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I. INTRODUCTION

Electronic non-adiabatic effects are an outcome of the Born–Oppenheimer–

Huang treatment and as such are a result of the distinction between the fast

moving electrons and the slow moving nuclei [1,2]. The non-adiabatic coupling

terms, together with the adiabatic potential energy surfaces (which are also an

outcome of this treatment) form the origin for the driving forces that govern the
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motion of the atoms in the molecular system. Still they differ from the potential

energy surfaces because they are, as we shall show, derivative coupling and as such

they are vectors, in contrast to adiabatic potential energy surfaces, which are scalars.

The ordinary way to get acquainted with objects like the non-adiabatic

coupling terms is to derive them from first principles, via ab initio calculations

[4–6], and study their spatial structure—somewhat reminiscent of the way

potential energy surfaces are studied. However, this approach is not satisfactory

because the non-adiabatic coupling terms are frequently singular (in addition to

being vectors), and therefore theoretical means should be applied in order to

understand their role in molecular physics. During the last decade, we followed

both courses but our main interest was directed toward studying their physical–

mathematical features [7–13]. In this process, we revealed (1) the necessity to

form sub-Hilbert spaces [9,10] in the region of interest in configuration space

and (2) the fact that the non-adiabatic coupling matrix has to be quantized for

this sub-space [7–10].

In the late 1950s and the beginning of the 1960s Longuet-Higgins and

colleagues [14–17] discovered one of the more interesting features in molecular

physics related to the Born–Oppenheimer–Huang electronic adiabatic eigen-

functions (which are parametrically dependent on the nuclear coordinates).

They found that these functions, when surrounding a point of degeneracy in

configuration space, may acquire a phase that leads to a flip of sign of these

functions. Later, this feature was explicitly demonstrated by Herzberg and

Longuet-Higgins [16] for the Jahn–Teller conical intersection model [18–29]

(see also Appendix A). This interesting observation implies that if a molecular

system possesses a conical intersection at a point in configuration space the

relevant electronic eigenfunctions that are parametrically dependent on the

nuclear coordinates, are multivalued (this finding was later confirmed for a real

case following ab initio calculations [30]). No hints were given to the fact that

this phenomenon is associated with the electronic non-adiabatic coupling terms.

In this chapter, we not only discuss this connection but also extend the two-state

case to the multistate cases.

In molecular physics, one distinguishes between (1) the adiabatic framework

that is characterized by the adiabatic surfaces and the above-mentioned non-

adiabatic coupling terms [31–46] and (2) the diabatic framework that is chara-

cterized by the smoothly behaving potential couplings (and the nonexistence of

non-adiabatic couplings) [31–53]. The adiabatic framework is in most cases

inconvenient for treating the nuclear Schrödinger equation because of two

reasons. (1) The non-adiabatic coupling terms are usually spiky [3,54] and

frequently singular [3,36,55,56] so that any numerical recipe for solving

this equation becomes unstable. (2) The singular feature of the non-adiabatic

coupling terms dictates certain boundary conditions that may not be easily

implemented for deriving the solution within this framework [56]. Therefore,
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transforming to the diabatic framework, to be termed diabatization, is ess-

entially enforced when treating the multistate problem as created by the Born–

Oppenheimer–Huang approach.

The diabatization can be carried out in various ways—and we discuss some

of them here—but the way recommended in the present composition is based

on the following two-step process: (1) Forming the Schrödinger equation within

the adiabatic framework (which also includes the non-adiabatic coupling terms)

and (2) employing a unitary transformation that eliminates these terms from the

adiabatic Schrödinger equation and replacing them with the relevant potential

coupling terms [34–36,57]. This two-step process creates, as will be shown, an

opportunity to study the features of the non-adiabatic coupling terms and the

results of this study constitute the main subject of this chapter.

The theoretical foundations for this study were laid in a 1975 publication

[34] in which this transformation matrix, hence to be termed the adiabatic-to-

diabatic transformation matrix, was shown to be a solution of an integral

equation defined along a given contour. In what follows, this equation will be

termed as a line integral. The line integral reduces, for the two-state case, to an

ordinary integral over the corresponding non-adiabatic coupling term, and

yields the adiabatic-to-diabatic transformation angle [34–36]. In addition, the

sufficient conditions that guarantee the existence and the single-valuedness of

the integral-equation solution (along a contour in a given region in configuration

space) were derived. In this context, it was shown that these conditions, hence

termed the curl conditions, are fulfilled by the system of Born–Oppenheimer–Huang

eigenfunctions that span a full-Hilbert space [34], and sometimes, under certain

conditions, also span a sub-Hilbert space [8–10].

These two findings form a connection of the theory of the electronic non-

adiabatic coupling terms with the Yang–Mills isotopic gauge transformation

[58,59]. The existence of the curl conditions may lead to nonzero Yang–Mills

fields as will be proposed in Section XIV. Still, it is important to emphasize that

the curl condition as it emerges from our theory and the Yang–Mills field that is

a quantum mechanical extension of the classical electromagnetic theory are far

from being identical or of the same origin.

In 1992, Baer and Englman [55] suggested that Berry’s topological phase

[60–62], as derived for molecular systems, and likewise the Longuet-Higgins

phase [14–17], should be related to the adiabatic-to-diabatic transformation

angle as calculated for a two-state system [56] (see also [63]). Whereas the

Baer–Englman suggestion was based on a study of the Jahn–Teller conical

intersection model, it was later supported by other studies [11,12,64–75]. In

particular, it can be shown that these two angles are related by comparing the

‘‘extended’’ Born–Oppenheimer approximation, once expressed in terms of the

gradient of the Longuet-Higgins phase (see Appendix A) and once in terms of

the two-state non-adiabatic coupling term [75].
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Although the two angles seem to serve the same purpose, there is one

fundamental difference between the two: The Longuet-Higgins phase (or the

molecular Berry phase), when followed along a closed contour becomes, due to

an ansatz, a multiple of p. Contrary to this ansatz, the situation with respect to

the adiabatic-to-diabatic transformation angle is much more fundamental,

because of the close relationship between the non-adiabatic coupling terms and

the diabatic potentials. It was proved that the corresponding non-adiabatic

coupling matrix has to be ‘‘quantized’’ (see Section IV) in order to yield single-

valued diabatic potentials. This ‘‘quantized’’ non-adiabatic coupling matrix

yields, in the case of a two-state isolated system, an adiabatic-to-diabatic

transformation angle, with features as demanded by the Longuet-Higgins ansatz.

In other words, the adiabatic-to-diabatic transformation angle when calculated

along closed contours becomes, just like the Longuet-Higgins phase, a multiple

of p (or zero).

The next question asked is whether there are any indications, from ab initio

calculations, to the fact that the non-adiabatic transformation angles have this

feature. Indeed such a study, related to the H3 system, was reported a few years

ago [64]. However, it was done for circular contours with exceptionally small

radii (at most a few tenths of an atomic unit). Similar studies, for circular and

noncircular contours of much larger radii (sometimes up to five atomic units and

more) were done for several systems showing that this feature holds for much

more general situations [11,12,74]. As a result of the numerous numerical

studies on this subject [11,12,64–75] the quantization of a quasi-isolated

two-state non-adiabatic coupling term can be considered as established for

realistic systems.

Like the curl condition is reminiscent of the Yang–Mills field, the quanti-

zation just mentioned is reminiscent of a study by Wu and Yang [76] for the

quantization of Dirac’s magnetic monopole [77–78]. As will be shown,

the present quantization conditions just like the Wu and Yang conditions result

from a phase factor, namely, the exponential of a phase and not just from a

phase.

As mentioned above, the starting point in this field is the Born–

Oppenheimer–Huang treatment. However in the first derivations [34] it was

always assumed that the corresponding Born–Oppenheimer–Huang eigenfunc-

tions form a full-Hilbert space. Here, the derivation is repeated for a finite sub-

Hilbert space, which is defined by employing features of the non-adiabatic

coupling terms. It will be shown that this particular sub-space behaves,

for all practical purposes, as a full-Hilbert space [8–10]. These subjects are

treated in Sections II and III. The connection between the non-adiabatic

coupling matrix and the uniqueness of the relevant diabatic potential matrix is

presented in Section IV; the quantization of the non-adiabatic coupling matrix

is discussed in Section V and the conditions for breaking up the complete

the electronic non-adiabatic coupling term 43



Hilbert space into sub-Hilbert spaces and sub-sub-Hilbert spaces are given in

Section VI. Three subjects related to topological effects are presented

in Sections VII–IX, and multidegeneracy at a point is further (briefly) discussed

in Section X. Section XI is devoted to a practical aspect of the theory, namely,

how and when one may/can diabatize an electronic adiabatic framework. An

interesting relationship between the adiabatic-to-diabatic transformation matrix

and Wigner’s rotation matrix is discussed in Section XII. Two ‘‘exotic’’

subjects—one related to pseudomagnetic fields in molecular systems and the

other related to the possibility of calculating the non-adiabatic coupling terms

from the curl equations—are presented in Sections XIII and XIV, respectively.

Throughout the review, we show results as derived from ab initio calculations.

However, more situations and examples are given in Section XV. A summary

and conclusions are presented in Section XVI.

II. THE BORN–OPPENHEIMER–HUANG TREATMENT

A. The Born–Oppenheimer Equations for a Complete Hilbert Space

The Hamiltonian, H, of the nuclei and the electrons is usually written in the

following form:

H ¼ Tn þ Heðe j nÞ ð1Þ

where Tn is the nuclear kinetic energy, He(e j n) is the electronic Hamiltonian

that also contains the nuclear Coulombic interactions and depends parametri-

cally on the nuclei coordinates, and e and n stand for the electronic and the

nuclear coordinates, respectively.

The Schrödinger equation to be considered is of the form:

ðH � EÞ�ðe; nÞ ¼ 0 ð2Þ

where E is the total energy and �(e;n) is the complete wave function that

describes the motions of both the electrons and the nuclei. Next, we employ the

Born–Oppenheimer–Huang expansion:

�ðe; nÞ ¼
XN

i¼1

ciðnÞziðe j nÞ ð3Þ

where the ci(n), i ¼ 1; . . . ; N are nuclear-coordinate dependent coefficients

(recognized later as the nuclear wave functions) and ziðe j nÞ; i ¼ 1; . . . ; N are

the electronic eigenfunctions of the above introduced electronic Hamiltonian:

½Heðe j nÞ � uiðnÞ�ziðe j nÞ ¼ 0 i ¼ 1; . . . ;N ð4Þ
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Here uiðnÞ; i ¼ 1; . . . ;N are the electronic eigenvalues recognized, later, as the

(adiabatic) potential energy surfaces (PES) that governs the motion of the nuclei.

In this treatment, we assume that the Hilbert space is of dimension N.

Substituting Eq. (3) in Eq. (2), multiplying it from the left by zjðe j nÞ, and

integrating over the electronic coordinates while recalling Eqs. (1) and (4), yields

the following set of coupled equations:

XN

i¼1

hzjjTnciðnÞjzii þ ðujðnÞ � EÞcjðnÞ ¼ 0 j ¼ 1; . . . ;N ð5Þ

where the bra–ket notation means integration over electronic coordinates. To

continue, we recall that the kinetic operator Tn can be written (in terms of mass-

scaled coordinates) as

Tn ¼ � 1

2m
$2 ð6Þ

where m is the mass of the system and $ is the gradient (vector) operator. By

substituting Eq. (6) in Eq. (5) yields the more explicit form of the Born–

Oppenheimer–Huang system of coupled equations:

� 1

2m
r2cj þ ðujðnÞ � EÞcj �

1

2m

XN

i¼1

ð2sð1Þji � rci þ tð2Þji ciÞ ¼ 0

j ¼ 1; . . . ;N ð7Þ

where s(1) is the non-adiabatic (vector) matrix of the first kind with the elements:

sð1Þji ¼ hzjjrzii ð8aÞ

and sð2Þ is non-adiabatic (scalar) matrix of the second kind, with the elements:

sð2Þji ¼ hzjjr2zii ð8bÞ

For a system of real electronic wave functions, sð1Þ is an antisymmetric matrix.

Equation (7) can also be written in a matrix form as follows:

� 1

2m
r2W þ ðu � EÞW � 1

2m
ð2sð1Þ � r þ sð2ÞÞW ¼ 0 ð9Þ

where W is column vector that contains nuclear functions.
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B. The Born–Oppenheimer–Huang Equation for a (Finite)
Sub-Hilbert Space

Next, the full-Hilbert space is broken up into two parts—a finite part, designated

as the P space, with dimension M, and the complementary part, the Q space

(which is allowed to be of an infinite dimension). The breakup is done according

to the following criteria [8–10]:

sð1Þij ffi 0 for i � M j > M ð10Þ

In other words, the non-adiabatic coupling terms between P and Q states are all

assumed to be zero. These requirements will later be reconsidered for a relaxed

situation where these coupling terms are assumed to be not necessarily

identically zero but small, that is, of the order e in regions of interest.

To continue, we define the following two relevant Feshbach projection

operators [79], namely, PM, the projection operator for the P space

PM ¼
XM

j¼1

jzjihzjj ð11aÞ

and QM , the projection operator for the Q space

QM ¼ I � PM ð11bÞ

Having introduced these operators, we are now in a position to express the

P part of the sð2Þ matrix (to be designated as sð2ÞM ) in terms of the P part of sð1Þ (to

be designated as sð1ÞM ). To do that, we consider Eq. (8a) and derive the following

expression:

rtð1Þji ¼ rhzjjrzii ¼ hrzjrzii þ hzjjr2zii

or, by recalling Eq. (8b), we get

sð2Þji ¼ �hrzjjrzii þ rsð1Þji ð12Þ

The first term on the right-hand side can be further treated as follows:

hrzjjrzii ¼ hrzjPM þ QMjrzii

which for i; j � M becomes

hrzjjrziijM ¼ hrzjjPM jrzii ¼
XM
k¼1

hrzjjzkihzkjrzii ð13Þ

46 michael baer



(the contribution due to QM can be shown to be zero), or also:

hrzjjrziijM ¼ ðsð1ÞM Þ2
ij i; j � M ð13aÞ

where sð1ÞM is, as mentioned above, of dimension M. Therefore within the Pth

subspace the matrix sð2ÞM can be presented in terms of sð1ÞM in the following way:

sð2ÞM ¼ ðsð1ÞM Þ2 þrsð1ÞM ð14Þ

Substituting the matrix elements of Eq. (14) in Eq. (7) yields the final form of the

Born–Oppenheimer–Huang equation for the P subspace:

� 1

2m
r2W þ u � 1

2m
t2

M � E

� �
W � 1

2m
ð2sM � r þ rsMÞW ¼ 0 ð15Þ

where the dot designates the scalar product, W is a column matrix that contains

the nuclear functions fci; i ¼ 1; . . . ;Mg, u is a diagonal matrix that contains the

adiabatic potentials, and sM , for reasons of convenience, replaces sð1ÞM . Equation

(15) can also be written in the form [9]:

� 1

2m
ðr þ sMÞ2W þ ðu � EÞW ¼ 0 ð16Þ

which is writing the Schrödinger equation more compactly. (A similar

Hamiltonian was employed by Pacher et al. [41] within their block-diagonalized

approach to obtain quasidiabatic states.)

III. THE ADIABATIC-TO-DIABATIC TRANSFORMATION

A. The Derivation of the Adiabatic-to-Diabatic Transformation Matrix

The aim in performing what is termed the adiabatic-to-diabatic transformation is

to eliminate from Eq. (16) the eventually problematic matrix, sM , which is done

by replacing the column matrix W in Eq. (16) by another column matrix U where

the two are related as follows:

W ¼ AU ð17Þ

At this stage, we would like to emphasize that the same transformation has to be

applied to the electronic adiabatic basis set in order not to affect the total wave

function of both the electrons and the nuclei. Thus if x is the electronic basis set

that is attached to U then f and n are related to each other as

n ¼ fAy ð18Þ
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Here, A is an undetermined matrix of the coordinates (Ay is its Hermitian

conjugate). Our next step is to obtain an A matrix, which will eventually simplify

Eq. (16) by eliminating the sM matrix. For this purpose, we consider the

following expression:

ðr þ sMÞ2
AU ¼ ðr þ sMÞðr þ sMÞAU

¼ ðr þ sMÞðArU þ ðrAÞ�þ sMAUÞ
¼ 2ðrAÞ � rU þ Ar2U þ ðr2AÞU þ ðrsMÞAU

þ 2sMðrAÞU þ 2sMAðrUÞ þ s2
MAU

which can be further developed to become

; ¼ Ar2U þ 2ðrA þ sMAÞ � rU þ fðsM þrÞ � ðrA þ sMAÞgU

where the r parameters, in the third term, do not act beyond the curled

parentheses {}. Now, if A (henceforth to be designated as AM in order to remind

us that it belongs to the M-dimensional P subspace) is chosen to be a solution of

the following equation:

rAM þ sMAM ¼ 0 ð19Þ

then the above (kinetic energy) expression takes the simplified form:

ðr þ sMÞ2
AU ¼ AMr2U ð20Þ

and therefore Eq. (16) becomes

� 1

2m
r2U þ ðWM � EÞU ¼ 0 ð21Þ

where we used the fact that AM is a unitary matrix (seen Appendix B) and WM ,

the diabatic potential matrix, is given in the form:

WM ¼ ðAMÞyuMAM ð22Þ

Equation (21) is the diabatic Schrödinger equation.

In what follows, the A matrix (or the AM matrix) will be called the adiabatic-

to-diabatic transformation matrix.

B. The Necessary Condition for Having a Solution for the
Adiabatic-to-Diabatic Transformation Matrix

The A matrix has to fulfill Eq. (19). It is obvious that all features of A are

dependent on the features of the s-matrix elements. Thus, for example, if we
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want the adiabatic-to-diabatic transformation matrix to have second derivatives

or more in a given region, the s-matrix elements have to be analytic functions in

this region, namely, they have to have well-defined derivatives. However, this is

not enough to guarantee the analyticity of A. In order for it to be analytic, there

are additional conditions that the elements of this matrix have to fulfill, namely,

that the result of two (or more) mixed derivatives should not depend on the order

of the differentiation. In other words, if p and q are any two coordinates then the

following condition has to hold:

q2

qpqq
A ¼ q2

qqqp
A ð23Þ

The conditions for that to happen are derived in Appendix B (under

Analyticity) and are given here:

q
qp

sq �
q
qq

sp � ½sq; sp� ¼ 0 ð24Þ

which can also be written more compact as a vector equation:

curl s � ½s � s� ¼ 0 ð25Þ

For a two-state system Eq. (25) simplifies significantly to become

curl s ¼ 0 ð26Þ

In what follows, Eq. (25) [and Eq. (26)] will be referred to as the curl condition.

In Appendix C it is proved, employing the integral representation [see Eq. (27)],

that the fulfillment of this condition at every point throughout a given region,

guarantees the single valuedness of the A matrix throughout this region.

The importance of the adiabatic-to-diabatic transformation matrix is in the

fact that given the adiabatic potential matrix it yields the diabatic potential

matrix. Since the potentials that govern the motion of atomic species have to be

analytic and single valued, and since the adiabatic potentials usually have these

features, we expect the adiabatic-to-diabatic transformation to yield diabatic

potentials with the same features. Whereas the analyticity feature is guaranteed

because the adiabatic-to-diabatic transformation matrix is usually analytic it is

more the uniqueness requirement that is of concern. The reason being that in

cases where the electronic eigenfunctions become degenerate in configuration

space the corresponding non-adiabatic coupling terms become singular (as is

well known from the Hellmann–Feynman theorem [3,36]) and this as is proved

in Appendix C, may cause the adiabatic-to-diabatic transformation matrix to become

multivalued. Thus we have to make sure that the relevant diabatic potentials will
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also stay single-valued in cases where the adiabatic-to-diabatic transformation

matrix is not. All these aspects will be discussed in Section IV.

By returning to the diabatic potentials as defined in Eq. (22), the condition

expressed in Eq. (25) also guarantees well-behaved (namely, single-valued)

diabatic potentials. However, it is known (as was already discussed above) that

the s-matrix elements are not always well behaved because they may become

singular, implying that in such regions Eq. (25) is not satisfied at every point. In

such a situation the analyticity of the adiabatic-to-diabatic transformation matrix

may still be guaranteed (except at the close vicinity of these singular points) but

no longer its single-valuedness. The question is to what extent this ‘‘new’’

difficulty is going to affect the single-valuedness of the diabatic potentials

(which have to be single valued if a solution for the corresponding Schrödinger

equation is required). Section IV is devoted to this issue.

IV. THE ADIABATIC-TO-DIABATIC TRANSFORMATION
MATRIX AND THE LINE INTEGRAL APPROACH

From now on, the index M will be omitted and it will be understood that any

subject to be treated will refer to a finite sub-Hilbert space of dimension M.

Equation (19) can also be written as an integral equation along a contour in

the following way [34–36]:

Aðs; s0 j �Þ ¼ Aðs0 j �Þ �
ðs

s0

ds0 � sðs0 j �ÞAðs0; s0 j �Þ ð27Þ

where � is the given contour in the multidimensional configuration space, the

points s and s0 are located on this contour, ds0 is a differential vector along this

contour, and the dot is a scalar product between this differential vector and the

(vectorial) non-adiabatic coupling matrix s. Note that the s matrix is the kernel of

this equation and since, as mentioned above, some of the non-adiabatic coupling

terms may be singular in configuration space (but not necessarily along the

contour itself), it has implication on the multivaluedness of both the A matrix

and the diabatic potentials.

A. The Necessary Conditions for Obtaining Single-Valued Diabatic
Potentials and the Introduction of the Topological Matrix

The solution of Eq. (19) can be written in the form [57]:

Aðs; s0Þ ¼ } exp �
ðs

s0

ds � s
� �

Aðs0Þ ð28Þ
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where the symbol } is introduced to indicate that this integral has to be carried

out in a given order [57,80]. In other words, } is a path ordering operator. The

solution in Eq. (28) is well defined as long as s, along �, is well defined.

However, as mentioned earlier, the solution may not be uniquely defined at every

point in configuration space. Still, we claim that under certain conditions such a

solution is of importance because it will lead to uniquely defined diabatic

potentials. This claim brings us to formulate the necessary condition for

obtaining uniquely defined diabatic potentials.

Let us consider a closed path � defined in terms of a continuous parameter l
so that the starting point s0 of the contour is at l ¼ 0. Next, b is defined as the

value attained by l once the contour completes a full cycle and returns to its

starting point. For example, in the case of a circle, l is an angle and b ¼ 2p.

With these definitions we can now look for the necessary condition(s). Thus,

we assume that at each point s0 in configuration space the diabatic potential

matrix WðlÞ ½� Wðs; s0Þ� fulfills the condition:

Wðl ¼ 0Þ ¼ Wðl ¼ bÞ ð29Þ

Following Eq. (22), this requirement implies that for every point s0 we have

Ayð0Þuð0ÞAð0Þ ¼ AyðbÞuðbÞAðbÞ ð30Þ

Next, we introduce another transformation matrix, B, defined as

B ¼ AðbÞAyð0Þ ð31Þ

which, for every s0 and a given contour �, connects uðbÞ with uð0Þ:

uðbÞ ¼ Buð0ÞBy ð32Þ

The B matrix is, by definition, a unitary matrix (it is a product of two unitary

matrices) and at this stage except for being dependent on � and, eventually, on

s0, it is rather arbitrary. In what follows, we shall derive some features of B.

