ТНТітЕ

Compendium 2012
 49th Edition

OUADCoatings ${ }^{4 ®}$
TripleCoatings ${ }^{3 ®}$

Think Twice.
Go Thiple. Even buAal.

Content

Basics Page
Developments from 1992 to 2011 4
Coating systems in 36 countries of the world 8
Coating advantages - Basic applications fields - Flexible coating - Integrated coating 10
Coating Equipment 14
PL70 16
$\pi 80-\pi 80+$ - The π Advantages - Tube Shutter 18
$\pi 111$ - LARC-GD 20
$\pi 311-\pi 311-$ ECO 22
$\pi 411$ - The Power Machine 24
PL1001 26
DLC- and OXI machines 27
Dedicated Units - PL1001-Duo - PL2001 - $\pi 603$ 28
Dedicated Units for Broaches - PL1401 - PL1901 29
Carousels and Substrate Holders 30
Turnkey solutions 34
Stripping - Decoating 36
Cleaning units 38
CleX: Modular Holder System for Cleaning and Stripping 40
Microstructuring - Edge preparation 42
Brushing - Micro blasting - Drag finishing - Magnet finishing 46
Cutting edge shape and measurement 51
Quality control 52
System layout - Handling devices 56
Loading capacities 58
Costs and payback 60
Coatings 62
Coating structures 62
Coating types 64
Ti, C C , Cr-, Al-, Zr-based coating 64
Nanocomposite coatings 67
Al-Cr based coatings 68
TripleCoatings ${ }^{3 \times}$ and QuadCoatings ${ }^{4^{\circledR}}$ 70
Oxide and Oxynitride coatings 74
DLC coatings 76
Coating's features 84
Coating applications 86
Conventional coatings 86
Nanogradients - Nanolayers 90
Nanocomposites 92
TripleCoating ${ }^{3{ }^{\text {® }}}$ 102
QuadCoatings ${ }^{4{ }^{\text {® }}}$ 108
Coatings, developed by users 110
Standard tests 112
Coating Guide 113
Coating properties 114
Application fields overview 115
World Wide Service 116
Training Programs 117
Internet connection - CD Manual 118
Maintenance 119
Cathode Exchange Centers 120
PLATIT worldwide 122

TLATITE:

PLATIT is a Member of the BCI Group

60 years of experience in coating business give us the competence to develop, produce and install genuine Turnkey Coating Systems.

The new PLATIT building in Selzach / S0, Switzerland Operational Headquarters \& Project Engineering \& R\&D \& Test Center \& Logistics \& Marketing

PLATIT AG

Eichholz St. 9
CH-2545 Selzach / SO
Switzerland
Phone: +41 (32) 5446200
Fax: $\quad+41$ (32) 5446220
E-Mail: info@platit.com
Web: www.platit.com

PIVOT building in Sumperk, Czech Republic
Production \& R\&D \& Test Center \& Service for PL70, $\pi 80, \pi 111, \pi 311$

The 10 Commandments for PLATIT

Core competence: Development and production of high-tech PVD coating equipment \& coatings

1. Independence from large enterprises
Main marketing targets:
SME companies
2. Headquarters in Switzerland Tradition, image, infrastructure, financing and tax system
3. World wide distributed intelligence
Global cooperation with institutes, suppliers, coaters and users
4. Balanced distribution of sales More than 340 installations in 36 countries
5. Flat, lean company structure

No hierarchies, focus on development, not on logistics
6. Team spirit

Innovation and performance count, not origins and ties
7. Blue Ocean Strategy

Products and markets ahead of and without competition

- min. 1 new coating every year
- new coating unit every 2nd year

8. Win-Win with customers

Not discount but price/performance decides competitiveness
9. No job coating

Avoiding competition between
customers and PLATIT
10. Turnkey Systems

For integration into the production

／B／C／I Groupo

PLATIT is a member of the BCI Group，a family holding company that emerged from W．BLÖSCH AG．The presidents，Erich and Peter Blösch，are the sons of Walter Blösch，who founded the company in 1947．Headquartered in Grenchen，Switzerland， the group has over 300 employees worldwide．

BLÖSCH，Liss，SEDECAL，and Vilab，all focused on surface treatment，are also included in the BCl Group．
What started out as a supplier to the Swiss watch industry is now a powerhouse for high－tech functional and decorative coatings．

Erich and Peter Blösch，Presidents

Dr．Tibor Cselle， CEO，PLATIT AG

1987－テレニTiT \qquad Start of the PLATIT project．
1995 －BCI：Innovative coatings for the watch industry： the watch industry：
Hard antireflective coating－＿
on sapphire watch glass
Color coating on watch dial－ the watch industry：
Hard antireflective coating－＿
on sapphire watch glass
Color coating on watch dial－ the watch industry：
Hard antireflective coating－＿
on sapphire watch glass
Color coating on watch dial－

Special effects on moonphase disc

Anti－allergical hard coating
Anti－allergical hard coating
on stainless steel watch parts
Acquisition of Vilab AG in 1997. Vilab PCT（Profitcenter Technology） develops special coatings for the optical and watch industry．

Vilab

New construction for the production of hard coatings．

IMHSIS．

Research in nanostructured coatings leads to the introduction of the revolutionary π^{80} coating unit with LARC ${ }^{\circledR}$ technology.
$n A C o^{\circledR}-n A C R o^{\circledR}$
First nanocomposite coatings in industrial production.

${ }^{2008}-\pi^{80+}$

2007 T1111
200th PLATIT machine installed.

PLATIT establishes PIVOT in a
joint venture with SHM in the Czech Republic.
-

PV゚T -

Developments

in 2009

260th PLATIT machine installed.

> The new generation of compact units as a base of turnkey systems for SMEs.

All standard machines can be upgraded to deposite DLC ${ }^{2}$ coatings.

PL1001 + DLC

$F \check{F}=/ / C^{2 ®} 2 n d$ generation of Diamond Like Carbons as
TripleCoatings ${ }^{\text {30 }}$

Developments in 2010/11

The crisis hasn't stopped PLATIT and its developments, on the contrary:

Due to the possible upgrades for all standard machines, all users can participate in the benefits of the new technologies.

PLATIT works with its partners, users and customers according to the open source philosophy:

- We deliver turnkey systems including coating, cleaning, edge preparation, handling and quality control.
- Beside their deliveries we are ready to share our know how, the technology; how to work with these systems.
- All coating units are open, the users can go deep into the "source" of the technology. Therefore the users are able to develop their own coatings and brands.

opensource

PLATIT Coating Systems in 36 Countries of the World

Europe

- Austria
- Belarus
- Bulgaria
- Czech Republic
- Denmark
- Estland
- France
- Finland
- Germany
- Netherlands
- Hungary
- Italy
- Norway
- Russia
- Slovakia
- Slovenia
- Spain

Asia

- China
- Hong Kong
- Turkey
- United Arab Emirates
- India
- Israel
- Japan
- Pakistan
- Singapore
- South Korea
- Taiwan
- Thailand

Americas

- Brazil
- Canada
- Mexico
- USA

Coating Advantages

PLATIT develops and produces coating equipment for plasma-generating PVD (Physical Vapor Deposition). Our products are based on:

- conventional cathodic ARC technology (PL 70, PL1001, PL 2001), and
- the unique LARC (LAteral Rotating Cathodes) and CERC ${ }^{\circledR}$ (CEntral Rotating Cathodes) technologies for the π series of units.
We hold a significant number of patents related to coatings, coating techno-logies, and processes.

PLATIT coatings offer the highest standard of modern coating technology for tool steels (cold / hot work steel, high speed steel; HSS, HSCO, M42, ...) and tungsten carbides (WC). All work pieces can be coated with a programmable coating thickness between 1 and $18 \mu \mathrm{~m}$. All batches are coated with high uniformity, ensuring the repeatability of the coating quality.

Cutting

The PLATIT hard coatings reduce the abrasive, adhesive and crater wear on the tools for conventional wet, dry and high speed machining. Modern coating technology reduces ARC droplets and the friction between chip and tool.
All carbide tipped tooling must be manufactured with brazing material that contains no cadmium and no zinc. Cadmium and zinc are not stable under the high vacuum at the coating process temperatures. Braze outgassing will ruin the strength of the joint, contaminate the tooling surface and the vacuum chamber.

Punching

PLATIT technology ensures an increase in tool life through the reduction of friction on punches, molds and dies.

Forming

For forming applications such as extrusion, molding, deep-drawing, coining, PLATIT hard coatings reduce friction, wear, built-up edges and striation. Repolishing of functional surfaces is not necessary in most cases.

Injection Molding

The PLATIT hard coatings increase productivity for plastic forming and forming machine components with better release and lower wear. Low roughness and excellent surface texture improve part release and influence injection forces in the mold to allow shorter cycle times. For parts with a mirror finish, repolishing after coating is recommended. Due to physical limitations, deep holes and slots are seldom coatable.

Tribology

PLATIT hard coatings solve tribological problems with machine components that can be coated at temperatures of $200-600^{\circ} \mathrm{C}$. Due to the hardness (up to 45 GPa), abrasive wear is reduced. This leads to higher reliability for dry operations, and environmentally damaging lubricants can be replaced.

THTITG

Basic Application Fields

Cutting

Forming

Punching

Injection Molding

Tribology

Flexible Coating

Application Oriented

Different objects (e.g. tools) are not coated with one universal coating, but in separate batches with the optimal coating for their individual applications.

User Oriented

Large and small part quantities can be coated according to the customer's specifications.
Users can create new coating brands to coat special parts for highest performance and their own marketing.

Highly Reproducible

All customer-dedicated batches can be repeated with the same exact parameters and under the same conditions.

Fast

The collection of similar pieces to be coated in one batch can be minimized. No waiting times.

Economical

The system's payback is ensured even at just a few batches per day, since coating times are much shorter than with conventional units.

Large Volume Coating

Standard Coating for All Pieces

In industrial mass coating, different types of substrates are often coated together. While high volumes may raise profitability, coating performance often suffers. Also, process times are typically much longer than with smaller quantities.

The π^{300} and PL1001 units make traditional high-volume coating flexible. They offer highquality coatings and short cycle times. Different substrate types and sizes can be mixed without sacrificing coating quality.

Dedicated Coating

The PL70, π^{80}, π^{111}, and π^{300} units make specially tailored coatings possible and economical, even for small and medium-sized batches.

Dedicated TiN
for milling cutters

Dedicated TiAIN
for end mills

Dedicated TiCN
for punches and dies

Flexible Coating Growth

This chart shows the growth of turnover in three flexible coating centers on different continents.
They are all using PLATIT technology.

Integrated Coating

The PL70, π^{80}, π^{111}, and π^{300} units are suitable for integration into the manufacturing process. This creates the opportunity to

- generate new coatings (such as nanocomposites) and coating brands
- reduce logistics, transport, and storage costs
- operate with own pretreatments, tool geometries and keep them confidential
- manage the quality and timeline for entire production internally
- create earnings through coating

Insourcing the coating process does not require more staff than that for logistics, packaging, shipping and cooperating with the job coater. The break-even of PLATIT coating systems is typically achieved in less than 2 years.

With the high flexibility of the PLATIT units, coatings can be applied

- for the cutting and forming tools used in production and
- for own products, including machine parts

The example below is taken from Madern, Vlaardingen, NL

End Product

cardboard boxes

Hard milling of segments with coated carbide tools

MoDeC ${ }^{\circledR}$ Innovations

PLATIT's coating concept - Modular Dedicated Coating - allows the configuration of the number of cathodes, type, and position according to the coating task. MoDeC ${ }^{\oplus}$ is the driving force behind PLATIT innovations. New coatings and units are developed with this principle in mind.

$\pi^{80}-\pi^{80+}$
LARC ${ }^{\oplus}$ technology: LAteral Rotating Cathodes

- The first industrial compact coating unit for nanocomposite coatings
- Coatable volume: $ø 300 \times 400 \mathrm{~mm}$

PL70

- Easy-to-Start coating unit with 1 linear planar ARC-Cathode
- Fully upgradeable to π^{80} and π^{80+}
- Coatable volume: ø300x400 mm

PL1001 Compact

High volume coating unit with 4 linear planar cathodes:

- For conventional coatings
- The "workhorse" for coating centers
- For selected TripleCoatings ${ }^{3 \text { e }}$
- Coatable volume: $\varnothing 700 \times 700 \mathrm{~mm}$

PLATIT's entire product line consists of "compact" coating units. These units come in one piece, with the coating chamber in the same cabinet as the electronics. This eliminates the need of costly and time consuming on-site assembly.

Since 2009 all new standard units are upgradeable for the deposition of $2^{\text {nd }}$ generation DLC ${ }^{2}$ coatings.

π^{212}

LARC ${ }^{\circledR}$ technology: LAteral Rotating Cathodes

- The new generation of the first industrial coating unit for Nanocomposite coatings
- The heart of turnkey coating systems for SMEs
- Selected TripleCoatings ${ }^{3{ }^{\text {® }}}$
- Coatable volume: $\varnothing 355 \times 460 \mathrm{~mm}$

LARC ${ }^{\oplus}+$ CERC $^{\circledR}$ technology

- High performance compact coating unit
- All 4 cathodes deposit simultaneously
- For conventional and Nanocomposite coatings
- All TripleCoatings ${ }^{3 ®}$ and DUALCoatings ${ }^{8{ }^{®}}$
- Coatable volume: $\varnothing 500 \times 460 \mathrm{~mm}$

PLATIT PL70

Upgradeable to π^{80+}

General Information

- 1 -linear-cathode compact hardcoating unit
- Based on PLATIT planar-cathodic ARC-technology
- Coating on tool steels (TS) above $230^{\circ} \mathrm{C}$, high speed steels (HSS) and on tungsten carbide (WC) between $350-550^{\circ} \mathrm{C}$
- The easy-to-start coating unit
- Fully upgradeable to π^{80+}

Hard Coatings

- Monoblock and gradient coatings
- Main standard coatings: TiN, TiCN-grey
- See available standard coatings on page 114

Hardware

- Foot print: W1870 x D1320 x H2155 mm
- Vacuum chamber with internal sizes of: W400 x D380 x H520 mm
- Usable plasma volume: Ø300 x H400 mm
- Max. load: 50 kg
- System with turbo molecular pump
- Ionic plasma cleaning:
- Etching with gas (Ar/H2): glow discharge
- Metal ion etching (Ti, Cr)
- DC BIAS supply
- Only high quality, brand-name components
- Electrical connection: $3 \times 400 \mathrm{~V}, 80 \mathrm{~A}$ external fuse $50-60 \mathrm{~Hz}, 15 \mathrm{~kW}$

Electronics and Software

- Industrial PLC (programmable logic control) system
- Industrial PC system
- Control system with touch-screen menu driven concept
- Manual and automatic process control
- Data logging and real-time viewing of process parameters
- Remote diagnostics
- No programming knowledge is required for process control
- Operator's manual on CD-ROM

Cycle Times

At continuous operation for coating tools, with standard thicknesses for:

- Shank tools $(2 \mu \mathrm{~m})$: $\quad \varnothing 10 \times 70 \mathrm{~mm}, 162 \mathrm{pcs}: 3.25 \mathrm{~h}$
- Inserts $(3 \mu \mathrm{~m})$: $\quad \varnothing 20 \times 6 \mathrm{~mm}, 1260 \mathrm{pcs}: 3.5 \mathrm{~h}$
- Hobs $(4 \mu \mathrm{~m})$: $\quad \varnothing 80 \times 180 \mathrm{~mm}, 6$ pcs: 5.25 h

PL70 Features

Thickness Distribution

The PL70 maintains an excellent thickness distribution from chamber height 25 mm to 425 mm . Typically it remains between $\pm 12.5 \%$.

Average thickness: 1.7 um - Max $=1.91$ um $-\operatorname{Min}=1.49 u m-$ Max. scatter $=0.42 u m: \pm 12.3 \%$ Application: Coating small mold and dies with TiN - Measured by BYD, Shenzen, China

Convertibility to π^{80} or π^{80+}

The PL70 can be converted to a π^{80} or π^{80+} unit. To perform the conversion, the coating door containing the cathodes as well as the face plates are exchanged, the electronics hardware is extended, and new control software is installed.

Its low costs and the ability to upgrade makes the PL70 the optimal choice for coating start-ups. Also, it can be used as a second machine alongside bigger coating units, for applying conventional coatings only.

PLATIT $\pi 80$ and $\pi 80^{+}$

General Information

- Compact hardcoating unit
- Based on PLATIT LARC ${ }^{\circledR}$ technology (LAteral Rotating Cathodes)
- Coating on tool steels (TS) above $230^{\circ} \mathrm{C}$, high speed steels (HSS) $350-500^{\circ} \mathrm{C}$ and on tungsten carbide (WC) between $350-550^{\circ} \mathrm{C}$

Hard Coatings

- Monolayers, Multilayers, Nanogradients, Nanolayers, Nanocomposites, and their combinations
- Main standard coatings: TiN, AITiN-G, nACo ${ }^{\circledR}$
- See available standard coatings on page 114
- Available TripleCoatings ${ }^{\text {® }}$: AlCrN $^{3 ®}$

Hardware

- Foot print: W1870 x D1320 x H2155 mm
- Vacuum chamber with internal sizes of: W400 x D380 x H520 mm
- Usable plasma volume: Ø300 x H400 mm
- Max. load: 50 kg
- System with turbo molecular pump
- Revolutionary rotating (tubular) cathode system with 2 LARC ${ }^{\oplus}$ cathodes:
- LARC ${ }^{\circledR}$ target size: $\emptyset 96 \times \mathrm{H} 510 \mathrm{~mm}$
- Magnetic Coil Confinement (MACC) for ARC control
- Double wall, stainless steel, water cooled chamber and cathodes
- Changing time for skilled operator: approx. 15 min / evaporator
- VIRTUAL SHUTTER ${ }^{\text {® }}$
- Ionic plasma cleaning:
- etching with gas (Ar/H2), ion bombardment, and glow discharge (Ti, Cr)
- DC BIAS supply
- With air conditioning unit on top of electric cabinet
- $4(+1)$ gas channels, 4 MFC controlled
- Electrical connection: $3 \times 400 \mathrm{~V}$,

100 A external fuse $50-60 \mathrm{~Hz}, 20 \mathrm{~kW}$

Cycle Times

At continuous operation for coating tools, with standard thicknesses for:

- Shank tools $(2 \mu \mathrm{~m})$: $\varnothing 10 \times 70 \mathrm{~mm}, 162 \mathrm{pcs}: 3.5 \mathrm{~h}$
- Inserts $(3 \mu \mathrm{~m})$: $\quad \varnothing 20 \times 6 \quad \mathrm{~mm}, 1260 \mathrm{pcs}: 3.75 \mathrm{~h}$
- Hobs $(4 \mu \mathrm{~m})$: $\quad \varnothing 80 \times 180 \mathrm{~mm}, 6$ pcs: 5.5 h

Electronics and Software

- Industrial PC and PLC system
- Control system with touch-screen menu driven concept
- Manual and automatic process control
- Data logging and real-time viewing of process parameters
- Remote diagnostics
- No programming knowledge is required for process control
- Operator's manual on CD-ROM

π^{80+} Additional Hardware

- TUBE SHUTTERS ${ }^{\circledR}$
- Pulsed BIAS supply (350 kHz)
- Dust filter for heaters (7.5 kW)

The 6π Advantages \& Double Shuttering

1. Low target costs due to the cylindrical rotating cathodes

- Large effective target surface; $d^{*} \pi^{*} h$
- Consistent target erosion
- Maximum target life; ~ 200 batches
- Low target costs/tool; ~0.07 CHF/tool

6.

Programmable stoichiometry due to:

- Minimum distance between 2 targets Deposition of:
- Nanocomposites
- Multi- and Nanolayers, gradient coatings
- Without changing the not alloyed targets; Ti, Cr, AI, Al(Si), Zr
2 Optimum adhesion with
VIRTUAL SHUTTER ${ }^{\circledR}$ and TUBE SHUTTER ${ }^{\circledR}$ due to:
- Turnable magnetic field
- to the back for fast target cleaning
- to the substrates for deposition
- Permanent presence of pure Ti or Cr target

3.

