during the
GC cycle. Because both mutator and collector threads may need
to operate on the same list, certain basic operations must be lock-
free. The fundamental PageInfo list operations are as follows: (i)
pushing PageInfos onto the front or back of a PageInfo list, (ii)
removing an arbitrary PageInfo from the middle of a PageInfo
list, and (iii) iterating over PageInfos in a PageInfo list. Push
and remove must be atomic, efficient, and lock-free. Iteration need
not be atomic, but it must be lock-free.

The basic structure of the PageInfo list is similar to the
ConcurrentLinkedDeque of the java.util.concurrent pack-
age. Each PageInfo contains next and prev pointers to its adjacent
PageInfos. There are a number of difficulties in maintaining such
a structure concurrently without using locks, which we treat here.

Previous pointers. 1t is impossible to atomically update the next
and prev pointers simultaneously when adding or removing a
PageInfo. Thus, we take the approach that next links are con-
sidered authoritative, while the prev pointers may at times con-
tain out-of-date information. However, out-of-date information
in the back pointers can be consistently detected (by verifying
that p->prev->next == p) and corrected. When PageInfos are
added or removed, a single atomic compare-and-swap operation
is used to update the forward pointer of the preceding PageInfo
in the list. A non-atomic write is used to update the back pointer.
Between these two operations, the back pointer will be momentar-
ily incorrect. Also, since other list operations may be interleaved
between these two operations, the write of the back pointer may be
writing stale information by the time it occurs.

To counter this problem, we correct invalid back pointers when-
ever they are discovered by traversing through forward pointers in
the list to find the correct predecessor element and updating the
back pointer. This algorithm has poor worst-case complexity, but
since conflicts are very rare, back pointers are almost always cor-
rect. The worst-case complexity of the allocator, which must re-
move PageInfos from the free list, remains the same, since it
already must perform a linear scan to find a free PageInfo. The
effect of the complexity on the collector is unimportant, since its
pause times are controlled by the scheduler.

Removal bits. When a PageInfo is removed, it is insufficient
simply to swing the predecessor’s next pointer to the PageInfo
following the removed PageInfo. In between reading the succes-
sor pointer and writing to the successor element, another thread
may add a PagelInfo directly after the one being removed. To
counter this problem, we use the technique of Harris [18], which
reserves an extra bit in each next pointer to denote a pending re-
moval and performs the operation using two compare-and-swaps.

Page list lattice. A common problem with lock-free data struc-
tures is knowing when elements are no longer referenced by any
other threads. Without this knowledge, it is impossible to reuse the
memory associated with an element. In the case of Staccato, this
problem is particularly acute since a PageInfo may need to be
moved from one PageInfo list to another without any pause in be-
tween. If this problem is not addressed, a thread iterating over the
list of free PageInfos might end up iterating instead over a dif-
ferent list if the PageInfo it is currently processing is suddenly
moved from one list to another.

To solve this problem, we reserve additional bits in the next
pointers to denote the list to which a PageInfo currently belongs.
These bits can be updated atomically with the next pointer, so they



do not affect the atomicity of any operation. Since PageInfos are
fairly large, many of the low-order bits are available for this pur-
pose. When an iterating thread is traversing a list, it may find that
the current PageInfo no longer belongs to the list it is interested
in. In this case, it must restart iteration from the beginning. Given
the improbability of such conflicts, this situation in quite rare.

However, it is very important that a PageInfo never move
through a sequence of PageInfo lists and end up where it started
(the ’ABA’ problem). In this case, an iterating thread that was pre-
empted for a very long time would restart its iteration at a different
part of the list, possibly skipping some elements or processing them
twice. To avoid such problems, we require that PageInfo lists be
arranged in an acyclic lattice and that all PageInfos move down-
wards in this lattice. At the end of an entire collection, we use a
ragged barrier over all threads to ensure that all list operations have
terminated. After this barrier, PageInfos can be moved back to the
top of the lattice.

2.2 Marking

The mark phase begins by scanning the root set for references to
heap objects and pushing them on a mark stack. The collector
threads then incrementally traverse the heap to find and mark all
reachable objects. This is done by iteratively removing an object
from the mark stack, scanning it for references to unmarked objects,
and pushing any such references onto the mark stack for later
processing. Throughout the mark phase, a write barrier is used to
ensure that no objects are lost due to an unlucky interleaving of the
mutator and the collector [24]. Like Metronome, Staccato uses a
Yuasa-style write barrier [29]. For each pointer write, the previous
pointer value that is being overwritten is pushed onto a thread-local
write buffer. These references essentially act as an additional set
of roots, and the write buffer has an identical purpose to the mark
stack. During the mark phase, processing of the write buffer and
mark stack is interleaved and both must be empty before the mark
phase can terminate.

The main challenge in making root scanning concurrent and
parallel is handling the scanning of thread stacks. The original
Metronome collector [4] required that all thread stacks be scanned
in a single atomic step to obtain a consistent snapshot of the root
set. To maintain real-time bounds in the presence of a large number
of threads, the Metronome implementation in J9 [20] instead intro-
duced a per-thread “fuzzy” snapshot to allow thread stack scanning
to be done incrementally. During the period while thread stacks are
being scanned, write barrier operations are modified to record both
the old (overwritten) and new value on every pointer store. This
double barrier is enabled for all mutator threads by flipping a per-
thread barrier state flag before any thread stacks are scanned. It is
disabled (reverts to the normal Yuasa barrier) on a thread-by-thread
basis after each thread’s stack is scanned. By utilizing this modified
snapshot, the atomic unit of work during root scanning is reduced
to the scanning of a single thread stack. To some extent, a program-
mer can control the extent of this interruption by structuring their
program such that threads with harder real-time needs have short
thread stacks. One could also apply stacklets [11] to bound the in-
terruption for threads with arbitrarily deep stacks.