Since the electronic eigenvalues (the adiabatic PESs) are uniquely defined at

each point in configuration space we have uð0Þ � uðbÞ, and therefore Eq. (32)

implies the following commutation relation:

½B; uð0Þ� ¼ 0 ð33Þ

or more explicitly:

X
j¼1

ðB�
kjBkj � dkjÞujð0Þ ¼ 0 ð34Þ
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Equation (34) has to hold for every arbitrary point s0 ð� l ¼ 0Þ on the path

� and for an essential, arbitrary set of nonzero adiabatic eigenvalues,

ujðs0Þ; j ¼ 1; . . . ;M. Due to the arbitrariness of s0, and therefore also of the

ujðs0Þ values, Eqs. (34) can be satisfied if and only if the B-matrix elements

fulfill the relation:

B�
kjBkj ¼ dkj j; k � M ð35Þ

or

Bjk ¼ djkexpðiwkÞ ð36Þ

Thus B is a diagonal matrix that contains in its diagonal (complex) numbers

whose norm is 1 (this derivation holds as long as the adiabatic potentials are

nondegenerate along the path �). From Eq. (31), we obtain that the B-matrix

transforms the A-matrix from its initial value to its final value while tracing a

closed contour:

AðbÞ ¼ BAð0Þ ð37Þ

Let us now return to Eq. (28) and define the following matrix:

D ¼ } exp �
ð

‘

�

ds � s
� �

ð38Þ

Notice from Eq. (28) that if the contour � is a closed loop (which returns

to s0) the D matrix transforms Aðs0Þ to its value Aðs ¼ s0js0Þ at the end of the

closed contour, namely;

Aðs ¼ s0 j s0Þ ¼ DAðs0Þ ð39Þ

Now, by comparing Eq. (37) with Eq. (39) it is noticed that B and D are

identical, which implies that all the features that were found to exist for the B
matrix also apply to the matrix D as defined in Eq. (38).

Returning to the beginning of this section, we established the following: The

necessary condition for the A matrix to yield single-valued diabatic potentials is

that the D matrix, defined in Eq. (38), be diagonal and has, in its diagonal,

numbers of norm 1. Since we consider only real electronic eigenfunctions these

numbers can be either (þ1) or (�1) established. By following Eq. (39), it is also

obvious that the A matrix is not necessarily single-valued because the D matrix,

as was just proved, is not necessarily a unit matrix. In what follows, the number

of (�1) values in a given matrix D will be designated as K.
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The D matrix plays an important role in the forthcoming theory because it

contains all topological features of an electronic manifold in a region

surrounded by a contour � as will be explained next.

That the electronic adiabatic manifold can be multivalued is a well-known

fact, going back to Longuet-Higgins et al. [14–17]. In this section, we just

proved that the same applies to the adiabatic-to-diabatic transformation matrix

and for this purpose we introduced the diabatic framework. The diabatic

manifold is, by definition, a manifold independent of the nuclear coordinates

and therefore single-valued in configuration space. Such a manifold always

exists for a complete Hilbert space [36b] (see Appendix D). Next, we assume

that an approximate (partial) diabatic manifold like that can be found for the

present sub-Hilbert space defined with respect to a certain region in

configuration space. This approximate diabatic manifold is, by definition,

single valued. Then, we consider Eq. (18), in which the electronic diabatic

manifold is presented in terms of the product zAy, where z is the adiabatic

electronic manifold. Since this product is singled valued in configuration space

(because it produces a diabatic manifold) it remains single valued while tracing

a closed contour. In order for this product to remain single valued, the number of

wave functions that flip sign in this process has to be identical to the topological

number K. Moreover the positions of the (�1)s in the D matrix have to match

the electronic eigenfunctions that flip their sign. Thus, for example, if the third

element in the D matrix is (�1) this implies that the electronic eigenfunction

that belongs to the third state flips sign.

It is known that multivalued adiabatic electronic manifolds create topological

effects [23,25,45]. Since the newly introduced D matrix contains the

information relevant for this manifold (the number of functions that flip sign

and their identification) we shall define it as the Topological Matrix.

Accordingly, K will be defined as the Topological Number. Since D is

dependent on the contour � the same applies to K thus: K ¼ Kð�Þ.

B. The Quasidiabatic Framework

In Section IV.A, the adiabatic-to-diabatic transformation matrix as well as the

diabatic potentials were derived for the relevant sub-space without running

into theoretical conflicts. In other words, the conditions in Eqs. (10) led to a finite

sub-Hilbert space which, for all practical purposes, behaves like a full (infinite)

Hilbert space. However it is inconceivable that such strict conditions as presented

in Eq. (10) are fulfilled for real molecular systems. Thus the question is to what

extent the results of the present approach, namely, the adiabatic-to-diabatic

transformation matrix, the curl equation, and first and foremost, the diabatic

potentials, are affected if the conditions in Eq. (10) are replaced by more realis-

tic ones? This subject will be treated next.
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The quasidiabatic framework is defined as the framework for which the

conditions in Eqs. (10) are replaced by the following less stricked ones [81]:

sð1Þij ffi OðeÞ for i � M j > M ð40Þ

Thus, we still relate to the same sub-space but it is now defined for P-states that

are weakly coupled to Q-states. We shall prove the following lemma: If

the interaction between any P- and Q-state measures like O(e), the resultant

P-diabatic potentials, the P-adiabatic-to-diabatic transformation matrix elements

and the P-curl t equation are all fulfilled up to Oðe2Þ.

1. The Adiabatic-to-Diabatic Transformation Matrix

and the Diabatic Potentials

We prove our statement in two steps: First, we consider the special case of a

Hilbert space of three states, the two lowest of which are coupled strongly to each

other but the third state is only weakly coupled to them. Then, we extend it to the

case of a Hilbert space of N states where M states are strongly coupled to each

other, and L ð¼ N � MÞ states, are only loosely coupled to these M original

states (but can be strongly coupled among themselves).

We start with the first case where the components of two of the s-matrix

elements, namely, t13 and t23, are of the order of OðeÞ [see Eq. (40)].

The 3 � 3 A matrix has nine elements of which we are interested in only

four, namely, a11, a12, a21, and a22. However, these four elements are coupled

to a31 and a32 and, therefore, we consider the following six line integrals [see

Eq. (27)]:

aijðsÞ ¼ aijðs0Þ �
X3

k¼1

ðs

s0

ds � tikðsÞakjðsÞ i ¼ 1; 2; 3 j ¼ 1; 2 ð41Þ

Next, we estimate the magnitudes of a31 and a32 and for this purpose we

consider the equations for a31 and a32. Thus, assuming a1j and a2j are given, the

solution of the relevant equations in Eq. (41), is

a3jðsÞ ¼ a3jðs0Þ �
ðs

s0

ds0 � ðt31a1j þ t32a2jÞ ð42Þ

For obvious reasons, we assume a3jðs0Þ ¼ 0. Since both, a1j and a2j, are at most

(in absolute values) unity, it is noticed that the magnitude of a31 and a32 are of the

order of OðeÞ just like the assumed magnitude of the components of ti3 for

i ¼ 1; 2. Now, returning to Eq. (41) and substituting Eq. (42) in the last term in

each summation, one can see that the integral over ti3a3j; j ¼ 1; 2 is of the second
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order in e, which can be specified as Oðe2Þ. In other words, ignoring the coupling

between the two-state system and a third state introduces a second-order error in

the calculation of each of the elements of the two-state A matrix.

To treat the general case, we assume A and s to be of the following form:

A ¼ AðMÞ AðM;LÞ

AðL;MÞ AðLÞ

� �
ð43aÞ

and

s ¼ sðMÞ sðM;LÞ

sðL;MÞ sðLÞ

� �
ð43bÞ

where we recall that M is the dimension of the P sub-space. As before, the

only parts of the A matrix that are of interest for us are AðMÞ and AðL;MÞ. By

substituting Eqs. (43) in Eq. (27), we find for AðMÞ the following integral

equation:

AðMÞ ¼ A
ðMÞ
0 �

ðs

s0

ds � sðMÞAðMÞ �
ðs

s0

ds � sðM;LÞAðL;MÞ ð44Þ

where A stands for A(s) and A0 for Aðs0Þ. Our next task is to get an estimate for

AðL;MÞ. For this purpose, we substitute Eqs. (43) in Eq. (19) and consider the first-

order differential equation for this matrix:

rAðL;MÞ þ sðL;MÞAðMÞ þ tðLÞAðL;MÞ ¼ 0 ð45aÞ

which will be written in a slightly different form:

rAðL;MÞ þ sðLÞAðL;MÞ ¼ �sðL;MÞAðMÞ ð45bÞ

in order to show that it is an inhomogeneous equation for AðL;MÞ (assuming the

elements of AðMÞ are known). Equation (45b) will be solved for the initial

conditions where the elements of AðL;MÞ are zero (this is the obvious choice in

order for the isolated sub-space to remain as such in the diabatic framework

as well). For these initial conditions, the solution of Eq. (45a) can be shown

to be

AðL;MÞ ¼ exp �
ðs

s0

ds0 � sðLÞ
� � ðs

s0

exp

ðs0

s0

ds} � sðLÞ
 !

ds0 � sðL;MÞAðMÞ

( )
ð46Þ

In performing this series of integrations, it is understood that they are carried

out in the correct order and always for consecutive infinitesimal sections along
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the given contour � [57]. Equation (46) shows that all elements of AðL;MÞ are

linear combinations of the (components of the) tðL;MÞ elements, which are all

assumed to be of first order in e. We also reiterate that the absolute values of all

elements of AðMÞ are limited by the value of the unity.

Now, by returning to Eq. (44) and replacing AðL;MÞ by the expression in

Eq. (46) we find that the line integral to solve AðMÞ is perturbed to the second

order, namely,

AðMÞ ¼ A
ðMÞ
0 �

ðs

s0

ds � sðMÞAðMÞ þ Oðe2Þ ð47Þ

This concludes our derivation regarding the adiabatic-to-diabatic transforma-

tion matrix for a finite N. The same applies for an infinite Hilbert space (but

finite M) if the coupling to the higher Q-states decays fast enough.

Once there is an estimate for the error in calculating the adiabatic-to-diabatic

transformation matrix it is possible to estimate the error in calculating the

diabatic potentials. For this purpose, we apply Eq. (22). It is seen that the error

is of the second order in e, namely, of Oðe2Þ, just like for the adiabatic-to-

diabatic transformation matrix.

2. The Curl Condition

Next, we analyze the P-curl condition with the aim of examining to what

extent it is affected when the weak coupling is ignored as described in Section

IV.B.1 [81]. For this purpose, we consider two components of the (unperturbed)

s matrix, namely, the matrices sq and sp, which are written in the following form

[see Eq. (43)]:

sx ¼
sðMÞ

x sðM;LÞ
x

sðL;MÞ
x sðLÞx

 !
x ¼ q; p ð48Þ

Here, sðMÞ
x (and eventually sðLÞx Þ; x ¼ p; q are the matrices that contain the strong

non-adiabatic coupling terms, whereas sðM;LÞ
x [and sðL;MÞ

x �; x ¼ p; q are the

matrices that contain the weak non-adiabatic coupling terms, all being of the

order OðeÞ. Employing Eqs. (24) and (25) and by substituting Eq. (48) for sq and

sp, it can be seen by algebraic manipulations that the following relation holds:

qsðMÞ
p

qq
� qsðMÞ

q

qp
� ½sðMÞ

p ; sðMÞ
q � ¼ fsðM;LÞ

p sðL;MÞ
q � sðM;LÞ

q sðL;MÞ
p g ð49Þ

Notice, all terms in the curled parentheses are of Oðe2Þ, which implies that the

curl condition becomes

curl tðMÞ � ½tðMÞ � tðMÞ� ¼ Oðe2Þ ð50Þ

namely, the curl condition within the sub-space, is fulfilled up to Oðe2Þ.
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Obviously, the fact that the solution of the adiabatic-to-diabatic transforma-

tion matrix is only perturbed to second order makes the present approach rather

attractive. It not only results in a very efficient approximation but also yields an

estimate for the error made in applying the approximation.

V. THE QUANTIZATION OF THE NON-ADIABATIC
COUPLING MATRIX

One of the main outcomes of the analysis so far is that the topological matrix D,

presented in Eq. (38), is identical to an adiabatic-to-diabatic transformation

matrix calculated at the end point of a closed contour. From Eq. (38), it is noticed

that D does not depend on any particular point along the contour but on the

contour itself. Since the integration is carried out over the non-adiabatic coupling

matrix, s, and since D has to be a diagonal matrix with numbers of norm 1 for any

contour in configuration space, these two facts impose severe restrictions on the

non-adiabatic coupling terms.

In Section V.A, we present a few analytical examples showing that the

restrictions on the s-matrix elements are indeed quantization conditions that go

back to the early days of quantum theory. Section V.B will be devoted to the

general case.

A. The Quantization as Applied to Model Systems

In this section, we intend to show that for a certain type of models the above

imposed ‘‘restrictions’’ become the ordinary well-known Bohr–Sommerfeld

quantization conditions [82]. For this purpose, we consider the following non-

adiabatic coupling matrix s:

sðsÞ ¼ gtðsÞ ð51Þ

where tðsÞ is a vector whose components are functions in configuration space and

g is a constant antisymmetric matrix of dimension M. For this case, one can

evaluate the ordered exponential in Eq. (38). Thus substituting Eq. (51) in

Eq. (38) yields the following solution for the D matrix:

D ¼ G exp �x
ð

‘

�

ds � tðsÞ
� �

Gy ð52Þ

where x is a diagonal matrix that contains the eigenvalues of the g matrix and G
is a matrix that diagonalizes g (Gy is the Hermitian conjugate of G). Since g is an

antisymmetric matrix all its eigenvalues are either imaginary or zero.

Next, we concentrate on a few special cases.
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1. The Two-State Case

The g matrix in this case is given in the form:

g ¼ 0 1

�1 0

� �
ð53Þ

The matrix G that diagonalizes it is

G ¼ 1ffiffiffi
2

p 1 1

i �i

� �
ð54Þ

and the corresponding eigenvalues are �i. Substituting Eq. (54) in Eq. (52) and

replacing the two o parameters by �i yields the following D matrix:

D ¼
cos

ð

‘

�

tðsÞ � ds

� �
�sin

ð
‘

�

tðsÞ � ds

� �

sin

ð

‘

�

tðsÞ � ds

� �
cos

ð
‘

�

tðsÞ � ds

� �
0
BBB@

1
CCCA ð55Þ

Next, we refer to the requirements to be fulfilled by the matrix D, namely,

that it is diagonal and that it has the diagonal numbers that are of norm 1. In

order for that to happen, the vector-function tðsÞ has to fulfill along a given

(closed) path � the condition: ð

‘

�

tðsÞ � ds ¼ np ð56Þ

where n is an integer. These conditions are essentially the Bohr–Sommerfeld

quantization conditions [82] (as applied to the single term of the two-state s
matrix).

Equation (56) presents the condition for the extended conical intersection

case. It is noticed that if n is an odd integer the diagonal of the D matrix contains

two (�1) terms, which means that the elements of the adiabatic-to-diabatic

transformation matrix flip sign while tracing the closed contour in Eq. (56) [see

Eq. (39)]. This case is reminiscent of what happened in the simplified Jahn–

Teller model as was studied by Herzberg–Longuet–Higgins [16] in which they

showed that if two eigenfunctions that belong to the two states that form a

conical intersection, trace a closed contour around that conical intersection, both

of them flip sign (see Appendix A).

If the value of n in Eq. (56), is an even integer, the diagonal of the D matrix

contains two (þ1) terms, which implies that in this case none of the elements of
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the adiabatic-to-diabatic transformation matrix flip sign while tracing the closed

contour. This situation will be identified as the case where the above mentioned

two eigenfunctions trace a closed contour but do not flip sign—the case known

as the Renner–Teller model [15,83]. Equation (56) is the extended version of the

Renner–Teller case.

In principle, we could have a situation where one of the diagonal elements is

(þ1) and one (�1) but from the structure of the D matrix one can see that this

case can never happen.

In our introductory remarks, we said that this section would be devoted to

model systems. Nevertheless it is important to emphasize that although this case

is treated within a group of model systems this model stands for the general case

of a two-state sub-Hilbert space. Moreover, this is the only case for which we

can show, analytically, for a nonmodel system, that the restrictions on the D
matrix indeed lead to a quantization of the relevant non-adiabatic coupling term.

2. The Three-State Case

The non-adiabatic coupling matrix s will be defined in a way similar to that in the

Section V.A [see Eq. (51)], namely, as a product between a vector-function tðsÞ
and a constant antisymmetric matrix g written in the form

g ¼
0 1 0

�1 0 Z
0 �Z 0

0
@

1
A ð57Þ

where Z is a (constant) parameter. By employing this form of g, we assumed that

g13 and g31 are zero (the more general case is treated elsewhere [80]). The

eigenvalues of this matrix are

o1;2 ¼ �io o3 ¼ 0 o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ Z2

p
ð58Þ

and the corresponding matrix, G, that diagonalizes the matrix g is

G ¼ 1

o
ffiffiffi
2

p
1 1 Z

ffiffiffi
2

p

io �io 0

�Z �Z
ffiffiffi
2

p

0
@

1
A ð59Þ

By again employing Eq. (52), we find the following result for the D matrix

D ¼ o�2
Z2 þ C oS Zð1 � CÞ
oS o2C �ZoS

Zð1 � CÞ ZoS 1 þ Z2C

0
@

1
A ð60Þ
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where

C ¼ cos w

þ
�

tðsÞ � ds

� �
and S ¼ sin w

þ
�

tðsÞ � ds

� �
ð61Þ

Notice that the necessary and sufficient condition for this matrix to become

diagonal is that the following condition:

o
ð

‘

�

tðsÞ � ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ Z2

p ð

‘

�

tðsÞ � ds ¼ 2np ð62Þ

be fulfilled. Moreover, this condition leads to a D matrix that contains in its

diagonal numbers of norm 1 as required. However, in contrast to the previously

described two-state case, they, all three of them, are positive, namely, (þ1). In

other words the ‘‘quantization’’ of the matrix s as expressed in Eq. (62) leads to a

D matrix that is a unit matrix, and therefore will maintain the adiabatic-to-

diabatic transformation matrix single valued along any contour that fulfills this

quantization. This is, to a certain extent, an unexpected result but, as we shall see

in the Section V.A.3, it is not the typical result. Still it is an interesting result and

we shall return to it in Sections X and XII.

3. The Four-State Case

The g matrix in this case will be written in the form

g ¼

0 1 0 0

�1 0 Z 0

0 �Z 0 s
0 0 �s 0

0
BB@

1
CCA ð63Þ

where Z and s are two parameters. The matrix G that diagonalizes g is

G ¼ 1ffiffiffi
2

p
ilq ilq �ilp �ilp

plq �plq �qlp qlp

ilp ilp ilq ilq

qlp �qlp plq �plq

0
BB@

1
CCA ð64Þ

where p and q are defined as

p ¼ 1ffiffiffi
2

p ðv2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v4 � 4s2

p
Þð1=2Þ

q ¼ 1ffiffiffi
2

p ðv2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v4 � 4s2

p
Þð1=2Þ

ð65Þ
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and lp and lq are defined as

lp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � 1

p2 � q2

s
lq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � q2

p2 � q2

s
ð66Þ

and v as

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 þ Z2 þ s2Þ

p
ð67Þ

From Eq. (65), it is obvious that p > q. The four eigenvalues are

ðo1;o2;o3;o4Þ � ðip;�ip; iq;�iqÞ ð68Þ

Again, by employing Eq. (52) we find the following expressions for the

D-matrix elements:

D11ðaÞ ¼ l2
qCp þ l2

pCq D12ðaÞ ¼ pl2
qSp þ ql2

pSq

D13ðaÞ ¼ lplqð�Cp þ CqÞ D14ðaÞ ¼ lplqð�qSp þ pSqÞ
D22ðaÞ ¼ p2l2

qCp þ q2l2
pCq D23ðaÞ ¼ lplqðpSp � qSqÞ

D24ðaÞ ¼ pqlplqðCp � CqÞ D33ðaÞ ¼ ðl2
pCp þ l2

qCq

D34ðaÞ ¼ �ðql2
pSp þ pl2

qSqÞ D44ðaÞ ¼ q2l2
pCp þ p2l2

qCq

D21ðaÞ ¼ �D12ðaÞ D31ðaÞ ¼ D13ðaÞ D32ðaÞ ¼ �D23ðaÞ
D41ðaÞ ¼ �D14ðaÞ D42ðaÞ ¼ D24ðaÞ D43ðaÞ ¼ �D34ðaÞ

ð69Þ

where

Cp ¼ cosðpaÞ and Sp ¼ sinðpaÞ ð70Þ

and similar expressions for Cq and Sq. Here a stands for

a ¼
ð

‘

�

tðs0Þ � ds0 ð71Þ

Next, we determine the conditions for this matrix to become diagonal (with

numbers of norm 1 in the diagonal), which will happen if and only if when p and

q fulfill the following relations:

pa ¼ p

ð

‘

�

tðs0Þ � ds0 ¼ 2pn ð72aÞ

qa ¼ q

ð

‘

�

tðs0Þ � ds0 ¼ 2p‘ ð72bÞ
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where n ð>1Þ and ‘, defined in the range n > ‘ � 0, are allowed to be either

integers or half-integers but m ð¼ n � ‘Þ can only attain integer values. The

difference between the case where n and ‘ are integers and the case where both

are half-integers is as follows: By examining the expressions in Eq. (69), notice

that in the first case all diagonal elements of D are (þ1), so that, D is, in fact, the

unit matrix and therefore the elements of the adiabatic-to-diabatic transformation

matrix are single valued in configuration space. In the second case, we get from

Eq. (69), that all four diagonal elements are (�1). In this case, when the adiabatic-

to-diabatic transformation traces a closed contour all its elements flip sign.

Since p and q are directly related to the non-adiabatic coupling terms Z and

s [see Eqs. (65) and (66)] the two conditions in Eqs. (72) imply, again,

‘‘quantization’’ conditions for the values of the s-matrix elements, namely, for Z
and s, as well as for the vectorial function tðsÞ.

It is interesting to note that this is the first time that in the present framework

the quantization is formed by two quantum numbers: a number n to be termed

the principal quantum number and a number ‘, to be termed the secondary

quantum number. This case is reminiscent of the two quantum numbers that

characterize the hydrogen atom.

4. Comments Concerning Extensions

In Sections V.A.1–V.A.3, we treated one particular group of s matrices as

presented in Eq. (51), where g is an antisymmetric matrix with constant

elements. The general theory demands that the matrix D as presented in Eq. (52)

be diagonal and that as such it contains (þ1) and (�1) values in its diagonal. In

the three examples that were worked out, we found that for this particular class of

s matrices the corresponding D matrix contains either (þ1) or (�1) terms but

never a mixture of the two types. In other words, the D matrix can be represented

in the following way:

D ¼ ð�1Þk
I ð73Þ

where k is either even or odd and I is the unit matrix. Indeed, for the two-state

case k was found to be either odd or even, for the three-state case it was found to

be only even, and for the four-state case it was again found to be either odd or

even. It seems to us (without proof) that this pattern applies to any dimension. If

this really is the case, then we can make the following two statements:

1. In case the dimension of the s matrix is an odd number, the D matrix will

always be the unit matrix I, namely, k must be an even number. This is so

because an odd dimensional g matrix, always has the zero as an

eigenvalue and this eigenvalue produces the (þ1) in the D matrix that

dictates the value of k in Eq. (73).
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2. In case the dimension of the s matrix is an even number, the D matrix will

(always) be equal either to I or to ð�IÞ.
3. These two facts imply that in case of an odd dimension the quantization is

characterized by (a series of) integers only [as in Eq. (62)] but in case of

an even dimension it is characterized either by (a series of) integers or by

(a series of) half-integers [as in Eqs. (72)].

