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ABSTRACT 

The effects of climate and environmental change are likely to exacerbate water stress in Africa 

over the next five decades. It appears obvious, therefore, that large river basins with considerable 

total renewable water resources will play a prominent role in regional cooperation to alleviate the 

pressure of water scarcity within Africa.  However, managing water resources in the large river 

basins of Africa involves problems of data paucity, lack of technical resources and the sheer 

scale of the problem. These river basins are located in regions that are characterized by poverty, 

low levels of economic development and little food security. The rivers provide multiple goods 

and services that include hydro-power, water supply, fisheries, agriculture, transportation, and 

maintenance of aquatic ecosystems. Sustainable water resources management is a critical issue, 

but there is almost always insufficient data available to formulate adequate management 

strategies. These basins therefore represent some of the best test cases for the practical 

application of the science associated with the Predictions in Ungauged Basins (PUB).  

The thesis presents the results of a process-based hydrological modelling study in the Congo 

Basin. One of the primary objectives of this study was to establish a hydrological model for the 

whole Congo Basin, using available historical data. The secondary objective of the study was to 

use the model and assess the impacts of future environmental change on water resources of the 

Congo Basin. Given the lack of adequate data on the basin physical characteristics, the 

preliminary work consisted of assessing available global datasets and building a database of the 

basin physical characteristics. The database was used for both assessing relationships of 

similarities between features of physiographic settings in the basin (Chapters 3 and 4), and 

establishing models that adequately represent the basin hydrology (Chapters 5, 6, and 7). The 

representative model of the Congo Basin hydrology was then used to assess the impacts of future 

environmental changes on water resources availability of the Congo Basin (Chapter 8).  

Through assessment of the physical characteristics of the basin, relationships of similarities were 

used to determine homogenous regions with regard to rainfall variability, physiographic settings, 

and hydrological responses. The first observation that comes from this study is that these three 

categories of regional groups of homogenous characteristics are sensible with regards to their 
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geographical settings, but the overlap and apparent relationships between them are weak. An 

explanation of this observation is that there are insufficient data, particularly associated with 

defining sub-surface processes, and it is possible that additional data would have assisted in the 

discrimination of more homogenous groups and better links between the different datasets.  

The model application in this study consisted of two phases:  model calibration, using a manual 

approach, and the application of a physically-based a priori parameter estimation approach. 

While the first approach was designed to assess the general applicability of the model and 

identify major errors with regard to input data and model structure, the second approach aimed to 

establish an understanding of the processes and identify useful relationships between the model 

parameters and the variations in real hydrological processes. The second approach was also 

designed to quantify the sensitivity of the model outputs to the parameters of the model and to 

encompass information sharing between the basin physical characteristics and quantifying the 

parameters of the model. Collectively, the study’s findings show that these two approaches work 

well and are appropriate to represent the real hydrological processes of Congo Basin.  

The secondary objective of this study was achieved by forcing the hydrological model developed 

for the Congo Basin with downscaled Global Climate Model (GCMs) data in order to assess 

scenarios of change and future possible impacts on water resources availability within the basin. 

The results provide useful lessons in terms of basin-wide adaptation measures to future climates. 

The lessons suggest that there is a risk of developing inappropriate adaptation measures to future 

climate change based on large scale hydrological response, as the response at small scales shows 

a completely different picture from that which is based on large scale predictions.  

While the study has concluded that the application of the hydrological model has been successful 

and can be used with some degree of confidence for enhanced decision making, there remain a 

number of uncertainties and opportunities to improve the methods used for water resources 

assessment within the basin. The focus of future activities from the perspective of practical 

application should be on improved access to data collection to increase confidence in model 

predictions, on dissemination of the knowledge generated by this study, and on training in the 

use of the developed water resources assessment techniques. 
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CHAPTER 1 INTRODUCTION 

1.1 The Congo River Basin in a global context 

Fresh water is globally recognized as indispensable for all forms of life, including human 

endeavours and the ecosystem. It has been widely demonstrated that the changing climate will 

have a considerable impact on the hydrological cycle, thus affecting those depending on water 

resources (Bates et al., 2008). The effects of climate and environmental changes are likely to 

exacerbate water stress in Africa over the next five decades (Arnell et al., 2004). Predicted 

changes encompass changes in seasonal distributions of rainfall, land use, hydrological regimes 

and water use patterns, all of which, however, are still highly uncertain. It appears, obvious 

therefore, that river basins with considerable total renewable water resources will play a 

prominent role in regional cooperation to alleviate the pressure of water scarcity within Africa. 

Virtual water trade to help stabilize political economies on a regional scale is one of the 

possibilities (Allan, 1998). Interbasin water transfer to water-scarce areas is another possibility.  

Hydrological sciences are often applied with consideration of contexts of socio-economic 

concepts of water for such possibilities or alternatives (Oki et al., 2004). This explains the recent 

increasing interest in modelling the hydrology of large river basins (Döll et al., 2008).  

Hydrological models are applied to link various dimensions of Integrated Water Resources 

Management (IWRM), namely environmental, social, economic and political dimensions, for 

sustainable development. These dimensions are complex and difficult to integrate, particularly in 

data-scarce areas and where the availability of resources is non-stationary over different scales. 

The difficulty is accentuated in areas where social, economic and political situations have not 

recognised the need for hydrological information, or where the resources required to collect and 

interpret such information are not available.  

The Congo River Basin is located in Africa and extends over 3.7 million km2 between 9oN, 12oE 

to 13.30oS, 34oE, and encompasses nine political boundaries. The basin is the second largest in 

the world after the Amazon and generates a monthly flow volume of 108 147.5 Mm3 at the outlet 

(Reference is made to the Kinshasa-Brazzaville gauging site, Feteke et al., 1999). This flow 

volume represents about 40% of the African continent’s discharge (Crowley et al., 2006). 
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Therefore, the Congo Basin holds huge potential for water resources development on a regional 

scale, including hydropower, irrigation, navigation, interbasin water transfer and virtual water 

trade. A few pre-feasibility studies on this river basin highlighted potential sites for the 

development of more than 40 000 MW of continuous electrical power production (Maher, 1994; 

Mukheibir, 2007). Opportunities to achieve a further 100 000 MW are also underlined. Based on 

these opportunities, some project proposals were developed, which included development of an 

international power grid and interbasin water transfer to sustain the provision of water resources 

in the Lake Chad Basin (Umolu, 1990; Chapman and Baker, 1992; Maher, 1994; Mukheibir, 

2007). 

The Congo Basin is known for its river navigation potential and, since the pre-colonial period, 

has been used to supply international markets with natural resources such as timber, palm oil, 

copper, and many other natural resources. The Congo Basin is populated by several ethnic 

groups who migrated to the area some thousands of years ago and whose modes of life, such as 

patterns of territorial organisation, subsistence strategies and social relationships have been 

established on the availability of water resources (Vansina, 1990).  

The importance of the Congo Basin is not limited to the above-mentioned opportunities for 

socio-economic development. The Congo Basin is, along with the western Pacific Ocean and the 

Amazon Basin, a main world rainfall centre that generates intense storms with a global reach 

(Eltahir et al., 2004). The presence of the tropical rainforest, which accounts for about 44% of 

the basin area, favours the moisture recycling capacity of the basin. An estimated 75-95% of 

rainfall is reportedly recycled in the Congo Basin (Cadet and Nnoli, 1987) and evaporation from 

the Congo Basin contributes about 17% of West Africa’s rainfall (Eltahir et al., 2004). 

Camberlain (1997) reported the existence of strong westerly winds that advect moisture from the 

Congo Basin to Ethiopia and other parts of East Africa. This wind is a result of active monsoon 

conditions that enhance the west-east pressure gradient near the equator. Intense precipitations in 

Ethiopia are reportedly attributed to the moisture from the Congo Basin (Shinoda, 1986; 

Camberlain, 1997). Studies have also reported patterns of moisture circulation from the Congo 

Basin to as far as the United States American Great Lakes region (Avissar and Werth, 2005; 

NLOM, 2011). 
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1.2 Problem statement  

Reliable quantification of the spatial and temporal distribution of water resources is a 

prerequisite to sustainable water resources management and development. The large-scale 

impacts of anthropogenic activities on water resources recorded during the 1900s (Revenga et 

al., 1998) are a result of inadequate planning. One of the key issues in river basin planning and 

management is the lack of information about water resources. This has been largely recognized 

as a major challenge to water resources management, especially in the African river basins where 

monitoring networks are hardly maintained and the few that were implemented during the 

colonial period have shrunk considerably (Hughes, 2007). In addition, there is a lack of 

appropriate modelling tools and approaches that can be used to add value to the existing poor-

quality observational data. There is also a lack of experimental research, partly due to the related 

problems of costs, expertise, and absence of incentives. The situation in the Congo Basin 

encompasses all the above-mentioned issues which are exacerbated by the basin’s natural 

complexity, geographic extent and remoteness. The impact of the political turmoil that occurred 

over the last two decades in the region has also contributed to the above-mentioned problems. In 

summary, there is lack of integrated resource availability assessment that must be a prerequisite 

for future planning and management, and must account for future non-stationarity associated 

with all aspects of environmental change (climate and land use). Catchment-based hydrological 

modelling has the potential to fill the gaps, but there will always be uncertainty which will 

translate into decision making. Therefore, the problems in the Congo Basin can be described in 

terms of (1) hydrological information gaps and (2) uncertainties leading to (3) risks in decision-

making. The uncertainties can be viewed at three levels, namely: the complexity of natural 

processes, the methods of measurement and estimates of hydrological parameters, the effects of 

anthropogenic activities, and climate variability and change.  

1.2.1 Hydrological information gaps 

Water resources planning and management within a river basin requires supporting hydrological 

information over various temporal and spatial scales. The focus in the past has been streamflow 

magnitudes and their variability in time and space; however, more recently, the importance of 
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accurately quantifying related hydrological processes, uncertainties and state variables such as 

soil moisture, evapotranspiration processes, groundwater recharge, storage and discharge (to 

rivers) has been emphasised. Reducing uncertainties therefore relies on a sound understanding of 

the processes, application of appropriate models and the acquisition of data to support the 

application of models. Shem and Dickinson (2006) observed that, despite its crucial position as 

the third largest deep convection centre in the world, the Congo Basin has not yet received 

adequate attention in the field of climate and hydrological research.  A remarkable gap remains 

in understanding the hydro-climate processes in this region. This gap in understanding increases 

the uncertainties and risks associated with decision-making for the major water resources 

development plans under discussion.  

To address these challenges, a few research studies have been undertaken in the basin. However, 

many studies in the basin (e.g. Bultot, 1971; Anthony et al., 1983; Olivry, 1993; Matsuyama et 

al., 1994; Wang and Vandeweile, 1994; Olivry et al., 1995; Kazadi and Kaoru, 1996; Bricquet et 

al., 1997; Callede et al., 2001; Laraque et al., 2001) focused on the use of various empirical 

analyses (statistical models) based on the existing data to establish an understanding of the 

basin’s hydrological variability. Statistical models are applied for interpolation within the 

observed spatial and temporal scales and may not be appropriate for process understanding and 

impact scenarios. Understanding the processes of runoff generation in the basin requires 

theoretical or process-based models. Attempts to apply process-based hydrological models to 

simulate the hydrology of the Congo Basin on a large scale can be attributed to a few recent 

studies such as Asante (2000),  Ducharne et al. (2003), Munzimi (2008),  Chishugi and Alemaw 

(2009) and Werth et al.(2009). The above-mentioned studies have been variously challenged by 

problems related to lack of appropriate data, as well as the lack of a thorough understanding of 

climate-hydrology processes, lack of integration of this understanding in models and therefore, 

lack of integrated and critical model assessment. For instance, Asante (2000) used a ‘source to 

sink’ (STS) modelling approach to compute flow routing parameters for continental scale 

applications of watershed-based routing models. The approach was concomitantly applied with 

the Hydrological Modelling System (HMS) in the Congo and Nile Basins, but only the gauging 

sites identified in the Nile Basin were used to compare the simulated flows from the models to 



 

 

5 

the observed flows. Ducharne et al. (2003) applied the River-Transfer Hydrological Model 

(RiTHM) over 11 large basins of the world, which included the Congo Basin. While the model 

results were successful in other basins, within the Congo Basin, the calibration results were 

characterised by a negative Nash Coefficient of Efficiency (Nash and Suttcliffe, 1970) due to a 

systematic over-estimation of the simulated flow. Because of the lack of the observed data, the 

authors refrained from exploring the cause of the poor model performance for the Congo Basin. 

Munzimi’s study (2008) presents an attempt to predict the river flow of the Congo Basin using 

satellite-derived rainfall estimates. In this study, a Geospatial Streamflow Model (GeoSFM) was 

established for the whole Congo Basin and calibrated over seven years, using the available 

observed streamflow data from the Global Runoff Discharge Center (GRDC). However, the 

preliminary simulation results did not adequately reproduce either the magnitude or timing of the 

observed flows. The causes of these discrepancies remain unknown as they were not discussed 

by the author who, however, recommended further exploration of the data input, model structure 

and model parameters. Chishugi and Alemaw (2009) carried out a comprehensive study to 

simulate the hydrology of the Congo Basin, using a GIS-based hydrological water balance 

model. The main achievement of this study was the simulation of basin-wide mean annual soil 

moisture, evapotranspiration and runoff. However, the authors failed to use the concurrent 

observed data to calibrate and validate the model, which limits the application of the model 

results for further studies and predictions in the Basin. In fact, Chishugi and Alemaw (2009) 

attributed the failure to calibrate their model to the lack of the necessary observed data (Pers. 

comm.).  In the same context, Werth et al. (2009) undertook a multi-objective calibration of the 

WaterGap Global Hydrology Model (WGHM) for the Amazon, Congo and Mississipi Basins. In 

this study, the model was calibrated using both river discharge data and the Total Water Storage 

Change (TWSC) data from the Gravity Recovery and Climate Experiment (GRACE). The study 

results suggest that the model was able to produce improved simulations, with a good 

performance for the Amazon and Mississippi Basins. For the Congo Basin, the model calibration 

resulted in a much wider difference between the simulated and observed flows for the two 

objective functions used as performance criteria. The authors attributed the uncertainties in the 

calibration to the lack of consistent data and the particular characteristics of the rainfall 

distribution. At the same time, the authors recommended further studies to focus on the issues 
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related to model structure, model input data and the parameter space allowed for the model 

calibration. Similar disagreements are also reported by Papa et al. (2008). 

Clearly, the discrepancies in the above-mentioned studies reveal the difficulty of modelling 

studies to properly represent the complexity of hydrological processes in the Congo Basin.  The 

complexity is partly due to different response characteristics of the sub-basins that compose the 

Congo River system (Laraque et al., 2001). The findings collectively reveal that researchers need 

to change their mindsets and to look for adequate or novel approaches to modelling the 

hydrology and generating knowledge for decision making in the Congo Basin. If adequate 

approaches to water resources estimation cannot be established, decision making and predictions 

for the basin will remain highly uncertain. 

1.2.2 Complexity of natural processes 

The complexity of hydrological processes is related to the heterogeneities of the landscape 

properties, which are compounded by the temporal and spatial variability (Sivapalan, 2005). The 

tremendous heterogeneities of basin characteristics may be highly variable at various scales and 

thus not fully understood (Sivakumar and Singh, 2011). Increased complexity in the absence of 

adequate knowledge will always result in increased uncertainties. The need to capture and 

understand detailed hydrological processes is at the centre of models’ complexity, which are, in 

turn, fraught with the issues of identifiability. The Congo Basin is prone to a high degree of 

complexity due to its wide range of physiographic and climatic conditions. The main part of the 

basin has low slopes, but many of the headwaters have steeper topography (Runge, 2008), from 

which flow the four main tributaries that meet in the central basin and constitute the main stream 

of the Congo River. The drainage network is composed of the southern streams that drain first 

from south to north, and then west; and the northern streams that drain from north to south, and 

then west. The flow in the central basin is generated from the four main highlands, which border 

the central part of the Congo Basin. In this central part of the basin, precipitation occurs 

throughout the year, but is more seasonal over the peripheral catchments. The rainy season in the 

north coincides with the dry season in the south and vice versa, contributing to river flow 

stability throughout the year (Hughes and Hughes, 1987). The rainfall is mainly controlled by the 
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seasonal migration of the Inter-Tropical Convergence Zone (ITCZ). Vegetation varies from open 

savannah grassland and woodland in the upland areas to tropical rainforest in the central basin. 

The central part of the basin is covered by unconsolidated Cenozoic sediments whereas the 

primary catchments that feed into the central basin have deeply weathered Mesozoic and 

Precambrian rocks (Runge, 2008). Some studies conducted in the basin have underlined evidence 

of a markedly unstable water level during the second half of the last century, induced by the 

rainfall variations, the influence of which was considerably modified by the soil type and the 

geology of the terrain (Laraque et al., 2001).  A so-called “See-saw phenomenon (Eltahir et al., 

2004) suggests the interaction of hydrological processes between the Congo and Amazon Basins. 

This phenomenon was inferred from an anti-correlation in runoff anomalies between the two 

basins by using satellite rainfall and river flow data,  suggesting that floods over the Amazon 

Basin tends to coincide with drought over the Congo Basin and vice versa. 

With respect to these characteristics, the Congo Basin appears to be an intricate system where 

complexity will consistently vary over time and space. The challenge in modelling such 

complexity stems from the ways in which temporal and spatial variability can be combined with 

the processes of interest over a range of scales. Sivakumar and Singh (2011) emphasised that 

runoff processes in large river basins may be highly complex because of the basin 

heterogeneities, in addition to rainfall variability.  Depending on the purpose of the modelling, 

such as impact scenarios, one might want to capture more details to represent the dynamics of 

the observed processes. In this regard, a trade-off must be made between model complexity and 

uncertainty. Many methodological approaches currently in use accept the inherent nature of 

complexity in the modelling processes, but tend to assess the individual characters or uncertainty 

of the model populations (e.g. Beven and Binley 1992; Thiemann et al., 2001; Wagener et al., 

2003; Vrugt et al., 2005). Application of such approaches can help go beyond the restrictions 

imposed by the complexity of the natural randomness in the Congo Basin.  

1.2.3 Methods of measurement and parameter estimation 

A major challenge for hydrologists is the estimation of runoff from ungauged or poorly gauged 

basins. Model predictions are particularly important in those areas where traditional sources of 
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information, such as measurements of rainfall and stream discharge, are not available (Fenicia et 

al., 2008). The limitation of the traditional sources of information also motivates the 

investigation of novel approaches to hydrological predictions, if models have to be applied. This 

is a central theme of research for a ten-year initiative by the International Association of 

Hydrological Sciences (IAHS) on the Prediction in Ungauged Basins (PUB). PUB aims at 

fostering the development and use of improved predictive approaches for a coherent 

understanding of the hydrological response of ungauged and poorly gauged basins (Sivapalan et 

al., 2003). The Congo Basin is largely ungauged and the historical records from the existing 

hydro-meteorological stations are characterised by long-term missing data. Many gauging 

stations that were established during the colonial period are no longer in use. Though there is the 

prospect of satellite observation in the future, it is important to recognise that this needs to be 

validated with the concurrent historical observations.  Yin and Grubber (2009) recognised the 

uncertainty arising from the methodology used by the Global Precipitation Climatology Project 

(GPCP) to merge satellite and gauge data, which resulted in a spurious rainfall trend over the 

Congo Basin.  In general, the lack of maintenance and monitoring of the hydro-meteorological 

network in the Congo Basin means that continuous records do not exist. This implies that the use 

of the conventional model calibration approach is substantially limited. This limitation would 

stem from the use of observed data with limited hydrological response signals. “If the 

observations necessary for calibration are lacking, then predictions are typically very uncertain” 

(Wagner, 2007). Exploration of other conventional approaches such as physically-based a priori 

parameter estimation would be very valuable in addressing the issue. The a priori parameter 

estimation approaches are based on an understanding of the role played by the physical 

attributes (geology, soil types, topography, vegetation, etc.) in the catchment hydrological 

responses and can be used to reduce the number of parameters to be calibrated, to obtain 

parameter values where calibration is not possible, and to constrain the initial parameter ranges 

for calibration (Ao et al., 2006). However, using the approach efficiently depends on the 

availability of adequate datasets on physical basin properties, mostly prepared for hydrological 

purposes. At present, this prerequisite cannot be fully met in the Congo Basin, given the 

minimal advances in the area of experimental research and database management within the 

basin.    
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1.2.4 Anthropogenic and climate change inferences 

Emerging evidence suggests that land use and climate change pose substantial threats to water 

resources availability in the Congo Basin (Hoare, 2007). Increasingly, reports of forest logging, 

mining, and anarchic settlements show a change in the patterns of natural variability of the basin 

hydrology. Ladel et al. (2008) pointed to a decrease in the river flow of about 18 % at the 

Oubangui River, a major tributary of the Congo Basin. This decrease has affected navigation 

along the tributary, resulting in increased days of non-economic navigation (the number of days 

when the water height was less than 90 cm). Some predictions from the simulation of two 

regional climate models showed a low rate of change in evaporation and runoff, and a medium 

rate of change with regard to increased risk of flooding and siltation for the horizon 2070 

(Mukheibir, 2007). In this respect, it is obvious that not only the natural hydrological processes 

have to be analysed and understood, but also the alterations due to anthropogenic activities and 

climate changes on the natural system. It is important to understand the extent of vulnerability of 

the basin with regard to multiple drivers and pressures.  

1.2.5 Risks in decision making 

The key decisions in river basin management concern options to meet the needs for development 

and economic growth while maintaining the environmental carrying capacity. Decision making 

about these measures requires reliable, science-based water resources information. Many factors 

beyond the immediate technical and economic considerations can jeopardise the sustainability of 

the natural system.  The major issues of concern are the lack of a decision support system for 

water resources management within the Congo Basin and the lack of consideration for the 

catchment hydrological behaviours in the planning processes. These issues should be addressed 

by means of hydrological modelling and scenario analysis. It is necessary to mainstream an 

IWRM framework that will complement the economic, social and environmental dimensions of 

water resources to support sustainable development in the basin. Considering the tasks of IWRM 

(van de Giesen et al., 2008), hydrological models can be used to achieve the linking for 

sustainability of water resources (Singh and Frevert, 2002). Hydrological models are important 

in addressing a range of problems related to water resources assessment, management and 

development, such as analysis of quantity and quality aspects of the catchment runoff processes, 
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reservoir system operation, groundwater development and protection, water resources allocation 

for various uses, and river restoration, among others.  Models offer opportunities for filling gaps 

in the observed data, and models can usually be established with limited data and generate 

sufficiently reliable information for management purposes (Hughes, 2007). 

1.3 Research objectives 

The overall objective covering the scope of the current research is to establish a model for the 

Congo Basin, using the available historical data, with the ultimate goal of assessing different 

future scenarios related to climate and environmental change or water resources development 

within the Basin. The study also aims at identifying and quantifying the main sources of 

uncertainty in the model outputs so that these can be accounted for as part of risk assessment 

when management decisions are made. The above-mentioned general objective will be tackled 

through the following four specific objectives:   

1.3.1 To establish a primary understanding of the basin hydrology and identify key 

processes necessary to formulate the conceptual modelling decisions for the basin 

The value of experimental research and field data has been recognized and implicitly accepted 

for allowing development of a perceptual model in hydrology. This remains a challenge to 

overcome in the Congo Basin, where experimental research is still lacking, partly because of the 

problems related to costs of experiments, expertise and the complexity of natural randomness, as 

well as lack of incentives and political will, as already discussed in previous sections. The 

question of what might be a way of establishing a reliable qualitative understanding (perceptual 

model) of the basin response characteristics that should be catered for in conceptually 

formulating models in the basin therefore, is unresolved. This is the focus of the current study, 

which explores available global, regional and local datasets of the basin physiographic and 

climatic characteristics, with the intention of building a synthesis of the main hydrological 

processes for informed modelling decisions in the Congo Basin. The main assumption driving 

this study objective is that it should be possible to use common principles of diagnostic 

evaluation to infer the states of physical basin properties (climate, vegetation, geology, 
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geomorphology, soil structure and texture) and derive useful implications for hydrological 

modelling in the basin.  

1.3.2 To develop a framework of identifiability and uncertainty analysis with regard to 

data and conceptual modelling of the Congo Basin 

Experience with past hydrological modelling studies suggests that the choice of models or model 

development to simulate the hydrology in the Congo Basin has always posed multi-fold 

problems with regard to data, model parameters and model structures. Of course, the limitation 

of data (spatial and temporal scales) and other unknown initial-boundary conditions are not of 

minor influence in this problem.  It should be clear from the previous studies that limitations of 

both available data and model structures will generally make it difficult to simulate and predict 

the hydrology of the Congo Basin successfully. In addition, appropriate model structures, if there 

are any, will always reflect inadequate simulations posed by our inappropriate modelling 

decisions. This logically implies that all modelling studies within the basin will be subject to 

uncertainty, which is a true reflection of the complex nature of the basin hydrology. The question 

in this study, therefore, is: how can we best represent the natural complexity of the Congo Basin 

hydrology in a conceptual modelling framework, while accounting for the potential and 

unavoidable sources of uncertainty? This study contends that a diagnostic evaluation of the value 

of prior information will guide suitable modelling decisions and help identify or construct 

models where relationships between state variables, parameter values and measurable catchment 

characteristics are understood and quantifiable. Furthermore, expressing uncertainty estimates in 

model predictions will appropriately translate our degree of confidence or belief in processes 

representation.   

1.3.3 To establish model(s) that are a realistic representation of the basin hydrology 

Model calibration has been recognized and widely used as a way of establishing and evaluating 

the success of hydrological-based modelling in a basin. While this approach is necessary in the 

Congo Basin for testing the general applicability of models and selecting appropriate structures 

that can adequately represent the basin hydro-climate processes, it is also important to recognise 

its limitations, given the paucity of the observed data. In the context of inadequate data, it is 
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difficult to ensure that model calibration appropriately represents the basin hydrological response 

characteristics. The question of an alternative approach to parameter estimation in gauged and 

ungauged or poorly-gauged basins lies, therefore, at the heart of this study objective. It is 

assumed that the use of physically-based a priori parameter estimation in support of model 

calibration will guide the understanding of the basin’s hydrological response characteristics, 

while providing evidence of parameter dependency and interactions. Sensitivity analysis will be 

useful for testing the parameter variation across different physiographic conditions in the basin.  

1.3.4 To use the model(s) and assess the water resources of the Congo Basin as well as the 

scenarios for future climate and environmental change, including water resources 

development options in the basin 

The impact of the changing environment on water resources availability and the livelihood of 

people due to anthropogenic activities and climate change has been the subject of several studies. 

An effective mitigation of the impacts requires a coherent understanding of the processes driving 

the momentum of change in the environmental factors. This is the focus of the current research, 

which attempts to address the question of what the current status of water resources availability 

in the Congo Basin is. How will a change in the environmental factors (including climate and 

land-use change) affect the hydrological cycle and water resources availability in the Congo 

Basin?  What are the potential sources of uncertainties in the overall predictions of impacts in the 

Congo Basin? Prior to responding to the above questions, a rainfall-runoff model will establish 

the natural flow conditions, which, in turn, will be used to assess the pulse of change in various 

hydrological variables due to changing environmental variables. 

1.4 Thesis structure 

The thesis comprises nine chapters, of which the first and the last chapters give the general 

introduction and conclusion, respectively. Chapter two covers the literature review on issues, 

theories and approaches of predictive uncertainty in gauged and ungauged basins. 
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Apart from the above-mentioned chapters, the remaining chapters respond to the study’s 

objectives as follows (Figure 1.1):  

Study area, physical basin characteristics and 
datasets

Sub-basin delineation and similarity analysis

Hydrological modelling methods

Basin-scale rainfall runoff model calibration

A physically-based a priori parameter 
estimation and uncertainty analysis

Assessing scenarios of change and impacts 
on water resources availability

Objective 1

Chapter 3

Chapter 4

Objective 2 Chapter 5

Objective 3

Chapter 6

Chapter 7

Chapter 8Objective 4

 

Figure 1.1 Organisation of the thesis. 
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CHAPTER 2  PREDICTIVE UNCERTAINTIES IN UNGAUGED AND 
POORLY GAUGED BASINS 

2.1 Introduction 

The continued efforts to understand and quantify the processes of runoff generation and the 

relationship between rainfall and runoff at the catchment level can be traced back nearly 161 

years ago to the rational method of the Irish engineer, Thomas James Mulvaney (1822-1892). To 

date, there is no doubt that these efforts have led to more comprehensive approaches for 

describing the hydrological behaviour of water resources systems. These approaches have 

opened up tremendous advances in numerical methods for solving partial differential equations, 

programming techniques and developing digital databases, and have allowed more robust 

solutions with finer spatial and temporal resolutions to be implemented in applications from 

small to large catchments. Most common approaches currently in use encompass digital 

computing-based hydrological modelling. Though the current generation has witnessed these 

advances in the field of hydrology and water resources, there are many issues and challenges that 

still remain unresolved. The most significant concern is probably the predictive capacity of 

current hydrological model structures in ungauged basins (Parajka et al., 2005).  

A basin is considered ungauged if its records of hydrological observations are too inadequate to 

allow computation of hydrological variables at the appropriate spatial and temporal scales, with 

an accuracy acceptable for practical applications (Sivapalan et al., 2003). Based on this 

definition, many river basins, especially on the African continent, are ungauged. These basins are 

located in developing countries where fewer resources are allocated to monitoring water 

resources. At the same time, these countries exhibit serious water-related challenges such as land 

use and climate changes, population growth, drought, scarcity of food, water pollution, and river 

siltation (Hughes, 2007). Accurate water resources information is required for prediction and 

planning in such areas, but in these areas traditional approaches to water resources estimation 

have shown limitations for generating the required information. The major challenge with these 

approaches is inadequate formulation or representation of the processes of interest on basin 

hydrological response, usually caused by insufficient observations and information. In addition, 
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there are tremendous spatial and temporal scale heterogeneities and variabilities, which make 

predictions in ungauged basins inherently uncertain. The need for novel approaches aimed at 

developing and using improved predictive capabilities to provide a coherent understanding of the 

hydrological response in ungauged and poorly gauged basins (Sivapalan et al., 2003) resulted in 

the implementation of a ten-year programme by the International Association of Hydrological 

Sciences (IAHS) focussing on Predictions in Ungauged Basins (PUB).  

Any predictions of the hydrological response in space and time will have a degree of uncertainty, 

which is the essence of Predictive Uncertainty in Ungauged and Poorly Gauged Basins. The 

PUB concept implicitly takes into account the identification, estimation and possible reduction of 

uncertainties resulting from input data, model structure, model parameters and other initial-

boundary conditions (Beven, 2001; Wagener et al., 2004a). The extent of predictive uncertainty 

can be expressed in terms of confidence or prediction limits which may be enhanced through 

improved approaches to data collection, parameter estimation and process representation in 

models. Basic assumptions underlying the various innovative approaches for predictive 

uncertainty is that they (1) use inference from observed data in gauged basins to interpolate 

hydrological responses to an ungauged basin; (2) are based on process understanding and 

descriptions obtained through laboratory studies; and (3) rely on the application of fundamental 

theories, which must still be conditioned by observations (Sivapalan, 2005; Wagener et al., 2007; 

Sawicz et al., 2011; Sivakumar et al., 2011). This chapter focuses on the issues, theories and 

approaches of predictive uncertainty in ungauged basins. It is generally accepted that predictions 

in ungauged basins are based on initial conditioning of modelling experiments in gauged basins; 

therefore the chapter also highlights the issues of modelling approaches for gauged basins.  

2.2 Hydrological modelling in river basins 

The processes that take place at catchment level are complex and vary rapidly in space and time. 

A complete understanding of these processes is further complicated by our limited ability to 

measure or assess the sub-surface interactions where most water fluxes take place (Beven, 2001). 

This gives rise to multiple unknowns, which cannot be dealt with by making inferences from the 

available measurements. Therefore, environmental models are employed to reproduce the 
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hydrological functional behaviours of the catchment. This representation of the processes related 

to the transition of rainfall to runoff through channels occurring in a catchment is termed 

hydrological modelling, which can also be understood as a means of quantitative prediction for 

decision making. Hydrological models use observed rainfall and evaporation demand as inputs to 

simulate the runoff processes. Figure 2.1 illustrates a schematic of processes involved in runoff 

generation. The starting point of the catchment hydrological processes is the precipitation or 

surface water input as it includes both rainfall and snow for cold regions. In many instances, a 

fraction of surface water input is intercepted through vegetation canopy from which evaporation 

takes place. The fraction that is not intercepted and that succeeds in penetrating the canopy 

structure, the throughfall, is meant to contribute to the total catchment runoff through surface and 

sub-surface flows. Depending on the antecedent conditions of soil moisture, the rainfall duration 

and intensity, land cover, soil texture and structure, processes such as infiltration overland flow, 

depression storage, deep percolation and groundwater recharge and outflow, and interflow will 

take place.  Infiltrated fluxes are subject to the properties of inter-granular pores and structural 

pores (macropores or pipes) of the soil matrix (Tarboton, 2003). These structural voids within the 

soil matrix serve as preferential pathways for sub-surface flows. The permeability of the soil 

matrix may differ between soil horizons and this may lead to the build-up of a saturated wedge 

above a soil horizon interface (Uhlenbrook et al., 2003). Water in these saturated wedges may 

flow laterally through the soil matrix, or enter macropores and be carried to the stream as sub-

surface stormflow in the form of interflow. There is also a flux of water to the atmosphere 

through transpiration of the vegetation and evaporation from soil and surface storages. The 

surface water input may accumulate on the surface in depression storage, or flow overland 

towards the streams as overland flow, or infiltrate into the soil, where it may flow laterally 

towards the stream contributing to interflow. The surface below which the soil and rock is 

saturated and at pressure greater than atmospheric is the water table, which constitutes a 

boundary between the saturated zone containing groundwater and the unsaturated zone. The flux 

of water to groundwater store is referred to as groundwater recharge and lateral drainage of 

groundwater to the stream is known as baseflow.  Immediately above the water table is a region 

of soil that is close to saturation, due to water being held by capillary forces. This is referred to 

as the capillary fringe.  
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Figure 2.1 Schematic of processes involved in runoff generation (top) and a cross section 

through a hill slope that exposes the flow in more detail (source: Tarboton, 2003). 

The relationship between rainfall and runoff is a complex one as a result of landscape complexity 

brought about by tremendous heterogeneities and variability associated with the occurrence of 

connectivity, similarity and uniqueness of places at all scales (Beven, 2001; Wagener et al., 

2007). For this reason hydrological modelling in river basins is usually carried out based on a 
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selected model structure that is appropriate for the envisaged modelling purpose, the given 

catchment characteristics and the available data (Wagener et al., 2004b). The modelling purpose 

defines aspects such as which hydrological processes need to be considered and what modelling 

time step is required. The catchment characteristics are important criteria in determining what 

type of process description is suitable. The available data enable a certain degree of causality of 

process description and allow a particular minimum spatial and temporal resolution. 

Furthermore, the experience with a particular modelling code and the cost involved are equally 

important (Beven, 2001). A large number of rainfall-runoff modelling structures are currently 

available, but they differ in the degree of detail of the description of processes, the manner in 

which processes are conceptualised, the requirements for input and output data, and the possible 

spatial and temporal resolution (Wagener et al., 2004b).  Generally, a choice has to be made 

between an event or continuous model, a lumped or distributed model, and a deterministic or 

stochastic model. There is already plethora of hydrological model classifications (Hughes, 

2004b). Figure 2.2 illustrates one of the many classification schemes of hydrological models. 

Often, two types of classification are applied with regards to a physical description of catchment 

processes (conceptual and physically-based models), and a spatial description of catchment 

processes (lumped and distributed models, Figure 2.3) (Xu, 2009). Hughes (2004a) presents a 

classification based on model complexity, spatial complexity, temporal complexity and 

modelling purpose. The extent to which individual hydrological processes (Figure 2.1) are 

represented in a model represents the degree of complexity of that model, while the degree to 

which a model is able to account for a finite element of the area being modelled represents the 

spatial complexity of the model. Temporal complexity refers to the time steps used to initiate 

hydrological processes in the models and may stretch from hours to months. The classification 

based on the modelling purpose attempts to group models according to the intended use of the 

model outputs, such as generation of flood events for engineering design and river training works 

(event models), and multi-purpose river basin management, including climate and land use 

changes (continuous models). In this regard, choosing an appropriate model is crucial for 

hydrological predictions. Many uncertainty issues in hydrological modelling arise from a 

spurious representation of hydrological processes and inadequate model structures and these 

uncertainties can greatly impact the modelling results.   
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Figure 2.2 Classification of hydrologic models according to Xu (2009). 

