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ABSTRACT

In this paper we present a Universal Turing Machine build
in the Cellular Automaton Conway’s Game of Life. This
is an extension of the Turing Machine built previously by
the author [10]. It is example of spatio-temporal collision
based computation and has infinite tape provided by two
stack structures which grow continuously using collision
based construction. Two patterns the fanout and takeout
are described which are key in solving the routing and syn-
chronization problems. The procedure used to find a viable
order of synthesis of the parts in the stack construction is
described.

KEYWORDS: Universal Turing Machine, Conway’s

Game of Life

1. INTRODUCTION

The author constructed a Turing Machine in Conway’s
Game of Life [10]. This machine has a Finite State Ma-
chine of three states and uses three symbols and a short fixed
length of tape. Figure 1 shows a snapshot of this machine
which doubles the length of a string of symbols on its tape.

This machine was claimed to be extendable to a universal
Turing machine. In this paper we present the results of that
extension. It takes two parts. Firstly the Finite State Ma-
chine has been expanded to accommodate a simple univer-
sal Turing machine. Secondly the stack has been modified
and the moving convoys of rakes added to construct stack
cells continuously.

We will describe the old Turing machine and then go on
to describe the extensions and the methods used to achieve
these results.

2.1. Conway’s Game of Life

The Game of Life, invented by J.H. Conway [2] is a cellular
automaton, where an infinite universe is divided into cells.
Each cell takes a state from a binary set and updates its state
according to certain strict rules. All cells change their states
simultaneously in discrete time. For Conway’s Game of
Life the cells have two states, usually called live and dead,
and the rules are based on the number of neighbouring cells,
which are alive.

2.2. Turing Machines

A Turing Machine consists of a finite state machine which
interacts with an infinite date storage medium. The data
storage medium takes the form of a theoretically infinite
long tape on which symbols can be written and read back
via a moving read/write head. The symbols which can ap-
pear on the tape must be members of a finite alphabet.

The machine performs a regular cycle, reading a symbol off
the tape, overwriting that symbol with another or the same
one and them moving the read/write head one symbol width
either right or left along the tape. This continues until the
machine reaches a conclusion in its internal workings and
halts.

The finite state machine is the program which determines
from the symbol read and an internal ’state’ what the sym-
bol to write should be and which way to move the read/write
head. It also has the opportunity to change its internal state.
There is one last thing it can do, it can halt.

The operation of the machine is completely determined by
a table which gives for each combination of input symbol
and internal state the quintuple:

• The symbol to write.
• The new internal state.
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• The direction to move the read/write head.
• Whether to halt or continue.

A Turing Machine has no other communication with the
outside world than the contents of the tape. The contents of
the tape before it starts represent its input and the contents
on the tape when it has finished represents its output. It is
possible that the machine never stops.

The Turing Machine is as a mathematical tool to probe the
limits of computability. its power comes from its simplicity,
speed and efficiency are of no consequence.

2.2. Universal Turing Machines

A universal Turing machine is a Turing machine which sim-
ulates the actions of another Turing machine. It takes as its
input a description of a Turing machine and a description of
that Turing machines tape. It leaves as part of its output a
description of the simulated Turing machines tape as if the
simulated machine had performed the calculation.

The existence of universal Turing machines proves that a
Turing machine is capable of performing every possible cal-
culation.

3. The GoL Turing Machine

The Turing Machine built in Conway’s Game of Life in
2000 is shown in the snapshot in Fig. 1 and diagrammat-
ically in Fig. 2.

The finite state machine part can clearly be seen as the
square pattern in the bottom left of the picture. This has
an addressing mechanism on the left (state value) and at the
bottom (symbol value) and nine memory cells to hold the
data table to describe the action for each combination of the
internal state and symbol values.

The Turing Machines tape is represented by the two stack
mechanises seen extending top left and bottom right. Each
stack cell can trap 3 gliders using the kickback reaction.
This is the reaction that turns a glider through 180 degrees
when encountering another at right angles. The traps can be
seen as empty rectangles between the denser patterns in the
cells. These denser patterns delay the transit of the gliders
from one cell to the next so that the destination cell is empty
when they arrive. The control signals for the cells travel up
the sides of the stack.