B. The Treatment of the General Case

The derivation of the D matrix for a given contour is based on first deriving the

adiabatic-to-diabatic transformation matrix, A, as a function of s and then

obtaining its value at the end of the arbitrary closed contours (when s becomes

s0). Since A is a real unitary matrix it can be expressed in terms of cosine and sine

functions of given angles. First, we shall consider briefly the two special cases

with M ¼ 2 and 3.

The case of M ¼ 2 was treated in Section V.A.4. Here, this treatment is

repeated with the aim of emphasizing different aspects and also for reasons of

completeness. The matrix Að2Þ takes the form:

Að2Þ ¼ cosg12 sing12

�sing12 cosg12

� �
ð74Þ

where g12, the adiabatic-to-diabatic transformation angle, can be shown to be [34]

g12 ¼
ðs

s0

s12ðs0Þ � ds0 ð75Þ

Designating a12 as the value of g12 for a closed contour, namely,

a12 ¼
ð

‘

�

s12ðs0Þ � ds0 ð76Þ

the corresponding Dð2Þ matrix becomes accordingly [see also Eq. (55)]:

Dð2Þ ¼ cosa12 sina12

�sina12 cosa12

� �
ð77Þ

Since for any closed contour Dð2Þ has to be a diagonal matrix with (þ1) and (�1)

terms, it is seen that a12 ¼ np where n is either odd or even (or zero) and

therefore the only two possibilities for Dð2Þ are as follows:

Dð2Þ ¼ ð�1ÞkI ð78Þ

where I is the unit matrix and k is either even or odd.
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The case of M ¼ 3 is somewhat more complicated because the correspond-

ing orthogonal matrix is expressed in terms of three angles, namely, g12, g13,

and g23 [36,84,85]. This case was recently studied by us in detail [85] and here

we briefly repeat the main points.

The matrix Að3Þ is presented as a product of three rotation matrices of the

form:

Q
ð3Þ
13 ðg13Þ ¼

cosg13 0 sing13

0 1 0

�sing13 0 cosg13

0
@

1
A ð79Þ

[the other two, namely, Q
ð3Þ
12 ðg12Þ and Q

ð3Þ
23 ðg23Þ, are of a similar structure with the

respective cosine and sine functions in the appropriate positions) so that Að3Þ

becomes:

Að3Þ ¼ Q
ð3Þ
12 Q

ð3Þ
23 Q

ð3Þ
13 ð80Þ

or, following the multiplication, the more explicit form:

Að3Þ ¼
c12c13 � s12s23s13 s12s23 c12s13 þ c12s23c13

�s12c13 � c12s23s13 c12c23 �s12s13 þ c12s23c13

�c23s13 �s23 c23c13

0
@

1
A ð81Þ

Here, cij ¼ cosðgijÞ and sij ¼ sinðgijÞ. The three angles are obtained by solving

the following three coupled first-order differential equations, which follow from

Eq. (19) [36,84,85]:

rg12 ¼ t12 � tang23ð�t13 cosg12 þ t23 sing12Þ
rg23 ¼ �ðt23 cosg12 þ t13 sing12Þ
rg13 ¼ �ðcosg23Þ�1ð�t13 cosg12 þ t23 sing12Þ

ð82Þ

These equations were integrated as a function of j (where 0 � j � 2pÞ, for a

model potential [85] along a circular contour of radius r (for details see

Appendix E). The j-dependent g angles, that is, gijðj j rÞ, for various values of

r and �e (�e is the potential energy shift defined as the shift between the two

original coupled adiabatic states and a third state, at the origin, i.e., at r ¼ 0:Þ are

presented in Figure 1. Thus for each j we get, employing Eq. (81), the Að3ÞðjÞ
matrix elements. The relevant Dð3Þ matrix is obtained from Að3Þ by substituting

j ¼ 2p. If aij are defined as

aij ¼ gijðj ¼ 2pÞ ð83Þ

then, as is noticed from Figure 1, the values of aij are either zero or p. A simple

analysis of Eq. (81), for these values of aij, shows that Dð3Þ is a diagonal matrix

with two (�1) terms and one (þ1) in the diagonal.
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This result will now be generalized for an arbitrary Dð3Þ matrix in the

following way: Since a general Að3Þ matrix can always be written as in Eq. (81)

the corresponding Dð3Þ matrix becomes diagonal if and only if:

aij ¼ gijðj ¼ 2pÞ ¼ nijp ð84Þ

Figure 1. The three adiabatic–diabatic transformation angles [obtained by solving Eqs. (77) for

a 3 � 3 diabatic model potential presented in Section XIII.B] g12ðjÞ, g23ðjÞ, g13ðjÞ as calculated

for different values ofr and�e: (a)g ¼ g12, �e ¼ 0:0; (b)g ¼ g12, �e ¼ 0:05; (c)g ¼ g12,�e ¼ 0:25;

(d) g ¼ g23, �e ¼ 0:0; (e) g ¼ g23, �e ¼ 0:05; ( f ) g ¼ g23, �e ¼ 0:25; (g) g ¼ g13, �e ¼ 0:0;

(h) g ¼ g13, �e ¼ 0:05; (i) g ¼ g13, �e ¼ 0:25. ———— r ¼ 0:01; - - - - - - - r ¼ 0:1; ..............

r ¼ 0:5.
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the diagonal terms can, explicitly, be represented as

D
ð3Þ
ij ¼ dij cosajn cosajm j 6¼ n 6¼ m j ¼ 1; 2; 3 ð85Þ

This expression shows that the Dð3Þ matrix, in the most general case, can have

either three (þ1) terms in the diagonal or two (�1) terms and one (þ1). In the first

case, the contour does not surround any conical intersection, whereas in the

second case it surrounds either one or two conical intersections (a more general

discussion related to the solution of the corresponding line integral is given in

Section VIII and a discussion regarding the ‘‘geometrical’’ aspect is given in

Section IX).

It is important to emphasize that this analysis, although it is supposed to hold

for a general three-state case, contradicts the analysis we performed of the

three-state model in Section V.A.2. The reason is that the ‘‘general (physical)

case’’ applies to an (arbitrary) aggregation of conical intersections whereas the

previous case applies to a special (probably unphysical) situation. The

discussion on this subject is extended in Section X. In what follows, the cases

for an aggregation of conical intersections will be termed the ‘‘breakable’’

situations (the reason for choosing this name will be given later) in contrast to

the type of models that were discussed in Sections V.A.2 and V.A.3 and that are

termed as the ‘‘unbreakable’’ situation.

Before discussing the general case, we would like to refer to the present

choice of the rotation angles. It is well noticed that they differ from the ordinary

Euler angles that are routinely used to present three-dimensional (3D)

orthogonal matrices [86]. In fact, we could apply the Euler angles for this

purpose and get identical results for Að3Þ (and for Dð3Þ). The main reason we

prefer the ‘‘democratic’’ choice of the angles is that this set of angles can be

extended to an arbitrary number of dimensions as will be done next.

The M-dimensional adiabatic-to-diabatic transformation matrix AðMÞ will be

written as a product of elementary rotation matrices similar to that given in

Eq. (80) [9]:

AðMÞ ¼
YM�1

i¼1

YM
j> i

Q
ðMÞ
ij ðgijÞ ð86Þ

where Q
ðMÞ
ij ðgijÞ [like in Eq. (79)] is an M � M matrix with the following terms:

In its (ii) and (jj) positions (along the diagonal) are located the two relevant

cosine functions and at the rest of the (M � 2) positions are located (þ1)s; in the

(ij) and (ji) off-diagonal positions are located the two relevant �sine functions

and at all other remaining positions are zeros. From Eq. (86), it can be seen that

the number of matrices contained in this product is MðM � 1Þ=2 and that this is

also the number of independent gij angles that are needed to describe an M � M
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unitary matrix (we recall that the missing MðM þ 1Þ=2 conditions follow from

the ortho-normal conditions). The matrix AðMÞ as presented in Eq. (86) is

characterized by two important features: (1) Every diagonal element contains at

least one term that is a product of cosine functions only. (2) Every off-diagonal

element is a summation of products of terms where each product contains at least

one sine function. These two features will lead to conditions to be imposed on the

various gij angles to ensure that the topological matrix, DðMÞ, is diagonal as

discussed in the Section IV.A.

To obtain the gij angles one usually has to solve the relevant first-order

differential equations of the type given in Eq. (82). Next, like before, the aij

angles are defined as the gij angles at the end of a closed contour. In order to

obtain the matrix DðMÞ, one has to replace, in Eq. (86), the angles gij by the

corresponding aij angles. Since DðMÞ has to be a diagonal matrix with (þ1) and

(�1) terms in the diagonal, this can be achieved if and only if all aij angles are

zero or multiples of p. It is straightforward to show that with this structure the

elements of DðMÞ become [9]:

D
ðMÞ
ij ¼ dij

YM
k 6¼ i

cosaik ¼ dijð�1Þ
PM

k 6¼ i
nik i ¼ 1; . . . ;M ð87Þ

where nik are integers that fulfill nik ¼ nki. From Eq. (87), it is noticed that along

the diagonal of DðMÞ we may encounter K numbers that are equal to (�1) and the

rest that are equal to (þ1). It is important to emphasize that in case a contour does

not surround any conical intersection the value of K is zero.

VI. THE CONSTRUCTION OF SUB-HILBERT SPACES AND
SUB-SUB-HILBERT SPACES

In Section II.B, it was shown that the condition in Eq. (10) or its relaxed form in

Eq. (40) enables the construction of sub-Hilbert space. Based on this possibility

we consider a prescription first for constructing the sub-Hilbert space that

extends to the full configuration space and then, as a second step, constructing of

the sub sub-Hilbert space that extends only to (a finite) portion of configuration

space.

In the study of (electronic) curve crossing problems, one distinguishes

between a situation where two electronic curves, EjðRÞ; j ¼ 1; 2, approach each

other at a point R ¼ R0 so that the difference �EðR ¼ R0Þ ¼ E2ðR ¼ R0Þ� E1

is relatively small and a situation where the two electronic curves interact so

that �EðRÞ � Const is relatively large. The first case is usually treated by the

Landau–Zener formula [87–92] and the second is based on the Demkov

approach [93]. It is well known that whereas the Landau–Zener type interactions are
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strong enough to cause transitions between two adiabatic states, the Demkov-

type interactions are usually weak and affect the motion of the interacting

molecular species relatively slightly. The Landau–Zener situation is the one that

may become the Jahn–Teller conical intersection in two dimensions [15–21].

We shall also include the Renner–Teller parabolic intersection [15,22,26,83],

although it is characterized by two interacting potential energy surfaces that

behave quadratically (and not linearly as in the Landau–Zener case) in the

vicinity of the above mentioned degeneracy point.

A. The Construction of Sub-Hilbert Spaces

By following Section II.B, we shall be more specific about what is meant by

‘‘strong’’ and ‘‘weak’’ interactions. It turns out that such a criterion can be

assumed, based on whether two consecutive states do, or do not, form a conical

intersection or a parabolical intersection (it is important to mention that only

consecutive states can form these intersections). The two types of intersections

are characterized by the fact that the nonadiabatic coupling terms, at the points of

the intersection, become infinite (these points can be considered as the ‘‘black

holes’’ in molecular systems and it is mainly through these ‘‘black holes’’ that

electronic states interact with each other.). Based on what was said so far we

suggest breaking up complete Hilbert space of size N into L sub-Hilbert spaces of

varying sizes NP;P ¼ 1; . . . ; L where

N ¼
XL

P¼1

NP: ð88Þ

(L may be finite or infinite.)

Before we continue with the construction of the sub-Hilbert spaces, we make

the following comment: Usually, when two given states form conical intersections,

one thinks of isolated points in configuration space. In fact, conical intersections

are not points but form (finite or infinite) seams that ‘‘cut’’ through the

molecular configuration space. However, since our studies are carried out for

planes, these planes usually contain isolated conical intersection points only.

The criterion according to which the break-up is carried out is based on

the non-adiabatic coupling term sij as were defined in Eq. (8a). In what follows,

we distinguish between two kinds of non-adiabatic coupling terms: (1) The

intra-non-adiabatic coupling terms sðPÞij , which are formed between two

eigenfunctions belonging to a given sub-Hilbert space, namely, the Pth sub-

space:

sðPÞij ¼ hzðPÞi jrzðPÞj i i; j ¼ 1; . . . ;NP ð89Þ
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and (2) Inter-non-adiabatic coupling terms sðP;QÞ
ij , which are formed between two

eigenfunctions, the first belonging to the Pth sub-space and the second to the Qth

sub-space:

sðP;QÞ
ij ¼ hzðPÞi jrzðQÞ

j i i ¼ 1; . . . ;NP j ¼ 1; . . . ;NQ ð90Þ

The Pth sub-Hilbert space is defined through the following two requirements:

1. All Np states belonging to the Pth sub-space interact strongly with

each other in the sense that each pair of consecutive states have at least

one point where they form a Landau–Zener type interaction. In other

words, all sðPÞjjþ1; j ¼ 1; . . . :;NP � 1 form at least at one point in configura-

tion space, a conical (parabolical) intersection.

2. The range of the Pth sub-space is defined in such a way that the lowest

(or the first) state and the highest (the NPth) state that belong to this sub-

space form Demkov-type interactions with the highest state belonging to

the lower (P � 1)th sub-space and with the lowest state belonging to the

upper (P þ 1)th sub-space, respectively (see Fig. 2). In other words, the

two non-adiabatic coupling terms fulfill the conditions:

sðP�1;PÞ
NP�11 � OðeÞ and sðP;Pþ1Þ

NP1 � OðeÞ ð91Þ

At this point, we make two comments: (a) Conditions (1) and (2) lead to a

well-defined sub-Hilbert space that for any further treatments (in spectroscopy

or scattering processes) has to be treated as a whole (and not on a ‘‘state by

state’’ level). (b) Since all states in a given sub-Hilbert space are adiabatic

states, strong interactions of the Landau–Zener type can occur between two

consecutive states only. However, Demkov-type interactions may exist between

any two states.

B. The Construction of Sub-Sub-Hilbert Spaces

As we have seen, the sub-Hilbert spaces are defined for the whole configuration

space and this requirement could lead, in certain cases, to situations where it will

be necessary to include the complete Hilbert space. However, it frequently

happens that the dynamics we intend to study takes place in a given, isolated,

region that contains only part of the conical intersection points and the question

is whether the effects of the other conical intersections can be ignored?

The answer to this question can be given following a careful study of these

effects employing the line integral approach presented in terms of Eq. (27).

For this purpose, we analyze what happens along a certain line � that surrounds
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one or several conical intersections. To continue, we employ the same procedure

as discussed in Section IV.B: We break up the adiabatic-to-diabatic trans-

formation matrix A and the s matrix as written in Eq. (43). In this way, we can

show that if, along the particular line �, the noninteresting parts of the s matrix

are of order e the error expected for the interesting part in the A matrix is of

order Oðe2Þ [81]. If this happens for any contour in this region, then we can

ignore the effects of conical intersection that are outside this region and carry

out the dynamic calculations employing the reduced set of states.

VII. THE TOPOLOGICAL SPIN

Before we continue and in order to avoid confusion, two matters have to be

clarified: (1) We distinguished between two types of Landau–Zener situations,

which form (in two dimensions) the Jahn–Teller conical intersection and the

Renner–Teller parabolical intersection. The main difference between the two is

Figure 2. A schematic picture describing the three consecutive sub-Hilbert spaces, namely, the

(P � 1)th, the Pth, and the (P þ 1)th. The dotted lines are separation lines.

70 michael baer



that the parabolical intersections do not produce topological effects and therefore,

as far as this subject is concerned, they can be ignored. Making this distinction

leads to the conclusion that the more relevant magnitude to characterize

topological effects, for a given sub-space, is not its dimension M but

NJ , the number of conical intersections. (2) In general, one may encounter more

than one conical intersection between a pair of states [12,22,26,66,74]. However,

to simplify the study, we assume one conical intersection for a pair of states

so that ðNJ þ 1Þ stands for the number of states that form the conical inter-

sections.

So far, we introduced three different integers M, NJ , and K. As mentioned

earlier, M is a characteristic number of the sub-space (see Section VI.B) but is

not relevant for topological effects; instead NJ , as just mentioned, is a

characteristic number of the sub-space and relevant for topological effects, and

K, the number of (�1) terms in the diagonal of the topological matrix D
(or the number of eigenstates that flip sign while the electronic manifold traces a

closed contour) is relevant for topological effects but may vary from one

contour to another, and therefore is not a characteristic feature for a given

sub-space.

Our next task is to derive all possible K values for a given NJ . First, we

refer to a few special cases: It was shown before that in case of NJ ¼ 1 the D
matrix contains two (�1) terms in its diagonal in case the contour surrounds

the conical intersection and no (�1) terms when the contour does not surround

the conical intersection. Thus the allowed values of K are either 2 or 0. The

value K ¼ 1 is not allowed. A similar inspection of the case NJ ¼ 2 reveals that

K, as before, is equal either to 2 or to 0 (see Section V.B). Thus the values K ¼ 1

or 3 are not allowed. From here, we continue to the general case and prove the

following statement:

In any molecular system, K can attain only even integers in the range [9]:

K ¼ f0; 2; . . . ;KJg
KJ ¼ NJ NJ ¼ 2p

KJ ¼ ðNJ þ 1Þ NJ ¼ 2p þ 1

�
ð92Þ

where p is an integer.

The proof is based on Eq. (87). Let us assume that a certain closed contour

yields a set of aij angles that produce a number K. Next, we consider a slightly

different closed contour, along which one of these aij parameters, say ast,

changed its value from zero to p. From Eq. (87), it can be seen that only two D
matrix elements contain cosðastÞ, namely, Dss and Dtt. Now, if these two matrix

elements were positive following the first contour, then changing ast from

0 ! p would produce two additional (�1) terms, thus increasing K to K þ 2; if

these two matrix elements were negative, this change would cause K to decrease

to K � 2; and if one of these elements was positive and the other negative, then

the electronic non-adiabatic coupling term 71



changing ast from 0 ! p would not affect K. Thus, immaterial to the value of

NJ , the various K values differ from each other by even integers only. Now, since

any set of K values also contains the value K ¼ 0 (the case when the closed loop

does not surround any conical intersections), this implies that K can attain only

even integers. The final result is the set of values presented in Eq. (92).

The fact that there is a one-to-one relation between the (�1) terms in the

diagonal of the topological matrix and the fact that the eigenfunctions flip sign

along closed contours (see discussion at the end of Section IV.A) hints at the

possibility that these sign flips are related to a kind of a spin quantum number

and in particular to its magnetic components.

The spin in quantum mechanics was introduced because experiments

indicated that individual particles are not completely identified in terms of their

three spatial coordinates [87]. Here we encounter, to some extent, a similar

situation: A system of items (i.e., distributions of electrons) in a given point in

configuration space is usually described in terms of its set of eigenfunctions.

This description is incomplete because the existence of conical intersections

causes the electronic manifold to be multivalued. For example, in case of two

(isolated) conical intersections we may encounter at a given point in configuration

space four different sets of eigenfunctions (see Section VIII).

ðaÞ ðz1; z2; z3Þ
ðbÞ ð�z1;�z2; z3Þ
ðcÞ ðz1;�z2;�z3Þ
ðdÞ ð�z1; z2;�z3Þ

ð93Þ

In case of three conical intersections, we have as many as eight different sets of

eigenfunctions, and so on. Thus we have to refer to an additional characterization

of a given sub-sub-Hilbert space. This characterization is related to the number

NJ of conical intersections and the associated possible number of sign flips due to

different contours in the relevant region of configuration space, traced by the

electronic manifold.

In [7,8,80], it was shown that in a two-state system the nonadiabatic coupling

term, t12, has to be ‘‘quantized’’ in the following way:ð

‘

�

s12ðs0Þ � ds0 ¼ np ð94Þ

where n is an integer (in order to guarantee that the 2 � 2 diabatic potential be

single valued in configuration space). In case of conical intersections, this

number has to be an odd integer and for our purposes it is assumed to be n ¼ 1.

Thus each conical intersection can be considered as a ‘‘spin.’’ Since in a given
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sub-space NJ conical intersections are encountered, we could define the spin J of

this sub-space as (NJ=2). However, this definition may lead to more sign flips

than we actually encounter (see Section VIII). In order to make a connection

between J and NJ as well as with the ‘‘magnetic components’’ MJ of J and the

number of the actual sign flips, the spin J has to be defined as [9]:

J ¼ 1

2

KJ

2

KJ ¼ NJ NJ ¼ 2p

KJ ¼ ðNJ þ 1Þ NJ ¼ 2p þ 1

�
ð95Þ

and, accordingly, the various MJ values are defined as

MJ ¼ J � K=2 where K ¼ f0; 2; . . . ;KJg ð96Þ

For the seven lowest NJ values, we have the following assignments:

For NJ ¼ 0 fJ ¼ 0 MJ ¼ 0g
For NJ ¼ 1 fJ ¼ 1=2 MJ ¼ 1=2;�1=2g
For NJ ¼ 2 fJ ¼ 1=2 MJ ¼ 1=2;�1=2g
For NJ ¼ 3 fJ ¼ 1 MJ ¼ 1; 0;�1g
For NJ ¼ 4 fJ ¼ 1 MJ ¼ 1; 0;�1g
For NJ ¼ 5 fJ ¼ 3=2 MJ ¼ 3=2; 1=2;�1=2;�3=2g
For NJ ¼ 6 fJ ¼ 3=2 MJ ¼ 3=2; 1=2;�1=2;�3=2g
For NJ ¼ 7 fJ ¼ 2 MJ ¼ 2; 1; 0;�1;�2g

ð97Þ

The general formula and the individual cases as presented in Eq. (97)

indicate that indeed the number of conical intersections in a given sub-space and

the number of possible sign flips within this sub-sub-Hilbert space are

interrelated, similar to a spin J with respect to its magnetic components MJ . In

other words, each decoupled sub-space is now characterized by a spin quantum

number J that connects between the number of conical intersections in this

system and the topological effects which characterize it.

VIII. AN ANALYTICAL DERIVATION FOR THE POSSIBLE
SIGN FLIPS IN A THREE-STATE SYSTEM

In Section IX, we intend to present a geometrical analysis that permits some

insight with respect to the phenomenon of sign flips in an M-state system

(M > 2). This can be done without the support of a parallel mathematical study

[9]. In this section, we intend to supply the mathematical foundation (and

justification) for this analysis [10,12]. Thus employing the line integral approach,

we intend to prove the following statement:
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If a contour in a given plane surrounds two conical intersections belonging

to two different (adjacent) pairs of states, only two eigenfunctions flip sign—the

one that belongs to the lowest state and the one that belongs to the highest one.