 

Figure 2.3 Graphic representations of geometrically-distributed and lumped models. (source:  

Xu, 2009). I is input and O is output. 
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2.3 Uncertainty issues in hydrological modelling of river basins  

The concept of uncertainty is not new to hydrological modelling and water resources planning 

(Stephenson and Freeze, 1974), but its consideration as an integral part in hydrological 

predictions is a relatively new development (Hromadka and McCuen, 1988; Melching et al., 

1990; Beven and Binley, 1992). In general, the term “uncertainty” is defined in various ways by 

various authors (Walker et al., 2003; Refsgaard et al., 2007), which reflects many uncertainty 

issues across a large spectrum of disciplines. Moore (2005) considers uncertainty as doubt about 

reality to which imprecision, incompleteness, variability, vagueness and randomness are all 

contributing factors. In hydrological sciences, the uncertainty issues are broad and stretch from 

the visualisation (perception), through conceptualisation of hydrological processes to the use of 

the model outputs for decision making. A generic classification of uncertainty in hydrological 

modelling encompasses the uncertainty due to input data, model parameters and model 

structures. In this chapter, case studies are used to illustrate a broad range of uncertainty issues 

and how they pertain to hydrological modelling.  

Climate data constitute the main inputs used to force hydrological models. The main climate 

variables of interest in hydrological modelling that are used to quantify the climate of a basin in 

relation to water resources are precipitation, evaporation, evapotranspiration, air temperature, 

solar radiation, relative humidity, wind speed and wind direction. Precipitation, and often 

evaporation demand, are used to drive most hydrological models. The World Meteorological 

Organisation (WMO, 1983) presents the sources of uncertainty in rainfall data as related to 

gauge type, gauge height, windshield, exposure, inadequate gauge network, methods of 

measurement, inaccuracy of the instruments, and the methods used to interpolate or extrapolate 

the variables. Vrugt et al. (2008) used Differential Evolution Adaptive Metropolis (DREAM) to 

assess the forcing data errors during calibration of a parsimonious, five-parameter hydrological 

model (HYMOD). A dual-step approach was used, which consisted of simulating the HYMOD 

parameters without explicit assessment of forcing error, and secondly, undertaking a 

simultaneous estimation of the catchment model parameters and rainfall multipliers. The study 

revealed that the second approach not only increased the uncertainty for most of the HYMOD 
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parameters, but also resulted in significantly different values for the distribution type. 

Furthermore, the study findings revealed that the explicit consideration of forcing error changed 

the type of the posterior probability distribution function on the model parameters; this could 

have significant implications for regionalisation studies. Barca et al. (2005) carried out a study to 

analyse the probability distribution functions (PDFs) of daily and hourly rainfall amounts, which 

revealed the existence of a pattern of high skewness to the right tail of the PDFs. The authors 

attributed the uncertainty to the discrete process describing the wet-dry day variability and the 

continuous process describing the rainfall amounts on wet days.  

In general, the uncertainties in climate forcing data have received more attention in hydrological 

studies than those resulting from using basin physical properties and other input boundary 

conditions such as land cover, digital elevation models and soil physical properties (Moore, 

2005). Variability in the physical basin properties is a result of the interaction of the 

environmental factors over a range of spatial and temporal scales (van der Keur and Iversen, 

2006). These data are usually obtained at point scales and must be aggregated to an appropriate 

scale for river basin modelling (van der Keur and Iversen, 2006). However, different levels of 

heterogeneities are encountered when passing from the microscopic to the macroscopic scale and 

processes identified and regarded valid at one scale may not hold at another spatial scale (van der 

Keur and Iversen, 2006). Uncertainty in soil property data at the river basin scale arises from the 

spatial and temporal variability of environmental variables, sampling procedures in the field, 

analysis in the laboratory and the approaches used to correlate the spatial characteristics. 

Examples of these approaches include scaling, aggregation, geo-statistical methods, use of pedo-

transfer functions and use of digital soil models (Blöschl and Sivapalan, 1995). Scaling provides 

a means to relate field spatial and temporal variabilities of the derived catchment characteristics 

to the resolution required for model application by using simple conversion factors called the 

scaling factors. Scaling can also be used to estimate soil hydraulic properties at different 

locations in a watershed by measuring these properties at a representative location and from 

limited data at other locations (Zhu and Mohanty, 2003). Blöschl and Sivapalan (1995), 

Heuvelink and Webster (2001) and Pachepsky et al. (2003) provide a review of spatial and 

temporal variability and scale issues in hydrological modelling and soil physics. Canter and 
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Genst (2002) present a study that encompasses uncertainty in this area. The authors carried out a 

study based on modelling of spatially continuous phenomena, which are less sensitive to input 

uncertainty. In this study, the authors assessed the input uncertainty on the outcomes of a raster-

based model for structural landscape classification. A digital elevation model (DEM) and land 

cover maps were used as input data to the model and the resulting uncertainties were assessed 

based on the “degree of the landscape openness” (see Canter and Genst, 2002)  and 

homogeneity. The individual effects of the input data, as well as their combined effect on the 

model output uncertainty, were assessed using a Monte Carlo simulation approach. The study 

revealed that the uncertainty in land cover classification mostly affected the determination of the 

degree of homogeneity of the landscape. The uncertainty from the DEM was significant in the 

transition zones between enclosed and semi-enclosed landscape types. The combined effect of 

the DEM and land cover input data showed the trend already illustrated for the individual effects, 

but with a low level of fragmentation due to the smoothing of differences in the identification of 

the level of landscape heterogeneity between the simulated classifications. 

Recent developments in river basin modelling have been moving towards incorporating 

conceptual groundwater components into rainfall-runoff models with the intention of modelling 

the interactions between surface and groundwater flows (e.g. Hughes, 2004a; Hughes et al., 

2006). These types of models consist of simulating space-time variations in quantities such as 

interflow, soil moisture flow, recharge, groundwater storage and runoff, transmission losses and 

evaporation (DWAF, 2005). This development is affected by the difficulty of finding data on 

sub-surface processes, which are not always available in many developing countries. There are 

also many errors associated with field measurements of these data, or the processes are difficult 

to measure with the current technology (Beven, 2001). Hughes et al. (2010a) discuss a broad 

range of issues related to conceptual hydrological model uncertainties, encompassing process 

understanding, data input, model parameters and, less explicitly, uncertainty due to model 

structure. In their study, the authors illustrated the effects of uncertainty in the estimation of a 

rest water level parameter as a result of a potential mismatch between the interpretation of the 

parameter from its source database and the way in which it was used in the model. Similarly, the 

study identified the contribution of individual parameters to the overall model uncertainty, which 
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helped target the areas for further improvement in the model simulation. Furthermore, the study 

explicitly considered uncertainty due to spatial discretisation of the primary catchment, which 

was first modelled as a single unit and then split into various modelling units for subsequent 

modelling. The subsequent modelling units were split to represent two distinct zones of recharge 

and abstraction. The authors observed, from the comparison of the modelling results, that scale-

related model structural issues could be extremely important; a problem that is difficult to 

resolve without further detailed information. In the same context, Zhang et al. (2008) used a 

dynamic modelling language (PCRaster) to investigate model structural uncertainty in two 

catchments by examining the models’ performance at various levels of model complexity, 

ultimately selecting the most appropriate and efficient model structure for the catchments. The 

variation of sub-modules in the model was used to propagate uncertainty in the model outputs. 

The study findings revealed the existence of a trade-off between model complexity and 

simulation ability.  

A close look at the above-mentioned studies reveals three major concepts that are relevant for 

uncertainty analysis in hydrological modelling. These are the understanding of uncertainty, the 

quantification of uncertainty, and the reduction of uncertainty. Clearly understanding the various 

sources of uncertainties and their relationships is an initial and necessary condition to adequately 

quantify and reduce uncertainties. An explanation is provided by Liu et al. (2008) in that 

“different uncertainty sources may introduce significantly different error characteristics that 

require different techniques to deal with; and missing important uncertainty sources may lead to 

misleading uncertainty predictions in hydrological modelling”. In light of the above-mentioned 

studies, the sources of uncertainty in hydrological modelling include: the methods of 

measurement and interpolation or extrapolation of the climate variables (WMO, 1983); the 

natural variability of wet and dry periods (Barca et al., 2005); the methods of measurement, 

interpolation, classification and transfer of spatial characteristics of the physical basin properties 

(van der Keur and Iversen, 2006); the methods of measurement, as well as limited knowledge of 

sub-surface properties, modelling scales, and the scale-related structural issues (Hughes et al., 

2010a); and representation of the internal model structure states (Zhang et al., 2008). These 

studies establish not only the need to quantify uncertainty properly in the modelling process, but 
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also to better test the hydrological theories and approaches and to maximize the opportunities for 

finding useful regionalisation relationships.  

2.4 A framework of hydrological modelling and predictive uncertainty   

Many frameworks have been suggested to address the issues of predictive uncertainty in 

hydrological modelling (e.g. Moore, 2005; Xu, 2009). Common to these approaches is perhaps 

the probabilistic representation of the modelling outcomes. However, the lack of a unifying 

framework for hydrology at the catchment scale (Sivapalan, 2005; Sivakumar and Singh, 2011) 

makes the various approaches disparate. Figure 2.4 provides a conceptual framework of the 

modelling chain with associated processes and level of uncertainties. While the framework is not 

a new development, it is meant to draw attention to the relevant aspects in the process of 

hydrological modelling and to illustrate the need for uncertainty analysis at the various stages of 

the modelling process.  

The initial and necessary condition in the flow chart of hydrological modelling and predictive 

uncertainty is determined by the pre-modelling phase that allows a clear identification of 

processes for subsequent conceptual formulations. The way the problem is perceived from an 

investigator’s point of view will determine the approaches to be used to address the problem. 

Also important to the above-mentioned process component is the level of uncertainties that are 

unavoidable in every modelling phase. There are also intermediary levels of uncertainties: 

notably the scale and communication, which intervene between the modelling phases. Scale 

allows transfer of the processes from pre-modelling to modelling phases, whereas 

communication ensures dialogue between science and decision making. Finally, it is important to 

note that the way uncertainty is communicated for decision making determines the level of risk 

in the post-modelling phase. This risk is of two orders: firstly, there is risk of making a wrong 

decision due to misunderstanding the uncertainty results. Therefore, ensuring adequate 

communication of the uncertainty results should be a priority. To this end, appropriate methods 

that allow the stakeholders to make a flexible choice based on the range of plausible solutions are 

relevant. Secondly, risk can arise from non-application of the outcomes of the uncertainty results, 

because the results are not supporting the predefined views and goals of the decision making.  



 

 

25

Structure 

C
o

m
m

u
n

ic
a

ti
o

n

P
o

st
-M

o
d

e
ll
in

g
  
  

  
  
  

  
  
  

  
  
  

  
 M

o
d

e
ll
in

g
  

  
  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  
 P

re
-M

o
d

e
ll
in

g
 

Identification of processes

Modelling objectives 

Conceptual formulations 

Modelling decisions 

Perceptual model 

Physical basin 

properties

Regional climate 

patterns

Major developments 

in the basin 

Guiding principles

Setting priorities 

Quality assurance  

Socio-economic 

development  

Environmental 

sustainability 

Scenario analysis

Description of processes

Ensembles of flow 

prediction

Models’ identifiability 

State variables Parameters 

LLL IMQ εθ += )/(

N
a

tu
ra

l 
p

ro
c
e

ss
e

s 

c
o

m
p

le
x
it

y
M

o
d

e
l 
 c

o
m

p
le

x
it

y
D

e
c
is

io
n

 m
a

k
in

g
 

ri
sk

s

S
c
a

le
s

Modelling phase
Processes

Level of uncertainty

 

Figure 2.4 Flow chart of hydrological modelling and predictive uncertainty in river basins.  

Q = simulated flow; I = matrix of input variables; ML= model structure; θL= Vector of 

parameters within the structure; εL= Errors. 
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2.4.1 Pre-modelling phase 

As shown in section 2.2, hydrological modelling studies involve decisions about conceptual 

formulation of the main processes of the basin hydrology and models’ identifiability. At least 

part of uncertainty in hydrological modelling arises from misrepresentation of the basin 

processes, which in turn is greatly influenced by our perceptions about those processes. In many 

instances, the qualitative understanding of the catchment response will reflect the researcher’s 

background and experience with the catchment under study. However, it is always difficult to 

ensure that processes are well represented unless there is a valid agreement on the qualitative 

understanding of the catchment behaviour. Therefore, a preliminary evaluation should focus on 

the analysis of the various requirements of the modelling study in terms of the expected 

outcomes to meet the problem at the end (Refsgaard et al., 2007). In this respect, analysis of a 

priori  information, including all relevant knowledge about the area under study, is crucial in 

order to develop a qualitative understating of the processes and interactions which are necessary 

to conceptually formulating the models (e.g. Clark et al., 2011; McMillan et al., 2011). In this 

regard, Refsgaard et al. (2007) observe that consideration must be given to spatial and temporal 

details required for the model, to the system dynamics, to the boundary conditions and to how 

the parameters can be determined from the available data. The socio-economic context must be 

included to take into consideration the views of stakeholders to ensure that the modelling results 

will be accepted and incorporated into policies for decision making (Moore, 2005). 

The introductory chapter of this thesis noted that the Congo Basin is prone to a high degree of 

complexity due to its wide range of physiographic and climatic conditions. The term 

“complexity” is central to hydrological sciences and is intricately related to many other key 

concepts of hydrological processes such as heterogeneity, variability, scale, hydrological 

connectivity, equifinality, and similarities, all of which will be explored in the following 

sections. During the past few decades, efforts have been made to uncover hydrological 

complexity-based concepts to understand the dynamics of the hydrological processes (Sivapalan, 

2005; Sawicz et al., 2011; Sivakumar et al., 2011). Therefore, the hydrological complexity-based 

theories have been a cornerstone of models’ development, including uncertainty analysis 
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approaches. In the following sections, an attempt is made to describe the hydrological 

complexity-based concepts with regard to how they influence the hydrological processes.   

Heterogeneity and variability: Consider the water balance at the land surface where ∆S/∆t 

represents the change in storage due to change in time. Two major concepts can be defined from 

this expression, where the storage is composed of (1) media properties with (2) variation in 

space and time. Media properties are structural characteristics where the material properties vary 

from point to point (Poehls and Smith, 2009). Variation in the structural characteristics 

determines the heterogeneity of the physiographic settings. Heterogeneity is often related to 

physical features of the natural system, such as topography, soil characteristics, geology and 

vegetation (Wigmosta and Prasad, 2005). The complexity of the hydrological processes is related 

to the heterogeneity of the landscape properties, which in turn are compounded by temporal and 

spatial variability at all scales (Sivapalan, 2005). Strong non-linearities and thresholds are some 

of the paradoxes that defy the causal explanation of hydrological processes (Sivapalan, 2005). 

The need for a holistic approach, rather than a fragmented description of the landscape 

heterogeneities, has also supported the increasing recognition of natural and multi-scale 

heterogeneities. This need has further propelled investigations for a so-called “new unified 

theory of hydrology at the catchment scale” (Sivapalan, 2005; Sivakumar and Singh, 2011). The 

previewed innovative unified theory attempts to address multi-scale heterogeneities as a natural 

and intrinsic part of the catchment hydrology, as well as discovering new catchment scale 

processes in relation to the patterns of heterogeneity. At the same time, the theory attempts to 

identify the interconnections and feedback between patterns and processes over a range of scales, 

and their interpretations in terms of their functions.  

Scale: In hydrological and environmental sciences, scale is used as a measure of temporal and 

spatial variation of the hydrological properties (Woods, 2005). Scale refers to a finite element of 

space and a finite duration of time upon which observations, process descriptions, model 

implementation and predictions are made (Bloschl, 2005; Wigmosta and Prasad, 2005). An 

integral scale is an average distance over which a variable is correlated (Skoien et al., 2003). 

Depending on the processes being targeted, models are typically developed for temporal scales 

ranging from hourly, daily, and monthly time steps to seasonal time steps, and spatial scales 
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ranging from point observations, laboratory, hill slope and catchment to region. The climate 

forcing to models and other observational variables may be collected at variable scales to fit the 

model resolutions. The modelling scale is often smaller or larger than the observation scale and 

modelling scales are partly related to processes and partly to the application of hydrological 

models (Bloschl and Sivapalan, 1995). Disagreement between the spatial and temporal resolution 

of the model and the scales of the observation contributes to model uncertainty.   

The process used to fit the observation scales to the model resolution is referred to as scaling, 

which includes the transfer of information from low resolution to high resolution (up-scaling) 

and from high to low resolution (down-scaling).  The distinction between up-scaling and down-

scaling and the related terms are well explained in Blöschl (2005). Many issues in scaling (up-

scaling and down-scaling) are associated with how the model equations and parameters change 

with scales and how best to represent random variability in both time and space at various scales 

(Skoien and Blöschl, 2005).  

Connectivity: If we consider a natural system as an entity, it is therefore obvious to understand 

that its behaviour as a whole depends upon the individual contributing units (elements). In turn, 

the behaviour of the contributing elements depends upon their internal linkages and relationships 

(Sivakumar and Singh, 2011). An important concept of connectivity arises here that is linked to 

the complexity of the catchment hydrological processes. The landscape is organised in structural 

units that have a spatial pattern. The dynamic interactions of these structural units determine the 

functional characteristics of the landscape features. The flow patterns, transfer pathways, 

catchment response to events and inputs such as natural and human induced disturbances, and 

the spatial and temporal distribution of such inputs (Harvey and Gonzalez Villalobos, 2007), 

remain under the influence of the landscape elements in relation to each other (Bull et al., 2003;  

Lexartza-Artza and Wainwright, 2009). Connectivity determines the nature of the internal 

linkages (Lexartza-Artza and Wainwright, 2009) and the conveyance of water and other 

compounds, such as sediments across different landscape units (Phillips, 2011). As a result, this 

conditions the processes in a non-linear manner (van Oost et al., 2000), as well as imposing 

some longitudinal, lateral, vertical and temporal behaviour on the catchment processes (Ward et 
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al., 2002).  Description of structural and functional characteristics of the landscape units can then 

provide the basis for understanding and defining hydrological connectivity.   

Hydrological connectivity has been broadly or ambiguously defined (Bracken and Croke, 2007), 

thus reflecting the related challenge of the catchment complexity. The term “connectivity” has 

been used in ecological studies to describe how the spatial arrangement in the landscape affects 

movement of organisms among habitat patches (Levick et al., 2008). In hydrology, a 

comprehensive definition of connectivity was given by Nadeau and Rain (2007) as the 

“hydrologically mediated transfer of mass, momentum, energy, or organisms within or between 

compartments of the hydrological cycle”. This transfer is important for lateral and vertical fluxes 

and is presumably a key factor in the interactions between surface water and groundwater. In 

general terms, connectivity appears to be a useful concept for understanding spatial and temporal 

scale variability and identifying factors relating the catchment hydrological response to the 

patterns of the physiographic setting.  

Equifinality: Notwithstanding the tremendous heterogeneity of the landscape, quite similar forms 

within the landscape may occur as a result of different contributing processes (Haines-Young 

and Petch, 1983). This is the concept of equifinality that was first introduced by von Bertanlaffy 

(1968) as a general property of open systems, such that it can be used to describe complex 

systems in which a steady state can be reached from different initial conditions and in different 

ways. The concept has been taken further in system theory, emphasising that a final state, or 

performance of an organisation, can be achieved through multiple different organisational 

structures even if the contingencies the organisation faces are the same (Tushman and Nadler, 

1978; Gresov and Drazin, 1997). Thus, equifinality implies that “strategic choice or flexibility is 

available to organization designers when creating organizations to achieve high performance” 

(Gresov and Drazin, 1997). In hydrological modelling, many parameter sets may occur in quite 

different parts of the parameter space that may provide similar simulations of the catchment 

response (Beven, 1993; Butts et al., 2004). This concept of equifinality was first introduced in 

environmental modelling by Beven (1993) and has subsequently been the subject of scientific 

debates as well as the development of theoretical frameworks for uncertainty analysis in 

hydrological modelling. Beven (2001) observes that equifinality is endemic to modelling 
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environmental processes, and an approach based on model falsification (Wagener et al., 2004b) 

requires thoughtful and truly scientific strategies for defining hypotheses and data collection 

programmes for the most cost-effective refinement of the parameter space.   

Similarity: Based on the definition of a catchment as “a self-organizing system, whose form, 

drainage network, ground, and channel slopes, channel hydraulic geometry, soils, and vegetation, 

are all a result of adaptive ecological, geomorphic, and land-forming processes” (Sivapalan, 

2005), it appears that areas with a common climate, underlying geology and lithology would 

contain a high degree of hydrologic response similarities (Bloschl and Sivapalan, 1995). The 

choice of catchments for information transfer in regionalisation studies is usually based on the 

principle of some measure of similarity (Mazimavi, 2003). Similarity analysis seeks to organize 

variables into groups and derive relationships between those groups and enables the grouping of 

the tremendous landscape variability with regard to space, time and processes (Wagener et al., 

2007). Numerous studies have been conducted on the use of dynamic catchment response 

characteristics (signatures, patterns) such as runoff, baseflow, soil moisture content, recharge, 

evapo-transpiration as well as static characteristics of the catchment’s form such as 

geomorphologic and pedologic characteristics (Wagener et al., 2007), to understand and derive 

relationships between groups of similar characteristics of hydrological response. Acreman and 

Sinclair (1986) used drainage area, stream frequency, channel slope, mean annual rainfall, 

fraction of basin covered by lakes and soil type index to group 186 catchments into five 

homogeneous regions in Scotland. Wiltshire (1986) used the basin area, average annual rainfall 

and urban fraction to group 376 catchments into five homogeneous regions in the United 

Kingdom. Burn and Goel (2000) used catchment area, stream length and main channel slope to 

group catchments for flood frequency in central India. Wolock et al. (2004) used the concept of 

hydrological landscapes and similarities in topography to group 43 931 catchments into 20 

regions in the United States. Mazimavi (2003) used numerous catchment characteristics, such as 

the mean annual precipitation, monthly precipitation, average number of rainy days per year, 

mean annual potential evaporation, elevation, catchment area, drainage density, slope, proportion 

of a catchment covered by different lithologies, and proportion of a catchment with various land 

cover types to classify 52 Zimbabwean catchments into clusters with homogenous hydrological 
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responses. Beven and Kirby (1979) showed that geomorphologic parameters can be used to 

describe the hydrological behaviour at a given position within the landscape. Rodríguez-Iturbe 

and Valdés (1979) discussed the significance of the channel network structure (geomorphology 

and geometry) on the resulting shape of a catchment unit hydrograph and event streamflow 

characteristics. D’Odorico and Rigon, (2003) demonstrated the role of hill slopes in the 

catchment travel time distribution. However, it should be noted that the process of using 

catchment metrics to derive the relationships is fraught with uncertainties, partly due to our 

limited understanding of the interaction of atmosphere-land surface at the catchment scale; and 

the limited ability to measure structural characteristics of both surface and sub-surface catchment 

features, hydro-climate characteristics and functional characteristics, such as residence time and 

soil moisture distribution (Wagener et al., 2007). This limited understanding can be compensated 

by some approximations that attempt to mimic the dynamic of natural processes and simulate the 

real world phenomena. The most popular of the approaches used to derive these approximations 

is the model calibration.  

2.4.2 Modelling phase 

Natural flow phenomena are governed by the principles of conservation of mass, momentum and 

energy, which can be expressed by a number of mathematical or conceptual relationships in 

order to provide an understanding of the system behaviour (Brutsaert, 2005). Commonly used 

approaches relate the invariant properties that characterise specific hydrological behaviours or 

model parameters (Clarke, 1973) in order to describe certain physical mechanisms of the 

hydrological system.  The most popular approach, one that has gained a wide audience in the 

hydrological community, is model calibration. Besides traditional model calibration, various 

developments in hydrological modelling such as regionalisation and a priori parameter 

estimation have been used to help enhance our ability to make predictions in ungauged basins.   

2.4.2.1  Model calibration 

All rainfall-runoff models are simplifications of the real-world system (Gupta et al., 2005). 

Despite the level of sophistication and the explicit spatial level of representation, hydrological 

models aggregate, to some extent, the spatially distributed landscape properties into much 
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simpler homogenous storages with transfer functions that describe the water fluxes within and 

between different compartments (Vrugt et al., 2008).  The aggregation infers a certain degree of 

conceptualisation of the model parameters for which direct observations may not be obtained 

from the field, but only through model calibration against observed data.  Therefore, model 

parameters estimated in this manner are conceptual representations of the heterogeneous 

landscape (catchment) properties (Vrugt et al., 2008). Wagener and Wheater (2006) defined 

conceptual rainfall runoff models as those for which the structure is specified prior to any 

modelling being undertaken, and some of their parameters do not have a direct physical 

interpretation (not being independently measured) and have to be estimated through calibration.   

A common characteristic to most conceptual rainfall-runoff model structures is the aggregation, 

in space and time, of hydrological processes into a number of key responses represented by the 

storage components and their interactions (Wagener et al., 2003). Sorooshian (1991) observed 

that most conceptual rainfall-runoff models recognise the presence of different vertically 

stratified zones of soil in the ground. The runoff components are usually separated into overland 

flow, baseflow and interflow that ultimately contribute to the channel inflow (see section 2.2). 

For this reason, choosing the appropriate model structure is a crucial step in hydrological 

modelling, in order to predict streamflow or other variables accurately, and to understand the 

dominant physical controls of the catchment’s response (Clark et al., 2008; Bai et al., 2009). 

First order uncertainty arises with the determination of the variables predicted or required by the 

model, the time step and the objective functions for evaluation of performances.  

Conceptual rainfall-runoff modelling requires the identification of a suitable model structure and 

the estimation of parameter values that are most representative of the catchment under 

investigation, while considering aspects, such as modelling objectives and available data 

(Wagener et al., 2001; Wagener et al., 2003). This process, sometimes known as model 

identifiability, involves identification of model structure and parameter estimation. An additional 

step in this framework is the model validation or verification, commonly used in traditional 

modelling procedures (Wagener et al., 2003). The overall philosophy of model identifiability is 

as represented by Sorooshian (1991) and Wagener and Wheater (2006), an optimisation of a 
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transfer function into output variables: Optimise( ) ( )[ ]θ,IFQgEg −= , where [ ]n
T qqQ ,...1= is 

the vector of single output variables (streamflows), I is the multivariate vector of input variables 

(usually precipitation and potential evapo-transpiration records), F (-) is the deterministic model 

of the catchment response, θ is the vector of model parameters (the values of which must be 

estimated), E is the stochastic time series of the additive errors, and g (-) is the selected 

estimation criterion.  

Model parameters may aggregate a number of individual processes that cannot be represented 

separately and for which direct measurements do not exist (Wagener et al., 2004b). The main 

assumption is that these parameters are related to inherent and invariant properties of the 

hydrological system, thus, they have physical relevance even if they cannot be assumed to have 

physical (measurable) interpretation (Gupta et al., 2005). One way of estimating these 

parameters is through manual calibration, which has been widely recognised and implicitly 

accepted as a mode of parameter estimation in many conceptual rainfall-runoff models. In 

general terms, manual calibration procedures involve adjusting the model parameter values 

through trial and error until a satisfactory fit is reached, based on pre-defined performance 

criteria. For a rainfall-runoff model to be well calibrated, there are three necessary conditions 

(Wagener et al., 2003; Gupta et al., 2005): (1) the input – state –output behaviour of the model is 

consistent with the measurements of watershed behaviour, (2) the model predictions are accurate 

(the bias is negligible) and precise (the prediction uncertainty is relatively small), and (3) the 

model structure and behaviour are consistent with hydrological understanding of reality. In 

addition, NWS (2001) provides general requirements for manual calibration, which include (1) 

proper calibration of a conceptual model which should result in parameters that cause model 

components to mimic processes they are designed to represent. This requires the ability to isolate 

the effects of each parameter;  (2) each parameter is designed to represent a specific portion of 

the hydrograph under certain moisture conditions;  (3) calibration should concentrate on having 

each parameter serve its primary function rather than overall goodness of fit. The manual 

calibration process has the advantage of allowing the primary function of each parameter to be 

expressed and the effect of each parameter to be isolated (Wagener et al., 2004b).  
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However, experience shows that manual calibration is time-consuming, requires extensive 

experience with a particular model structure which may not be transmittable, introduces a certain 

degree of subjectivity and precludes an objective analysis of parameter uncertainty (Wagener et 

al., 2005). This is partly due to high number of non-linearly interacting parameters present in 

most hydrological models (Wagener and Gupta, 2005). In addition, manual calibration does not 

fully use the advantage of modern computing generation facilities (Ndiritu, 2008). Traditional 

model calibration methods seek to find optimum or best parameter sets, based on an objective 

function, which provides an aggregate measure of the model performance. Further studies have 

proved that this process results in considerable loss of information that can be used to distinguish 

between competing parameter sets (Gupta et al., 2005).  Moreover, there is lack of explicit 

consideration of uncertainty in the parameters during calibration. Based on these problems of 

manual calibration, consistent effort has been deployed in the development of improved methods 

of model calibration. Some of these methods consist of automatic calibration, optimisation 

methods, least squares analysis, entropy-based methods, methods of moments, maximum 

likelihood analysis and neural networks.  Singh and Frevert (2002) observe that due to the 

particular bias of the model builder, there is, however, no one method that is universally 

employed in all models. This is the reason why multi-objective global optimisation schemes are 

being increasingly accepted for the calibration procedure (Wagener et al., 2001). 

The model is calibrated for a number of catchments for which a set of optimum parameters is 

estimated. Data limitations (random or systematic errors), model complexity (uncertainty due to 

sub-optimal values), spurious understanding of the processes of interest in the basin and the lack 

of feasible models (structures as well as parameter sets, errors due to incomplete or biased model 

structure - Butts et al., 2004) to adequately represent the main processes, are the outstanding 

issues for adequate identification of the model parameters, especially in ungauged catchments. 

Equifinality, ambiguity, non-uniqueness, and ill-posedness (Beven, 2001) are complex manifold 

uncertainties related to the aforementioned issues. Vrugt et al. (2008), as well as Wagener and 

Weather (2006), observe that, for a model to be useful in predictions, the values of the 

parameters need to accurately reflect the invariant properties of the components of the 
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underlying system they represent. In fact, the use of clearly identifiable parameters is the 

underlying assumption of a successful regionalisation (Deckers et al., 2010).   

2.4.1.2  Regionalisation 

A river basin landscape is inherently characterised by heterogeneity of the atmosphere-land 

surface conditions, including land cover, land use, sub-surface formations, and the prevailing 

climate over a wide range of spatial and temporal scales. Within the landscape, there are areas of 

physiographic similarities with respect to both input and output fluxes of water and other 

quantities (Dooge, 2003). Regionalisation is based on an understanding of the regional 

relationships between the areas of physiographic similarities to enable the calibrated parameter 

sets to be successfully transferred from gauged to ungauged catchments (Bloschl and Sivapalan, 

1995). A successful transfer is based on the use of clearly identifiable parameters (Deckers et al., 

2010). First, the parameters are identified from a well-gauged catchment (donor catchment) and 

then transferred to a poorly gauged catchment (recipient catchment). In this regard the first step 

is to characterise the hydrological response of the donor catchment, and the second step is to 

transfer the hydrological response parameters to the catchment of interest. In the first place, 

conceptual hydrological modelling has proved to be generally useful (Wagener and Wheater, 

2006). Secondly, attempts to transfer the basin response to the catchment where data do not exist 

have resulted in various approaches being used. Early work in the 1970s focussed on the use of 

regression methods, which remain the most widely used for parameter estimation in ungauged 

basins (Parajka et al., 2005), though they do not lend themselves to a direct interpretation 

(Seibert, 1999; Kokkonen et al., 2003).  In due course, other methods emerged and were 

consistently used for predictions in ungauged basin. Contemporary methods include spatial 

proximity, arithmetic mean, catchment similarity, regional link function, regional calibration, 

cluster analysis, optimisation of transfer functions, and neural networks. The basis of 

regionalisation approaches is that there exists a relationship between model parameters and basin 

properties, and therefore flow simulation can be achieved in ungauged catchments that have 

similar physical and hydro-meteorological characteristics to those of the gauged catchment. This 

approach has proved to be useful for years and is still widely applied for prediction in ungauged 

basins. However, regionalisation relies heavily on the initial success of model calibration, which 
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is limited by problems of data availability, accuracy and model complexity. The calibrated 

parameter sets may therefore be biased by data errors or may not be representing the catchment 

response for the right reason. 

2.4.1.2  Physically-based a priori parameter estimation 

While both regionalisation and physically-based approaches are aimed at making hydrological 

predictions in ungauged basins, the former takes a top- down approach and the latter is a bottom-

up approach. The a priori parameter estimation approach provides a promising alternative since 

it does not rely on model calibration to estimate the parameters of an ungauged catchment and 

has been used with reasonable success in southern Africa (see Hughes and Kapangaziwiri, 2007; 

Kapangaziwi and Hughes, 2008; Kapangaziwiri, 2010). Ao et al. (2006) observe that the 

approach can be used to minimize the number of parameters to be calibrated, obtain parameter 

values where calibration is not possible, constrain the initial parameter ranges for calibration, and 

also transfer parameters to an ungauged basin.  

A priori parameter estimation approaches are based on an understanding of the role played by the 

physical attributes (geology, land cover, soil types, topography, vegetation) in the catchment 

hydrological response characteristics to directly quantify model parameters. Early attempts to 

apply the techniques-based a priori parameter estimation were fraught with difficulties, mainly 

caused by the lack of physical meaning of most parameters, making it difficult to relate them 

directly to basin attributes (Koren et al., 2002). When parameters represent multiple processes, it 

is impossible to isolate their impact, making it difficult to estimate them a priori. Given the 

promise of using this approach to improve predictions in ungauged basins, efforts to develop it 

further have been made  (e.g. Duan et al., 2003; Schaake et al., 2003; Sivapalan et al., 2003; Ao 

et al., 2006; Yadav et al., 2007; Kapangaziwiri and Hughes, 2008; Hughes et al., 2010c) and 

encompass three main areas discussed below.   

Development of reliable databases of physical basin properties and related environmental 

variables: Information on physical basin attributes at appropriate scales is an initial and 

necessary condition for the successful application of a priori parameter estimation approaches. 



 

 

37

This is a major challenge in many African basins where there are no reliable databases of the 

physical basin properties, designed for hydrological purposes. However, recent advances in the 

application of remote sensing, geographical information systems and photogrammetry techniques 

can be of unprecedented benefit. For instance, based on some of these technologies, an 

Agricultural Geo-referenced Information System database (AGIS, 2007) was developed in South 

Africa, from which a priori parameter estimation procedures have been developed at the Institute 

for Water Research (IWR, Kapangaziwiri and Hughes, 2008). The results should provide 

valuable lessons for the regional application of models across Africa. 

 Development of conceptual framework for physical interpretation of the model parameters: 

Many physically-based models are built on the understanding that their parameters lend 

themselves to physical interpretation and direct measurement in the field. However, differences 

in scales of measurement and model application, over-parameterisation and model structure 

errors have resulted in these types of models requiring some degree of parameter calibration, and 

thus far have precluded successful predictions in ungauged basins (Yadav et al., 2007). The 

strategy appears to be a major challenge for the conceptual rainfall-runoff models. Many of their 

parameters are conceptual representations of the processes and do not lend themselves to a direct 

physical interpretation with measurable basin descriptors. Therefore, it is necessary to develop a 

coherent understanding of the basin hydrological processes and the way they relate to the 

conceptual structure of the model (e.g. Kapangaziwiri and Hughes, 2008; Kapangaziwiri, 2008). 

Establishment of quantitative relationships for estimating model parameters from physical basin 

property data: Hughes and Sami (1994) developed empirical equations which correlate the basin 

physiographic properties (geology, land cover, soil types, topography) to the Variable Time 

Interval (VTI) model parameters, and similar types of relationships are currently in use for an a 

priori parameter estimation approach using the PITMAN model (Pitman, 1973; Kapangaziwiri 

and Hughes, 2008). Examples of similar approaches are also reported in other research studies 

such as Duan et al. (1996), Yokoo et al. (2001), Koren et al. (2003), Ao et al. (2006). Overall, it 

should be possible to use well-known physical hydrology principles for developing the 

relationships to isolate the influence of each parameter, based on the understanding of the 

physiographic controls. 
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2.4.3 Post-modelling phase 

Water resources management plans are developed in response to a number of environmental and 

human-related needs. Some of these needs require a variety of operational and planning 

measures for water storage and withdrawals, agricultural, industrial, municipal uses (Hughes, 

2004b), as well as quantification of the effects of environmental changes (climate and land use), 

estimation of point and non-point sources (Xu, 2009), reservoirs to augment supply and contain 

floods, navigation, recreation, land use control, flood risk reduction and maintenance of aquatic 

ecosystems (Loucks and van Beek, 2005). Measures for multiple uses of water resources and 

catchment services (Wagener et al., 2008) necessitate trade-offs between the multiple purposes 

and objectives. Decision making about these measures requires reliable science-based water 

resources information. However, in many cases, data are insufficient or unavailable. 

Environmental models are often used to simulate natural processes and provide the necessary 

information to support the above-mentioned measures.  