Smooth coating surface with minimized droplets due to:

- VIRTUAL SHUTTER ${ }^{\circledR}$ and TUBE SHUTTER ${ }^{\circledR}$
- Fast (double) ARC track motion
- Special heaters with dust filter

4. High hardness with the Nanocomposite
coatings due to:

- Segregation into 2 phases, e.g. (nc-TiAIN)/(a-SiN)
- 2 targets very close to each other

VIRTUALSHUTTER

Target cleaning before coating

- TUBE SHUTTER ${ }^{\circledR}$ is closed
- to protect the substrates from dust of the previous process
- ARC is burning towards the back
- VIRTUAL SHUTTER ${ }^{\circledR}$ is on
- ARC works as getter pump and substantially improves vacuum
- Target is cleaned before deposition
- without contaminating the substrates

TUBESHUTTER®

 Deposition (coating)- TUBE SHUTTER ${ }^{\circledR}$ is open
- ARC is burning towards the substrates
- VIRTUAL SHUTTER ${ }^{\circledR}$ is off
- Smooth deposition with clean target

Advantages of the double shutters

- Adhesion layer is always deposited with clean targets
- Shuttering of all cathode types possible
- Simple handling, setting and maintenance of the shields and ceramic insulators
- Higher ARC current -> higher deposition rate possible ($\sim+20-30 \%$)

PLATIT π^{222}

General Information

- Compact hardcoating unit
- Based on PLATIT LARC ${ }^{\circledR}$ technology (LAteral Rotating Cathodes)
- Coating on tool steels (TS) above $230^{\circ} \mathrm{C}$, high speed steels (HSS) $350-500^{\circ} \mathrm{C}$ and on tungsten carbide (WC) between $350-550^{\circ} \mathrm{C}$

Hard Coatings

- Monolayers, Multilayers, Nanogradients, Nanolayers, Nanocomposites, and their combinations
- Main standard coatings: TiN, AITiN-G, nACo ${ }^{\circledR}$
- See available standard coatings on page 114
- Selected TripleCoatings ${ }^{3 \circledR}$ available

Hardware

- Foot print: W1890 x D1500 x H2120 mm
- Vacuum chamber with internal sizes of: W450 x D320(460) x H615 mm
- Max. size of coatable parts: Ø355 x H500 mm
- Usable plasma volume: $\emptyset 355 \times \mathrm{H} 460 \mathrm{~mm}$
- Max. load: 100 kg
- Turbo molecular pump
- Revolutionary rotating (tubular) cathode system with 2 LARC ${ }^{\circledR}$ cathodes:
- LARC ${ }^{\circledR}$ target size: $\emptyset 96 \times 510 \mathrm{~mm}$
- Magnetic Coil Confinement (MACC) for ARC control
- Double wall, stainless steel, water cooled chamber and cathodes
- Changing time for skilled operator: approx. 15 min / cathode
- VIRTUAL SHUTTER ${ }^{\circledR}$ and TUBE SHUTTER ${ }^{\circledR}$
- LGD ${ }^{\circledR}$: LARC ${ }^{\circledR}$ Glow Discharge
- lonic plasma cleaning:
- etching with gas $\left(\mathrm{Ar} / \mathrm{H}_{2}\right)$; glow discharge,
- metal ion etching (Ti, Cr)
- Pulsed BIAS supply (350 kHz)
- Air conditioning for the electric cabinet
- $5(+1$) gas channels, 5 MFC controlled
- Special dust filters for heaters (10 kW)
- Electrical connection:
$3 x 400 \mathrm{~V}, 100 \mathrm{~A}$ external fuse $50-60 \mathrm{~Hz}, 30 \mathrm{~kW}$

Comparison to $\pi 80$

- $>50 \%$ higher, optimized coatable volume
- at practically same foot print and
- at same process (cycle) time
- TUBE SHUTTER ${ }^{\circledR}$ to protect both cathodes from contamination
- Dust filter for heaters
- Carousel drive with high loadability (>150kg)
- Prepared for easy upgrade to DLCㄹ- and OXI-units and -coatings
- Extremly homogenous thickness distribution
- LARC ${ }^{\circledR}$ - Glow discharge
- 4 Standard TripleCoatings ${ }^{3 \oplus}$ available

ГLATTE:

LGD ${ }^{\circledR}$ and Thickness Distribution

 LARCGD LARC $^{\circledR}$ Glow Discharge

- LARCGD is a new patented methode, that only works with the LARC cathodes in combination with the VIRTUALSHUTTER ${ }^{\circledR}$ and TUBE SHUTTER
- LARCGD generates a highly efficient argon etching for special subtrates with difficult surfaces (e.g. hobs, mold and dies)
- The electron stream between the cathodes 1 and 2 creates high ion density plasma, which "cleans" even surfaces of complicated subtrates
- Pulsing of LGD source ensures high LGD-process stability and suppresses micro-arcs (hard-arcs) generation
π^{202} Thickness Distribution

PLATIT π^{302}

Fully compatible to π^{300}

General Information

- Compact hardcoating unit
- Based on PLATIT LARC ${ }^{\circledR}$ and CERC ${ }^{\circledR}$ technologies (LAteral Rotating Cathodes and CEntral Rotating Cathodes)
- Coating on tool steels (TS) above $230^{\circ} \mathrm{C}$, high speed steels (HSS) $350-500^{\circ} \mathrm{C}$ and on tungsten carbide (WC) between $350-550^{\circ} \mathrm{C}$
- Reconfigurable by the user into different cathode setups:
A: 3 LARC ${ }^{\circledR}$ cathodes and one CERC ${ }^{\oplus}$ cathode
B: 3 LARC ${ }^{\oplus}$ cathodes

Coatings

- Monolayers, Multilayers, Nanogradients, Nanolayers, Nanocomposites, TripleCoatings ${ }^{3 ®}$ and their combinations
- Main standard coatings: TiN, AITiN-G, nACo ${ }^{\circledR}$
- See all 21 standard coatings on page 114
- All TripleCoatings ${ }^{3 ®}$ available
- Selected QuadCoatings ${ }^{4 ®}$ available

Hardware

- Foot print: W2350 x D1660 x H2300 mm
- Vacuum chamber, internal sizes: W580 x D566 x H580 mm
- Max. size of coatable parts: $0485 \times \mathrm{H} 480 \mathrm{~mm}$
- Usable plasma volume: $\emptyset 485 \times \mathrm{H} 440 \mathrm{~mm}$
- Max. load: 150 kg
- System with turbo molecular pump
- Revolutionary rotating (tubular) cathode system with 3 LARC ${ }^{\oplus}$ / CERC ${ }^{\oplus}$ cathodes:
- Magnetic Coil Confinement (MACC) for ARC control
- Changing time for skilled operator: approx. $15-30 \mathrm{~min} /$ cathode
- VIRTUAL SHUTTER ${ }^{\circledR}$ and TUBE SHUTTER ${ }^{\circledR}$ for all LARC ${ }^{\circledR}$ cathodes
- LGD ${ }^{\circledR}$: LARC ${ }^{\circledR}$ Glow Discharge
- Ionic plasma cleaning:
- etching with gas $\left(\mathrm{Ar} / \mathrm{H}_{2}\right)$; glow discharge,
- metal ion etching (Ti, Cr)
- Pulsed BIAS supply (350 kHz)
- $6(+1)$ gas channels, 6 MFC controlled
- Special dust filters for heaters (20 kW)
- Electrical connection: $3 \times 400 \mathrm{~V}, 100 \mathrm{~A}, 50-60 \mathrm{~Hz}$ In $\pi 311-13$ mode: max. 45 kW
In $\pi 311-03$ mode: max. 40 kW
- Upgradeable to $\pi 311+$ DLC and $\pi 311+$ OXI on user's place

π^{322} Configurations

A: $\pi 311-13$ Configuration

3x LARC ${ }^{\oplus}$: LAteral Rotating Cathodes Target size: $\emptyset 96 \times 510 \mathrm{~mm}$
1x CERC ${ }^{\oplus}$: CEntral Rotating Cathode Target size: $\emptyset 110 \times 510 \mathrm{~mm}$

Usable plasma volume: Ø485- Ø185 mm x H440 mm Highest productivity for coating of cutting shank tools and inserts.

3 cathodes in action at the same time:

Free programmable switching between cathode 2 and 4; between operation mode $\pi 311-13$ and even during deposition process.

B: $\pi 311-03$ Configuration

$3 \times$ LARC ${ }^{\text {® }}$: LAteral Rotating Cathodes
Target size: $\emptyset 96 \times 510 \mathrm{~mm}$
No CERC ${ }^{\oplus}$: CEntral Rotating Cathode
Usable plasma volume: $\emptyset 485 \times \mathrm{H} 440 \mathrm{~mm}$
For coating large-volume work pieces, especially molds and dies as well as machine parts.

π^{321} Thickness Distribution

PLATIT π^{4012}

General Information

- Compact hardcoating unit
- Based on PLATIT LARC ${ }^{\circledR}$ and CERC ${ }^{\circledR}$ technologies (LAteral Rotating Cathodes and CEntral Rotating Cathodes)
- Coating on tool steels (TS) above $230^{\circ} \mathrm{C}$, high speed steels (HSS) $350-500^{\circ} \mathrm{C}$ and on tungsten carbide (WC) between $350-550^{\circ} \mathrm{C}$
- Reconfigurable by the user into different cathode setups:
A: 3 LARC ${ }^{\oplus}$ cathodes and 1 CERC ${ }^{\circledR}$ cathode
B: 3 LARC ${ }^{\oplus}$ cathodes

Coatings

- Monolayers, Multilayers, Nanogradients, Nanolayers, Nanocomposites, TripleCoatings ${ }^{3{ }^{3}}$, QuadCoatings ${ }^{4{ }^{\circledR}}$ and their combinations
- Main standard coatings: TiN, AITiN-G, nACo ${ }^{\circledR}$
- See all 21 standard coatings on page 114
- All TripleCoatings ${ }^{3 \oplus}$ available
- All QuadCoatings ${ }^{4 \oplus}$ available

Hardware

- Foot print: W2720 x D1721 x H2149 mm
- Vacuum chamber, internal sizes:

W650 x D670 x H 675 mm

- Max. size of coatable parts: $\varnothing 500 \times \mathrm{H} 500 \mathrm{~mm}$
- Usable plasma volume: Ø500 x H460 mm
- Max. load: 200 kg
- System with turbo molecular pump
- Revolutionary rotating (tubular) cathode system with 3 LARC ${ }^{\circledR}$ / CERC ${ }^{\oplus}$ cathodes:
- Magnetic Coil Confinement (MACC) for ARC control
- LARC®: Up to 200A ARC current
- CERC ${ }^{\circledR}$: Up to 300A ARC current
- Changing time for skilled operator: approx. 15-30 min/cathode
- VIRTUAL SHUTTER ${ }^{\circledR}$ and TUBE SHUTTER ${ }^{\circledR}$ for all LARC ${ }^{\circledR}$ cathodes
- lonic plasma cleaning:
- etching with gas (Ar/H2); glow discharge
- metal ion etching (Ti, Cr)
- LGD ${ }^{\circledR}$: LARC ${ }^{\circledR}$ Glow Discharge
- Pulsed BIAS supply (350 kHz)
- $6(+1)$ gas channels, 6 MFC controlled
- Special dust filters for heaters (24 kW)
- Electrical connection: $3 \times 400 \mathrm{~V}, 100 \mathrm{~A}, 50-60 \mathrm{~Hz}$

Electronics and Software

- Industrial PC and PLC systems
- Enhanced operating software
- Control system with touch-screen menu driven concept
- Manual and automatic process control
- Data logging and real-time viewing of process parameters
- Remote diagnostics
- No programming knowledge is required for process control
- Operator's manual on CD-ROM

Cycle Times

At continuous operation for coating tools, with standard thicknesses for:

- Shank tools $(2 \mu \mathrm{~m})$: $\varnothing 10 \times 70 \mathrm{~mm}, 504 \mathrm{pcs}: 3.5 \mathrm{~h}$
- Inserts $(3 \mu \mathrm{~m})$: $\quad \varnothing 20 \times 6 \mathrm{~mm}, 2940 \mathrm{pcs}: 4.0 \mathrm{~h}$
- Hobs $(4 \mu \mathrm{~m})$: $\quad \varnothing 80 \times 180 \mathrm{~mm}, 14 \mathrm{pcs}: 5.5 \mathrm{~h}$

$\pi^{621}-P O W E R$ Coating Unit

4 Cathodes Run Simultaneously

3x LARC ${ }^{\circledR}$: LAteral Rotating Cathodes
Target size: $\emptyset 96 \times 510 \mathrm{~mm}$
$1 \times$ CERC ${ }^{\circledR}$: CEntral Rotating Cathode
Target size: $\varnothing 110 \times 510 \mathrm{~mm}$
Usable plasma volume: $\emptyset 500 \mathrm{~mm} \times \mathrm{H} 460 \mathrm{~mm}$
Highest productivity for coating of cutting shank tools, inserts, and hobs.

LARC GD ${ }^{\oplus}$ LARC ${ }^{\circledR}$ Glow Discharge

- LARC ${ }^{-}{ }^{\circ}$ is a new patented methode, that only works with the LARC cathodes in combination with the VIRTUALSHUTTER and TUBE SHUTTER ${ }^{\circ}$
- LARC GD generates a highly efficient argon etching for special subtrates with difficult surfaces (e.g. hobs, mold and dies)
- The electron stream between the cathodes 1 (or 3) and 2 creates high ion density plasma, which "cleans" even surfaces of complicated subtrates
- Pulsing of LGD source ensures high LGD-process stability and suppresses micro-arcs (hard-arcs) generation

High Loadability, Robust, and Easy Change of Loads

PLATIT PL1001 СОMPACT

General Information

- High capacity hardcoating unit
- Based on PLATIT planar-cathodic-ARC-technology
- Coatings on HSS and WC $\left(T \leq 500^{\circ} \mathrm{C}\right)$

Hard Coatings

- Monolayers, Multilayers, and Nanolayers
- Main standard coatings: TiN, TiCN-grey, AITiN-G
- See available standard coatings on page 114
- Available TripleCoating ${ }^{3 \oplus}:$ AlTiCrN $^{3 ®}$

Hardware

- Foot print: W3880 x D1950 x H2220 mm
- Internal chamber size: W1000 x D1000 x H1100 mm
- Usable plasma volume: Ø700-H700 mm
- Max. load: 400 kg
- Standard BIAS: 15 kW DC, 1000 V , optional: $20 \mathrm{~kW}, 250 \mathrm{kHz}$, 700 V
- Double wall, stainless steel, water cooled chamber
- Front door loading, excellent access
- 4 PLATIT cathodes with quick-exchange system
- Storage of 4 spare cathodes inside the cabinet
- Electrical connection: $3 \times 400 \mathrm{~V}, 50-60 \mathrm{~Hz}, 95 \mathrm{~kW}$
- Modular carousel system with 2, 4, 8, and 12 as well as 3,6 , and 9 satellites

With easy loading, different tool types and sizes can be mixed and coated in one batch.

Electronics and Software

- Industrial PLC (programmable logic) system
- Industrial PC system
- Touch-screen operated
- Complete menu driven processes
- Easy diagnostic and help functionality
- Remote diagnostics
- No programming knowledge is required for process control
- Operator's manual on CD-ROM

Cycle Times

At continuous operation for coating tools, with standard thicknesses for:

- Shank tools $(2 \mu \mathrm{~m})$: $\varnothing 10 \times 72 \mathrm{~mm}, 864$ pcs: 6.25 h
- Inserts $(3 \mu \mathrm{~m})$: $\quad \varnothing 20 \times 6 \mathrm{~mm}, 4224 \mathrm{pcs}: 6.5 \mathrm{~h}$
- Hobs $(4 \mu \mathrm{~m})$: $\quad \varnothing 80 \times 180 \mathrm{~mm}, 36 \mathrm{pcs}: 7.0 \mathrm{~h}$

DLC- and OXI-Machines

Dedicated Units

PL1001-DUO Compact

- Specially manufactured on request
- Based on PLATIT planar-cathodic-ARC-technology
- Coatings on HSS and WC $\left(T \leq 500^{\circ} \mathrm{C}\right)$

Hardware

- Usable plasma volume: Ø575 x H700 mm
- 2 PLATIT cathodes with quick-exchange system fully compatible with the PL1001 COMPACT cathodes
- Low cost version of PL1001 COMPACT

PL2001 for saw blades

- Specially manufactured on request
- Extremely high capacity hardcoating unit for large tools and objects
- Based on PLATIT planar-cathodic-ARC-technology
- Coatings on HSS and WC $\left(T \leq 500^{\circ} \mathrm{C}\right)$

Hardware

- Foot print: W3880 x D2350 x H2220 mm
- Internal chamber size: W1700 x D1700 x H1100 mm
- Usable plasma volume: Ø1200 x H700 mm
- Max. substrate load: 800 kg
- 4 PLATIT cathodes with quick-exchange system fully compatible with the PL1001 COMPACT cathodes
- Electrical connection: $3 \times 400 \mathrm{~V}, 50-60 \mathrm{~Hz}, 110 \mathrm{~kW}$
- Modular carousel system with 1, 2, 3, 4, 6, 8 satellites

$\pi 603$

- Dedicated Coating Unit with 3 LARC and 1 planar cathodes for the deposition of saw bands
- Coatable volume: $ø 1400 \times 200 \mathrm{~mm}$

Dedicated Units for Broaches

PL1401-HUT for Broaches

- Specially manufactured on request
- Based on PLATIT planar-cathodic-ARC-technology
- After coating the first half, the broaches must be turned to coat the other half in a second batch

Hardware

- Usable plasma volume: $\emptyset 700 \times \mathrm{H700} \mathrm{~mm}+\emptyset 150 \times \mathrm{H} 700 \mathrm{~mm}$
- Max. length of broaches: 2000 mm
- Max. coatable lengths on broaches: $2 \times 700 \mathrm{~mm}$
- Max. substrate load: 400 kg
- 4 PLATIT cathodes with quick-exchange system fully compatible with the PL1001 COMPACT cathodes
- Modular carousel system with $1,2,3,4,6,8$ satellites

Dedicated 1-Chamber Cleaning System for Broaches

- Max. broach length: 21500 mm
- Max. broach load: 600 kg
- Cyle time < 1h

PL1901 for Extra Long Broaches

- Specially manufactured on request
- Based on PLATIT planar-cathodic-ARC-technology
- The extra long broaches are coated in 1 batch

Hardware

- Usable plasma: $0700 x 700-1$ 1'900 mm
- Max. length of a broach: 2300 mm
- Max. substrate load: 600 kg
- 6 PLATIT cathodes with quick-exchange system, fully compatible with the PL1001 compact cathodes
- Modular carussel system with $1,2,4,6,8$ satellites
- The coating unit and the loading system are to be embeded into the special fundament of the work floor

Carousels for PL70 / $\pi 80$ / π^{122}

Carousel for single rotation Dmax $=355 \mathrm{~mm}(\pi 111)$

3 axis carousel for double and triple rotation with and without kickers
$\operatorname{Dmax}=162 \mathrm{~mm}(\pi 111)$

Carousel for double rotation with kickers for every level

4 axis carousel for continuous triple rotation with gearboxes without kickers
$\operatorname{Dmax}=143 \mathrm{~mm}(\pi 111)$

Batch coated with triple rotation

Plates for carousel for double rotation

10 axis carousel for continuous double rotation without kickers Dmax $=82 \mathrm{~mm}(\pi 111)$

π^{322} / π^{422}

Single rotation carousel
Dmax-1 $=485 \mathrm{~mm}$

3 (6) axis carousel
Dmax-3=223mm - Dmax-6=129mm

7 axis carousel Dmax-7 = 143mm

4 (8) axis carousel
Dmax-4 $=196 \mathrm{~mm}-$ Dmax- $8=108 \mathrm{~mm}$

5 (10) axis carousel
Dmax-5 $=174 \mathrm{~mm}-$ Dmax-10 $=94 \mathrm{~mm}$

4 axis dedicated asymetric carousel $3 x D 1=175 \mathrm{~mm}-1 x D 2=260 \mathrm{~mm}$

12 (6) axis carousel
Dmax-12=88mm - Dmax-6=133mm

14 axis carousel Dmax-14=87mm

Holders for Cutting Tools

| Plates with gears,
 as holders for sleeves | The gears are rotating stepwise, driven by kickers from the
 side. |
| :--- | :--- | :--- |
| Plates and gears are available for the different standard
 diameters of shank tools in the range of $\mathrm{d}=2.2-52 \mathrm{~mm}$ | |
| Gearboxes for triple
 rotation for shank
 tools with shank
 diameter D and with
 gear postions \#N | For special big shank tools
 $\mathrm{D}<=52 \mathrm{~mm} \mathrm{(2")} \mathrm{-} \mathrm{~N}=4$ |
| Special sleeves are neccessary | |

	Holders	Application
Insert holders with satellites and rods		Satellites for inserts with diameter / edge length [mm] d/ $\square: 8.5,12,14,19,20,27,29.5,42$ Satellites positions: 6, 9, 15, 18 Support ring for rods of small inserts. Rods according to the hole diameters of the inserts: $d>2.4,3.7,4.2,5.2,6.2 \mathrm{~mm}$ TongS keep the inserts without holes, spindled on special rods. TongS are products of 4pvd, Aachen, Germany.
Hob holders for shank hobs and bore hobs		The parts of the hob satellite are set together according to the sizes and dimensions of the different hobs, they are coated together.
Parking station Loading base		Helping fixtures for loading and parking the satellites outside of the carussels.
Cage for double rotation	W: 6-2	Cages for simple flat shapes, which can be laid down, like certain molds, dies, and inserts.
Dummy cage		Dummy cage has to fill empty satellites places in carussels.