To prove this, we consider the following three regions (see Fig. 3): In the first

region, designated s12, is located the main portion of the interaction, t12,

between states 1 and 2 with the point of the conical intersection at C12. In the

second region, designated as s23, is located the main portion of the interaction,

t23, between states 2 and 3 with the point of the conical intersection at C23.

In addition, we assume a third region, s0, which is located in-between the two

and is used as a buffer zone. Next, it is assumed that the intensity of the

interactions due to the components of t23 in s12 and due to t12 in s23 is � 0. This

situation can always be achieved by shrinking s12ðs23Þ toward its correspond-

ing center C12ðC23Þ. In s0, the components of both t12 and t23 may be of

arbitrary magnitude but no conical intersection of any pair of states is allowed to

be there.

Figure 3. The breaking up of a region s, which contains two conical intersections (at C12 and

C23), into three subregions: (a) The full region s defined in terms of the closed contour �. (b) The

region s12, which contains a conical intersection at C12 and is defined by the closed contour �12.

(c) The region s0, which is defined by the closed contour �0 and does not contain any conical

intersection. (d) The region s23, which contains a conical intersection at C23 and is defined by the

closed contour �23. It can be seen that � ¼ �12 þ �0 þ �23.
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To prove our statement, we consider the line integral [see Eq. (27)]:

A ¼ A0 �
ð

‘

�

ds � sA ð98Þ

where the integration is carried out along a closed contour �, A is the 3 � 3

adiabatic-to-diabatic transformation matrix to be calculated, the dot stands for a

scalar product, and s is the matrix of 3 � 3 that contains the two non-adiabatic

coupling terms, namely,

sðsÞ ¼
0 t12 0

�t12 0 t23

0 �t23 0

0
@

1
A ð99Þ

Note the components of t13 � 0. This assumption is not essential for the proof,

but simplifies the derivation.

The integral in Eq. (98) will now be presented as a sum of three integrals (for

a detailed discussion on that subject: see Appendix C), namely,

A ¼ A0 �
ð

‘

�12

ds � sA �
ð

‘

�0

ds � sA �
ð

‘

�23

ds � sA ð100Þ

Since there is no conical intersection in the buffer zone, s0, the second integral is

zero and can be deleted so that we are left with the first and the third integrals. In

general, the calculation of each integral is independent of the other; however, the

two calculations have to yield the same result, and therefore they have to be

interdependent to some extent. Thus we do each calculation separately but for

different (yet unknown) boundary conditions: The first integral will be done for

G12 as a boundary condition and the second for G23. Thus A will be calculated

twice:

A ¼ Gij �
ð

‘

�ij

ds � sA ð101Þ

Next are introduced the topological matrices D, D12, and D23, which are related

to A in the following way [see Eq. (39)]:

A ¼ DA0 ð102aÞ
A ¼ D12G12 ð102bÞ
A ¼ D23G23 ð102cÞ
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The three equalities can be fulfilled if and only if the two G matrices, namely,

G12 and G23, are chosen to be

G12 ¼ D23A0 and G23 ¼ D12A0 ð103Þ

Since the D matrices are diagonal the same applies to D12 and D23 so that D
becomes

D ¼ D13 ¼ D12D23 ð104Þ

Our next task will be to obtain D12 and D23. For this purpose, we consider s12 and

s23—the two partial s matrices—defined as follows:

s12ðsÞ ¼
0 t12 0

�t12 0 0

0 0 0

0
@

1
A and s23ðsÞ ¼

0 0 0

0 0 t23

0 �t23 0

0
@

1
A ð105Þ

so that

s ¼ s12 þ s23 ð106aÞ

We start with the first of Eqs. (101), namely,

A ¼ G12 �
ð

‘

�ij

ds � s12A ð107Þ

where s12 replaces s because s23 is assumed to be negligibly small in s12. The

solution and the corresponding D matrix, namely, D12 are well known (see

discussion in Sections V.A.1 and V.B). Thus

D12 ¼
�1 0 0

0 �1 0

0 0 1

0
@

1
A ð108Þ

which implies (as already explained in Section IV.A) that the first (lowest) and

the second functions flip sign. In the same way, it can be shown that D23 is equal

to

D23 ¼
1 0 0

0 �1 0

0 0 �1

0
@

1
A ð109Þ
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which shows that the second and the third (the highest) eigenfunctions flip sign.

Substituting Eqs. (108) and (109) in Eq. (104) yields the following result for D13:

D13 ¼
�1 0 0

0 1 0

0 0 �1

0
@

1
A ð110Þ

In other words, surrounding the two conical intersections indeed leads to the flip

of sign of the first and the third eigenfunctions, as was claimed.

This idea can be extended, in a straightforward way, to various situations as

will be done in Section IX.

IX. THE GEOMETRICAL INTERPRETATION FOR SIGN FLIPS

In Sections V and VII, we discussed the possible K values of the D matrix and

made the connection with the number of signs flip based on the analysis given in

Section IV.A. Here, we intend to present a geometrical approach in order to gain

more insight into the phenomenon of signs flip in the M-state system (M > 2).

As was already mentioned, conical intersections can take place only between

two adjacent states (see Fig. 4). Next, we make the following definitions:

1. Having two consecutive states j and (j þ 1), the two form the conical

intersection to be designated as Cj as shown in Figure 4, where NJ conical

intersection are presented.

Figure 4. Four interacting adiabatic surfaces presented in terms of four adiabatic curves. The

points Cj; j ¼ 1,2,3, stand for the three conical intersections.
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2. The contour that surrounds a conical intersection at Cj will be designated

as �jjþ1 [see Fig. 5(a)].

3. A contour that surrounds two consecutive conical intersections that is, Cj

and Cjþ1 will be designated as �jjþ2 [see Fig. 5(b)]. In the same way a

contour that surrounds n consecutive conical intersections namely Cj;
Cjþ1 . . .Cjþn will be designated as �jjþn [see Fig. 5(c) for NJ ¼ 3].

4. In case of three conical intersections or more, a contour that surrounds Cj

and Ck but not the in-between conical intersections will be designated as

�j;k. Thus, for example, �1;3 surrounds C1 and C3 but not C2 (see Fig. 5d).

We also introduce an algebra of closed contours based on the analysis given

in Section VIII (see also Appendix C):

�jn ¼
Xn�1

k¼j

�kkþ1 ð111Þ

and also

�j;k ¼ �jjþ1 þ �kkþ1 where ðk > j þ 1Þ ð112Þ

This algebra implies that in case of Eq. (111) the only two functions (out of n)

that flip sign are z1 and zn because all in-between z functions get their sign

flipped twice. In the same way, Eq. (112) implies that all four electronic

functions mentioned in the expression, namely, the jth and the (j þ 1)th, the kth

and the (k þ 1)th, all flip sign. In what follows, we give a more detailed

explanation based on the mathematical analysis of the Section VIII.

In Sections VII and VIII, it was mentioned that K yields the number of

eigenfunctions that flip sign when the electronic manifold traces certain closed

paths. In what follows, we shall show how this number is formed for various NJ

values.

The situation is obvious for NJ ¼ 1. Here, the path either surrounds or does

not surround a C1. In case it surrounds it, two functions, that is, z1 and z2, flip

sign so that K ¼ 2 and if it does not surround it no z function flips sign and

K ¼ 0. In case of NJ ¼ 2, we encounter two conical intersections, namely, C1

and the C2 (see Fig. 5a and 5b). Moving the electronic manifold along the path

�12 will change the signs of z1 and z2, whereas moving it along the path �23 will

change the signs z2 and z3. Next, moving the electronic manifold along the path,

�13 (and Fig. 5b) causes the sign of z2 to be flipped twice (once when

surrounding C1 and once when surrounding C2) and therefore, altogether, its

sign remains unchanged. Thus in the case of NJ ¼ 2 we can have either no

change of sign (when the path does not surround any conical intersection) or

three cases where two different functions change sign.

78 michael baer



Figure 5. The four interacting sur-

faces, the three points of conical intersec-

tion and the various contours leading to

sign conversions: (a) The contours �jjþ1

surrounding the respective Cj; j ¼ 1; 2; 3

leading to the sign conversions of the jth

and the ( j þ 1)th eigenfunctions. (b) The

contours �jjþ2 surrounding the two (re-

spective) conical intersections namely Cj

and Cjþ1; j ¼ 1; 2 leading to the sign

conversions of the jth and the ( j þ 2)th

eigenfunctions but leaving unchanged the

sign of the middle, the ( j þ 1), eigenfunc-

tion. Also shown are the contours �jjþ1

surrounding the respective Cj; j ¼ 1; 2; 3

using partly dotted lines. It can be seen that

�jjþ2 ¼ �jjþ1 þ �jþ1jþ2. (c) The contour

�14 surrounding the three conical intersec-

tions, leading to the sign conversions of the

first and the fourth eigenfunctions but

leaving unchanged the signs of the second

and the third eigenfunctions. Based on

Figure (5b) we have �14 ¼ �12 þ �23 þ
�34: (d) The contour �1;3 surrounding the

two external conical intersections but not

the middle one, leading to the sign con-

versions of all four eigenfunctions, that is,

ðz1; z2; z3; z4Þ; ! ð�z1; �z2; _�z3; �z4Þ.
Based on Figure (5b) we have �1;3 ¼
�12 þ �34.
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A somewhat different situation is encountered in case of NJ ¼ 3, and

therefore we shall briefly discuss it as well (see Fig. 5d). It is now obvious that

contours of the type �jjþ1; j ¼ 1; 2; 3 surround the relevant Cj (see Fig. 5a) and

will flip the signs of the two corresponding eigenfunctions. From Eq. (111), we

get that surrounding two consecutive conical intersections, namely, Cj and Cjþ1,

with �jjþ2; j ¼ 1; 2 (see Fig. 5b), will flip the signs of the two external

eigenfunctions, namely, zj and zjþ2, but leave the sign of zjþ1 unchanged. We

have two such cases—the first and the second conical intersections and the

second and the third ones. Then we have a contour �14 that surrounds all three

conical intersections (see Fig. 5c) and here, like in the previous where NJ ¼ 2

[see also Eq. (111)], only the two external functions, namely, z1 and z4 flip sign

but the two internal ones, namely, z2 and z3, will be left unchanged. Finally,

we have the case where the contour �1;3 surrounds C1 and C3 but not C2 (see

Fig. 5d). In this case, all four functions flip sign [see Eq. (112)].

We briefly summarize what we found in this NJ ¼ 3 case: We revealed six

different contours that led to the sign flip of six (different) pairs of functions

and one contour that leads to a sign flip of all four functions. The analysis of

Eq. (87) shows that indeed we should have seven different cases of sign flip and

one case without sign flip (not surrounding any conical intersection).

X. THE MULTIDEGENERATE CASE

The emphasis in our previous studies was on isolated two-state conical

intersections. Here, we would like to refer to cases where at a given point three

(or more) states become degenerate. This can happen, for example, when two

(line) seams cross each other at a point so that at this point we have three surfaces

crossing each other. The question is: How do we incorporate this situation into

our theoretical framework?

To start, we restrict our treatment to a tri-state degeneracy (the generalization

is straightforward) and consider the following situation:

1. The two lowest states form a conical intersection, presented in terms of

t12ðrÞ, located at the origin, namely, at r ¼ 0.

2. The second and the third states form a conical intersection, presented in

terms of s23ðr;j j r0;j0Þ, located at r ¼ r0, j ¼ j0 [24].

3. The tri-state degeneracy is formed by letting r0 ! 0, namely,

lim
r0!0

s23ðr;j j r0;j0Þ ¼ s23ðr;jÞ ð113Þ

so that the two conical intersections coincide. Since the two conical intersections

are located at the same point, every closed contour that surrounds one of them

will surround the other so that this situation is the case of one contour �ð¼ �13Þ
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surrounding two conical intersections (see Fig. 5b). According to the discussion

of Section IX, only two functions will flip signs (i.e., the lowest and the highest

one). Extending this case to an intersection point of n surfaces will not change the

final result, namely, only two functions will flip signs, the lowest one and the

highest one.

This conclusion contradicts the findings discussed in Sections V.A.2 and

V.A.3. In Section V.A.2, we treated a three-state model and found that functions

can never flip signs. In Section V.A.3, we treated a four-state case and found

that either all four functions flip their sign or none of them flip their sign. The

situation where two functions flip signs is not allowed under any conditions.

Although the models mentioned here are of a very specialized form (the non-

adiabatic coupling terms have identical spatial dependence), still the fact that

such contradictory results are obtained for the two situations could hint to the

possibility that in the transition process from the nondegenerate to the

degenerate situation, in Eq. (113), something is not continuous.

To date, this contradiction has not been resolved but we still would like to

make the following suggestion. In molecular physics, we may encounter two

types of multidegeneracy situations: (1) The one described above is formed

from an aggregation of two-state conical intersections and depends on external

coordinates (the coordinates that form the seam). Thus this multidegeneracy is

created by varying these external coordinates in a proper way. In the same way,

the multidegeneracy can be removed by varying these coordinates. Note that

this kind of a degeneracy is not an essential degeneracy because the main

features of the individual conical intersections are unaffected while assembling

or disassembling this degeneracy. We shall term this degeneracy as a breakable

multidegeneracy. (2) The other type mentioned above is the one that is not

formed from an aggregation of conical intersections and therefore will not

breakup under any circumstances. Therefore, this degeneracy is termed the

unbreakable multidegeneracy.

XI. THE NECESSARY CONDITIONS FOR A RIGOROUS
MINIMAL DIABATIC POTENTIAL MATRIX

This Section considers one of the more important dilemmas in molecular

physics: Given a Born–Oppenheimer–Huang system, what is the minimal sub-

Hilbert space for which diabatization is still valid.

A. Introductory Comments

When studying molecular systems one encounters two almost insurmountable

difficulties: (1) That of numerically treating the non-adiabatic coupling terms

that are not only spiky—a feature that is in itself a ‘‘recipe’’ for numerical
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instabilities—but also, singular. (2) That of having to consider large portions of

the Hilbert space. As we will show in this section, the two apparently unrelated

difficulties are strongly interrelated. Moreover, we will show that resolving the

first difficulty may, in many cases, also settle the second.

As discussed earlier, one distinguishes between (1) the adiabatic framework

that is characterized by the adiabatic surfaces and the non-adiabatic (derivative)

coupling terms and (2) the diabatic framework that is characterized by the fact

that derivative couplings are eliminated and replaced by (smoothly behaving)

potential couplings. Because of the unpleasant features of the non-adiabatic

coupling terms the dynamics is expected to be more easily carried out within the

diabatic framework. Therefore, transforming to the diabatic framework (also to

be termed diabatization) is the right thing to do when treating the multistate

problem as created by the Born–Oppenheimer–Huang approach [1,2]. However,

because the non-adiabatic coupling terms are frequently singular functions may

cause difficulties and therefore the diabatization becomes more of a theoretical–

mathematical problem rather than a numerical one.

In 1975, Baer suggested that the diabatic arrangement be reached by first

forming the adiabatic framework and then transforming it to the diabatic one by

employing the non-adiabatic coupling terms [34]. This approach becomes

particularly simple when applied to two states, because it amounts to the

calculation of an angle (related to a 2 � 2 orthogonal matrix), which is formed

by integration over the (1,2) non-adiabatic coupling term along a given contour

[34–36]. This approach was successfully employed to treat charge-transfer

processes [54,94–97], which until that time were solely carried out using

classical trajectories [3,98,99], reactive exchange processes between neutrals

[100–102] and photodissociation processes [103,104].

Because of difficulties in calculating the non-adiabatic coupling terms, this

method did not become very popular. Nevertheless, this approach, was

employed extensively in particular to simulate spectroscopic measurements,

with a ‘‘modification’’ introduced by Macias and Riera [47,48]. They suggested

looking for a symmetric operator that behaves ‘‘violently’’ at the vicinity of

the conical intersection and use it, instead of the non-adiabatic coupling term, as

the integrand to calculate the adiabatic-to-diabatic transformation. Conse-

quently, a series of operators such as the electronic dipole moment operator, the

transition dipole moment operator, the quadrupole moment operator, and so on,

were employed for this purpose [49,52,53,105]. However, it has to be empha-

sized that immaterial to the success of this approach, it is still an ad hoc

procedure.

For example, there are also other approaches by Pacher et al. [106], Romero

et al. [107], Sidis [40], and Domcke and Stock [42], which developed recipes for

construction ab initio diabatic states. These methods can be efficient as long as

one encounters, at most, one isolated conical intersection in a given region in
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configuration space but have to be further developed, if several conical

intersections are located at the region of interest.

Now we intend to present the purpose of this section. In order to do this in a

comprehensive way, we need to explain what is meant, within the present

framework, by the statement that ‘‘the diabatization is non-physical.’’ The procedure

discussed above is based on a transformation matrix of a dimension M derived

within a sub-Hilbert space of the same dimension. The statement ‘‘a

diabatization is non-physical’’ implies that some of the elements of the diabatic

matrix formed in this process are multivalued in configuration space. (In this

respect, it is important to emphasize that the nuclear Schrödinger equation

cannot be solved for multivalued potentials.) We show that if an M-dimensional

sub-Hilbert space is not large enough, some elements of the diabatic potential

matrix will not be single valued. Thus a resolution to this difficulty seems to be

in increasing the dimension of the sub-Hilbert space, that is, the value of M.

However, increasing M indefinitely will significantly increase the computational

volume. Therefore it is to everyone’s interest to keep M as small as possible.

Following this explanation, we can now state the purpose of this section:

We intend to show that an adiabatic-to-diabatic transformation matrix based

on the non-adiabatic coupling matrix can be used not only for reaching the dia-

batic framework but also as a mean to determine the minimum size of a sub-Hilbert

space, namely, the minimal M value that still guarantees a valid diabatization.

For example: one forms, within a two-dimensional (2D) sub-Hilbert space, a

2 � 2 diabatic potential matrix, which is not single valued. This implies that

the 2D transformation matrix yields an invalid diabatization and therefore the

required dimension of the transformation matrix has to be at least three. The

same applies to the size of the sub-Hilbert space, which also has to be at least

three. In this section, we intend to discuss this type of problems. It also leads us

to term the conditions for reaching the minimal relevant sub-Hilbert space as

‘‘the necessary conditions for diabatization.’’

In this section, diabatization is formed employing the adiabatic-to-diabatic

transformation matrix A, which is a solution of Eq. (19). Once A is calculated,

the diabatic potential matrix W is obtained from Eq. (22). Thus Eqs. (19) and

(22) form the basis for the procedure to obtain the diabatic potential matrix

elements.

Note that since the adiabatic potentials are single valued by definition, the

single valuedness of W (viz, the single valuedness of each of its terms) depends

on the features of the A matrix [see Eq. (22)]. It is also obvious that if A is

single valued, the same applies to W [the single valuedness of the A matrix in a

given region is guaranteed if Eq. (25) is fulfilled throughout this region].

However, in Section (IV.A) we showed that A does not have to be single valued

in order to guarantee the single valuedness of W. In fact, it was proved that the

necessary condition for having single-valued diabatic potentials along a given
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contour � is that the D matrix introduced in Eq. (38) is diagonal with numbers

of norm 1, namely, numbers that are either (þ1) or (�1). If this condition

is fulfilled for every contour in the region of interest, then we may say that for

this particular dimension M the diabatic potential is single valued or in other

words the diabatization is valid. However, if this condition is fulfilled for a give

value M but not for (M � 1), then M is the minimal value for which diabatization

is valid in this particular case.

According to Section VI, the size M of the sub-Hilbert space is determined

whether the respective M states form an isolated set of states fulfilling Eqs. (91).

In this case, diabatization is always valid for this subsystem. However, it can

happen that under certain geometrical situations the size of the sub-Hilbert

space for which diabatization is valid is even smaller than this particular M

Figure 6. Equi-nonadiabatic coupling lines for the terms s12ðx; yÞ and s23ðx; yÞ as calculated

for the C2H molecule for a fixed C��C distance, that is, rCC ¼ 1:35 Å. (a) Equi-non-adiabatic

coupling term lines for the s12ðx; yÞ. (b) Equi-non-adiabatic coupling term lines for s23ðx; yÞ. The

Cartesian coordinates (x; y) are related to (q; y) as follows: x ¼ q cosy; y ¼ q siny, where q and y are

measured with respect to the midpoint between the two carbons.
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value. These geometrical situations are considered in Section XI.B, and to

simplify the discussion we refer to M ¼ 3.

B. The Noninteracting Conical Intersections

Let us consider a system of three states where the two lower states are coupled by

s12ðsÞ and the two upper ones by s23ðsÞ (see Section VIII for details). By the

concept ‘‘noninteracting conical intersections’’ we mean the case where the

spatial distribution of s12ðsÞ and s23ðsÞ is such that they overlap only slightly at

the region of interest. As an example we may consider a case where the main

intensity of s12ðsÞ is concentrated along one ridge and the main intensity of s23ðsÞ
is concentrated along another ridge. Next, we assume that these two ridges are

approximately parallel and located far enough apart so that the overlap between

s12ðsÞ and s23ðsÞ is minimal (see Figs. 6 and 7).

We are interested in calculating the diabatic potentials for a region in

configuration space, that contains the two conical intersections. According

Figure 6 (Continued)
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to Section VI, for this purpose we need the three states because the two

lowest states (1 and 2) and the two highest states (2 and 3) are strongly

coupled to each other. Next, we examine to see if under these conditions this is

really necessary or could the diabatization be achieved with only the two lowest

states.

For this purpose, we consider Figure 8 with the intention of examining what

happens along the contour �, in particularly when it gets close to C23. Note that

some segments of the contour � are drawn as full lines and others are as dashed

lines. The full lines denote segments along which s12ðsÞ is of a strong intensity

but s23ðsÞ is negligibly weak. The dashed lines denote segments along which

s12ðsÞ is negligibly weak.

Next, consider the following line integral [see Eq. (27)]:

AðsÞ ¼ Aðs0Þ �
ðs

s0

ds � sA ð114Þ

Figure 7. The geometrical positions (with respect to the CC axis) of s12ðx; yÞ and s23ðx; yÞ. All

distances are in angstroms (Å). The Cartesian coordinates (x; y) are related to (q; y) as follows:

x ¼ q cosy; y ¼ q siny, where q and y are measured with respect to the midpoint between the two

carbons.
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where AðsÞ and sðsÞ are of dimensions 3 � 3 [the explicit form of sðsÞ is given in

Eq. (99)]. We also consider the two other s matrices, namely, s12ðsÞ and s23ðsÞ
(see Eq. (105)] and it is easy to see that

sðsÞ ¼ s12ðsÞ þ s23ðsÞ ð106bÞ

Figure 8. The representation of an open contour � in terms of an open contour �12 in the

vicinity of the conical intersection at C12 and a closed contour �23 at the vicinity of a conical

intersection at C23: � ¼ �12 þ �23. It is assumed that the intensity of s12 is strong along �12 (full

line) and weak along �23 (dashed line). (a) The situation when C23 is outside the closed contour �23.