In recent years, emphasis has been placed on assessing and communicating uncertainties 

(Kloprogge et al., 2007). This is partly because of the critical challenges facing future 

environmental sustainability (Bates et al., 2008), and also because of the past environmental 

impacts caused by inadequate planning (Revenga et al., 1998). Brown (2004) defined uncertainty 

as an expression of, or state of confidence about, the value of our knowledge, which is different 

from ignorance, which is a lack of awareness about imperfect knowledge. This concept is clearly 

illustrated by Brown (2004) through taxonomy of imperfect knowledge which reveals the 

importance of making distinction between states of knowledge, when assessing uncertainty. In 

this taxonomy, a useful distinction can be made between the outcomes  that can be described 

qualitatively as possible states of reality (events, mechanisms, observations) and those that can 

be quantified using a measure of confidence (probability) about the possible states of reality. 

There is the bounded uncertainty where all possible outcomes are deemed known and the 

unbounded uncertainty where some or all possible outcomes are deemed unknown.  

To further illustrate the uncertainty issues due to imperfect knowledge, Hughes et al. (2010b) 

reports two case studies on decision making in uncertain hydrological environments. These case 
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studies show the impacts related to inefficient use of water resources infrastructure and economic 

losses. In the first instance, the storage capacity of a dam was overestimated with regard to the 

catchment yield (Mean Annual Runoff) due to the application of a biased approach for 

estimating parameters in an ungauged catchment. Secondly, the lack of consideration of the 

catchment hydrological behaviours and, therefore, the lack of consideration of uncertainty 

analysis in decision making caused the over-estimation of the storage capacity of numerous 

small and medium-sized dams in ungauged catchments. In both cases, impacts have been 

evaluated in terms of huge financial losses. Hughes et al. (2010b) also discuss the cases of 

decision making in an uncertain water use environment, which reveal that there are many 

political and socio-economic factors that are beyond the modelling exercise. The main challenge 

of uncertainty in all policy-decisions is the result of little or no appreciation of the different 

dimensions of uncertainty and the lack of understanding about their characteristics, such as 

relative magnitude and frequency (Walker et al., 2003).  

 

Figure 2.5 Taxonomy of imperfect knowledge resulting in different uncertainty situations 

(source: Brown, 2004). 
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Scenario analysis and quality assurance are two major components of the pre-modelling phase 

(Refsgaard et al., 2007). Scenario analysis allows exploration of how future conditions will 

evolve, given a set of logical and consistent events (van Der Heijden, 1996). Quality assurance is 

aimed at developing protocols and guidelines in order to support the proper application of the 

modelling results, ensure the use of best practices, build consensus among stakeholders, and 

ensure that the expected accuracy and model performance are in line with the project objectives. 

In this respect, it is valuable to use adequate methods for communicating uncertainty (e.g. 

graphs, maps, statistical confidence intervals; see Figure 2.6), as well as tools such as the 

uncertainty matrix (Table 2.1) to ensure transparent evaluation of uncertainty by stakeholders. 

The intended use of the uncertainty matrix of Walker et al. (2003) is to help identify, weight and 

prioritise uncertainties in the model. The rows of the matrix represent different sources of 

uncertainty and a weighting (either qualitative or quantitative) is used to associate the type of 

uncertainty with the source, depending on its impact on the modelling study (Refsgaard et al., 

2007). 

 

Figure 2.6 Plots of ranges of possible model output Y or system indicator values F(Y) for 

different types of displays (source: Loucks and van Beek, 2005). 
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Table 2.1  Uncertainty matrix for prioritising uncertainties in the modelling study (source: 

Refsgaard et al., 2007) 

Source of uncertainty 

Taxonomy (types of uncertainty) Nature 
Statistical 

uncertainty
Scenario 

uncertainty
Qualitative
uncertainty 

Recognised
ignorance 

Epistemic 
uncertainty

Stochastic 
uncertainty

Context

Natural, technological, 
economic, social, 
political 
System data

Inputs
Driving forces 
Model structure

Model
Technical 
Parameters

Model outputs
 

The bottom line of uncertainty analysis is how the resulting uncertainty from a study can be 

communicated and used by the stakeholders. This is still an area where there are no generally 

accepted rules. However, there are some cases where uncertainties have been quantified and 

communicated convincingly. Biza et al. (2006) conducted their study to assess the uncertainty 

involved in the calculations of flood flows and the extent of flood caused by overflows in 

relation to economic assessment of future proposals for anti-flood measures. The highest peak of 

the original flood wave for the river was estimated at 281.73 m3 s-1, with a volume of 137 350 

000 m3.  A modelling approach was used to propagate uncertainty with 100 new generated waves 

for which the highest magnitude varied between 198 to 377 m3 s-1 and the wave volumes varied 

from  98 706 754 to 169 559 429 m3. In terms of percentage, the high point of the newly 

generated waves varied between 70-133 % and their volume between 72-123 %, when compared 

to the original wave. Direct and total damage of the original compared to the simulated 100 flood 

waves were also evaluated in terms of the associated economic costs. Statistical indices such as 

mean, median, standard deviation, maximum, minimum and quartiles were used in the 

comparison as the measures of uncertainty. The study concluded that if the 100 generated new 

waves could be considered as representative, the proposed anti-flood defences should then be 

sized for the flood wave, with a reserve in the approximate high point and volume of 30%. 

Clearly, the study illustrates to some extent, the uncertainty surrounding the predictions and the 

language used to communicate the uncertainty for decision making.  
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Another example of the use of models to assess and communicate uncertainties for science-based 

decision making is given in Hughes and Mantel (2010). This study was carried out to assess 

uncertainties in simulations of natural hydrology and the impacts of water resources development 

on the management of catchment streamflow. The model parameters, rainfall inputs and water 

use for farm development were assessed as contributing sources of uncertainties. The study 

draws our attention to the approach used to communicate the uncertainty results, where the 

relative contribution of each source of uncertainty is represented in terms of percentages at low, 

medium and high flows. Furthermore, the study uses flow duration frequency graphs to 

demonstrate the impact of combined sources of uncertainty on the catchment yield.  

2.5 Approaches to uncertainty analysis 

In hydrological modelling, estimation of uncertainty is imperative because of the inherent nature 

of the heterogeneous hydrological processes and the imperfect knowledge on the part of the 

investigator about these processes. In other words, uncertainty reflects the heterogeneous nature 

of the media properties, the variability of hydrological processes and the difficulty in 

representing these processes as real-world phenomena in a model. In this context, the need for 

more constructive approaches to account for uncertainty has been at the heart of hydrological 

research in recent years, aiming to efficiently identify and reduce uncertainty and to maximize 

confidence in the predictions. Uncertainty analysis seeks to identify how uncertainties propagate 

through the modelling process to the outputs. Some developments to address modelling and 

predictive uncertainty issues have emerged over the years, including the development of 

automatic calibration techniques (Sorooshian et al., 1992), the use of parsimonious models 

(Limbrunner et al., 2005), the acceptance of the equifinality principle rather than seeking 

optimum solutions (Beven, 2001; Butts et al., 2004) and the use of multiple performance criteria 

to assess the goodness of fit of calculated discharge values (Wagener et al., 2004b; Hughes et al., 

2006). 

Recent developments in hydrological modelling studies have aimed at joint efforts to address 

ways of estimating model parameters while accounting for potential sources of uncertainties. 

Initial work stressed the use of automatic calibration to address the subjectivity problems of 
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manual calibration (Sorooshian et al., 1992; Sorooshian and Gupta, 1995). A typical automatic 

calibration procedure requires objective functions, optimisation algorithms and termination 

criteria (Xu, 2009). Initial developments of automatic calibration methods used a single criterion 

to assess performance, and least squares methods were generally used.  However, several studies 

have proved that the use of a single criterion in automatic calibration leads to an aggregation of 

model residuals into an objective function which subsequently loses information about individual 

response modes (Gupta et al., 2005).  Besides, optimisation based on a single criterion does not 

lend itself to an isolation of the effects of individual parameters to treat them as individual 

entities, as in the case of manual calibration. Furthermore, optimizing model performance with 

respect to a selected goodness of fit supersedes the primary function of the parameter in single 

criterion automatic calibration. Wagener et al. (2004b) concluded that the single criterion 

approach is not sufficient and needs to be complemented by a variety of measures. A multi-

objective approach to automatic calibration was thought necessary to take into consideration the 

advantages of both manual and automatic calibration (Gupta et al., 1998). In fact, any calibration 

process aims at identifying parameters through extraction of the information contained in the 

data. The more information available in the data, the higher the precision in parameter 

identification and the lower the uncertainty. An optimal identification is expected in the 

conditions where model structure and data are free from errors and systematic bias (Bastidas et 

al., 2002). Therefore, the multi-objective automatic procedures aim at enforcing the capability of 

the calibration process to efficiently extract the information contained in the calibration data, 

while reducing uncertainty (Bastidas et al., 2002). It should be stressed that automatic calibration 

is not a classic method of uncertainty analysis, but can be considered as one of the modern 

methods that are meant to improve predictions in hydrological modelling through automated 

searches in the a priori parameter space.   

Problems related to equifinality (Beven, 1993) have also led to the search for parsimony in 

hydrological models. The identification of the most appropriate model structure for a given 

application in a river basin is probably the most difficult exercise in hydrological modelling. 

Many physical processes of basin hydrology take place within heterogeneous media and are far 

from being fully described or understood. Depending on the situation, a choice is often made 
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between a continuum approach or a very detailed description of the heterogeneity (Rosbjerg and 

Madsen, 2005). It has been found that the need to capture detailed descriptions increases the 

degree of model complexity, often leading to over-parameterization (Refsgaard and Knutsen, 

1996). This subsequently leads to parameter identifiability problems (Wagener et al., 2002). 

Hence, the rise of the concept of parsimony, which advocates the reduction of model complexity 

so that the model contains only a few parameters (Young et al., 1996) that can be identified from 

the available data (Wagener et al., 2002). However, a danger of this approach is that model 

identifiability is obtained at the expense of detailed process description (Wagener et al., 2004b). 

The model may become of little use for generalised applications of climate change and land use 

change, or other impact scenarios beyond the catchment conditions of its calibration (Wagener et 

al., 2002; Rosbjerg and Madsen, 2005). Consequently, Rosbjerg and Madsen (2005) advocate 

‘appropriate modelling’ which implies the development or selection of a model structure whose 

discretisation in space and time ensures a realistic simulation of the required variables, i.e. a 

structure that is conceived to meet the modelling purpose.   

However, if it is accepted that for a given control volume, different mechanisms can lead to 

similar outcomes (equifinality, Beven, 1993), then adequate approaches are needed to evaluate 

the character of those plausible outcomes (a control volume is any closed region where fluxes 

across the volume boundaries and changes in internal storage of mass, momentum, or energy are 

accounted for over specified time intervals. A catchment can be considered a finite-sized control 

volume with surface and sub-surface fluxes into and out of the catchment (Beckie, 2005)). This 

is the drive behind recent developments aimed at the identification of a population of plausible 

models in lieu of a unique optimum model (Beven and Binley, 1992). Recent approaches in this 

field include a set of theoretic methods, such as the Monte Carlo Set Membership (MCSM) 

approach of van Streaten and Keesman (1991), Generalized Likelihood Uncertainty Estimation 

(GLUE) of Beven and Binley (1992), Shuffled Complex Evolution Metropolis (SCEM-UA) of 

Vrugt et al. (2006), and the application of recursive methods such as the Kalman filter (Evensen, 

1994), the Bayesian Recursive Estimation (BaRE) approach of Thiemann et al. (2001), the 

PIMLI approach of Vrugt (2002) and the Dynamic Identifiability Analysis (DYNIA) approach of 

Wagener et al. (2003). Only the Monte Carlo method and its derivatives will be discussed 
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hereafter. In general terms, the above-mentioned theoretic and recursive methods are based on 

the identification of a set of different combinations of model structures and parameter values, 

and the assignment of some degree or interval of confidence to each member of the set (Gupta et 

al., 2005). However, the underlying assumptions used to ascribe the interval of confidence can 

differ from one approach to another. Furthermore, these approaches explicitly deal with input-

output and model structural uncertainty, and the optimal merging of uncertain model predictions 

with observations can often be used to calibrate the model and estimate the uncertainty of both 

parameters and model outputs simultaneously (Blasone, 2007). The basis of these approaches is 

regional sensitivity analysis (Spear and Hornberger, 1980), which evaluates the sensitivity of the 

model outputs to changes in parameters (Gupta et al, 2005). In general terms, sensitivity analysis 

is used in hydrological modelling to investigate change in model output caused by changes in 

parameter values (Wagener et al., 2004b). This definition was extended by Saltelli et al. (2008) 

in a study of how uncertainty in the model output can be apportioned to different sources of 

uncertainty in the model input. Many traditional methods of sensitivity analysis exist, which are 

based on the estimation of the local gradient around an optimum parameter (Pappenberger et al., 

2006). With reference to the main issues of uncertainty discussed above, it is obvious that the 

local approach is not sufficient to detect the sources of uncertainty in the models.  Instead, global 

sensitivity analysis approaches are used that make assumptions about the shapes of the response 

surface (Beven, 2001). The regional sensitivity analysis (variously known as Generalised 

Sensitivity Analysis or the Hornberger-Spear-Young method) is an alternative approach that 

analyses the sensitivity of model parameters without referring to a certain point in the parameter 

space (Wagener et al., 2004b).   

Monte Carlo Methods: Monte Carlo methods are probably the most widely techniques used for 

uncertainty analysis and can be traced back to the early 1970s (Glass et al., 1972), and the advent 

of increased computing power. A wide range of applications in hydrological modelling is based 

on the use of the Monte Carlo methods. These methods have been used for analysing spatial 

variability of infiltration and runoff (Smith and Hebbert, 1979), similarity in catchment response 

(Saghafian et al., 1995), and development of theories for hydrological applications (e.g. Natale 

and Todini, 1976; Beven and Binley, 1992; Wagener et al.,2003; Wagener and Kollat, 2007). A 
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summary of the two main theoretical approaches (GLUE and DYNIA) that have evolved from 

the use of the Monte Carlo methods in the last two decades is given hereafter. Basically, the 

Monte Carlo methods rely on random sampling of input data drawn from individual probability 

distributions (specified reliability levels of input values) to generate probability distributions of 

model output variables (Loucks and van Beek, 2005). The simulation can include uncertainty of 

the inputs over some specified ranges and generate a statistical description of the system 

performance. However, the methods based on Monte Carlo simulation require huge 

computational resources and time, which limits the application of the methods for many studies; 

this challenge can probably be overcome with the technological advancement of computing 

power. Another challenge in using the Monte Carlo methods is the possibility of unrealistic 

model outputs due to unrealistic combinations of parameter sets during simulations (Loucks and 

van Beek, 2005).  

Generalized Likelihood Uncertainty Estimation: GLUE is a simplified Bayesian approach that 

arose from the need to account explicitly for different sources of uncertainty in hydrological 

models.  The Bayesian inference in GLUE assumes a situation in which the sampling is directly 

achieved from prior distributions (Saltelli et al., 2008). Initially, a decision is made on feasible 

parameter ranges from which a prior distribution can be established. The aim is to have a 

parameter space which does not exclude the behavioural models, i.e. those that are consistent 

with the observations. Subsequently, a sampling strategy is required to define the form of the 

response surface in the parameter space. The advance in computing power has prompted the use 

of the Monte Carlo technique for this exercise. The Monte Carlo simulation is used to generate 

random parameter sets from a prior distribution of parameter values (Saltelli et al., 2008), with 

most reported sampling from uniform distributions (Stedinger et al., 2008), to ensure the prior 

independence of the parameter sets before their evaluation, using a likelihood measure (Beven, 

2001). In the GLUE, the likelihood measure is used to distinguish between behavioural and non-

behavioural sets. This distinction is based on a weighting factor that assigns a measure of zero to 

non-behavioural sets and increases monotonically as the model performance increases. One of 

the aims of the GLUE approach is to obtain uncertainty intervals in model predictions. Thus, the 

rescaled likelihood weights can be used by ranking the model outputs, so that the cumulative 
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distribution is formed for the output variables (Stedinger et al., 2008). Although it is the most 

widely used approach to uncertainty estimation in hydrological modelling, GLUE has attracted 

many critics who notably question its statistical consistency (Voget et al., 2007; Saltelli et al., 

2008; Stedinger et al., 2008), lack of formal assumptions in assessing the likelihood of different 

models (Mantovan and Todini, 2006), and poor efficiency properties of the sampling strategy 

(Saltelli et al., 2008).     

Dynamic Identifiability Analysis (DYNIA): The preceding sections outlined the issue of model 

complexity and parameter identifiability. An increase in model complexity enables a detailed 

description of the processes which might be expected to increase model performance. However, 

the uncertainty in the model is expected to increase with increased complexity, while reducing 

the parameter identifiability. DYNIA (Wagener et al., 2003) was developed based on the need to 

improve the objectivity, applicability, and robustness of the approaches to hydrograph 

disaggregation for improved model identifiability. DYNIA uses the Monte Carlo sampling 

approach to assess the character of model population in a feasible parameter space. The sampling 

strategy is based on a uniform prior distribution. As in the case of the GLUE methodology, a 

measure of performance is used to condition the parameter population resulting from uniform 

random sampling. A range of window sizes evaluates the performance as a running mean rather 

than the residuals over the complete time of calibration. The assumption is that there is 

information loss resulting from aggregation of the residuals into measures of performance over a 

period of time. The information loss can be avoided by aggregating the residuals in the form of a 

running mean, which is the modus operandi for the DYNIA approach. The support measures are 

scaled to unity, with higher values indicating better performance of the parameter values. The 

slope of the cumulative distribution function (Wagener, 2001) is used to derive the degree of 

identifiability of individual parameters within the parameter space with a higher gradient 

resulting in a more peaky distribution.   

A further step in the process of uncertainty analysis is to constrain the predictive uncertainty. 

This can be done through sensitivity analysis (Refsgaard et al., 2007) or development of regional 

constraints (Yadav et al., 2007). The latter is a recent development and has rapidly gained a wide 

audience in the hydrological community. The previous sections discussed the role of catchment 



 

 

48

characteristics that can be used as descriptors or signatures of the functional catchment response 

to identify similarities between catchments. Understanding regional relationships between areas 

of similar characteristics is relevant to successfully transferring model parameters into the 

catchments where predictions are needed. While the use of the relationships between the basin 

descriptors and model parameters to make predictions of the basin response characteristics has 

been implicitly accepted for hydrological applications, the approaches to explicitly quantify these 

relationships are still compounded with many uncertainties. The constraints are the regionalised 

dynamic response characteristics that can be used to constrain ensembles of model predictions at 

ungauged locations (Yadav et al., 2007). The dynamic response characteristics can be 

understood as the properties that are contained within the input-output fluxes of a catchment. 

Such fluxes include the response variables which remain consistent over a long-term record and 

represent a variety of climatic conditions (Shamir et al., 2005; Yadav et al., 2007). One of the 

most important characteristics of the dynamic response characteristics is the fact that they are 

independent of statistical assumptions and are capable of identifying signals representing long-

term unique behavior of the catchment (Shamir et al., 2005; Yadav et al., 2007). The major 

considerations in the development and application of constraints are data availability and quality, 

hydrological relevance, consistency, distinguishability, and suitability for prediction (Shamir et 

al., 2005; Kapanganziwiri, 2010). Overall, the application of constraints in hydrological 

modelling aims at achieving a progressive reduction in predictive uncertainty by constraining the 

expected catchment behaviour at the ungauged as well as the gauged basins, while maintaining 

reliable predictions (Yadav et al., 2007). This implies the reduction of subjectivity in calibration 

and therefore, equifinality, making it possible to obtain a basin-specific, behavioral parameter 

set.  

While the above-mentioned methods are aimed at quantifying and reducing uncertainties in 

hydrological modelling, they are also sets of frameworks for testing hypotheses and validating 

hydrological theories. Such frameworks are particularly useful for river basins where the 

knowledge of hydrological processes is very limited. This is the case of the Congo Basin that is 

fraught with the difficulties caused by very limited access to hydrological information including 

data, published studies, and expertise.   
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2.6 Conclusion 

Understanding hydrological uncertainty is a prerequisite to sustainable water resources 

management and this understanding is required at all phases of the modelling chain. In principle, 

the understanding of information from model applications should help define the important 

issues and identify possible solutions and their impacts. This is, indeed, the essence of IWRM, 

where a holistic approach is required to analyse alternative designs and management strategies 

for integrated multi-component systems.  

Many approaches have been developed to address the issues of predictive uncertainty in 

hydrological modelling. However, the lack of a unifying framework for hydrology at catchment 

scale makes the various approaches disparate, such that uncertainty is even introduced in the 

implementation phase. In this regard, it is important not only to quantify uncertainties but also to 

ensure that our uncertainty estimates are understood and ready to be used for science-based 

decision making. 

Hydrological uncertainty should not be considered an error, but a process that incorporates, 

quantifies and represents those errors that are inherent and unavoidable in environmental studies 

in a predictive way. Hydrological uncertainty is also a process that incorporates and represents 

the natural complexity of the landscape, which is made of heterogeneities and variability at 

spatial and temporal scales. Lastly, hydrological uncertainty is a process that can account for, 

and represent, the effect of environmental changes (non-stationarity) due to anthropogenic 

activities.  
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CHAPTER 3 STUDY AREA, PHYSICAL BASIN CHARACTERISTICS 

AND DATA SETS 

3.1  Introduction 

The value of observations that can be based on experimental research and field data has been 

recognized and implicitly accepted in the development of qualitative understating in hydrology 

(Clark et al., 2011; McMillan et al., 2011). These authors emphasised the value of field 

measurements and observations for building an understanding of the dominant processes of the 

catchment hydrological response. Building this understanding remains a challenge in large river 

basins such as the Congo, where experimental research is hindered by problems related to scale, 

costs, expertise and complexity of natural processes.  Recent developments in data capture, using 

remote sensing technologies, has lead to much greater appreciation of the basin hydrological 

processes at finer temporal and spatial scales, thus increasing confidence for process 

understanding and conceptualisation. For instance, significant progress has been made in 

quantifying real-time climate forcing variables with weather radar (e.g. Woods et al., 2001), 

although there remain challenges with ground-truthing and other uncertainties (Soulsby et al., 

2008). Experiments such as the Gravity Recovery and Climate Experiment (GRACE), Light 

Detecting and Ranging (LiDAR) as well as the Shuttle Radar Topographic Mission (SRTM) and 

Moderate Resolution Imaging Spectro-radiometer (MODIS) are becoming useful in detecting 

soil and groundwater moisture fields (Tenenbaum et al., 2006), the connectivity of hill slope 

flow paths (Lane et al., 2004), and patterns of land forms (Soulsby et al., 2008), in ways that can 

inform modelling studies. Application of such innovative techniques has an undeniably positive 

impact on data availability, which can be used to maximize the probable information embodied 

within the landscape features and improve knowledge of the interactions and functional 

relationships of various physiographic and climatic features, as well as uncover new theories of 

basin hydrological processes.    

Understanding the organisational relationships of the landscape features would assist the 

development of a coherent framework of catchment classification and modelling decisions. The 
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need for such a framework has been recognised and is the subject of many studies which attempt 

to address the challenge of generalising knowledge derived from local observations and 

understanding of the catchment response characteristics, as well as the underlying process 

controls. It is the focus of research for the so called “new unified theory of hydrology at 

catchment scale” (Sivapalan, 2005; Wagener et al., 2007; Sivakumar et al., 2011), which seeks 

to uncover potential catchment process theories that are embodied within natural heterogeneities 

of the landscape form, structure and functions, through observation of patterns, connections 

between different observations and feedback between patterns and functions. Basically, the 

emerging unified theory of hydrology advocates the value of observations, the discernible 

patterns that could emerge from the various observations and the interconnections between them. 

Sivapalan (2005) points to the relegation of data analysis to serve only the need for model 

calibration, thus neglecting the revealing role of data in discovery of patterns and functions. 

Sivapalan’s observation is also related to the lack of a physically meaningful classification 

system, which hampers our ability to make inferences from the observations and derive 

quantitative relationships between signatures of runoff variability and landscape properties. 

This part of the study attempts to explore available global, regional and local datasets of the 

basin physiographic and climatic characteristics, including previous research studies undertaken 

in the basin, with the intention of building a preliminary qualitative understanding of the basin’s 

hydrological processes for informed modelling decisions in the Congo River Basin.  

3.2 Study area  

Figure 3.1a shows the geographical location of the Congo River Basin, which is framed within 

9oN, 12oE to 13.30oS, 34oE and encompasses nine political boundaries, namely: Angola, 

Burundi, Central African Republic, Democratic Republic of Congo, Cameroon, Republic of 

Congo, Rwanda, Tanzania and Zambia. Figure 3.1b shows the main rivers of the basin. The 

Congo River Basin shares the drainage divides with other large river basins of Africa, the Nile 

and Zambezi Basins, all of which drain in opposite directions, thus emphasizing the complexity 

of regional drainage patterns. Within the Congo Basin itself, there is no single classical mode of 

drainage pattern which emphasises the heterogeneous nature of the underlying geology. 
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Contradictory accounts have been given to explain the evolution and drainage history of the 

Congo Basin with regards to geological time. 

DRC

Angola

CAR

Tanzania

Zambia

Congo

Cameroon

Burundi
Rwanda

50° E

50° E

40° E

40° E

30° E

30° E

20° E

20° E

10° E

10° E

0° 

0° 

20° N 20° N

10° N 10° N

0° 0° 

10° S 10° S

20° S 20° S

30° S 30° S

 

Figure 3.1a Physical layout of the Congo Basin showing the geographical location of the 

basin and its political boundaries. 

Two theories that have emerged suggest that the Congo would have flowed south-east into the 

Indian Ocean during the Late Cretacoeus-Paleogene until the uplift of the East African highlands 

in the Oligocene or Eocene (Stankiewicz and Wit, 2006). The existence of older marine deposits 

in the valleys of the south-eastern part the Congo Basin (Lepersone, 1960; de Saint-Seine, 1962; 

Giresse, 2005) tends to corroborate this hypothesis, though Giresse (2005) suggests that the 

deposits could have been the effect of marine intrusion from the north due to slight deformations 
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in the basin structure at the end of Jurassic times.  Conversely, Giresse (2005) observes that the 

basin’s initial drainage would have been directed northwards through the Chari Basin and then 

into Lake Chad. While disagreeing on the initial drainage direction of the Congo River, both 

theories concur that the Congo Basin was a landlocked (Stankiewicz and Wit, 2006) or deep sea 

fan (Giresse, 2005) and subsequently started to drain into the Atlantic Ocean as a consequence of 

the formation of the Stanley Pool base level. In either case, the current drainage pattern of the 

Congo Basin is recent and resulted from long-term processes of channel modification (Runge, 

2008). 

 

Figure 3.1b Physical layout of the Congo Basin showing the main rivers and their sources (the 

main rivers were generated using a digital terrain model 1 km resolution). 
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3.3 Description of the physical basin characteristics and data sets 

Central to hydrological assessment is the ability to predict hydrological responses under different 

spatial and temporal conditions, including stationarity and non-stationarity. A description of the 

dynamics of the atmosphere-land surface and sub-surface processes is essential for successful 

prediction. Major elements of these dynamics include climate, terrain morphology, land cover, 

geology and hydrogeology, all of which will be explored in the following sections.  

3.3.1 Climate 

3.3.1.1  General description of climate in the Congo Basin 

Climate is undeniably the main controlling factor of the basin hydrology and much of the 

observed variability in streamflow is related to the variability in climate.  Despite the predicted 

impacts of climate variability and changes on water resources, it is important not only to quantify 

the impacts but also to understand the processes that drive the momentum of change in climate 

variables at local and regional scales. Depending on region and timescale, it has been observed 

that past hydrological changes in Africa have been linked to various climatic processes, 

(Schefuss et al., 2005). The Congo Basin represents a climatic transition zone between Northern 

and Southern Africa, and Eastern and Western Africa (Balas et al., 2007), thus making the 

climate variability remarkably complex. Many studies have shown that the climatology over 

tropical Africa in general, and particularly the Congo Basin, is influenced by many factors, 

which depend on atmospheric-ocean interactions and the monsoonal processes (Balas et al., 

2007; Farnsworth et al., 2011). The Inter Tropical Convergence Zone (ITCZ), Sea Surface 

Temperatures (SSTs), Atmospheric Jets (Central African Jets), and Meso-scale Convective 

Systems, are the main drivers that modulate climate variability over the region of the Congo 

Basin (Poccard et al., 2000; Farnsworth et al., 2011).  Figures 3.2 and 3.3 show a conceptual 

representation of the mechanisms of rainfall variability over Central Africa with an indication of 

the role of the Tropical Easterly Jet (TEJ), the Westerly African Jet (WAJ), African Easterly Jet 

(AEJ), the Southern African Easterly Jet (AEJ-S), the Atlantic/Indian Ocean SST anomalies and 

the impact of ENSO upon the mechanisms governing wet and dry years. 
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0o-12oS DRY YEARS

 

Figure 3.2 General overview of the influences upon the rain bearing mechanisms (Rain belt, 

ITCZ) between wet (top left) and dry (bottom left) years over 0o-10o N, and 

between wet (top right) and dry (bottom right) years between 0o-12o S (source: 

Farnsworth et al., 2011).  

The concept of the ITCZ over Africa refers to a band that follows the sun, migrating to the 

southern hemisphere during the boreal summer and to the southern hemisphere during the austral 

summer (Nicholson, 2009), thus having a direct influence on the rainfall variability, through 

perturbation of the strength and position of the rainfall belt (Farnsworth et al., 2011). The rainfall 

belt is defined as the variability in rainfall caused by intensity and position. Convergence and 

uplift occur during the seasonal ITCZ movement towards the equator, but strong precipitation 

occurs only where the moist layer is sufficiently thick to support deep clouds and convection 

(Nicholson, 2009).   
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Figure 3.3 Relative latitudinal positions of the ITCZ, TEJ, AEJ, AEJ-S and the WAJ during 

wet and dry years over 0o-10oN (left) and 0o-12oS (right) (source: Farnsworth et 

al., 2011). 

The migration has been shown to be related to a bimodal pattern of rainfall over the Congo Basin 

with both dry and wet seasons occurring in different regions of the basin and at the same time 

(Hughes and Hughes, 1987; Mahé, 1993).  Many studies carried out have concluded that there is 

a strong correlation between the ITCZ and the occurrence of rainfall or rainfall variability over 

the tropical equatorial region of Africa (Mahé, 1993; Farnsworth et al., 2011). A recent study by 

Nicholson (2009) showed that the tropical rain belt is produced by a large core of ascent lying 

between the African Easterly Jet and the Tropical Easterly Jet, and not necessarily represented by 

the ITCZ. The rainfall is therefore distributed through the southern track of the African Easterly 

Waves, which correspond to the African Easterly Jet and the Tropical Easterly Jet.  However, 

this emerging theory contradicts previously suggested theories about the ITZC and its relation to 

the tropical rain belt as well as its implication for inter-annual and multi decadal variability over 

the region of West Africa including the Congo Basin. Nicholson (2009) points to the outdated 

1950s concept which has perpetuated the current widely prevailing but erroneous views of the 

ITCZ, which has an implication for seasonal forecasting.   
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Besides the role of the ITCZ in rainfall variability over the Congo Basin, SST anomalies also 

have a direct effect on the regional circulation, which alternatively induces seasons of wetter and 

drier conditions as well as warm and cold anomalies (Farnsworth et al., 2011).  Atmospheric 

moisture transport onto the Central African region is modulated through important changes in the 

SST pattern (Schefuss et al., 2005).   Much of the rainfall variability over the Congo Basin could 

be explained through the Atlantic and Indian Ocean’s SST anomalies such as the Atlantic Nino, 

the inter-hemispheric mode and the El Nino Southern Oscillation (ENSO) (Paeth and 

Friederichs, 2004; Balas et al., 2007; Farnsworth et al., 2011). During the boreal summer, greater 

rainfall over the Congo Basin is attributed to equatorial warming (Atlantic Nino) that creates 

warm SST anomalies displacing convection south-eastwards. During this period, the 

northernmost part of the basin, mainly composed of the Oubangui and Sangha sub-basins, 

experiences dry conditions.  The reverse is observed when greater upwelling in the equatorial 

Atlantic creates cold SST anomalies. Mahé (1993) reports a decrease of the SSTs along the 

Equator from June to October, and also during January and February. The decrease is caused by 

equatorial upwelling, which in turn is characterised by a direct action of the wind on surface 

waters, a divergent effect of the equatorial circulation that is influenced by the Coriolis forces, 

and the oceanic wave arising in the equatorial Atlantic.  In the inter-hemispheric mode, there is 

change in the SST warm or cold anomalies due to changes in the above mentioned dipole, which 

contributes to shifting the predominant source regions of atmospheric moisture of the Atlantic 

SST (Balas et al., 2007; Farnsworth et al, 2011).  SST is less important during the boreal winter 

when its influence is mainly concentrated within the tropical band south of 10oN, when the ITCZ 

is located south of the equator. The contrast is obvious during the boreal summer where the SST 

induced  fraction of total rainfall variance  amounts to at least 10% over the entire continent of 

Africa north of 10oS (Paeth and Friederichs , 2004).  

The so called Atmospheric Jets or Central African Jets (Farnsworth et al, 2011) are an important 

component of atmospheric circulation that play a significant role in rainfall processes and the 

position of the rainfall belt over the Congo Basin through impacts upon the African Easterly 

Wave (AEW) production and modulation as well as the impact of vertical sheer upon deep 

convection (Nicholson, 2009; Farnsworth et al., 2011). The transport of energy over the Congo 
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Basin is related to the Mesoscale Convective Systems (MCS) such as cloud and thunderstorms 

that ensure vertical motion in the transport processes (Farnsworth et al., 2011).   

Conway et al. (2008) point to relatively stable conditions in the annual mean of the rainfall and 

runoff over the Congo Basin, with little variation between 1931-1960 and 1960-1990.  The 

variability has been investigated by Olivry et al. (1995) and Laraque et al. (2001). Laraque et al. 

(2001) observed a discontinuity in the rainfall trend between the period 1951-1969 and 1970-

1989, with a rainfall loss of 4.5% for the Congo Basin as a whole. This relatively negligible loss 

of rainfall over the basin may reveal some localised important changes given that the basin is 

spread over a wide range of climatic conditions. This may be the case for the Oubangui River for 

which Ladel et al. (2008) reported a decrease of river flow of about 18 % at the Oubangui River, 

a major tributary of the Congo River.  A similar decreasing trend of river flow has been recorded 

for the Congo River which showed a drop of about 10 % of the average discharge from 1982 

(Laraque et al., 2011). The question of whether this decrease in the Congo River flow is 

correlated to the rainfall trend is still unresolved, as many impacts of land use change over the 

basin have been recently reported (Hoare, 2007).   

The climate of the Congo Basin has also been documented by Hughes and Hughes (1987) who 

reported the existence of a broad humid zone that extends inland along the equator from the 

Atlantic coast, over Gabon, across Congo and into the Democratic Republic of Congo. 

Throughout this zone, mean annual rainfall exceeds 1 800 mm. The seasonal cycle in the basin is 

characterised by a bimodal pattern of the rainfall distribution with maximum rainfall values in 

March, April, October and November (Juarez et al., 2009; Beighley et al., 2011). The rainy 

season in the north coincides with the dry season in the south and vice versa; so heavy rain in the 

north tends to compensate for light rain in the south, thus maintaining downstream river flow 

stability throughout the year. Nevertheless, levels in the watercourses of the flat central basin 

normally exhibit two maxima and two minima each year. During the high water periods vast 

areas of land adjacent to rivers in the central basin are flooded. These areas drain during the low 

water periods, which occur twice a year, but the main rivers do not contrast significantly within 

their channels.  
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3.3.1.2  FAO climate dataset  

The efforts to establish a thorough understanding of the climate processes over the Congo Basin 

have been mainly hindered by a lack of data (Farnsworth et al., 2011). Some research studies 

(e.g. Todd and Washington, 2004) attempted to use proxy data to compensate for limited data 

within the basin and to establish an understanding of the basin climate processes. Poccard and 

Camberlin (2000) used the reanalysis data such as the NCEP/NCAR to analyse spatial and 

temporal variability of climate. In the current study, the climate patterns over the basin are 

assessed using the Food and Agriculture Organisation (FAO) local climate database (Griesser et 

al., 2006). This database is considered as reference over Africa and it contains long-term 

monthly averages (1961-1990) of climate variables derived from 30 000 FAO meteorological 

stations worldwide. In this study, the inverse distance interpolation method (Griesser et al., 

2006) is used to generate a half degree grid of long-term averages of monthly climate variables, 

notably rainfall (mm), evapotranspiration (mm), temperature (oC), water vapour pressure (hPa), 

sunshine fraction (%) and wind speed (km/h) for the whole Congo Basin. Figure 3.4 shows the 

spatial distribution of the long-term averages of the monthly climate variables and Figure 3.5 

illustrates the spatial variability in monthly climate variables over the Congo Basin. 