During the mark phase, Staccato pushes references onto a mark
stack. Multiple collecting threads may access the mark stack si-
multaneously, so their accesses must be synchronized. The mark
stack need not be lock-free, since it is never accessed by the mu-
tator. However, to ensure that garbage collection pause times can
be scheduled precisely, it is important that collecting threads do
not block indefinitely waiting to push onto the mark stack. Acquir-
ing a lock with a timeout is sufficient to guarantee this. In prac-
tice, Staccato uses a lock-free data structure anyway for efficient
load-balancing: each thread maintains its own thread-local frag-

ment of the stack; when a popping thread runs out of thread-local
fragments, it steals a fragment from another thread using atomic
memory instructions.

After the roots are scanned, Staccato must process the refer-
ences on the mark stack. For each reference it pops, Staccato marks
the referenced object and scans its fields, pushing any new refer-
ences to unmarked objects onto the stack. Any references to ob-
jects that have been moved during a previous compaction phase are
forwarded at this time.

The one factor that differentiates the write buffer from the mark
stack is that it is accessed by the mutator during the write barrier, so
it must be implemented with a lock-free data structure. Otherwise, a
mutator thread doing a pointer write could be held up by a collector
for an unbounded length of time. Since our mark stack is lock-free
already, we can re-use the underlying data structure to implement
the write buffer.

2.3 Sweeping

During the sweep phase, Staccato scans through all non-empty
pages in the heap, using the mark bits set by the mark phase
to update a tally of the number of used and free cells on the
page. Pages that are swept are first moved to a separate list so
that concurrent allocation does not occur as this would confuse
the tallies. Pages with a zero mark-count are moved to a free
list, while non-empty pages are grouped into bins according to
their occupancy rate. All collector-collector and collector-mutator
interactions during the sweep phase occur through the page list data
structure described above. Thus, there is no additional complexity
in making the sweep phase concurrent.

3. Lock-free Compaction

A garbage collector can not properly be called a “real-time” col-
lector unless it can tightly bound both its time and its space con-
sumption. A real-time collector must therefore perform some form
of compaction or defragmentation (although Siebert [27] has at-
tempted to avoid this by building all objects out of linked structures
of small, identically sized objects, the result is access time that is
logarithmic in the object size).

Efficiently relocating objects while mutators are running con-
currently is quite difficult. Entire objects must appear to move
atomically so that no concurrent updates to the object are lost or
appear inconsistently ordered to different threads. This problem is
exacerbated by the fact that many multiprocessor systems provide
only weak memory consistency. There is no guarantee that causal
dependence is preserved across processors except in the presence
of very expensive synchronization barriers.

Previous multiprocessor concurrent copying collectors have all
relied on either per-object locking [28], per-page synchronization
via page traps [1, 13], or a write barrier that writes to both the
original and the copied object [12, 25].

Per-object locking is too inefficient and does not scale. Per-
page locking via hardware traps causes low MMU both because
the mutator may be forced to do collection work and because of
the cost of the traps themselves. Double write barriers depend on
a strongly consistent memory model for correctness, significantly
increase write-back traffic, and require a synchronous final commit
phase which is not constant time.

In this section we present an algorithm that overcomes the limi-
tations of previous techniques. In the common case mutators access
objects without any atomic operations even during defragmenta-
tion. In the uncommon case at most one atomic (compare and swap)
operation will be required — mutators are never blocked by the col-
lector’s defragmentation activity. Additionally, “storms” of atomic
operations are prevented by moving few objects and by randomiz-
ing their selection.
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Figure 1. State transitions of the forwarding pointer for a single
copy of an object.

3.1 Algorithmic Properties

Like most compacting collectors, Staccato stores a forwarding
pointer in each object’s header. When an object is moved, but
before all pointers to it are redirected, the forwarding pointer slot
in the original object points to the copy. Staccato uses a Brooks-
style read barrier [10] to forward every pointer read. Previous work
described techniques for reducing the cost of read barriers to an
acceptable level [4].

Staccato’s defragmentation algorithm makes use of the follow-
ing techniques and properties of the system:

e Asymmetric Abort Protocol, in which the collector tries to copy
the object but the copy is aborted by any mutator which touches
the object before the copy has been committed. In the nor-
mal case the protocol requires no atomic operations for ob-
ject access; during defragmentation it will cause at worst one
compare-and-swap operation per processor.

Ragged Synchronization, which allows global propagation of
information without global synchronization [2]. The mutator
threads are instrumented to perform memory barrier opera-
tions at regular intervals; to propagate information to the muta-
tors, the collector need only wait until all running threads have
passed a ragged barrier (ragged barriers are also used in the
Azul collector [13]; they call them “checkpoints”). On weakly
ordered machines, the ragged barriers must perform memory-
fence operations (e.g. sync on the PowerPC).

