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Course Information

• Meeting time: TTh 1:00-2:15

• Meeting place: DH 1075 

• Instructor: John Mellor-Crummey
—Email: johnmc@cs.rice.edu  
—Office: DH 3082, x5179
—Office Hours: Wednesday 8:30am-9:30am or by appointment

• Teaching Assistants 
—Sriraj Paul          email: srp7@rice.edu              office: DH 3064
—Chaoran Yang    email: chaoran@rice.edu       office: DH 3053
—Office Hours: TBA

• WWW site: http://www.clear.rice.edu/comp422
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Parallelism

• Definition: ability to execute parts of a program concurrently

• Goal: shorter running time

• Grain of parallelism: how big are the units?
—bits, instructions, statements, loop iterations, procedures, …

• COMP 422 focus: explicit thread-level parallelism
—thread = a flow of control executing a sequence of instructions
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Course Objectives

• Learn fundamentals of parallel computing
—principles of parallel algorithm design
—programming models and methods
—parallel computer architectures
—parallel algorithms
—modeling and analysis of parallel programs and systems

• Develop skill writing parallel programs
—programming assignments

• Develop skill analyzing parallel computing problems
—solving problems posed in class
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Recommended Text

Introduction to Parallel 
Computing, 2nd Edition 

Ananth Grama, 
Anshul Gupta, 

George Karypis, 
Vipin Kumar

 Addison-Wesley 

2003

 



Topics (Part 1)

• Introduction 

• Principles of parallel algorithm design (Chapter 3)
—decomposition techniques
—mapping & scheduling computation
—templates

• Programming shared-address space systems (Chapter 7)
—Cilk/Cilk++
—OpenMP
—Pthreads
—synchronization

• Parallel computer architectures (Chapter 2)
—shared memory systems and cache coherence
—distributed-memory systems
—interconnection networks and routing
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Topics (Part 2)

• Programming scalable systems (Chapter 6)
—message passing: MPI
—global address space languages

• Collective communication

• Analytical modeling of program performance (Chapter 5)
—speedup, efficiency, scalability, cost optimality, isoefficiency

• Parallel algorithms (Chapters 8 & 10)
—non-numerical algorithms: sorting, graphs, dynamic prog.
—numerical algorithms: dense and sparse matrix algorithms

• Performance measurement and analysis of parallel programs

• GPU Programming with CUDA

• Problem solving on clusters using MapReduce
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Prerequisites

• Programming in C and/or Fortran

• Basics of data structures

• Basics of machine architecture

• Prerequisites 
—(COMP 211 or COMP 215) and Comp 221 
—or equivalent

• See me if you have concerns
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Motivations for Parallel Computing

• Technology push

• Application pull
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The Rise of 
Multicore 

Processors
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Advance of Semiconductors: “Moore’s Law”
Gordon Moore, Founder of Intel

• 1965: since the integrated circuit was invented,  the number of 
transistors/inch2 in these circuits roughly doubled every year; 
this trend would continue for the foreseeable future

• 1975: revised - circuit complexity doubles every two years

Image credit: http://download.intel.com/research/silicon/Gordon_Moore_ISSCC_021003.pdf



Evolution of Microprocessors 1971-2009
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Figure credit: Shekhar Borkar, Andrew A. Chien, The Future of Microprocessors. 
Communications of the ACM, Vol. 54 No. 5, Pages 67-77 10.1145/1941487.1941507.

Intel 4004, 1971
1 core, no cache
23K transistors

Intel 8008, 1978
1 core, no cache
29K transistors

Intel Nehalem-EX, 2009
8 cores, 24MB cache

2.3B transistors

Graphics Processors 
NVIDIA Kepler GK110, May 2011

 7.1B transistors 
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Leveraging Moore’s Law Trends

From increasing circuit density to performance

• More transistors =  ↑ opportunities for exploiting parallelism

• Microprocessors
—implicit parallelism: invisible to the programmer

– pipelined execution of instructions
– multiple functional units for multiple independent pipelines