(b) The situation when C23 is inside the closed contour �23.
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To continue, the contour �, along which the integration in Eq. (114) is carried

out, is assumed to be the sum of two contours [see Fig. 8]:

� ¼ �12 þ �23 ð115Þ

where �23 is a closed contour in the vicinity of C23 that may or may not

surround it and �12 is an open contour near C12. By substituting Eq. (115) in (114)

we get

AðsÞ ¼ Aðs0Þ �
ð
�12

ds0 � sðs0ÞAðs0Þ �
ð

‘

�23

ds0 � sðs0ÞAðs0Þ ð116Þ

Next, by recalling the assumptions concerning the intensities of s12ðsÞ and s23ðsÞ
we replace sðsÞ, in the second term of Eq. (116) with s12ðsÞ and in the third term

with s23ðsÞ. As a result Eq. (116) becomes

AðsÞ ¼ Aðs0Þ �
ð
�12

ds0 � s12ðs0ÞAðs0Þ �
ð

‘

�23

ds0 � s23ðs0ÞAðs0Þ ð117Þ

By defining A23 as the following (constant) matrix,

A23 ¼ Aðs0Þ �
ð

‘

�23

ds0 � s23ðs0ÞAðs0Þ ð118Þ

Eq. (117) becomes

AðsÞ ¼ A23 �
ð
�12

ds0 � s12ðs0ÞAðs0Þ ð119Þ

where the matrix A23 is the corresponding ‘‘boundary’’ value matrix. As for A23,

it is noticed to be the solution of Eq. (118), namely, the outcome of an integration

performed along a closed contour (�23) where s23 is the kernel. Consequently,

this matrix can be presented as [see Eq. (39)]:

A23 ¼ D23Aðs0Þ ð120Þ

where from the analysis in Section VIII we get that D23 will have a (þ1) at

position (1,1) and a (�1) at positions (2,2) and (3,3) when it surrounds the

conical intersection at C23.

Now, by returning to Eq. (119) it can be shown that if A12 is the solution of

the equation

A12ðsÞ ¼ A0 þ
ð
�12

ds0 � s12ðs0ÞA12ðs0Þ ð121Þ
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where the contour �12 can be any contour, then

AðsÞ ¼ D23A12ðsÞ ð122Þ

To summarize: Following the theory presented above, we have to distinguish

between two situations. (1) As long as � does not surround C23 the matrix AðsÞ
is given in the form

AðsÞ ¼
cosg12 sing12 0

�sing12 cosg12 0

0 0 1

0
@

1
A ð123Þ

where g12ðsÞ is given in the form

g12ðsÞ ¼ g12ðs0Þ �
ðS

s0

ds � s12ðsÞ ð124Þ

(2) In the case where � surrounds the C23 conical intersection, the value of g12ðsÞ
may change its sign (for more details see Ref. [108]).

Since for any assumed contour the most that can happen, due to C23, is that

g12ðsÞ flips its sign, the corresponding 2 � 2 diabatic matrix potential, WðsÞ,
will not be affected by that as can be seen from the following expressions:

W11ðsÞ ¼ u1ðsÞcos2g12ðsÞ þ u2ðsÞsin2g12ðsÞ

W22ðsÞ ¼ u1ðsÞsin2g12ðsÞ þ u2ðsÞcos2g12ðsÞ

W12ðsÞ ¼ W21ðsÞ ¼
1

2
ðu2ðsÞ � u1ðsÞÞsinð2g12ðsÞÞ

ð125Þ

In other words, the calculation of W can be carried out by ignoring C23 [or s23ðsÞ]
altogether.

XII. THE ADIABATIC-TO-DIABATIC TRANSFORMATION
MATRIX AND THE WIGNER ROTATION MATRIX

The adiabatic-to-diabatic transformation matrix in the way it is presented in

Eq. (28) is somewhat reminiscent of the Wigner rotation matrix [109a] (assuming

that Aðs0Þ � IÞ. In order to see this, we first present a few well-known facts

related to the definition of ordinary angular momentum operators (we follow the

presentation by Rose [109b] and the corresponding Wigner matrices and then

return to discuss the similarities between Wigner’s djðbÞ matrix and the

adiabatic-to-diabatic transformation matrix.
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A. Wigner Rotation Matrices

The ordinary angular rotation operator R(k,y) in the limit y ! 0 is written as

Rðk; yÞ ¼ expð�iSðk; yÞÞ ð126Þ

where k is a unit vector in the direction of the axis of rotation, y is the angle of

rotation, and S(k,y) is an operator that has to fulfill the condition Sðk; yÞ ! 0 for

y ! 0 to guarantee that in this situation (i.e., when y ! 0) Rðk; yÞ ! I.

Moreover, since Rðk; yÞ has to be unitary, the operator Sðk; yÞ has to be

Hermitian. Next, it is shown that Sðk; yÞ is related to the total angular momentum

operator, J, in the following way:

Sðk; yÞ ¼ ðk � JÞy ð127Þ

where the dot stands for scalar product. By substituting Eq. (127) in Eq. (126) we

get the following expression for Rðk; yÞ:

Rðk; yÞ ¼ expð�iðk � JÞyÞ ð128Þ

It has to be emphasized that in this framework J is the angular momentum

operator in ordinary coordinate space (i.e., configuration space) and y is a

(differential) ordinary angular polar coordinate.

Next, Euler’s angles are employed for deriving the outcome of a general

rotation of a system of coordinates [86]. It can be shown that Rðk; yÞ is

accordingly presented as

Rðk; yÞ ¼ e�iaJz e�ibJy e�igJz ð129Þ

where Jy and Jz are the y and the z components of J and a, b, and g are the

corresponding three Euler angles. The explicit matrix elements of the rotation

operator are given in the form:

D
j
m0mðyÞ ¼ h jm0jRðk; yÞj jmi ¼ e�iðm0aþmgÞh jm0je�ibJy j jmi ð130Þ

where m and m0 are the components of J along the Jz and Jz0 axes, respectively,

and jjmi is an eigenfunction of the Hamiltonian of J2 and of Jz. Equation (130)

will be written as

D
j
m0mðyÞ ¼ e�iðm0aþmgÞd j

m0mðbÞ ð131Þ

The D j matrix as well as the d j matrix are called the Wigner matrices and are

the subject of this section. Note that if we are interested in finding a relation

between the adiabatic-to-diabatic transformation matrix and Wigner’s matrices,

we should mainly concentrate on the d j matrix. Wigner derived a formula for
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these matrix elements [see [109b], Eq. (4.13)] and this formula was used by us

to obtain the explicit expression for j ¼ 3
2

(the matrix elements for j ¼ 1 are

given in [109b], p. 72).

B. The Adiabatic-to-Diabatic Transformation Matrix and
the Wigner d j Matrix

The obvious way to form a similarity between the Wigner rotation matrix and the

adiabatic-to-diabatic transformation matrix defined in Eqs. (28) is to consider the

(unbreakable) multidegeneracy case that is based, just like Wigner rotation

matrix, on a single axis of rotation. For this sake, we consider the particular set

of s matrices as defined in Eq. (51) and derive the relevant adiabatic-to-

diabatic transformation matrices. In what follows, the degree of similarity

between the two types of matrices will be presented for three special cases,

namely, the two-state case which in Wigner’s notation is the case, j ¼ 1
2
, the

tri-state case (i.e., j ¼ 1) and the tetra-state case (i.e., j ¼ 3
2
).

However, before going into a detail comparison between the two types of

matrices it is important to remind the reader what the elements of the Jy matrix

look like. By employing Eqs (2.18) and (2.28) of [109b] it can be shown that

h jmj Jyj jm þ ki ¼ d1k

1

2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð j þ m þ 1Þð j � mÞ

p
ð132aÞ

h jm þ kjJyj jmi ¼ �d1k

1

2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð j � m þ 1Þð j þ mÞ

p
ð132bÞ

Now, by defining ~Jy as

~Jy ¼ iJy ð133Þ

it is seen that the ~Jy matrix is an antisymmetric matrix just like the s matrix.

Since the d j matrix is defined as

d jðbÞ ¼ expð�ibJyÞ ¼ expðb~JyÞ ð134Þ

It is expected that for a certain choice of parameters (that define the s matrix) the

adiabatic-to-diabatic transformation matrix becomes identical to the correspond-

ing Wigner rotation matrix. To see the connection, we substitute Eq. (51) in

Eq. (28) and assume Aðs0Þ to be the unity matrix.

The three matrices of interest were already derived and presented in

Section V.A. There they were termed the D (topological) matrices (not related

to the above mentioned Wigner D j matrix) and were used to show the kind

of quantization one should expect for the relevant non-adiabatic coupling

terms. The only difference between these topological matrices and the
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adiabatic-to-diabatic transformation matrices requested here, is that in Eqs. (55),

(61), and (72) the closed-line integral [see Eq. (76)] is replaced by gðsÞ defined

along an (open) contour [see Eq. (75)]:

For the three cases studied in Section V.A, the similarity to the three

corresponding Wigner matrices is achieved in the following way:

1. For the two-state case (i.e., j ¼ 1
2
), d1=2ðbÞ is identified with the corres-

ponding adiabatic-to-diabatic transformation matrix [see Eq. (74)] for

which b ¼ g.

2. For the tri-state case ( j ¼ 1), we consider Eq. (60). The corresponding

d1ðbÞ matrix is obtained by assuming Z ¼ 1 [see Eq. (57)], and therefore

o ¼
ffiffiffi
2

p
. From Eq. (61) or (62), it is seen that b ¼ g

ffiffiffi
2

p
. For the sake of

completeness we present the corresponding d1ðbÞ matrix [109b]:

d1ðbÞ ¼ 1

2

1 þ CðbÞ
ffiffiffi
2

p
SðbÞ 1 � CðbÞffiffiffi

2
p

SðbÞ 2CðbÞ �
ffiffiffi
2

p
SðbÞ

1 � CðbÞ
ffiffiffi
2

p
SðbÞ 1 þ CðbÞ

0
@

1
A ð135Þ

where CðbÞ ¼ cosb and SðbÞ ¼ sinb.

3. For the tetra-state case (j ¼ 3
2
), we consider Eq. (69). The corresponding

d3=2ðbÞ matrix is obtained by assuming Z ¼
ffiffiffiffiffiffiffiffi
4=3

p
and s ¼ 1 [see

Eq. (63)]. This will yield for v the value v ¼
ffiffiffiffiffiffiffiffiffiffi
10=3

p
[see Eq. (67)]. Since

b ¼ pg [see Eqs. (72)] we have to determine the value of p, which can be

shown to be p ¼
ffiffiffi
3

p
[see Eq. (65)] and therefore b ¼ g

ffiffiffi
3

p
. For the sake of

completeness, we present the d3=2ðbÞ matrix:

d3=2ðb0Þ ¼

C3 �
ffiffiffi
3

p
C2S �

ffiffiffi
3

p
S2C S3ffiffiffi

3
p

C2S Cð1 � 3S2Þ �Sð1 � 3C2Þ �
ffiffiffi
3

p
S2C

�
ffiffiffi
3

p
S2C Sð1 � 3C2Þ Cð1 � 3S2Þ �

ffiffiffi
3

p
C2S

�S3 �
ffiffiffi
3

p
S2C

ffiffiffi
3

p
C2S C3

0
BB@

1
CCA ð136Þ

where C ¼ cosðb=2Þ and S ¼ sinðb=2Þ.

The main difference between the adiabatic-to-diabatic transformation and the

Wigner matrices is that whereas the Wigner matrix is defined for an ordinary

spatial coordinate the adiabatic-to-diabatic transformation matrix is defined for a

rotation coordinate in a different space.

XIII. CURL CONDITION REVISITED: INTRODUCTION
OF THE YANG–MILLS FIELD

In this section, the curl condition is extended to include the points of singularity

as discussed in Appendix C. The study is meant to shed light as to the origin of
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the non-adiabatic coupling terms and to connect them with pseudomagnetic

fields.

A. The Non-Adiabatic Coupling term as a Vector Potential

In Section III.B, and later in Appendix C, it was shown that the sufficient

condition for the adiabatic-to-diabatic transformation matrix A to be single

valued in a given region in configuration space is the fulfillment of the following

‘‘curl’’ condition [8,34]:

curl s � ½s � s� ¼ 0 ð137Þ

This condition is fulfilled as long as the components of t are analytic functions at

the point under consideration (in case part of them become singular at this point,

curl t is not defined).

The expression in Eq. (137) is reminiscent of the Yang–Mills field, however,

it is important to emphasize that the Yang–Mills field was introduced for a

different physical situation [58,59]. In fact, what Eq. (137) implies is that for

molecular systems the Yang–Mills field is zero if the following two conditions

are fulfilled:

1. The group of states, for which Eq. (137) is expected to be valid, forms a

sub-Hilbert space that is isolated with respect to other portions of the

Hilbert space following the definition in Eqs. (40).

2. The s-matrix elements are analytic functions (vectors) in the above-

mentioned region of configuration space.

In what follows, we assume that indeed the group of states form an isolated

sub-Hilbert space, and therefore have a Yang–Mills field that is zero or not will

depend on whether or not the various elements of the s matrix are singular.

In order to extend the existence of Eq. (137) for the singular points as well

we write it as follows:

curl s � ½s � s� ¼ H ð138Þ

where H is zero at the regular points.

In order to get more insight, we return to the Born–Oppenheimer–Huang

equation [1,2] as written in Eq. (16) and, for simplicity, limit ourselves to the

two-state case:

� 1

2m
ðr þ tÞ2�þ ðu � EÞ� ¼ 0 ð139Þ

so that s is given in the form

s ¼ 0 t
�t 0

� �
ð140Þ
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Although Eq. (139) looks like a Schrödinger equation that contains a vector

potential s, it cannot be interpreted as such because s is an antisymmetric matrix

(thus, having diagonal terms that are equal to zero). This ‘‘inconvenience’’ can

be ‘‘repaired’’ by employing the following unitary transformation:

� ¼ G� ð141Þ

where G is the (constant) matrix

G ¼ 1ffiffiffi
2

p 1 1

i �i

� �
ð142Þ

By substituting Eq. (141) in Eq. (139) and multiplying it from the left by Gy

yields

1

2m
ð�irþ tÞ2�þ ðw � EÞ� ¼ 0 ð143Þ

where t is now a diagonal matrix

t ¼ s 0

0 �s

� �
ð144Þ

and w is an ordinary potential matrix of the kind

w ¼ 1

2

u1 þ u2 �ðu2 � u1Þ
�ðu2 � u1Þ u1 þ u2

� �
ð145Þ

The important outcome from this transformation is that now the non-

adiabatic coupling term s is incorporated in the Schrödinger equation in the

same way as a vector potential due to an external magnetic field. In other words,

s behaves like a vector potential and therefore is expected to fulfill an equation

of the kind [111a]

curl s ¼ H ð146Þ

where H is a pseudomagnetic field. Equation (146) looks similar to Eq. (138) but

is in fact identical to it because in the case of two states the cross-term ½s � s� is

zero. Now, by returning to the Yang–Mills field we recall that H 6¼ 0 at the

singular points of s. In the present study, we consider a case of one singular point.

The question is if in reality such magnetic fields exist. It turns out that such

fields can be formed by long and narrow solenoids [111b]. It is well known that

in this case the magnetic fields are nonzero only inside the solenoid but zero
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outside it [111b]. Moreover, it has a nonzero component along the solenoid axis

only. Thus simulating the molecular seam [36,54,110] as a solenoid we can

identify the non-adiabatic coupling term as a vector potential produced by an

infinitesimal narrow solenoid.

The quantum mechanical importance of a vector potential A, in regions

where the magnetic field is zero, was first recognized by Aharonov and Bohm in

their seminal 1959 paper [112].

B. The Pseudomagnetic Field and the Curl Equation

To continue, we assume the following situation: We concentrate on an x–y plane,

which is chosen to be perpendicular to the seam. In this way, the pseudomagnetic

field is guaranteed to be perpendicular to the plane and will have a nonzero

component in the z direction only. In addition, we locate the origin at the point of

the singularity, that is, at the crossing point between the plane and the seam. With

these definitions the pseudomagnetic field is assumed to be of the form [113].

H ¼ Hz ¼ 2p
dðqÞ

q
f ðyÞ ð147Þ

Here, dðqÞ is the Dirac d function and f ðyÞ is an arbitrary function to be

determined [it can be shown that any function of the type f ðq; yÞ leads to the

same result because of the dðqÞ function]. By considering Eq. (146) for the z

component, we obtain (employing polar coordinates):

1

q

qty
qq

� qtq

qy

� �
¼ 2p

dðqÞ
q

f ðyÞ ð148Þ

Here, (tq; ty) are the radial and the angular components of s (the z component,

i.e., the out-of-plane component, is by definition equal to zero). Equation (148)

can be shown (by substitution) to have the following solution:

tyðq; yÞ �
ðq

0

dq
qtq

qy
¼ phðqÞ f ðyÞ ð149Þ

where hðqÞ is the Heaviside function

hðqÞ ¼ 1 q � 0

0 q < 0

�
ð150Þ

Since q is a radius it is always positive, and therefore Eq. (149) can be

written, without loss of generality, as

tyðq; yÞ �
ðq

0

dq
qtq

qy
¼ pf ðyÞ ð151Þ
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Next, we consider the ‘‘quantization’’ condition introduced earlier [see

Eq. (94)]. Assuming � to be a circle with radius q, Eq. (94) implies

ð2p

0

tyðq; yÞdy ¼ np ð152Þ

A similar integration over y along the (0,2p) range can be carried out for

Eq. (151). Thus, let us first consider the integration over the second term

ð2p

0

dy
ðq

0

dq
qtq

qy
¼
ðq

0

dq

ð2p

0

qtq

qy
dy ¼

ðq

0

dqðtqðq; y ¼ 2pÞ � tqðq; y ¼ 0ÞÞ

In Section XIV.A, it is proved that tqðq; yÞ is, for every value of q, single valued

with respect to y so that we have

ð2p

0

dy
ðq

0

dq
qtq

qy
¼ 0 ð153Þ

Combining Eqs. (151)–(153) yields the following outcome:

ð2p

0

f ðyÞ dy ¼ n ð154Þ

In other words, the quantization that was encountered for the non-adiabatic

coupling terms is associated with the ‘‘quantization’’ of the intensity of the

‘‘magnetic’’ field along the seam. Moreover, Eq. (154) reveals another feature,

namely, that there are fields for which n is an odd integer, namely, conical

intersections and there are fields for which n is an even integer, namely,

parabolical intersections.

Equation (151) can be applied to obtain f ðyÞ. Ab initio calculation for small

enough q values will yield tyðy; q � 0Þ and these, as is seen from Eq. (151), can

be directly related to f ðyÞ:

f ðyÞ � 1

p
tyðq � 0; yÞ ð155Þ

where the contribution of the second term on the left-hand side (for small enough

q values) is ignored.

C. Conclusions

This section is devoted to the idea that the electronic non-adiabatic coupling

terms can be simulated as vector potentials. For this purpose, we considered
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a two-state system, shifted (rigorously) the off-diagonal non-adiabatic coupling

terms to the diagonal and employed the relevant Maxwell equation. As is also

noticed, the simulation created a connection between the ‘‘curl’’ condition as

fulfilled by the non-adiabatic coupling terms and the Yang–Mills field.

As noticed, a pseudomagnetic field is assumed to exist along the seam

formed by varying indirect coordinates (i.e., coordinates not related to the plane

for which the vector potential is not zero) of a given molecular system. In this

respect, we want to suggest that eventually the pseudomagnetic field is

‘‘formed,’’ semiclassically, by the zero-point vibrational motion of the indirect

coordinates. For this purpose, we consider a three-atom molecular system ABC

and assume the AB distance to be the indirect coordinate. Varying the AB

distance builds up, semiclassically, a motion along the seam. Consequently, the

zero-point vibrational motion along the AB bond creates, semiclassically, a

periodic motion along the seam. This motion eventually causes charges that are

concentrated along the seam (or its vicinity) to oscillate and in this way to form

a pseudoelectromagnetic field.

XIV. A THEORETIC-NUMERIC APPROACH TO CALCULATE
THE ELECTRONIC NON-ADIABATIC COUPLING TERMS

In this section, we discuss the possibility that the electronic non-adiabatic

coupling terms will be derived, not by ab initio treatments but, by solving the curl

equations for a given set of boundary conditions obtained from ab initio

calculations [114,115]. In other words, instead of performing an ab initio

calculation at any point in configuration space we suggest solving the relevant

differential equations for boundary conditions obtained from a (limited) ab initio

calculation [64–74] or perturbation theory [66,67].

A. The Treatment of the Two-State System in a Plane

1. The Solution for a Single Conical Intersection

The curl equation for a two-state system is given in Eq. (26):

curl s ¼ 0 ð26Þ

Equation (26) is fulfilled at any point in configuration space for which the

components of s are analytic functions.

Equation (26) is a set of partial first-order differential equations. Each

component of the Curl forms an equation and this equation may or may not be

‘‘coupled’’ to the other equations. In general, the number of equations is equal

to the number of components of the Curl equations. At this stage, to solve this

set of equation in its most general case seems to be a formidable task.
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In what follows, we shall limit ourselves to the following situation. Assuming

a system of N coordinates ðz1; z2; . . . ; zNÞ, with the following components:

tzj
¼ tzj

ðz1; z2; . . . zNÞ j ¼ 1; 2; . . . ;N ð156aÞ

and assume that two of them, that is, sz1
and sz2

depend only on their own

coordinates, namely, (z1; z2), thus

szj
¼ szj

ðz1; z2Þ j ¼ 1; 2 ð156bÞ

then the following partial curl equation

qsz1

qz2

� qsz2

qz1

¼ 0

is the only equation to be considered within the (z1; z2) space because due to

Eq. (156b) all the other relevant components lead to the results

qszn

qz1

¼ qszn

qz2

0 n ¼ 3; . . . ;N

In what follows, the 2D space is assumed to be a plane, and therefore we

apply either the polar coordinates ðq; yÞ or the Cartesian coordinates (x; y).

We start treating the curl equation expressed in terms of polar coordinates:

1

q

qsy
qq

� qsq

qy

� �
¼ 0 ) qsy

qq
� qsq

qy
¼ 0 ð157Þ

Integrating the second equation with respect to q along the interval [0;q] yields

syðq; yÞ �
ðq

0

dq
qsq

qy
¼ tyðq � 0; yÞ ð158aÞ

Next, Eq. (158a) is integrated with respect to y along the interval [0,2p] and we

get

ð2p

0

syðq; yÞdy�
ð2p

0

ðq

0

dq
qsq

qy
dy ¼

ð2p

0

syðq � 0; yÞdy ð158bÞ

which due to the fact that syðq; yÞ is quantized (for every value of q) in the

following way [see Eq. (94)]:

ð2p

0

syðq; yÞdy ¼ np ð159Þ
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yields the result: ð2p

0

dy
ðq

0

dq
qsq

qy
¼ 0 ð160Þ

If we evaluate the integrand and change the order of integration we get

ð2p

0

dy
ðq

0

dq
qsq

qy
¼
ðq

0

dq

ð2p

0

qsq

qy
dy ¼

ðq

0

dqðsqðq; y ¼ 2pÞ � sqðq; y ¼ 0ÞÞ

This result implies that sqðq; yÞ is, for every value of q, single valued with

respect to y.

In what follows, we assume that the second term in Eq. (158a) is negligibly

small and as a result syðq; yÞ becomes independent of q. Thus

syðq; yÞ ¼ syðq ¼ q0; yÞ ð161aÞ

where q0 is a fixed q value and syðq ¼ q0; yÞ is a boundary value (at q0 � 0) for

syðq; yÞ determined either by ab initio calculations or perturbation theory. We

also recall that syðq; yÞ fulfills the quantization condition as written in Eq. (159).