Turnkey Solutions

TLTTT:

The integration of flexible coating into the manufacturing production requires complete turnkey solutions.

PLATIT offers complete coating systems including all necessary peripheral equipment and technologies for:

- surface pretreatment by polishing, brushing and/or micro blasting,
- one-chamber vacuum cleaning with "start-and-forget" operation,
- stripping of coatings from HSS and carbides,
- handling for loading and unloading of substrates and cathodes,
- and quality control systems according to ISO 9001.

Stripping of PLATIT Coatings

ST-40 Decoating System

Changeable decoating modules:

1. ST-40 HM: Decoating Ti, Al based coatings from carbide
2. ST-40 Cr: Decoating Cr based coatings from carbide and HSS
3. ST-40 HSS: Decoating Ti, Al, Cr based coatings from
HSS
4. ST-170 Cr: Decoating Cr based coatings from carbide and HSS (module for 7 hobs $\varnothing 80 \times 180 \mathrm{~mm}$)
5. ST-170 HSS: Decoating Ti, Al based coatings from HSS (module for 7 hobs $\varnothing 80 \times 180 \mathrm{~mm}$)
6. ST-40 R: Rinsing module
7. ST-40 P: Corrosion protection module

CleX ${ }^{\circledR}$: Baskets and Carriers

Modular holder system for stripping.
See pages 40 and 41.

Available Stripping Processes

Stripping Ti, Al based coatings from HM

Water based environmentally friendly process.
Decoating of tungsten carbide K grades.
Suitable for these PLATIT coatings:

- TiN, TICN, TiAIN, AITiN, nACo ${ }^{\circ}$
- Mono- and Multilayer coatings

Stripping time: $1-24 \mathrm{~h}$
Necesary modules: $1+6+7$

Attention: Cobalt-leaching might occur

Stripping Ti, AI based coatings from HSS

Stripping Ti, Al based coatings from HSS
Water based environmentally friendly process.
Suitable for PLATIT coatings:

- TiN, TiCN, TiAIN, AITiN, nACo ${ }^{\oplus}$
- Mono- and Multilayer coatings

Stripping time: 1 - 2 h
Necesary modules: $3+6+7$

Stripping Cr based coatings from HM and HSS
Electrochemical process based on water. Decoating of tungsten carbide K grades and HSS.
Suitable for PLATIT coatings: CrN, nACRo ${ }^{\oplus}$
Stripping time: < 1 h
Necesary modules: $2+6+7$ or $4+5+6$
Attention: Used solution contains $\mathbf{C r}^{6+}$

Stripping CrTi based coatings from HSS

Electrochemical process based on water:
Suitable for PLATIT coatings: CrTiN, AITiCrN, nATCRo ${ }^{\circledR}$
Stripping time: $1-4$ hours
Necesary modules: $3+6+7$
Attention: Used solution contains $\mathbf{C r}^{6+}$

The listed data are valid for stripping of single coatings with thickness of $\sim 2 \mu \mathrm{~m}$.

Stripping and its Ways

Under optimum conditions the electro-chemical stripping can be carried out without damaging the substrates. However, normally it damages the substrates, especially carbides with cobalt leaching.

What is Cobalt-Leaching?

Removal of some cobalt from the top surface of the composite material tungsten carbide consisting of WC (grains) and cobalt (matrix).
Reason: Removal of cobalt by oxidation, mainly at contact with water:

- Water cooled grinding
- Too fast grinding with blunt grinding wheel (even when cooling with oil)
- Water based stripping

Coating of cobalt-leached carbide is useless. The coating has in fact a good adhesion to the top WC layer, but both peel off together at the first cut because the binding cobalt is missing.

Stripping at conventional and integrated coating service

The conventional way

The risk of bad adhesion is very high. The stripping takes place after regrinding and damages the final geometry of the tool. The edge preparation after stripping can reduce the damage only. Additionally, packing, transport, and repackaging increase the risk of tool damaging enormously.

The integrated way

The stripping can be done prior to the regrinding. This creates a lot of advantages for your production:

- Less transport and packaging, less damages by handling
- No chemical destruction after regrinding, the edge preparation does its full effect (regularly)
- Optimum adhesion
- The performance is close to a new tool.

Cleaning Units

V80+, V311, V1011

Industrial single chamber cleaning units for fully automatic cleaning and vacuum drying of:

- Cutting tools, molds and dies, machine components
- Also for difficult to clean parts with cavities
- Developed in coorperation with Eurocold, Italy

These products include:

- Single chamber cleaning unit with detergent (alkaline) tank, demineralized water tank, vacuum drying system
- Water preparation: water softener, reverse osmosis, demi water (external)
- Detergent, Salt
- Easy to understand touch screen for programming and handling as the π coating units
- CleX ${ }^{\circledR}$ modular holder system for carrying shank tools, inserts and hobs

Max. dimensions of substrates to be cleaned: WxDxH [mm]:		
V80+	V311	V1011
$355 \times 390 \times 480$	$500 \times 500 \times 500$	$700 \times 700 \times 700$

Washing Cycle (~45 min)

1. Pre-Cleaning

With flashing out of oil and rough dust, V*11 series only. Consider wastewater regulations of your country!
2. Ultrasonic cleaning

With oil skimming in $\mathbf{V}^{*} 11$ series.
3. Rinsing

4. Vacuum drying with cold trap

Cleaning and its Control

Modular Manual Cleaning Unit

- CL - 40 EL: Module for electrolytical cleaning
- CL - 40 US: Module for ultrasonic treatment
- CL-40 R: Module for rinsing
- CL-40 D: Oven for drying

Cleaning unit for laboratories and institutes, which do not need automatic cleaning of higher substrate quantities.
The substrates are carried in special baskets by hand from module to module.

1. Rinsing away the raw dust using tap water
2. Precleaning the substrates using ultrasonic in demineralized water or in detergent
3. Rinsing using demineralized water
4. Fine cleaning using electrolytical treatment
5. Rinsing using demineralized water

See basket sizes on page 41.

Cleanness - Coatability Evaluation by Measuring Surface Tension

Only a metallic clean surface leads to good adhesion of the coating.
The surface tension (energy) on the substrate is one decisive criterion for the adhesion of coatings.
The higher the surface tension of the substrate the better is the adhesion of the coating. Contaminations like grease, oil, finger prints or dust decrease the surface energy.

The minimum surface energy should be $42 \mathrm{mN} / \mathrm{m}$ on the cleaned substrates before coating.

The drop method can characterize the surface energy of the substrate on an easy way: The measuring set contains a series of pens or inks. The testing fluid will be anted up from the pens or from inks to the surface of the substrate.
Every pens or inks is marked to recognize a surface energy value;
$32,34,36,40,42,44 \mathrm{mN} / \mathrm{m}$

Bad wettability on oily part because of the low surface energy

Good wettability without oil because of high surface energy

The ink generates droplets because its surface tension is higher than the surface tension of the substrate Bad wettability - plate is not clean enough and needs more cleaning

The ink does not generate droplets because its surface tension of the substrate is higher than this of the ink. Good wettability - plate is clean for coating

CleX: Clean Flexible

Modular Holder System for Cleaning and Stripping

CleX ${ }^{\circledR}$ for Shank Tools

Flexible holder system for cleaning and stripping of shank tools.

Advantages:

- Different tool-diameters can be held together
- Up to 150% more tools per foot print in comparison to conventional systems
- $\mathrm{CleX}^{\circledR}$ carriers can be handled even with tools loaded
- CleX ${ }^{\oplus}$ baskets are stackable
- Smart light design \rightarrow Low shadowing
- Minor contact surfaces \rightarrow Hardly cleaning spots
- Inclined surfaces \rightarrow Good water draining
- Stainless steel construction \rightarrow High temperature resistance
\rightarrow High durability

CleX ${ }^{\circledR}$ for Inserts

Flexible insert-holder for minimal handling at pre-, posttreatment and coating.

Advantages:

- Different insert-types can be held together
- For inserts with holes
- Without reloading, up to 500 inserts can sequentially run through all these processes:
- Cleaning
- Edge structuring by wet- / dry-microblasting
- Coating
- Polishing by wet-/ dry-microblasting

At wet- / dry-microblasting, all sides of the inserts are treated.
For inserts without holes the system can be used with the TongS system (see page 31) for coating only.

CleX ${ }^{\circledR}$ for Hobs

Flexible holder for cleaning and stripping of hobs.

Advantages:

- Hobs of different diameters and lengths can be held
- CleX ${ }^{\circledR}$ baskets are stackable

CleX: Clean Flexible

CleX ${ }^{\circledR}$ for Shank Tools

CleX ${ }^{\circledR}$ Basket	V80+	V311	V1011
$330 \times 160 \mathrm{~mm}$	$2 \mathrm{pcs} /$ level	$4 \mathrm{pcs} /$ level	$8 \mathrm{pcs} /$ level

CleX ${ }^{\text {® }}$ Carrier	\emptyset-Shank mm	Tools/CleX ${ }^{\text {® }}$ Carrier	Tools/CleX ${ }^{\text {® }}$ Basket
CleX ${ }^{\text {® }}$-S -3	$\emptyset 3$	30	270
Clex ${ }^{\text {® }}$ - ${ }^{-5}$	Ø5	26	234
CleX ${ }^{\text {- }}$ S-6	Ø6	24	168
CleX ${ }^{\text {® }}$-S-8	Ø8	20	140
CleX - $\mathrm{S}^{\text {- }} 10$	010	18	126
CleX - ${ }^{\text {S }}$-12	012	16	112
CleX ${ }^{\text {® }}$-S 14	014	15	75
CleX ${ }^{\text {® }}$ - -16	016	13	52
CleX-S-18	018	12	48
CleX - $\mathrm{S}^{\text {-20 }}$	Ø20	11	44
CleX - ${ }^{\text {- }}$-25	025	9	36
CleX - ${ }^{\text {- }}$-32	032	7	28

Inch sizes are available on request

CleX ${ }^{\circledR}$-S-18 carrier for $\emptyset 18 \mathrm{~mm}$

CleX ${ }^{\circledR}$ for Hobs

CleX holders	Optimized for
CleX-H:	$1 \times \emptyset 130$
$330 \times 160 \mathrm{~mm}$	$2 \times \emptyset 70$
	$3 \times \emptyset 35$
CleX-H-XL:	$1 \times \emptyset 170$
$330 \times 240 \mathrm{~mm}$	$2 \times \emptyset 90$
	$3 \times \emptyset 60$

$\mathrm{CleX}{ }^{\oplus}-\mathrm{H}$ hob basket

CleX ${ }^{\circledR}$ - H -XL hob basket

Micro Structuring of Cutting Edges

Why Edge Preparation?

1. Main goal: Increasing the edge stability
a. Stable edge form:
to avoid the edge's chipping
b. Stable, low edge surface roughness: to decrease friction between tool and workpiece
c. Stable material:
e.g. to avoid cobalt leaching
2. Without edge preparation:

- low performance

3. Different work piece materials need:

- different edge preparation

4. Over the optimum edge preparation:

- performance drops down abruptly

5. Optimum edge preparation can:

- increase performance enormously

Typical Edge Images from High End Tool Manufacturers

Edge Treatment Methods

Microstructuring: Why and How?

Which Methods are Used and how Often?

Comparison of Different Micro Structuring Methods

Tool	Drag Finish		Dry Blasting	Wet Blasting	Brushing	Magnet Finish
	Double	Triple Rotation				
Drill				C	A1	A1
Tip only	C	C	C	C	C	A1
Flank only	C	C	C	C	B1	A1
Tip and Flank	A1	A1	A3	A2	C	C
Step						
Endmill	B1	A1	A3	A2	B1	A1
Tip and Flank	C	C	C	C	B1	A1
Tip Different from Flank	A1	A1	A3	A2	C	C
Ball nose						
Insert	B1	B1	A3	A2	A1	C
With Bore	C	C	A3	B2	A1	C
Without Bore						
Hob	B1	B1	A3	A2	C	C
With Bore	C	C	A3	B2	C	C
Without Bore	Price	Smooth Surface	Easy loading	Easy loading	Easy loading	Full automatic for
small series						
Biggest Advantage	Manual clamping	Manual clamping	Rough surface	Maintenance	Limited tool variety	Price
Biggest Limitation						

Possible:	
A	yes
B	with difficulty
C	no

Surface:	
1	smooth
2	rough
3	very tough

Recommendation:

Applications

The Aim of Edge Preparation

1. Sharp edge: High internal stress of the PVD coating
2. Shortly after starting cutting, the coating breaks away
$\mathrm{CPo}_{\mathrm{R}}$: Coating's Peel off on the tool's rake surface
$\mathrm{CPo}_{\mathrm{c}}$: Coating's Peel off on the tool's clearance surface
3. Good coating -> $\mathrm{CPo}_{\mathrm{r}}$ and $\mathrm{CPo}_{\mathrm{c}}$ grow slowly
4. The aims of the edge preperation:

- Ensharping the cutting edges
- Smooth transition between rake and clearance
- Reducing internal stress, but
- without making the edge blunt

Influence of Edge Preparation at Milling in High Alloyed Steel

Material: 1.2379-X155CrVMo12-1 - End mill: nACRo coated - d=10mm,
$\mathrm{z}=4, \mathrm{ae}=0.25 \times \mathrm{d}-\mathrm{ap}=1.5 \times \mathrm{d}-\mathrm{vc}=150 \mathrm{~m} / \mathrm{min}-\mathrm{fz}=0.05 \mathrm{~mm} / \mathrm{z}-$ Measured: GFE, Schmalkalden, Germany

Drilling

Influence of Corner Edge Preparation on the Performance of Drills

Work piece material: cold working steel - 1.2379 - X155CrVMo12-1 - HRC22 - blind holes Solid carbide drills with nACo coating: $\mathrm{d}=5 \mathrm{~mm}-\mathrm{vc}=75 \mathrm{~m} / \mathrm{min}-\mathrm{fz}=0.15 \mathrm{~mm} / \mathrm{z}-\mathrm{ap}=15 \mathrm{~mm}-$ dry air coolant

Optimum Edge Rounding

Edge Preparation for Drills

Edge Preparation for End Mills

The optimum edge rounding values were elaborated in cooperation with GFE, Schmalkalden, Germany

Edge Preparation after Coating

- The edges are rounded after coating
- The coating is removed around the edge
- The edge is "set free"

Advantages of edge preparation after coating:

- Edge rounding and
- Droplets removing in one step
- Combined break outs of coating + carbide can be avoided
- Elimination of antenna effect

Disadvantages of edge preparation after coating:

- Interruption of coating structure on long surface line
- Immediately full and direct contact of cutting and work piece material
- Lower heat and chemical insulation
- Low coating thickness near to the edge
- Full coating structure begins far from cutting edge
as coated

- Bigger edge radius (e.g. for roughing) results in larger surfaces without coating
- Gives the impression of bad coating

Brushing

Working Principle and Results

Brushes are filled with different additional pastes (e.g. diamond suspense) periodically Brush materials: e.g.

- Horse hair
- Rice root
- Nylon with silicon carbide (to brush without paste)

Advantages

- Easy process and high reproducibility
- Surface polishing with extra step possible
- Different geometries treatable

Limitations

- Exact positioning of brush is necessary

Swinging Brushing (Flakkoting) with Double Movement

- Both brush and work piece are moving
- Special brushes with impregnated diamond grain
- Acoustic positioning system for exact brush positioning
- Very low roughness achievable

Edge preparation of inserts

Edge preparation of a saw band

Microblasting

Working Principle and Results

Comparison of Wet and Dry Microblasting

Comparison	WET	DRY
Surface roughness	$\mathrm{Sa}=0.05 \mu \mathrm{~m}-\mathrm{Sz}=0.32 \mu \mathrm{~m}$ slightly shiny surface	$\mathrm{Sa}=0.11 \mu \mathrm{~m}-\mathrm{Sz}=1.14 \mu \mathrm{~m}$
Rest material after blasting	Danger of cobalt leaching because of water	Smearing of residual material
Coating adhesion	HF1	HF1
Edge rounding	Better to control	Difficult to control
Grain size	Mesh $320(50 \mu \mathrm{~m})$ course, for edge rou Mesh $400(37 \mu \mathrm{~m})$ middle, for surface Mesh $500(30 \mu \mathrm{~m})$ fine, for polishing	ding tivation
Typical micro blasting time [min] for hob $\varnothing 80 \mathrm{~mm}-\mathrm{R}=10 \mu \mathrm{~m}$	3	6
Main features	- Pre cleaning not needed - Drying after blasting needed - Difficult cleaning at interrupted work - Higher price - huge air consumption	- Pre cleaning needed - No drying needed after blasting - Easy handling at interrupted work - Lower price - high air consumption

Drag Finishing

Working Principle and Results

The tools are clamped in a planetary drive. The tools are dragged in the process media. The auto rotation of the tools guarantees a homogenous edge rounding of all cutting edges.

BEFORE

AFTER

Advantages

- Reliable process
- High reproducibility
- Flute polishing

Limitations

- Inflexible clamping system
- Clamping head must be full for homogeneous treatment
- Relatively long process time

Process Media

Composition	Edge rounding	Polishing
Walnut + SiC	Carbide (+HSS)	Standard coatings
Ceramic $1+$ SiC	Carbide (+HSS)	Super hard coatings

Source: OTEC, Straubenhardt, Germany

Magnet Finish

Working Principle and Results

The magnetfinish process bases on two rotating disks with an adhered magnetic abrasive. This abrasive sticks on the flat side of the magnetic disks and operates as a thick elastic mass adopting to the shape of the tool. Rotation results in a movement of the abrasive mass against the tool surface. Due to the high velocity of this movement the surface treatment is very intense.