In general terms, the central part of the basin is characterised by high rainfall associated with 

high temperature and low potential evapotranspiration.  Away from the central basin, there is a 

decrease in the mean annual rainfall. This decreasing trend is accentuated in the south eastern 

part of the basin as well as in the extreme north and the lower parts of the basin. These areas are 

also characterised by high evapotranspiration and low temperature compared to the central basin. 

This spatial variability is accentuated by the variability in time. Figure 3.6 shows the variability 

in monthly rainfall for the basin. The spatio-temporal variability is partly driven by the seasonal 

migration of the rainfall belt across the basin.  The rainfall belt first appears in the northern part 

of the basin in a scattered form in May, but constitutes a consistent mass by June. From June, the 

mass of the rainfall belt starts its migration towards the south until March. A recession of the 

rainfall belt appears first in a small portion of the northern Oubangui in October and it is only 

during December that this recession is complete over the northern part basin, while remaining 

only concentrated in the southern part where its strength diminishes gradually from January to 
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March. The recession of the rainfall belt over the Congo Basin is complete in April where there 

is low rainfall over the basin. 

 

Figure 3.4 Spatial distributions of the long-term average monthly climates. 
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Figure 3.5 Variability in spatial distributions of long-term average monthly climates. 
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Figure 3.6 Monthly distribution of the long-term average rainfall over the Congo Basin. 

3.3.1.3  CRU dataset  

Long-term rainfall time series are required as inputs to rainfall-runoff models for hydrological 

predictions over longer periods. There are currently a large number of sources for climate data 

such as the Climate Research Unit (CRU), Global Historical Climate Data (GHCN), National 

Centers for Environmental Prediction (NCEP) and National Center for Atmospheric Research 

(NCAR) reanalysis, Tropical Rainfall Measurement Mission (TRMM) and Satellite Rainfall 

Estimate (RFE). Validation of some these data against the historical rainfall observations (e.g. 

Yin and Grubber, 2009) and absence of overlap with the existing historical streamflow 

observations remain a challenge to overcome. The Climate Research Unit dataset (CRU TS 2.1, 

Mitchell and Jones, 2005) offers an opportunity for continuous long-term hydrological modelling 

in data scarce areas such as the Congo Basin where many streamflow gauges implemented 

during the colonial period are no longer operational. The CRU TS2.1 is a global dataset that 

contains monthly time-series of climate variables, for the period 1901-2002, covering the global 

land surface at 0.5 degree resolution. The procedures used to construct the CRU TS 2.1 
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encompass the sources and assimilation of station records; the approach to homogenization 

which takes the form of an iterative procedure in which reference series are used to correct any 

heterogeneities in a station record; the corrected data are merged with the existing database; the 

data are converted into anomalies and used to construct climate grids (Mitchell and Jones, 2005). 

In this study, the period 1931-2000 was selected for analysis in the Congo Basin. A simple 

reliability analysis of the CRU TS 2.1 data was also carried out and the data were compared with 

the reference FAO local climate estimates. The analysis was based on the basin monthly total 

precipitation and spatial frequency of the mean annual precipitation (MAP) for all pixels. The 

climate variables used in the analysis were generated from a half degree gridded spatial coverage 

for both CRU TS 2.1 and FAO local climate estimates. The half degree grid for the whole Congo 

Basin consists of 1195 grid points which show the MAP values of 1475.5 and 1538.6 mm for 

CRU TS 2.1 and FAO local climate, respectively. Figure 3.7 shows the half degree grid point 

coverage and the mean monthly rainfall distribution for both datasets over the Congo Basin. 

 

Figure 3.7 Half degree point coverage (left side) and the monthly mean precipitation (right      

side) for the Congo Basin as a whole.  

While the basin MAP and the mean monthly distribution values are not very different, the 

frequency distributions for all of the grid points are very different (Figure 3.8) implying that 

locally there will be large differences in spatial rainfall variations between the two datasets.  
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Figure 3.8 Frequency distribution of MAP for the CRUTS2.1 (left side) and the FAO local 

climate estimates (right side) over the Congo basin. 

As shown in Table 3.1, the discrepancy observed in the frequency distribution plots is largely 

due to large differences in the spatial distributions of minimum and maximum values of the 

mean monthly rainfall between the two datasets.  

Table 3.1 Statistical characteristics of the spatial mean monthly rainfall distributions for the 

CRU TS 2.1 and FAO local climates. 

Minimum Maximum Average Std. deviation

CRU FAO CRU FAO CRU FAO CRU FAO

Jan 4 0 288 333 125 127 70 76

Feb 8 0 264 316 120 124 56 62

Mar 27 1 273 323 159 167 42 52

Apr 37 10 260 331 149 158 40 49

May 2 1 211 245 110 110 65 70

Jun 0 0 205 235 67 71 68 73

Jul 0 0 226 236 67 71 74 79

Aug 0 0 254 266 90 96 85 87

Sep 0 0 250 268 125 129 75 80

Oct 8 7 291 315 158 167 67 71

Nov 16 0 258 313 160 169 52 63

Dec 0 0 313 342 144 151 75 83
 

The comparison between the CRU TS 2.1 and FAO local climates also involved a correlation 

analysis in order to assess the degree of reliability. The results of the correlation analysis (R2) are 

shown in Figures 3.9 for the monthly pair rainfall distributions of the CRU and FAO data. The 
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analysis shows that R2  is weak for the datasets during the early and late season rainfall (March, 

April, October, November and December); strong during the early dry season rainfall (January 

and February), and very strong during the late dry season rainfall (June, July, August and 

September). 

Overall, it appears, based on the statistical measure of reliability (R2) used in this study that there 

is an acceptable correlation between the monthly pairs of the seasonal distributions for the CRU 

TS 2.1 and the FAO reference climate data.  Therefore the CRU TS 2.1 is considered valid for 

hydrological analysis and applications involving long-term monthly time-series of rainfall data in 

this study.  
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Figure 3.9 Scatter plots of the correlation between the monthly pairs CRU and FAO datasets 

(data points outside the ellipse show the outliers). 
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3.3.1.4  Inter-annual variations  

Many attempts to model the hydrology of the Congo Basin have been challenged by the lack of 

rainfall data. CRU TS 2.1 is undeniably an unprecedented opportunity for improved hydrological 

modelling in the Congo Basin. However, the procedures used to reconstruct the CRU TS 2.1 also 

imply that the dataset is not free from errors. The paucity of rainfall gauges in the Congo Basin 

also means that very few observational records were involved in the construction of the CRU TS 

2.1, thus contributing to potential errors in the quality of the dataset. These errors need to be 

checked for informed modelling decisions (e.g. Mahé et al., 2001). In this study, inter-annual 

variation analysis was used for selected CRU TS 2.1 rainfall time series between 1931-2000. The 

time series used in the analysis were selected based on a spatial distribution of altitude (m) over 

the basin.  Figure 3.10 (left) shows the percentiles of a frequency distribution of the altitude from 

which the time series were selected.  Overall, 31 CRU TS 2.1 grid points were selected randomly 

using 5 percentiles of the frequency distribution of the altitude.  

 

Figure 3.10 Percentiles of frequency distribution of altitude (left) and the CRU TS 2.1 grid 

points used for rainfall analysis.  
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Figure 3.11 shows the year to year variation in the annual rainfall for the selected CRU TS 2.1 

time series. The vertical axes of the diagrams represent the annual rainfall values normalised by 

the long-term MAP (1901-2002). The departure from the long-term mean value represents the 

variation in the annual distribution of rainfall.  
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Figure 3.11  Inter-annual variations of rainfall for the selected CRU TS 2.1 time series over the 

Congo Basin, 
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Figure 3.11  Continued, 
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Figure 3.11  Continued. 
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A close observation of the above figures of inter-annual rainfall variation in the Congo Basin 

indicates that there are patterns of similarity in the trend of rainfall variation across the basin. An 

attempt was made to group the rainfall time series with similar patterns based on the five-year 

rainfall moving average, which resulted into seven regions that show common characteristics 

with regard to the pattern of rainfall variability in the basin.  Figures 3.12 and 3.13 (a-g) show 

the spatial and temporal distributions of the identified groups of similar patterns of rainfall 

variability, respectively.  The Central Congo Basin shows very little variation around the long-

term average rainfall, which implies that there is stability in the year to year rainfall variation. An 

increasing trend in the pattern of rainfall variation around the mean is observed in the southern 

part of the basin while a decreasing trend is observed in the northern part of the basin. There is a 

pattern of opposite cyclicity (Figure 3.13, h and i) between the south-western (South-western 

CB) and the eastern (Eastern CB) parts of the Congo Basin. This pattern is also observed 

between the Oubangui and the eastern part of the Congo Basin, and is accentuated for the period 

1935-1940 and 1971-1979.  

Central CB

Oubangui

North-eastern CB

Eastern CB

South-eastern CB
South-western CB

Kasai

 

Figure 3.12 Spatial distribution of the regions of similar patterns of rainfall variability.  
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(d)  Central CB 
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(g)  North-eastern CB
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(i) Oubangui vs Eastern CB
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Figure 3.13 Regional patterns of rainfall variability in the Congo Basin (deviation from long-

term mean for different stations in different regions). 
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3.3.2 Terrain morphology analysis  

The role of terrain in modulating the earth’s surface and atmospheric processes is fundamental 

for understanding the distribution and fluxes of water and energy within the natural landscape 

(Johnson, 2009). Rinaldo et al. (1991) demonstrated that the characteristics of the hydrological 

response are embedded in the shape of the drainage network system. Flow pathways, infiltration, 

evaporation and heat exchange are just some of the examples that portray the role of terrain in 

the atmospheric-land surface interactions. Information from terrain analysis is required as input 

initial-boundary conditions in many distributed and lumped hydrological models. Many of the 

terrain attributes such as elevation, slope, catchment area, surface drainage patterns, profile 

curvature, aspect, etc, can be derived from ground surface topographic maps and Digital Terrain 

Models (DTMs). 

3.3.2.1  A Digital Terrain Model of the Congo Basin 

Recent advances in computing power have enhanced the value of DTMs for geomorphologic 

analysis of the landscape. DTMs are numerical representations of the ground surface topography 

and have proved to be a valuable tool for understanding landscape drainage patterns and the 

dynamics of transport processes. They have found widespread application in conceptualisation 

and parameterisation of hydrological models. Various applications include, but are not limited to, 

the definition of the catchment’s hydrological response units (Cuartas et al., 2011), assessment of 

several hydraulic variables of the water surface (Dingman and Bjerklie ,2005), identification of 

the transfer functions for applications of distributed hydrological models (Moussa, 1997), 

parameterisation of flood simulation models for flow routing and flood zone mapping (Sanders, 

2007). DTMs are also used as a source of information for understanding the dynamics of surface 

flows through computation of flow network topologies and properties; construction of 

Geomorphologic Instantaneous Unit Hydrographs (GIUH) for rainfall-runoff models based on  

Horton’s morphometric parameters for flood prediction in ungauged basins (Nguyen et al., 

2007); delineation of modelling units (Jarvis et al., 2004); and quantitative estimation of the 

catchment response to rainfall using terrain analysis (Oyebande and Adeaga, 2007). Therefore, 

DTMs are undeniably useful tools for hydrological predictions in ungauged basins. In the Congo 

Basin, DTMs have been used to derive terrain attributes for hydrological modelling applications 
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based on a resolution of 1 km (e.g. Asante, 2000; Chishigu and Alemaw, 2009) or for landcover 

classification based on a resolution of 90 m (e.g. Bwangoy et al., 2010). In this study, the terrain 

analysis was carried out using the NASA Space Shuttle Radar Topography Mission (SRTM, 3 

arc sec or approximately 90 m, http://srtm.csi.cgiar.org/).  

Systematic and random errors, as well as the resolution of the DTM data and the existing 

methods used to compute the topographic attributes are just some of the issues that can affect the 

outcomes of the applications (Wechsler and Kroll, 2003).  Difficulties in the identification of 

surface drainage and derivation of related information such as slope and landform curvature in 

low relief have been linked to low DTM resolution (Garbrecht and Martz, 1999). Hydrological 

models can be developed for application at grid or sub-catchment level. Depending on the 

computational requirements, DTM resolution becomes very important for finer resolutions using 

grid cells than at sub-basin scale (Garbrecht and Martz, 1996). In the latter case, many grid cells 

are used to derive the topographic attributes for the sub-basin and the effect of grid-induced local 

variability and discrete incrementation are largely reduced through the averaging. The SRTM 

data used in this study present the highest resolution available for the Congo Basin coverage. 

Estimates of absolute and relative errors of 11.25m and 1.6-3.3m respectively, have been 

reported for this data set (Brown et al., 2005). However, Bwangoy et al. (2010) observe that the 

absolute error is less important when one is concerned with relative spatial change in elevation 

and do not use absolute threshold against height, which is the case in this study.  Figure 3.14 

shows the procedures used to derive the basin physical attributes based on the SRTM data at 90 

m resolution.  

Two main attributes of terrain morphology, elevation and slope, are very valuable for 

understanding the processes of catchment hydrology. Elevation can be used to understand and 

correlate the spatial distribution of many environmental variables such as temperature, rainfall, 

soil properties and vegetation characteristics (Jarvis et al., 2004). Similarly, slope gradient is 

important in the distribution of soil moisture, sub-surface throughflow, and runoff generation 

processes. Slope aspect can be used to explain solar radiation loads and potential 

evapotranspiration (Jarvis et al., 2004). Figure 3.15 shows the Digital Terrain Model of the 

Congo River Basin as derived from the SRTM data using approximately 24 tiles (5*5 degree 
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spatial coverage per tile).  The data used in this study were obtained from the Consortium for 

Spatial Information -Consultative Group on International Agricultural Research (CGIAR-CSI, 

http://srtm.csi.cgiar.org/, accessed in March 2010) and were processed using the ILWIS 3.4 GIS 

and Remote Sensing software package. Figure 3.15 (right side) shows frequency distribution of 

terrain elevation.  
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Figure 3.14 Flow chart showing the procedures used to derive terrain information in this 

study. Bullet points indicate the procedures that require outputs from the initial 

processing of the DTM.  
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Figure 3.15 A Digital Terrain Model of the Congo Basin.  

Prior to the analysis of the basin drainage pattern, the raw DTM data were processed using the 

procedures outlined in Figure 3.14. The existence of flow direction based on the steepest 

downhill slope between a central pixel and its neighbourhood was assumed, for which an initial 

treatment of spurious depressions in the DTM using the “fill sink” approach was required 

(Maathuis and Wang, 2006). Subsequent procedures involving determination of flow direction, 

flow accumulation, drainage network and catchment extractions were used to ensure a 

unidirectional drainage pattern and identify the topology of the network and sub-catchments 

(Kirby and Beven, 1993; Garbrecht et al., 2003; Maathuis and Wang, 2006). The routines 

involving drainage network extraction and ordering require determination of a stream threshold 

value for which the investigator has to contend with the approximations, based on the knowledge 

of the area under study.  The threshold reflects the evolution mechanism of a river and depends 

on the prevailing landform characteristics (Lin et al., 2006).  

The stream threshold is assumed to be a constant value which is obtained based on personal 

judgment or visual comparison of the networks generated with other streamlines identified or 
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digitised from topographical maps (Jenson and Domingue, 1988; Gardner et al., 1991). Lin et al. 

(2006) proposed the use of accurate channel initiation points based on aerial photographs 

coupled with high resolution SPOT images.  The choice of a threshold is critical for terrain 

analysis at macro scales and it should be noted that a denser drainage pattern is obtained with 

decreased stream threshold while at the same time increasing computational resources in terms 

of time and computer memory. Figure 3.16 and Table 3.2 show the basin’s drainage pattern at 

different stream thresholds and the attributes related to each drainage pattern, respectively. In 

this study, a stream threshold of 300 and a minimum drainage length of 1000 m were found to be 

representative of the basin drainage pattern and were, therefore, chosen for further analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16 Drainage patterns of the Congo basin derived from DTM (SRTM 90 m) using 

different stream thresholds and a limiting distance of 1000 m.  
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Table 3.2 Drainage network attributes at different threshold values.  

Basin attributes  
Stream threshold 

1000 500 400 300 200 100 50 
Strahler order 6 7 7 7 7 8 8 
Shreve order 1093 2163 2768 3767 5688 11204 21168 
Total drainage 
length (km) 108193 144693 160309 183619 223622 316565 449303 

 

Figure 3.17 shows the drainage network which was derived from the DTM hydro-processing at 

the selected stream threshold of 300. The map depicts a general drainage pattern of the Congo 

Basin and its accuracy was judged against the digitised topographic base maps of the basin (e.g. 

Runge, 2008; Wauters, undated topographic map of colonial period at 1/8 000 000), which 

showed good agreement. Discrepancies are, however, observed in most of the drainage networks 

of the Congo Basin derived using a Digital Elevation Model (DEM) of 1 km resolution. The 

disagreement is pronounced in the north-western part of the basin where the DEM with 1 km 

resolution shows an abnormal connection of the tributaries (e.g. Mosaka River) to the main trunk 

of the Congo Basin. This is a potential problem related to the accuracy of the DEM at 1 km 

resolution and could have negative implications for hydrological modelling of the basin, 

especially in the applications involving flood routing and delineation of the modelling units.   

 

Figure 3.17 Drainage network of the Congo Basin showing seventh Strahler order. 
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3.3.2.2  Topographic position and land surface forms 

Schmidt (2001) determines three categories of landform evolution: form, process and system. In 

these categories, the role of the landscape gradient (slope) is evident for the system properties 

such as self similarity, denudation rates, geomorphologic work and self organisation. Landscape 

systems have been classified in terms of their topographic positions (e.g. hilltop, valley bottom, 

ridge, flat, upper and lower slopes), which determine the dynamics of many physical and 

biological processes such as soil erosion and deposition, runoff generation and drainage, food 

chain, etc (Weiss, 2001). The Topographic Position Indices (TPIs) have been used to define the 

relative position of a location along a topographic gradient at different scales (Guisan et al., 

1999) and to classify the landscape in terms of slope position such as ridge, upper, mid- and 

lower slopes, valley bottom etc; and landform category such as canyons, U-shaped valleys, 

narrow valleys, plains, open slopes etc. In this study, the TPIs for the Congo Basin were 

computed using the algorithm developed by Weiss (2001), which has been further developed as 

an extension to ArcView 3.x (Jenness, 2006).  

The TPI algorithm compares the elevation of each grid cell in a DTM to the mean elevation of a 

specific neighborhood around the grid cell. The locations that are higher than the average of their 

neighborhood are represented by positive TPI values and those that are lower than the average of 

their neighborhood are represented by negative TPI values. TPI values of zero would be 

synonymous with flat areas (where the slope is near zero) or the areas of constant slopes.   Figure 

3.18 shows the percentage areas of the landscape topographic position of the Congo Basin as 

derived from a combination of the DTM, Slope and TPI maps, using a continuous circle moving 

window with 0.15 degree radius. There are no indications of the use of the approach at the scale 

of the area such as the Congo Basin. The threshold used in this study was chosen after judgment 

based on multiple iterations that were used to compare the validity of the outcomes with the 

knowledge of the study site. The results obtained in this study confirm the hypothesis that the 

Congo Basin is predominantly occupied by flat areas (Runge, 2008). However, it should be 

noted that TPI is highly scale dependent (Barka et al., 2011; Jenness, 2006; Weiss, 2001) and 

better results would be obtained with a reduced scale (e.g. sub-basin).  
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Figure 3.18 Topographic position classes for the Congo Basin. 

3.3.2.2.1 Terrain morphology relationships and classification  

Elevation-area and slope-area relationships can explain many characteristics of the landforms, 

while their derivatives, such as hypsometric curve, hypsometric integral, wetness index, 

circularity, slope frequency, slope position and many others, can be used to explain a variety of 

lithologic and hydro-climatic conditions of the catchment hydrological functions. By examining 

the frequency distribution of elevations in the Congo Basin (Figure 3.15), it is possible to derive 

homogenous classes of basin elevation, which would represent similar areas of the most frequent 

elevation. In this exercise, 13 classes were derived, representing the dominant elevation areas 

that are frequent across the elevation gradient in the Congo Basin (Figure 3.19). Figure 3.19 

clearly shows the main relief regions that characterise the Congo Basin. These regions are set in 

the form of concentric layers for which the surface area decreases with the increasing elevation.  

Based on this classification, it can be seen that the terrain elevation of most of the Basin is 

between 340 and 650 m, representing more than 40% of the Basin area. 
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Figure 3.19 Physical layout of dominant land elevation areas showing the percentage of areas 

occupied by each of the predefined elevation classes for the Congo Basin. 

On the other hand, the classification exercise consisted of defining some slope classes relevant to 

hydrology. In contrast to the soil sciences, where classes of soils have often been based on slope 

gradient, there appear to be no guidelines for the specific application of slope classes for 

hydrological purposes.  The slope classes proposed by Nachtergaele (2010) indicate seven 

categories of slopes ranging from Flat wet (0-2%), Flat (0-2%), Undulating (2-8%), Rolling (8-

15%), Moderately steep (15-30%), Steep (30-60%), Very steep (>60%). Engelen et al. (2006) 

use a classification that takes into consideration the landforms, ranging from Level land (<10%), 

Sloping land (10-30%) and Steep land (>30%).  The slope class of 0-0.25%  for flood plain and 

the standard slope of 5% are used for the Soil  and Water Assessment Tool (SWAT, Neitsch, 

2009)  and  the Soil Conservation Service (SCS, Mishra and Singh, 2003), respectively.  The 

strengths of the above mentioned classifications were combined to derive a slope class map for 

the Congo Basin (Figure 3.20).  The slope map was generated from the DTM, based on a script 
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that uses a filtering procedure (Hengl et al., 2003). Gradient linear filters (DFDX and DFDY) 

were used, which consist of a matrix with values and a gain factor, and are often used for slope 

calculations. Through this procedure, the DTM is filtered using the DFDX filter to calculate high 

differences in X direction (df/dy) per pixel and the filter DFDY to calculate high differences in 

the Y direction (df/dy) per pixel. Both derivatives df/dx and df/dy can be combined to produce a 

slope map in percentage or in degree.                                                                                                                                         

 

Figure 3.20 Physical layout of dominant slope areas showing percentage of the areas occupied 

by each of the predefined slope classes for the Congo Basin. 

There is good agreement between the slope map produced in this study and those from the terrain 

slope classes of the world (OGC-WMS Server: http://geonetwork3.fao.org/ows/14131). The 

pattern of slope shows that the class of flat to undulating slopes (0-8%) are the most dominant.   
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3.3.3 Land cover and land use 

The role of land cover in conditioning catchment hydrological processes cannot be over-

emphasised (e.g. Edwards and Blackie, 1981; Bosch and Hewlett, 1982; Andrews and Bullock, 

1994; Mazimavi, 2003). Advances in remote sensing technology have offered tremendous 

opportunities for improving knowledge of the dynamics of land cover and their characteristics at 

the catchment scale. Currently, there are a number of global and regional land cover maps with a 

relatively high level of reliability for environmental modelling. In the present study, the newly 

released Global Land Cover Map (GLOBCOVER, Bontemps et al., 2011) was used to assess the 

land cover characteristics in the Congo Basin. Figure 3.21 shows the land cover of the Congo 

Basin representing 20 out of 22 classes presented in the Global Land Cover. Figure 3.21 (right 

side) shows the frequency distribution of the land cover classes for the Congo Basin as a whole. 

The dataset is a successor of the Global Land Cover 2005 and 2000, and has been improved 

based on the quality of the MERIS FR global mosaics. It is produced at a spatial resolution of 

300 m and contains 22 classes defined according to the Land Cover Classification Systems 

(LCCS, FAO, 2000).  

It is clear from the frequency distribution of land cover of the Congo Basin that the major part of 

the central basin is covered by broadleaved evergreen or semi-deciduous forest which constitutes 

the dominant land vegetation of the basin. This area is also characterised by high precipitation, 

low evaporation, low elevation and low slopes (Figures 3.4, 3.19, and 20).   Anthropogenic 

activities, with sometimes remarkable consequences for land use change and natural variability 

of the climate systems, have induced major environmental changes which may have irreversible 

effects, at least at a certain time scale (Milly et al., 2008). Even if there has been an effort to 

understand the dynamics of land cover in the Congo Basin (de Wasseige et al.,  2009), little has 

been done with regards to the impacts of the land use on its hydrological functioning.  Various 

studies have demonstrated that the major impacts on water resources of the Congo Basin would 

stem from land cover and land use changes (Hoare, 2007; Ladel et al., 2008). Uncontrolled 

anthropogenic activities with potential impacts on water resources availability of the basin pose 

potential problems. A United Nations’ census for the period 2000-2005 (UN, 2007) shows a 
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growth rate of 2.87% per year for the population living in the region of the Congo Basin, with a 

potential to double in 25-30 years. 

Class GlobCover legend LCCS  legend

11 Post-flooding or irrigated croplands (or aquatic)

A1114 Rainfed croplands

20 Mosaic cropland (50-70%) / vegetation (grassland/shrubland/forest) (20-50%)

30 Mosaic vegetation (grassland/shrubland/forest) (50-70%) / cropland (20-50%) 

40 Closed to open (>15%) broadleaved evergreen or semi-deciduous forest (>5m)

A121

A12 

50 Closed (>40%) broadleaved deciduous forest (>5m)

60 Open (15-40%) broadleaved deciduous forest/woodland (>5m)

90 Open (15-40%) needleleaved deciduous or evergreen forest (>5m)

100 Closed to open (>15%) mixed broadleaved and needleleaved forest (>5m)

110 Mosaic forest or shrubland (50-70%) / grassland (20-50%)

120 Mosaic grassland (50-70%) / forest or shrubland (20-50%) 

130 Closed to open (>15%) (broadleaved or needleleaved, evergreen or deciduous) shrubland (<5m) A122

140 Closed to open (>15%) herbaceous vegetation (grassland, savannas or lichens/mosses)

A123150 Sparse (<15%) vegetation

160 Closed to open (>15%) broadleaved forest regularly flooded (semi-permanently or temporarily) 
A 24

170 Closed (>40%) broadleaved forest or shrubland permanently flooded - Saline or brackish water

180 Closed to open (>15%) grassland or woody vegetation on regularly flooded or waterlogged soil 

190 Artificial surfaces and associated areas (Urban areas >50%) B15 

200 Bare areas B16

210 Water bodies B28 
 

Figure 3.21 Land cover of the Congo Basin (A11: Cultivated terrestrial areas and managed 

lands; A12: Natural and semi-natural terrestrial vegetation; A121: Woody trees; 

A122: Shrub; A123: Herbaceous; A24: Natural and semi-aquatic vegetation; B15: 

Artificial surfaces; B16: Bare areas; B28: Inland water bodies) (based on 

Bontemps et al., 2011).   
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The majority of the population are characterised by low income, relying on subsistence 

agriculture for their livelihood. Rainfed agriculture is the main mode with slash burn, forest 

clearing and shifting agriculture (de Wasseige et al., 2009). In addition, there have been 

increasing reports of uncontrolled large scale deforestation and mining which are known to 

impact on the patterns of hydrological behavior. Estimates for the deforestation with a focus on 

the evergreen forest zones of the basin for the period 1990 to 2000 show a net deforestation rate 

of 0.16% per year (de Wasseige et al., 2009). A loss of about five percent has been recorded in 

several catchments between these periods. These activities are sources of pressure on the basin 

water availability and their cumulative impacts could result in change of the basin hydrological 

patterns. Figure 3.22 shows some cases of the effects of anthropogenic activities in the basin.   

 

Figure 3.22 Impacts of land use in the Congo Basin showing deforestation (upper layer, de 

Wasseige et al., 2009); Bush fire (middle layer, Daniel Beltra Rainforests Project: 

http://www.guardian.co.uk/environment/gallery/2009); River channel alluvial 

mining (bottom layer, field study 2004) in the Kasai sub-basins. The river courses 

here are diverted upstream for diamond extraction in sections of the river beds). 
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A close examination of Figure 3.21 shows that the various impacts of land use in the Congo 

Basin are not revealed in the raster map of land cover. The land cover map is even 

underestimating the rainfed crop land which is a major land use in the Congo Basin. Comparison 

of the above GLOBCOVER’s rainfed cropland class (class 14) with the global estimates of 

rainfed crop land areas provided by Portmann et al. (2010) shows that the area of rainfed 

cropland reported in the GLOBCOVER is largely underestimated at 0.03% (1 088 km2) against 

6.47% (2 343 906 km2) which is reported by Portmann et al. for the Congo Basin.  This 

observation highlights a potential problem of uncertainties in global datasets of land covers. 

These uncertainties have been reported in several studies which found critical disagreements 

between the land cover datasets (e.g. Giri et al., 2005; McCallum et al., 2006; Fritz et al., 2011). 

These disagreements result from differences in classification methodology, training data and 

ground reference data, the type of satellite sensors used and the errors due to geo-referencing. 

Due to these critical errors, Fritz et al. (2011) recommend that the current global land cover 

datasets not be used for studies involving land cover change detection, while advocating for 

ways to improve the datasets. Uncertainty in land cover datasets of the Congo Basin is also due 

to classification problems posed by the quasi-permanent cloud cover over many parts of the 

basin (Duveiller et al., 2008).  

3.3.4 Soils 

Many processes of the catchment hydrological response are regulated through the soil medium, 

which plays a prime role in its capacity to absorb, retain and redistribute water (Schulze, 1984). 

Soil information is necessary to understand the processes of runoff generation such as saturation 

excess runoff, interflow, overland flow and the soil moisture. The most relevant for the dynamics 

of hydrological processes are perhaps those described by Schulze (2007), notably:  

- The surface properties that condition the soil infiltrability, such as crusting, sealing, 

cracking, tillage, macro pores, etc;  

- The soil thickness of various horizons of the soil profile and the distribution of soil 

particles (soil texture) within the various horizons, which are also related to the soil 

permeability or hydraulic conductivity;  
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- The soil structure within the profile that may induce drainage, water logging or interflow; 

- The capacity of soil to retain water and its behaviour under various conditions including 

measures of permanent wilting point, field capacity and saturation.  

While the above mentioned information can be easily accessed elsewhere, in the Congo Basin it 

still requires considerable effort.  Although there are global data on soil properties, many of these 

datasets have been prepared for agricultural purposes and do always provide information for 

direct use at the quality and resolution required for hydrological modelling.  Among the many 

existing soil global datasets, the Harmonized World Soil Database (HWSD) Version 1.1 

(FAO/IIASA/ISRIC/ISS-CAS/JRC, 2009; Nachtergaele et al., 2010) is probably the most 

recently updated information on soil properties at the global scale. The HWSD is a raster 

database with a spatial resolution of 30 arc-second. This database contains over 16 000 different 

soil mapping units that combine existing regional and national updates of soil information 

worldwide (Soil and Terrain Database-SOTER, Soil Map of China, World Inventory of Soil 

Emission Potentials - WISE) with the information contained within the FAO-UNESCO old Soil 

Map of the World, 1:5 000 000 scale (FAO, 1971-1981). This makes the information contained 

in the database to be qualitatively variable, with low reliability for the regions in the database 

that still make use of the FAO data such as North America, Australia, West Africa and South 

Asia. The information is considered moderately reliable for those regions of SOTER databases 

where the scale is smaller than 1:1 million. This is the case for South America, Caribbean, 

Congo and Angola.  For the regions where the scale of the original maps was 1:1 million, or 

better, with a complete soil profile database available, the reliability is considered high. Such 

regions include Southern Africa, Central and Eastern Europe. The regions of the Congo Basin 

covered by the SOTER database (Batjes, 2007) include Angola, Burundi and the Democratic 

Republic of Congo for which the soil information is of moderate reliability. These regions 

represent more 75% of the basin. The remaining parts of the basin are covered by the 

information derived from the FAO-UNESCO Soil Map of the World at a 1:5 000 000, scale for 

which the information is considered to be less reliable. The HWSD uses the revised FAO legend 

(FAO, 1990). The Soil Unit Composition of each grid represents fifteen soil parameters, for 

topsoil (0-30cm) and subsoil (30-100cm). These parameters are Organic Carbon, pH(H2O), 
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CECclay fraction, Total Exchangeable Bases (TEB), Base saturation %, Calcium carbonate, 

Gypsum, Sand fraction, Silt fraction, Clay fraction, ECe, USDA Texture, Reference Bulk 

Density, Soil Drainage, and Soil Phase information. The parameters used in this study include 

sand fraction, silt fraction, clay fraction, USDA texture, soil drainage, and soil Available Water 

Content (AWC) both for top and sub soils. Extraction of the information for the Congo Basin 

from the global grid involved queries and spatial operations using Geographical Information 

System (GIS) tools. Figure 3.23 shows some of the soil properties for the Congo Basin as 

derived from the HWSD version 1.1.  

 
 
Figure 3.23 Soil properties for the Congo Basin showing the top soil texture (top left), sub-soil 

texture (top right), drainage (bottom left) and dominant soils (bottom right). The 

legend for the dominant soils is shown in Figure 3.24 together with the soil 

characteristics (based on Nachtergaele et al., 2010).  
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In hydrological studies, soils information is needed to quantify the movement and storage of 

water in soil layers.  However, many of these attributes have been compiled based on the 

information from the upper 30 cm of the soil profile and assumed representative of the entire soil 

profile (Webb et al., 1991). With particular reference to the Congo Basin, many datasets of soil 

properties show low estimates of soil depth and available water content which appear not to be 

realistic for such a humid tropical environment. Webb et al. (1991) provide a global dataset that 

shows evidence of deep soil and high water holding capacity. Figure 3.24 shows the proportions 

of the dominant soils, and the associated soil attributes derived from the Webb global dataset. 
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Figure 3.24 Characteristics and distribution of the dominant soils in the Congo Basin (based 

on Webb et al., 1991). 

3.3.5 Geology and hydrogeology 

The exploration work for defining the stratigraphy and geological structure of the Congo Basin is 

very recent and can be traced from 1952 with exploration methods that combined surface 

mapping, geophysical survey and drilling (Kadima et al., 2011). These studies have been useful 

for establishing an understanding of the Congo Basin geological settings, though the geological 
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information in the basin is still a subject of debate among many geologists working in the basin. 

The discovery of the hydrocarbon potential motivated further exploration of the geology of the 

Congo Basin (Giresse, 2005). The geological structure is dominated by large cratonic nuclei, 

covered mainly by unconsolidated Cenozoic deposits (Schulter, 2006). The Congo craton 

consists of Archean nuclei that are welded together as a result of the Paleoproterozoic collision 

orogeny (Kadima et al., 2011).  The Archean terrain consist of the Kasai and Angolan Shield 

(south west), Chailu massif (North West), North-east Congo and the Katangan system (Schluter, 

2009) (see Figure 3.25).  

 

Figure 3.25 Tectonic setting of the Neoproterozoic basins of present-day Central Africa 

(source: Kadima et al., 2011). 

The Kasai and Angolan shield is composed of ancient metamorphic basement rocks, bounded by 

a fault at about 4oS and by the Katangan system (Bangwelu Block) on the eastern side. The 

southern and western end of the shield is covered by Phanerozoic rocks. Many poorly exposed 

gneisses and migmatites underlie the Kasai and Angolan shield, with the oldest rocks dating to 

3400 Ma. The Chailu massif is a vast granitoid assemblage extending from the Democratic 
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Republic of Congo to Southern Cameroon, through Congo and Gabon. Within the Chailu massif, 

there are two generations of granitoids, consisting of grey granodioritic to quartz dioritc biotite 

or biotite-amphibolite types, and potassic migmatites. The Sembe-Ouesso group within the 

Chailu massif consists of quartzitites, arkoses, conglomerates, phyllites, quartzites, shales, 

phyllites, cac-shales, dolomites and quartzites. The Archean gneisses and granite-greenstone 

terranes are widely distributed in the north-eastern part of the Congo craton, which comprises the 

region between Southern Sudan, Western Uganda, the Central African Republic and the north-

east Democratic Republic of Congo. In this region there are granulite rocks, whose parent rocks 

were probably of volcano-sedimentary origin. Rocks such as charnockites, grey gneissic rocks, 

the Ganguan Greenstone Belt and the granitoids are also exposed in this region.  The Katangan 

system is composed of conglomerates, shales argilites, quartzites, arkoses, greywackes, iron 

formations, dolomites and eolian sandstones, dating from Neoproterozoic to Cambrian Age. A 

recent geological description of the Congo Basin by Kadima et al. (2011) relates the above 

mentioned Archean terrains to four main regions: the Central basin (also known as the Cuvette 

central), the West Congo region, the Lindi-Ubangui region and the Katanga region. From 

analysis of wells’ gravity data for the central part of the Congo Basin, Giresse (2005) identify  

the presence of thick sedimentary layers (5-9 km) that underlie the crystalline basement, 

evidence of deep and lateral sequences evaporite formations, and evidence of salt-rich 

formations that have been tectonically destabilised.  