To examine our assumption regarding the dependence of syðq; yÞ on q, we

consider the well-known (collinear) conical intersection of the C2H molecule

formed by the two lowest states, namely, the 12A0 and the 22A0 states

[12,72,105]. Figure 9 presents syðq; yÞ as calculated for a fixed C��C distance,

that is, RCC ¼ 1:35 Å and for different q values. It is seen that the basic shape of

syðq; yÞ is approximately preserved although q is varied along a relative large

interval, that is, the [0.05, 1.0 Å] interval. It is noticed that the shape syðq; yÞ is

significantly affected only when q ¼ 1 Å and y � p. The reason is that in this

situation the point ðq ¼ 1 Å; y ¼ pÞ gets very close to one of the carbons (the

distance becomes �0.3 Å) and therefore the ab initio values for syðq; yÞ are not

for an isolated conical intersection anymore as it should be [12].

In Section XIV.A.2, we intend to obtain the vector function sðq; yÞ for a

given distribution of conical intersections. Thus, first we have to derive an

expression for a conical intersection removed from the origin, namely, assumed

to be located at some point, (qj0; yj0), in the plane.

Combining Eqs. (151), (158a), and (161a) we get that syðq; yÞ can be writtern

as:

syðq; yÞ ¼ p f ðyÞ ð161bÞ

To shift it to some arbirtrary point (qj0; yj0) we first express Eq. (161b) in

terms of Cartesian coordinates, and then shift the solution to the point of

interest, namely, to ðxj0; yj0Þ½� ðqj0; yj0Þ�. Once completed, the solution is

transformed back to polar coordinates (for details see Appendix F). Following
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this procedure, syðq; yÞ and sqðq; yÞ (which is now different from zero) become

sqðq; yÞ ¼ �fjðyjÞ
1

qj

sinðy� yjÞ

syðq; yÞ ¼ fjðyjÞ
q

qj

cosðy� yjÞ
ð162Þ

where qj and yj are the coordinates of an arbitrary point, Pðq; yÞ, with respect to

the conical intersection position. The coordinates (qj; yj) are related to ðq;yÞ as

follows:

qj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq cosy� qj0 cosyj0Þ2 þ ðq siny� qj0 sinyj0Þ2

q
cosyj ¼

q cosy� qj0 cosyj0

qj

ð163Þ

Figure 9. The syðq; yÞ—the angular non-adiabatic coupling term as a function of y—as

calculated for different q values. (a) q ¼ 0:05 Å; (b) q ¼ 0:2 Å; (c) q ¼ 0:5 Å; (d) q ¼ 1:0 Å.
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and fjðyjÞ is defined as
fjðyjÞ � tjyðqj � 0; yjÞ ð164Þ

In Eq. (162) [as well as in Eq. (164)], we attached a subscript j to f ðyÞ to

indicate that each conical intersection (in this case the jth one) may form a

different spatial (angular) distribution.

Note that for qj0 ¼ 0 the solution in Eq. (161b) is restored (and sq becomes zero).

2. The Solution for a Distribution of Conical Intersections

With the modified expression we can now extend the solution of Eq. (162) to any

number of conical intersections. The solution in Eq. (162) stands for a single

conical intersection located at an arbitrary point (qj0; yj0). Since syðq; yÞ and

sqðq; yÞ are scalars the solution in case of N conical intersections located at the

points ðqj0; yj0Þ; j ¼ 1; . . . ;N are obtained by summing up the individual

contributions [114]:

sqðq; yÞ ¼ �
XN

j¼1

fjðyjÞ
1

qj

sinðy� yjÞ

syðq; yÞ ¼ q
XN

j¼1

fjðyjÞ
1

qj

cosðy� yjÞ
ð165Þ

Equation (165) yields the two components of sðq; yÞ, the vectorial non-

adiabatic coupling term, for a distribution of two-state conical intersections

expressed in terms of the values of the angular component of each individual

non-adiabatic coupling term at the closest vicinity of each conical intersection.

These values have to be obtained from ab initio treatments (or from perturbation

expansions); however, all that is needed is a set of these values along a single

closed circle, each surrounding one conical intersection.

To summarize our findings so far, we may say that if indeed the radial

component of a single completely isolated conical intersection can be assumed

to be negligible small as compared to the angular component, then we can present,

almost fully analytically, the 2D ‘‘field’’ of the non-adiabatic coupling terms for

a two-state system formed by any number of conical intersections. Thus, Eq. (165)

can be considered as the non-adiabatic coupling field in the case of two states.

In Section XIV.B, this derivation is extended to a three-state system.

B. The Treatment of the Three-State System in a Plane

To study the three-state case, we consider two non-adiabatic coupling terms: one,

between the lowest and the intermediate state, designated as t12 with its origin

located at Paðqa; yaÞ, and the other between the intermediate and the highest

state, designated as t23 with its origin located at Pbðqb; ybÞ. As will be seen, in

addition to t12 and t23 we also have to consider t13, although no degeneracy point
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exists between the lowest and the highest states. In other words, we shall show

how the interaction between the above mentioned two conical intersections

builds up t13, which does not have a source of its own. Thus the s matrix for the

most general case has to be of the form:

s ¼
0 t12 t13

�t12 0 t23

�t13 �t23 0

0
@

1
A ð166Þ

The curl equation for three (or more) states is given in Eq. (25) and is

presented here again for the sake of completeness:

curl s � ½s � s� ¼ 0 ð25Þ

It is well noted that, in contrast to the two-state equation [see Eq. (26)],

Eq. (25) contains an additional, nonlinear term. This nonlinear term enforces a

perturbative scheme in order to solve the required s-matrix elements.

The derivation of the s-matrix elements will be done in two steps: (1) first by

considering each of the conical intersection as being isolated, namely, the one

independent of the other; and (2) secondly by employing Eq. (20) to treat the

two conical intersections as one complete system. Thus within the first step

we obtain zeroth-order expressions for s12 and s23, that is, s012 and s023,

respectively, whereas within the second step we not only correct these expres-

sions so that Eq. (25), is (�) fulfilled for three states, but also derive the missing

s13 term. The study is done, as before, for a plane in configuration space

employing polar coordinates.

To study the two isolated conical intersections, we have to treat two-state curl

equations that are given in Eq. (26). Here, the first 2 � 2 s matrix contains the

(vectorial) element, that is, s012 and the second 2 � 2 s matrix contains s023. As

before each of the non-adiabatic coupling terms, s012 and s023 has the following

components:

s0jjþ1 ¼ ðs0q jjþ1; s0yjjþ1Þ j ¼ 1; 2 ð167Þ

where s0qjjþ1 and s0yjjþ1; j ¼ 1, 2, were derived in Section XIV.A [see Eqs. (165)],

and therefore no further treatment is necessary.

In Section XI.B, we discussed situations (based on ab initio calculations) where

the two non-adiabatic coupling terms t12 and t23 slightly overlap [12,108].

Based on ab initio calculations (as were carried out for the C2H molecule) it was

found that in many cases the non-adiabatic coupling is not evenly distributed

around its point of degeneracy but rather is concentrated along a radial ridge

that starts at the point of degeneracy (see Figs. 6 and 7). Therefore, in these

cases, only slight overlaps are expected, in particular, when the two points of

degeneracy Pxðqx; yxÞ; x ¼ a; b are located far enough from each other [108].
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Thus if tjjþ1—the full non-adiabatic coupling term—and the unperturbed

non-adiabatic coupling term, t0jjþ1, are assumed to be related to each other as

sjjþ1 ¼ s0jjþ1 þ dsjjþ1 j ¼ 1; 2 ð168Þ

then it follows, from the above discussion, that the components of the two

vectorial perturbations (i.e., dsq jjþ1 and dsyjjþ1) are likely to be (much) smaller

than the corresponding components, namely, s0q jjþ1 and s0yjjþ1.

Next, we return to Eq. (25) and recall that we are interested only in the

components of sjjþ1 j ¼ 1; 2 in a plane perpendicular to the z axis. It can be

shown that if s0jjþ1; j ¼ 1; 2 do not posses a z component, the same applies to

the perturbations dsjjþ1 j ¼ 1; 2, as well as to t13.

Substituting Eq. (168) in Eq. (166) and the result in Eq. (25) yields the

(inhomogeneous) differential equations for the components of dsjjþ1; j ¼ 1; 2

curlðd12Þ ¼
qðdsq12Þ

qy
� qðdsy12Þ

qq
¼ sy13s0q23 � sq13s0y23

curlðds23Þ ¼
qðdsq23Þ

qy
� qðdsy23Þ

qq
¼ sq13s0y12 � sy13s0q12

ð169Þ

where the second-order terms were deleted. In this derivation, we employed the

fact that:

curl s012 ¼ curl s023 ¼ 0 ð170Þ

In the same way, with similar assumptions, we obtain the (inhomogeneous)

differential equation for the components of s13

curl t13 ¼ qsq13

qy
� qsy13

qq
¼ s0y12s0q23 � s0q12s0y23 ð171Þ

Equation (171) is the an explicit ‘‘curl’’ equation for a coupling that does not has

a ‘‘source’’ of its own but is formed due to the interaction between two ‘‘real’’

conical intersection.

Equations (169) and (171), together with Eqs. (170), form the basic equations

that enable the calculation of the non-adiabatic coupling matrix. As is noticed,

this set of equations creates a hierarchy of approximations starting with the

assumption that the cross-products on the right-hand side of Eq. (171) have small

values because at any point in configuration space at least one of the multipliers

in the product is small [115].

the electronic non-adiabatic coupling term 103



XV. STUDIES OF SPECIFIC SYSTEMS

In this section, we concentrate on a few examples to show the degree of relevance

of the theory presented in the previous sections. For this purpose, we analyze the

conical intersections of two real two-state systems and one real system

resembling a tri-state case.

A. The Study of Real Two-State Molecular Systems

We start by mentioning the studies of Yarkony et al. [64] who were the first to apply

the line integral approach to reveal the existence of a conical intersection for a

‘‘real’’ molecular system—the H3 system—by calculating the relevant non-

adiabatic coupling terms from first principles and then deriving the topological

angle a [see Eq. (76)]. Later Yarkony and co-workers applied this approach to

study other tri-atom system such as AlH2 [65], CH2 [66,69], H2S [66], HeH2

[68], and Li3 [70].

Recently, Xu et al. [11] studied in detail the H3 molecule as well as its two

isotopic analogues, namely, H2D and D2H, mainly with the aim of testing the

ability of the line integral approach to distinguish between the situations when

the contour surrounds or does not surround the conical intersection point. Some

time later Mebel and co-workers [12,72–74,116] employed ab initio non-

adiabatic coupling terms and the line-integral approach to study some features

related to the C2H molecule.

Some results of these studies will be presented in Sections XV.A.1–XV.A.3.

1. The H3-System and Its Isotopic Analogues

Although the study to be described is for a ‘‘real’’ system, the starting point was

not the ab initio adiabatic potential energy surfaces and the ab initio non-

adiabatic coupling terms but a diabatic potential [117], which has its origin in the

LSTH potential [118] improved by including three-center terms [119]. These

were used to calculate the adiabatic-to-diabatic transformation angle g by

employing the Hellmann–Feynman theorem [3,36]. However, we present our

results in term of the diabatic-to-adiabatic transformation angle b, which is also

know as the mixing angle. We start by proving, analytically that these two angles

are identical up to an integration constant.

We consider a 2D diabatic framework that is characterized by an angle,

bðsÞ, associated with the orthogonal transformation that diagonalizes the

diabatic potential matrix. Thus, if V is the diabatic potential matrix and if u
is the adiabatic one, the two are related by the orthogonal transformation

matrix A [34]:

u ¼ AyVA ð172Þ
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where Ay is the complex conjugate of the A matrix. For the present two-state

case, A can be written in the form:

A ¼ cosb �sinb
sinb cosb

� �
ð173Þ

where b—the above mentioned mixing angle—is given by [36a]:

b ¼ 1

2
tan�1 2V12

V11 � V22

ð174Þ

Recalling g(s), the adiabatic-to-diabatic transformation angle [see Eqs. (74) and

(75)] it is expected that the two angles are related. The connection is formed by

the Hellmann–Feynman theorem, which yields the relation between the s

component of the non-adiabatic coupling term, s, namely, ss, and the charac-

teristic diabatic magnitudes [13]

ssðsÞ ¼ ðu2 � u1Þ�1A�
1

qV

qs
A2 ¼ sin2b

2W12

A�
1

qV

qs
A2 ð175Þ

where Ai, i ¼ 1; 2 are the two columns of the A matrix in Eq. (173). By replacing

the two Ai columns by their explicit expressions yields for ts the expression

ssðsÞ ¼
sin2b
2V12

�sin2b
2

q
qs

ðV11 � V22Þ þ cos2b
q
qs

V12

� �
ð176Þ

Next, by differentiating Eq. (174) with respect to s

q
qs

ðV11 � V22Þ ¼ 2 V12
q
qs

cot 2bþ cot 2b
q
qs

V12

� �
ð177Þ

and by substituting Eq. (177) in Eq. (176), yields the following result for ssðsÞ:

ssðsÞ ¼
qb
qs

ð178Þ

Comparing this equation with Eq. (75), it is seen that the mixing angle b is, up to

an additive constant, identical to the relevant adiabatic-to-diabatic transforma-

tion—angle g:

gðsÞ ¼ bðsÞ � bðs0Þ ð179Þ

This relation will be used to study geometrical phase effects within the diabatic

framework for the H3 system and its two isotopic analogues. What is meant by
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this is that since our starting point is the 2 � 2 diabatic potential matrix, we do

not need to obtain the adiabatic-to-diabatic transformation angle by solving a

line integral; it will be obtained simply by applying Eqs. (174) and (178). The

forthcoming study is carried out by presenting bðjÞ as a function of an angle j to

be introduced next.

In the present study, we are interested in finding the locus of the seam defined

by the conditions rAB ¼ rBC ¼ rAC [14–17] where rAB, rBC, and rAC are the

interatomic distances. Since we intend to study the geometrical properties

produced by this seam we follow a suggestion by Kuppermann and co-workers

[29,120,121] and employ the hyperspherical coordinates (r; y;j) that were

found to be suitable for studying topological effects for the H��H2 (and its

isotopic analogues) because one of the hyperspherical (angular) coordinates

surrounds the seam in case of the pure-hydrogenic case. Consequently,

following previous studies [29,122–124], we express the three above-mentioned

distances in terms of these coordinates, that is,

r2
AB ¼ 1

2
dCr2 1 þ sin

y
2

cosðjþ wACÞ
� �

r2
BC ¼ 1

2
dAr2 1 þ sin

y
2

cosðjÞ
� �

r2
AC ¼ 1

2
dBr2 1 þ sin

y
2

cosðj� wABÞ
� � ð180Þ

where

d2
X ¼ mX

m
1 � mX

M

� �
wXY ¼ 2 tan�1 mZ

m

� �

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mAmBmC

M

r
M ¼ mA þ mB þ mC

ð181Þ

Here X,Y ,Z stand for A,B,C and

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

AB þ r2
AC þ r2

BC

q
ð182Þ

By equating the three interatomic distances with each other, we find that the seam

is a straight line, for which r is arbitrary but j and y have fixed values js and ys

determined by the masses only.

js ¼ tan�1

coswAC � t coswAB � dA

dC

� �2

þ t
dA

dB

� �2

sinwAC � t sinwAB

8>>><
>>>:

9>>>=
>>>;

ð183Þ
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and

ys ¼ 2 sin�1

dA

dB

� �2

�1

cosðjs � wABÞ � dA

dB

� �2

cosjs

8>>><
>>>:

9>>>=
>>>;

ð184Þ

where t is given in the form

t ¼ dA

dC

� �2

�1

" #
dA

dB

� �2

�1

" #�1

ð185Þ

Equations (182)–(185) are valid when all three masses are different. In case two

masses are equal, namely, mB ¼ mC, we get for ys the simplified expression

ys ¼ 2 sin�1 mB � mA

mB þ 2mA

%%%%
%%%%

� &
ð186Þ

and for js the value p when mA > mB and the value zero when mA < mB. In case

all three masses are equal (then t ¼ 1), we get ys ¼ 0 and js ¼ p.

In what follows, we discuss the H2D system. For this purpose Eq. (186) is

employed for which it is obtained that the straight line seam is defined for the

following values of ys and js, namely, ys ¼ 0:4023 rad, and js ¼ p. In the H3

case, the value of ys is zero and this guarantees that all the circles with constant

r and y encircle the seam. The fact that ys is no longer zero implies that not all

the circles with constant r and y encircle the seam; thus, circles for which

y > ys will encircle the seam and those with y < ys will not.

In Figure 10 are presented bðjÞ curves for H2D, all calculated for r ¼ 6a0. In

this calculation, the hyperspherical angle j, defined in along the [0;2p] interval,

is the independent angular variable. Figure 10a shows two curves for the case

where the line integral does not encircle the seam, namely, for y ¼ 0:2 and

0.4 rad and in Figure 10b for the case where the line integral encircles the seam,

namely, for y ¼ 0:405 and 2.0 rad. Notice that the curves in Figure 10a reach

the value of zero and those in Figure 10b reach the value of p. In particular, two

curves, that in Figure 10a for y ¼ 0:4 rad and the other in Figure 10b for

y ¼ 0:405 rad, were calculated along very close contours (that approach the

locus of the seam) and indeed their shapes are similar—they both yield an abrupt

step—but one curve reaches the value of zero and the other the value p. Both

types of results justify the use of the line integral to uncover the locus of the

seam. More detailed results as well as the proper analysis can be found in [11].

These results as well as others presented in [11] are important because on

various occasions it was implied that the line integral approach is suitable only
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Figure 10. The mixing angle b, for the H2D system, as a function of hyperspherical angle

j, calculated for hyperspherical radius r ¼ 6 a0: (a) Results for y ¼ 0:2 rad ———— and y ¼
0.4 rad ............... . (b) The same as (a) but for y ¼ 2:0 rad ————; and y ¼ 0:405 rad ............... .
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for cases when relatively small radii around the conical intersection are applied

[64]. In [11], it is shown for the first time that this approach can be useful even

for large radii, which does not mean that it is relevant for any assumed contour

surrounding a conical intersection (or for that matter a group of conical

intersections) but means that we can always find contours with large radii that

will reveal the conical intersection location for a given pair of states.

2. The C2H-Molecule: The Study of the (1,2) and the

(2,3) Conical Intersections

In the first part of this study, we were interested in non-adiabatic coupling terms

between the 12A0 and 22A0 and between the 22A0 and 32A0 electronic states. The

calculations were done employing MOLPRO [6], which yield the six relevant

non-adiabatic coupling elements as calculated with respect to the Cartesian

center-of-mass coordinates of each atom. These coupling terms were then

transformed, employing chain rules [12,73], to non-adiabatic coupling elements

with respect to the internal coordinates of the C2H molecule, namely, hzijqzj=qr1i
ð¼ tr1

Þ; hzijqzj=qr2ið¼ tr2
Þ, and hzijqzj=qjið¼ tjÞ. Here r1 and r2 are the C��C

and C��H distances, respectively, and j is the relevant CC � � �CH angle. The

adiabatic-to-diabatic transformation angle, gðjjr1; r2Þ, is derived next employing

the following line integral [see Eq. (75)], where the contour is an arc of a circle

with radius r2:

gðj j r1; r2Þ ¼
ðj

0

dj0tjðj0 j r1; r2Þ ð187Þ

The corresponding topological phase, aðr1; r2Þ [see Eq. (76)] defined as gðj ¼
2p j r1; r2Þ, was also obtained for various values of r1 and r2.

First, we refer to the (1,2) conical intersection. A detailed inspection of the

non-adiabatic coupling terms revealed the existence of a conical intersection

between these two states, for example, at the point fj ¼ 0; r1 ¼ 1:35 Å,

r2 ¼ 1:60 ÅÞ as was established before [105]. More conical intersections of this

kind are expected at other r1 values. Next, were calculated the gðj j r1; r2Þ
angles as a function of j for various r2. The tjðj j r1; r2Þ functions as well as

the adiabatic-to-diabatic transformation angles are presented in Figure 11 for

three different r2 values, namely, r2 ¼ 1:8; 2:0; 3:35 Å. Mebel et al. [12] also

calculated the topological angle aðr1; r2Þ for these three r2 values employing

Eq. (76) and got, for the first two r2 values, the values 3.136 and 3.027 rad,

respectively—thus, in both cases, values close to the expected p value. A

different situation is encountered in the third case when the circle surrounds the

two (symmetrical) CIs as can be seen from the results presented in the third

panel of Figure 11e and f. In such a case, the angle a is expected to be either an

even multiple of p or zero. The integration according to Eq. (76) yields the value
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of 0.048 rad, namely, a value close to zero. It is important to mention that we

also performed integrations along closed circles that do not surround any

conical intersections and got the value zero as was proved in Appendix C (for

more details about these calculations see [12]).

In this series of results, we encounter a somewhat unexpected result, namely,

when the circle surrounds two conical intersections the value of the line integral

is zero. This does not contradict any statements made regarding the general

theory (which asserts that in such a case the value of the line integral is either a

multiple of 2p or zero) but it is still somewhat unexpected, because it implies

that the two conical intersections behave like vectors and that they ar-

range themselves in such a way as to reduce the effect of the non-adiabatic

coupling terms. This result has important consequences regarding the cases

where a pair of electronic states are coupled by more than one conical

intersection.

On this occasion, we want also to refer to an incorrect statement that we

made more than once [72], namely, that the (1,2) conical intersection results

indicate ‘‘that for any value of r1 and r2 the two states under consideration form

an isolated two-state sub-Hilbert space.’’ We now know that in fact they do not

form an isolated system because the second state is coupled to the third state via

a conical intersection as will be discussed next. Still, the fact that the series of

topological angles, as calculated for the various values of r1 and r2, are either

multiples of p or zero indicates that we can form, for this adiabatic two-state

system, single-valued diabatic potentials. Thus if for some numerical treatment

only the two lowest adiabatic states are required, the results obtained here

suggest that it is possible to form from these two adiabatic surfaces single-

valued diabatic potentials employing the line-integral approach. Indeed,

recently Billing et al. [104] carried out such a photodissociation study based

on the two lowest adiabatic states as obtained from ab initio calculations. The

complete justification for such a study was presented in Section XI.

Reference [73] presents the first line-integral study between two excited

states, namely, between the second and the third states in this series of states.

Here, like before, the calculations are done for a fixed value of r1 (results are

reported for r1 ¼ 1:251 ) but in contrast to the previous study the origin of the

system of coordinates is located at the point of this particular conical inter-

section, that is, the (2,3) conical intersection. Accordingly, the two polar

coordinates (j; q) are defined. Next is derived the j-th non-adiabatic coupling

term i.e. tj ð¼ hz2jqz3=qjiÞ again employing chain rules for the transformation

ðtg; tr2Þ ! tj(tq is not required because the integrals are performed along a

circle with a fixed radius q—see Fig. 12).