Between the two stacks is the logic to perform serial to par-

Figure 1. GoL Turing Machine

allel and parallel to serial conversion and generate the stack
control signals so that one stack performs a push operation
and the other performs a pop operation.

The other item visible is the delay loop for the next state
which extends from the centre towards the left top corner
underneath the left stack. The next state value is copied
from the data read from the finite state machine and sent
round this loop to address the finite state machine for the
next cycle in conjunction with the symbol popped from one
of the stacks.

3.1. Important Patterns

3.1.1. Queen Bee

The queen bee shuttle is little symmetrical pattern that move
back and forth and lays a bee hive as it turns. It dies if the
bee hive is still there when it returns. Figure 3 shows the
basic pattern (a), then after 15 generations (b) and after 30
generations (c). There are a number of ways of removing
the bee hive, An eater, A block another queen bee shuttle,
pentadecathlon and so on.

3.1.2. Gosper Gun

This is formed from 2 queen bee shuttles back to back. The
debris from the bee hive sparks creates a glider every cycle
of 30 generations. The pattern is shown top left in Fig. 4.
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Figure 2. GoL Turing Machine Diagram

(a) (b) (c)

Figure 3. Queen Bee

Figure 4. Gosper Gun and Buckaroo

3.1.3. Buckaroo

This is formed from a single queen bee shuttle stabilized
by an eater. It is of particular interest because of the spark
created as the bee hive is removed. This can reflect a glider
as shown bottom left in Fig. 4.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Fanout

3.1.4. Fanout

This makes use of the reaction stabilising one end of queen
bee shuttle by reflecting a glider. Two such patterns are
placed back to back so that both can reflect gliders. If the in-
put side has a missing glider then its queen bee is stabilised
by the other queen bee and the glider. This suppresses the
reflecting action and no glider is emitted from the output
that side either. A standard gosper gun supplies the stream
of gliders.

One very useful attribute of this setup is that it does not
work for just one configuration but continues to operate
over a range as shown in fig. 5. This allows loops to be built
easily. One of these is the memory cell described below .

3.1.5. Kickback Reaction

This is the reaction that turns a glider through 180 degrees
when encountering another at right angles. This is used to
form the walls of the stack cells.

3.1.6. Takeout

This is a 90 degree glider reflector made up of two pentade-
cathlons. A glider hitting the spark of a pentadecathlon just
right makes a block and the spark from another pentade-
cathlon converts this into a glider which moves out of the
way just in time. Figure 6 shows this in single generation
steps.

The pentadecathlons sit on one side of the glider path and
at just the right distance from the site of a kickback reac-
tion a glider can pass by the takeout in one direction but
be picked up and reflected by 90 degrees on its return from
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Take Out reflector in steps of 1 generations

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 7. Take Out reaction in steps of 15 generations

the kickback reaction. Figure 7 shows this in 15 generation
steps.

The addition of another pentadecathlon acting as a 180 de-
gree glider reflector removes the limitation on the distance
from the kickback reaction site and also adds the ability to
adjust the timing. Changing the distance of this extra pen-
tadecathlon by one cell changes the path length by eight
generations.

3.2. The Finite State Machine

The heart of the finite state machine is an array of memory
cells. Each cell holding one quintuple for a specific state
symbol combination.

The memory cell is made up of a fanout with one output
looped back to connect to the input using buckaroos. The
smallest cell has a loop of 240 generations with places for 8
gliders as shown in Fig. 8.

Figure 8. Memory Cell

Figure 9. Gated Memory Cell

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 10. Matrex Addressing in steps of 4 generations

The other output can be gated with another gosper gun and a
single glider supported by an eater can make an eight glider
hole in this to let out the data. Figure 9 shows the cell with
the gate at the top and the eater on the left.