Mostly Non-copying collection [4], which only moves a small
fraction of the total objects to eliminate fragmentation.
Arraylets, which break large objects (arrays) into chunks which
form the largest contiguous units allocated by the system [3].
This means that there is no external fragmentation beyond the
arraylet granularity, and bounds the atomic work required to
move an object by the arraylet size (2 KB in the J9 implemen-
tation).

The combination of arraylets with a mostly non-copying ap-
proach greatly reduces the number of objects that must be copied
in order to keep fragmentation levels low

The combination of a small set of objects to move, a small time
window in which they are moved, and randomization makes the
algorithm highly robust.

3.2 Moving an Object

We now describe the protocols used by the collector and mutator to
achieve lock-free object movement on a weakly ordered multipro-

cessor. Figures 2 and 3 contains the pseudo-code for the algorithm;
the numbers at the far right indicate the steps described in detail
below. Figure 1 shows the possible state transitions of the redirect
pointer of the original copy of an object during the stages of this
protocol.

3.2.1 Collector Protocol

The collector reserves a bit in the forwarding pointer to denote that
the object is being copied (Java objects are always word-aligned, so
stealing a bit poses no problem). In this way, the collector can use a
single compare-and-swap operation to atomically change both the
copying flag and the forwarding pointer.

To move an object, the collector performs the following steps:

1. Set the COPYING bit in the forwarding pointer of the object
using a compare and swap operation. However, since mutators
access the redirect pointer without atomic operations, it will
take some time for this update to propagate to the mutators.

2. Wait for a ragged synchronization. At this point, all mutators
will have performed a memory read synchronization and the
change to the COPYING bit is guaranteed to be globally visible.

3. Perform a memory write synchronization (weakly ordered ma-
chines only). This ensures that all modifications made by the
mutators before they saw the change to the COPYING bit are
seen by the collector.

4. Copy the data fields from the original object to the relocated
object.

5. Perform a memory write synchronization (weakly ordered ma-
chines only). This pushes the newly written data fields in the
relocated object so that they are globally visible.

6. Wait for aragged synchronization. When complete, all mutators
will see the values written into the relocated object.

7. Perform a compare and swap which simultaneously changes the
forwarding pointer to point to the relocated object and clears
the COPYING bit. This commits the move of the object. If
the compare-and-swap fails, then the mutator read or wrote the
object at some point, and the move is aborted.

When the collector “waits” for a ragged synchronization, it does
so either by performing other work or by allowing the mutator to
run.

3.2.2 Mutator Protocol

Meanwhile, when the mutator accesses an object (to read, write,
lock, unlock, or otherwise examine or modify its state) it performs
the following steps:

1. Load the forwarding pointer.

2. If the COPYING bit of the forwarding pointer is clear, use the
forwarding pointer field as the object pointer.

3. Otherwise, try to abort the copy by using a compare-and-swap
to clear the COPYING bit (which is the same as storing the
object pointer itself).

4. If the compare-and-swap succeeds, use the resulting forwarding
pointer with the COPYING bit cleared as the object pointer.

5. Otherwise, reload the forwarding pointer using an atomic read
(which is guaranteed to see the current atomically written
value). The fact that the previous compare-and-swap failed
indicates that either the collector committed the copy or else
another mutator aborted it; in either case this atomic read will
obtain the new value.

3.3 Reducing Abort Frequency

Many strategies for compaction are vulnerable to the “popular
object problem.” In some collectors, this manifests in long latencies



objects collectorMoveObjects(objectList)
abortList = new List()
replicaList = new List()

for each (obj in objectlist) // 1
prepare(obj)

raggedSynchronization() // 2
readSync() // 3

for each (obj in objectList) // 4
replicaList.append(copy(obj))

writeSync() // 5
raggedSynchronization() // 6

for each (obj in ObjectList, rep in replicalist) // 7
if (! commit(obj, rep))
free(rep)
abortList.append(obj)
return abortList

void prepare(obj)
obj.forward.atomicCAS(obj, obj | COPYING)

object copy(obj)
s = obj.size()
replica = allocate(s)
copyBytes(obj, replica, s)
replica.forward.plainWrite(replica)
return replica

bool commit(obj, rep)
return obj.forward.atomicCAS(obj | COPYING, rep)

Figure 2. Collector pseudo-code for Staccato object relocation.

object mutatorAccessBarrier(obj)
forward = obj.forward.plainRead() // 1
if (forward & COPYING == 0) // 2

return forward
if (obj.forward.atomicCAS(forward, obj)) // 3

return obj // 4
return obj.forward.atomicRead() // 5

Figure 3. Mutator pseudo-code for Staccato object relocation.

when moving an object with many incoming pointers, because the
relocation operation must atomically redirect all of those pointers.

Staccato has an analogous issue, in that objects that are being
accessed at a very high frequency will prove difficult to move, be-
cause the accesses will trigger aborts. While we have not observed
this problem in any program so far, it can be circumvented by de-
tecting the popular object and using its page as a target of the com-
paction phase. That is, instead of trying to move a popular object
off of a low-occupancy page, we simply increase the page’s occu-
pancy level. We note that this symmetry is exploitable because of
our page architecture but is not possible in sliding compaction.