—explicit parallelism
– SIMD processor extensions

 operations on 1, 2, and 4 data items per instruction
 integer, floating point, complex data

 e.g. SSE, AVX
– long instruction words (VLIW)

 bundles of independent instructions that can be issued together
 e.g., Itanium processor
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Microprocessor Architecture (Mid 90’s)

• Superscalar (SS) designs were the state of the art
—multiple instruction issue
—dynamic scheduling: HW tracks dependencies between instructions
—speculative execution: look past predicted branches
—non-blocking caches: multiple outstanding memory ops

• Apparent path to higher performance? 
—wider instruction issue
—support for more speculation
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The End of the Free Lunch

 Increasing issue width provides diminishing returns

Two factors1

• Fundamental circuit limitations
—delays  ⇑ as issue queues  ⇑ and multi-port register files  ⇑ 
—increasing delays limit performance returns from wider issue

• Limited amount of instruction-level parallelism
—inefficient for codes with difficult-to-predict branches

1The case for a single-chip multiprocessor, K. Olukotun, B. Nayfeh, 
L. Hammond, K. Wilson, and K. Chang, ASPLOS-VII, 1996.
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Issue Waste

Instruction-level Parallelism Concerns

• Contributing factors
—instruction dependencies
—long-latency operations within a thread
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Sources of Wasted Issue Slots

• TLB miss

• I cache miss

• D cache miss

• Load delays (L1 hits)

• Branch misprediction

• Instruction dependences

• Memory conflict 

Memory Hierarchy

Control Flow

Instruction Stream



18

Simulations of 8-issue Superscalar
Simultaneous multithreading: maximizing 

on-chip parallelism, Tullsen et. al. ISCA, 1995.

Applications: most of SPEC92

• On average  < 1.5 IPC (19%)

• Dominant waste differs by application

• Short FP dependences: 37%

Summary: 
Highly underutilized
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Power and Heat Stall Clock Frequencies

New York Times 
May 17, 2004 … Intel, the world's largest chip maker, publicly acknowledged 

that it had hit a ''thermal wall'' on its microprocessor line. As a result, the 
company is changing its product strategy and disbanding one of its most 
advanced design groups. Intel also said that it would abandon two 
advanced chip development projects …

     Now, Intel is embarked on a course already adopted by some of its major 
rivals: obtaining more computing power by stamping multiple processors 
on a single chip rather than straining to increase the speed of a single 
processor … Intel's decision to change course and embrace a ''dual core'' 
processor structure shows the challenge of overcoming the effects of heat 
generated by the constant on-off movement of tiny switches in modern 
computers … some analysts and former Intel designers said that Intel 
was coming to terms with escalating heat problems so severe they 
threatened to cause its chips to fracture at extreme temperatures…



Technology Trends
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The Future of Computing Performance: Game Over or Next Level? The National Academies Press, Washington, DC, 2011.



Recent Multicore Processors
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• Sept 13: Intel Ivy Bridge-EP Xeon E5-2695 v2
— 12 cores; 2-way SMT; 30MB cache

• March 13: SPARC T5
— 16 cores; 8-way fine-grain MT per core

• May 12: AMD Trinity
— 4 CPU cores; 384 graphics cores

• Nov 12: Intel Xeon Phi coprocessor
— ~60 cores

• Feb 12: Blue Gene/Q
— 17 cores; 4-way SMT 

• Q4 11: Intel Ivy Bridge
— 4 cores; 2 way SMT; 

• November 11: AMD Interlagos
— 16 cores

• Jan 10: IBM Power 7
— 8 cores; 4-way SMT; 32MB shared cache

• Tilera TilePro64

Figure credit: Ruud Haring, Blue 
Gene/Q compute chip, Hot Chips 
23, August, 2011.