While there have been efforts to establish an understanding of the geological setting of the 

Congo Basin, little has been done with regards to its hydro-geology. Nevertheless, le Bureau de 

Recherches Géologiques et Minières (BRGM) provides some data for the hydro-geological 

properties of Africa, including the Congo Basin (Seguin, 2005).  This information has potential 

for developing a comprehensive understanding of the hydrogeology of the Congo Basin for 

hydrological studies. It is unfortunate that the GIS layers of this information are not available for 

public use (BGRM, 2011, personal communication). Therefore, the hydrogeological analysis in 

this study is limited to the BGRM information provided in a PDF format which is available at 

http://www.sigafrique.net/TravauxMethodologies/EAU/Rapport_Technique_Hydro.pdf. 
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In addition, Döll and Flörke (2005) provide a dataset of global-scale estimates of diffuse 

groundwater recharge at 0.5 by 0.5o spatial resolution (Figure 3.26). The dataset is presented as 

long-term average groundwater recharge for the period 1961-1990.  

 

Figure 3.26 Distribution of groundwater recharge over the basin (Döll and Flörke, 2005). 

This dataset has been used for hydrogeological studies (e.g. Seguin, 2005) and climate change 

impacts on water resources availability (European Commission, 2008). Figure 3.27 shows the 

hydro-geological characteristics of the Congo Basin based on the BGRM’s hydro-geological 

properties of Africa. The hydro-geological entities represent the inherent characteristics of the 

aquifers with capacities to contain or provide water. These characteristics are expressed in terms 

of lithology, type of aquifer and recharge. The main hydro-geological structures identified in the 

Congo Basin are continuous media with inter-granular porosity, complex structures with local 

karstification and dual porosity, and discontinuous media dominated by fissured and fractured 

rocks. The continuous media structure with inter-granular porosity dominates the central basin 

and extends to Angola through Kasai. Groundwater recharge in this hydro-geological structure is 

very high.  
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Lithology Aquifer type

Continuous media with intergranular porosity

Complex structure: dual porosity (intergranular 

porosity, joint and fractures) and local 

karstification in Cretaceous-Jurassic formations.

Discontinuous media with fissures and fractures.

Old sedimentary hardened/metamorphized rocks

. Dolomitic limestones may be karstified.

Discontinuous media with fissures and fractures.

Aquifers with two main layers: a weathered layer

above the fissured/fractured base ment. The

watershed layer is often capped by a hardened

lateritic crust.

Discontinuous media : joints and fractures are

dominating , but the basltic lavas ma include

formations with interangular porosity: pyrodastic

rocks, alluvial material.

Quaternary sedimentary . Fluvial deposits, recent

alluvial deposits(silt, loess), sand, sand dune

Cretaceous carbonate formations

Paleogen-Neogen sedimentary

Nubian sandstone type

Jurassic-Trias sedimentary formations

Karoo type- Carboniferous to Jurassic. Sandstone,

limestone, claystone(shale, mudstone), siltstone,

conglomerates.

Clastic, dastic-carbonate to volcano-sedimentary

formations: Precambrian (mainly)to Devonian

Sandstone, Quartzite, Schist, sandstone-schist series,

dolomitic limestone

Sedimentary to volcano-sedimentary formations and

associated plutonism: Precambrian

Metamorphic -plutonic formations- mainly

Precambrian. Granito-Gneiss, Migmatite, Amphibolite

Phanerozoic volcanic and volcano-plutonic massifs.

Dolerite, Syenite-Basalt(trapp), Trachyte, Phonolite,

Pyroclastic rocks(Tuff)

Plutonic and volcano-plutonic formations-

Precambrian to Cambrian. Granite, Granodiorite,

Diorite, Gabbro, Dolerite, Greenstone belt

Recharge : mm year-1

<5 5-20 20-50 50-100 100-300 300-500 > 500 Recharge of alluvial aquifers by the rivers 

Aquifers in recent sedimentary basins 

Sedimentary basin of the humid tropical area and equatorial zone with extensive unconfined 

aquifers.   Important renewable groundwater resources

 

Figure 3.27 Hydro-geological structures of the Congo Basin (based on Seguin, 2005).   
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The complex structure that presents local karstification and dual porosity is associated with 

continuous media structure. This structure is also found in the central basin in an arc that 

surrounds the continuous media. It also appears isolated in the areas such as the upper Kotto, 

Kadei, and Kwango. Groundwater recharge in this hydro-geological structure is high. The 

remaining part of the Congo basin is occupied mainly by discontinuous media with dominant 

fissured and fractured rocks. This structure is found in the peripheral high altitude catchments of 

the Congo basin. Starting from the Katanga Highlands, it forms a belt that occupies the main 

primary catchments of the basin. Groundwater recharge in this structure is low. 

3.4 Streamflow characteristics 

An ungauged basin is defined as the one with inadequate data to support understanding of the 

basin hydrological processes and enable predictions. Hydrological studies in the Congo Basin 

can be traced from 1903 with the implementation of the Kinshasa gauging site. Many streamflow 

gauges implemented since this period have suffered from lack of monitoring and maintenance 

due to difficulties related to political and economic situations, as well as a lack of expertise. In 

addition, governments of the countries of the Congo Basin did not prioritise assessment of water 

resources; partly due to low pressure of water scarcity, but also because of widely spread belief 

that abundant water resources do not require management.   However, the need to manage water 

resources of the Congo Basin has been manifested through awareness rising about climate 

change issues. The advent of the Integrated Water Resources Management (IWRM) concept laid 

down a foundation for the implementation of many regional River Basins Organisations (RBOs) 

such as the Nile Basin Initiative (NBI), the International Commission of Congo-Oubangui-

Sangha (CICOS), the Lake Tanganyika Water Authority (LTA) and the water department of the 

Southern African Development Commission (SADC). The implementation of these RBOs has 

been valuable for increasing awareness about the water resources management and development 

in the Congo Basin. To date, efforts are being made in collaboration with various international 

agencies in order to increase the capacity of information and database management of water 

resources in the Congo Basin. Currently, the hydrometric network is composed of two 

operational gauging sites.  The main hydrometric site is at Kinshasa and Brazzaville on the 
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Congo River, which controls about 98% of the total drainage area of the Congo Basin.  The 

second operational gauging site is at Bangui on the Oubangui River, one of the main tributaries 

of the Congo River.  

One of the main objectives of this study was to assess all sources of the available hydrological 

data for the Congo Basin which could be used to set up models for hydrological assessment of 

water resources in the basin. Figure 3.28 shows the spatial distribution of the streamflow gauges 

for the Congo basin. Spatial and temporal characteristics of these gauging sites are presented in 

Table 3.3.  

 

Figure 3.28 Spatial distribution of the 33 streamflow gauging sites identified in the Congo 

Basin.  
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Three main sources have been identified, namely the Global Discharge Data Centre (GRDC, 

Fekete, 1999), the Office National de Recherche et du Developpement (ONRD, Lempicka, 

1971), and Hydrosciences Montpellier - Système d’Informations Environnementales  (SIEREM, 

http://hydrosciences.fr/sierem). GRDC is a high reliability, global database that contains 

discharge data for rivers worldwide. Montpellier-SIEREM contains streamflow data collected 

through its various programmes in Central Africa and its reliability is high. Lempicka (1971) 

provides a set of data for various stations of the southern part of the basin for the period 1950-

1959. A concern has been raised about the quality of the Lempicka’s dataset (Mahé, 1993).  The 

various stations identified in the Congo basin show many missing values and inconsistencies. 

After screening (checking the quality of the available streamflow time series), 33 gauging sites 

were found viable and were retained for analysis in this study. 

Table 3.3 Temporal and spatial characteristics of the gauging sites (A is the gauging site 

with two hydrometric stations, one for Brazzaville and another for Kinshasa).  

Gauging 
site Lat. Long. Country Station name River name 

Drainage 
area   km2

Streamf low 
records Months 

% 
Missing Source

AH -4.217 15.000 Congo Kibassi Djoue 5240 1969-1972 48 0.0 GRDC
AF 5.167 16.617 CAR ZAORO Lobaye 5880 1958-1959 21 0.0 SIEREM
V -4.022 30.560 Tanzania Taragi Malagarasi 8792 1971-1979 108 5.6 GRDC

AD 4.350 17.067 CAR Kedingue Lobaye 14259 1957-1975 218 17.9 GRDC
M 4.933 15.867 Cameroon Carnot Membere 18098 1953-1971 227 22.5 SIEREM
C 5.784 25.128 CAR Dembia Ouarra 19590 1953-1975 269 19.3 GRDC

AB 4.733 22.683 CAR Loungouba Mbari 22153 1967-1973 80 20.0 GRDC
D 5.033 25.150 CAR Zemio Mbomou 26454 1952-1975 281 41.3 GRDC
G 5.783 20.683 CAR Bambari Ouaka 28333 1952-1975 282 21.3 GRDC
E 3.650 18.100 CAR Safa Lobaye 30503 1953-1975 272 11.4 SIEREM
F 3.667 18.300 CAR M'bata Lobaye 31037 1950-1975 302 3.3 GRDC

AE 2.050 14.917 Cameroon N'Gbala Dja 38600 1968-1978 131 13.0 SIEREM
N 0.017 16.367 Congo N'TOKOU Likouala 44485 1952-1973 263 71.0 SIEREM
H 4.967 23.917 CAR Rafai Chinko 51959 1952-1973 249 16.1 GRDC

AC 6.533 22.000 CAR Bria Kotto 58898 1959-1975 204 10.8 SIEREM
U -9.193 25.860 DRC Bukama Lualaba 61975 1950-1959 120 0.0 ONRD
Z 3.183 16.117 Cameroon Salo Sangha 69544 1953-1994 492 35.0 GRDC
I 4.600 21.917 CAR Kembe Kotto 75994 1953-1965 156 0.0 GRDC
P 4.717 22.817 CAR Bangassou Mbomou 117644 1952-1956 57 5.3 GRDC
T -11.966 28.759 Zambia Chembe Ferry Luapula 119259 1957-1981 300 0.0 GRDC
Y 1.617 16.050 Cameroon Ouesso Sangha 143314 1948-1983 432 0.0 GRDC
S -7.842 26.976 DRC Mulongo Lualaba 158099 1950-1959 120 0.0 ONRD

AG -5.911 29.189 DRC Pont Kalemie Lukuga 231635 1957-1959 31 6.5 ONRD
X -4.333 20.583 DRC Port Franqui Kasai 234770 1932-1959 336 0.0 GRDC
J 4.300 21.183 CAR Mobaye Oubangui 389856 1939-1960 260 5.0 GRDC
K 4.365 18.606 CAR Bangui Oubangui 492405 1940-2000 732 0.0 GRDC
L 3.717 18.583 CAR Zinga Oubangui 524497 1952-1975 282 16.0 SIEREM
W -3.183 17.383 DRC Kutu Moke Kasai 732838 1932-1959 336 0.0 GRDC
R -4.531 26.578 DRC Kasongo Lualaba 751806 1950-1959 120 0.0 ONRD
Q -2.950 25.926 DRC Kindu Lualaba 789234 1933-1959 324 0.0 GRDC
B -3.057 16.557 DRC Lediba Kwa 876632 1950-1959 120 0.0 ONRD
O -0.353 25.445 DRC Pontierville Lualaba 928381 1932-1947 192 0.0 GRDC
A -4.296 15.308 Congo Brazaville Congo 3570566 1969-1984 192 0.0 GRDC
A -4.296 15.308 DRC Kinshasa Congo 3570566 1903-1983 972 0.0 GRDC
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3.4.1 Seasonal distributions  

The Congo River Basin system is composed of four main tributaries that drain the primary basins 

into the central basin of the Congo River. These tributaries were gauged during the colonial 

period and data are stored at the Global Runoff Data Centre (GRDC, Feteke et al., 1999).  The 

main gauging sites of these tributaries (A, K, Q, W and Y) were selected for analysis in this 

study. Three headwater gauging sites (H,T and Z) were also included to represent the flow 

characteristics of the headwater sub-basins. The selected gauging stations are representative of 

the main drainage systems of the Congo Basin. Figure 3.29 shows the mean monthly 

distributions of the streamflow rainfall and evapo-transpiration for selected parts of the Congo 

Basin.  The mean monthly streamflow, distribution in the northern part of the basin (north of the 

Equator) is different from that in the southern part of the basin (south of the Equator). These 

streamflow patterns are essentially driven by the pattern of rainfall over the basin. For most of 

the main primary sub-basins, there seems to be a clear relationship between the pattern of rainfall 

and streamflows. This is not the case for the most downstream gauging site (A) which reflects a 

wide variety of hydrological response within the upstream parts of the basin.  

3.4.2 Inter-annual variations    

Figure 3.30 shows the variation of annual flows around the long-term mean flow for different 

periods of record. The vertical axes of the diagrams represent streamflow values normalised by 

the long-term mean flow for each gauging station. The dispersion of the annual flows around the 

value of one represents the variability of streamflows in different parts of the basin. The year to 

year streamflow trend shows that the hydrological response is quite different from one drainage 

system to another, an observation that highlights the heterogeneous nature of the main drainage 

systems of the Congo Basin. The highest degree of variability is observed in the headwater of the 

Luapula drainage system (T: Standard deviation: 0.646), while the lowest departure is observed 

at the most downstream gauging station of the Congo Basin (A: Standard deviation: 0.103).  
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Figure 3.29 Streamflow seasonal distributions for the main drainage areas of the Congo Basin. 
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Figure 3.30 Bar plots showing inter-annual streamflow variability for the selected gauging 

sites (normalised by the total mean). 
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3.5 Conclusion 

At least part of uncertainty in hydrological modelling arises from mis-representation of the basin 

processes, which in turn is greatly influenced by our perceptions about those processes. The 

value of field experiments and observational data is important for developing a primary 

understanding of the main hydrological processes in the basin. A qualitative primary 

understanding of the processes is necessary for establishing hydrological models in large basins 

such as the Congo, where heterogeneity of the physiographic basin properties is complex. Thus 

exploring data that could be used to establish the primary understanding of the main processes in 

the basin is important for a framework of hypothesis testing and modelling decisions. This 

chapter aimed to assess the available physiographic and climatic data for the Congo Basin, 

analyse them and generate information necessary to guide modelling decisions in the basin.  

Relevant data for the basin physiographic and climatic properties such as precipitation, 

temperature, evapotranspiration, topography, land cover, soil properties and groundwater 

recharge were used to generate the basin attribute values. Data analysis shows that there is high 

spatial variability in the physiographic and climatic properties of the Congo Basin, which reflects 

the variability of processes occurring at the various spatial scales in the Congo Basin. The 

variability in rainfall reflects the dependence of the rainfall on the many other external and 

regional factors which act on atmospheric-ocean interactions and the monsoonal processes 

(Balas et al., 2007; Farnsworth et al., 2011). The lack of access to certain specific types of 

information, particularly related to sub-surface processes remains a major constraint. Some gaps 

in the observational data can be filled using hydrological simulation models, as the models offer 

opportunities for adding values to limited observations.  
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CHAPTER 4  SUB-BASIN DELINEATION AND SIMILARITY 

ANALYSIS 

4.1 Introduction 

Recent recognition of the lack of, and the need for, a generally agreed-upon catchment 

classification for hydrological purposes (Wagener et al, 2007) has driven efforts to address 

elements that could feature in a catchment classification framework (Sivapalan et al., 2005; 

Sawicz et al., 2011; Sivakumar et al., 2011). Some of the characteristics for such a framework 

are:  guidance for modelling and measurement; provision of constraints for predictions in 

ungauged basins and estimate of impacts of environmental changes;  provision for mapping of 

landscape forms and hydro-climate conditions on catchment functions; and provision of a 

common language, and finally, organising principles (Wagener et al., 2007).  

Many catchment classification frameworks exist; the most widely used being the Hydrological 

Response Unit (HRU). The HRU considers the derivation of areas within the landscape that 

present similar hydrological responses based on predefined characteristics of land cover and use, 

soil properties and slopes (e.g. Neitsch et al., 2009). These approaches to catchment 

classification have their strengths and weaknesses. For instance, it has been observed that the 

HRU approach tends to generate an excessive number of units for which estimating parameters 

may not be easy (Wagener et al., 2004a).  

This study attempts to delineate the basin based on areas of dominant (most frequent) slope and 

elevation, as well as the main streams and the existing gauging sites. The sub-basins delineated 

will be assessed for similarity between the various constituents of the hydrological functioning of 

the basin. Groups of flow duration curves (FDCs) constructed from a regional distribution of 

streamflow gauging sites within the Congo Basin are also used to analyse similarity. The main 

assumption driving this study is that it should be possible to use common principles of diagnostic 

evaluation to make inferences about physical basin properties (climate, vegetation, geology, 

geomorphology, soils, etc.) and derive useful implications for the dominant runoff generation 

processes in the basin. A second assumption is that the physical basin attributes such as climate, 
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topography, vegetation, soil types, and geology exert a large control on the basin hydrological 

response and thus areas with similar physiographic characteristics may lead to similar 

hydrological responses, though this might not always be the case (Burn et al., 1997). The 

approach espouses the emerging unified theory of hydrology at the catchment scale (e.g. 

Sivapalan, 2005; Wagener et al., 2007; Sawicz et al., 2011; Sivakumar et al., 2011) as it aims at 

developing a sound database of the physical basin properties; at identifying statistical properties 

of the physical basin variables that could be used to constrain  predictive uncertainties of models; 

and at analysing and exploring the information content of discernible patterns that can be 

detected from the observations.   

4.2 Sub-basin delineation 

The geomorphologic classification of the central African land surface (Burke and Gunnell, 2008) 

underlines the presence of topographic highs, also called “swells” (Kadima et al., 2011) or 

“rises” (Runge, 2008), which surround the central part of the Congo Basin. Firstly, there is the 

Atlantic rise which encompasses the streams of the western right bank of the Congo River. The 

main rivers generated in this area are known as the Sangha, Mossaka, Alima and Lefini.  Further 

north-east of the Congo Basin, there is the Asante rise which encompasses the streams that drain 

the basin starting from its drainage divides with the Chari and Nile Basins to the main trunk of 

the Congo River. This drainage unit is known as the Oubangui Basin, the name of the main 

stream that connects all the upstream tributaries to the main trunk of the Congo River. The 

eastern part of the Congo Basin is flanked by the Mitumba Mountains that mark a clear drainage 

divide between the Congo and the Nile Basins. Main streams generated from these highlands are 

the Aruwimi and Lindi Rivers, which are connected to the Congo River at Kisangani, where the 

river takes the name of the Congo River. The southern rim of the Congo Basin is flanked by the 

Lunda rise, which is shaped by the Angolan highlands in the south-west and the Shaba, or North 

Zambian, swell in the south-east. The main rivers of the Southern Congo Basin, notably the 

Kasai and Lualaba Rivers, rise in the highlands of the Lunda Rise and the Shaba Swell, 

respectively. The river generated from these physiographic features runs over 4 375 km before 

pouring its average flow of over 41 000 m3 s-1 into the Atlantic Ocean, thus draining an area of 
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about 3.7 *106 km2. From the plateaux of Katanga, the river first flows north, then west and 

south, crossing the Equator twice in a great arc as it traverses a vast swampy basin over 4 375 km 

from east to west and up to 850 km from north to south. In its middle course, the Congo River 

varies in width between 3-15 km and loses only 115 m in altitude over a river distance of 1 740 

km between Stanley Falls (0° 29′ N/25° 12′ E)  and Stanley Pool (4°1 1 ' S/15°35 'E)  (Hughes 

and Hughes, 1987).  

The main tributaries cross areas of various heights, slopes, soils and geologies before discharging 

their flows from the basin into the Atlantic Ocean. Identification of homogeneous groups across 

these areas would be necessary for hydrological studies in the Congo Basin. On the basis of the 

predefined elevation and slope maps (Figures 3.19 and 3.20), it was possible to delineate the 

corresponding zones which could be used as sub-basin units. The exercise consisted of 

overlaying the slope classes, elevation classes and basin drainage network and delineating, where 

possible, the dominant features of elevation and slopes. Figure 4.1 shows the 83 sub-basin units 

which correspond to the predefined areas of dominant elevation and slope, respectively. It can be 

observed that there is an overlap between the areas of dominant elevation and slope, which 

reflects a possible correlation between these two variables of the landscape morphology. 

Therefore it is likely that these two variables can provide similar information about some 

functional characteristics of the landscape processes. Sixteen additional sub-basins were 

delineated based on the location of the main streamflow gauging sites, which resulted in a total 

number of 99 sub-basins delineated for the whole Congo Basin. Figure 4.2 shows the spatial 

distribution of the 99 sub-basins.  
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Figure 4.1  Eighty-three sub-basins delineated based on the areas of dominant elevation (left) 

and slope (right) and the main tributaries.  

 
Figure 4.2  Ninety-nine sub-basins delineated based on the location of the main gauging sites 

(alphabetic letters beside the catchment IDs indicate the location of the gauging 

sites). 
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4.3 Estimates and statistical properties of the sub-basins physical attributes  

Tables 4.1(a-h) lists the frequency distribution of the basin attributes identified by assessing the 

various datasets on the basin physical characteristics using GIS analysis. For the purpose of 

presentation, estimates for only Tables 4.1 (a-c) are presented here while the remaining (d-h) are 

presented in Appendix A. Table 4.2 shows the overall univariate statistical properties for the 

physical basin attributes. The descriptors of the sub-basin characteristics used are based on the 

basin physical properties and consist of dimensionless indices as well as dimensional basin 

attributes (drainage area, longest drainage length, mean annual precipitation, mean annual 

evaporation, minimum, average and maximum elevation, proportion of the basin area under 

vegetation, vegetation  cover types, proportion of the basin area under various  particles size of 

sand, silt and clay, proportion of the basin area under various soil texture classes, and proportion 

of the basin area under available water content classes). Blöschl (2005) mentions the important 

role of similarity indices which are usually expressed as dimensionless numbers and reflect some 

invariant properties of the catchment functioning. The dimensionless similarity measures of the 

physical basin properties used in this study are defined as follows:  

Ratio of long-term average precipitation to long-term average evapotranspiration (P/PE): 

similarity in climatic characteristics of a catchment can be assessed by the P/PE index (Budyko, 

1974), which is the ratio between the long-term mean annual precipitation and mean potential 

evapo-transpiration. Spatial distribution of rainfall over the Congo Basin is very variable and 

P/PE may be a good indicator of zones of local rainfall deficiency.  

Hypsometric Integral: hypsometric form reveals signatures about the spatial distribution of soil 

moisture and runoff response mechanisms. They also reflect the functional relationships between 

baseflow discharge, the mean groundwater depth, and the variable source area (Vivoni et al., 

2008).  A measure of the shape of the hypsometric form is expressed by the hypsometric integral 

(HI) which provides information on the erosional stage of the basin and the climatic, tectonic and 

lithologic controlling factors (Deckers et al., 2010).   The hypsometric integral ranges between 0 

and 1 (Pedrera et al., 2009), with low values indicating an advanced degree of erosion while high 

values are synonymous with a younger and less eroded relief. HI has been used to study the 
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degree of disequilibrium in the balance between erosive and tectonic activities (Sougnez and 

Vanacker, 2011).  

onMinElevationMaxElevati

onMinElevatiionMeanElevat
HI

−
−=       Equation 4.1 

Topographic Wetness Index: lateral distribution of moisture by shallow sub-surface flow can be 

a very important process in humid climates, and therefore, it is also important to relate measures 

that reflect upslope area, slope, or convergence to the soil moisture. The Topographic Wetness 

Index (TWI) appears to be the most commonly used approach (Bloschl, 2005). TWI (Beven and 

Kirby, 1979) is used in catchment similarity studies to quantify topographic control on 

hydrological processes (Sørensen et al., 2006).  








=
βtan

ln
a

TWI          Equation 4.2 

where a  is the local upslope area draining through a certain point per unit contour length and tan 

β  is the local slope.  a  is assumed to be a measure of water flowing towards a specific location 

and tan β is a measure of water draining from a certain location (Seibert and MCglynn, 2005). 

The use of TWI in hydrological studies includes spatial organization of the hydrological 

processes (e.g. Siviapalan et al., 1990; Famiglietti and Wood, 1991; Barling et al., 1994; Grabs 

et al., 2009) and the identification of hydrological flow paths for geochemical modelling 

(Robson et al., 1992).  TWI is also a major component of the TOPMODEL (Beven, 2001). 

Slope-Area relationships and derivative slope indices: slope indices are the quartiles 

(percentiles) of the slope frequency distribution curves obtained from a gridded map of slope 

derived from a DTM. Slope indices derived from frequency distributions have the advantage of 

maximizing the information content of the landscape properties (Wagener et al., 2004). Various 

studies have demonstrated the role of the landscape gradient (slope) in defining the magnitude-

frequency relationships of geomorphologic processes (e.g. Hovius et al., 2000).  Garbrecht and 

Martz (1999) mention the importance of catchment slope for runoff, erosion and energy fluxes. 

Flow paths and travel distances within the catchment are subject to the variation and forms of 
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slopes. Many characteristics of the catchment hydrological yield, such as the available kinetic 

energy for downstream outflow (Mazimavi, 2003), the runoff, and base flow responses (Vogel 

and Kroll, 1992), are related to the terrain slope, though previously computing the latter was a 

difficult task. With the advent of DTMs that provide terrain information at pixel size, it has 

become possible to derive terrain slope attributes at finer scales.  Slope-area relationships have 

been investigated for the dynamics of the catchment hydrological response and subsequent 

applications for prediction in ungauged catchments, as well as the development of physically-

based hydrological models. Such studies include cumulative frequency distribution of slopes 

(Mazimavi, 2003) and the slope-area threshold identification (Giannoni, 2005). In the present 

study, all pixels within a sub-basin are used to reconstruct the cumulative frequency distribution 

of slopes of individual sub-basins.  This has the advantage of deriving meaningful slope indices 

that can be used to explain some aspects of the flow characteristics. Figure 4.3 shows the 

cumulative frequency curves for selected sub-basins.  The slope indices that can be represented 

as SΨ (Mazimazi, 2003) are the value of slope for which Ψ% of the pixels in the sub-basin is 

equal to or less than this value. In this regard, S50 would represent the median slope, a measure 

that is thought to be representative for the catchment rather than the mean slope (Berger and 

Entekhabi, 2001).  
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Figure 4.3 Cumulative frequency curves (logarithmic scale) of slopes for selected sub-basins.  
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Table 4.1a Estimates of the physical basin attributes (climate and recharge) for the 99 sub-

basins. 

Sub-basin 
ID

Rainfall Evapotranspiration
P/PE

Recharge
Min. Max. Mean Min. Max. Mean Min. Max. Median

1 1804 1804 1804 1219 1219 1219 1.48 436.7 505.6 467.4
2 1437 1507 1472 1450 1450 1450 1.02 157.2 191.0 175.7
3 1552 1912 1732 1071 1274 1153 1.50 91.0 252.3 175.5
4 1803 2169 2047 934 934 934 2.19 133.3 206.0 163.6
5 1455 1690 1573 1350 1525 1437 1.09 78.3 153.1 134.6
6 1651 1696 1678 1260 1300 1285 1.31 199.5 390.1 283.8
7 1553 1553 1553 1321 1492 1406 1.10 132.7 259.0 171.4
8 1309 1628 1441 1415 1415 1415 1.02 78.2 187.9 134.0
9 1198 1207 1201 1191 1191 1191 1.01 121.8 318.4 197.2

10 1147 1309 1240 1268 1445 1345 0.92 124.2 201.7 172.3
11 1160 1279 1206 1229 1497 1392 0.87 105.3 244.4 164.7
12 968 2169 1569 1284 1319 1307 1.20 158.4 328.3 176.9
13 1212 2169 1691 1319 1319 1319 1.28 121.2 328.3 163.6
14 1309 1628 1422 1350 1525 1446 0.98 66.8 219.7 167.8
15 1744 2285 2052 1178 1219 1198 1.71 390.2 579.5 490.6
16 1212 1212 1212 1319 1319 1319 0.92 91.0 328.3 153.6
17 1744 1895 1845 1265 1265 1265 1.46 390.2 514.8 434.1
18 1437 1579 1468 1250 1450 1417 1.04 102.9 200.7 160.3
19 995 1474 1187 1284 1786 1426 0.83 101.7 304.4 152.1
20 1324 1786 1416 899 1195 958 1.48 83.1 192.6 148.0
21 1923 1944 1941 1177 1289 1196 1.62 92.7 241.1 195.0
22 1516 1840 1619 1318 1348 1339 1.21 110.2 176.7 139.6
23 1193 1309 1216 1321 1445 1341 0.91 102.3 197.0 155.7
24 1431 1690 1519 1350 1525 1415 1.07 78.8 219.7 156.4
25 1395 1923 1633 1200 1670 1347 1.21 66.2 179.7 84.6
26 1388 1671 1512 1312 1414 1343 1.13 110.3 382.7 205.7
27 771 1516 1308 1318 1415 1379 0.95 65.0 176.7 115.2
28 1220 1479 1431 1331 1420 1355 1.06 174.2 309.7 235.2
29 1463 1507 1479 1250 1312 1260 1.17 160.3 402.8 217.2
30 1463 1507 1479 1250 1312 1260 1.17 332.6 398.8 365.7
31 698 1516 1196 1318 1462 1370 0.87 61.0 140.6 104.4
32 1410 1696 1623 1260 1420 1293 1.25 249.7 414.9 307.8
33 1378 1504 1422 1318 1407 1367 1.04 105.5 150.8 134.2
34 891 2169 1552 899 1433 1149 1.35 83.1 206.0 149.7
35 2061 2107 2081 1198 1297 1262 1.65 356.4 515.5 478.8
36 1319 1552 1399 1264 1615 1486 0.94 121.2 250.9 193.6
37 1320 1663 1499 1294 1420 1389 1.08 261.4 362.3 312.4
38 1399 1825 1547 1289 1576 1433 1.08 53.3 122.3 81.2
39 1440 1571 1483 1230 1250 1234 1.20 102.9 225.2 187.7
40 796 1240 1005 1274 1607 1449 0.69 82.1 233.2 141.0
41 1642 1766 1672 1226 1367 1256 1.33 117.1 340.6 206.1
42 1555 1762 1657 1118 1265 1243 1.33 192.9 493.0 386.4
43 846 1343 1177 1404 1692 1565 0.75 88.6 295.5 240.7
44 1516 1840 1690 1348 1350 1348 1.25 118.4 210.7 162.2
45 1343 1553 1410 1334 1438 1368 1.03 177.5 384.7 285.6
46 1628 1840 1683 1350 1350 1350 1.25 118.4 210.7 157.6
47 727 1196 1005 1274 1411 1396 0.72 67.9 233.2 161.3
48 1199 1944 1541 1029 1225 1159 1.33 80.2 203.3 148.6
49 1160 1516 1396 1318 1421 1343 1.04 104.8 153.8 126.7
50 1725 2181 2003 1212 1297 1246 1.61 355.6 513.0 383.6
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Table 4.1a Continued 

Sub-basin 
ID

Rainfall Evapotranspiration
P/PE

Recharge
Min. Max. Mean Min. Max. Mean Min. Max. Median

51 1226 1809 1447 1264 1615 1364 1.06 154.2 384.7 220.3
52 1485 1682 1621 1196 1250 1235 1.31 158.4 366.2 197.5
53 1122 1553 1257 1321 1492 1356 0.93 67.9 288.1 168.9
54 1524 1702 1603 1215 1344 1259 1.27 190.2 453.6 314.5
55 1388 2107 1718 1198 1281 1220 1.41 331.9 482.0 461.5
56 1442 1622 1499 1318 1407 1338 1.12 103.8 172.0 136.6
57 1473 1682 1524 1250 1250 1250 1.22 158.5 260.3 188.5
58 1700 2218 1885 1177 1195 1190 1.58 136.3 241.1 203.1
59 1178 1640 1373 1354 1420 1394 0.98 139.0 332.8 221.3
60 1443 2218 1794 1177 1494 1370 1.31 64.7 208.6 127.8
61 1616 1874 1675 1188 1365 1280 1.31 248.8 475.8 307.6
62 1605 1843 1730 1348 1350 1348 1.28 110.2 201.7 137.8
63 1616 2107 1973 1166 1297 1212 1.63 248.8 517.7 473.5
64 1220 1649 1463 1260 1615 1429 1.02 129.4 362.3 289.4
65 1040 1577 1303 1430 1840 1494 0.87 119.4 280.9 243.5
66 1539 1906 1610 1206 1438 1282 1.26 181.4 462.7 380.2
67 1663 2218 1760 1177 1367 1321 1.33 117.1 224.2 130.4
68 1049 1233 1133 1430 1840 1584 0.71 135.0 280.1 219.2
69 775 1279 958 1344 2732 1666 0.58 7.1 244.4 93.7
70 796 1720 1568 1226 1367 1339 1.17 110.2 208.9 130.1
71 1518 1686 1560 1196 1250 1212 1.29 158.4 403.6 198.2
72 1652 1686 1679 1196 1196 1196 1.40 192.9 425.3 406.0
73 1178 1719 1520 1191 1420 1341 1.13 121.8 390.4 269.0
74 727 1446 1165 1274 1411 1341 0.87 67.9 309.6 178.7
75 1049 1421 1258 1268 1607 1476 0.85 105.9 295.5 198.6
76 1446 1729 1575 1215 1344 1273 1.24 289.9 452.7 349.1
77 936 1378 1213 1411 1619 1572 0.77 105.9 255.2 192.5
78 1547 1843 1774 1247 1348 1331 1.33 117.1 211.8 135.9
79 1550 1729 1635 1206 1344 1256 1.30 286.2 462.8 399.1
80 796 1306 1069 1229 1786 1468 0.73 56.1 328.3 144.3
81 796 1235 1119 1339 1539 1401 0.80 87.3 172.3 125.3
82 1385 1795 1589 1247 1414 1338 1.19 94.4 284.9 142.1
83 1571 1571 1571 1252 1252 1252 1.25 213.0 332.6 253.2
84 1492 1783 1717 1196 1302 1248 1.38 130.0 497.7 346.1
85 1536 1651 1586 1291 1291 1291 1.23 303.1 454.7 383.5
86 985 1387 1141 1274 1539 1473 0.77 98.6 299.6 168.8
87 1440 1474 1463 1284 1284 1284 1.14 125.8 227.8 173.3
88 1385 2061 1748 1234 1370 1288 1.36 322.4 489.5 435.5
89 1229 1674 1430 1284 1365 1325 1.08 154.6 323.3 234.1
90 1474 2169 1872 1284 1322 1314 1.42 144.8 273.7 173.3
91 1660 2225 2102 934 1322 1236 1.70 133.3 341.3 221.6
92 1660 2225 1845 1188 1244 1204 1.53 222.8 369.5 337.8
93 1569 1786 1730 1195 1244 1213 1.43 222.8 369.5 337.8
94 1547 1924 1759 1188 1263 1234 1.43 130.0 497.7 346.1
95 1593 2052 1767 1196 1281 1237 1.43 338.0 467.4 386.4
96 1379 1954 1619 1178 1370 1282 1.26 289.4 506.9 390.4
97 1379 1765 1590 1191 1270 1233 1.29 197.2 439.4 311.8
98 1390 1521 1467 1191 1192 1192 1.23 142.5 289.4 197.2
99 984 1479 1185 1058 1191 1105 1.07 52.0 209.0 114.6
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Table 4.1b Estimates of the physical basin attributes (terrain morphology) for the 99 sub-

basins.  