Another potential issue is “abort storms”, which could happen
if the collector chose to move a set of objects that were all accessed
with temporal locality by a mutator. This would cause the mutator
to execute an elevated number of compare-and-swap operations in
a short time, which could reduce its MMU.

This is already unlikely because we move relatively few objects,
and those objects are being moved off of low-occupancy pages — so
objects allocated close in time are unlikely to be moved at the same
time.

However, if necessary, the probability of correlated aborts can
be further reduced in three ways: first, by breaking the defragmen-
tation into several phases, thereby shortening the time window dur-
ing which object moves may be aborted. Second, by randomizing
the set of pages chosen for defragmentation in each phase. And
third, by loosely aligning (but not synchronizing) the execution
of the object relocation by different threads (but without violating
MMU requirements), there will be fewer mutator threads running
while objects are being moved, and the probability of aborts will be
reduced even further.

4. Scheduling

The principal motivation behind Staccato is to increase scheduler
flexibility and performance, especially for multiprocessor systems.
The best way to achieve these goals is to ensure that all decisions
about when to collect are made locally. Each thread must be free
to choose when to collect and how much collection to do. Since
communications between processors is expensive in contemporary
systems, local decision making increases performance. Because
each thread can make different choices about the work to perform,
we also improve the flexibility of the algorithm.

Programmers can tune the Staccato collector in two dimensions:

e Garbage collection work may be performed by the mutator
threads or by special garbage collection threads. Like mutator
threads, garbage collection threads may run at low priority, so
that they “soak up” unused CPU cycles, or at high priority on a
dedicated CPU.

e Threads may perform garbage collection at varying rates. High
priority threads might perform no garbage collection so that
they are never interrupted. Less important threads could collect
more frequently so that the overall collection rate of the system
is suffient to keep up with the overall allocation rate.

Each thread’s rate of collection is determined by a target min-
imum mutator utilization target over a given time window. This
number determines the minimum percentage of CPU cycles the
mutator thread should have available over the time window. Ev-
ery thread in the system is assigned a target MMU; threads devoted
to garbage collection always have a 0% MMU, since they perform
no mutator work. The total collection rate of a system is determined
by thread MMUs as well as their relative priorities. A system run-
ning too many high-priority high-MMU threads may not collect
fast enough.

The Metronome garbage collector is also driven by a target
MMU. However, Metronome makes all scheduling decisions glob-
ally. When the scheduler chooses to collect, it requests that all mu-
tator threads suspend and waits for them to stop. Metronome then
collects in parallel, and resumes all mutators when done. The rate
of collection is based on a single, global MMU target. This MMU
must be sufficiently large for all threads in the system to meet their
deadlines, but not too large or else the collector will run too slowly
and the system will run out of memory. Metronome’s approach is
also inefficient, since all the mutator threads must be suspended for
each collection increment; typically there are 600 suspensions per
second during a collection. In an application with many threads,
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Figure 4. A depiction of GC scheduling in Staccato (a) and
Metronome (b) with two mutator threads. Time advances from left
to right, one row at a time. Each row (separated from the next row
by a black line), contains (upper) red segments which show GC
activity in the first thread and (lower) green segments which show
activity in the second thread.

where some threads take longer than others to voluntarily suspend,
many cycles can be wasted.

Figure 4 shows a visual depiction of the scheduling policy
differences between Staccato and Metronome. These two figures
show data from actual runs of a synthetic benchmark. Time moves
from left to right, one row at a time. The top half of each row shows
the activity of one thread and the bottom half shows the activity of
another. Filled segments represent GC activity, while the remaining
time is given to the mutator.

In the Staccato portion, the top thread (in red) has requested a
70% MMU over a 10 ms window. The bottom thread (in green) has
asked for a 70% utilization over a 1 ms window. Staccato satisfies
these requests by dividing time into beats. Ideally, the collector runs
mutation work and collection work for an integral number of beats,
although it may use partial beats to correct any timing errors when
a collection quantum runs too long or too short. The top thread uses
500 ps beats and the bottom thread uses 100 us beats. Each strip
represents 2 ms, which is two windows for the bottom thread. The
GC, which is to use 30% of the cycles, therefore runs for 600 us,
or 6 beats, per strip. The top thread runs each GC quantum longer
and less frequently, as expected.

The bottom half of Figure 4 shows the same benchmark in
Metronome. Metronome uses the same beat-based scheduling al-
gorithm to achieve a given MMU. However, both threads must be
run with the same target utilization, window size, and beat length.
Additionally, threads are forced to run in lockstep: at a given time,
all threads are either mutating or collecting.
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Figure 5. A view of a stop-the-worldlet collection mixed with
mutator-thread collections for two threads.

The Staccato approach has clear advantages. In systems that
have cycles to spare, Staccato can perform continuous garbage
collection without disturbing the mutators. The collection can run
either on a low priority thread or on a spare processor. In the
extreme case, some mutators may not perform any collection at all.
It is ill-advised to perform collection in Metronome except when
memory is low, since no threads are available to respond to events
that occur during the collection.

5. Reality Check

We chose to implement the Staccato algorithm in IBM’s J9 virtual
machine. J9 is a very efficient, production-quality JVM and, as
such, is quite complex. This complexity, coupled with the fact
that J9 was designed well before Staccato or Metronome, makes it
somewhat impractical to implement several aspects of the Staccato
algorithm. In this section, we describe the differences between
the idealized Staccato and the J9 version. In the next section, we
explain the impact of these differences on performance.