Advantages

- Easy automatic processing
- Good for small quantities, no dummies needed
- Short process time
- Cooling channels on drills stay clean
- Deburring possible without edge rounding
- Consistent quality over tool length
- High repeatability due to constant abrasivity

Limitations

- Tool range: $0.1-25 \mathrm{~mm}$
- Flute on drill polishing up the Ø 12 mm
- After magnet finishing, demagnetization of the tools is necessary

Process Media

Name	Edge rounding	Polishing
Middle Grain Abrasive	HSS	Standard Coatings
Big Grain Abrasive	Carbide	
Nano Abrasive	Carbide, PCD, CBN	

Edge rounding of carbide drill $\mathrm{d}=2.5 \mathrm{~mm}$
with nano abrasive powder

Microstructuring Influence of the Edge Shape

Importance of the Geometric Edge Parameters

K-Factor and its Influence on the Application

"trumpet"
tends to rake $\mathrm{K}>1$
Symmetrical $K=1$

tends to clearance $K<1$

for low depth of cuts, for finishing

Edge Preparation Increases Tool Performance even for WOOD CUTTERS

TLATiTg:

Cutting Edge Measurement

3D Inspection of Cutting Edges

	MikroCAD Premium	MicroCAD LITE
Measuring volume	$2.4 \times 1.8 \times 1 \mathrm{~mm}^{3}$	$1.8 \times 1.2 \times 1 \mathrm{~mm}^{3}$
Min. edge radius	$2 \mu \mathrm{~m}$	$10 \mu \mathrm{~m}$
Features	Radius, Chipping Optional: K-factor, chamfer angle, form error	Radius + Chipping

3D view of cutting edge of insert

Advantages

- contact-free, non-destructive edge
- radius and chipping measurement
- high reproducibility
- many measuring points

Limitations

- limited depth resolution for surface structure measurement

Sharp edge after grinding

Rounded edge after drag finishing

Measuring Method

- Aligned, sectional planes of light are projected on the cutting edge. These are captured by a CCD camera and compared with the emitted light to calculate the edge radii.
- The working distance is 30 mm

Quality Control POCS 2012

Image Processing System

- Microscopical analysis of test plates and coated tools
- Thickness measurement by Calotest on test place and real tools
- Adhesion evaluation using Rockwell test

Measurement

Calo, measured on tool

PLATIT Quality Control System 2012

- Easy user interface
- Step by step "Coating Report" generation
- Automatic database entries after
"Coating Report" generation and links to:
- Batch photo
- Calo image
- Rockwell image
- Coating Report

Database Entries

- Report no. (with link to report)
- Tester
- Date
- Coating unit
- Batch no. (with link to batch photo)
- Measured substrate
- Substrate material
- Coating
- Hardness before coating [HRC]
- Hardness after coating [HRC]
- Thickness [$\mu \mathrm{m}$] (with link to Calo image)
- Adhesion class [HF] (with link to Rockwell image)
- Customer
- Contact
- 5 user defined text fields e.g.
- pretreatment
- posttreatment
- used holders
- 5 user defined number fields e.g.
- positions of special substrates on carousel
- ...

POCS-Report

\qquad

Quality Control System Description

 54 IFCC, Conbing midnens espy

Scratch Tester

Method

- Linear scratching of an indenter with an applied load to characterize the coating adhesion
- The diamond of the scratch test is the same as the diamond of a Rockwell indenter
- The scratch tester allows three ways to apply the load:

Limitations

- Analysis of the scratch on an external microscope
- Flat surface required
- Length of scratch:
$0-30 \mathrm{~mm}$
- Load range:
$0-200 \mathrm{~N}$ (for hard coatings)

X-Ray Spectrometer

Advantages

- Non-destructive coating thickness measurement
- Non-destructive composition measurement
- Non-destructive cobalt leaching measurement

Limitations

- Al (element 13) and Si (element 14) detectable
- Measuring chamber size ($\mathrm{L} \times \mathrm{W} \times \mathrm{H}$): $360 \times 380 \times 240 \mathrm{~mm}$

Method

- X-rays excite the substrate to emit X-ray fluorescence
- The analysis is focused on a small spot of $0.3 \mu \mathrm{~m}$
- The penetration depth is about $40-50 \mu \mathrm{~m}$ (for HSS)

TLATITE:

Surface Analysis by AFM

Method

- Atomic Force Microscopy (AFM)
- Static and dynamic measuring modes
- Attached to optical microscope (e.g. to the PLATIT Quality Control System POCS) or as a standalone equipment

Manufacturer: Nanosurf AG, Liestal, Switzerland

Adavantages

- High-resolution 3D data of the coated surface
- Integrates seamlessly with your optical analysis
- Easy to use and robust scanner
- Automated reports and sample acceptance/rejection rules

Defect Analysis on Hard Coated Surface by AFM

Limitations

- Max. scan range (XY): $70 / 110 \mu \mathrm{~m}$
- Max. height range (Z): $22 \mu \mathrm{~m}$
- Resolution (XY / Z): $1.7 \mathrm{~nm} / 0.34 \mathrm{~nm}$
- Typical noise levels: 0.4 nm (0.55 nm max.)

Typical Surface Structures and Roughnesses Measured by AFM

After grinding

$\mathrm{Sa}=0.019 \mu \mathrm{~m}-\mathrm{Sz}=0.28 \mu \mathrm{~m}$

After (grinding + wetblasting)

$$
\mathrm{Sa}=0.076 \mu \mathrm{~m}-\mathrm{Sz}=0.76 \mu \mathrm{~m}
$$

After EDM

$\mathrm{Sa}=0.073 \mu \mathrm{~m}-\mathrm{Sz}=0.86 \mu \mathrm{~m}$

After (AICrN coating + wetblasting)

$\mathrm{Sa}=0.039 \mu \mathrm{~m}-\mathrm{Sz}=0.10 \mu \mathrm{~m}$

Equipment Layout

In-House Coating Center

Work Flow in Minimal Coating Center

1. Incoming goods
2. Preparations for cleaning (e.g. microblasting)
3. Cleaning

3a. Optionally: stripping
3b. Optionally: microblasting
3c. Optionally: edge preparation
4. Preparations for coating (e.g. loading carousels)
5. Coating
6. Unload charge

Optionally post surface treatment
7. Check quality with POCS
8. Packing for shipping
9. Outgoing goods / shipping

Some equipment (chiller, stripping, microblasting, edge preparation) should be set up in a different room, apart from the coating area. The chiller can be placed outside.

Connection Data

Name	Description	Dimension WxDxH [mm]	Weight [kg]	Power supply [V / Hz]	Consumption [kW]	Fuse [A]	Water [bar]	Air [bar]	Gas
PL1001	Coating unit	$3880 \times 1950 \times 2220 \times 4200$	4400	400 / 50-60	90	200	3-4.5	-	$\mathrm{N}_{2}, \mathrm{Ar}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{He}$
C1001	Chiller for PL1001	$1000 \times 1000 \times 2055$	400	400 / 50-60	14.2	35	3-5	-	-
$\pi 411$	Coating unit	$2720 \times 1721 \times 2149 \times 3200$	2300	400 / 50-60	76	160	3-4.5	-	$\mathrm{N}_{2}, \mathrm{Ar}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{He}$
C411	Chiller for $\pi 411$	$1000 \times 1000 \times 2055$	400	400 / 50-60	18.5	35	3-5	-	-
$\pi 311$	Coating unit	$2350 \times 1660 \times 2300 \times 3200$	2100	400 / 50-60	45	100	3-4.5	-	$\mathrm{N}_{2}, \mathrm{Ar}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{He}$
C311	Chiller for $\pi 311$	$1000 \times 1000 \times 2055$	400	400 / 50-60	14.2	35	1-6	-	-
$\pi 111$	Coating unit	$1890 \times 1500 \times 2120 \times 3100$	1400	400 / 50-60	30	100	3-4.5	-	$\mathrm{N}_{2}, \mathrm{Ar}^{2} \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{He}$
C111	Chiller for $\pi 111$	$1000 \times 1000 \times 1680$	350	400 / 50-60	10.2	25	1-6	-	-
$\pi 80+$	Coating unit	$1870 \times 1320 \times 2155 \times 3000$	1200	400 / 50-60	20	100	3-4.5	-	$\mathrm{N}_{2}, \mathrm{Ar}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{He}$
C80/C70	Chiller for $\pi 80 /$ PL70	$715 \times 715 \times 1375$	200	400 / 50-60	6.1	16	1-6	-	-
PL70	Coating unit	$1870 \times 1320 \times 2155 \times 2400$	1250	400 / 50-60	15	100	3-4.5	-	$\mathrm{N}_{2}, \mathrm{Ar}^{2} \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{He}$
DF4	Drag finish unit	$1105 \times 970 \times 1990$	370	400 / 50-60	2	16	-	-	-
75S	Dry sand blasting unit	$760 \times 870 \times 1400$	133	230/50-60	0.25	10	-	3-6	-
TR110	Dry micro blast unit	$2100 \times 1450 \times 2430$	480	400 / 50-60	2	16	-	4-6	-
C-II	Wet micro blast unit	$2100 \times 2050 \times 3000$	1200	400 / 50-60	7	32	3-6	4-5	-
ST-40	Stripping unit	$2540 \times 850 \times 1180$	380	230 / 50-60	1.1, 2.5	13	1-6	-	-
V80+	Cleaning unit	$1325 \times 1020 \times 2010$	1800	400 / 50-60	9.5	32	3-6	3-6	N_{2}
R080	Reverse osmosis	$910 \times 610 \times 1800$	300	230 / 50-60	2.5	16	3-6	-	-
V311	Cleaning unit	$1500 \times 1200 \times 2100$	2500	400 / 50-60	15	80	3-6	3-6	N_{2}
R0300	Reverse osmosis	$910 \times 610 \times 1800$	300	230/50-60	2.5	16	3-6	-	-
POCS	Microscope + PC	$440 \times 610 \times 685$	30	230/50-60	-	10	-	-	-
CT50	Calotester	$300 \times 300 \times 250$	5	230/50-60	-	10	-	-	-
RT-N3A	Rockwell tester	$120 \times 430 \times 810$	40	-	-	-	-	-	-
CB380	Cooling box	$1140 \times 960 \times 1450$	150	400/50-60	0.75	10	-	-	-
FL380	Fork lift	$840 \times 1300 \times 1940$	220	230 / 50-60	0.75	10	-	-	-
CT380	Cathode holder table	$1300 \times 700 \times 1250$	40	-		-	-	-	

Handling Devices

FL380 Fork Lift

Fork lift for easy transportation of loaded carousels and cathodes to and from the coating unit.
Compatible with PL70, π^{80}, π^{111} and π^{300}.

See loading wagon for $\pi 411$ on page 25

CT380 Cathode Table

For correct vertical holding and stocking of LARC and CERC cathodes.

CB380 Cooling Box

Special box to allow quick cooling of work pieces in carousel through pressurized air.

Loading Capacities PL70 / $\pi 80 / \pi^{272}$

		Tool Diameter	Tool Length	Satellites	Discs / Satellite	Holders / Disc	Tools / Holder	Tools / Disc	Tools / Batch
	End mills	6 mm	50 mm	1	4	44	1	44	176
		6 mm	50 mm	3	4	18	1	18	216
		6 mm	50 mm	1	4	22	4	88	352
		6 mm	50 mm	3	4	12	4	48	576
		6 mm	50 mm	3	9	22	1	22	594
		8 mm	60 mm	3	4	18	1	18	216
		10 mm	70 mm	3	3	18	1	18	162
		16 mm	75 mm	3	3	12	1	12	108
		20 mm	100 mm	3	3	8	1	8	72
		32 mm	133 mm	3	2	6	1	6	36
	Drills	3 mm	46 mm	3	4	12	12	144	1728
		4.2 mm	55 mm	3	4	12	6	72	864
		6.8 mm	74 mm	3	3	12	4	48	432
		8.5 mm	79 mm	3	3	18	1	18	162
		10.2 mm	102 mm	3	3	18	1	18	162
		16 mm	115 mm	3	2	12	1	12	72
		20 mm	131 mm	3	2	12	1	12	72
		25 mm	170 mm	3	2	8	1	8	48
	Inserts	20 mm	6 mm	3	1	15	28	420	1260
	Hobs	60 mm	80 mm	3	4	1	1	1	12
		80 mm	180 mm	3	2	1	1	1	6
						Average number of tools / batch			348.9
	End mills	6 mm	50 mm	1	5	52	1	52	260
$$		6 mm	50 mm	4	5	18	1	18	360
		6 mm	50 mm	1	5	26	4	104	520
		6 mm	50 mm	4	5	12	4	48	960
		6 mm	50 mm	4	11	22	1	22	968
		8 mm	60 mm	4	4	18	1	18	288
		10 mm	70 mm	4	4	18	1	18	288
		16 mm	75 mm	4	4	12	1	12	192
		20 mm	100 mm	4	3	8	1	8	96
		32 mm	133 mm	4	2	6	1	6	48
	Drills	3 mm	46 mm	4	5	12	12	144	2880
		4.2 mm	55 mm	4	4	12	6	72	1152
		6.8 mm	74 mm	4	4	12	4	48	768
		8.5 mm	79 mm	4	4	18	1	18	288
		10.2 mm	102 mm	4	3	18	1	18	216
		16 mm	115 mm	4	3	12	1	12	144
		20 mm	131 mm	4	2	12	1	12	96
		25 mm	170 mm	4	2	8	1	8	64
	Inserts	20 mm	6 mm	4	1	15	28	420	1680
	Hobs	60 mm	80 mm	10	4	1	1	1	40
		80 mm	180 mm	4	2	1	1	1	8
							erage number of	ols / batch	538.9

π
 $311 / \pi^{621} /$ PL1001

		Tool Diameter	Tool Length	Satellites	Discs / Satellite	Holders / Disc	Tools / Holder	Tools / Disc	Tools / Batch
	End mills	6 mm	50 mm	7	5	18	1	18	630
N		6 mm	50 mm	7	5	9	4	36	1260
		6 mm	50 mm	7	10	22	1	22	1540
		8 mm	60 mm	7	4	18	1	18	504
		10 mm	70 mm	7	4	18	1	18	504
		16 mm	75 mm	7	3	12	1	12	252
		20 mm	100 mm	7	3	8	1	8	168
		32 mm	133 mm	7	2	6	1	6	84
	Drills	3 mm	46 mm	7	5	9	12	108	3780
		4.2 mm	55 mm	7	5	9	6	54	1890
		6.8 mm	74 mm	7	3	9	4	36	756
		8.5 mm	79 mm	7	3	18	1	18	378
		10.2 mm	102 mm	7	3	18	1	18	378
		16 mm	115 mm	7	3	12	1	12	252
		20 mm	131 mm	7	2	12	1	12	168
		25 mm	170 mm	7	2	8	1	8	112
	Inserts	20 mm	6 mm	7	1	15	28	420	2940
	Hobs	60 mm	80 mm	14	4	1	1	1	56
		80 mm	180 mm	14	2	1	1	1	28
						Average number of tools / batch			825.3
	End mills	6 mm	50 mm	4	7	23	4	92	2576
5		6 mm	50 mm	4	7	36	1	36	1008
		6 mm	50 mm	8	17	22	1	22	2992
		8 mm	60 mm	4	7	36	1	36	1008
		10 mm	70 mm	4	6	36	1	36	864
		16 mm	75 mm	4	6	30	1	30	720
		20 mm	100 mm	4	4	23	1	23	368
		32 mm	133 mm	4	3	15	1	15	180
	Drills	3 mm	46 mm	4	9	23	12	276	9936
		4.2 mm	55 mm	4	7	23	6	138	3864
		6.8 mm	74 mm	4	6	23	4	92	2208
		8.5 mm	79 mm	4	5	36	1	36	720
		10.2 mm	102 mm	4	4	36	1	36	576
		16 mm	115 mm	4	4	36	1	36	576
		20 mm	131 mm	4	4	23	1	23	368
		25 mm	170 mm	4	3	23	1	23	276
	Inserts	20 mm	6 mm	8	2	15	28	420	6720
	Hobs	60 mm	80 mm	4	7	4	1	4	112
		80 mm	180 mm	4	3	3	1	3	36
						Average number of tools / batch			1847.8

Cost Comparison for PLATIT's Standard Coating Units

Comparison of the Loading Capacity of PLATIT's Standard Units

Variable Costs

Total Costs

Considered costs:

Fix costs:

- Ioan (credit) costs,
- labour costs,
- social costs
- room rental costs,
- depreciation

Variable costs:

- energy costs,
- target costs,
- gas costs,
- cleaning costs,
- stripping costs

The costs are calculated for typical mixed tools, like drills, end mills, inserts and hobs with the sizes $\varnothing 3-80 \mathrm{~mm}$ - L46-180mm (see pages $58-59$)

Payback

Profit / Investment

Coating Structures

Microstructures

Monoblock (MB)

The monoblock structure without adhesion layer can be produced by the fastest, most economical process. All targets are the same and run during the whole deposition process.

Especially at high aluminum content the monoblock coating should be started with adhesion layer (e.g. TiN or CrN).

Nanolayer (NL)

Nanolayer is the conventional structure for the so called Nanocoatings. It is a finer version of multilayers with a period of $<20 \mathrm{~nm}$. Its hardness depends on the period. The period depends on the rotation speed of the substrates. Therefore the coating hardness can be different on substrates with different sizes deposited in a mixed batch.

Multilayer (ML)

The multilayer structure has higher toughness at lower hardness than a comparable monoblock coating. The "sandwich" structure absorbs the cracks by the sublayers. Therefore the multilayer is usually preferred for high dynamical load, e.g. for roughing.

Nanocomposite (NC)

By depositing different kinds of materials, the components (like Ti, Cr, Al, and Si) are not mixed, and 2 phases are created. The nanocrystalline TiAIN- or AICrN-grains become embedded in an amorphous $\mathrm{Si}_{3} \mathrm{~N}_{4}-$ Matrix. This nanocomposite structure significantly improves physical characteristics, they are not depending on the batch load.

Gradient (G)

The gradient structure also starts with adhesion layer, with components like TiN and CrN , generating a tough core for the coating. The ratio of hard components (e.g. cubic AIN) will be continuously increased obtaining the highest hardness on the top of the coating.

TripleCoating ${ }^{3}{ }^{\circ}$

TripleCoatings are deposited with 3 sections freely programmed in one batch:

- The adhesion layer is generated with TiN or CrN.
- The core is deposited with the nowadays most used AITiN.
- The nanocomposite (e.g. AlTiN/SiN) generates the wear resistant skin with extrem high warm hardness.

TLATiT®

Comparison of Coating Structures

By deposition of very different kinds of materials, the components (like $\mathrm{Ti}, \mathrm{Cr}, \mathrm{Al}$ in the first group, and Si in the other) are not mixed completely, and 2 phases are created. The nanocrystalline TiAlN- or AlCrN-grains become embedded in the amorphous $\mathrm{Si}_{3} \mathrm{~N}_{4}$-matrix and the nanocomposite structure develops.

Silicon increases the toughness and decreases the internal residual stress of the coating. The increasing of the hardness is generated by the structure only, the SiN matrix enwraps the hard grains and avoids growing of their size.

No Silicon: AICrN

- Si addition changes microstructure from columnar to isotropic
- Effect analogous to the Ti-based system
- In TiAIN/SiN less Si is needed to reach glassy structure

Hardness Increase through Nanocomposites hardness

High Silicon: AITiN/SiN: nACo ${ }^{\circ}$

Low Silicon: AICrN/SiN

High Silicon: AICrN/SiN

The beach comparison illustrates the hardness increase made possible by using a nanocomposite structure. Usually, the foot sinks into dry sand. In wet sand, the foot does not sink in or not as far, because the space between sandcorns is filled with water. The surface has a higher resistance, so it is harder.

Coating Types

Conventional Coatings

The machine symbols show which machine the coating can be deposited by.
The coatable stoichiometries can be different depending on the machine used.