A memory cell is addressed by spaceships travelling orthog-
onally through the gaps between the cells. The collision of a
Light Weight Space Ship and a Medium Weight Space Ship
forms a block which the spark from a pentadecathlon can
transform into a glider. Figure 10 shows this with snapshots
4 generations apart.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 11. KickBack reaction in steps of 8 generations

3.3. The Stack

The kickback reaction is used to make stack cell walls. A
glider is trapped between to streams of gliders by being
kicked back from one to the other. For this to work the
stack cell walls must be placed so that:

• The trapped glider loop is a multiple of the period of
the gliders forming the wall (30 generations).
• The trapped glider loop is a multiple of the period of a

glider (4 generations).
• The distance between the walls is an integer.

The minimum loop is thus 120 generations with walls
spaced 15 cells apart. This stack cell could hold 4 gliders
although only 3 are used in this design.

Control signals to open holes in the stack cell walls pass
up both sides of the stack. One fanout for each stack cell
copies these to make a stack cell wall.

The takeout allows gliders coming out of a stack cell to be
separated from those going in. This pattern is used in the
original stack to create the delay required between stack
cells so that the cell is empty when gliders enter it. This
is also the reason why the old stack is not at 45 degrees.
The takeout plus a buckaroo provide a delay of 120 gener-
ations with an offset of just 6 Life cells. Figure 12 shows a
snapshot of the stack.

4. GOL UNIVERSAL TURING MACHINE

The universal Turing machine built in Conway’s Game of
Life in 2010 is shown in the snapshot in Fig. 13. This is
a straight forward extension of the TM described in Sec. .
It has a longer tape and a larger finite state machine which
contains a 13 state 8 symbol universal Turing machine. This
directly simulate a Turing machine using the relative dis-

Figure 12. The stack with trapped gliders shaded

tance between transition descriptors instead of transition
identities. A full description of this can be found in [11].

The UTM was found to be efficient for the example for
which it was optimised, a unary multiplication TM mul-
tiplying [1]. It took fewer cycles than would be required
to move the UTM read/write head from the centre of the
TM tape description to the centre of the TM description and
back again for each TM cycle.

5. THE FORTY FIVE DEGREE STACK

A forty five degree stack is required so that it can be con-
structed by streams of gliders generated by two convoys of
rakes. Each rake generates a glider periodically and move
along at a constant speed. The gliders from one convoy ar-
riving at the construction site in the opposite direction to the
gliders from the other convoy.

The new design replaces the takeout delay mechanism with
a second kickback cell. Originally this meant duplicating all
the control mechanisms for the walls and having 2 sets of
controls on both sides. This was superceeded by the idea of
using one control for both sides of the stack cell by bending
it into a ‘U’ shape. For this to work the width of the cell had
to be increased so that a hole created to allow a glider out
of the far side of the ‘U’ did not let it out of the near side.

Doubling the cell size from the minimum loop of 120 gener-
ations to 240 generations provides 8 gliders in the cell wall
to control the 3 trapped gliders. A single hole is sufficient
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Figure 13. GoL Universal Turing Machine has the
description of a Turing machine as part of the data on

the tape with the TM alongside at the same scale.

to allow a glider into the cell but a double hole is required
to let it out. There is no problem letting gliders out of the
near size of the ‘U’ but to let gliders out of the far size the
double hole would need to pass round the ‘U’ without dis-
turbing the trapped gliders. This was solved by choosing
length of the ‘U’ and the phase of the gliders in the trap so
that the hole made by the containing kickback reaction on
the nearside appears next to the hole made by the kickback
reaction on the far side. Thus if this latter glider is missing
from the cell wall there is always a double hole to let the
glider out. Figure 14 shows a snapshot of the stack.

6. THE STACK CONSTRUCTOR

The stack cells are constructed by gliders sent in from two
convoys of rakes one on each side of the stack. There are
three stages to the construction, in the first stage a still life
field is built up. In the second phase the still life compo-
nents are activated and in the final phase a little tidying up
is required so that the new stack cell can be used.

6.1. The Convoys

Convoys have built from diagonal rakes with speeds of c/12
(moving one life cell diagonally in 12 generations) and c/5
(in 5 generations). However these are very large and slow.

Figure 14. The 45 degree stack with trapped gliders
shaded

We will describe the conveys built using the much smaller
period 360 c/2 orthogonal rakes.