Figure 12 presents tjðj j qÞ and gðj j qÞ for three values of q, that is,

q ¼ 0:2; 0:3; 0:4 . The main features to be noticed are (1) The function

tjðj j qÞ exhibits the following symmetry properties: tjðjÞ ¼ tjðp� jÞ and

Å

Å
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tjðpþ jÞ ¼ tjð2p� jÞ, where 0 � j � p. In fact, since the origin is located

on the C2v axis we should expect only jtjðjÞj ¼ jtjðp� jÞj and jtjðpþ jÞj ¼
jtjð2p� jÞj, where 0 � j � p but due to continuity requirements these

relations also have to be satisfied without the absolute signs. (2) It is seen that

the adiabatic-to-diabatic transformation angle, gðj j qÞ, increases, for the

two smaller q-values, monotonically to become að� j qÞ, with the value of p (in

fact, we got 0.986p and 1.001p for q ¼ 0:2 and 0.3 Å, respectively). The two-

state assumption seems to break down in case q ¼ 0:4 Å because the calculated

value of að� j qÞ is not anymore p but only 0.63p. The reason being that the

q ¼ 0:4-Å circle not only passes too close to two (3,4) conical intersections—

the distances at the closest points are �0.04 Å—and so the (2,3) system can not

be considered anymore as an isolated sub-Hilbert space but in fact surrounds

these two conical intersections (see third panel of Fig. 12). More details are

given in Section XV.B [116].

Figure 12. Results for the C2H molecule as calculated along a circle surrounding the 22A0–32A0

conical intersection. The conical intersection is located on the C2v line at a distance of 1.813 Å from

the CC axis, where r1 (����CC distance)¼ 1.2515 Å. The center of the circle is located at the point of

the conical intersection and defined in terms of a radius q. Shown are the non-adiabatic coupling

matrix elements tjðjjqÞ and the adiabatic-to-diabatic transformation angles gðjjqÞ as calculated for

(a) and (b) where q ¼ 0:2 Å; (c) and (d) where q ¼ 0:3 Å; (e) and ( f ) where q ¼ 0:4 Å. Also shown

are the positions of the two close-by (3,4) conical intersections (designated as X34).
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B. The Study of a Real Three-State Molecular System: Strongly Coupled
(2,3) and (3,4) Conical Intersections

We ended Section XV.A by claiming that the value að� j q ¼ 0:4 Þ is only

0.63p instead of p (thus damaging the two-state quantization requirement)

because, as additional studies revealed, of the close locations of two (3,4) conical

intersections. In this section, we show that due to these two conical intersections

our sub-space has to be extended so that it contains three states, namely,

the second, the third, and the fourth states. Once this extension is done, the

quantization requirement is restored but for the three states (and not for two

states) as will be described next.

In Section IV, we introduced the topological matrix D [see Eq. (38)] and

showed that for a sub-Hilbert space this matrix is diagonal with (þ1) and (�1)

terms a feature that was defined as quantization of the non-adiabatic coupling

matrix. If the present three-state system forms a sub-Hilbert space the resulting

D matrix has to be a diagonal matrix as just mentioned. From Eq. (38) it is

noticed that the D matrix is calculated along contours, �, that surround conical

intersections. Our task in this section is to calculate the D matrix and we do this,

again, for circular contours.

The numerical part is based on two circles, C3 and C4, related to two

different centers (see Fig. 13). Circle C3, with a radius of 0.4 Å, has its center at

the position of the (2,3) conical intersection (like before). Circle C4, with a

radius 0.25 Å, has its center (also) on the C2v line, but at a distance of 0.2 Å from

the (2,3) conical intersection and closer to the two (3,4) conical intersections.

The computational effort concentrates on calculating the exponential in Eq. (38)

for the given set of ab initio 3 � 3 s matrices computed along the above

mentioned two circles. Thus, following Eq. (28) we are interested in calculating

the following expression:

Aðj j qÞ ¼ } exp �
ðj

0

sjðj0 j qÞdj0
� �

ð188Þ

where value of q determines the circular contour. The matrix DðqÞ is, accor-

dingly:

DðqÞ ¼ Aðj ¼ 2p j qÞ ð189Þ

To calculate Aðj j qÞ the angular interval f0;jg is divided into n (small

enough) segments with fj0ð¼ 0Þ;j1; . . . ;jnð¼ jÞg as division points, so that

the A matrix can be presented as

Aðj ¼ jnÞ ¼
Yn

k¼1

exp �
ðjk

jk�1

sðj0Þdj0

 !
ð190Þ

Å
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Figure 13. The NACT v(j) (see text) and the ADT matrix diagonal elements AiiðjÞ;
i ¼ 1,2,3, as calculated for two contours surrounding all three CIs: (a) and (c) Results for the C3

contour (q ¼ 0:4 Å). (b) and (d) Results for the C4 contour (q ¼ 0:25 Å). The upper panels present

the geometrical situation for each case: The contour C3 has its center at the point of the (2,3) CI and

its radius is q ¼ 0:4 Å. The contour C4 has its center (at a distance of 0.2 Å) in-between the (2,3) CI

point and the two (3,4) CIs axis and its radius is q ¼ 0:25 Å.
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where the variable q is deleted. By following the procedure described in [57], one

presents AðjnÞ as

AðjnÞ ¼
Yn

k¼1

G
y
kEðjkÞGk ð191Þ

where Gk is a unitary matrix that diagonalizes tðjÞ at the mid-point of the kth

segment: ~jk ¼ ðjk þ jk�1Þ=2 and EðjkÞ is a diagonal matrix with elements

ðm ¼ 1; 2; . . . ;MÞ:

EmðjkÞ ¼ exp �
ðjkþ1

jk

tmðjÞdj
 !

¼ expð�tmð~jkÞ�jÞ ð192Þ

Here, tmð~jÞ; m ¼ 1; 2; . . . ;M are the eigenvalues of tð~jÞ and �j is the angular

grid size. The order of the multiplication in Eq. (191) is such that the k ¼ 0 term

is the first term from the right-hand side in the product. With these definitions the

matrix D is defined as DðqÞ ¼ Aðj ¼ jN j qÞ, where jN ¼ 2p [see Eq. (189)].

Going back to our case and recalling that tðj j qÞ is a 3 � 3 antisymmetric

matrix it can be shown that one of its eigenvalues is always zero and the others

are two imaginary conjugate functions, namely, �ivðjÞ where vðjÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2

12 þ t2
23 þ t2

13

p
. In Figure 13a and b we present vðjÞ functions as calculated

for the two circles C3 and C4 (see the relevant upper panels of Fig. 13). The two

strong spikes are due to the two (3,4) conical intersections and they occur at

points where the circles cross their axis line.

To perform the product in Eq. (191) we need the G matrices and, for this

3 � 3 matrix, these can be obtained analytically [7,80]. Thus

G ¼ 1

vl
ffiffiffi
2

p
it13v� t23t12 �it13v� t23t12 t23l

ffiffiffi
2

p

it23vþ t13t12 �it23vþ t13t12 �t13l
ffiffiffi
2

p

l2 l2 t12l
ffiffiffi
2

p

0
B@

1
CA ð193Þ

where l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2

23 þ t2
13

p
.

In Figure 13c and d we present the three diagonal elements of the

corresponding adiabatic-to-diabatic transformation matrices Aðj j qÞ as calcu-

lated for the two circles. Note that A11ðj j qÞ, in both cases, behaves smoothly

while varying essentially undisturbed, from (þ1) to (�1). The second diagonal

term in each case, that is, A22ðj j qÞ, follows the relevant A11ðj j qÞ, until the

contour enters the region of the (3,4) conical intersections. There the A22ðj j qÞ
terms start to increase like they would do if only one (3,4) conical intersection

were present. However, once they have reached the region of the second (3,4)

conical intersection this conical intersection pushes the curve down again so that
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finally the A22ðj j qÞ terms become (�1), instead of (þ1). The third term,

A33ðj j qÞ in each case, proceeds undisturbed as long as it is out of the range of

the two (3,4) conical intersections. Once it enters the region of the first conical

intersection, the curve starts to decrease and eventually becomes (�1) as it

should if only one conical intersection was present. However, as the contour

reaches the region of the second conical intersection, A33ðj j qÞ is pushed back

and ends up with the value of (þ1), instead of (�1). The value of each term

Aiiðj ¼ 2p j qÞ; i ¼ 1; 2; 3 constitutes the diagonal of the D matrix for the

particular contour:

The results for C4ðq ¼ 0:25 Þ are as follows:

D11 ¼ �0:9998; D22 ¼ �0:9999; D33 ¼ 0:9997:

The results for C3ðq ¼ 0:4 Þ are as follows:

D11 ¼ �0:990; D22 ¼ �0:988; D33 ¼ 0:997:

While studying these results we have to pay attention to two features: (1) In

each case, these numbers must, in absolute value, be as close as possible to 1;

and (2) two of these numbers have to be negative. Then, we also have to be able

to justify the fact that it is the first two diagonal elements that have to be

negative and it is the third one that must be positive. Note that these Dii terms

are reasonably close to fulfilling the expected features just mentioned:

For the three relevant (absolute) numbers, the two different calculations

yielded Djj values (three for each case) all in the range 0:99 � jDjjj � 0:9999—

thus the quantization is fulfilled to a very high degree.

The values due to the two separate calculations are of the same quality we

usually get from (pure) two-state calculations, that is, very close to 1.0 but two

comments have to be made in this respect: (1) The quality of the numbers are

different in the two calculations: The reason might be connected with the fact

that in the second case the circle surrounds an area about three times larger than

in the first case. This fact seems to indicate that the deviations are due ‘‘noise’’

caused by CIs belonging to neighbor states [e.g., the (1,2) and the (4,5) CIs].

(2) We would like to remind the reader that the diagonal element in case of the

two-state system was only (�)0.39 [73] [instead of (�)1.0] so that incorporating

the third state led, indeed, to a significant improvement.

The requirement of having two negative values and one positive is also

fulfilled. Since this subject has been treated several times before (see Sections

VIII and IX) it will be discussed within the next subject, related to the locations

of the negative terms, that requires some analysis.

The positions of the (�1) terms in the diagonal indicate which of the

electronic eigenfunction flips sign upon tracing the closed contour under

Å

Å
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consideration [see Section (IV.A)]. The results of this study show that in both

cases the eigenfunctions of the two lower states (i.e., 22A0 and 32A0) flip sign,

whereas the sign of the third function (i.e., 42A0) remains the same. In situations

where we have a single conical intersection between each consecutive pair of

states it is the first and the third eigenfunctions that flip sign (see Section VIII).

Here, we encounter the situation of one conical intersection between the lower

pair of states but two (not one) conical intersections between the upper pair of

states.

To analyze this case, we employ, as before, ‘‘contour algebra’’ (see Section

IX): From Figure 14, it is noticed that �23 is a contour that surrounds the (2,3)

conical intersection, �34 is the contour that surrounds the two (3,4) conical

intersections, and �24 is a contour that surrounds all three conical intersections.

According to ‘‘contour algebra’’ the event that ‘‘takes place’’ along �24 is the

sum of the events along each individual contour. Thus,

�24 ¼ �23 þ �34 ð194Þ

Next, we are aware of the fact that if the system traces �23 it will be the two

lower eigenfunctions that flip signs. If the system traces �34, then no function

flips its sign because two such conical intersections cancel each other

[12,22,26,74,125]. Now, if the system traces �24 then, from Eq. (194) it follows

that again, only the two lowest functions flip their sign, so that the effect due to

the single lower CI will be preserved. In other words, the two-state topological

effects are not disturbed along those contours that surround all three CIs. The

results will be different once we choose a contour that surrounds, in addition to

the lower CI, only one of the two upper CIs [see Ref. (117b)].

Figure 14. The three contours for the three situations discussed in the text: �23 surrounds the

(2,3) CI, �34 surrounds the two (3,4) CIs, and �24 surrounds all three CIs.
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XVI. SUMMARY AND CONCLUSIONS

This field currently differs from others fields in molecular physics mainly in two

ways: (1) It is a highly theoretical field and as such it requires chemical–physical

intuition and mathematical skill. (2) This field is still open to new developments

that could significantly affect chemistry when treated on the molecular level. In

this chapter, we tried to summarize the various findings related to this field and to

give the reader its state of the art. Some of the subjects presented here were

already discussed in previous reviews [8,13]. Still, due to last year’s intensive

efforts, we managed to include several new issues—some of them may open new

venues for more research in this field. Since, as mentioned, part of the subjects

presented here were already summarized in a previous review [13], in this section

we will mainly concentrate on the implications of new subjects thus avoiding

unnecessary repetition. We distinguish between two kinds of topics: (1) Practical

ones that are associated with the possibility of treating dynamical processes

related to excited states, namely, the diabatization process. (2) Less practical

ones, which are interesting from a theoretical point of view but with potential

prospects.

We start summarizing our findings regarding diabatization. There is no doubt

that diabatization is essential for any dynamical study that involves

electronically excited states. Diabatization is applied (on and off) for almost

three decades mainly for studying charge-transfer processes between ion and

molecules [54,94–97,125,127–131] and sporadically for other purposes [100–

104]. However, only recently the conditions for a correct diabatization, subject

to minimal numerical efforts, were formulated [108]. This subject is discussed

in Section XI. The diabatization as presented here is shown to be closely

connected with the fact that the non-adiabatic coupling matrix has to be

quantized to guarantee single-valued diabatic potentials. One of the more

fundamental answers regarding the quantization of the nonadiabatic coupling

matrix were given in a series of ab initio calculations for different molecules

[64–74]. The quantization for two-state systems for real systems was discussed

in our previous reviews [8,13] but here, in Section XV.B, we extended the

discussion to a three-state case found to exist for the second, third, and fourth

states of the C2H molecule [117]. This study is particularly important because it

produces, for first time, the proof that the quantization is a general feature that

goes beyond the two-state systems.

The two other subjects, as we already mentioned, are more theoretical but

eventually may lead to interesting practical findings.

In Section XIII, we made a connection between the curl condition that was

found to exist for Born–Oppenheimer–Huang systems and the Yang–Mills field.

Through this connection we found that the non-adiabatic coupling terms can

be considered as vector potentials that have their source in pseudomagnetic
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fields defined along seams. We speculated that these fields could be,

semiclassically, associated with the zero-point vibrational motion [113].

Another subject with important potential application is discussed in Section

XIV. There we suggested employing the curl equations (which any Bohr–

Oppenheimer–Huang system has to obey for the for the relevant sub-Hilbert

space), instead of ab initio calculations, to derive the non-adiabatic coupling

terms [113,114]. Whereas these equations yield an analytic solution for any

two-state system (the abelian case) they become much more elaborate due to the

nonlinear terms that are unavoidable for any realistic system that contains more

than two states (the non-abelian case). The solution of these equations is subject

to boundary conditions that can be supplied either by ab initio calculations or

perturbation theory.

This chapter centers on the mathematical aspects of the non-adiabatic

coupling terms as single entities or when grouped in matrices, but were it not for

the available ab initio calculation, it would have been almost impossible to

proceed thus far in this study. Here, the ab initio results play the same crucial

role that experimental results would play in general, and therefore the author

feels that it is now appropriate for him to express his appreciation to the groups

and individuals who developed the numerical means that led to the necessary

numerical outcomes.

APPENDIX A: THE JAHN–TELLER MODEL AND THE
LONGUET–HIGGINS PHASE

We consider a case where in the vicinity of a point of degeneracy between two

electronic states the diabatic potentials behave linearly as a function of the

coordinates in the following way [16–21]

W ¼ k
y x

x �y

� �
ðA:1Þ

where (x; y) are some generalized nuclear coordinates and k is a force constant.

The aim is to derive the eigenvalues and the eigenvectors of this potential matrix.

The eigenvalues are the adiabatic potential energy states and the eigenvectors

form the columns of the adiabatic-to-diabatic transformation matrix. In order to

perform this derivation, we shall employ polar coordinates (q,j), namely,

y ¼ q cosj and x ¼ q sinj ðA:2Þ

By substituting for x and y, we get j-independent eigenvalues of the form

u1 ¼ kq and u2 ¼ �kq where q ¼ f0;1g and j ¼ f0; 2pg
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As noticed from Figure 15, the two surfaces u1 and u2 are conelike potential

energy surfaces with a common apex. The corresponding eigenvectors are

f1 ¼ cos
j
2
; sin

j
2

� �
f2 ¼ sin

j
2
; �cos

j
2

� � ðA:3Þ

The components of the two vectors (n1, n2), when multiplied by the electronic

(diabatic) basis set (jf1i; jf2i), form the corresponding electronic adiabatic basis

set ðjZ1i; jZ2iÞ:

jZ1i ¼ cos
j
2
jf1i þ sin

j
2
jf2i

jZ2i ¼ sin
j
2
jf1i � cos

j
2
jf2i

ðA:4Þ

The adiabatic functions are characterized by two interesting features: (1) they

depend only on the angular coordinate (but not on the radial coordinate) and

(2) they are not single valued in configuration space because when j is replaced

by (jþ 2p)—a rotation that brings the adiabatic wave functions back to their

Figure 15. The two interacting cones within the Jahn–Teller model.
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initial position—both of them change sign. This last feature, which was revealed

by Longuet-Higgins [14–17], may be, in certain cases, very crucial because

multivalued electronic eigenfunctions cause the corresponding nuclear wave

functions to be multivalued as well, a feature that has to be incorporated

explicitly (through specific boundary conditions) while solving the nuclear

Schrödinger equation. In this respect, it is important to mention that ab initio

electronic wave functions indeed, possess the multivaluedness feature as

described by Longuet–Higgins [30].

One way to eliminate the multivaluedness of the electronic eigenfunctions is

by multiplying it by a phase factor [15], namely,

zjðjÞ ¼ expðiWÞZjðjÞ j ¼ 1; 2 ðA:5Þ

where a possible choice for W is

W ¼ j=2 ðA:6Þ

Note that zjðjÞ; j ¼ 1; 2 are indeed single-valued eigenfunctions; however,

instead of being real, they become complex.

The fact that the electronic eigenfunctions are modified as presented in

Eq. (A.5) has a direct effect on the non-adiabatic coupling terms as introduced

in Eqs. (8a) and (8b). In particular, we consider the term tð1Þ11 (which for the

case of real eigenfunctions is identically zero) for the case presented in

Eq. (A.5):

sð1Þ11 ¼ hz1jrz1i ¼ irWþ hZ1jrZ1i

but since

hZ1jrZ1i ¼ 0

it follows that sð1Þ11 becomes

sð1Þ11 ¼ irW ðA:7Þ

In the same way, we obtain

sð2Þ11 ¼ ir2W� ðrWÞ2 ðA:8Þ

The fact that now sð1Þ11 is not zero will affect the ordinary Born–Oppenheimer

approximation. To show that, we consider Eq. (15) for M ¼ 1, once for a real
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eigenfunction and once for a complex eigenfunction. In the first case, we get

from Eq. (15) the ordinary Born–Oppenheimer equation:

� 1

2m
r2cþ ðu � EÞc ¼ 0 ðA:9Þ

because for real electronic eigenfunctions sð1Þ11 � 0 but in the second case for

which sð1Þ11 6¼ 0 the Born–Oppenheimer approximation becomes

� 1

2m
ðr þ irWÞ2cþ ðu � EÞc ¼ 0 ðA:10Þ

which can be considered as an ‘extended’ Born–Oppenheimer approximation for

a case of a single isolated state expressed in terms of a complex electronic

eigenfunction [132]. This equation was interpreted for some time as the adequate

Schrödinger equation to describe the effect of the conical intersection that

originate from the two interacting states. As it stands it contains an effect due to

an ad hoc phase attached to a ground-state electronic eigenfunction [63].

The extended Born–Oppenheimer approximation based on the nonadiabatic

coupling terms was discussed on several occasions [23,25,26,55,56,133,134]

and is also presented here by Adhikari and Billing (see Chapter 3).

APPENDIX B: THE SUFFICIENT CONDITIONS FOR HAVING
AN ANALYTIC ADIABATIC-TO-DIABATIC

TRANSFORMATION MATRIX

The adiabatic-to-diabatic transformation matrix, Ap, fulfills the following first-

order differential vector equation [see Eq. (19)]:

$AM þ tMAM ¼ 0 ðB:1Þ

In order for AM to be a regular matrix at every point in the assumed region of

configuration space it has to have an inverse and its elements have to be analytic

functions in this region. In what follows, we prove that if the elements of the

components of tM are analytic functions in this region and have derivatives to

any order and if the P subspace is decoupled from the corresponding Q subspace

then, indeed, AM will have the above two features.

I. ORTHOGONALITY

We start by proving that AM is a unitary matrix and as such it will have an inverse

(the proof is given here again for the sake of completeness). Let us consider the
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complex conjugate of Eq. (B.1):

rA
y
M � A

y
MsM ¼ 0 ðB:2Þ

where we recall that sM , the non-adiabatic coupling matrix, is a real anti-

symmetric matrix. By multiplying Eq. (B.2) from the right by AM and Eq. (B.1)

from the left by A
y
M and combining the two expressions we get

A
y
MrAM þ ðrA

y
MÞAM ¼ ðrA

y
MAMÞ ¼ 0 ) A

y
MAM ¼ constant

For a proper choice of boundary conditions, the above mentioned constant matrix

can be assumed to be the identity matrix, namely,

A
y
MAM ¼ I ðB:3Þ

Thus AP is a unitary matrix at any point in configuration space.

II. ANALYTICITY

From basic calculus, it is known that a function of a single variable is analytic at a

given interval if and only if it has well-defined derivatives, to any order, at any

point in that interval. In the same way, a function of several variables is analytic

in a region if at any point in this region, in addition to having well-defined deri-

vatives for all variables to any order, the result of the differentiation with respect

to any two different variables does not depend on the order of the differentiation.

The fact that the AM matrix fulfills Eq. (B.1) ensures the existence of deri-

vatives to any order for any variable, at a given region in configuration space, if

sM is analytic in that region. In what follows, we assume that this is, indeed, the

case. Next, we have to find the conditions for a mixed differentiation of the AM

matrix elements to be independent of the order.

For that purpose, we consider the p and the q components of Eq. (B.1) (the

subscript M will be omitted to simplify notation):

q
qp

A þ spA ¼ 0

q
qq

A þ sqA ¼ 0

ðB:4Þ

By differentiating the first equation according to q we find

q
qq

q
qp

A þ q
qq

sp

� �
A þ sp

q
qq

A ¼ 0

the electronic non-adiabatic coupling term 123



or

q
qq

q
qp

A þ q
qq

sp

� �
A � spsqA ¼ 0 ðB:5aÞ

In the same way, we get from the second equation the following expression:

q
qp

q
qq

A þ q
qp

sq

� �
A � sqspA ¼ 0 ðB:5bÞ

Requiring that the mixed derivative is independent of the order of the differen-

tiation yields

q
qp

sq �
q
qq

sp

� �
A ¼ ðsqsp � spsqÞA ðB:6Þ

or (since A is a unitary matrix):

q
qp

sq �
q
qq

sp ¼ ½sq; sp� ðB:7Þ

Thus, in order for the A matrix to be analytic in a region, any two components of

s, locally, have to fulfill Eq. (B.7). Equation (B.7) can also be written in a more

compact way

curl s � ½s � s� ¼ 0 ðB:8Þ

where � stands for a vector product.

The question to be asked is: Under what conditions (if at all) do the com-

ponents of s fulfill Eq. (B.8)? In [34] it is proved that this relation holds for any

full Hilbert space. Here, we shall show that this relation holds also for the P sub-

Hilbert space of dimension M, as defined by Eq. (10). To show that we employ,

again, the Feshbach projection operator formalism [79] [see Eqs. (11)].