Certain aspects of JNI require support for allocation of large
objects which cannot be represented with discontiguous arraylets.
As a result, there are page list operations that cannot be accomo-
dated as we have previously described. Such allocations (which are
inherently non-realtime) require that we take a lock.

Although all of the time-consuming aspects of the collection is
done in parallel and concurrently with the mutator, there are some
exceptions. The processing of class loader objects, JNI global ref-
erences, JDWP references, and soft, weak, and phantom references
is done atomically. Furthermore, the processing of class objects (in-
cluding class-static fields), interned strings, and thread-stack scan-
ning is performed incrementally but not concurrently. Finally, com-
paction of the page-table data structures (related to the large object
support just described) is not performed in parallel. These “stop-
the-worldlet” collections are shown in red at the top of Figure 5.
These occur infrequently, as we show later.

Because the stop-the-worldlet phases already introduce global
(albeit infrequent) synchronizations, we have not yet implemented
the ragged barrier previously described. Implementing this in any
virtual machine with safe-point based precise garbage collection
(such as J9) is straightforward by hooking into the periodic safe-
points. The only caveat is that in a real-time system, one must be
careful about not over-optimizing away safe-points to avoid too
large of a gap between adjacent safe-points. In the current system,
the ragged barrier has been replaced by the stronger synchronous
barrier.

Although the Staccato algorithm is designed to work on systems
with weak memory model, our current implementation runs only



on the x86. Under the fairy strong x86 memory model (or the
even stronger AMD model), a memory barrier is not needed to
accompany the ragged barrier. Since we have replaced the weak
ragged barrier with a synchronous barrier, the memory barrier is
not needed.

Finally, we have not yet extended the JIT compiler to generate
the more complex Staccato read barrier. Because the barrier intro-
duces common-case control flow plus an uncommon case proce-
dure call on all reads of heap objects, it will take significant engi-
neering effort to implement it efficiently and to ensure that the var-
ious JIT optimizations (particularly those related to code motion)
are aware of the barrier semantics.

6. Evaluation

In this section, we explore the decisions made in the design of Stac-
cato and explain how they affect collector performance. There are
several components of performance that we are interested in: (1)
minimum mutator utilization over a variety of window sizes, (2)
maximum pause time of the collector, (3) maximum latency as de-
fined by the mutator application being tested, and (4) total through-
put of the mutator application. We use two standard benchmarks for
the mutators, SPECjbb2000 and SPECjvm98, as well as a synthetic
transactional benchmark of our own design.

We ran all benchmarks on an IBM LS20 blade (model 8850)
with two dual-core 2GHz AMD Opteron 270 processors, each
with 1 MB of L2 cache. The system had 5 GB of RAM. The
SPECjbb2000 benchmarks were run with a 256 MB heap, while the
SPECjvm98 benchmarks were given a 64 MB heap (in both cases
to ensure that collections happened with reasonable frequency). All
benchmarks were run in an experimental version of the IBM J9
virtual machine running in interpreted mode (the Staccato write
barrier is not yet implemented in the JIT compiler). '

Our validation is divided into three sections. We begin by exam-
ining properties of defragmentation, stop-the-worldlet collections,
and PageInfo lists and showing that they do not have any imprac-
tical worst-case behaviors. Then we look at the throughput of appli-
cation programs and compare to the Metronome collector, ensuring
that programs are not significantly slowed down by read barriers for
the new defragmentation algorithm. Finally, we present a close look
at MMU, pause times, and latency, comparing to Metronome and
to a competing pauseless collector [13].

6.1 Algorithmic Properties

Here we examined three different components of the collector: the
stop-the-worldlet quanta, defragmentation, and PageInfo lists.

Stop-the-worldlet collections. The major divergence between the
ideal algorithm (Section 2) and the one we implemented (Section 5)
is the use of occasional global pauses, where all threads are forced
to simultaneously perform collection work. To ensure that these
stop-the-worldlet collector quanta are not a significant portion of
the total time spent collecting, we measured the ratio over our
benchmark suite. The results are presented in the first column of
Table 1.

The average percentage of time spent performing stop-the-
worldlet (STW) collections over all benchmarks was 17.2%. How-
ever, the STW percentage for _201_compress is a major outlier.
We used the TuningFork performance analysis tool [19] to track
down the cause, and found a safe-point placement problem in both

!'In addition to the changes we made to implement Staccato, we also dis-
abled support for the Real-Time Specification for Java (RTSJ) standard [9]
and enabled defragmentation. Therefore, the performance results for our
Metronome configruation are not directly comparable to the WebSphere
Real Time product.

the Metronome and Staccato collectors. The error causes the al-
location of large objects to be performed atomically and to allow
multiple such allocations to occur without any intervening safe-
point. In general, our instrumentation considers the time between
a thread-premption request is posted to the time when all threads
have reached their safe-points to be collector work to be conserva-
tive in our accounting. In practice, for a single-threaded applica-
tion this charge to the collector is unnecessarily stringent. Because
_201_compress is single-threaded, it is correct to count these time
intervals as mutator work, thereby removing the outliers. This cor-
rection would reduce the overall STW perentage to 8.0%. However,
because this strategy does not generally work (for multi-threaded
applications), we can only report an overall 17.2% figure until this
issue (both the collector and the VM aspects) is resolved. More
generally, as we do the engineering work to reduce the number of
atomic and non-concurrent phases in the J9 implementation, this
number will continue to drop.