The general-purpose coating for:

- cutting
- forming
- injection molding
- tribological applications (for machine components)
- available process with 1, 2 or 4 cathodes

$\mathrm{Ti}_{2} \mathrm{~N}$

Titanium-rich PLATIT coating for:

- medical tools and implants

TICN-MP

PLATIT MultiPurpose gradient coating for:

- interrupted cutting
- milling and tapping
- forming, stamping and punching
- higher edge stability than at TiCN-grey

Conventional carbonitride coating (grey):

- for milling and tapping
- for stamping, punching and forming

The standard coating for non-cutting applications:

- for molds and dies
- for machine parts
- for optimal release of molds and dies
- low deposition temperature possible (above $220^{\circ} \mathrm{C}$)

CROMVIc ${ }^{\oplus} \mid$ CROMVIc ${ }^{2 \oplus}$

PLATIT double coating with nanogradient structure:

- to avoid built up edges
- for machining aluminium and titanium alloys
- for forming application with optimum release

PLATIT multilayer coating for universal use:

- improved economy by using Ti
- outstanding chemical resistance and toughness due to fine multilayer structure
- for molds, dies and machine parts
- for HSS cutting tools in high alloyed materials
- lower deposition temperature possible

PLATIT multilayer coating for universal use:

- Same usage as CrTiN
plus
- prevents built-up edges
- easy release of forming tools
- wear and corrosion protection on machine parts and components

Ti- and Cr-free monolayer coating

- Effectively reduces the built up edges when machining aluminum and titanium alloys.
- High heat resistance
- Fancy color

PLATIT double coating with nanogradient structure:

- for machine parts used at higher temperature with low friction
- to avoid built up edges
- for machining aluminum and titanium alloys
- for forming application with optimum release

Coating Types

Conventional Coatings

The machine symbols show which machine the coating can be deposited by.
The coatable stoichiometries can be different depending on the machine used.

Coating Types

Nanocomposite PLATIT coating $n A C 0^{\circledR}=(n c-A I T i N) /\left(a-S_{3} N_{4}\right):$

- extremely high nanohardness
- extremely high heat- and oxidation-resistance
- for hard machining
- for high performance and also for normal machining conditions
- also available with decorative blue top layer

 |lh if if

Double Nanocomposite PLATIT coating:

- high hardness, heat and scratch resistance
- high toughness
- extremely low friction coefficient
- dedicated coating for machine parts, especially in racing engines

Nanocomposite PLATIT coating
$\mathrm{nACRo}{ }^{\oplus}=\left(\mathrm{nc}-\mathrm{AlCrN} / \mathrm{a}-\mathrm{Si}_{3} \mathrm{~N}_{4}\right)$

- extremely high scratch resistance
- extremely high heat resistance
- high coating thickness possible
- eliminates important disadvantages of AlCrN coatings
- for "tough" diffcult to cut materials

Double Nanocomposite PLATIT coating with nanogradient structure:

- high hardness, heat and scratch resistance
- high coating thickness possible
- outstanding for HSS cutting in high alloyed materials and in titanium
- for machine parts of high strength materials

nATCRo ${ }^{\circledR}$

Nanocomposite PLATIT coating nATCRo ${ }^{\circledR}=\left(\mathrm{nc}-\mathrm{AlTiCrN} / \mathrm{a}-\mathrm{Si}_{3} \mathrm{~N}_{4}\right)$

- All-in-One - coating for universal use
- the successor of AlCrN-based coatings
- higher hardness
- high abrasive wear resistance

Double Nanocomposite PLATIT coating with nanogradient structure:

- high hardness, heat and scratch resistance
- for forming of highly hard materials, even in the most difficult conditions; e.g. no or few lubrication

Al-Cr Based Coatings

Conventional Coatings
 TripleCoatings ${ }^{3}{ }^{\text {® }}$

 (EMO 2003)

Classic coating with monoblock structure for universal use

- high wear resistance against abrasive load
- with aluminum, therefore good heat resistance
- good oxidation resistance for dry machining
- excellent adhesion layer deposited with non alloyed Cr target
A/CrN3 ${ }^{\text {® }}$

Stoichiometry:
CrN - AI/CrN Multi/Nanolayer - AICrN
Application field:

- universal use
- hobbing, especially micro hobbing
- dry milling

CBC DLC ${ }^{2}$

Hard lubricant

A/CRINV/c ${ }^{\oplus} \mid A / C R / N V / c^{2 ®}$

Double PLATIT coating with nanogradient structure:

- high hardness, heat and scratch resistance
- for forming of highly hard materials
- for machine components with highly abrasive load

User3 ${ }^{\circledR}$

Stoichiometry:
$\mathrm{Cr}(\mathrm{Ti}) \mathrm{N}$ - AITiCrN - AICrN

Application field:

- fine punching
- forming
- hobbing

AITICrN

PLATIT All-in-One coating for universal use, mainly for wet cutting
Deposition also possible with conventional planar technology.
In comparison to classic AICrN:

- higher hardness
- more economical production

A/TiCrN3 ${ }^{\circledR}$

Stoichiometry:
CrN AI/CrN Multi/Nanolayer - AITiCrN

Application field:

- wet and dry cutting
- cutting with minimal lubrication

TripleCoatings ${ }^{3^{\circ}}$

Stoichiometry:
$n A C 0^{3}=\mathrm{TiN}+$ AITiN + TiAIN $/$ SiN

- tough core with high wear and heat resistance
- top layer with extremely high nanohardness
- for production with low deviation
- high performance at wider applicability
- preferably for drilling and punching

Stoichiometry:

TiN + nACo + TiXN/SiN
Possibilities for the component X
X: Boron, X: Chromium, X: confidential

Dedicated application field:
Cutting of very hard materials ($>$ 60HRC)

nACRo3 ${ }^{\text {® }}$

Stoichiometry:
$n A C R o^{3}{ }^{\circledR}=\mathrm{CrN}+\mathrm{AlTiCrN}+\mathrm{AlCrN} / \mathrm{SiN}$

- high abrasive wear and heat resistance
- top layer with high hardness and toughness
- high performance at wider applicability
- preferably for very tough operations; e.g. friction welding, die casting

nACoX3 ${ }^{\text {® }}$

Stoichiometry:

$\mathrm{TiN}+n \mathrm{ACo}+\mathrm{AlCrN}+\mathrm{AlCrON}+\mathrm{X}$
Possibilities for the component X :
X: TiN, X: CrTiN, X: AITiN, X: confidential

Dedicated application field:
Dry turning and milling using indexable inserts

TripleCoatings ${ }^{3}{ }^{\circledR}$

nATCRo ${ }^{\text {® }}$

User3 ${ }^{\circledR}$

TripleCoatings ${ }^{3}{ }^{\text {® }}$ Deposited by the π^{301} and π^{621}

Typical Cathode Configurations

Used for most effective and flexible deposition of Ti-Al based coatings as TiN, TiCN, TiAICN, TiAIN, AITiN, nACo ${ }^{\circledR}$;

TripleCoatings ${ }^{3 \oplus}$ made in π^{202} and PL1001

Deposition of Triple Structures in $\pi 111$

TiXCo ${ }^{3 \text { ® }}$
Cathodes: 1: AITi - 2: TiSi
Triple Structure:
TiSiN - nACo - TiSiN
Cathodes: 1: Cr-2: AI
Triple Structure:
CrN -
AI/CrN Multi/Nanolayer AICrN

nACoX ${ }^{3 \text { ® }}$
Cathodes: 1: AICr-OXI-2: TiSi Triple Structure:
TiSiN - nACRo - TiSiN - AICrON

Deposition of Triple Structures in PL1001

Cathode configuration: Cr - AITi - Cr - AITi

Cathode configuration: Ti - $\mathrm{AlCr}-\mathrm{Ti}-\mathrm{AlCr}$

AITiCrN ${ }^{3 \oplus}$ (Cr-Based)
Cathodes: 1: $\mathrm{Cr}-2$: AITi 3: $\mathrm{Cr}-4$: AITi Triple Structure: CrN - AITiN - AITiCrN

Cathodes: 1: AlCr-2: Ti
Triple Structure: TiN - AITiCrN - AlCrN

- Alicriv - Alcrin

TripleCoatings ${ }^{3 ®}$ and OUALCoatings ${ }^{4 ®}$
 Nanocomposites with Silicon

nACo ${ }^{3 \times}$: For Universal Use

TiN - AITiN - nACo
Cathodes: 1: Ti-2: AISi-3: no-4: AITi

nACRo ${ }^{3 \times}$: For Superalloys

CrN - AITiCrN - nACRo
Cathodes: 1: no-2: AISi+-3: Cr-4: AITi

TiXCo ${ }^{\text {si }}:$ For Superhard Machining

TiN - nACo - TiSiN
Cathodes: 1: Ti-2: AI - 3: TiSi - 4: no
nACoX ${ }^{\text {aie: }}$: For HSC Dry Turning and Milling
TiN - AICrN - nACo - AICrO(N)
Cathodes: 1: $\mathrm{Ti}-2$: AISi+ - 3: AICr-OXI-4: AICr

Dedicated for User's Application

A: Cathodes: 1: AI - 2: AISi+ - 3: $\mathrm{Cr}-4$: no
User A's-Quad: CrN - AlCrN - AlCrN-ML/SiN - AlCrN/SiN for hobbing

B: Cathodes: 1: Ti - 2: AI - 3: CrSi - 4: AITi
C: D: E: F:...
User B's-Triple: TiN - AITiN - CrSiN for milling soft steels

without Silicon

AICrN ${ }^{38}$: For Dry Cutting Abrasive Materials

CrN - A//CrN Multi/Nanolayer - AICrN
Cathodes: 1: Ti-2: Al - 3: Cr-4: no

AITiCrN ${ }^{30}$: For Dry and Wet Cutting

Cr(Ti)N - Al/CrN Multi/Nanolayer - AITiCrN Cathodes: 1: Ti-2: AI - 3: Cr-4: no

AICrTiN ${ }^{4 ®}$: Dedicated for User's Application

For thread forming and cutting
CrN - Al/Ti/CrN Multi/Nanolayer - AlCrN (CrCN optional as Tribo) Cathodes: 1: Ti-2: Al-3: $\mathrm{Cr}-4$: AlCr

Dedicated for User's Application for Punches

CrN - AITiCrN - AICrN - CrCN
Cathodes: 1: Ti-2: Al - 3: Cr - 4: no

Numbering for Cathodes' Positions in $\pi 311$ and $\pi 411$

TripleCoatings ${ }^{3 \oplus}$ aim at combining these 3 features:

- optimal adhesion layer (e.g. TiN, CrN)
- tough core layer (e.g. multi- or nanolayer coatings)
- hard wear resistant toplayer (e.g. Nanocomposites)

Aim of QuadCoatings ${ }^{4 \oplus}$:

- Integration of an additional 4. feature (e.g. extreme heat isolation with AION, lubrication with CrCN)

Oxide and Oxynitride Coatings

Goal of the Oxide and Oxynitride Coatings

Separator to decrease chemical affinity between tool and workpiece in dry cutting processes at high temperature

Wear protection

- against adhesive wear
- against abrasive wear
- stable against further oxidation, avoiding oxygen diffusion
- chemical and thermal insulation

Layer Architecture

Decreasing friction

- At temperatures over $1000^{\circ} \mathrm{C}$
- Reducing build-up edges and
- Reducing material interdiffusion in the tribological contact zone
- chemical indifference

Layer-architecture

- "Sandwich" like at CVD
- Metal nitride basis necessary, to avoid cracks and plastic deformation

Features of nACoX

- Ratio nitrogen to oxygen: N/0: 50/50\% - 80/20\%
- Typical coating thickness on turning inserts: 4-18 $\mu \mathrm{m}$
- Typical total hardness: 30 GPa
- Typical Young's modulus: $\sim 400 \mathrm{GPa}$

Depth Profiles of $n A C o X^{30}$

covering nitride; AICrN, TiAIN, optional oxide or oxynitride; $(\mathrm{Al}, \mathrm{Cr})_{2} \mathrm{O}_{3}-(\mathrm{Al}, \mathrm{Cr})(\mathrm{O}, \mathrm{N})$
Nanocomposite; nACo, nACRo
Nitride; AICrN, TiAIN
adhesion layer
tungsten carbide

EDX (Energy-dispersive X-Ray spectroscopy) Coating Map shows the distribution of the elements in the depth of the coating

surface

TLATITE:

Applications

TripleCoatings ${ }^{3 \text { ®o }}$ and Oxynitride-Coatings at Dry Turning with High Cutting Speeds

$v c=200-350 \mathrm{~m} / \mathrm{min}, f=0.25 \mathrm{~mm} / \mathrm{rev}, \mathrm{a}=1.5 \mathrm{~mm}$ Material: C60 (1.1221), HB225 tool life end criterium: VBmax $\leq 200 \mu \mathrm{~m}$ Measured at TH Budapest

Drilling in Difficult to Cut Austempered Ductile Cast Iron with Oxynitride Coatings

Zr-O-N with Gradient Triple-Structure
Grindball Diameter [mm]: 30
$300 \mathrm{U} / \mathrm{min} 120 \mathrm{~s}$
Thickness: $7.260 \mu \mathrm{~m}$

 $\mathrm{vc}=120 \mathrm{~m} / \mathrm{min}-\mathrm{f}=0.3 \mathrm{~mm} / \mathrm{rev}-\mathrm{ap}=15 \mathrm{~mm}-$ Internal MOL Source: GFE, Schmalkalden, Germany

Profile Milling with Inserts - Roughing

Material $1.2379-\mathrm{Rm}=1000 \mathrm{~N} / \mathrm{mm} 2$ $\mathrm{vc}=240 \mathrm{~m} / \mathrm{min}-\mathrm{fz}=0.4 \mathrm{~mm} \mathrm{ap}=1.5 \mathrm{~mm}-\mathrm{ae}=1 \mathrm{~mm}$ Coolant: internal air

PLATIT 's DLC-Coatings

Diamond-Like Carbon (DLC) is a metastable form of amorphous carbon containing a significant fraction of sp^{3} bonds. It can have high mechanical hardness, chemical inertness, optical transparency, smooth surface and low friction behavior.

Since their initial discovery in the early 1950s, DLC films have emerged as one of the most valuable engineering materials for various industrial applications, including microelectronics, optics, manufacturing, transportation, and biomedical fields. In fact, during the last two decades or so, DLC films have found uses in everyday devices ranging from razor blades to magnetic storage media.

		Instead of using the term DLC, the term amorphous carbon is favoured, to avoid the mix-up with diamond coatings, which are by definition crystalline. These amorphous carbon coatings are classified into seven categories: a-C hydrogen-free amorphous carbon ta-C tetrahedral-bonded hydrogen-free amorphous carbon a-C:Me metal-doped hydrogen-free amorphous carbon ($\mathrm{Me}=\mathrm{W}$, Ti) a-C:H hydrogen-containing amorphous carbon ta-C:H tetrahedral-bonded hydrogen-containing amorphous carbon a-C:H:Me metal-doped hydrogen-containing amorphous carbon ($\mathrm{Me}=\mathrm{W}$, Ti) a-C:H:X modified hydrogen-containing amorphous carbon ($\mathrm{X}=\mathrm{Si}, \mathrm{O}, \mathrm{N}, \mathrm{F}, \mathrm{B}$)					
						$\mathbf{C B C}=$ DLC 1	DLC ${ }^{2}$
	a-C(:X)	ta-C	a-C:Me	a-C:H (polymer)	ta-C:H	a-C:H:Me	a-C:H:X
Process	PVD	PLD/ FCVA	PVD/MS	RS / PECVD	HPD- PECVD	PVD/PEPVD/CVD	PECVD
Interlayer	None or Ti	Ti/ Cr	$\mathrm{Ti} / \mathrm{Cr}$	Si/Ti		Ti or Cr	Si
Doping	None or Ti, Al, Si	None	Si/Ti/Cr/W	None		Ti or Cr	Si
H content [\%]	0	0	0	40-60	25-30	~ 15	~ 20
Thickness ($\mu \mathrm{m}$)	0.2-1	1	3	1/2	1	~ 0.5	<5
Young's Modulus (GPa)	200	>500	350	110/260	300	200	250
Hardness (GPa)	8 to 28	>50	30	8/28	50	<20	<25

PLD: Pulsed Laser Deposition - FCVA: Filtered Cathodic Vacuum Arc - MS: Magnetron Sputtering - RS: Reactive Sputtering - PECVD: Plasma Enhanced Chemical Vapor Deposition - HPD: High Plasma Density

Simplified Overview of Thermal Stability Limits of Different Categories of Hard Carbon Materials

Source: K. Holmberg, A. Matthews, Coatings Tribology, Elsevier, 2007

Applications with DLC-Coatings

Punches with nACVIc ${ }^{2 \theta}$

Tool holder chuck coated with nACVIc ${ }^{28}$

Thread former for TETRA packs, made from copper, coated with cVIc^{28}

PET-Core with ALLVIc ${ }^{2 \text { e }}$

Water pump shaft coated with CROMVIc ${ }^{2 \boldsymbol{1}}$

Fluteless thread former with CROMTIVIc ${ }^{28}$

Injection mold coated with nACVIC ${ }^{\circledR}$

Camshaft with CROMVIc ${ }^{2 \otimes}$

Valve seat of a racing car coated with Fi-VIc ${ }^{\oplus}$

Uncoated and coated turbine blisk with Fi^{-}- $\mathrm{VIc}^{2 ®}$

Machine parts coated with CROMVIc ${ }^{2 ®}$

Control lever for cylinder head of a racing car with F_{K}-VIc ${ }^{\oplus}$

Medical Parts from titanium with $\mathrm{cVIc}^{\circledR}$

Sewing machine part coated with CROMTIVIc ${ }^{28}$

PLATIT 's DLC-Coatings

Cubic structure of diamond
PLATIT's $2^{\text {nd }}$ generation

The goals of PLATIT's development of DLC-coatings

- The combination of the extremely good features of PLATIT's conventional and Nanocomposite coatings (especially of the outstanding adhesion) with the advantages of the DLC-coatings (like smoothest surface and low coefficient of friction).
- Deposition of double coatings, (PVD and DLC-coatings) in one chamber in one batch
- Profitable coating production with DLC even in small series, for:
- high quality machine components - medical devices - aerospace components
- cutting tools for composite materials with affinity for sticking - molds and dies and punches

Comparison of the most important features of PLATIT's DLC-coatings

	$1{ }^{\text {st }}$ generation	$2^{\text {nd }}$ generation
Name	CBC - X-VIc ${ }^{\text {® }}$	DLC ${ }^{\text {- }}$ - -VIc $^{\text {2® }}$
Availability	as top coating only Basis coating + CBC	recommended as top coating Basis coating + CBC 2
Most common coatings	CROMVIc ${ }^{\oplus}$, CROMTIVIC $^{\oplus}$, CVic^{\oplus}, $\mathrm{Fř}^{\text {- }}$ - ${ }^{\text {c }}{ }^{\oplus}$	
Coating process	PVD	PVD+PECVD
Composition	a-C:H:Me - Metal doped DLC	a-C:H:Si - Silicon doped metal free DLC
Heat resistance	$<400^{\circ} \mathrm{C}$	higher due to Si
Internal stress	high	lower due to Si
Possible thickness	< $1 \mu \mathrm{~m}$	up to $5 \mu \mathrm{~m}$
Electrical conductivity	good	none
Hardness	20 GPa	25 GPa
Roughness	$\mathrm{Ra} \sim 0.1 \mu \mathrm{~m}-\mathrm{Rz} \sim 0.6 \mu \mathrm{~m}$	$\mathrm{Ra} \sim 0.03 \mu \mathrm{~m}-\mathrm{Rz} \sim 0.2 \mu \mathrm{~m}$
Friction coefficient to steel	$\mu \sim 0.15$	$\mu \sim 0.1$
Wear resistance	Wear through after a short time	Wear through after a long time
Main application goal	Improvement of tool's run-in behavior	Reducing friction and wear for long run

Chemical Properties of DLC ${ }^{2}$ of PLATIT

RAMAN Spectroscopy of CROMVIC2® with $\mathrm{I}=514.5 \mathrm{~nm}$, Si calibrated, Labspec Software G-band position: $1552.9 \mathrm{~cm}^{-1}$ - D-band position: $1382.8 \mathrm{~cm}^{-1}$ - Ratio IG/D $=0.85$ Measured at Physics Department, Fribourg University, Switzerland