Sub-
basin ID

Sub-basin 
centre Area km2

Drainage
km Elevation

HI 

Topographic 
Wetness Index Main river

Lat. Long. Area
Cum.are
a TDL LFP Min. Max. Mean Min. Max. Mean

1 -1.914 15.483 6878 6878 300 169 313 774 527 0.46 14 29 19.8 Lefini
2 5.570 16.275 5880 5880 241 160 514 1049 765 0.47 15 26 19.5 Lobaye
3 -0.024 29.163 6717 6717 237 144 1531 3478 1773 0.12 14 28 18.7 Kivu
4 -1.674 27.915 5997 5997 343 200 619 3003 1163 0.23 14 29 18.3 Lulindi
5 4.557 26.927 8802 8802 339 198 605 794 673 0.36 16 30 21.3 Uere
6 -4.234 17.723 22201 22201 1109 468 343 1116 687 0.45 14 29 19.9 Inzia
7 -9.155 24.458 8539 8539 372 184 947 1503 1258 0.56 15 28 20.6 Lukeshi
8 6.855 25.073 11196 11196 428 189 592 856 681 0.34 15 31 21.2 Barango
9 -5.670 15.279 12134 12134 640 355 520 1316 851 0.42 15 29 20.5 Inkisi
10 0.000 26.809 8542 8542 369 153 1134 1690 1333 0.36 15 29 20.4 Lufira
11 -2.145 30.279 8792 8792 413 168 1123 2489 1390 0.20 14 29 19.1 Malagarasi/taragi
12 -2.011 27.879 11140 11140 537 250 613 3034 1345 0.30 13 29 18.8 Elila
13 -1.018 27.917 8913 8913 390 244 634 3430 1468 0.30 13 28 18.3 Lulindi
14 5.754 25.890 15681 15681 598 241 589 858 680 0.34 15 31 21.4 Ouarra
15 -0.191 14.895 16503 16503 766 305 330 862 518 0.35 14 30 20.0 Alima
16 -1.250 29.079 4872 11588 192 137 796 3289 1620 0.33 14 28 17.8 Ruzizi
17 0.751 14.957 10112 10112 490 212 329 610 411 0.29 15 30 21.1 Likona
18 5.660 15.319 18098 18098 759 273 483 1238 799 0.42 15 30 20.3 Membere
19 -3.248 28.550 16334 16334 742 278 679 2579 1168 0.26 13 31 19.3 Luama
20 0.128 28.295 19873 19873 1052 260 629 2738 955 0.15 14 30 19.9 Lindi
21 2.147 28.214 16917 16917 855 345 590 1141 821 0.42 15 30 21.2 Nepoko
22 5.828 23.280 22153 22153 929 343 491 829 605 0.34 15 30 21.3 Mbari
23 0.000 25.867 17739 17739 733 274 1198 1701 1448 0.50 15 30 21.3 Nzilo
24 5.300 26.167 26454 26454 1056 354 561 785 651 0.40 15 30 21.7 Bomou
25 2.917 30.049 20275 20275 1069 358 708 1732 1047 0.33 14 29 20.7 Uele
26 4.916 17.852 27081 27081 1249 307 356 812 560 0.45 14 31 21.3 Mpoko, Mbali
27 7.216 24.183 26316 26316 1190 328 583 1008 718 0.32 15 31 21.5 Chinko
28 -9.308 18.857 18110 18110 825 267 905 1492 1185 0.48 14 30 20.2 Kwango
29 4.443 16.932 24623 30503 1108 381 364 907 598 0.43 15 30 21.0 Lobaye
30 3.663 18.159 533 31037 75 0 364 531 402 0.23 16 29 20.3 Lobaye
31 8.095 23.122 28847 28847 1211 333 609 1117 785 0.35 15 31 32.6 Kotto
32 -5.584 18.600 41197 41197 2003 688 336 1252 775 0.48 14 30 20.6 Djuma
33 6.527 20.836 28333 28333 1214 331 435 809 573 0.37 15 29 31.3 Ouaka
34 -0.671 28.195 30507 30507 1506 365 583 3017 1182 0.25 13 31 19.1 Lowa
35 -0.122 20.699 35450 35450 1456 459 336 624 410 0.26 15 31 21.7 Busira
36 -8.980 22.695 37886 37886 1774 676 763 1308 999 0.43 15 31 21.8 Lulua
37 -7.482 19.677 51060 51060 2942 680 508 1453 1019 0.54 14 30 21.5 Loange
38 3.867 29.527 16840 37115 823 334 696 1227 805 0.21 15 32 21.9 Uele
39 4.810 14.595 34110 34110 1574 436 491 1068 691 0.35 15 30 21.7 Kadei
40 -7.968 28.760 34270 247151 1603 463 573 2011 1117 0.38 13 31 20.1 Luvua
41 2.921 24.730 34913 34913 1521 360 390 737 505 0.33 15 32 22.0 Itimbiri
42 0.584 15.434 44485 44485 1906 364 321 814 437 0.24 14 31 21.9 Likouala
43 -9.730 31.637 40706 40706 1999 417 1190 1834 1341 0.23 14 31 21.8 Chambeshi
44 5.652 24.386 14447 51959 600 245 528 822 618 0.31 15 31 21.4Chinko (Barango)
45 -5.334 25.433 46331 46331 2080 792 503 1139 803 0.47 15 31 21.6 Lomami
46 5.415 24.596 12975 55110 547 209 556 747 620 0.33 14 30 21.0 Bomou (Ouarra)
47 -9.961 26.929 39256 47798 1922 344 801 1851 1180 0.36 13 32 20.8 Lufira
48 1.301 29.089 49930 49930 2169 491 568 2509 1039 0.24 14 32 20.8 Ituri, Ibina, Epulu
49 7.417 21.934 30051 58898 1141 299 569 924 692 0.35 15 30 22.1 Kotto
50 0.706 21.692 70097 70097 2836 606 342 600 423 0.31 15 32 22.5 Lopori
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Table 4.1b Continued 

Sub
-basin ID

Sub-basin 
centre Area km2

Drainage 
km Elevation

HI 

Topographic 
Wetness Index Main river

Lat. Long. Area Cum.areaTDL LFP Min. Max. Mean Min. Max. Mean
51 -7.832 23.868 71112 71112 3497 659 530 1232 918 0.55 14 33 22.3 Lubilash
52 2.726 14.027 53481 53481 2355 504 367 907 601 0.43 14 32 21.2 Dja/ Bumba
53 -9.961 25.088 35696 61975 1709 414 577 1706 1051 0.42 14 30 21.1 Lualaba
54 -4.017 22.033 30718 68604 1322 339 408 940 661 0.48 13 32 21.1 Lulua
55 -2.561 21.743 57339 57339 2436 743 323 694 467 0.39 14 32 21.7 Lukenie
56 5.570 22.130 17096 75994 728 330 424 801 604 0.48 15 32 21.5 Kotto
57 3.203 16.115 17337 69544 762 247 432 817 574 0.37 14 32 20.5 Sangha
58 1.932 26.908 20991 87838 1000 355 466 1093 628 0.26 14 32 21.4 Aruwimi
59 -7.112 17.803 59837 77947 2756 529 539 1473 882 0.37 14 32 21.3 Kwango
60 3.537 27.299 55952 93067 2483 579 607 1435 729 0.15 15 33 22.6 Uele (Bomokandi)
61 -1.376 25.061 40764 87096 1924 711 417 707 504 0.30 15 33 22.5 Lomami
62 4.957 23.452 10575 117644 508 276 491 711 571 0.37 15 33 21.1 Mbomou
63 0.165 20.505 116990 116990 4793 863 331 717 440 0.28 14 33 22.6 Maringa
64 -7.264 21.336 145945 145945 7391 949 477 1461 961 0.49 15 32 22.5 Kasai
65 0.000 30.515 61405 102111 3402 490 1162 1820 1254 0.14 14 33 23.0 Bangweulu
66 -4.394 23.792 46634 117745 2030 457 414 973 614 0.36 14 32 21.2 Sankuru(lubilash, lubefu)
67 3.614 25.093 28385 130253 1281 487 494 783 618 0.43 15 34 22.2 Uele
68 0.000 29.144 17148 119259 774 262 1056 1543 1217 0.33 15 32 21.7 Luapula
69 -3.284 31.604 113069 121861 5861 657 796 1980 1176 0.32 14 32 22.6 Malagarasi
70 4.561 24.162 25763 165561 1078 439 410 759 566 0.45 15 31 21.7 Bili
71 2.445 15.880 20288 143314 962 295 351 731 469 0.31 14 32 20.9 Sangha
72 1.732 16.439 11314 154627 541 298 335 552 389 0.25 16 32 21.9 Sangha
73 -5.694 16.562 93422 171369 4312 775 311 1291 732 0.43 14 33 20.8 Kwango
74 -7.408 26.356 48325 158099 2327 389 564 1907 915 0.26 14 33 20.8 Lualaba
75 0.000 28.622 46497 165757 2082 401 1014 1689 1256 0.36 15 32 22.0 Luapula
76 -4.827 21.027 20221 234770 851 315 363 805 527 0.37 14 33 20.3 Kasai
77 -8.733 28.924 47125 212881 1972 381 1014 2037 1148 0.13 14 34 21.2 Mweru
78 4.324 21.841 18048 389856 789 361 380 757 484 0.28 15 34 21.4 Oubangui
79 -4.778 19.846 73149 476724 3124 669 323 861 526 0.38 14 34 21.3Kasai(sankuru,lubudi, loange)
80 -5.674 29.800 98186 231635 5697 649 796 3200 1163 0.15 13 33 20.5 Tanganyika
81 -5.866 28.166 23171 254806 1011 333 562 1771 883 0.27 14 34 20.3 Lukuga
82 4.941 19.985 74216 492405 3297 600 353 719 478 0.34 14 34 22.2 Oubangui
83 4.022 18.718 5011 524497 207 89 338 653 389 0.16 15 34 21.2 Oubangui
84 3.252 18.182 56844 612378 2829 468 319 667 409 0.26 15 34 23.4 Oubangui
85 -3.913 17.817 21348 732838 1022 183 291 776 375 0.17 15 34 21.8 Kasai
86 -5.305 26.949 53385 713442 2591 426 548 1577 705 0.15 14 34 21.6 Lualaba
87 -3.252 27.492 22029 751806 970 312 479 1306 699 0.27 14 34 20.3 Lualaba
88 -1.743 18.615 86455 876632 4146 694 287 606 341 0.17 15 34 23.3 Kwa/Mayindombe
89 -3.693 25.985 37428 789234 1861 389 452 1117 570 0.18 14 35 21.8 Lualaba
90 -2.671 26.946 18196 818569 887 419 452 1317 636 0.21 14 33 20.5 Lualaba
91 -0.150 26.506 45297 909283 2218 372 432 1392 608 0.18 14 34 21.0 Lualaba
92 0.930 25.613 19097 928381 910 210 424 657 483 0.25 15 34 22.7 Lualaba
93 0.430 26.395 60975 1009229 2922 592 388 1184 578 0.24 15 33 22.1 Congo (Tshopo, lindi)
94 1.549 24.519 160804 1379880 7241 950 324 731 444 0.29 15 36 23.4 Congo
95 0.263 18.600 185835 2633236 9165 846 282 584 338 0.18 15 36 24.7 Congo
96 -2.117 15.977 45236 3555104 2213 455 282 943 578 0.45 13 37 20.6 Congo
97 -3.570 15.518 15462 3570566 712 259 282 951 498 0.32 14 33 19.5 Congo
98 -3.235 14.903 7362 3590062 326 119 204 745 493 0.53 14 35 20.0 Congo
99 -4.353 14.133 35655 3625717 1736 480 3 1050 399 0.38 13 37 20.6 Congo
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Table 4.1c Estimates of the physical basin attributes (slope indices) for the 99 sub-basins.  

Sub-basin 
ID

Slope frequency %
Max 99th 95th 90th 75th 50th 25th 10th 5th 1th Min

1 23.0 18.9 14.9 12.3 8.7 5.6 2.8 1.1 0.6 0.1 0.0
2 13.8 12.8 11.0 9.9 7.9 5.1 2.6 1.1 0.6 0.2 0.1
3 58.3 39.3 31.5 26.7 19.1 11.8 5.8 2.4 1.2 0.2 0.0
4 49.5 36.8 28.2 24.1 18.0 11.1 5.5 2.2 1.1 0.2 0.0
5 7.3 6.9 5.6 4.8 3.7 2.5 1.2 0.5 0.2 0.0 0.0
6 25.1 21.4 18.6 16.7 13.4 8.9 4.4 1.8 0.9 0.2 0.0
7 13.0 10.1 7.4 6.4 5.1 3.4 1.7 0.7 0.3 0.1 0.0
8 14.0 9.5 6.8 5.7 4.5 3.0 1.5 0.6 0.3 0.1 0.0
9 17.6 14.0 11.2 9.7 7.3 4.8 2.4 1.0 0.5 0.1 0.0
10 15.9 12.9 10.0 8.6 6.4 4.1 2.1 0.8 0.4 0.1 0.0
11 37.7 31.8 25.7 22.4 16.2 9.9 4.9 2.0 1.0 0.2 0.0
12 41.1 33.3 27.5 24.5 18.6 12.1 6.0 2.4 1.2 0.2 0.0
13 63.0 47.7 36.7 30.8 22.6 14.0 7.0 2.8 1.4 0.3 0.0
14 9.7 7.5 5.7 5.2 4.1 2.7 1.4 0.5 0.3 0.1 0.0
15 27.0 23.2 18.4 16.1 12.4 8.1 4.0 1.6 0.8 0.2 0.0
16 60.4 43.7 34.7 29.9 22.3 13.7 6.7 2.8 1.4 0.3 0.0
17 10.1 7.6 6.5 5.9 4.8 3.2 1.6 0.6 0.3 0.1 0.0
18 20.1 16.2 13.5 11.7 9.2 6.1 3.0 1.2 0.6 0.1 0.0
19 63.7 47.2 34.1 28.9 20.7 13.2 6.6 2.6 1.3 0.3 0.0
20 45.3 34.3 27.7 24.2 17.9 11.3 5.6 2.2 1.1 0.2 0.0
21 23.0 17.9 12.8 10.7 8.0 5.0 2.5 1.0 0.5 0.1 0.0
22 11.3 10.1 8.4 7.6 6.1 4.1 2.0 0.8 0.4 0.1 0.0
23 14.7 13.7 10.3 8.8 6.7 4.4 2.2 0.9 0.4 0.1 0.0
24 9.9 8.1 7.1 6.5 5.2 3.4 1.7 0.7 0.3 0.1 0.0
25 27.0 22.4 16.2 14.1 10.5 6.7 3.4 1.3 0.7 0.1 0.0
26 18.3 16.3 14.0 12.5 9.7 6.2 3.1 1.2 0.6 0.1 0.0
27 14.9 12.1 10.2 9.2 6.9 4.5 2.3 0.9 0.5 0.1 0.0
28 19.7 17.2 14.7 13.2 10.7 7.0 3.5 1.4 0.7 0.1 0.0
29 14.2 11.2 9.6 8.6 7.0 4.7 2.4 0.9 0.5 0.1 0.0
30 7.2 5.6 3.9 3.3 2.4 1.4 0.7 0.3 0.1 0.0 0.0
31 16.0 12.9 9.3 8.4 6.5 4.3 2.2 0.9 0.4 0.1 0.0
32 25.6 22.4 19.4 17.5 14.0 9.2 4.6 1.8 0.9 0.2 0.0
33 18.9 13.8 11.2 9.5 7.5 4.9 2.5 1.0 0.5 0.1 0.0
34 55.6 45.8 38.3 34.2 27.1 17.8 8.9 3.6 1.8 0.4 0.0
35 9.8 9.0 8.1 7.6 6.3 4.2 2.1 0.8 0.4 0.1 0.0
36 13.5 11.8 9.9 8.6 6.6 4.4 2.2 0.9 0.4 0.1 0.0
37 23.7 18.9 15.9 14.5 11.8 7.8 3.9 1.6 0.8 0.2 0.0
38 21.6 14.9 10.6 8.8 5.8 3.5 1.7 0.7 0.3 0.1 0.0
39 11.9 9.7 7.7 6.8 5.5 3.6 1.8 0.7 0.4 0.1 0.0
40 41.6 33.3 27.0 23.7 18.2 11.8 5.9 2.4 1.2 0.2 0.0
41 13.1 9.6 7.5 6.4 5.2 3.4 1.7 0.7 0.4 0.1 0.0
42 21.4 14.9 10.0 8.8 7.0 4.7 2.3 0.9 0.5 0.1 0.0
43 26.8 19.1 13.9 12.5 9.7 6.4 3.2 1.3 0.6 0.1 0.0
44 9.7 8.6 7.3 6.5 5.2 3.4 1.7 0.7 0.4 0.1 0.0
45 17.4 11.2 9.4 8.4 6.8 4.5 2.3 0.9 0.5 0.1 0.0
46 9.6 8.5 7.6 7.1 5.8 3.9 2.0 0.8 0.4 0.1 0.0
47 50.3 39.0 32.2 28.9 21.2 12.5 6.2 2.5 1.2 0.2 0.0
48 45.1 32.4 25.8 22.5 17.1 11.0 5.5 2.2 1.1 0.2 0.0
49 9.5 7.8 6.1 5.7 4.5 3.0 1.5 0.6 0.3 0.1 0.0
50 9.3 8.7 7.4 6.9 5.7 3.8 1.9 0.8 0.4 0.1 0.0
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Table 4.1c Continued 

Sub-basin
ID

Slope frequency %
Max 99th 95th 90th 75th 50th 25th 10th 5th 1th Min

51 14.1 12.8 10.6 9.6 7.7 5.2 2.6 1.0 0.5 0.1 0.0
52 24.2 18.3 15.3 13.8 10.9 7.3 3.6 1.5 0.7 0.1 0.0
53 31.8 22.9 17.3 14.9 11.2 7.2 3.6 1.4 0.7 0.1 0.0
54 11.4 10.7 9.0 8.3 6.7 4.5 2.2 0.9 0.4 0.1 0.0
55 11.4 10.1 9.0 8.3 6.9 4.6 2.3 0.9 0.5 0.1 0.0
56 9.6 8.7 7.3 6.5 5.3 3.5 1.8 0.7 0.4 0.1 0.0
57 17.7 15.7 13.5 11.7 9.2 6.1 3.0 1.2 0.6 0.1 0.0
58 29.9 17.6 12.6 10.3 7.6 4.9 2.5 1.0 0.5 0.1 0.0
59 39.1 31.2 22.5 19.0 14.1 9.0 4.5 1.8 0.9 0.2 0.0
60 34.4 17.5 13.2 9.8 6.7 4.2 2.1 0.8 0.4 0.1 0.0
61 15.7 13.2 10.6 8.9 6.4 4.2 2.1 0.8 0.4 0.1 0.0
62 8.4 7.9 6.9 6.3 5.1 3.4 1.7 0.7 0.3 0.1 0.0
63 14.3 12.3 10.2 9.0 7.2 4.8 2.4 1.0 0.5 0.1 0.0
64 15.7 14.4 12.4 11.5 9.5 6.3 3.2 1.3 0.6 0.1 0.0
65 26.8 22.2 15.0 12.4 8.8 5.5 2.8 1.1 0.6 0.1 0.0
66 17.6 13.6 11.1 10.1 8.2 5.5 2.7 1.1 0.5 0.1 0.0
67 13.4 9.0 6.5 5.5 4.4 3.0 1.5 0.6 0.3 0.1 0.0
68 15.4 12.9 9.0 7.6 5.5 3.4 1.7 0.7 0.4 0.1 0.0
69 33.2 25.8 21.4 19.0 14.7 9.7 4.9 2.0 1.0 0.2 0.0
70 7.9 7.5 6.4 5.8 4.7 3.2 1.6 0.6 0.3 0.1 0.0
71 19.0 15.9 12.8 11.3 8.9 5.9 2.9 1.2 0.6 0.1 0.0
72 8.7 7.3 4.8 4.4 3.5 2.3 1.2 0.5 0.2 0.1 0.0
73 33.1 26.4 23.7 21.6 17.7 11.8 5.9 2.4 1.2 0.2 0.0
74 48.7 41.4 33.3 28.8 20.8 13.3 6.6 2.7 1.3 0.3 0.0
75 18.4 14.2 11.7 10.1 7.7 5.1 2.6 1.0 0.5 0.1 0.0
76 22.4 17.5 14.6 13.1 10.1 6.7 3.3 1.3 0.7 0.1 0.0
77 29.5 23.9 19.9 17.7 13.6 8.9 4.4 1.8 0.9 0.2 0.0
78 16.7 13.2 10.8 9.5 7.3 4.8 2.4 1.0 0.5 0.1 0.0
79 21.4 17.5 15.1 13.5 11.0 7.4 3.7 1.5 0.7 0.2 0.0
80 83.7 54.7 44.4 39.2 30.7 20.2 10.1 4.0 2.0 0.4 0.0
81 40.2 29.7 23.3 19.5 14.1 9.0 4.5 1.8 0.9 0.2 0.0
82 22.9 16.9 14.2 12.6 9.9 6.5 3.3 1.3 0.7 0.1 0.0
83 18.6 15.4 12.2 10.2 6.6 3.4 1.7 0.7 0.3 0.1 0.0
84 15.8 14.0 11.8 10.6 8.0 5.3 2.7 1.1 0.5 0.1 0.0
85 15.2 13.3 11.3 9.9 7.6 4.9 2.5 1.0 0.5 0.1 0.0
86 38.6 29.4 23.7 20.5 15.5 10.0 5.0 2.0 1.0 0.2 0.0
87 34.6 29.1 23.8 20.7 15.5 10.1 5.0 2.0 1.0 0.2 0.0
88 9.9 8.4 7.4 6.7 5.5 3.7 1.8 0.7 0.4 0.1 0.0
89 27.6 20.9 16.6 14.3 10.4 6.4 3.2 1.3 0.6 0.1 0.0
90 37.6 29.1 22.2 19.2 14.1 8.8 4.4 1.8 0.9 0.2 0.0
91 52.2 32.9 26.7 23.2 17.9 11.6 5.8 2.3 1.2 0.2 0.0
92 52.2 32.9 26.7 23.2 17.9 11.6 5.8 2.3 1.2 0.2 0.0
93 27.6 20.9 18.3 15.8 11.7 7.5 3.8 1.5 0.8 0.2 0.0
94 14.5 10.5 8.4 7.6 6.3 4.2 2.1 0.8 0.4 0.1 0.0
95 9.0 7.9 6.4 5.9 4.8 3.2 1.6 0.6 0.3 0.1 0.0
96 32.0 27.1 23.1 21.0 17.1 11.3 5.7 2.3 1.1 0.2 0.0
97 30.5 25.6 21.8 19.8 15.7 10.3 5.1 2.1 1.0 0.2 0.0
98 28.4 19.0 14.8 12.5 9.1 5.8 2.9 1.2 0.6 0.1 0.0
99 31.8 26.2 21.2 18.4 14.2 9.3 4.7 1.9 0.9 0.2 0.0
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Table 4.2 Univariate statistical properties of the physical basin attributes of the Congo 

Basin. 

No Variable Description Units Obs. Min. Max. Mean Std. dev.
1 MIN AP Min. annual rainfall mm 99 698 2061 1349 292
2 MAX  AP Max. annual rainfall mm 99 1196 2285 1711 281
3 MAP Mean annual rainfall mm 99 958 2102 1531 253
4 MIN  AE Min. annual evapotraspiration mm 99 899 1450 1246 103
5 MAX AE Max. annual evapotraspiration mm 99 934 2732 1403 204
6 MAE Mean. annual evapotraspiration mm 99 934 1666 1317 115
7 P/PE Aridity index [-] 99 0.575 2.192 1.182 0.268
8 Y Latitude of sub-basin centre dd 99 -9.961 8.095 -0.559 4.759
9 X Longitude of sub-basin centre dd 99 14.027 31.637 23.013 4.992
10 Area Sub-basin area km2 99 533 185835 36623 33016
11 Area Cum Cumulative sub-basin area km2 99 58803625717 339302 763817
12 TDL Total drainage length km 99 75 9165 1710 1609
13 LFP Longest flow parth km 99 0 950 399 196
14 Min Elev Min. sub-basin elevation m 99 3 1531 540 253
15 Max Elev Max. sub-basin elevation m 99 531 3478 1299 718
16 Aver Elev Mean. sub-basin elevation m 99 338 1773 774 326
17 HI Hypsometric Integral [-] 99 0.124 0.559 0.330 0.106
18 Min TWI Min Topographic wetness index [-] 99 13.0 16.0 14.4 0.7
19 Max TWI Max Topographic wetness index [-] 99 26.0 37.0 31.6 2.1
20 Aver TWI Mean Topographic wetness index [-] 99 17.8 32.6 21.3 1.9
21 Smax Max. slope % 99 7.22 83.74 24.84 15.42
22 S99 99th slope % 99 5.61 54.69 19.27 10.94
23 S95 95st slope % 99 3.91 44.40 15.48 8.72
24 S90 90st slope % 99 3.32 39.25 13.55 7.57
25 S75 75rd slope % 99 2.42 30.71 10.37 5.67
26 S50 50th slope % 99 1.42 20.16 6.71 3.60
27 S25 25th slope % 99 0.70 10.08 3.35 1.79
28 S10 10th slope % 99 0.29 4.03 1.34 0.72
29 S5 5th slope % 99 0.15 2.02 0.68 0.36
30 S1 1th slope % 99 0.04 0.40 0.14 0.07
31 Min GWR Min. recharge mm 99 7 437 153 88
32 Max GWR Max. recharge mm 99 122 579 314 113
33 Mean GWR Mean recharge mm 99 81 491 229 105
34 A11 Cultivated and managed terrestrial areas% 99 0.0 55.1 12.0 11.1
35 A121 Woody trees % 99 24.7 99.8 72.2 19.5
36 A122 Shrub % 99 0.0 59.3 8.6 13.0
37 A123 Herbaceous % 99 0.0 26.6 0.8 3.0
38 A24 Natural and semi aquatic vegetation % 99 0.0 55.7 5.0 8.0
39 B15 Artificial surfaces % 99 0.0 0.7 0.0 0.1
40 B16 Bare areas % 99 0.0 0.2 0.0 0.0
41 B28 Inland water bodies % 99 0.0 36.4 1.3 5.1
42 T_Sand Sand fraction(0-30cm) % 99 14.5 88.6 55.3 18.6
43 T_Silt Silt fraction(0-30cm) % 99 1.0 40.8 14.3 8.0
44 T_Clay Clay fraction(0-30cm) % 99 5.5 62.6 30.1 12.9
45 T_text1 Texture class 1 fraction(0-30cm) % 99 0.0 100.0 6.3 17.2
46 T_text2 Texture class 2 fraction(0-30cm) % 99 0.0 40.4 1.2 5.2
47 T_text3 Texture class 3 fraction(0-30cm) % 99 0.0 95.5 19.5 25.6
48 T_text4 Texture class 4 fraction(0-30cm) % 99 0.0 52.5 2.6 9.8
49 T_text5 Texture class 5 fraction(0-30cm) % 99 0.0 59.8 2.2 8.2
50 T_text6 Texture class 6 fraction(0-30cm) % 99 0.0 0.0 0.0 0.0
51 T_text7 Texture class 7 fraction(0-30cm) % 99 0.0 10.8 0.2 1.1
52 T_text8 Texture class 8 fraction(0-30cm) % 99 0.0 30.4 2.1 5.9
53 T_text9 Texture class 9 fraction(0-30cm) % 99 0.0 36.0 2.8 5.9
54 T_text10 Texture class 10 fraction(0-30cm) % 99 0.0 99.7 37.2 31.8
55 T_text11 Texture class 11 fraction(0-30cm) % 99 0.0 65.9 3.3 10.2
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Table 4.2 Continued.  

No Variable Description Units
Obs
. Min. Max. Mean Std. dev.

56 T_text12 Texture class 12 fraction(0-30cm) % 99 0.0 98.7 6.6 17.4
57 T_text13 Texture class 13 fraction(0-30cm) % 99 0.0 96.7 12.8 25.2
58 S_Sand Sand fraction(30-100cm) % 99 11.3 87.8 51.3 18.3
59 S_Silt Silt fraction(30-100cm) % 99 1.9 38.6 13.2 7.4
60 S_Clay Clay fraction(30-100cm) % 99 6.2 72.7 35.0 13.4
61 S_text1 Texture class 1 fraction(30-100cm) % 99 0.0 100.0 12.9 24.4
62 S_text2 Texture class 2 fraction(30-100cm) % 99 0.0 11.0 0.2 1.4
63 S_text3 Texture class 3 fraction(30-100cm) % 99 0.0 98.0 16.5 23.4
64 S_text4 Texture class 4 fraction(30-100cm) % 99 0.0 52.5 2.5 9.8
65 S_text5 Texture class 5 fraction(30-100cm) % 99 0.0 59.8 4.3 10.0
66 S_text6 Texture class 6 fraction(30-100cm) % 99 0.0 0.0 0.0 0.0
67 S_text7 Texture class 7 fraction(30-100cm) % 99 0.0 3.4 0.1 0.4
68 S_text8 Texture class 8 fraction(30-100cm) % 99 0.0 99.7 26.3 28.9
69 S_text9 Texture class 9 fraction(30-100cm) % 99 0.0 36.0 1.2 4.5
70 S_text10 Texture class 10 fraction(30-100cm)% 99 0.0 93.4 12.3 19.9
71 S_text11 Texture class 11 fraction(30-100cm)% 99 0.0 98.7 6.8 17.7
72 S_text12 Texture class 12 fraction(30-100cm)% 99 0.0 54.9 2.3 8.1
73 S_text13 Texture class 13 fraction(30-100cm)% 99 0.0 96.7 11.3 23.1
74 AWC1 Available water content class 1 % 99 0.0 100.0 69.5 36.6
75 AWC2 Available water content class 2 % 99 0.0 30.5 0.5 3.4
76 AWC3 Available water content class 3 % 99 0.0 96.7 14.3 26.4
77 AWC4 Available water content class 4 % 99 0.0 0.0 0.0 0.0
78 AWC5 Available water content class 5 % 99 0.0 99.7 14.3 28.9
79 AWC6 Available water content class 6 % 99 0.0 7.2 0.1 0.7
80 AWC7 Available water content class 7 % 99 0.0 0.5 0.0 0.0
81 Af Ferric Acrisol % 99 0.0 52.2 0.6 5.3
82 Ao Orthic Acrisol % 99 0.0 11.5 0.3 1.5
83 Bc Chromic Cambisol % 99 0.0 12.2 0.1 1.2
84 Be Eutric Cambisol % 99 0.0 18.5 0.2 1.9
85 Bh Humic Cambisol % 99 0.0 19.7 0.2 2.0
86 Fh Humic Ferralsols % 99 0.0 13.1 0.4 2.0
87 Fo Orthic Ferralsols % 99 0.0 100.0 32.1 35.5
88 Fp Plinthic Ferralsols % 99 0.0 95.0 5.2 18.2
89 Fr Rhodic Ferralsols % 99 0.0 100.0 7.1 19.4
90 Fx Xanthic Ferralsols % 99 0.0 100.0 14.2 26.5
91 Gd Eutric Gleysols % 99 0.0 32.1 1.0 4.5
92 Ge Dystric Gleysols % 99 0.0 16.6 0.5 2.5
93 Gh Humic Gleysols % 99 0.0 34.3 1.4 5.4
94 Gp Plinthic Gleysols % 99 0.0 6.4 0.1 0.6
95 Ix Lithosols % 99 0.0 12.9 0.2 1.4
96 Jd Dystric Fluvisols % 99 0.0 6.0 0.1 0.6
97 Je Eutric Fluvisols % 99 0.0 2.5 0.0 0.3
98 Lf Ferric Luvisols % 99 0.0 37.3 0.6 3.8
99 Nd Dystric Nitosols % 99 0.0 100.0 12.0 23.9

100 Ne Eutric Nitosols % 99 0.0 30.0 0.7 3.5
101 Nh Humic Nitosols % 99 0.0 60.5 2.9 9.9
102 Od Dystric Histosols % 99 0.0 3.6 0.0 0.4
103 Oe Eutric Histosols % 99 0.0 15.9 0.2 1.6
104 Qc Cambic Arenosols % 99 0.0 30.8 0.6 3.4
105 Qf Ferralic Arenosols % 99 0.0 94.8 16.7 26.9
106 Rd Dystric Regosols % 99 0.0 14.0 0.7 2.4
107 Tm Mollic Andosols % 99 0.0 16.7 0.3 2.1
108 Vp Pellic Vertisols % 99 0.0 21.4 0.3 2.3
109 WR - % 99 0.0 33.7 1.3 4.9
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4.4 Assessing sub-basin similarities 

Similarity assessment is an important step that consists of deriving physically or hydrologically 

significant mapping of the catchment form, structure and functions which underpin the causal 

relationships and enable predictive capability (Wagener et al., 2007; Oudin et al., 2010). 

Landscape descriptors (signatures) are important because they provide information about 

differences and similarities between various units of the landscape (catchments), as well as the 

causal explanations. Descriptors are specific characteristics that can be used to explain the 

behaviour of the catchment functioning. They describe relevant characteristics of the catchment 

response (Yadav et al., 2007). Wagener et al. (2008) differentiate the descriptors of the 

catchment climate, form and functions which can be used to define similarities between 

catchments. Blöschl (2005) identifies three types of similarity measures which encompass spatial 

proximity, similar catchment attributes and similarity indices. Olden et al. (2011) outline the 

deductive and inductive approaches for catchments similarity. The difference between the two 

approaches is that the first (deductive approach) makes use of hydrologically relevant physical 

basin characteristics (e.g. climate, topography, vegetation, soils, and geology) that are assumed 

to control hydrological processes, in order to define the simple classification of contiguous or 

non-contiguous regions that are considered homogenous, with respect to certain environmental 

characteristics. This approach is useful when a general description of perceived hydrological 

patterns based on first principles is necessary to ease or advance understanding. The approach 

provides an alternative where observed streamflow data or modelled hydrologic data are 

unavailable. However, lack of sound physical basin property data, especially on sub-surface 

formations, is a major hindrance in using the deductive approach. The inductive approach uses 

signatures of the streamflow regime (magnitude, frequency, duration, timing, and the rate of 

change) to establish hydrologically similar groups. The inductive approach is the most reliable 

for catchment classification, though a challenge arises with the quality of the observed 

streamflow data (missing values and unsatisfactory records due to poor measurement, as well as 

temporal mismatches between different gauging sites). This part of the study attempts to use the 

estimates (descriptors) derived from the physical basin attributes, and regional flow duration 

curves to define the regions of similar physiographic and hydrologic characteristics in the basin. 
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Here “attempt” implies that there is no uniquely defined way in which the similarity analysis can 

be used. Several approaches are explored, including a combination of GIS and multivariate 

analyses. 

4.4.1 Identification of sub-basins with similar physical characteristics 

Numerous physical basin attributes (Table 4.1a-h) were assessed in order to identify 

relationships between various features of the basin.  Assessing correlations between the variables 

is important in order to examine patterns of variability among the basin characteristics and also 

to identify highly correlated variables in order to reduce the number for subsequent cluster 

analysis. The Pearson correlation coefficient was used to carry out the correlation analysis which 

illustrated both correlated and non-correlated variables. Table 4.3 shows the correlation results 

for the variables correlated with a p value of 0.05 (variables of dominant soils are not included in 

Table 4.3). Catchment area correlates with the longest flow path and the natural and semi-aquatic 

vegetation land cover class. The slope indices are highly correlated with each other, with the 

distribution of silt in both top- and sub-soils, and with the distribution of top soil, sandy clay 

class. They are also correlated with the mean and maximum elevation. The latter shows 

significant correlation with other variables such as the distribution of silt (top- and sub-soils), the 

distribution of silty clay loam (top- and sub-soils), and sandy clay (top soil). A more or less 

similar trend is observed with the mean elevation, which shows significant correlation with the 

distribution of silt for both top and sub-soils. The hypsometric integral shows good correlation 

with the sandy clay loam texture. Apart from the land cover class A24, which was found to be 

correlated to the area, the land cover class of bare soils (B16) exhibits a high correlation with the 

sixth class of Available Water Content (15mm/m). Three classes of Available Water Content 

correlate significantly with many other variables of the soil properties. AWC1 correlates with the 

distribution of clay at both top and sub-soil; AWC2 with silty clay (S_Tex2); AWC3 and the 

distribution of sand at both top- and sub-soils (T_sand and S_sand) and AWC5 with sandy clay 

loam (T_Tex10) and sandy clay (S_Tex8). Groundwater recharge is found to be correlated to the 

MAP and the fraction of sub-surface sand. 



 

 

116 

However, the highly correlated variables are unlikely to contain any additional information and 

could be rejected to avoid redundant information (Wagener et al., 2004b).  The variables with a 

correlation coefficient equal to or greater than 0.7 were considered highly correlated and 

consequently not retained for further analysis of catchment similarity.  Wagener et al. (2004b) 

suggest using caution for correlation analysis and subsequent reduction of variables. Though 

some variables of the physical basin properties were found to be correlated at the threshold of a 

0.7 correlation coefficient, those related to the category of elevation, slope indices, available 

water content classes, sub-soil texture classes and land cover classes were kept for further 

analysis.  
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Table 4.3 Correlation matrix for the Congo Basin Physical properties using the Pearson correlation coefficient (Only the 

coefficient values equal or greater than 0.5 are shown). 

Area S99 S95 S90 S75 S50 S20 S10 MinElev MeanElev MaxElev HI LCB16 MAP T_Sand T_Silt T_Clay S_Sand S_Silt S_Clay AWC2 AWC3 AWC5 T_Tex1 T_Tex3 T_Tex4 T_Tex5 T_Tex7 T_Tex9 T_Tex10 T_Tex2 T_Tex13

LFP 0.86
LCA24 0.60
S95 0.99
S90 0.99 1.00
S75 0.97 0.99 1.00
S50 0.96 0.98 0.99 1.00
S20 0.96 0.98 0.99 1.00 1.00
S10 0.96 0.98 0.99 1.00 1.00 1.00
MaxElev 0.83 0.81 0.80 0.78 0.76 0.76 0.76 0.60
MeanElev 0.55 0.52 0.51 0.86 0.86
MedianElev 0.86 0.99 0.81
P/PE 0.93
T_Silt 0.60 0.57 0.55 0.53 0.51 0.50 0.51 0.53 0.66
T_Clay 0.59
S_Sand 0.98
S_Silt 0.62 0.59 0.58 0.55 0.53 0.53 0.53 0.52 0.66 0.99 0.58
S_Clay 0.52 0.97 0.51
AWC1 0.57 0.51
AWC3 0.66 0.71
AWC6 0.74
MeadianGWR 0.55 0.50
T_Tex1 0.54 0.57
T_Tex3 0.57 0.50
T_Tex4 0.50 0.59 0.68 0.70
T_Tex8 0.54 0.55 0.55 0.55 0.54 0.54 0.54 0.59
T_Tex10 0.51 0.50
T_Tex13 0.66 0.71 0.97
S_Tex1 0.65 0.64 0.66 0.66
S_Tex2 0.71
S_Tex3 0.65
S_Tex4 0.51 0.59 0.68 0.70 1.00
S_Tex5 0.78
S_Tex7 0.98
S_Tex9 0.65
S_Tex8 0.62 0.80
S_Tex11 0.94
S_Tex13 0.70 0.93 0.95 
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Table 4.4 Univariate statistical properties of physical basin attributes of the Congo Basin as 

retained after correlation analysis.  