SPARC T5 (March 26 2013)
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• 8 threads/core

• Dual-issue pipeline

• On-die accelerators for
—encryption, RNG, SHA

The 5th Generation of Sparc CMT: T5 Rick Hetherington

fine-grain multithreading
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Application Pull

• Complex problems require computation on large-scale data

• Sufficient performance available only through massive 
parallelism
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Computing and Science 

• “Computational modeling and simulation are among the most 
significant developments in the practice of scientific inquiry in the 
20th century. Within the last two decades, scientific computing 
has become an important contributor to all scientific disciplines. 

• It is particularly important for the solution of research problems 
that are insoluble by traditional scientific theoretical and 
experimental approaches, hazardous to study in the laboratory, 
or time consuming or expensive to solve by traditional means” 

— “Scientific Discovery through Advanced Computing”
      DOE Office of Science, 2000
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The Need for Speed: Complex Problems 
• Science

—understanding matter from elementary particles to cosmology
—storm forecasting and climate prediction
—understanding biochemical processes of living organisms

• Engineering
—combustion and engine design
—computational fluid dynamics and airplane design
—earthquake and structural modeling
—pollution modeling and remediation planning
—molecular nanotechnology 

• Business
—computational finance - high frequency trading
—information retrieval
—data mining

• Defense
—nuclear weapons stewardship
—cryptology



The Scientific Case for Exascale Computing

• Predict regional climate changes: sea level 
rise, drought and flooding, and severe 
weather patterns

• Reduce carbon footprint of transportation

• Improve efficiency and safety of nuclear 
energy

• Improve design for cost-effective 
renewable energy resources such as 
batteries, catalysts, and biofuels

• Certify the U.S. nuclear stockpile

• Design advanced experimental facilities, 
such as accelerators, and magnetic and 
inertial confinement fusion

• Understand properties of fission and 
fusion reactions 

• Reverse engineer the human brain

• Design advanced materials

26
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Earthquake Simulation

Earthquake Research Institute, University of Tokyo
 Tonankai-Tokai Earthquake Scenario
 Photo Credit: The Earth Simulator Art Gallery, CD-ROM, March 2004
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Ocean Circulation Simulation

Ocean Global Circulation Model for the Earth Simulator
 Seasonal Variation of Ocean Temperature
 Photo Credit: The Earth Simulator Art Gallery, CD-ROM, March 2004



Community Earth System Model (CESM)
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Figure courtesy of M. Vertenstein (NCAR)



CESM Execution Configurations
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Figure courtesy of M. Vertenstein (NCAR)



CESM Simulations on a Cray XT
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Figure courtesy of Pat Worley (ORNL)
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Simulating Turbulent Reacting Flows: S3D 

• Direct numerical simulation (DNS) of turbulent combustion
—state-of-the-art code developed at CRF/Sandia

– PI: Jaqueline H. Chen, SNL
—2010: Cray XT (65M) Blue Gene/P(2M) CPU hours 
—“High-fidelity simulations for clean and 
   efficient combustion of alternative fuels”

• Science
—study micro-physics of turbulent reacting flows

– physical insight into chemistry turbulence interactions
—simulate detailed chemistry; multi-physics (sprays, radiation, soot)
—develop and validate reduced model descriptions used in macro-

scale simulations of engineering-level systems 

DNS Physical
Models

Engineering
CFD codes

(RANS, LES)
Text and figures courtesy of Jacqueline H. Chen, SNL
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Fluid-Structure Interactions

• Simulate …
—rotational geometries (e.g. engines, pumps), flapping wings

• Traditionally, such simulations have used a fixed mesh
—drawback: solution quality is only as good as initial mesh

• Dynamic mesh computational fluid dynamics
—integrate automatic mesh generation within parallel flow solver

– nodes added in response to user-specified refinement criteria
– nodes deleted when no longer needed
– element connectivity changes to maintain minimum energy mesh

—mesh changes continuously as geometry + solution changes

• Example: 3D simulation of a hummingbird’s flight

[Andrew Johnson, AHPCRC 2005] 
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Air Velocity (Front)
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Air Velocity (Side)
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Mesh Adaptation (front)
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Mesh Adaptation (side)
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Challenges of Explicit Parallelism

• Algorithm development is harder
—complexity of specifying and coordinating concurrent activities