The period 360 rakes where easily constructed from the
parts in Jason Summers collection [14]. The rakes work
in pairs, a forward rake and a backward rake, to add glid-
ers to the construction stream using the kickback reaction.
Figure 15 shows two snapshots of a pair of rakes inserting
a glider into the stream.

The procedure used to build the convoy of rakes is very sim-
ple and a changing the type of rake is trivial, Tab. 1 shows
the full python function used. There are two points to note
in this function, firstly no effort has been made to place the
rakes as close together as possible and secondly that when
creating the convoy for the left hand side there is an op-
tion of two different rake constructs. The first is the pair of
rakes described above, the second is a slightly more com-
plex group to place to gliders even closer by using an in-
termediate eater. The latter is used just once to enable the
synthesis for a boat.

6.1.Construction Tools

The basic synthesis of the components was taken from Mark
Niemiecs collection [8] which can now also be found at [7].
A cautious approach was taken in the synthesis to keep the
density of gliders in the construction stream low.

The objects requiring synthesis are; Queen Bee, Eater, Boat,
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(a) The gliders produced by the
rakes are shaded

(b) The inserted glider is shaded

Figure 15. A pair of period 360 rakes inserting a glider

def getPatt(self):

patt = pattern()

# process list sorted by y then x

if self.name==’left’:

for [x,y,r,Pty] in sorted(self.list,\
key=itemgetter(1,0),reverse=True):

if Pty==’glider’:

step=71

patt=patt[step*4](-step,step)

patt+=p360kickback[r](x,y,flip x)

else:

step=180

patt=patt[step*4](-step,step)

patt+=p360boatpairA[r](x,y,flip x)

else:

step=71

for [x,y,r,Pty] in sorted(self.list,\
key=itemgetter(0,1),reverse=True):

patt=patt[step*4](step,-step)

patt+=p360kickback[r](x,y,rccw)

return(patt)

Table 1. Python Function getPatt to create a convoy
of rakes from a list of coordinates.

Block, Pond and Ship.

The only item requiring activation is a queen bee and in
most cases this is archived with a single glider. The single
glider can transform a ship into a queen bee. The ship can
be created from a pond by another glider and the pond can
be created by 2 gliders in an number of ways.

The synthesizing gliders are routed to there destination by:

• Glider reflection by an eater Fig. 16 (a).
• Glider reflection by a boat Fig. 16 (b).
• Glider reflection by the kickback reaction Fig. 16 (c).
• Glider reflection by Glider Collision Fig. 16 (b).

(a) Eater (b) Boat (c) Kickback (d) Tee

Figure 16. A trace by Golly script envelope [5] showing
the path of the gliders in reflection reactions

The design of the construction was performed backwards.
Starting with the completed stack cell and adding eaters
and boats to route the activating gliders to the correct place
with the correct timing. Once a field of still life object had
been achieved the next step was to create a path all the way
through the field so that gliders from both sides can work
together to synthesis the objects. A python script was used
for the design.

The key feature of this script is that it allows a pattern to be
generated for a specific time in the construction. It shows
the synthesising gliders at the correct location for that time
regardless of the fact that they might not be able to get there
because of other objects in the way. Table 2 shows the code
for one part.

The first line 01 adds a buckaroo to the pattern stkl
at location (2,-56) with orientation ‘swap xy’, at time
28 and with the name ‘B3’. As stkl already has a
name ‘L’ the full name of this buckaroo is ‘L.B3’. The
string ′:h.s.p.90 :hb.90tttxyf′ is a list of quali-
fiers which give details of the orientation of the subparts, as
explained below.

The line 02 specifies that the time at which the part
‘L.B3.RE’ will be synthesised is 7458 generations before
completion. ‘RE’ is the reflecting eater of the buckaroo. A
trace of this is shown in Fig. 17 with the eater labelled B.
The other parts of the buckaroo shown in Fig. 17 are the
ship A which will become the queen bee shuttle later in the
construction and a block C to stabilise the other end of the
shuttle.