Defragmentation aborts. Our lock-free compaction algorithm is
an important and novel step beyond the Metronome collector, so
we studied it carefully. The next six columns of Table 1 are re-
lated to defragmentation. We tested two defragmentation policies.
In the first one (shown in columns labeled [ALL]), the algorithm
attempts to defragment every objects possible. Pages are sorted by
occupancy (percentage of objects in the page that are allocated) and
objects from low-occupancy pages are moved to high-occupancy
pages. Eventually, the algorithm runs out of high-occupancy pages
and stops. We tested a second policy (shown in columns labeled
[15%]) in which only pages with occupancies between 0% and 15%
are evacuated. The first policy is meant to stress-test the defrag-
mentation algorithm, while the second one is more reasonable and
is intended to be used in practice.

The first column of each policy (labeled “average pages moved”)
gives the average over all collections of the percentage of pages that
were successfully evacuated. One reason for unsuccessful evacu-
ations is the lack of high-occupancy pages, as mentioned above.
Another reason is that an object on the page could not be moved
because a mutator wrote to the object while it was being copied
(this is called an abort). In most cases, a greater percentage of ob-
jects is moved using the ALL policy than the 15% policy, but some-
times nondeterminism (which is a significant factor in aborted page
evacuations) causes this not to be true.

It is interesting that in most cases the two policy perform quite
similarly. As we show, much of the similarity is due to the lack of
availability of high-occupancy pages, which limits the number of
pages that can be evacuated. The columns labeled “object moves”
for each policy show the number of objects that the collector at-
tempts to move over all collections. (The collector only tries to
move an object if there is a high-occupancy page in which to put
it.) The number in parenthesis is the percentage of moves that are
aborted by the mutator. In both policies, less than 1% of moves are
aborted in any benchmark.

Of course, a page cannot be evacuated if any one of its objects
cannot be moved due to an abort. The columns labeled “page
moves” show the number of pages whose objects the collector
tries to move to an existing high-occupancy page. The number in
parentheses is the percentage of page evacuations that fail due to
aborts. In one case, as many as 17.2% of page evacuations are
aborted. However, the less aggressive policy fares better, with at
most a 5.1% abort rate. This policy evacuates only pages with low
occupancy, so there are fewer objects to move per page, and thus a
lower probability of failure.

The low failure rate of the 15% policy suggests that the simi-
larity in portion of pages moved between the two policies is due to
lack of availability of high-occupancy pages. This means that the
more reasonable 15% policy is almost successful at defragmenting



Benchmark Number | Time Avg Avg Object Object Page Page PageList
of col- | spentin | pages pages moves moves moves moves ops
lections | STW moved moved [ALL] [15%] [ALL] [15%]
(%) [ALL] [15%)] (abort%) | (abort%)| (abort%)| (abort%)
SPEC;jbb 2000 (1thr/256M) 7 7.0% 18.0% 14.0% 132575 | 53036 4113 3200 403736
0.1%) | (0.5%) | (10.0%) | (43%) | (0%)
SPECjbb 2000 (4thr/256M) 68 11.6% 15.6% 10.8% 3869326 | 1524890 | 94688 56078 3656855
0.6%) | (03%) | (7.2%) | (4.7%) | (0.05%)
_201_compress 3 82.0% 1.5% 1.6% 2903 378 58 48 38963
0.8%) | (0%) 17.2%) | (0%) (0%)
202_jess 12 10.1% 2.9% 13.3% 14119 11485 305 1578 198882
0.5%) | (0.0%) | 49%) | (0.3%) | (0%)
209_db 4 3.8% 1.2% 0.7% 3478 423 53 32 46552
0.0%) | (0%) 1.9%) | (0%) (0%)
213_javac 12 3.7% 352% 21.2% 665317 | 91549 7917 3999 179430
0.7%) | (02%) | (6.0%) | (1.6%) | (0%)
_222_mpegaudio 0 — 0 0 0 0 0 0 156
(0%)
227 _mtrt 8 6.8% 3.9% 1.9% 25267 2975 289 157 124758
0.0%) | (02%) | (59%) | (5.1%) | (0.01%)
228 _jack 5 12.8% 13.1% 13.0% 18874 7513 385 375 77948
0.3%) | (0.1%) | 3.6%) | 2.7%) | (0%)
Table 1. We measured a variety of collector characteristics over our benchmark suite.
the heap as the ALL policy, but it is cheaper and has a lower failure Configuration SPEC;jbb throughput
rate. To reduce the failure rate further, the collector could randomly Metronome 1.0x
select low-occupancy pages to evacuate in each collection. Staccato (STW mode) 1.04x
Staccato (GC mostly on mutators) 1.07x

PagelList operations.
list data structure is that contention between threads can cause pre-
vious pointers to be incorrect, forcing a potentially complete traver-
sal of the entire PageInfo list. In the last column of Table 1, we
measured the total number of PageInfo list operations as well as
the number of re-traversals (in parentheses as a percentage). The
highest contention rate was for SPECjbb2000 for which we specif-
ically measured the cost of PageInfo allocation, which is the only
scenario in which the PageInfo list data structure interacts with
the mutator. In the worst case it was only 20 ps.