Adhesion measured by scratch-test: CROMVIc ${ }^{2 \oplus}$ on carbide; $L_{\mathrm{c} 2}=74.3 \mathrm{~N}$

Surface roughness measured by AFM: CROMVIc $^{2 \varnothing}$ on carbide: $\mathbf{S}_{\mathrm{a}}=0.0374 \boldsymbol{\mu m}$

$$
\begin{array}{ll}
\hline \mathrm{Sa} & =0.0374 \mu \mathrm{~m} \\
\mathrm{Sq} & =0.0501 \mu \mathrm{~m} \\
\mathrm{Sp} & =0.447 \mu \mathrm{~m} \\
\mathrm{~Sv} & =0.136 \mu \mathrm{~m} \\
\mathrm{St} & =0.583 \mu \mathrm{~m} \\
\mathrm{Ssk} & =1 \\
\mathrm{Sku} & =9.34 \\
\mathrm{Sz} & =0.282 \mu \mathrm{~m}
\end{array}
$$

Nanoindentation for Measuring Hardness of DLC ${ }^{2}$ Coatings

Berkovich Indenter

Method: Oliver \& Pharr
Approach speed: $2000 \mathrm{~nm} / \mathrm{min}$ Acquisition rate: 10 Hz Linear loading Max. load: 70 mN Loading rate: $70 \mathrm{mN} / \mathrm{min}$

Main results:
HIT = 25444 Mpa
EIT $=331.99 \mathrm{Gpa}$
Hv=2356.4 Vickers

Friction Behaviour of DLC Coatings

Measurement of the Coefficient of Friction by Pin on Disc Wear Test: CROMVIc ${ }^{20]} ; \mu=0.06 \pm 0.01$

Test with $\mathrm{Si}_{3} \mathrm{~N}_{4}$ ball: $\mathrm{r}=6 \mathrm{~mm}-\mathrm{Load}=10.00[\mathrm{~N}]-\operatorname{Lin}$. speed $=20.00[\mathrm{~cm} / \mathrm{s}]$ - Acquisition rate : $2.0[\mathrm{~Hz}]-\mathrm{T}=25.00\left[{ }^{\circ} \mathrm{C}\right]-$ Rel. humidity $=5.00[\%]$
Measuring of the Coefficient of Friction at $400^{\circ} \mathrm{C}: \mathrm{nACVIc}^{2 \boldsymbol{m}}: \boldsymbol{\mu = 0 . 1 2} \pm 0.02$

Pin on disc wear test with Ti pin grade $5-r=10.00[m m]$ - Normal load : $2.00[\mathrm{~N}]$ - Lin. Speed : $6.67[\mathrm{~cm} / \mathrm{s}]$ - Acquisition rate : $2.0[\mathrm{~Hz}]$ - Rel. humidity: 0%
Coefficient of Friction Measurement by Pin-on-Disc Wear Test at $400^{\circ} \mathrm{C}$

- (Ti, All-based layers are not suitable because of their high coefficient of friction
- Clear influence of the carbon gradient in the TiCN coating (high scatter)
- Excellent friction coefficients with DLC films and very low scatter
- Si-doped DLC survives more than 8 -hour tests at $400^{\circ} \mathrm{C}$!

ТLАTiT\&:

DLC ${ }^{2}$ Coating in High Performance Racing Engines

Demanding Engine Applications for Racing Cars

$1 \rightarrow$ Mechanical lifter (M2 steel, 63-64 HRC)
Contact partner: tool steel camshaft with case hardened lobes

- No material transfer to the foot
- Low friction and high wear resistance
$2 \rightarrow$ Intake valve (Ti alloy)
Contact partner: AMCO45, Ni-Al Bronze alloy
- No material transfer to the seat
- Low friction on the stem
$3 \rightarrow$ Wrist pin (PM-HSS)
Contact partner: tool steel
- No material transfer
- Very low friction and low wear

V8 engine, up to 9'000 RPMs, 750 HP

Coating Evaluation After Test Benches

DLC ${ }^{2}$ Thickness Distribution on Valve Shanks for Racing Cars, Deposited in $\pi 80+$ DLC Unit

One of the most important applications is the DLC-coating of valves for the racing and normal road cars, trucks and bikes.

Using DLC Coatings in Small and Medium Size Industries

Lubricant-Free Operation at Injection Molding

Uncoated: unstable process, high wear, chatter marks

$\mathrm{CrN}+\mathrm{CBC}$:
Very low wear

Result:

- CBC coating increases process stability enormously

Source: Haseltal Werkzeugbau GFE Schmalkalden, Germany

Minimizing of Wear and Friction at Extrusion

Result:

- DLC containing Si show very good tool life behaviour

Source: Coexal Werkzeugbau, Gotha
GFE, Schmalkalden, Germany

Minimizing of Wear and Friction at Deep Drawing

Tool for deep drawing of aluminium parts

Result:

- Post-treatment absolutely necessary

Source: Mala Verschlusssysteme, Schweina
GFE, Schmalkalden, Germany

ГLNTTG:

Cutting Sticky Materials with DLC²

Micro Drilling in Titanium

Tapping in Titanium

Polished, droplet-reduced surface with burr-free cutting edges (Magnetfinish)

Tool Life Comparison

Tool Life Comparison

Material: TiAI6V4
Thread: M10 1.5
Thread-depth: 24 mm
$\mathrm{V}_{\mathrm{c}}=4 \mathrm{~m} / \mathrm{min}$

Source: IGF R\&D project in cooperation with WZL RWTH Aachen, Germany

Quality Optimization at Cutting Cables

Wear on uncoated knife after tool life $L_{m}=10^{\prime} 000$

Wear on coated knife after tool life $5 \times L_{m}$

[^0]
Coating Features

Influence of the Most Important Component Materials on Coating's Features

Coating				$\begin{aligned} & \mathscr{0} \\ & \text { © } \\ & \text { 믄 } \\ & \text { 포 } \end{aligned}$							윾 흔 은 은			
Ti+N=TiN Basic coating	+N	0	-	+	+	+	0	0	0	-	0	no	0	0
TiCN	+C	0	--	++	++	-	-	--	-	--	++	no	0	0
typically TiAICN with AI~20-25\%	+ AI	(+)	+	-	-	+	+	+	+	+	.	no	--	0
typically TiAIN	+AI/ (-C)	+	-	+ if $\mathrm{Al}<\mathrm{X} \% /-$ if $\mathrm{Al}>\mathrm{X} \%$	+	+	+	++	+	-	-	no	-	$+$
typically AITiCrN	$+\mathrm{Cr}$	-	+	+	+	+	+	+	(+)	+	-	no	-	(-)
typically AICrN $\mathrm{Cr} \sim 30 \%$	+Cr/ (-Ti)	--	+	(+)	++	(+)	+	+	(+)	+	(-)	no	--	
typically TiAIN/SiN CrAIN/SiN, AICrTiN/SiN	+Si	++	$(+)$	++	+	++	++	++	+ +	0	0	yes	--	+

+ means mainly positive change in the user's point of view - means mainly negative change in user's point of view X is approximately around 65\%

Influence of AI Content

With the universal configuration of the $\pi 300$ the composition and the stoichiometry of the coating can be defined by software, deposited from mainly unalloyed targets.

Nanocomposites

Composite of non-mixable components.
Nanocrystalline grains are embedded into an amorphous matrix.

Heat Resistance Comparison

ТレАTiT:

Adhesion Critical Loads at Scratch Test

End of crack: partial delamination

Average values from min. 10 measurements with deviation; $<5 \%$ Scratch length: 70 mm - scratch speed: $0.4-60 \mathrm{~mm} / \mathrm{min}$ Measured on tungsten carbide K40, by CSEM, Neuchâtel, Switzerland

Residual Stress

High residual stress means low thoughness and danger of cracking

Thermal Stability

Si reduces residual stress

Influence of the Silicon Content in AICr-based Coatings

Conventional Coatings

Cost Advantage

Solid Carbide Drills

Drilling

Production Costs with Solid Carbide Drills

Production costs $=$ machine costs + work costs + tool costs Tool changing costs are not considered, all tools reground 10x

Tool Life Comparison

Work piece: wheel hub, Material: $38 \mathrm{MnV} 35, \mathrm{R}_{\mathrm{m}}=800 \mathrm{~N} / \mathrm{mm}^{2}$, Ext. coolant: emulsion 7%, carbide K40UF, $d=12.6 \mathrm{~mm}, \mathrm{a}_{\mathrm{p}}=13.5 \mathrm{~mm}, \mathrm{v}_{\mathrm{c}}=78 \mathrm{~m} / \mathrm{min}, \mathrm{f}=0.25 \mathrm{~mm} /$ rev. - Source: Daimler, Germany

Tool Life Comparison

Work piece material: $42 \mathrm{CrMo4V}$ - $\mathrm{Rm}=1000 \mathrm{~N} / \mathrm{mm} 2$ - Tools: solid carbide drills $-\mathrm{d}=6.8 \mathrm{~mm}$ $\mathrm{vc}=110 \mathrm{~m} / \mathrm{min}-\mathrm{f}=0.174 \mathrm{~mm} / \mathrm{rev}-\mathrm{ap}=34 \mathrm{~mm}-$ emulsion $-\mathrm{CC} p=38$ bar $\mathrm{Q}=81 / \mathrm{min}$

TLATITE:

Applications

Tool Life Comparison

Carbide End Mills $\emptyset 10 \mathrm{~mm}, \mathrm{z}=4$, steel 34 CrNiM Mo6 (30 HRC), Coolant: MOL; Minimum lubrication - Tested tools: 2×4 Source: Carmex, Maalot, ISR

Injection Molding

Multi purpose coating: CrTiN

Ti

3

Coating of milling head holders with CrTiN \& golden top color by the $\pi 303$ configuration. Source: Fraisa, Bellach, Switzerland

Tool Life Comparison

Aluminum injection molding, Material: AK12 - Spaltbreite: 2 mm Tool material: HSS; P6M5 - Source: Technopolice, Moscow, Russia

Conventional Coatings

Absorption of Cracks by Multilayer Structure

Source: TOPNANO-Project, EPF Lausanne, Switzerland Measuring hardness by nanoindentation

Aluminium Extrusion

Tool Life Comparison

Layer sequence in $\mu \mathrm{m}$: $1 \times \mathrm{TiN}=1.3-9 \times(\mathrm{TiN}=0.25 / \mathrm{CrN}=0.4)-1 \times \mathrm{CrN}=0.35$ Mat.: Al 6012; Total coating thickness: $7.5 \mu \mathrm{~m}$ - Source: Metalba, Italy

Comparison of Coating's Damages at Thread Forming

Manufacturer's ref. coating after 48 threads

Dedicated nanostructured CrTiN after 64 threads

Applications

Bending

Tool Life Comparison

Mat.: St22-42MC carbon steel, shield thickness: $3-5 \mathrm{~mm}$ Source: MKB - GFE, Schmalkalden, Germany

Punching

Tool Life Comparison

Influence of the Edge Radius on the Tool Life of Fly Cutter

Gear:

- steel 27MnCr5 (270HB)
- Modulus 2

Fly cutter:

- substrate: S290 (1010HV10)
- Coating: AITiN

Cutting conditions: $\mathrm{Vc}=140 \mathrm{~m} / \mathrm{min}$,
hmax $=0.3 \mathrm{~mm}$, dry, down hobbing
Edges prepared by Microblasting

Applications

Nanogradients

Nanogradients

The coating structure is continuously changed. The coating composition can be modified by gas inlet or metallic content variation.

Crack free indentation of nanogradient coating

Fluteless Tapping

Tapping

Variation of Nanohardness by Gas Inlet

Tool Life Comparison

Workpiece: 356Al (7\% Si) - Tools: M10x1.5 HSS - Coolant: emulsion 8\% Source: Hayes Brake, Mequon, WI, USA

Torque Comparison

Mat.: C45k - Steeltap-Fraisa - M6 - $\mathrm{v}_{\mathrm{c}}=10 \mathrm{~m} / \mathrm{min}-$ Emulsion 7\% Measured by iFT, Grenchen, Switzerland

TLATIT:

Nanolayers

Nanolayers

The coating hardness depends on the thickness period of the sublayers. The optimum period of the superlattices increases hardness enormously.

Technology Optimization

Tools: $\mathrm{d}=6.2 \mathrm{~mm}, \mathrm{a}_{\mathrm{p}}=12 \mathrm{~mm}$; allowance 0.2 mm ; coolant: emulsion 7% Mat.: X155 CrVMo 12-1, cold work steel, DIN 1.2379 Source: Re-Al, Biel, Switzerland

Gear Hobbing

New Dedicated Nanolayer Coating for Hobbing

Nanocomposites
 Conventional

Nanocomposite Grains

Modelling view of the 5 nm average grain size sample at an indentation depth of 20 Ä
The Nanocomposite coatings have a higher hardness than conventional coatings. Because the amorphous SiN matrix enwraps (infoldes, covers) the nanocrystallite grains and avoids their growth. Source: Paul Scherrer Institute, Villigen, Switzerland

Grain Size Comparison: $\mathrm{Ti}_{1-x} \mathrm{Al}_{x} \mathrm{~N}$ and $\mathrm{nACo}=\mathrm{Ti}_{1-x} \mathrm{Al}_{x} \mathrm{~N} / \mathrm{SiN}$

Calculated from XRD data using the Scherrer Equation Same linear behaviour but smaller crystallites than in the Cr-based system

Drilling

Wear in Heat Treated Steel

Mat.: 42CrMo4 - IC-p $=40$ bar - emulsion 5% - comparison after $\mathrm{L}_{+}=50 \mathrm{~m}$ drilling distance Tools: solid carbide drills $-\mathrm{d}=12 \mathrm{~mm} \mathrm{a}_{\mathrm{p}}=5 \mathrm{xd}-\mathrm{v}_{\mathrm{c}}=120 \mathrm{~m} / \mathrm{min}-\mathrm{f}=0.35 \mathrm{~mm} / \mathrm{rev}$. Source: Unimerco, Sunds, Denmark

Milling

Tool Life in Hot Working Steel

Work piece material: $\mathrm{X} 40 \mathrm{CrMoV5}-1.2344-\mathrm{R}_{\mathrm{m}}=1100 \mathrm{~N} / \mathrm{mm}^{2}$ Tools: $d=12 \mathrm{~mm}$ - solid carbide end mill with corner radius $\mathrm{r}=2 \mathrm{~mm}$ $v_{c}=218 \mathrm{~m} / \mathrm{min}-f=0.26 \mathrm{~mm}-\mathrm{a}_{\mathrm{p}}=0.5 \mathrm{~mm}-\mathrm{a}_{\mathrm{e}}=8 \mathrm{~mm}-$ emulsion 7%

TLATITE:

Applications

Engraving

Tool Life Comparison

Tool: $\mathrm{d} 1=0.1 \mathrm{~mm}$ Engraving parameters: $n=26^{\prime} 000$ RPM, $v f=250 \mathrm{~mm} / \mathrm{min}$ (dive in $=25 \mathrm{~mm} / \mathrm{min}$), Material: stainless steel - ap-depth $=0.25 \mathrm{~mm}$, Tool life end: tool breakage; Source: DIXI outils SA, Le Locle, CH

Punching

Tool Life Comparison

Reaming

High Speed Reaming

Mat.: GG25 cast iron, $\mathrm{v}_{\mathrm{c}}=80 \mathrm{~m} / \mathrm{min}, \mathrm{f}=0.4 \mathrm{~mm} /$ rev.; Coolant: emulsion 7% Tools: solid carbide HSC-reamer with internal coolant, $z=6-d=11.5 \mathrm{H} 7$ Source: Beck, Winterlingen, Germany

Nanocomposites
 Conventional

Tool Life Comparison

Work piece material: 42CrMo4 heat treated steel, HB 310 Tools: HSSC08 - $\mathrm{d}=10 \mathrm{~mm}, \mathrm{z}=4, \mathrm{ae}=5 \mathrm{~mm}$. ap $=5 \mathrm{~mm}, \mathrm{fz}=0.05 \mathrm{~mm} /$ tooth Coolant: Emulsion $7 \%-8 \mathrm{I} / \mathrm{min}-\mathrm{VBCmax}=0.6 \mathrm{~mm}$ - Source: TH Budapest, Hungary

Micro Drilling

nACRo: $2.5 \mu \mathrm{~m}$ after $\mathbf{1 4 ' 0 0 0}^{\prime} \mathbf{0 0 0}$ holes

Uncoated
Rotating Stamping

Source; GFE, Schmalkalden, Germany Fa. Thyssen Krupp Presta llsenburg, Germany

Applications

Gear Cutting with Inserts Influence of the Coating Structure

Multilayer for roughing:
At dynamic load the cracks are absorbed at the borders of the sublayers.

Monolayer for finishing: Higher hardness increases tool life.

Drilling

Mat. Nodular cast iron - Tool 08/12 mm Unimerco solid carbide drill The costs for 2.4 tools can be saved during the use of one nACo coated tool

Source: Ford AMTD, Detroit, USA

Drilling

Productivity Improvement with Higher Speed and Feed

Work piece material: $\mathrm{GGG40}-\mathrm{ap}=60 \mathrm{~mm}$ Solid carbide step drill: $\mathrm{d}=7.1 / 12 \mathrm{~mm}$ - Internal cooling with 70 bar - 5% emulsion Source: Sauer Danfoss, Steerings, Denmark

Nanocomposites Applications at High Temperatures

Heat Conductivity

Measured at the University of IImenau, Germany All coatings on carbide (K 40) with the thickness of $2.5 \mu \mathrm{~m}$

Punching

Tool Life Comparison

Mat.: Ck60, 1.122; $\mathrm{R}_{\mathrm{m}}=550 \mathrm{~N} / \mathrm{mm}^{2}$; thickness: 2.9 mm Tool: M2 HSS 6-5-2, 1.3343, 63 HRC, 30 hits/min, MJL: Minimum Jet Lubrication

Hard Milling

Wear Comparison

Applications with Cr-Doping

The Camel Curve

Nanocomposite structure eliminates disadvantages of conventional coating:
High hardness
even with low chromium content

- more economical production
- chance to decoat from carbide
- higher heat stability
- extremely high thickness for hobs, molds and dies

Sawing

Injection Molding

Source: Gibbs Die Casting Ltd. Retsag, Hungary

Nanocomposite Coatings Difficult Forming Operations

Tool Life Comparison

Work piece material: 5XGuA 50-80 HRB
Punch die - Tool material: HSS; P6M5 - Source: Technopolice, Moscow, Russia

Stamping

Tool Life Comparison

Work piece material: 20G2P - 430-470 N/mm2 Stamp - Tool material: HSS; P6M5 - Source: Technopolice, Moscow, Russia

Form Pressing

Tool Life Comparison

Difficult Cutting Operations

Bevel Gear Hobbing

Milling of Bevel gears with carbide Tri-Ac hobbing cutters $\mathrm{nACo}{ }^{\circ}$ can be decoated from carbide without cobalt leaching
and without generating hexavalent hazardous Cr6 waste! Source: Gleason, Rochester, NY, USA

Drilling
 Tool Life Comparison

Tool: $d=10 / 12 \mathrm{~mm}$ solid carbide drill Material: carbon fiber composite / aluminium Source: Unimerco, Lichfield, UK

Plunging

Wear Comparison

Material: IN100 - Nickel Base - 12Cr-18Co-3.2Mo-4.3Ti-5.0AI-0.8V-0.02B-0.06Zr
Tool: Carbide insert - Minimaster MM12; $D=12 \mathrm{~mm}, \mathrm{r}=2 \mathrm{~mm}, \mathrm{z}=2$ $\mathrm{v}_{\mathrm{c}}=21-30 \mathrm{~m} / \mathrm{min}, \mathrm{fz}=0,05 \mathrm{~mm}, \mathrm{a}_{\mathrm{p}}=20 \mathrm{~mm}, \mathrm{a}_{\mathrm{e}}=3 \mathrm{~mm}$, turbine milling Source: EU R\&D project Macharena - Volvo Aero Norge AS