The next line 03 specifies that the source of one of the
two gliders (’G1’ and ’G1’) which synthesis the bucka-
roo eater is a kickback reaction. This reaction will source
the ’G1’ glider and occurs nine cells away from the site
of the eater synthesis. This reaction has the full name
‘L.B3.RE.LB3n1’ and the glider has the full name
‘L.B3.RE.G1’. The site of the kickback reaction is la-
belled D in Fig. 17.

Line 04 specifies the source of one of the two gliders
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01 stkl.addsubpart(ppart(’B3’,’buckaroo\
,′:h.s.p.90:hb.90tttxyf′)\
,2,-56,28,swap xy)

02 stkl.getobj(’L.B3’).\
changeLock(’RE’,ppart.locked,7458)

03 stkl.triggerbend(’L.B3.RE.G1’,\
’LB3n1’,’kickback-f’,5,9)

04 stkl.triggerbend(’L.B3.RE.LB3n1.GP1’\
,’LB3n2’,’teedown-’,-6,31)

05 stkl.getobj(’L.B3.H.Q’).\
changeLock(’SH’,ppart.locked,7548)

06 stkl.getobj(’L.B3.H.Q.SH’).\
changeLock(’P’,ppart.locked,50)

07 stkl.triggerbend(’L.B3.H.Q.SH.P.G2’\
,’LB3n3’,’teedown-’,-3,29)

08 stkl.getobj(’L.B3.H’).changeLock\
(’B’,ppart.locked,lockm+3400)

09 stkl.triggerbend(’L.B3.H.B.G1’,\
’LB3n3’,’teedown-’,-4,31)

Table 2. Python code fragment for the synthesis one of
the buckaroos

(’GP1’ and ’GP1’) involved in the kickback reaction. It
is the product of a ‘teedown’ reaction which occurs 31
cells away from the kickback reaction. This site, labelled
E in Fig. 17, is in the path through the stack so the three
gliders for the ‘teedown’ reaction come directly from the
convoys of rakes in the construction stream.

The line 05 specifies the synthesis time for the buckaroo
ship and the line after that, line 06 specifies the synthesis
time for the pond from which the ship is made. That is 50
generations before the ship. These times will set the rela-
tive positions of the gliders for these synthesises. Figure 17
shows these gliders, one labelled labelled F to make the ship
from the pond and three labelled G to make the pond.

One of the qualifiers for the buckaroo in line 01 is
‘:h.s.p.90’. This specifies a non default synthesis for
the pond using gliders colliding at 90 degrees. This qualifier
is passed though the hierarchy of components making up
the buckaroo each of which strips of a prefix so the ’h....’
is passed to the half queen bee shuttle, the ‘s....’ is passed
to the ship, the ‘p...’ is passed to the pond which recognises
the ‘90’.

The remaining lines specifies the source of further glid-
ers. The other qualifier for the buckaroo :hb.90tttxyf′

refers to hb the half queen bee shuttle block. It specifies a
90 degree collision synthesis and tttxyf specifies the ori-
entation of the synthesis. The other gliders all have a clear
path from the left and require no further modification.

Figure 17. A trace by the Golly script envelope [5]
showing the path of the gliders constructing the ship
and the eater of the B3 Buckaroo specified in Tab. 2.

7. CONCLUSION

We have presented a fully universal Turing machine in Con-
way’s Game of Life which is reasonably easy to program,
from which the results can clearly be read and it which runs
is a convenient time in Golly. A clear demonstration of the
universality of the game of life.

The continuous construction of stack cells also demonstrate
the ability to built complex repetitive patterns across the
space of a cellular automaton at a practical speed. This
might be a useful property if a physical material can be per-
suaded to perform as a cellular automaton. It demonstrates
that practical use can be made of a cellular automaton by
injecting patterns from the edges rather than having to ini-
tialise patterns in the bulk of the material.
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Figure 18. A snapshot of the fully universal Turing
machine. This snapshot was taken after the stacks have

been programmed and before running the program.

The work on Turing machines was greatly speeded up with
the aid of a Turing Machine Simulator by S. Britton [3].
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