We start by considering the pth and the qth components of Eqs. (8a)

qsq

qp

� �
jk

¼
'
qzj

qp

%%%% qzk

qq

(
þ
'
zj

%%%% q2zk

qpqq

(
j; k � M ðB:9aÞ

and

qtp

qq

� �
jk

¼
'
qzkj

qq

%%%% qzk

qp

(
þ
'
zj

%%%% q2zk

qqqp

(
j; k � M ðB:9bÞ
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Subtracting Eq. (B.9b) from Eq. (B.9a) and assuming that the electronic eigen-

functions are analytic functions with respect to the nuclear coordinates yields the

following result:

q
qp

tq �
q
qq

tp

� �
jk

¼
'
qzkj

qp

%%%% qzk

qq

(
�
'
qzj

qq

%%%% qzk

qp

(
j; k � M ðB:10Þ

Equation (B.10) stands for the ( j,k) matrix element of the left-hand side of

Eq. (B.7). Next, we consider the ( j,k) element of the first term on the right-hand

side of Eq. (B.7), namely,

ðsqspÞjk ¼
XM
i¼1

'
zj

%%%% qzi

qq

('
zi

%%%% qzk

qp

(

Since for real functions

'
zj

%%%% qzi

qq

(
¼ �

'
qzj

qq

%%%%zi

(

we get for this matrix element the result

ðsqspÞjk ¼ �
XM
i¼1

'
qzj

qq

%%%%zi

('
zi

%%%% qzk

qp

(
¼ �

'
qzj

qq

%%%% XM

i¼1

jziihzij
 !%%%% qzk

qp

(

Recalling that the summation within the round parentheses can be written as

[1 � QM], where QM is the projection operator for Q subspace, we obtain

ðsqspÞjk ¼ �
'
qzj

qq

%%%% qzk

qp

(
�
XN

i¼Mþ1

'
qzj

qq

%%%%zi

('
zi

%%%% qzk

qp

(
j; k � M

Since under the summation sign each term is zero (no coupling between the

inside and the outside subspaces) [see Eq. (10)] we finally get

ðsqspÞjk ¼ �
'
qzj

qq

%%%% qzk

qp

(
ðB:11aÞ

A similar result will be obtained for Eq. (B.7), namely,

ðspsqÞjk ¼ �
'
qzj

qp

%%%% qzk

qq

(
ðB:11bÞ
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Subtracting Eq. (B.11b) from Eq. (B.11a) yields Eq. (B.10), thus proving the

existence of Eq. (B.7).

Summary: In a region where the sM elements are analytic functions of the

coordinates, AM is an orthogonal matrix with elements that are analytic

functions of the coordinates.

APPENDIX C: ON THE SINGLE/MULTIVALUEDNESS OF THE
ADIABATIC-TO-DIABATIC TRANSFORMATION MATRIX

In this appendix, we discuss the case where two components of sM , namely, sMp

and sMq ( p and q are Cartesian coordinates) are singular in the sense that at least

one element in each of them is singular at the point Bð p ¼ a; q ¼ bÞ located on

the plane formed by p and q. We shall show that in such a case the adiabatic-to-

diabatic transformation matrix may become multivalued.

We consider the integral representation of the two relevant first-order

differential equations [namely, the p and the q components of Eq. (19)]:

q
qp

AM þ sMpAM ¼ 0

q
qq

AM þ sMqAM ¼ 0

ðC:1Þ

In what follows, the subscript M will be omitted to simplify the notations. If the

initial point is Pðp0; q0Þ and we are interested in deriving the value of Að� AMÞ
at a final point Qðp; qÞ then one integral equation to be solved is

Aðp; qÞ ¼ Aðp0; q0Þ �
ðp

p0

dp0spðp0; q0ÞAðp0; q0Þ �
ðq

q0

dq0sqðp; q0ÞAðp; q0Þ

ðC:2aÞ

Another way of obtaining the value of Aðp; qÞ [we shall designate it as ~Aðp; qÞ]
is by solving the following integral equation:

~Aðp; qÞ ¼ Aðp0; q0Þ �
ðq

q0

dq0sqðp0; q
0Þ~Aðp0; q0Þ �

ðp

p0

dp0spðp0; qÞ~Aðp0; qÞ

ðC:2bÞ

In Eq. (C.2a), we derive the solution by solving it along the path �0

characterized by two straight lines and three points (see Fig. 16a):

�0: Pðp0; q0Þ ! P0ðp0; qÞ ! Qðp; qÞ ðC:3aÞ
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Figure 16. The rectangular paths �0 and �00 connecting the points (p0; q0) and (p; q) in the

(p; q) plane.
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and in Eq. (C.2b) by solving it along the path �00 also characterized by two

(different) straight lines and the three points (see Fig. 16b)

�00: Pðp0; q0Þ ! Q0ðp; q0Þ ! Qðp; qÞ ðC:3bÞ

Note that �, formed by �0 and �00 written schematically as

� ¼ �0 � �00 ðC:4Þ

is a closed path.

Since the two solutions of Eq. (C.1) presented in Eqs. (C.2a) and (C.2b) may

not be identical we shall derive the sufficient conditions for that to happen.

To start this study, we assume that the four points P, P0, Q0, and Q are at small

distances from each other so that if

p ¼ p0 þ�p q ¼ q0 þ�q

then �p and �q are small enough distances as required for the derivation.

Subtracting Eq. (C.2b) from Eq. (C.2a) yields the following expression:

�Aðp; qÞ ¼ �
ðq0þ�q

q0

dq0ðsqðp0; q0ÞAðp0; q0Þ � sqðp; q0ÞAðp; q0ÞÞ

þ
ðp0þ�p

p0

dp0ðspðp0; q0ÞAðp0; q0Þ � spðp0; qÞAðp0; qÞÞ ðC:5Þ

where

�Aðp; qÞ ¼ Aðp; qÞ � ~Aðp; qÞ ðC:6Þ

Next, we consider two cases.

1. The case where the point Bða; bÞ is not surrounded by the path � (see

Fig. 17a). In this case, both sp and sq are analytic functions of the

coordinates in the region enclosed by �, and therefore the integrands of

the two integrals can be replaced by the corresponding derivatives

calculated at the respective intermediate points, namely,

�Aðp; qÞ ¼ �p

ðq0þ�q

q0

dq0 qðsqð~p; q0ÞAð~p; q0ÞÞ
qp

��q

ðp0þ�p

p0

dp0 qðspðp0; ~qÞAðp0; ~qÞÞ
qq

ðC:7Þ
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Figure 17. The differential closed paths � and the singular point Bða; bÞ in the (p; q) plane:

(a) The point B is not surrounded by �. (b) The point B is surrounded by �.
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To continue the derivation, we recall that �p and �q are small enough

so that the two integrands vary only slightly along the interval of

integration so, that �A becomes

�Aðp; qÞ ¼ �p�q
qðsqð~p; ~~qÞAð~p; ~~qÞÞ

qp
� qðspð~~p; ~qÞAð~~p; ~qÞ

qq

� &
ðC:8Þ

If we assume again that all relevant functions are smooth enough, the

expression in the curled parentheses can be evaluated further to become

�Aðp; qÞ ¼ qsqðp; qÞ
qp

� qspðp; qÞ
qq

� �
� ½sq; sp�

� &
Aðp; qÞ�p�q ðC:9Þ

where Eqs. (C.1) were used to express the derivatives of Aðp; qÞ. Since the

expression within the curled parentheses is identically zero due to Eq. (24),

�A becomes identically zero or in other words the two infinitesimal paths

�0 and �00 yield identical solutions for the A matrix. The same applies to

ordinary (viz., not necessarily small) closed paths because they can be

constructed by ‘‘integrating’’ over closed infinitesimal paths (see Fig. 18).

2. The case when one of the differential closed paths surrounds the point

Bða; bÞ (see Fig. 17b). Here the derivation breaks down at the transition

from Eqs. (C.5)–(C.7) and later, from Eqs. (C.7)–(C.8), because sp and sq

become infinitely large in the close vicinity of Bða; bÞ, and therefore their

Figure 18. The closed (rectangular) path � as a sum of three partially closed paths �1; �2; �3:
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Figure 19. The closed path � as a sum of three closed paths �d ; �p; �i. (a) The closed

(rectangular) paths, that is, the large path � and the differential path �d both surrounding the singular

point Bða; bÞ. (b) The closed path �p that does not surround the point Bða; bÞ. (c) The closed path �i

that does not surround the point Bða; bÞ.
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intermediate values cannot be estimated. As a result it is not clear whether

the two solutions of the A matrix calculated along the two different

differential paths are identical or not. The same applies to a regular size

(i.e., not necessarily small) path � that surrounds the point Bða; bÞ. This

closed path can be constructed from a differential path �d that surrounds

Bða; bÞ, a path �p that does not surround Bða; bÞ, and a third, a connecting

path �i, which, also, does not surround Bða; bÞ (see Fig. 19). It is noted

that the small region surrounded by �d governs the features of the A
matrix in the entire region surrounded by �, immaterial of how large � is.

APPENDIX D: THE DIABATIC REPRESENTATION

Our starting equation is Eq. (3) in Section II.A with one difference, namely, we

replace ziðe j nÞ by ziðe j n0Þ; i ¼ 1; . . . ;N, where n0 stands for a fixed set of

nuclear coordinates. Thus

�ðe; n j n0Þ ¼
XN

i¼1

ciðnÞziðe j n0Þ ðD:1Þ

Here, ziðe j n0Þ, like ziðe j nÞ, is an eigenfunction of the following Hamiltonian

ðHeðe j n0Þ � uiðn0ÞÞziðe j n0Þ ¼ 0 i ¼ 1; . . . ;N ðD:2Þ

Figure 19 (Continued)
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where uiðn0Þ; i ¼ 1; . . . ;N are the electronic eigenvalues as calculated for this

(fixed) set of nuclear coordinates. Substituting Eqs. (1) and (D.1) in Eq. (2) yields

the following expression:

XN

i¼1

TnciðnÞjziðe j n0Þi þ
XN

i¼1

ciðnÞ½Heðe j nÞ � E�jziðe j n0Þi ¼ 0 ðD:3Þ

It has to be emphasized that whereas n0 is fixed, n is a variable. Substituting

Eq. (6) for Tn, multiplying Eq. (D.3) by hzjðe j n0Þj, and integrating over the

electronic coordinates yields the following result:

� 1

2m
r2 � E

� �
cjðnÞ þ

XN

i¼1

hzjðe j n0ÞjHeðe j nÞjziðe j n0ÞiciðnÞ ¼ 0 ðD:4Þ

Recalling

Heðe j nÞ ¼ Te þ uðe j nÞ ðD:5aÞ

and, therefore, also

Heðe j n0Þ ¼ Te þ uðe j n0Þ ðD:5bÞ

where uðe j nÞ is the Coulombic field, we can replace Heðe j nÞ in Eq. (D.4) by

the following expression:

Heðe j nÞ ¼ Heðe j n0Þ þ fuðe j nÞ � uðe j n0Þg ðD:6Þ

Equation (D.6) is valid because the electronic coordinates are independent of the

nuclear coordinates. Having this relation, we can calculate the following matrix

element:

hwjðe j n0ÞjHeðe j nÞjwiðe j n0Þi ¼ ujðn0Þdji þ vijðn j n0Þ ðD:7Þ

where

vijðn j n0Þ ¼ hwjðe j n0Þjuðe j nÞ � uðe j n0Þjwiðe j n0Þi ðD:8Þ

Defining

Vijðn j n0Þ ¼ vijðn j n0Þ þ ujðn0Þdji ðD:9Þ
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and recalling Eq. (D.7), we get for Eq. (D.4) the expression

� 1

2m
r2 � E

� �
cjðnÞ þ

XN

i¼1

Vjiðn j n0ÞciðnÞ ¼ 0 ðD:10Þ

This equation can be also written in matrix form

� 1

2m
r2�þ ðV � EÞ� ¼ 0 ðD:11Þ

Here, V is the diabatic potential matrix and, in contrast to u in Eq. (9) of

Section (II.A), it is a full matrix. Thus Eq. (D.11) is the Schrödinger equation

within the diabatic representation.

APPENDIX E: A NUMERICAL STUDY OF
A THREE-STATE MODEL

In Section V.B, we discussed to some extent the 3 � 3 adiabatic-to-diabatic

transformation matrix Að� Að3ÞÞ for a tri-state system. This matrix was expres-

sed in terms of three (Euler-type) angles gij; i ¼ 1; 2; 3 [see Eq. (81)], which

fulfill a set of three coupled, first-order, differential equations [see Eq. (82)].

In what follows, we treat a tri-state model system defined in a plane in terms

of two polar coordinates ðr;jÞ [85]. In order to guarantee that the non-adiabatic

matrix s, yields single-valued diabatic potentials we shall start with a 3 � 3

diabatic potential matrix and form, employing the Hellmann–Feynman theorem

[3,36,85], the corresponding non-adiabatic coupling matrix s. The main purpose

of studying this example is to show that the A matrix may not be uniquely

defined in configuration space although the diabatic potentials are all single

valued.

The tri-state diabatic potential that is employed in this study is closely related

(but not identical) to the one used by Cocchini et al. [39,135] to study the

excited states of Na3. It is of the following form (for more details see [85]):

V ¼
eE þ U1 U2 W1 � W2

U2 eE � U1 W1 þ W2

W1 � W2 W1 þ W2 eA

0
@

1
A ðE:1Þ

Here eE and eA are the values of two electronic states (an E-type state and an

A-type state, respectively), Ui; i ¼ 1; 2 are two potentials defined as

U1 ¼ kr cosjþ 1

2
gr2 cosð2jÞ ðE:2aÞ
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and

U2 ¼ kr sinj� 1

2
gr2 sinð2jÞ ðE:2bÞ

Wi; i ¼ 1; 2 are potentials of the same functional form as the Ui parameters but

defined in terms of a different set of parameters f and p, which replace g and k,

respectively. The numerical values for these four parameters are [135]

k ¼
ffiffiffi
2

p
p ¼ 5:53 a:u: and g ¼

ffiffiffi
2

p
f ¼ 0:152 a:u:

Equation (82) is solved, for fixed r values, but for a varying angular

coordinate, j, defined along the interval (0,2p). Thus r serves as a parameter

and the results will be presented for different r values. A second parameter that

will be used is the potential energy shift, �eð¼ eE � eAÞ, defined as the shift

between the two original coupled adiabatic states and the third state at the origin,

that is, at r ¼ 0 (in case �e ¼ 0, all three states are degenerate at the origin).

The results will be presented for several of its values. In Figure 20 are shown the

three non-adiabatic coupling terms tjijðjÞ; i; j ¼ 1; 2; 3ði > jÞ as calculated for

different values of r and �e. The main feature to be noticed is the well-defined

(sharp) tri-peak structure of tj12 and tj23 as a function of j. There are other

interesting features to be noticed but these are of less relevance to the present

study (for a more extensive discussion see [85]).

Figure 1 presents the three g angles as a function of j for various values of r
and �e. The two main features that are of interest for the present study are

(1) following a full cycle, all three angles in all situations obtain the values

either of p or of zero. (2) In each case (viz., for each set of r and �e), following

a full cycle, two angles become zero and one becomes p. From Eq. (81) notice

that the A matrix is diagonal at j ¼ 0 and j ¼ 2p but in the case of j ¼ 0 the

matrix A is the unit matrix and in the second case it has two (�1) terms and

one (þ1) in its diagonal. Again recalling Eq. (39), this implies that the D matrix

is indeed diagonal and has in its diagonal numbers of norm 1. However, the most

interesting fact is that D is not the unit matrix. In other words, the adiabatic-to-

diabatic transformation matrix presented in Eq. (81) is not single valued in

configuration space although the corresponding diabatic potential matrix is

single valued, by definition [see Eqs. (E.1) and (E.2)]. The fact that D has two

(�1) terms and one (þ1) in its diagonal implies that the present s matrix

produces topological effects, as was explained in the last two paragraphs of

Section IV.A: Two electronic eigenfunctions flip sign upon tracing a closed path

and one electronic function remains with its original sign.

As much as the results in the last section (Appendix D) are interesting the

rather more interesting case is the one for �e ¼ 0, namely, the case where the

three states degenerate at one point. Here we find that even in this case D is not
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the unit matrix but it keeps the features it encountered for �e 6¼ 0. In other

words, the transition from the �e 6¼ 0 situation to the �e ¼ 0 situation is

continuous as was discussed in Section X. However, the present �e ¼ 0 D
matrix is in contradiction with the D matrix in Section V.A.2, which was derived

for a particular type of a 3 � 3 s matrix that also refers to a trifold degeneracy at

Figure 20. The three non-adiabatic coupling terms (obtained for the model potential described

in Appendix E, see also Section V.B) s12jðjÞ,s23jðjÞ,s13jðjÞ as a function j calculated for

different values of r and �e: (a) t ¼ t12, �e ¼ 0:0; (b) t ¼ t12, �e ¼ 0:05; (c) t ¼ t12, �e ¼ 0:5;

(d) t ¼ t23, �e ¼ 0:0; (e) t ¼ t23, �e ¼ 0:05; ( f ) t ¼ t23, �e ¼ 0:5; (g) t ¼ t13, �e ¼ 0:0; (h)

t ¼ t13, �e ¼ 0:05; (i) t ¼ t13, �e ¼ 0:5. ———— r ¼ 0:01; – – – – – – r ¼ 0:1; - - - - - - -

r ¼ 0:5; ................. r ¼ 1:0.
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a single point. In this case, as we may recall, it was proved that it has to be a unit

matrix if it is expected to yield single-valued diabatic potentials. These two

examples support the finding of Section X where we distinguished between

breakable and unbreakable multidegeneracy. The Cocchini et al. [135] model

belongs, of course, to those models that yield the breakable degeneracy.

APPENDIX F: THE TREATMENT OF A CONICAL
INTERSECTION REMOVED FROM THE

ORIGIN OF COORDINATES

We start by writing the curl equation in Eq. (157) for a vector tðx; yÞ in Cartesian

coordinates.

qtx

qy
� qty

qx
¼ 0 ðF:1Þ

The solution to Eq. (F.1)

tðx; yÞ ¼ f
y

x

� ��yix þ xiy

x2 þ y2
ðF:2Þ

where ix and iy are unit vectors along the x and the y axes, respectively. To shift

this solution from the origin to some given point (xj0; yj0) the variable x is

replaced by (x � xj0) and the variable y by (y � yj0) so that the solution of

Eq. (F.1) is given in the form

tðx; yÞ ¼ f
y � yj0

x � xj0

� �
�ðy � yj0Þix þ ðx � xj0Þiy
ðx � xj0Þ2 þ ðy � yj0Þ2

ðF:3Þ

Next, we are interested in expressing this equation in terms of polar coordinates

(q; y). For this purpose, we recall the following relations:

x ¼ q cosy y ¼ q siny ðF:4Þ

and introduce the following definitions:

x � xj0 ¼ qj cosyj y � yj0 ¼ qj sinyj ðF:5Þ

Since we are interested in the polar components of tðq; yÞ, that is, tq and ty, we

need to know their relation with tx and ty as well, which was derived sometime
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ago [84].

tq ¼
'
w1

%%%% qqq
w2

(
¼ cosytx þ sinyty

ty ¼
'
w1

%%%% qqy w2

(
¼ qð�sinytx þ cosytyÞ

ðF:6Þ

where w1 and w2 are the two lowest electronic adiabatic wave functions. By

employing Eqs. (F.3), (F.5), and (F.6), we finally get

tqðq; yÞ ¼ �f ðyjÞ
1

qj

sinðy� yjÞ

tyðq; yÞ ¼
q

qj

f ðyjÞcosðy� yjÞ
ðF:7Þ

Equations (F.7) are the equations employed in the text [see Eqs. (164)].
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105. H. Thümmel, M. Peric, S. D. Peyerimhoff, and R. J. Buenker, Z. Phys. D: At. Mol. Clusters

13, 307 (1989).

106. T. Pacher, H. Koppel, and L. S. Cederbaum, J. Chem. Phys. 95, 6668 (1991).

107. T. Romero, A. Aguilar, and F. X. Gadea,, J. Chem. Phys. 110, 6219 (1999).

108. M. Baer, A. M. Mebel, and G. D. Billing, J. Phys. Chem. A (in press).

109a. E. P. Wigner, Gruppentheorie, FriedrichVieweg und son, Braunschweig, 1931.

109b. 109M. E. Rose, Elementary Theory of Angular Momentum, John Wiley & Sons, Inc., New York,

1957.

110. M. Baer, Chem. Phys. Lett. 347, 149 (2001).

111. (a) R. P. Feynman, R. B Leighton, and M. Sands, The Feynman Lectures on Physics, Addison-

Wesley Publishing Co., 1964, Vol. II, Sect. 14.1; (b) ibid. Sect. 14.4.

112. Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).

113. M. Baer, Chem. Phys. Lett. 349, 84 (2001).

the electronic non-adiabatic coupling term 141



114. J. Avery, M. Baer, and G. D. Billing, Mol. Phys. 100, 1011 (2002).

115. M. Baer, A. M. Mebel, and G. D. Billing (submitted for publication).

116. M. Baer and A. M. Mebel, Int. J. Quant. Chem. (in press); A. M. Mebel, G. Halasz, A. Vibok,

and M. Baer (submitted for publication).

117. A. J. C. Varandas, F. B. Brown, C. A. Mead, D. G. Truhlar, and N. C. Blaise, J. Chem. Phys.

86, 6258 (1987).

118. S. Liu and P. Siegbahn, J. Chem. Phys. 68, 2457 (1978); D. G. Truhlar and C. J. Horowitz,

J. Chem. Phys. 68, 2466 (1978).

119. I. Last and M. Baer, J. Chem. Phys. 75, 288 (1981); ibid. 80, 3246 (1984).

120. Y.-S. M. Wu, B. Lepetit, and A. Kuppermann, Chem. Phys. Lett. 186, 319 (1991).

121. A. Kuppermann and Y.-S. M. Wu, Chem. Phys. Lett. 241, 229 (1995).

122. R. C. Whitten and F. T. Smith, J. Math. Phys. 9, 1103 (1968).

123. B. R. Johnson, J. Chem. Phys. 73, 5051 (1980).

124. G. D. Billing and N. Markovic, J. Chem. Phys. 99, 2674 (1993).

125. M. Baer, in State Selected and State-to-Sate Ion-Molecule Reaction Dynamics: Theory, M. Baer

and C. Y. Ng, eds., Vol. II, p. 187; Adv. Chem. Phys. 82, 1992.

126. R. Englman, A. Yahalom, A. M. Mebel, and M. Baer, Int. J. Quant. Chem. (in press).

127. M. Chajia and R. D. Levine, Phys. Chem. Chem. Phys. 1, 1205 (1999).

128. T. Takayanki, Y. Kurasaki, and A. Ichihara, J. Chem. Phys. 112, 2615 (2000).

129. L. C. Wang, Chem. Phys. 237, 305 (1998).

130. C. Shin and S. Shin, J. Chem. Phys. 113, 6528 (2000).

131. T. Takayanki and Y. Kurasaki, J. Chem. Phys. 113, 7158 (2000).

132. C. A. Mead, Chem. Phys. 49, 23 (1980).

133. M. Baer, S. H. Lin, A. Alijah, S. Adhikari, and G. D. Billing. Phys. Rev. A 62, 032506-1

(2000).(*)

134. S. Adhikari and G. D. Billing, A. Alijah, S. H. Lin, and M. Baer, Phys. Rev. A 62, 032507-1

(2000).

135. F. Cocchini, T. H. Upton, and W. J. Andreoni, Chem. Phys. 88, 6068 (1988).

142 michael baer