Nanocomposite Coatings Difficult Cutting Operations

Grooving
Tool Life Comparison

(also after regrinding)
Mat.: Hasteloy - tool manufacturer: Horn insert $-\mathrm{d}=30 \mathrm{~mm}-\mathrm{z}=3-\mathrm{v}_{\mathrm{c}}=33.5 \mathrm{~m} / \mathrm{min}-\mathrm{f}_{\mathrm{z}}=0.052 \mathrm{~mm}$ Source: Hocotechnik, Basel, Switzerland

Turning

Tool Life Comparison

Material: Somaloy SMC550; Soft Magnetic Composites $\mathrm{v}_{\mathrm{c}}=700 \mathrm{~m} / \mathrm{min}, \mathrm{f}=0.1 \mathrm{~mm} / \mathrm{rev}-\mathrm{a}_{\mathrm{p}}=0.2 \mathrm{~mm}$
Measured by IWF, TU Berlin, EU R\&D project PM-MACH

Sawing

Tool Life Comparison

Solid carbide saw blades, $\emptyset 125 \times 3.6 \mathrm{~mm}, \mathrm{z}=100$ - sintered workpiece material: Co1 $\mathrm{n}=300$ RPM $-\mathrm{v}_{\mathrm{f}}=800 \mathrm{~mm} / \mathrm{min}-\mathrm{a}_{\mathrm{p}}=35 \mathrm{~mm}$, coolant: emulsion 7% - Source: Prétat, Selzach, CH

TLATITE:

Applications

Comparison of Machinability of Different Workpiece Materials

Slotting
Tool Life Comparison in Inconel 718

- AlCrN

Milling - Finishing
Land Wear after 1200 mm Milling Length in Inconel 100

TripleCoatings ${ }^{3}$

Deposited by the π^{312}

Dry Hard Milling at 60.5 HRC with nACo ${ }^{3 \text { ® }}$

After milling $\mathrm{Lf}=444 \mathrm{~m}=3.5$ hours

Special market coating-2 for hard milling AITiN-X

Special market coating-1 for hard milling AITiN-D

After milling $\mathrm{Lf}=888 \mathrm{~m}=7$ hours

Milling

$$
\begin{array}{r}
\text { RPM }=45151 / \mathrm{min}-v C=141 \mathrm{~m} / \mathrm{min}-v f=845 \mathrm{~mm} / \mathrm{min}-f=0.05 \mathrm{~mm} / \text { tooth } \\
\text { Source: Widin, Shinchon, South Korea }
\end{array}
$$

Drilling
 TripleCoatings ${ }^{\circledR}$ in Tool Life Comparison

Material:X155CrVMo12-1-1.2379 - Solid carbide drill: $\mathrm{d}=5.2 \mathrm{~mm}-\mathrm{ap}=15 \mathrm{~mm}$ $\mathrm{vc}=74.5 \mathrm{~m} / \mathrm{min}-\mathrm{f}=0.15 \mathrm{~mm} / \mathrm{rev}-$ Internal coolant: Emulsion $7 \%-30$ bar
TripleCoating ${ }^{\circledR}$ in Tool Life Comparison

Material: $1.2080-\mathrm{X} 210 \mathrm{Cr} 12$ (Hardness $=60,5 \mathrm{HRC}$) Tools: Solid carbide ball nose end mills $-d=10 \mathrm{~mm}-\mathrm{z}=2$
.14 mm , $\mathrm{ae}=0.1 \mathrm{~mm}, \mathrm{fz}=0.1 \mathrm{~mm}$, external cold air nozzle

TLATITE:

Applications

Interrupted Dry Turning with Coated Ceramic Inserts by nACo ${ }^{3}$

Material: Austempered Ductile Cast Iron, ADI 900, ≈ 325 HBWT2,5/187,5 Inserts: CNGX 120716 ceramic $-\mathrm{vc}=270 \mathrm{~m} / \mathrm{min}, \mathrm{f}=0.4 \mathrm{~mm}-\mathrm{ap}=2 \mathrm{~mm}$, dry Tested by GFE, Schmalkalden, Germany

Turning

TripleCoating ${ }^{\circledR}$ in Tool Life Comparison to CVD-Coating

Material: stainless Steel AISI 316L - Inserts:Sandvik CNMG 120408 $\mathrm{v}_{\mathrm{c}}=290 \mathrm{~m} / \mathrm{min}-\mathrm{ap}=0.8 \mathrm{~mm}-\mathrm{f}=0.24 \mathrm{~mm} / \mathrm{rev}-$ Dry KTmax $\leq 130 \mu \mathrm{~m}$ - N8 $(\mathrm{Ra}<3.2 \mu \mathrm{~m}-\mathrm{Rz}<12.5 \mu \mathrm{~m})$ Source: EIG, Geneva, Switzerland

Cooled Turning with $\mathrm{nACO}^{3}{ }^{30}$ and nACoX . ${ }^{3}$ in Comparison to CVD Coated Inserts

Worn inserts after 7 min of cutting

Reference inserts: Sandvik GC GC2025-MM coated with CVD: TiN/TiCN-multi/AI2O3/TiN - Thickness $6 \mu \mathrm{~m}$ Material: Stainless steel - X5CrNi1 $8-10-1.4301-\mathrm{vc}=170 \mathrm{~m} / \mathrm{min}$ ap $=1-3 \mathrm{~mm}-\mathrm{f}=0.35-$ Coolant with emulsion

TripleCoatings ${ }^{3 \text { ® }}$

Deposited by the π^{312}

Punching ${ }^{\circ}$ Fine Punching with nACRo ${ }^{3 \ominus}$

Fine Blanking Wear Comparison

Work piece material: CP complex phase steel - CPW-800-steel 27 HRC PM-HSS-Tools with minimum lubrication Developed with Feintool, Lyss, Switzerland

Applications

Hard Turning using Coated CBN-Inserts with Special Adhesion Structure for nACo ${ }^{30}$ -

Adhesion layer 0 CBN

Adhesion layer 2
Adhesion layer 1 CBN CBN

Super Hard Milling

Work piece material: X210Cr13, 1.2080, 64 HRC - Tool: Ball nose end mill - $\mathrm{d}=6 \mathrm{~mm}$ $n=16^{\prime} 8201 / \mathrm{min}-a p=0.09 \mathrm{~mm}-a e=0.06 \mathrm{~mm}-\mathrm{f}=0.1 \mathrm{~mm} / \mathrm{rev}$ Coolant: cold air 5 bar - Developed and tested for HyoShin, South Korea

Wear Comparison

Torus end mill in cold-working steel X210Cr12 (1.2080) - $61.5 \mathrm{HRC} \quad 8 \mathrm{~mm}-\mathrm{z}=4-\mathrm{ap}=0.1 \mathrm{~mm}-\mathrm{ae}=3 \mathrm{~mm} \mathrm{vc}=100 \mathrm{~m}$ min-1 - $n=4000 \mathrm{~min}-1-\mathrm{fz}=0.2 \mathrm{~mm}-\mathrm{vf}=3200 \mathrm{~mm}$ min-1 - dry - Source: Development project LMT Fette-PLATIT

TripleCoatings ${ }^{3 \text { ® }}$
 Deposited by PL1001

Hobbing

Gear Cutting

Sawing

Tool Life Comparison

Tool Life Comparison

Machining of planet gears; Work piece material: 212 M ; Width of work piece: 63 mm Tools: HHS gear cutter $\varnothing 95 \times 150 \mathrm{~mm}$ Roughing: $v c=120 \mathrm{~m} / \mathrm{min}-\mathrm{f}=2 \mathrm{~mm} /$ RPM Finishing: $v c=140 \mathrm{~m} / \mathrm{min}-\mathrm{f}=1.5 \mathrm{~mm} / \mathrm{RPM}$ Criteria of tool life: Series of 200 parts without profile failure (very tight tolerances)

Tool Life Comparison

Dedicated Coating for Hobbing Deposited by π^{312}

Wear Comparison at Hobbing with PM-HSS Tools

Mat.: 20MnCrB5 - Tool: PM-HSS - $\mathrm{m}=2.7$ - Down hill milling - $\mathrm{vc}=220 \mathrm{~m} / \mathrm{min}-\mathrm{fa}=3.6 \mathrm{~mm}-\mathrm{dry}$
Source: IFO Magdeburg in the development project LMT-Fette - PLATIT The patented Nanosphere coating is a result of a common development project, exclusively for LMT-Fette

Crater Wear Comparison at Hobbing with PM-HSS Tools

AICrN-Monolayer

Nanosphere

Mat.: 20MnCrB5-Tool: PM-HSS - m=2.7 Down hill milling $-\mathrm{vc}=220 \mathrm{~m} / \mathrm{min}-\mathrm{fa}=3.6 \mathrm{~mm}-$ dry Source: IFO Magdeburg in the development project LMT-Fette - PLATIT

Technological Comparison at Hobbing with Solid Carbide Tools

Mat.: $16 \mathrm{MnCr} 5-$ Tool: Solid carbide $\mathrm{K} 30-\mathrm{m}=3-\mathrm{b}=40.5 \mathrm{~mm}-\mathrm{z}=27$
$\mathrm{f}=2.0-2.1 \mathrm{~mm}$ - wet cooling with emulsion Source: Fette-LMT - Industry test at German car manufacturer 10

π^{4821}-POWER Coating Unit Most Important Features

High Power Coating

- 4 cathodes run simultaneously
- High deposition rate
- Fast heating and cooling
- Short cycle time
- Up to 6 batches / day

High Loadability

- Robust and easy change of loads

Optimal adhesion

With:

- VIRTUAL SHUTTER and TUBE SHUTTER
- Larćad

Trend Curves of a QuadCoating ${ }^{4 \oplus}$-Process

- Door to door time under 3.5 hours

TLATiTE:

Applications of OUALCoatings ${ }^{4 ®}$

Milling

Corner wear after 143 min

Thread Forming

Tool Life Comparison at Semi-Dry Fluteless Tapping

Work piece material: $40 \mathrm{CrMnMo7-Rm}=945 \mathrm{~N} / \mathrm{mm} 2$ Tool: M8-6HX-InnoForm1-Z - HSSE 23/1-Ø7.4 - ap=1.5xd - MOL

Hobbing

Tool Life Comparison at Dry Hobbing

Applications of TripleCoatings ${ }^{3}{ }^{\text {® }}$ Developed by/with PLATIT's User

Thread forming

Work piece material: 1.2379 (HRC 57-58) - Tools 1431C MultiEdge 4Feed HSC - $\mathrm{d}=10 \mathrm{~mm}-\mathrm{z}=4$ $\mathrm{vc}=120 \mathrm{~m} / \mathrm{min} \mathrm{n}=3800 \mathrm{1} / \mathrm{min}-\mathrm{fz}=0.29 \mathrm{~mm}-\mathrm{vf}=4400 \mathrm{~mm} / \mathrm{min}-\mathrm{ae}=3 \mathrm{~mm}-\mathrm{ap}=0.25 \mathrm{~mm}$ Developed by LMT Fette, Schwarzenbek, Germany

Tool Life Comparison

Fette Protec Power
Work piece materials: Materials with high strengh Developed with LMT Fette, Schwarzenbek, Germany Source: Werkzeugtechnik: 117 - Nov/2010 - p. 71

Tapping

Tool Life Comparison

TLATITE:

Applications

Mold and Die Milling

Work piece material: cold working steel - $\mathrm{Rm}=1000 \mathrm{~N} / \mathrm{mm}^{2}$ - Insert: WPR 16 AR - vc $=240 \mathrm{~m} / \mathrm{min}$ $\mathrm{n}=4775 \mathrm{1} / \mathrm{min}-\mathrm{fz}=0.4 \mathrm{~mm}-\mathrm{vf}=3820 \mathrm{~mm} / \mathrm{min}-\mathrm{ap}=1.5 \mathrm{~mm}-\mathrm{ae}=1.0 \mathrm{~mm}$ Developed with LMT Kieninger, Lahr, Germany

Hobbing

Tool Life Comparison

Material: 100Cr6 800-900 N/mm2 - Tools: HSS-PM4 - Modul=2.5 - vc=150 m/min Developed by Liss, Rosnov, Czech Republic
Injection Molding

Wear Comparison

Molds for aluminum alloys for automotive industry after the fabrication of 15000 parts

Plasma nitrided tool

Coated tool by ALLWIN, Cr-Al-Si based coating Thickness: 2 to $3 \mu \mathrm{~m}$

The lengths of the tools $180-200 \mathrm{~mm}$ - Diameters of tools: $15-25 \mathrm{~mm}$

Applications

Standard Tests

Drilling

Drilling

Milling

Tool Life Comparison of HSS Drills

Mat.: Tool steel - X155CrVMo12-1-1.2379-HB290-ap=18mm - blind holes Tools: HSS-drills - Type N - DIN $338-\mathrm{d}=6 \mathrm{~mm}-\mathrm{vc}=22 \mathrm{~m} / \mathrm{min}-\mathrm{f}=0.1 \mathrm{~mm} /$ rev - emulsion 7%

Tool Life Comparison of Solid Carbide Drills

Mat.: Tool steel - X155CrVMo12-1-1.2379-HB290 - Tools: Solid carbide drills - KF40UF $d=5 \mathrm{~mm}-\mathrm{ap}=15 \mathrm{~mm}-\mathrm{vc}=70 \mathrm{~m} / \mathrm{min}-4750$ RPM $-\mathrm{f}=0.16 \mathrm{~mm} /$ rev - emulsion 7%

Wear Comparison of Solid Carbide End Mills

Mat.: Tool steel - X33XrS16-1.2085-HB300 - ap =ae=4mm-Tool: Fraisa NX-V - d=8mm -z=4 Average wear: (max. margin wear + VBmax + front wear + corner wear)/4 $\mathrm{vc}=120 \mathrm{~m} / \mathrm{min}-\mathrm{n}=4775 / \mathrm{min}-\mathrm{fz}=0.05 \mathrm{~mm} /$ teeth $-\mathrm{vf}=1146 \mathrm{~mm} / \mathrm{min}-\mathrm{MOL}=$ Minimum Quantity Lubrication

Coating Guide

Coating Usage Recommendations

	Cutting						Chipless Forming		
	Drilling	Turning	Milling	Tapping	Sawing	Reaming Broaching	Injection Molding	Stamping Punching	Forming
Steels		\square nACo \square AITiN	$\begin{aligned} & \text { nACRo } \\ & \text { AITiN } \end{aligned}$	\square nACVIc GRADVIC	$\begin{aligned} & \hline \text { TiAICN } \\ & \hline \text { S STiN } \end{aligned}$	$\begin{aligned} & \text { nACo } \\ & \boldsymbol{\mu} \\ & \text { uAITiN } \end{aligned}$	$\begin{aligned} & \square \mathrm{nACVIC} \\ & \square \mathrm{CrN} \end{aligned}$	$\begin{aligned} & \hline \text { nACVIc } \\ & \text { GRADVIC } \end{aligned}$	nACVIc TiCN-MP
Hardened steels	nACo	nACo	nACo	nACo	nACo	nACo		nACo	
Cast Iron		$\begin{aligned} & \text { nACo } \\ & \text { AITTiN } \end{aligned}$	nACo AITiN	$\begin{aligned} & \text { nACo } \\ & \text { TiAICN } \end{aligned}$	\square TiAICN S STiN	$\begin{gathered} \text { nACo } \\ \boldsymbol{\mu} \end{gathered}$			
Aluminium (> 12\% Si)	nACo TiCN	nACo	nACo TiCN-MP	nACVIc TiCN-MP	\square TiCN-MP S STiN	$\boldsymbol{\mu}$ MAITiN TiCN-MP	S STiN $\square \mathrm{CrN}$	nACo TiCN	nACVIc GRADVIC
Aluminium	cVIc	cVIc	cVIc	\triangle CROMVIC	TiCN-MP	$\triangle \mathrm{cVIc}$	cVIc	cVIc	cVIc
$(<12 \% \mathrm{Si})$	ZrN	ZrN	ZrN	TiCN-MP	S STiN	TiCN-MP	\triangle CROMVIC	\triangle CROMVIC	GRADVIC
Super alloys	nACRo	nACo	nACRo	nACRo	nACRo	nACo	nACVIc	nACVIc	nACVIc
	GRADVIC	GRADVIC	GRADVIC	GRADVIC	TiAICN	GRADVIC	GRADVIC	GRADVIC	GRADVIC
Copper	CrN								
Bronze, Brass	TiCN-MP	TiCN-MP	TiCN-MP	TiCN-MP	TiCN-MP	TiCN-MP	S STiN	TiCN-MP	TiCN-MP
Plastics	TiCN	TiCN	TiCN	TiCN	TiCN	TiCN		TiCN	TiCN

Primary Recommendation:
If available, use this coating for the application.
coating A coating B

Alternate Recommendation:
Use this coating when the primary recommendation is not available.

Application Recommendations for TripleCoatings ${ }^{3 \circ}$

		Cutting									Chipless Forming
		Drilling		Turning	Milling		Hobbing	Tapping	Reaming		
		HSS	HM		HSS	HM			HSS	HM	
	wet	$\square \mathrm{nACRo}^{3}$	nACo ${ }^{3}$	nACo ${ }^{3}$	Emiticrn ${ }^{3}$	EAITICrN ${ }^{3}$	EAITiCrN ${ }^{3}$	$\square \mathrm{nACVIC}^{2}$	$\square \mathrm{nACRo}^{3}$	nACo ${ }^{3}$	AITiCrN ${ }^{3}$
Steels	dry/MOL	- nACRo ${ }^{3}$	$\mathrm{nACo}{ }^{3}$	$n A C O X{ }^{3}$	EAICrN ${ }^{3}$	EAICrN ${ }^{3}$	非AICrN ${ }^{3}$	$\square \mathrm{nACVIC}^{2}$	- nACRo ${ }^{3}$	$n \mathrm{nCo}^{3}$	AITICrN ${ }^{3}$
	wet		$\mathrm{nACo}{ }^{3}$	$\mathrm{nACo}{ }^{3}$				$\square \mathrm{nACRo}^{3}$		$\mathrm{nACo}{ }^{3}$	
Hardened steels	dry/M0L		nACo ${ }^{3}$	$n A C O X^{3}$		$\square \mathrm{TIXCO}{ }^{3}$	\# AlCrN^{3}	\square nACRo 3		$=\mathrm{TiXCo}^{3}$	
	wet	$\square \mathrm{nACRo}^{3}$	\square nACRo 3	$\mathrm{nACo}{ }^{3}$	$\square \mathrm{nACRo}{ }^{3}$	$\square \mathrm{nACRo}{ }^{3}$	$\square \mathrm{nACRo}^{3}$	$\square \mathrm{nACRo}^{3}$	$\square \mathrm{nACRo}{ }^{3}$	$\square \mathrm{nACRo}^{3}$	
Cast iron	dry/MOL	nACRo ${ }^{3}$	\square nACRo 3	$\mathrm{nACoX}{ }^{3}$	$\square \mathrm{nACRo}^{3}$	$n A C 0^{3}$	$n A C 0^{3}$	$n A C 0^{3}$	$\square \mathrm{nACRo}{ }^{3}$	$\mathrm{nACo}{ }^{3}$	
Aluminium	wet	$\square \mathrm{nACRo}{ }^{3}$	\square nACRo ${ }^{3}$	$n A C 0^{3}$	EAITICrN ${ }^{3}$	\# AITICrN ${ }^{3}$	\square nACRo 3	$\square \mathrm{nACVIC}^{2}$	\square nACRo 3	$\mathrm{nACo}{ }^{3}$	nACVIc ${ }^{2}$
($>12 \% \mathrm{Si}$)	dry/MOL	nACRo ${ }^{3}$	$\square \mathrm{nACRo}^{3}$	$\square \mathrm{nACVIC}^{2}$	- nACRo^{3}	nACRo ${ }^{3}$	nACRo ${ }^{3}$	nACVIc ${ }^{2}$	nACRo ${ }^{3}$	$n \mathrm{nCo}^{3}$	nACVIc^{2}
	wet	$\square \mathrm{nACRo}^{3}$	\square nACRo 3	$\square \mathrm{nACRo}^{3}$	$\square \mathrm{nACRo}{ }^{3}$	$\square \mathrm{nACRo}{ }^{3}$	$\square \mathrm{nACRo}{ }^{3}$	$\square \mathrm{nACRo}^{3}$	$\square \mathrm{nACRo}{ }^{3}$	$\mathrm{nACo}{ }^{3}$	\# AITICrN ${ }^{3}$
Super alloys	dry/MOL	$\square \mathrm{nACRo}^{3}$	$\square \mathrm{nACRo}^{3}$	$n \mathrm{nCoX}{ }^{3}$	$\square \mathrm{nACRo}^{3}$	$\square \mathrm{nACRo}{ }^{3}$	$\square \mathrm{nACRo}{ }^{3}$	$\square \mathrm{nACRo}{ }^{3}$	$\square \mathrm{nACRo}^{3}$	$n \mathrm{nACo}^{3}$	AITICrN ${ }^{\text {\# }}$

The TripleCoatings ${ }^{3 ®}$ can replace the classic Nanocomposite coatings. Due to the tougher core layer, they can be used even more universally.