Variable Observations Minimum Maximum Mean Std. deviation
MAP 99 958 2102 1531 253
MAE 99 934 1666 1317 115
P/PE 99 0.575 2.192 1.182 0.268
TDL 99 75 9165 1710 1609
LFP 99 0 950 399 196
Aver Elev 99 338 1773 774 326
Min Elev 99 3 1531 540 253
Max Elev 99 531 3478 1299 718
HI 99 0.124 0.559 0.330 0.106
TWI 99 17.8 32.6 21.3 1.9
S99 99 5.6 54.7 19.3 10.9
S90 99 3.3 39.2 13.6 7.6
S75 99 2.4 30.7 10.4 5.7
S50 99 1.4 20.2 6.7 3.6
S25 99 0.7 10.1 3.4 1.8
S10 99 0.3 4.0 1.3 0.7
GWR 99 81.2 490.6 229.3 105.0
A11 99 0.0 55.1 12.0 11.1
A121 99 24.7 99.8 72.2 19.5
A122 99 0.0 59.3 8.6 13.0
A123 99 0.0 26.6 0.8 3.0
A24 99 0.0 55.7 5 8.0
B15 99 0.0 0.7 0.0 0.1
B16 99 0.0 0.2 0.0 0.0
B28 99 0.0 36.4 1.3 5.1
T_Clay 99 5.5 62.6 30.1 12.9
T_text7 99 0.0 10.8 0.2 1.1
T_text8 99 0.0 30.4 2.1 5.9
T_text9 99 0.0 36 2.8 5.9
T_text11 99 0.0 65.9 3.3 10.2
S_Sand 99 11.3 87.8 51.3 18.3
S_Silt 99 1.9 38.6 13.2 7.4
S_Clay 99 6.2 72.7 35.0 13.4
S_text1 99 0.0 100 12.9 24.4
S_text2 99 0.0 11 0.2 1.4
S_text3 99 0.0 98 16.5 23.4
S_text4 99 0.0 52.5 2.5 9.8
S_text5 99 0.0 59.8 4.3 10.0
S_text7 99 0.0 3.4 0.1 0.4
S_text8 99 0.0 99.7 26.3 28.9
S_text9 99 0.0 36 1.2 4.5
S_text10 99 0.0 93.4 12.3 19.9
S_text11 99 0.0 98.7 6.8 17.7
S_text12 99 0.0 54.9 2.3 8.1
S_text13 99 0.0 96.7 11.3 23.1
Ao 99 0.0 11.5 0.3 1.5
Bc 99 0.0 12.2 0.1 1.2
Be 99 0.0 18.5 0.2 1.9
Fh 99 0.0 13.1 0.4 2.0
Fp 99 0.0 95 5.2 18.2
Gd 99 0.0 32.1 1.0 4.5
Ge 99 0.0 16.6 0.5 2.5
Gh 99 0.0 34.3 1.4 5.4
Jd 99 0.0 6.0 0.1 0.6
Je 99 0.0 2.5 0.0 0.3
Lf 99 0.0 37.3 0.6 3.8
Nd 99 0.0 100 12 23.9
Ne 99 0.0 30 0.7 3.5
Nh 99 0.0 60.5 2.9 9.9
Od 99 0.0 3.6 0.0 0.4
Oe 99 0.0 15.9 0.2 1.6
Qf 99 0.0 94.8 16.7 26.9
Rd 99 0.0 14 0.7 2.4
Tm 99 0.0 16.7 0.3 2.1
Vp 99 0.0 21.4 0.3 2.3
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4.4.2 Ordination by Principal Component Analysis  

Increasing awareness of the value of the physical basin attributes that influence hydrological 

processes has driven efforts to develop useful approaches that can be used to identify and 

interpret regional patterns embedded in the observations. Such approaches consist of a variety of 

techniques for identifying groups of similar spatial objects and organizing them into hydrological 

typology. The usual approaches encompass the hierarchical and flat clustering algorithms, self-

organising maps, multivariate ordination, and hard versus soft classification, none of which are 

new to hydrological sciences (Nathan and McMahon, 1990; Olden et al., 2011). However, these 

techniques use different algorithms for proximity measures and may yield different results when 

applied to the same dataset (Rao and Srinivas, 2006; Olden et al., 2011).  

Principal Component Analysis (PCA) is an indirect gradient ordination technique that aims to 

explain the variability of the environmental attributes by a small number of components. Central 

to PCA is the ability to reduce the dimensionality of a data set consisting of a large number of 

interrelated variables, while retaining as much as possible of the variation present in the data set. 

The result is a transformation of the original data set into a new set of variables (the principal 

components-PCs), which are uncorrelated but ordered, and for which the first few PCs retain 

most of the variation present in all of the original variables (Jolliffe, 2002). The main strength of 

PCA is its ability to assign equal weight to all of the environmental variables included in the 

analysis, regardless of their scale of measurement so that the outcomes are not impacted by the 

effect of scales (Clarke and Warwick, 1994). This is very important for this study since the 

variables used in the analysis are taken from samples of various scales. The PCA in this study 

was conducted using XLstat 2011. Both Bartlett’s sphericity test and the measure of sample 

adequacy of Kaiser-Meyer-Olkin (KMO) are important to check the suitability of the samples for 

PCA. Based on the level of correlation of the variables, the Bartlett sphericity test can be used to 

confirm or reject the null hypothesis. The KMO values range between 0 and 1, with a low value 

corresponding to the case where it is not possible to extract synthetic factors (or latent variables). 

This means that the sample is inadequate and cannot produce an acceptable model. According to 

Kaiser (1974) a factor is not recommended if the KMO value is less than 0.5; between 0.5 to 0.7 
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the quality of the sample is mediocre; it is good for a KMO between 0.7 and 0.8; very good 

between 0.8 and 0.9, and excellent beyond.  

The 63 variables derived from the correlation matrix were first examined through the KMO test, 

which showed a KMO value of 0.403 for the total sample, thus implying that the quality of the 

sample was not acceptable for the PCA. Figure 4.4 shows ordination plots of the first two 

principal components, which only account for 26% of the variation in the original data based on 

a sample of the 63 variables. The lower percentage (26%) implies that the first two principal 

components do not account for much of the variability in the original variables. However, an 

examination of Figure 4.4 shows that within the samples there are factors with high KMO 

(longer vectors corresponding to factors with high KMO) and these factors could be 

distinguished to increase the quality of the sample for further analysis. Based on KMO tests, 20 

variables were found to have KMO values greater than 0.5 (Table 4.5) and they were therefore 

selected for further analysis. Caution was used to select the MAE variable (explaining the 

climate), although this variable had a low KMO value. Figure 4.5 shows the ordination plots of 

the variables and their relationships with the sub-basins, after discrimination of the sample based 

on the KMO measure of sampling adequacy. More than 80% of the variation is explained in the 

first five principal components (PCs), and the first two PCs explain 60% of the variation in the 

original variables. This is a good indicator of sampling adequacy for the PCA. It is important to 

note, based on the examination of Figures 4.4 and 4.5, that the discrimination has helped to 

reduce the dimensional space of unimportant variables (from 63 to 21 variables), but the initial 

distribution of the sub-basins in space remains unchanged.  

PCA results show defined relationships between descriptors of the physical basin properties and 

the spatial distribution and grouping of the sub-basins along the principal component axes in a 

low-dimensional ordination space in which similar sub-basins are close together and dissimilar 

sites are far apart (Poff et al., 2006). Table 4.5 shows the correlation coefficients between sub-

basin physical characteristics and their ordination axes (PCs).  
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Figure 4.4 PCA ordination bi-plots for 63 variables of the physical basin attributes (left) and 

resulting spatial distribution of 99 sub-basins (right).  

Table 4.5 Combined KMO measure of sampling adequacy and correlation coefficient for 

the variables along PCs. 

Factor KMO PC 1 PC 2 PC 3 PC 4 PC 5
MAP 0.793 -0.395 -0.283 -0.656 -0.277 -0.136
MAE 0.489 0.017 0.256 0.761 0.268 0.106
Aver Elev 0.775 0.707 0.191 0.370 0.058 -0.233
Max Elev 0.850 0.902 0.000 0.102 0.037 -0.167
TWI 0.865 -0.470 0.104 0.196 0.429 0.344
S99 0.856 0.930 -0.295 -0.050 0.037 0.101
S90 0.837 0.922 -0.343 -0.046 0.019 0.142
S75 0.857 0.908 -0.375 -0.039 0.008 0.152
S50 0.801 0.896 -0.395 -0.027 0.001 0.157
S25 0.849 0.894 -0.397 -0.025 0.001 0.159
S10 0.927 0.896 -0.396 -0.026 0.000 0.157
GWR 0.857 -0.425 -0.465 -0.442 0.015 0.068
T_Clay 0.900 0.505 0.738 -0.273 0.015 0.005
S_Sand 0.677 -0.587 -0.732 0.238 -0.139 0.037
S_Silt 0.689 0.714 0.319 -0.144 0.221 -0.267
S_Clay 0.607 0.407 0.807 -0.239 0.055 0.061
S_text13 0.754 -0.200 -0.659 0.376 -0.071 -0.089
Gd 0.563 -0.216 0.023 -0.435 0.462 0.419
Gh 0.667 -0.241 -0.385 -0.341 0.603 -0.228
Nh 0.916 0.696 -0.101 -0.196 0.024 -0.297
Rd 0.721 -0.191 -0.442 0.070 0.511 -0.385

KMO 0.804 Eigenvalue 8.761 3.848 2.099 1.255 0.912

Variability (%) 41.721 18.323 9.993 5.977 4.344

Cumulative % 41.721 60.044 70.037 76.014 80.358
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Figure 4.5  PCA ordination bi-plots for 21 variables physical basin attributes (left) and 

resulting spatial distribution of 99 sub-basins (right).  

The first PCA axis (X axis) with an Eigen-value of 8.8 and the second PCA axis (Y axis) with an 

Eigen-value of 3.9 account for 41.7% and 18.3% of the total variation respectively. Therefore, 

the first two PCA axes explain 60% of the variation in the variables of the physical basin 

properties. The matrix of correlation between these variables is shown in Table 4.6.  PC1 has a 

positive correlation with the variables of elevation (Aver Elev, Max Elev), slope indices and soils 

(S_Silt, Nh), which are the most important in defining the axis. These variables are likely to 

explain relationships of sub-basins with high elevation and slopes, and a high proportion of Silt 

particle size and Nh.  A negative correlation is observed on this axis with the variables MAP, 

TWI, GWR, S_Sand, Gd, Gh and Rd, which implies that these variables are very low in the sub-

basins with high elevations, high slopes, and a high proportion of silt and Nh. T_Clay and 

S_Clay are important in defining the second axis. Based on these relationships, a cluster analysis 

was carried out to identify regions of homogeneous physical basin properties.  
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Table 4.6 Correlation matrix (Pearson (n)) showing relationships between the 21 variables used in PCA. 

Values in bold are different from 0 with a significance level alpha=0.05. 

Variables

MAP MAP

MAE -0.578 MAE

Aver Elev -0.508 0.343
Aver 
Elev

Max Elev -0.371 0.064 0.870
Max 
Elev

TWI -0.020 0.176 -0.318 -0.412 TWI

S99 -0.262 -0.080 0.551 0.813 -0.413 S99

S90 -0.257 -0.089 0.518 0.786 -0.418 0.988 S90

S75 -0.245 -0.092 0.497 0.766 -0.410 0.974 0.996 S75

S50 -0.241 -0.087 0.481 0.751 -0.399 0.963 0.990 0.998 S50

S25 -0.242 -0.085 0.477 0.748 -0.397 0.962 0.989 0.997 1.000 S25

S10 -0.242 -0.086 0.482 0.751 -0.400 0.963 0.989 0.998 1.000 1.000 S10

GWR 0.496 -0.320 -0.468 -0.415 0.040 -0.245 -0.207 -0.184 -0.172 -0.171 -0.172 GWR

T_Clay -0.245 -0.028 0.413 0.410 -0.210 0.263 0.234 0.207 0.185 0.182 0.183 -0.378 T_Clay

S_Sand 0.330 -0.046 -0.435 -0.469 0.213 -0.343 -0.309 -0.277 -0.251 -0.248 -0.250 0.469 -0.938S_Sand

S_Silt -0.278 0.046 0.471 0.622 -0.297 0.561 0.523 0.496 0.475 0.473 0.474 -0.473 0.538 -0.739 S_Silt

S_Clay -0.288 0.024 0.340 0.302 -0.125 0.159 0.131 0.104 0.083 0.080 0.082 -0.377 0.968 -0.937 0.471S_Clay

S_text13 0.014 0.013 -0.089 -0.143 -0.039 -0.047 0.002 0.029 0.045 0.047 0.046 0.171 -0.571 0.634 -0.431 -0.620S_text13

Gd 0.181 -0.134 -0.251 -0.196 0.159 -0.152 -0.152 -0.163 -0.179 -0.180 -0.180 0.216 -0.013 0.000 -0.092 0.011 -0.069 Gd

Gh 0.256 -0.161 -0.238 -0.183 0.070 -0.090 -0.097 -0.094 -0.090 -0.089 -0.090 0.442 -0.300 0.260 -0.091 -0.298 0.158 0.330 Gh

Nh -0.085 -0.157 0.456 0.695 -0.359 0.634 0.606 0.596 0.589 0.587 0.589 -0.201 0.254 -0.341 0.603 0.143 -0.143-0.062 -0.069 Nh

Rd 0.074 -0.065 -0.175 -0.161 0.221 -0.058 -0.042 -0.029 -0.020 -0.019 -0.021 0.223 -0.351 0.314 -0.136 -0.343 0.343-0.036 0.383 -0.085 Rd
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4.4.3 Cluster analysis by Hierarchical Agglomerative Clustering  

Cluster analysis is by far the most widely used approach by which objects are divided into 

groups or clusters such that the objects within groups are as similar as possible and the objects of 

different groups are as dissimilar as possible. Gordon (1987) provides an overview of the 

methods and algorithms based on the use of hierarchical clustering.  

Hierarchical clustering is an unsupervised classification method (Ley et al., 2011) that consists 

of an iterative process by which either smaller clusters are combined into larger ones 

(agglomerative), or larger clusters are split into smaller ones (divisive) to produce a classification 

of objects typically presented as a dendogram of clusters (Olden et al., 2011). Rao and Srinivas 

(2006) give a list of several representative algorithms for agglomerative hierarchical clustering. 

These algorithms differ in the way they compute the similarity between a pair of clusters and 

there seem to be no rules for the selection of a particular algorithm. In hydrology, the Euclidean 

distance appears to be the most frequently used method and has been applied in combination 

with different linkage algorithms such as the unweighted group average distance (e.g. Ley et al., 

2011), single and complete linkages (e.g. Tasker, 1982; Rao and Srinivas, 2006), group centroid 

(e.g. Pegg and Pierc, 2002), Ward’s algorithm (e.g. Hosking and Wallis, 1997; Mazimavi, 2003; 

Rao and Srinivas, 2006).  In the present study, the Euclidean distance is used, based on the 

complete linkage which is appropriate for applications involving regionalisation to ensure 

adequate sample sizes in establishing statistical relationships (Olden et al., 2011). Table 4.7 and 

Figure 4.6 show the graphical representation of groups of homogenous sub-basins, based on the 

physical basin attributes as identified from the hierarchical agglomerative clustering.  
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Table 4.7 Homogenous regions of the physical basin properties.  

Class 1 2 3 4 5 6
Sub-basins 32 39 3 17 6 2
Within-class variance 58199 117343.719 237105 109357 152566 130077
Minimum distance to centroid 57 118.176 260 138 302 255
Average distance to centroid 223 318.821 383 305 355 255
Maximum distance to centroid 422 655 524 486 413 255

1 2 3 7 11 16
15 5 4 10 12 80
17 6 13 23 19
22 8 25 20
30 9 28 34
35 14 40 48
41 18 43
42 21 47
44 24 53
46 26 65
50 27 68
52 29 69
55 31 74
61 32 75
62 33 77
63 36 81
67 37 86
70 38
71 39
72 45
76 49
78 51
79 54
82 56
83 57
84 58
85 59
88 60
92 64
94 66
95 73
98 87

89
90
91
93
96
97
99  

 
Figure 4.6 Graphical display of the unsupervised classification using the Hierarchical 

Agglomerative Clustering for the Congo Basin. 
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4.4.4 Similarity percentage (SIMPER) analysis 

The similarity percentage analysis (SIMPER) is a more objective method of identifying similar 

and dissimilar characteristics between features and the approach has become widely used in 

aquatic ecology (Clarke, 1993). In this study, SIMPER is used to identify variables responsible 

for similarity within the six regions of homogeneous physical basin attributes. The analysis was 

carried out using the PRIMER software package version 5. Prior to the SIMPER analysis, a 

global analysis of similarity (ANOSIM, Clarke and Warwick, 2001) test was conducted to assess 

the global characteristics (Global R) of the sample. The results from the SIMPER analysis 

(Figure 4.7 and Table 4.8) show the overall contribution of the main variables to the average 

similarity within regions of homogeneous physiographic settings. The analysis shows that the 

variables MAP, MAE, MAX Elev, Aver Elev, and GWR account for about 75% of the average 

similarity within the identified six regions.  

The similarity within the regions is explained at more than 90 %, with the high values observed 

in regions 3 and 6 while the lower values observed in regions 1 and 2. The mean annual rainfall 

is the variable that contributes the largest similarity within regions 1 and 2, while the maximum 

elevation is the variable that contributes the largest similarity of the remaining regions. The 

highest MAP is observed in region 3, but its contribution to the average similarity is suppressed 

by the Max Elev, which is the highest for the basin. This region is therefore conspicuously 

characterised by the highest elevation and highest rainfall. Table 4.8 and Figure 4.7 show the 

general trend of the contributing variables across the identified six regions of homogeneous 

physiographic settings.    
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Table 4.8  Percentage contribution to the overall similarity within the groups (Cut-off for 

low contributions: 97%).  

Variable Region 1 Region 2 Region 3 Region 4 Region 5 Region 6

Aver Elev 11.99 13.86 15.37 16.44 15.14 15.04

GWR 8.61 7.03 5.54 6.13 5.67 5.3

MAE 20.31 19.81 13.72 19.02 15.48 16.01

MAP 23.31 20.93 17.89 17.1 16.71 14.41

Max Elev 14.89 17.27 24.28 20.76 23.49 24.94

Nh 0 0 1.72 0 1.46 1.9

S_Clay 2.86 2.65 2.72 2.95 2.9 2.83

S_Sand 3.95 3.75 2.15 2.79 2.43 2.41

S_Silt 1.48 1.57 2.13 1.84 1.71 1.83

S75 1.35 1.45 1.86 1.49 1.93 2.08

S90 1.52 1.64 2.16 1.72 2.24 2.41

S99 1.79 1.95 2.66 2.11 2.67 2.91

T_Clay 2.51 2.41 2.8 2.74 2.85 2.56

TWI 2.65 2.53 1.85 2.32 2.02 1.86
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Figure 4.7  Average contribution of the variables to the similarity within the groups (Cut-off 

for low contributions: 97%). 
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4.4.4 Regional Flow Duration Analysis 

A Flow Duration Curve (FDC) is an estimate of the relationships between magnitude and 

frequency of flows at a particular point of the stream channel over an interval of time (daily, 

weekly, monthly or annually). The tool has been widely used for water resources planning 

(Chow, 1964; Warnick, 1984; McMahon, 1993; Cigizoglu, 1997) as well as for development of 

procedures for predictions in ungauged basins (Dingman, 1978; Smakhtin et al., 1997; Cigizoglu 

and Bayazit, 2000). The wide use of the FDCs in hydrology arises from their ability to provide a 

summary of the characteristics of the hydrological response. Such characteristics include the 

hydrological response at high, medium and low flows; flow variability; response characteristics 

due to artificial impacts on runoff; and definition of annual reliability and the average return-

period. The median of an FDC constructed from an annual time series has the advantage of being 

less sensitive to inter-annual fluctuations and allows construction of confidence and recurrence 

intervals to be associated with FDCs in a non-parametric framework as well as exposing 

uncertainty associated with FDCs (Vogel and Fennessey, 1994; Cigizoglu and Bayazit, 2000). 

FDCs of a given region represent the dominant hydrological processes of that region under the 

influence of the various physiographic controls. Similarity between FDCs would provide better 

explanations about the homogeneity in the physiographic settings of the region. In this study, 31 

FDCs (Figure 4.8) are constructed using a non-parametric approach based on ranking statistics 

and graphical analysis of monthly streamflow time series (Smakhtin et al., 1997) from the 31 

viable gauging sites in the Congo basin.  

The regional FDC analysis consisted of (1) identifying the viable records of monthly streamflow 

time series within the basin (flow records with less than five-year time series were excluded from 

the analysis), (2) reconstruction of non-dimensional FDCs based on flow depth (Mm3*1000/ 

km2), (3) ranking and grouping of the non-dimensional FDCs based on their 10th, 50th and 90th 

percentiles and patterns of similarities. Figure 4.9 shows the six groups of the normalised FDCs 

that exhibit similar characteristics in terms of the basin hydrological responses. FDCs from three 

gauging sites (B, N and O) could not be superimposed within these groups and were identified as 

anomalous. Average values of the FDCs within the homogeneous groups were used to construct 

the regional flow duration curves (RFDCs) for the basin (Figure 4.10 top). The band around the 
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RFDCs (Figure 4.10 bottom) represents the maximum and minimum values within the groups of 

homogenous FDCs and can be taken as measure of uncertainty for the group. Figure 4.11 shows 

differences in physical basin properties of the RFDC groups. 
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Figure 4.8 Monthly FDCs reconstructed from regional distribution of 31 streamflow gauging 

sites within the Congo Basin and normalised by the catchment area. 

Group I  of the regional flow duration curve is dominated by the gauging sites of the Oubangui 

drainage area which consist of the tributaries such as Ouarra (C), Chinko (H), Mbomou (P) and 

Oubangui (J, K and L) Rivers. A gauging site of the Lualaba drainage area in the south-eastern 

Congo (V, on the Malagarasi River) also falls in this group. Mean monthly flow depth in this 

group is 22.9 mm with a maximum of 27.3 mm and a minimum of 19.3 mm. The group is 

representative of a region of low baseflow, but with relatively high flood flows, which would 

imply a predominance of surface processes over sub-surface processes of runoff generation.  

Group I is characterised by large variations in the distribution of soil and vegetation types. Sandy 

clay loam as the top soils and sandy clay as the sub-soils dominate the soil texture.  The 

vegetation types consist of mosaic vegetation and broadleaved deciduous or evergreen forest/ 

woodland.  
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Figure 4.9 Superimposed FDCs of similar hydrological response. 
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Figure 4.10 Regionalised groups of similar FDCs (the top figure indicates the average values 

of the group and the bottom figure shows the maximum and minimum values 

around the averaged regional flow duration curve). 
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Figure 4.11 Box plots showing differences in physical basin properties for the RFDC groups. 
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Group II  occurs in the Sangha drainage area and is characterised by both relatively high base 

flow and flood flow, which implies that both surface and sub-surface processes are important in 

this area. The group contains the highest mean monthly flow depth, implying that the specific 

yield per unit area is higher as compared to other groups. The main river in this group is the 

Sangha (Y and Z) which is fed by several tributaries such as the Membere (M) and Dja (AE) 

Rivers. This group shows relatively high homogeneity with regards to the physical basin 

properties which exhibit very little variability (Figure 4.11).   

Group III  occurs in the sub-basins of the western tributaries of the Oubangui drainage area (E 

and F) and in the downstream sub-basins that receive flow from the whole Congo Basin over 3.5 

million km2 (A). The group is only second to the Sangha group (RFDC II) with a mean monthly 

flow depth of 31.3 mm. Maximum and minimum values of monthly flow depth in this group are 

30 and 33.2 mm, respectively. Congo (A) and Lobaye (E and F) are the main rivers in this group. 

The group is representative of a region of high base flow with relatively medium flood flows, 

which implies that much of the runoff response is under the control of sub-surface processes. 

However, this group is represented by the sub-basins of the lower part of the Congo Basin and 

the observed shapes of the FDC curve is also an indication of the role of flow attenuation within 

the basin as a whole. The very smooth pattern of the FDC curve shows that there is low 

variability in the monthly flow volume. Group III is geographically represented by the Central 

Congo Basin and has many flood plains where regularly or permanently flooded vegetation types 

are not unusual. The flood zone processes are associated with the alteration of the flow residence 

time, which also affects flow attenuation. As shown in Figure 4.11, the main physical 

characteristics of this region are low slopes, low elevation, very high groundwater recharge and 

topographic moisture, and low evapotranspiration. The sand fraction dominates the particle size 

for top and sub-soils; two vegetation types, notably the A24 and A121, dominate the land cover. 

The former represents the broad-leaved evergreen forest and the second is typical of areas of 

seasonal or permanent flooding.  

Group IV  occurs in the Kasai drainage area and shows similar characteristics to Group III. The 

mean monthly flow depth is 26.8 with the maximum of 30.1 and a minimum of 23.8 mm. Kasai 

is the main river in this group. The group is characterised by medium slopes and medium ground 
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water recharge. Both topsoil and sub-soil are characterised by high sand fractions. The soil 

texture is dominated by sand for the topsoil, while the sub-soil is dominated by loamy sand and 

sand. Another characteristic of this group is the existence of parallel drainage lines with little 

convergence between them. 

Group V occurs in the headwater sub-basins of the Oubangui (north-east) and Lualaba (south-

east) drainage areas. The group is representative of a region of low base flow and medium flood 

flow. The main rivers in this group are Kotto (I, AC) and Ouaka (G) Rivers in the north-eastern 

part of the Congo Basin, and Lualaba (U) and Luapula (T) Rivers in the south-eastern part of the 

Congo Basin. The mean monthly flow depth in this group is 16.4 mm with maximum and 

minimum values of 21.4 and 12.7 mm, respectively. Differences in the physical properties 

related to this group are shown in Figure 4.11. The northern most part of this region, specifically 

in the upper Kotto (7.2N, 22.4E), is characterised by the presence of a Cretaceous carbonate 

formation which represents a complex structure of dual porosity, inter-granular porosity, joints 

and fractures, and local karstification.  

Group VI  occurs in the downstream sub-basins of the Lualaba drainage area with a mean 

monthly flow depth of 9 mm, of which the maximum and minimum values are 10.9 and 7.2 mm, 

respectively. The group is representative of a hydrologically stressed region which is 

characterised by both low base flow and flood flow.  The FDC is very smooth at the interval of 

95th to 15th percentiles, with very little increase in flow depth. A relatively sharp increase in flow 

depth is observed between 15th and 0.5th percentiles. Lualaba is the main river in this group (Q, R 

and S) which receives flow from Lake Tanganyika in the east, Lake Mweru in the south and 

Kamalondo Swamps in the west. The characteristics of this region are high slopes, low recharge 

and low rainfall. The evapotranspiration is greater than the rainfall with a very low aridity index. 

Sandy clay and loam for the topsoils, and clay loam for the sub-soil dominate the soil texture. 

The anomalous group consists of the gauging sites that are characterised by very smooth FDCs, 

which illustrates the influence of flow attenuation. B is the most downstream gauging site in the 

Kasai (876 632 km2) and is located on the Kwa River which is greatly influenced by the outflow 

from Lake Mai-Ndombe (49 700 km2). N is a gauging site of a headwater sub-basin (Ntoku 
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River, 44 485 km2). Assessment of the sub-basin physical properties does not show evidences of 

specific features that could impact on the shape of the FDC (sub area hydrological response). O 

is the most outlet gauging site on the Lualaba River (928 381 km2) and is characterised by both 

high base flow and flood flow, which contrasts with the hydrological response observed for the 

other gauging sites of the Lualaba.   

4.5 Discussion and conclusion 

The ability to predict the characteristics of the hydrological dynamics is central to hydrology. 

This chapter attempts to establish a framework of catchment classification based on the available 

physical basin characteristics and streamflow data. Various approaches, including GIS and 

multivariate analyses, were combined to define the sub-basin units and group them in 

homogeneous regions.  Ninety-nine sub-basins were delineated, based on the areas of most 

frequent slope and elevation. Relevant data for the basin physiographic and climatic properties 

such as the MAP, temperature, evapotranspiration, topography, land cover, soil properties and 

groundwater recharge were used to generate the attribute values that were then explored further 

for similarity between different catchments. Geological information for similarity analysis was 

excluded because it was not accessible in a digital format. Assessment of relationships between 

physical basin attributes and the sub-basins through PCA showed that 21 variables out of 109 

initially selected embedded the information necessary to explain the spatial distribution and 

grouping of the sub-basins. These 21 variables were included in a cluster analysis using 

unsupervised classification (hierarchical agglomerative clustering), which identified six groups 

of homogenous sub-basins based on the use of the environmental descriptors derived from the 

available physical basin property datasets. As far as prior knowledge of the basin physical 

processes is concerned, the identified homogenous groups indicate the main regions where there 

are similar patterns of environmental characteristics such as rainfall, temperature, 

evapotranspiration, topography, vegetation and soil types. Similarity percentage analysis was 

conducted in order to identify the contribution of the variables to the average similarity within 

the regions of homogenous physical basin characteristics. Overall, high rainfall and high 

recharge occur in regions with low elevations (1 and 2). These regions are also characterised by 
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low evapotranspiration, a high proportion of sand, and high topographic moisture. The 

proportion of silt and clay is very low in these areas. An exception to this trend is in region 3 

where very high rainfall occurs in the area of very high elevation and steep slopes. The region is 

also characterised by low evapotranspiration, low recharge, a high proportion of clay and silt, 

and low topographic moisture.  Low to moderate rainfall occurs in the regions where elevation is 

moderate to high with generally moderate to steep slopes. Recharge and topographic moisture 

and sand particle size are in general very low in these areas, while the proportion of clay and silt 

are high. Thirty gauging sites were used to identify regional groups of similar hydrological 

responses (RFDCs). Figure 4.12 shows the spatial distribution of the six groups identified based 

on the analysis of the physical basin attributes (top) with the corresponding six groups of 

regional flow duration curves (bottom). 

 

Figure 4.12 Spatial displays of the Hierarchical Agglomerative Clustering results against the 

groups of regional flow duration curves for the Congo Basin. 
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The main observation that can be made from Figure 4.12 is that the overlap or relationships are 

weak between the groups of homogenous physical basin properties and those of similar 

hydrological responses. Although there are areas that show some overlap, this overlap is not 

strong enough to provide a convincing argument for the inter-dependency between these two 

categories. The datasets of the physiographic characteristics were gathered from various global 

datasets with different resolutions and it is difficult to ensure that they are perfect representations 

of the basin physiographic settings at the scale used for analysis. Another problem was the lack 

of sufficient data, particularly those of sub-surface processes that could have been used to 

discriminate more homogenous groups. Furthermore, the study identified 31 viable gauging sites 

which were used to construct regional flow duration curves or groups of similar hydrological 

responses. So few gauging sites to identify regions of similar hydrological responses over a basin 

area of about 3.7 106 km2 also meant that there are areas which remain unexplored due to scanty 

data. 

Region 2 (Figure 4.12 top) encompasses wide ranges of physiographic characteristics, especially 

of geological formations. Therefore, it is evident that this region could be further sub-divided to 

consider the variability observed in basin properties. Incorporating more information on the sub-

surface physical basin properties (geology of the area) in cluster analysis could be used for this 

purpose. Regions 3 and 5 (Figure 4.12 top) are flanked by the mountainous eastern arc of the 

Congo basin and constitute a drainage area from which hydrological response is expected to be 

different, given the characteristics of very high rainfall, elevation and slopes, and the presence of 

a Rift Valley Lake (Lake Kivu). However, no gauging site was available in this region for 

identification of the observed hydrological response. Similarly, Region 6 (Figure 4.12 top) is 

characterised by very high slopes, very low recharge and very low rainfall, and the presence of 

the Lake Tanganyika, a Rift Valley Lake, from which the hydrological response is expected to be 

different. The gauging site identified in this region (AG) could not be used in the regional 

analysis of the basin hydrological response because of the poor data quality, with less than five 

years record.  
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CHAPTER 5 HYDROLOGICAL MODELLING METHODS 

5.1 Introduction 

The success of hydrological modelling for a river basin depends on an appropriate 

conceptualisation of the dominant processes of basin hydrology. There are currently a large 

number of hydrological models that are used to assess and quantify hydrological processes at the 

basin scale. Therefore, the focus is on improving the existing models that have performed 

moderately successfully across different climate conditions rather than developing new models 

(Hughes et al., 2006). The existing models can be selected and improved upon using specific 

requirements based on the prevailing hydrological processes, availability of data, modelling 

purpose, cost and expertise (Beven, 2001).   

Past experience with hydrological modelling studies in the Congo Basin (e.g. Chishugi and 

Alemaw, 2009; Werth et al., 2009) suggests that initial consideration of the hydrological 

processes in the modelling exercise is crucial. An assessment of the physical basin characteristics 

revealed (Chapter 3) that the Congo Basin contains a massive rainforest canopy and extensive 

and thick sedimentary layers (Vasak and Kukuric, 2006), for which both the surface and sub-

surface processes are important. This study presumes that an adequate conceptual representation 

of storages such as interception, soil moisture and groundwater; as well as lakes, wetlands and 

river systems would represent the hydrological behaviour of the system under study. Figure 5.1 

shows a conceptual representation of dominant hydrological processes for the Congo Basin.  
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Total evaporation
Rainfall input

Groundwater 
store

Throughfall
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Soil moisture runoff
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Figure 5.1 Conceptual dominant hydrological processes for the Congo Basin. 
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Based on the above-mentioned prerequisite and because of its demonstrated applicability to other 

parts of the southern African region (Hughes, 1997), the PITMAN rainfall-runoff model was 

chosen for hydrological modelling of the Congo Basin. The model remains the most widely used 

hydrological model for research and practical water resources management in Southern Africa. It 

has been shown to be robust enough for simulating hydrological processes in different hydro-

climatic conditions, notably in southern Africa (Hughes, 1997; Mazimavi, 2003; Mwelwa, 2004; 

Kapangaziwiri, 2008), in Western Africa (Hardy et al., 1989) and outside Africa (Abulohom, 

1997). The original model (Pitman, 1973) has survived several modifications made to account 

for the continued challenges of water resources management in Africa. In this study, a modified 

version of the PITMAN model (GW-PITMAN model, Hughes, 1997; Hughes, 2004a; Hughes et 

al., 2006) was chosen to represent the processes at the sub-basin scale, using a semi-distributed 

approach. Figure 5.2 shows a flow chart of methodological approaches based on recent 

developments of the GW-PITMAN model at the Institute for Water Research (IWR), which were 

therefore adopted for use in this study. All these procedures are implemented within the 

SPATSIM (Spatial and Time Series Information Modelling) software package which is a 

modelling framework designed to make use of graphical display and database management 

routines for hydrological and water resources applications (Hughes and Forsyth, 2006).  

Hydrological model 

Uncertainty analysis

Sensitivity analysis

Model calibration a priori parameter estimation

Constraining outputs
 

Figure 5.2 Summary of hydrological methods used in this study. 
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5.2 GW-PITMAN model structure and the main hydrological processes  

The GW-PITMAN model is a conceptual type, semi-distributed hydrological model, consisting 

of storages (interception, soil moisture and groundwater) linked by functions designed to 

represent the main hydrological processes at the sub-basin scale such as infiltration, excess flow, 

saturation excess flow, direct overland flow and groundwater flow (Hughes et al., 2006; 

Kapangaziwiri, 2008). Figure 5.3 shows the main structure of the GW-PITMAN model used in 

this study. Table 5.1 shows the parameters of the hydrological processes represented in the 

model.  

Interception function

Time series of precipitation

Time series of potential evap.

Impervious area

Catchment 

absorption function
Surface runoff

Soil moisture store

GW recharge 

function

Actual evaporation

GW storage  and 

discharge function

Soil moisture 

runoff 

function

Soil moisture runoff

Catchment lag & 
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Total sub- catchment runoffUpstream inflow

Abstraction & return flow Channel lag & attenuation Reservoir model

Downstream outflow
 

Figure 5.3 The main structure of the GW-PITMAN (Hughes et al., 2006). 
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Table 5.1 Main components of the GW-PITMAN model and the model parameters. 