6.2 Throughput

Another performance concern regarding the Staccato collector is
that it uses an especially complex write barrier to abort concurrent
moves during the compaction phase. This barrier operates on all
stores, not just pointers. Click et al. [13] benchmark SPECjbb, but
they do not provide throughput results for comparison. Instead, we
compared Staccato to Metronome, which uses a standard Yuasa-
style write barrier on pointers. (Metronome and Staccato use simi-
lar read barriers; Staccato simply adds one additional mask instruc-
tion.)

We measured the throughput of SPECjbb2000 in transactions
per second running three warehouses (three threads) with no com-
paction. Compaction was disabled because we were interested only
in mutator throughput, not differences in the collection algorithms.
For a similar reason, we tested two versions of Staccato. In one,
collection was primarily performed on mutator threads as usual. In
the other, all collection work was done in stop-the-worldlet mode.
All three versions used identical scheduling policies (same target
MMU and window size). We did this to make the collection algo-
rithms as similar as possible. Disabling collection entirely was not
possible on the machine we tested on. The results are shown rel-
ative to Metronome, since absolute SPECjbb2000 results are rela-
tively meaningless.

One concern in using our lock-free PageInfo

Despite the more barriers, Staccato still performs better than
Metronome, even in STW mode. The difference may be explained
by the use of lock-free PageInfo lists in Staccato and not in
Metronome. We were unable to eliminate this variable from the ex-
periment since this data structure is an integral part of the Staccato
implementation. Nevertheless, the additional cost of the Staccato
write barrier does not seem to be a significant performance prob-
lem.

The difference in performance between the two Staccato con-
figurations can be explained by the elimination of most context
switches between GC threads and mutator threads. In this case, it
is fairly clear that running collections on the mutator threads gen-
erates a 3% speedup in overall application performance.

6.3 Latency

We measure three interconnected values that determine an applica-
tion’s responsiveness: the minimum mutator utilization over a given
time window, the worst-case pause time, and the maximum latency
as perceived by the application. In the third case, most application
have notions of deadlines or transactions that should complete in a
specified time bound.

Unlike the ideal collector presented in Section 2, the collector
we implemented in J9 cannot meet arbitrary latency goals. Because
of the way J9 works, many of the stop-the-worldlet collection
phases must be executed atomically, and so the collector must pause
for at least this long to complete the phase. This pause time in turn
determines the MMU and maximum latencies that the collector can
support. Currently, the J9-imposed minimum pause time for both
Metronome and Staccato is approximately 500 us.

However, the performance of a collector is also constrained
by its ability to keep up with the allocation rate. If the collector
pauses only once in a given time window W, then it can support an
MMU of 1 — 500us/W over that window. Based on this equation,
Metronome and Staccato both support an MMU of 90% over a 5 ms



time window. However, Metronome is unlikely to be able to keep
up with the allocation rate if it pauses only once per 5 ms. In most
cases, Metronome is run with a 70% utilization over 10 ms for this
reason.

Staccato has more scheduling flexible than Metronome. It might
run at 90% utilization over 5 ms in its stop-the-worldlet phases
while using an idle thread on a spare CPU to perform the remainder
of the collection work. Mutator threads would be unaffected by the
idle thread. Another alternative would be to run unimportant work
with a low mutator utilization target; this thread would perform the
bulk of collection work, while more important threads would ben-
efit with better responsiveness. To demonstrate Staccato’s advan-
tages, we have tested both these scenarios.

Idle thread test. We tested SPECjbb2000 with a 256 MB heap
by running it with two mutator threads (two warehouses), one idle
thread, and one GC thread to perform STW collection phases.
Each mutator thread was assigned a target utilization of 100%,
while the STW collections were run with a target utilization of
90% over 5 ms. The maximum pause time over the test period
was 753 ps, which is typical for both Metronome and Staccato.
Since SPECjbb2000 is a transactional benchmark, we also mea-
sured transaction times. The mean transaction time was 563 us and
the maximum time was 2078 us. (SPECjbb transactions are not
designed to all be the same length.) The theoretically achievable
MMU over 5 ms, given a 500 ps maximum pause time, was 90%.
Staccato achieved an 85% MMU.

We ran Metronome on the same benchmark. Its GC was per-
formed entirely in STW phases on the GC thread, rather than alter-
nating between the GC thread and an idle thread as Staccato does.
Metronome was able to keep up with the allocation rate, but its
MMU frequently dropped to 70%, and sometimes as low as 65%
over the 5 ms window. The pauseless collector of Click et al. [13],
also evaluated on SPECjbb, had an MMU of 0% over 20 ms win-
dows and 52% over 200 ms windows.

High-priority test. As a second test, we ran a synthetic trans-
actional benchmark in parallel with SPECjbb2000. Our synthetic
benchmark has more regular transaction times than SPECjbb, so the
effects of the collector on it are clearer. It performs allocation and
numerical computation in a tight loop. Each transaction is designed
to last 7 ms. The synthetic benchmark ran with a higher thread pri-
ority and with a 100% utilization target. SPECjbb was run with a
50% target over 10 ms to ensure that the collector could keep pace
with allocation. This scenario is meant to resemble a real-world
situation with an important thread that should almost never be pre-
empted by the collector. Stop-the-worldlet collections ran with a
95% target utilization over 10ms, as in the previous experiment.