Coating Properties
 PLATIT＇s Standard Coatings 2012

			PL70	$\pi 80+$	$\pi 111$	$\pi 311$	$\pi 411$	$\begin{array}{\|c\|} \hline \text { PL } \\ 1001 \end{array}$	Color	Nanohardness up to［GPa］	Thickness ［ $\mu \mathrm{m}$ ］	Friction（fretting） coefficient	Max．usage temperature［ ${ }^{\circ} \mathrm{C}$ ］	Symbol color
	1	TiN	\checkmark	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	gold	24	1－7	0.55	600	\square
	2	TiCN－grey＊	＊$\sqrt{ }$	$\sqrt{ }$	blue－grey	37	1－4	0.20	400	\square				
	3	cVIc ${ }^{\text {® }}$＊	＊$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	grey	37－20	1－5	0.15	400	－
	4	TiAIN－ML		$\sqrt{ }$	violet－black	28	1－4	0.60	700					
	5	AITiN－G	$\sqrt{ }$	black	34	1－4	0.70	900						
	6	CrN	\checkmark	$\sqrt{ }$	metal－silver	18	1－7	0.30	700	\square				
	7	CROMVIc ${ }^{28}$＊		$\sqrt{ }$	grey	25	1－10	0.10	450	∇				
	8	CrTiN－ML＊		$\sqrt{ }$	\checkmark	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	metal－silver／ gold	30	1－7	0.40	600	目
	9	CROMTIVIc ${ }^{\text {20＊}}$		$\sqrt{ }$	\checkmark	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	grey	25	1－10	0.10	450	θ
	10	ZrN	\checkmark	$\sqrt{ }$	white－gold	20	1－4	0.40	550	\square				
	11	AITiCrN				$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	blue－grey	34	1－4	0.55	850	\square
	12	$\mathrm{nACo}{ }^{\text {® }} \mathrm{-G}$		$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$		violet－blue	45	1－4	0.45	1200	
	13	Fi－Vlc ${ }^{\text {® }}$		$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$		grey	45－20	1－6	0.15	400	－
	14	nACRo ${ }^{\circ}$		$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$		blue－grey	40	1－7	0.35	1100	
	15	nACVIc ${ }^{\text {® }}$		$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$		grey	40－20	1－10	0.15	400	－
	16	nACo ${ }^{3 \text { ® }}$				$\sqrt{ }$	$\sqrt{ }$		violet－blue	$34 / 45$	1－7	0.45	1200／ 900	\square
	17	nACRo ${ }^{3}$				$\sqrt{ }$	$\sqrt{ }$		blue－grey	$34 / 40$	1－7	0.35	1100／ 900	\square
	18	$\mathrm{TiXCo}^{3{ }^{\text {® }}}$				$\sqrt{ }$	$\sqrt{ }$		copper	40 ／ 47	1－5	0.55	1200	－
	19	$n A C o X^{38}$				$\sqrt{ }$	$\sqrt{ }$		black	$40 / 30$	4－18	0.40	1200	\square
	20	$\mathrm{AlCrN}^{3{ }^{\text {® }}}$		$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$		black	$32 / 35$	1－7	0.40	900	钲
	21	AITiCrN ${ }^{30}$			\checkmark	\checkmark	$\sqrt{ }$	$\sqrt{ }$	blue－grey	$32 / 34$	1－7	0.50	900	䮖

＊LT：Low temperature processes possible．
Typical Coating Surfaces（measurued by AFM，at zum coating ticichesss）

ARC
$S_{\mathrm{a}}=0.15-0.45 \mu \mathrm{~m}$
s－LARC ${ }^{\circledR}$
$S_{\mathrm{a}}=0.03-0.08 \mu \mathrm{~m}$ requires π coating unit with special software
μ－LARC ${ }^{\circledR}$
$\mathrm{S}_{\mathrm{a}}=0.003-0.008 \mu \mathrm{~m}$ requires $\mu-\pi$ coating unit or post－polishing

Main Application Fields of PLATITs Standard Coatings

		Cutting	Forming	Machine Component
1	TiN *	universal use	molds and dies	universal use, also for decorative purposes
2	TiCN-grey *	tapping, milling for HSS and HM with coolant	molds and dies, punching	
3	cVIc ${ }^{\circledR}$ *	aluminium machining to avoid built-up edges	molds and dies, punches for lower friction	
4	TiAIN-ML	drilling and universal use, also for weak machines		
5	AITIN-G	milling, hobbing, high performance machining, also dry		
6	CrN *	cutting wood, light metals like copper, and AI alloys with low Si	molds and dies	
7	CROMVIC ${ }^{\text {2® }}$ *	cutting wood, light metals like copper/ Al alloys with low Si, also for MOL	universal use for forming with lower friction	car parts, blisks, sawing parts, copper parts
8	CrTiN-ML *	cutting and forming high alloyed materials with HSS tools	molds and dies with higher hardness, extrusion	tool holders, corrosion prot., medical tools
9	CROMTIVIc ${ }^{\text {2® }}$ *	cutting high alloyed materials with HSS tools also with MOL	molds and dies with lower friction	car parts, blisks, sewing parts
10	ZrN *	machining aluminium magnesium, titanium alloys		for decorative purposes
11	AITiCrN	enhanced wet hobbing and milling		
12	nACo ${ }^{\text {® }}$ -	hard machining on stable machine, drilling, reaming, grooving		
13	Fǐ-VIc ${ }^{\text {® }}$			car parts with high load
14	nACRo ${ }^{\text {® }}$	tough wet cutting of difficult materials (superalloys), micro tools	friction welding, extrusion, die casting	
15	nACVIc ${ }^{\text {® }}$	cutting of high alloyed materials and titanium	molds and dies, punching	
16	nACo ${ }^{3 \text { ® }}$	hard machining, drilling, dry turning, reaming	stamping, punching	
17	nACRo ${ }^{3}$	tough cutting of superalloys, fine punching	friction welding, extrusion, die casting	for components with high abrasive load
18	$\mathrm{TiXCo}^{3 \text { ® }}$	for superhard cutting		
19	nACoX ${ }^{\text {3 }}$	HSC dry turning and milling		for components with highly abrasive load
20	$\mathrm{AlCrN}^{3 \text { ® }}$	dry milling, hobbing, sawving		
21	$\mathrm{AlTiCrN}^{3 \text { ® }}$	universal; wet and dry cutting	molds and dies, stamping, deep drawing, bending, fine punching	

*LT: Low temperature processes possible.

World Wide Service

WWS

THスTMT 0°

World Wide Service

Installation，Training Operator＇s training Machine manuals on CD Maintenance DVD

Service Teams

Service request
Start of service Remote diagnostics Service visits

Technical Service
Warranty
Post warranty
Upgrades
Cathode exchange
Annual service

Service Activities

hotline
service π－units
「レニтiTE

Technological Support
Technological training Remote diagnostics Dedicated coatings

Teams

THTTITE 0°

Service for continuous support of users of over 340 coating systems in 36 countries

Training Programs

Training Certificate

Installation Training

The installation trainings are carried out by our service team on location of our users.

Training on Demand

Our project engineers give dedicated trainings on a wide range of subjects from the basics to special fields.

Advanced Training

The advanced trainings take place on location of the user, or in our headquarters by our project engineers or our R\&D people, typically for the installation of dedicated coatings.

Internet Connection

Firewall

Features and Advantages

- Cost-effective support within minutes over the Internet
- Online help for analysis of new recipes
- Updates, new software releases and recipes are transmitted
- Firewall protection should be installed by user's IT
- Fast and secure online connection between PLATIT and customers worldwide
- Remote and on-site diagnostics of all components and processes with graphical trace files
- Static IP required when using PCAnywhere
- No static IP required using TeamViewer; Remote diagnostics only possible with user's assistance

Chart View

Report View

CD Manual

\square Example Page

Overview

A highly detailed, interactive manual on CD-ROM helps support machine operators. Contents include:

- operations, usage of purchased recipes
- maintenance and spare part management
- mechanical and electrical documentation

Maintenance

Multimedia Maintenance Manual on DVD
We provide a Multimedia Maintenance Manual on DVD with full interactive features.

The chapters explain in words (in several languages) and with video movies all the steps of the most important maintenance works. The DVD can be run on the controller PC of the π units or on external laptops

Annual Service

We strongly recommend the annual service on regular basis, regulated by a service contract.
Our service engineer will carry out the following actions:

- Disassembling of all vacuum parts from chamber
- Cathodes, gauges, strikers, shields, valves, TMP (Turbo molecular pump), heaters, anodes, gas showers, rotary drive etc.
- Cleaning of the following parts:
- Chamber, door, anodes, strikers, ceramics, gauges, shields, heaters, valves
- TMP, rotary drive etc.
- Exchanging of the following parts:
- TMP lubricant ampoule, rotary pump oil and filter, compressor oil, all VITON 0 -ring
- Door O-ring, PC processor fan, ceramics tips, bearings in rotary drive
- Reassembling of all parts
- Vacuum testing
- Precise adjustment and checking of the following parts:
- Pirani gauges, baratron gauge, mass flow controllers for gases, PC setting, backup for old files, door
- Running test batches with dummies
- Running batches with real tools

Estimated time for an annual service: 3-5 days (depending on cooperation of the user).

Cathode Exchange Centers

Customer with PLATIT equipment
$\pi 80, \pi 111, \pi 300 \& \pi 311$

1. Customer requests for a refurbished cathode to CEC by email or fax

PLATIT's Cathode

Exchange Centers (CEC):

- Sumperk, Czech Republic (EU)
- Libertyville, IL, USA
- Seoul, South Korea
- Curitiba, Brazil
- Shanghai, China
- Nagoya, Japan
- Moscow, Russia

2. CEC dispatches cathode within 24 hours from stock
3. Customer ships used cathode back to CEC within 8 days

Stock of cathodes:

- Ti-LARC ${ }^{\text {® }}$
- AI-LARC ${ }^{\circledR}$
- AISi-LARC ${ }^{\circledR}$
- AlSi+-LARC ${ }^{\circledR}$
- Cr-LARC ${ }^{\text {® }}$
- Zr-LARC ${ }^{\text {® }}$
- AITi-LARC ${ }^{\circledR}$
- AICr-LARC ${ }^{\circledR}$
- AICrOXI-LARC ${ }^{\circledR}$
- TiSi-LARC ${ }^{\text {® }}$
- Al(Ti)-CERC ${ }^{\text {® }}$
- Al(Cr)-CERC ${ }^{\circledR}$

Technical Process of Target Exchange in CEC

8. Burning in under production conditions
9. Stock of refurbished cathodes

10. Long-time vacuum test
11. Inserting of the new target and full assembly
12. Incoming of the used cathode

13. Disassembly Recycling of the used target
14. Replacing wear parts, setting of mechanical elements and the magnetic field

5. Writing of the cathode's identification chip

4. Long time test of the mechanical functions

Advantages for the Users by PLATIT's Cathode Exchange Principle and Centers

- PLATIT's warranty for exchange quality
- No stocking costs for the users
- Cathodes are renewed by CEC at every change to state of the art
- All wear parts are new after every change by CEC
- Cathodes are long-time vacuum tested at CEC after every change
- Optimum setting and burn in by CEC
- User just quickly changes the cathodes
- no setting, no weighing, no burn in by user
- Minimum transport costs and duties around the world
- Always high quality target material
- Environment friendly recycling of used target material by CEC
- Low target costs (see figure)
- The CEC system has been working at high satisfaction of users for many years

Calculated for the basis coatings: TiN, CrN, TiAIN, AITiN, AICrN, Tools: Ø10mm end mills LARC-cathodes, $\mathrm{Ti}, \mathrm{Al}, \mathrm{Cr}-\emptyset 96 \times 510 \mathrm{~mm}$ Machine with spot targets: 6 cathodes, Ti, Cr, AlCr, TiAl, AlTi; $\emptyset 150 \mathrm{~mm}$

Advanced Coating Systems
SWIS \& QUALITY
www.platit.com

CZECH REPUBLIC
 PLATIT PIVOT a.s.

Advanced Coating Systems Prumyslova 3
CZ-78701 Sumperk

Phone:	$+420(583) 241588$
Fax:	$+420(583) 241304$
E-Mail:	pivot@platit.com

SHANGHAI, CHINA
PLATIT Advanced Coating Systems
No, 161 Rijing Road, Waigaogiao FTZ,
Pudong, Shanghai, 200131 China

Phone:	$+86-21-58673976$
Fax:	$+86-21-58673953$
E-Mail:	shanghai@platit.com

CZECH REPUBLIC
LISS Coating Center
LISS a.s.
Dopravni 2603
CZ-75661 Roznov p. R.
$\begin{array}{ll}\text { Phone: } & +420(571) 842681 \\ \text { Fax: } & +420(571) 842681\end{array}$
E-Mail: liss@platit.com

GERMANY

PLATIT Representative

AR Industrievertretungen CDH
Lautlinger Weg 5 / Postfach 810169
D-70567 Stuttgart / D-70518 Stuttgart
Phone: $\quad+49$ (711) 718 7634-0
Fax: $\quad+49$ (711) 718 7634-4
E-Mail: germany@platit.com
JAPAN
PLATIT Representative
YKT CORPORATION
5-7-5, Yoyogi Shibuya-Ku
Tokyo 151-8567, Japan
Phone: +81334671252
Fax: $\quad+81363684617$
E-Mail: japan@platit.com

PAKISTAN

S\&G International: Sales agent

301-A, Sea Breeze Plaza
Shahra-e-Faisal, Karachi-75530
Phone: +92-213-2788994
Fax: +92-213-2789 233
E-Mail: pakistan@platit.com

SINGAPORE

OMGA HiTool Pte Ltd: Sales Agent

with PLATIT Service

Blk 3014A Ubi Road 1, \#06-11/13
Singapore 408703

Phone:	$+656858-1611$
Fax:	$+656284-1611$
E-Mail:	singapore@platit.com

© 2012 PLATIT AG. All rights reserved. Specifications subject to change. All \mathbb{B} signed trademarks are registered by the BC Group. Several technologies described herein are protected by international patents. EV49

A Company of $|\boldsymbol{B} / \boldsymbol{C}| \boldsymbol{I}$

Headquarters
Moosstrasse 68
CH-2540 Grenchen / SO
Switzerland
Phone: +41 (32) 6542600

SWITZERLAND

PLANAR Technologie SA

Rue de l'industrie 11
CH-1632 Riaz

Phone:	$+41(26) 9195011$
Fax:	$+41(26) 9195012$
E-Mail:	planar@platit.com

SOUTH KOREA
PLATIT Support Center
3th Floor, Gyoung-Sung B/D26, Youngtong-Ro 501 Beon-Gil, Youngtong-Gu, Sunwon-City Gyounggi-Do, South Korea 443-809
Phone: $\quad+82$ (31) 447 4395-6
Fax: $\quad+82$ (31) 2033494
E-Mail: korea@platit.com

BRAZIL

PdB: Premium customer
with PLATIT technology
Rua José e Maria, 264
CEP 83.050-634, São José dos Pinhais - PR

Phone:	$+55(41) 35880100$
Fax:	$+55(41) 33828992$
E-Mail:	brazil@platit.com

HONG KONG, CHINA
Techmart Ltd.: Premium customer
with PLATIT technology
Unit B, 6/F, Howard Factory Building,
66 Tsun Yip Street, Kwun Tong, Kowloon

Phone:	+85223419898
Fax:	+85227132597
E-Mail:	hongkong@platit.com

INDIA
LABINDIA Instruments: Sales agent
201 Nand Chambers, LBS Marg,
Thane West - 400602
Mumbai / Bombay

Phone:	$+91-22-25986061$
Fax:	$+91-22-25398634$
E-Mail:	india@platit.com

RUSSIA
Technolada: Sales agent
Zastavskaya Street, 33, Letter G, Office 416
RU-196084 Sankt Petersburg

Phone:	+78123343530
Fax:	+78123889208
E-mail:	russia@platit.com

SPAIN
Metal Estalki: Premium customer with PLATIT technology
Ctra Sto. Domingo 4 bis - Nave 1
Poligono Ugaldeguren 1 ES-48160 Derio (Vizcaya)
$\begin{array}{ll}\text { Phone: } & +34 \text { (944) } 544798 \\ \text { Fax: } & +34 \text { (944) } 544805\end{array}$
E-Mail: spain@platit.com

HOTLINE
 service π-units
 гLNTIT:

Worth Whide Service
Available through website www.platit.com

PLATIT AG

Advanced Coating Systems

Eichholz St. 9
CH-2545 Selzach / SO

Switzerland

Phone: +41 (32) 5446200
Fax: $\quad+41$ (32) 5446220
E-Mail: info@platit.com
U.S.A.

PLATIT, Inc.
Advanced Coating Systems
1840 Industrial Drive, Suite 220
Libertyville, IL 60048-9466
Phone: $\quad+1$ (847) 680-5270
Fax: $\quad+1$ (847) 680-5271
E-Mail: usa@platit.com
SCANDINAVIA
PLATIT Scandinavia
Universitetsparken 7 / PO Box 30
DK-4000 Roskilde

Phone:	+4546740238
Fax:	+4546740250
E-Mail:	scandinavia@platit.com

FRANCE
DMX: Premium customer
with PLATIT technology
165 rue de Prés, ZI des Grands Prés III F-74300 Cluses

Phone:	$+33(04) 50182913$
Fax:	$+33(04) 50184723$
E-Mail:	france@platit.com

HUNGARY
Pannon: Premium customer
with PLATIT technology
Tarko u. 11
H-1182 Budapest

Phone:	$+36(30) 2187016$
Fax:	$+36(1) 2951363$
E-Mail:	hungary@platit.com

ITALY

PLATIT Representative
Corso Siccardi 11b
IT-10122 Torino (Italy)

Phone:	+393485549445
Fax:	+390115657637
E-Mail:	italy@platit.com

E-Mail: italy@platit.com

RUSSIA

Technopolice Group: Premium customer with PLATIT technology
Butlerova Str. 17, Office 1707
RU-117342, Moscow
Phone: $\quad+7$ (495) 33098 41, 3309706
Fax: $\quad+7$ (499) 7248177
E-Mail: ru@platit.com

THAILAND

Best Lube Co., Ltd.: Sales agent
69 Ratchadapisek 36 Rd.
Chankasern, Jatujak, Bangkok, 10900

Phone:	+6629391017 to 8
Fax:	+6629391019
E-Mail:	thailand@platit.com

TURKEY

Erde: Sales agent

ERDE Dis Ticaret Ltd. Sti
Egitim Mah.Kasap Ismail Sk. Nr.: 6 D:4 TR- 34722 Hasanpasa - Kadikoy / Istanbul

Phone:	+902163302400
Fax:	+902163302401
E-Mail:	turkey@platit.com

[^0]: Reduced servicing and maintenance costs $>10 €$ per tool