• Software development is much harder
—lack of standardized & effective development tools and 

programming models
—subtle program errors: race conditions

• Rapid pace of change in computer system architecture
—a great parallel algorithm for one machine may not be suitable for 

another
– example: homogeneous multicore processors vs. GPGPU
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Hummingbird Simulation in UPC

• UPC: PGAS language for scalable parallel systems

• Application overview
—distribute mesh among the processors
—partition the mesh using recursive bisection
—each PE maintains and controls its piece of the mesh 

– has a list of nodes, faces, and elements
—communication and synchronization

– read-from or write-to other PE’s “entities” as required
– processors frequently synchronize using barriers
– use “broadcast” and “reduction” patterns

—constraint
– only 1 processor may change the mesh at a time
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Algorithm Sketch

At each time step…

• Test if re-partitioning is required

• Set up interprocessor communication if mesh changed

• Split elements into vectorizable groups

• Calculate the refinement value at each mesh node 

• Move the mesh 

• Solve the coupled fluid-flow equation system

• Update the mesh to ensure mesh quality
—swap element faces to obtain a “Delaunay” mesh
—add nodes to locations where there are not enough
—delete nodes from locations where there are too many 
—swap element faces to  obtain a “Delaunay” mesh
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Parallel Hardware
in the Large
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Hierarchical Parallelism in Supercomputers
• Cores with pipelining and short vectors

• Multicore processors

• Shared-memory multiprocessor nodes

• Scalable parallel systems

Image credit: http://www.nersc.gov/news/reports/bluegene.gif



Blue Gene/Q Packaging Hierarchy
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Figure credit: Ruud Haring, Blue 
Gene/Q compute chip, Hot Chips 
23, August, 2011.



44

Achieving High Performance on Parallel Systems

• Memory latency and bandwidth
— CPU rates have improved 4x as 

fast as memory over last decade
— bridge speed gap using memory 

hierarchy 
— multicore exacerbates demand 

• Interprocessor communication

Computation is only part of the picture

• Input/output
— I/O bandwidth to disk typically grows linearly with # processors

Image Credit: Bob Colwell, ISCA 1995

CPU

system
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Historical Concurrency in Top 500 Systems

Image credit: http://www.top500.org/overtime/list/36/procclass



Cores per Socket (System Share, Nov 2013)

46http://www.top500.org/statistics/overtime/

8 57.0%

6-core 19.2%

4-core 6.0%
16-core 8.4%
12-core 5.8%
10-core 3.4%



Scale of the Largest HPC Systems (Nov 2013)
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hybrid
CPU+GPU

all
> 100K 
cores

> 1.5M 
cores



Challenges of Parallelism in the Large

• Parallel science applications are often very sophisticated
— e.g. adaptive algorithms may require dynamic load balancing

• Multilevel parallelism is difficult to manage

• Extreme scale exacerbates inefficiencies
— algorithmic scalability losses
— serialization and load imbalance
— communication or I/O bottlenecks
— insufficient or inefficient parallelization

• Hard to achieve top performance even on individual nodes
— contention for shared memory bandwidth
— memory hierarchy utilization on multicore processors
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Thursday’s Class

• Introduction to parallel algorithms 
—tasks and decomposition 
—processes and mapping 
—processes versus processors 

• Decomposition techniques 
—recursive decomposition 
—data decomposition
—exploratory decomposition 
—hybrid decomposition 

• Characteristics of tasks and interactions 
—task generation, granularity, and context 
—characteristics of task interactions 
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Parallel Machines for the Course

• STIC
—170 nodes, each with two 4-core Intel Nehalem processors
—Infiniband interconnection network
—no global shared memory 

• Biou
—48 nodes, each with four 8-core IBM Power7 processors

– 4-way SMT (4 hardware threads per processor core); 256GB/node
—Infiniband interconnection network
—no global shared memory

• DAVinCI
—Intel Westmere processors
—NVIDIA FERMI GPU on some nodes
—Infiniband interconnection network
—no global shared memory