In this test, the maximum collector pause time was 679.6 us.
The synthetic benchmark obtained an 88% MMU over a 5 ms
window. The synthetic transactions had mean duration 7.031 ms
and maximum duration 7.797 ms. This test reinforces the previous
one, showing that Staccato can achieve low pause times and good
MMU despite its occasional reliance on stop-the-worldlet collec-
tion phases.

7. Related Work

Multi-core and multi-processor computers are becoming ubiqui-
tous even as garbage-collected languages (be it general-purpose
Java or Web-based scripting languages) are used in areas where
overall timeliness is necessary. These factors have led to modern
garbage collectors that possess one or more of the following at-
tributes: incrementality — the ability to break a collection into small
units; parallelism — the ability to run multiple collector threads si-
multaneously; concurrency — the ability to run collector threads
simultaneously with mutator threads; compacting — the ability to

avoid memory exhaustion due to fragmentation; and real-time — the
ability to provide predictable pause times, context switch latencies,
and minimum mutator utilization. As explained earlier, Staccato
has all of these features, with the proviso that the implementation
is not yet fully concurrent.

Perhaps the first attempt at a real-time collector was imple-
mented by Baker [5] for LISP in which he bound the operation
of each list-manipulating primitive to constant time. Unfortunately
this work-based algorithm fundamentaly does not decouple the mu-
tator from the collector, leading to the mutator always performing
a large of amount of collection work when a collection is first ini-
tiated and the copying is fault-induced. Although the pauses are
predicted at an instruction level, the actual utilization experienced
by the program at any reasonable granularity is very low.

Doligez et al. [15] presented a concurrent collector with a proof
of correctness. However, objects are moved only from a nursery to
the mature space in a synchronous manner. Depending on whether
we keep the generational aspect, this algorithm is either not real-
time or not compacting. More recent on-the-fly collectors [16]
also cannot compact the heap to remove fragmentation and are
unsuitable for long-runing applications.

Nettles and O’Toole [25] introduced replicating copying and
eliminated the need for a read-barrier by performing a double-
update for each mutator write and typically has low pauses. While
this technique is suitable for functional languages where the muta-
tion rate is low, it can be a net loss for imperative languages. Ad-
ditionally, the pauses are not guaranteed because large objects and
incremental log processing was not handled. was often.

Cheng and Blelloch [12] formalized the notion of MMU and
presented a parallel, real-time collector that met MMU goals in the
10ms range. However, because it is a replicating collector the space
overhead is large and space consumption can approach double that
of a defragmenting collector.

Flood et al. [17] describe a parallel collector with a parallel
sliding mark-compact phase for the old generation. Ben-Yitzhak
et al. [8] (in expanding over previous work by Barabash et al.[6])
explore how the pause-time cost of compaction in the IBM product
JVM can be ameliorated by what they call a parallel, incremental
compaction algorithm. However, the algorithm is not incremental
in the usual sense [5]; instead, a section of the heap, say 1/16“‘,
is compacted when the collector detects fragmentation). Unfortu-
nately both suffer from the popular object problem (in this case,
popular region) so that the pause time is not bounded due to non-
concurrent fixup. There are other collectors [14, 26] that perform
partial heap compaction. These techniques fundamentally cannot
provide real-time guarantees because the amount of work necessary
for the compaction is potentially much larger than the region being
compacted. Additionally, space overhead cannot be controlled and
can be large (e.g. up to 30% for SPECjbb2000) in practice.

The Azul garbage collector [13] uses specialized hardware and,
like Baker’s collector, does not decouple the mutator from the
collector. In some 50ms time windows, the program is only able
to run for 10ms. Out of the lost 40ms, half of it is attributable to
engineering issues related to root-scanning. Unfortunately the other
20ms is more fundamental and comes from the “trap storm” that
arises from the mutator being forced to do collection work.

In comparison, Staccato’s worst-case pauses of 753us are
28 times shorter than the 21 ms pauses reported for Azul’s so-
called “pauseless” collector [13], and the Staccato implementation
achieves an 85% MMU at Sms, while Azul’s reported MMU is only
52% at 200ms. Although their machine has as many as 384 pro-
cessors, published measurements are for 8 workers CPUs and an
unspecified number of additional GC CPUs. Thus their scalability
results are roughly similar to ours.



The Metronome system in IBM’s real-time Java product [21]
is parallel, incremental, and real-time — but not concurrent. The
original Metronome collector implemented in Jikes RVM [4] was
incremental and real-time but neither parallel nor concurrent.
We have already compared Staccato in considerable detail with
Metronome [4] in section 6.

8. Conclusion

This paper presents an algorithm for concurrent real-time garbage
collection. It introduces an efficient, lock-free algorithm for com-
pacting the heap in the presence of mutator-collector parallelism.
Combined with lock-free implementations of the mark and sweep
phases of collection, we have demonstrated a practical collector
implemented in IBM’s production J9 VM. Our algorithm permits
the user to specify per-thread MMU targets and opens up a wide
range of collector scheduling policies that support high allocation
rates even for high priority high, MMU threads. Empirically, our
implementation supports an 85% MMU over a Sms time window.
These results improve significantly upon previous work as well as
competing low-latency collectors.
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