Main model components Model parameters Description Units

Precipitation RDF A Rainfall Distribution Factor [-]

Impervious area AI Impervious Fraction of sub-basin %

Potential ET PEVAP Annual sub-basin evaporation mm

Interception PI 1 and PI2 Interception storage for two vegetation types mm

AFOR Proportion of the basin area covered by the second veg type %

FF The ratio of forest/ grassland potential evapotranspiration [-]

Actual ET R Evaporation-moisture storage relationship parameter [-]

Catchment Absorption ZMIN, ZAVE, ZMAX Min, average and max catchment absorption rate mm month
-1

Soil moisture store ST Maximum moisture storage capacity mm

Soil moisture runoff FT Runoff from moisture storage-runoff equation mm month
-1

POW Power of moisture storage-GW recharge equation [-]

Groundwater recharge GW Maximum groundwater recharge at full capacity (ST) mm month
-1

GPOW Power of moisture storage-GW recharge equation [-]

SL Soil moisture threshold below which no GW recharge occurs mm

Groundwater store&discharge T Groundwater transmissivity m
2
 d

-1

S Groundwater storativity

DDENS Drainage density km km
-2

Slope Initial groundwater gradient %

RWL Rest Water Level m

RSF Riparian Strip Factor %

Channel routing CL Channel routing coeffiecient Months

TL Lag of surface and soil moisture runoff Months

TLGmax Channel losses Months

Abstraction and return flow Multiple

Reservoir parameters Multiple

Sub-surface processes

Flow routing and water use

Surface processes

Airr, IWR, IrrAreaDmd, NirrDmd, EffRf

DAREA, MAXDAM, A, B  

5.2.1. Interception  

The model accounts for the proportion of rainfall intercepted by the vegetation canopy that does 

not contribute to the overall river discharge. Conceptual interception storage is included in the 

model which assumes total monthly interception to be determined by interception storage 

capacity (PI) and the total rainfall, using the relationship:  

)1(* PexI y−=          Equation 5.1 

where, 
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I= the total interception loss per month; P= the total precipitation for the month; x and y are 

constants. For the interception storage capacities (PI) varying between 0-8 mm, the relationship 

between x and y is expressed as follow:  

14.108.13 PIx =           Equation 5.2 

011.000099.0 75.0 −= PIy          Equation 5.3 

The depth of rainfall intercepted in any month is based on this empirical relationship, while 

interception storage satisfies part of the evaporation demand at the potential rate. The model 

assumes (1) one storm event for the total rainfall on any rainy day and (2) the total amount of 

rainfall intercepted that is lost through evaporation before the next rain day. The interception is 

affected by seasonal variation, the type of vegetation and the proportion of the basin under the 

vegetation cover. Two sub-storages represented by the parameters PI1 and PI2 are used to 

represent differences in the vegetation types (dominant vegetation and secondary vegetation). 

The model includes an additional parameter, AFOR, to represent the proportion of the basin 

under the secondary vegetation. An FF parameter is used as an evaporation scaling factor for the 

secondary vegetation type.  The evaporation scaling factor is constrained to within 1 and 1.4. 

Greater values of FF imply higher evaporative losses through the secondary vegetation.  

5.2.2 Infiltration and surface runoff  

For any amount of throughfall to the ground surface, the infiltration capacity depends on the 

characteristics of the ground cover, soils and the states of the rainfall input to the soil moisture 

store. The model accounts for these two processes in two ways: (1) the parameter (AI) is 

designed to represent the proportion of the basin area that is impermeable, and (2) a triangular 

distribution (Figure 5.4) defined by the parameters ZMIN, ZAVE and ZMAX is assumed to 

represent the catchment absorption capacity and the subsequent surface runoff. ZAVE is 

included to allow for an asymmetric triangular distribution.  
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Figure 5.4 Frequency distribution of the catchment absorption rate Z in mm month-1(left 

side) and the cumulative frequency curve of the surface runoff generation (right 

side). r is the rate of rainfall input (Pitman, 1973).  

5.2.3 Soil moisture runoff and groundwater recharge 

The moisture storage component of the GW-PITMAN model is controlled by a parameter ST, 

the maximum sub-surface storage which is depleted by evaporative losses, runoff and recharge to 

ground water store. The relationship between the current soil moisture storage (S), the maximum 

storage capacity (ST) as well as the soil moisture runoff and groundwater recharge is illustrated 

in Figure 5.5.  Q is the monthly discharge in mm/month, FT is the runoff generated from the soil 

when soil moisture level is at its maximum (ST), POW represents the relationship between total 

basin moisture status and runoff. RE is the monthly recharge rate in mm; GW is the upper limit 

of the groundwater recharge rate (mm/month) at moisture state S. GPOW defines the form of 

relationship between ground water recharge and the current moisture storage.  
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RE = GW*[(S-SL)/(ST-SL)]GPOW

Q = FT * (S/ST)POW
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Figure 5.5  Conceptual soil moisture-groundwater recharge functions of the GW-PITMAN 

model. 

5.2.4 Evapotranspiration – soil moisture relationship 

The model assumes a relationship between the ratio of actual evaporation (E) to the potential 

evapotranspiration (PE) and the level of soil moisture store (S). This relationship determines the 

shape of a linear function assumed between actual and potential evaporative losses at different 

levels of S and is controlled by the parameter R (0<R<1). R is the parameter that controls the rate 

at which evaporation reduces as the soil moisture is depleted through a linear relationship with 

the level of soil moisture (Pitman, 1973). For low values of R (towards zero), there is more 

effective evaporation loss, and evapotranspiration occurs even at quite low levels of the soil 

moisture store, regardless of the potential evaporation for the month. At high values of R 

(towards 1), the evapotranspiration ceases at higher levels of the moisture storage as the potential 

evaporative demand decreases. R is expected to have an important effect on the amount and time 

distribution of runoff and is expected to be low for areas with deeper rooting of vegetation 

(Mwelwa, 2004; Sawunyama, 2009).  The evapotranspiration-soil moisture relationship is 

expressed as:  
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 −−−=
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PEMAX is the maximum monthly potential evaporation. To account for the two possible types 

of vegetation, equation 5 is used to calculate the total sub-catchment evapotranspiration loss 

from the soil moisture store. 

)1(*** AFOREAFORFFEETotal −+=       Equation 5.5 

5.2.5 Groundwater discharge 

The groundwater component of the GW-PITMAN consists of functions designed to account for 

both recharge to the groundwater store and discharge to the stream channel or the baseflow 

component of the streamflow. The recharge rate depends on the different states of soil moisture 

and is controlled by a power of relationship (GPOW) between the storage level (S) and the 

recharge and allows the maximum monthly recharge (GW) to occur when the moisture storage 

level is at its maximum. The groundwater functions designed to account for discharge to 

streamflow in the GW-PITMAN depend upon the geometry of the groundwater store, riparian 

losses through evapotranspiration and discharge to downstream catchments (Hughes et al., 

2006). The parameters Effective Drainage Density (DDENS), Transmissivity (T), Storativity (S),  

Regional Groundwater Slope (RGWS), Riparian Strip Factor (RSF, % of slope width) and the 

Rest Water Level (RWL) are designed to account for these processes of groundwater store and 

discharge (Hughes and Parsons, 2005; Hughes et al., 2006; Hughes et al., 2010a). The 

conceptual design of the groundwater components assumes horizontal and vertical geometries. 

The catchment area and effective drainage density in the model are used to determine the number 

of slope elements, and the width and length of each slope element, which in turn, are used to 

define the horizontal geometry. A simple representation of a groundwater table in each slope 

element is used to define the vertical geometry. The gradient of the near-channel line segment, a 

transmissivity parameter, and the length of a slope element are used in the calculation of the 

groundwater discharge to the channel. A regional groundwater gradient parameter, the 

transmissivity, and the slope element width are used in the calculation of the groundwater flow to 

downstream catchments. A storativity parameter is used in the water balance calculations to 

translate water volumes into geometric volumes. The water balance calculations are then used 

within each time interval of the model to update the gradient of the groundwater line segments 

(Hughes et al., 2010a). The riparian loss parameter defines the proportion of the total slope 
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element width that can contribute to losses (riparian evapotranspiration at the channel margin). 

These parameters are usually derived from databases of groundwater properties and 

hydrogeological maps (e.g. the Groundwater Resources Assessment database –GRAII- DWAF, 

2005). 

5.2.6 Runoff routing  

Two parameters (TL and CL) are designed to route runoff through the spatial distribution 

system. The parameter TL represents the fraction of the time (in months) that is required to lag 

all runoff from within a single sub-area. In large river basins, delays and attenuation may occur, 

even at monthly time steps, when runoff is routed from up-stream; the channel routing parameter 

(CL) is designed to account for the routing.  A Muskingum function (Nash, 1959) is used in the 

model for the lag parameters, in which the weighting factor is set to zero to represent reservoir 

type storage attenuation (Hughes, 2004a). TL is normally fixed at 0.25, but variations in the 

value could be important in large catchments. There is very little experience base for setting 

values of CL, but values up to 0.3 can be tested for large river basins (Hughes, pers. comm.2010) 

5.2.7 Functions to represent modifications to natural hydrology 

There are functions in the model that account for water use and modification to the natural 

hydrology due to water resources development. These functions include reservoir, abstraction, 

return flow and transfer inflow components (Hughes et al., 2006). There is not sufficient 

information for the use of these functions in the Congo Basin and they are not assumed to play a 

major role. 

5.3 GW-PITMAN wetland sub-model 

A wetland model was recently developed at the IWR as a sub-component of the GW-PITMAN 

monthly time step model. The development was designed to account for lake and wetland 

storage processes that were identified as being very important in some parts of the Congo, 

Okavango and Zambezi basins. This development builds on a previous wetland model that was 
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used for the Kafue flats and reported by WRC (2008). The wetland model uses the following 

twelve parameters designed to account for the water balance of both lakes and wetlands.   

Local area (km2):  The maximum wetland land area that is permanently or periodically inundated 

and accounts for local runoff entering directly into the wetland. The use of aerial photos and site 

specific maps are necessary to determine the local wetland area. 

Residual wetland volume (RWV, m3106): The nominal storage capacity for the area permanently 

submerged and below which no downstream outflow occurs.  

Initial wetland volume (WV, m3106): The starting storage that depends on the season at the start 

of the model run.   

Area-volume relationship: bmWVakmArea )10(*)( 632 =     Equation 5.6 

a and b are two empirical parameters of the non-linear area-volume relationship with a the 

constant of the equation and b the power of the equation.  

Channel capacity for spillage (QCAP, m3106): The river channel monthly volume threshold 

below which there is no spillage to the wetland.  

Channel spill factor (Fraction): Proportion of the flow volume above the channel threshold that 

is assumed to spill to the wetland. 

Two situations deserve to be mentioned. The first is a typical natural wetland case where the 

river channel meanders through the wetland, thus spilling water into the wetland when the 

channel capacity for spillage is exceeded, and receiving water from the wetland during lower 

flows and when the wetland volume is greater than the residual volume. Depending on the 

situation, the spill fraction will range between a value of 0 and 1. The second case is typical of 

natural lakes or reservoirs where the river channel flows into the lake (in-channel wetland). Thus, 

the spill factor can be set to 1 and channel capacity for spillage to 0, to ensure that all flow enters 

the lake or wetland.  
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Return Flow Factor (RFF): A factor (fraction) that determines the amount of water that returns 

from the wetland to the river channel (Return Flow Volume, RFV) and that contributes to 

downstream outflow. A maximum fraction of 0.95 is assumed for the RFF. 

)(* RWVWVRFFRFV −=         Equation 5.7 

Wetland storage-return flow relationship: QQCAPRWVWVAARFF BB /*)/(*= Equation 5.8 

where AA is the return flow constant (RFC),  BB is the power of the equation designed to 

account for a non-linear relationship, and Q is the flow in the river channel. The first part of the 

equation accounts for the increase in return flow as wetland volume increases, while the last part 

of the equation accounts for reduction in return flow when the river volume is high. This last 

term of the equation is not used when QCAP is equal to zero, or when a lake is used.  Return 

flow from the wetland to the channel occurs when WV exceeds the RWV. 

Losses: Losses in the wetland include mean annual evaporative losses (mm) from the free-

standing water and the total annual abstractions (m3106) for water uses, both distributed as 

monthly percentages of the annual values.  

5.4 a priori parameter estimation procedures 

The conceptual structure of the GW-PITMAN model suggests that some of the parameters can 

have physical interpretations and can therefore be quantified a priori using measurable physical 

basin information. The parameter estimation approach (Kapangaziwiri and Hughes, 2008) is an 

attempt to establish relationships between measurable physical basin characteristics and the 

parameters of the GW-PITMAN model. In the physically-based a priori parameter estimation 

approach, the basic assumption is that there are relationships between the hydrological processes 

represented by the model parameters and the basin physical attributes, and therefore these 

relationships can be used to directly quantify the model parameters. The model parameters are 

estimated through physical basin characteristics such as hydro-meteorology, vegetation, 

topography, soils and the geology of sub-surface formations. Chapters Three and Four describe 

the physical basin properties relevant to this exercise. The raw basin physical properties 
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represent the small scale or point primary data that need to be transformed into model scale 

secondary variables to estimate the model parameters, using appropriate parameter estimation 

equations (Hughes and Sami, 1994; Kapangaziwiri and Hughes, 2008).  Table 5.2 gives the 

categories of the primary variables of the physical basin properties used in the parameter 

estimation procedures. These variables are affected by the heterogeneity and variability 

associated with the spatial distribution of the land surface characteristics at all scales 

(Andréassian et al., 2006), therefore, there is a degree of uncertainty in the primary variables that 

are used in the a priori parameter estimation. The inherent assumption in incorporating 

uncertainty in the parameter estimation procedures is that uncertainty is related to the spatial 

variability of different land cover types and terrain units within the modelling unit. Therefore, 

different land cover types and terrain units within the modelling unit can be used to establish 

frequency distribution properties of the representative input physical basin characteristics which, 

in turn, can be used to determine the distribution characteristics of the secondary variables of the 

physical basin characteristics with an acceptable degree of uncertainty (Kapangaziwiri, 2010). In 

the development of the approach, it was assumed that the primary variables are normally 

distributed (Kapangaziwiri, 2010). The resultant secondary variables are defined by the mean, 

standard deviation, and skewness, and could be either normal or log-normal distributions, based 

on the value of the skewness. These distributions represent the uncertainty related to the physical 

basin data. Using the parameter estimation equations and sampling within the distributions gives 

posterior distributions of the parameters. 

To account for the frequency characteristics of the primary variables of the physical basin 

properties, four terrain units (top, mid, valley and bottom) are represented in the parameter 

estimation framework. The terrain units account for the distribution of the terrain slopes, soil 

texture classes and soil depths. Five broad soil texture classes are used, which include coarse 

texture (sandy soils), medium to coarse texture (loamy sand or sandy loam soils), medium 

texture (loamy sand, sandy clay, silty clay loam soils), medium to fine texture (clay loam, sandy 

clay, silty clay loam soils), fine texture (silty clay and clay soils).  Indices of surface cover and 

cover variability encompass characteristics which are not fully accounted for by the normal soil 

texture classes, but which have an important bearing on the soil moisture characteristics (Hughes 
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and Sami, 1994). The surface cover indices account for the well-vegetated areas (0), moderately 

vegetated areas (1) and crusting areas (2); and the cover variability indices vary from low (0), 

through moderate (1), to high (2) with respect to slope position (top, mid and bottom slope). Five 

broad land cover classes used in the parameter estimation framework include dense forest, 

bush/sparse forest, dense crop/ground cover, sparse crop/ground cover, and bare soil. The global 

land cover dataset (Bontemps et al., 2011), with 22 classes used in this study, was matched to the 

representative five land cover classes of the parameter estimation framework (Table 5.3). 

The parameter estimation procedures use various empirical relationships that relate the estimates 

of the model parameters to the physical basin characteristics. Kapangaziwiri (2008), 

Kapangaziwiri and Hughes (2008), and Hughes et al. (2010c) give a detailed description of these 

empirical relationships in the parameter estimation procedures.  For instance, parameter PI 

represents the interception capacity of two vegetation types, typically natural (PI1) and modified 

(PI2). In the parameter estimation procedure, several vegetation cover classes, in association 

with their relative proportion and seasonal variation, are used to estimate the Leaf Area Index 

(LAI) and the canopy capacity which are subsequently used to estimate the interception 

parameter. Seasonal variation is accounted for using a sine curve distribution with an amplitude 

defined by the summer and winter values (Hughes and Sami, 1994).   

The information on surface cover, soil types and a range of soil depths is used to estimate some 

hydraulic properties such as permeability, hydraulic conductivity, and porosity. The parameter 

ST (mm) is the maximum moisture storage capacity and it determines both the maximum limit of 

soil moisture storage and the catchment’s ability to regulate runoff for a given rainfall input.  The 

conceptual understanding of the soil moisture accounting in the parameter estimation procedure 

assumes that moisture is stored in the soil (STsoil) and within the zone of intermittent saturation 

below the soil and above the water table that has the potential to contribute to interflow (STunsat).  

 

 

 



151 

 

Table 5.2  Primary variable requirements for the parameter estimation framework.  

Variables Units Description
Terrain unit % Proportion of the sub-basin covered by each of the four terrain units : top, mid, bottom and valley.

Slope % Minimum and maximum values of terrain slope represented by 5th and 95th percentiles of the cumulative distribution.

Soil types %

Proportion of different soil types (depth and texture classes ) lying in each terrain unit (top, mid, bottom and valley). The
frequency characteristics of the soil depths are assumed to be normally distributed with maximum and minimum values
representing the 5th and 95th percentiles of the cumulative distribution.

Vertical variation factor % Represents the reduction of permeability and porosity in the soil vertical profile.
Indices of the surface cover 
and cover variability Various indices that are intended to representvariation in the surface cover properties for estimation of the infiltration capacity.

Vertical and lateral drainage %
Percentage values of the vertical and later components of the sub-surface flows in the unsaturated zones and including the
characteristics of geological materials, the extentof fracturing or weathering of the rock formation and its permeability,

Storativity Aquifer storativity which depends on the characteristics of the underlying geological formation.

Transmissivity m2 d-1 Transmissivity of the unsaturated fractured zone .

Drainage density km km -2
Estimates of drainage density that is intended to represent all potential drainage channels contributing to catchment total yield
under the conditions of basin saturation.

Monthly Rain (mm) mm Mean and maximum monthly rainfall for the sub-basin used in the estimation of the surface runoff .
Mean No. Rainy days/month Estimate of the average monthly rainy days used in the estimation of the surface runoff .
Mean Storm Duration h Estimate of the effective storm duration for rainfall inputused in the estimation of the surface runoff .
Mean Annual Evaporation mm Mean annual sub-basin evaporation .
Annual Recharge mm Minimum and maximum catchmentmean annual recharge.
Area of dominant Vegetation % Proportion of the catchment covered by the dominantvegetation.
Proportions of Dom. Veg.
Dense Forest % Sub-area covered by dense tree covers in winter and summer , respectively for dominant vegetation.
Bush/Sparse Forest % Sub-area covered by bushes or sparse tree covers in winter and summer , respectively for dominant vegetation.
Dense Crop/Ground Cover % Sub-area covered by dense crop or ground cover in winter and summer , respectively for dominant vegetation.
Sparse Crop/Ground Cover % Sub-area covered by sparse crop or ground cover in winter and summer , respectively for dominant vegetation.
Bare Soil % Sub-area without vegetation cover of any significance in winter and summer , respectively for dominantvegetation.
Area of Secondary Vegetation % Proportion of the catchment covered by the secondary vegetation.
Proportions of Sec. Veg.
Dense Forest % Sub-area covered by dense tree covers in winter and summer , respectively for secondary vegetation.
Bush/Sparse Forest % Sub-area covered by bushes or sparse tree covers in winter and summer , respectively for secondary vegetation.
Dense Crop/Ground Cover % Sub-area covered by dense crop or ground cover in winter and summer , respectively for secondary vegetation.
Sparse Crop/Ground Cover % Sub-area covered by sparse crop or ground cover in winter and summer , respectively for secondary vegetation.
Bare Soil % Sub-area without vegetation cover of any significance in winter and summer , respectively for secondary vegetation.

 

Table 5.3 Correspondence between the twenty global land cover classes and the five land 

cover classes used in the parameter estimation procedures (1 legend in Chapter 3) 

Parameter estimation classes Global land cover classes1

Dense forest 40, 50,60,70,90,100,160,170

Bush/Sparse forest 20,30,110,120,180

Dense crop/Groundcover 14,130,140

Sparse crop/Groundcover 11,150

Bare soil 200
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 Hughes et al. (2010c) consider that the ST parameter is made up of STsoil and STunsat, where the 

former is the near-surface storage related to soil depth and texture, while the latter is associated 

with storage in the rocks above the water table and is only relevant if the surface slope and 

fracture orientation allows this zone to contribute to runoff. Similarly, the interflow FT 

(mm/month) generated when the moisture level (S) is at its maximum value (ST), has been 

assumed to represent the maximum possible runoff from both soil moisture (FTsoil) and 

unsaturated zone storage (FTunsat). The power of the moisture storage-runoff relationship (POW) 

is used to control the rate of runoff from the soil for any given moisture state. The conceptual 

understanding of POW in the parameter estimation procedure assumes an approach based on a 

probability distribution principle that suggests that the total sub-basin moisture storage (S) can be 

represented by a frequency distribution of different soil moisture contents (Hughes and Sami, 

1994; Kapangaziwiri, 2008; Hughes et al., 2010c). Estimates of soil permeability and sub-basin 

slope are used to determine an index of moisture re-distribution which is used to define the shape 

of the storage–runoff relationship and therefore an appropriate value of POW through a trial-and-

error curve fitting approach. The power of the moisture storage-GW equation (GPOW) is used to 

determine the relation between recharge and current moisture storage. This parameter is similar 

to POW and can be expected to reflect similar physical relationships. The full details of the 

estimation procedures are not included in this document but can be found in (Kapangaziwiri, 

2008; 2010). 

5.5 Sampling method 

An uncertainty version of the GW-PITMAN model is used within the SPATSIM modelling 

framework to generate ensembles of model simulations, which can then be used for uncertainty 

analysis. The uncertainty version of the GW-PITMAN model uses a Monte Carlo sampling 

approach to generate ensembles (typically 10 000) of the model results. Through a Monte Carlo 

sampling approach, a set of model parameters are sampled from prior parameter ranges using 

either uniform, log-normal or normal distributions. Based on a set of objective functions 

targeting the desired characteristics, the output ensembles can be apportioned into behavioural 

and non-behavioural. The various objective functions used in the uncertainty analysis framework 
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include the coefficient of efficiency untransformed data (CE (Q)), the coefficient of efficiency 

log-transformed data (CE (lnQ)), the coefficient of efficiency inverse transformed data (CE 

(1/data)), and the mean monthly flow percentage bias of both  untransformed data (PBIAS (Q)) 

and log-transformed data (PBIAS (lnQ)).  

The initial development of the uncertainty framework of the GW-PITMAN model assumed a 

complete random sampling to generate representative ensembles for single sub-basins, with each 

parameter being sampled independently across all sub-basins (Hughes et al., 2011a). WRC, 

(2011) observes that this approach, based on independent sampling of values for each parameter 

and each sub-basin, largely cancels out the variability in the downstream ensemble simulations. 

To account for this problem, a structured sampling approach has been developed (WRC, 2011). 

The structured sampling is designed to ensure more representative uncertainty in the ensembles 

generated for downstream sub-basins.  

5.6 Sensitivity analysis of ensembles 

A regional sensitivity analysis (RSA, Wagener et al., 2002; Demaria et al., 2007; Hughes et al., 

2011a) is applied to evaluate the parameter sensitivity across the sub-basins. The RSA is based 

on the use of Monte Carlo sampling (Hornberger and Spear, 1981) from which statistical 

distribution functions are used for parameter sampling (Salteli et al., 2008). A set of constraints, 

based on available information about the system, is used for a qualitative definition of the system 

behaviour (Salteli et al., 2008). A binary classification is used to categorise the model outputs 

into behavioural and non-behavioural. A behavioural set is considered as representative of the 

system response characteristics and thus a useful predictor of the system (Pappenberger et al., 

2006).  Cumulative distributions of subsets of both groups are used to investigate the sensitivity 

of the parameters. A shape difference in the cumulative distributions of a parameter indicates the 

degree to which the parameter is sensitive, whereas the insensitive parameters will result in 

cumulative distributions that are similar (Beven, 2001). Figure 5.6 illustrates the shape 

differences in the cumulative distributions of parameters as a measure of parameter sensitivity. 

The figure is a snapshot taken from a graphical screen of the Regional Sensitivity Analysis 

software in SPATSIM. 
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Figure 5.6 Graphical screen of a regional sensitivity analysis.  

Many global properties of the RSA are related to variance-based methods, where the wide range 

of values of input factors is considered, and all factors are varied at the same time (Salteli et al., 

2008). The ease of implementation of the RSA method, its highly visual results, and its 

complementary support of uncertainty analysis are some of the strengths that made it popular in 

hydrology (Tang et al., 2007). Other advantages of the RSA method are (as stated by Ratto et al., 

2001): to make the model properties more transparent; to help identify critical elements in the 

model (if necessary), to guide the revision of models; to support calibration and estimation; to 

interpret estimation results. Hence, sensitivity analysis is closely related to uncertainty analysis 

(Saltelli et al., 2008). Based on assumptions made about the conceptual interpretations and 
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importance of the GW-PITMAN model parameters as an initial guide for parameter sensitivity 

analysis, Sawunyama (2009) showed that, in this context, sensitivity and identifiability are 

similar issues. “If the results are not sensitive to parameter changes, the parameter is not 

identifiable; but, at the same time, the importance of getting the value correct is not important 

either” (Sawunyama, 2009). These assumptions of conceptual interpretations of the model 

parameters, together with the sensitivity analysis results, can be used to constrain the uncertainty 

analysis. However, Wagener et al. (2001) observe that parameter sensitivity analysis is a 

necessary, but not a sufficient condition for identifiability, since values of a sensitive parameter 

that produce good model performance can still be distributed over a relatively wide range of 

feasible parameter space. 

In this study, sensitivity analysis is based on measures of distribution of the model response that 

result from ensembles of Monte Carlo sampled input parameter groups. The output ensembles 

are ranked on the basis of a chosen assessment criterion, then sorted into five equal groups, after 

which normalised cumulative frequency distribution curves are plotted (Y-axis) for each 

parameter (X-axis). The sensitivity of the parameter is measured by the degree of divergence of 

the cumulative curves, i.e. the wide separation of the curves indicates that the parameter is very 

sensitive, based on the assessment criterion considered.  The assessment criteria for the 

sensitivity analysis in groups of parameter values can be based either on flow metrics (Mean 

Monthly Flow (MMF), Coefficient of Variation of Monthly Flow (CVMF), Mean Monthly 

Recharge (MMR), slope of the Flow Duration Curve (FDC slope), the 10th, 50th and 90th 

percentiles of the cumulative frequency distribution of flows), or on objective functions (the 

Coefficient of determination (R2(Q) and R2(lnQ)), the Coefficient of Efficiency (CE(Q) and 

CE(lnQ)), Mean monthly flow percentage bias (PBIAS (Q) and PBIAS (lnQ)) and the 

Coefficient of Efficiency inverse transformed data (CE (1/data)), if observed data are available.  

5.7 SPATSIM 

The version of the PITMAN model (GW-PITMAN) used here is applied within a modelling 

framework referred to as SPATSIM (Hughes and Forsyth, 2006). Figure 5.7 summarises the 

main interface of the SPATSIM software. The database is managed through a spatial interface 
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(shape files generated through GIS routines external to SPATSIM) that represents the basin 

features, which are linked to the data attributes. Table 5.4 shows a list of data attributes used to 

set up the GW-PITMAN in the Congo Basin. 

SPATSIM DATABASE

Attribute requirements

• Object & attribute identifiers

•Catchment downstream links

•Catchment physiographic 

parameters 

•Climate variables

•Streamflow variables

•Downstream outflow

•Hydrological model parameters 

•Uncertainty parameters

•Reservoir parameters

•Water use data

•Mean monthly distribution data

•Optimisation ranges

•GCMs & climate change scenarios

ATTRIBUTE REQUIREMENTS

• Import - export functions

• Edit functions

• Spatial interpolation

• Patching 

• Calibration & simulation

• Analysis

• Display functions

GENERAL PROCEDURES

Applications

•Hydrology

•Ecohydrology

•Hydraulics

•Water resources management  

GENERAL  APPLICATIONS

Basin objects

•Basin polygons/grids

•Gauging stations 

•Stream network

•Lakes & wetlands

•Dams & reservoirs

•Other basin features

BASIN SPATIAL FEATURES

SPATSIM  Models

•General hydrology &data analysis 

models

•Rainfall-Runoff models

•Hydraulic models

•Water resource system models

•Ecological reserve models

•Climate change models 

•Uncertainty & sensitivity analysis 

framework

•A priori parameter estimation 

framework

EXTERNAL MODELS

 

Figure 5.7 The main interface of the SPATSIM software package. 

The software provides facilities which include routines for interpolation, patching, simulation, 

calibration and analysis. There are a wide range of models linked to SPATSIM that cover various 

applications in hydrology and water resources estimation. Model calibration and assessment 

within SPATSIM is based on a set of several standard quantitative (dimensionless measures, 

error index and standard regression) and qualitative criteria that are used to reject or accept the 
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model output simulations. These are: the percent bias of the mean monthly flows, percentage 

differences of standard deviations of monthly flows, coefficient of determination, Nash-Sutcliffe 

coefficient of efficiency, streamflow hydrograph, flow duration curve and the monthly 

distribution graph. 

Table 5.4  Attribute data required to set up the GW-PITMAN model in the SPATSIM 

interface. 

Attribute Type Attribute data requirements

Text

Catchment identif ier

Downstream area

Single Real Number

Catchment area (km2)

Catchment cumulative area (km2)

Time series

Average rainfall (mm)

Observed monthly f lows (volume)

Downstream outf low (volume)

Uncertainty output

One Dimensional Array

GW-PITMAN model parameters

Mean monthly evaporation (monthly % of total annual)

Reservoir model parameters

Wetland model parameters

Two Dimensional Array

Uncertainty parameters

Monthly water use distribution (f ractions)

Reservoir monthly distribution (f ractions)

Wetland seasonal distribution (f ractions)
 

Percent bias of the mean monthly flows (PBIAS, %): PBIAS is an error index that measures the 

average deviation of the simulated mean monthly flow volume as compared to the observed data 

(Moriasi et al., 2007). Zero is the optimal value of the PBIAS and deviation from this value, 

whether positive or negative, indicates errors in the model prediction. In general, a ±25% PBIAS 

is considered satisfactory (Moriasi et al., 2007).  For the GW-PITMAN, the experimental 

acceptable range is ±5%, which has been applied in this study for model performance.  
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Percentage differences of standard deviations of monthly flows (Stdv, %): Stdv is an error index 

that measures the dispersion within the simulated mean monthly flow volume as compared to 

their observed counterparts. No assumption on the acceptable range is made in this study, but in 

a previous study on South African catchments, a range of ±12% was used by Sawunyama 

(2009).   
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Coefficient of determination (R2): Coefficient of determination (R2) is a standard regression 

statistic that is designed to determine the strength of the linear relationship between the simulated 

and the observed flows (Legates and McCabe, 1999; Moriasi et al., 2007). It describes the 

proportion of the total variance in the observed data that can be explained by the model 

(Sawunyama, 2009), and ranges from 0 to 1, with higher values indicating the ability of the 

model to explain more variance in the observed data. 
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Where, R2 is over-sensitive to extreme values (outliers) and insensitive to additive and 

proportional differences between the simulated and observed data (Legates and McCabe, 1999).   

Nash-Sutcliffe coefficient of efficiency (CE):  CE is a normalised dimensionless measure of 

model efficiency that determines the relative magnitude of the residual variance compared to the 
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measured variance (Nash and Sutcliffe, 1970). The CE ranges between -∞to 1, with 1 being the 

optimal value. In practice, CE values greater than 0.5 have been considered acceptable, which is 

the case in this study.  
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The above quantitative criteria of the model evaluation are calculated for both the un-

transformed and natural logarithm-transformed values, to emphasise the role of high flow and 

low flow components, respectively, during the model simulation. The CE values are also 

computed using an inverse transformation (CE 1/data) which further emphasises the fit to low 

flows. 

Streamflow hydrograph: is a qualitative measure of model performance that involves visual 

appreciation of the goodness of fit between the hydrographs of the simulated and the observed 

flows. It has the advantage of being able to evaluate the specific characteristics of streamflows 

such as timing, magnitude, early season flows, recession flows, peak flows, in order to judge the 

performance of the model outputs.  

Flow duration curve (FDC): the FDC can be defined as the cumulative frequency distribution of 

the percentage of time a given flow magnitude in a river channel is equalled or exceeded. Visual 

comparison of observed and simulated FDCs provides a qualitative evaluation of the model 

performance based on the frequency distribution of high, medium and low flow. More 

quantitative assessments can be achieved by determining differences in frequency of exceedence 

at specific flows, or differences in flows at specific frequencies of exceedence.  

Flow duration curve Monthly distribution graph: provides a qualitative evaluation of the 

goodness of fit between the simulated and observed flows based on seasonal distribution of 

monthly flows.    
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5.8 GW-PITMAN model setup for the Congo Basin 

The GW-PITMAN model was set up within SPATSIM for 99 sub-basins of the Congo Basin. 

The sub-basins were delineated based on the areas of most frequent slopes and elevation, as well 

as the location of the streamflow gauging sites and the main tributaries (see chapters 3 and 4). 

Hughes et al. (2006) observe that the semi-distributed implementation of the model allows all the 

identified sub-basins to be modelled with independent parameter sets and input time series.  

Overall, the 99 sub-basins used to set up the GW-PITMAN model in this study represent the five 

major drainage systems of the Congo Basin. These are the Oubangui drainage system (North 

East), the Sangha drainage system (North West), the Kasai drainage system (South East), the 

Lualaba drainage system (South West) and the central Congo Basin (Figure 5.8).  

 

Figure 5.8 Main drainage systems of the Congo Basin (all the streams generated from the 

western right bank of the Congo River are purposely included in the Sangha drainage unit). 

For the purpose of identification, the sub-basins are coded to indicate one of the main drainage 

systems in which the sub-basin falls (e.g. O-CB82 is the sub-basin number 82 that is located in 

the Oubangui drainage system of the Congo Basin). Similar naming is also used for the 

streamflow gauging sites. These identifiers are used as a text attribute type within SPATSIM. 



161 

 

The single real number attribute types consist of the sub-basin area values which were generated 

from the DTM 90 m resolution (see Chapter 4). Due to difference in approaches, the sub-basin 

area attributes used in this study may differ slightly from those reported by previous authors. The 

time series attribute types consist of rainfall and streamflow time series. The sub-basins’ average 

rainfall time series were obtained through spatial interpolation of the CRU TS 2.1 rainfall data 

for the period 1931-2000, using the inverse distance method. Table 5.5 shows the time series of 

the available streamflow used in this study. The array attributes include the parameter values 

(main model and reservoir or wetland sub-models) and the seasonal distribution of some 

parameter values.  Appendix B shows details of the primary drainage areas and the nested sub-

basins. 

Table 5.5  Gauging sites used for model calibration and validation in the Congo Basin. 

Gauging site

SB*
Drainage area 

km2

Streamf low records

ID Old code New code Years Months % Missing
1 AF O-CB2 1 5880 1958-1959 21 0
2 C O-CB14 1 19590 1953-1975 269 19.3
3 AB O-CB22 1 22153 1967-1973 80 20.0
4 D O-CB24 1 26454 1952-1975 281 41.3
5 E O-CB29 2 30503 1953-1975 272 11.4
6 F O-CB30 3 31037 1950-1975 302 3.3
7 G O-CB33 1 28333 1952-1975 282 21.3
8 H O-CB44 3 51959 1952-1973 249 16.1
9 AC O-CB49 2 58898 1959-1975 204 10.8

10 I O-CB56 3 75994 1953-1965 156 0.0
11 P O-CB62 7 117644 1952-1956 57 5.3
12 J O-CB78 18 389856 1939-1960 260 5.0
13 K O-CB82 20 492405 1940-2000 732 0.0
14 L O-CB83 22 524497 1952-1975 282 16.0
15 AD O-CB29b 2 14259 1957-1975 218 17.9
16 M S-CB 18 1 18098 1953-1971 227 22.5
17 AE S-CB52 1 38600 1968-1978 131 13.0
18 Z S_CB57 3 69544 1953-1994 492 35.0
19 Y S_CB71 5 143314 1948-1983 432 0.0
20 X K-CB76 4 234770 1932-1959 336 0.0
21 W K-CB85 15 732838 1932-1959 336 0.0
22 B K-CB88 17 876632 1950-1959 120 0.0
23 V L-CB11 1 8792 1971-1979 108 5.6
24 U L-CB53 2 61975 1950-1959 120 0.0
25 T L-CB68 3 119259 1957-1981 300 0.0
26 S L-CB74 6 158099 1950-1959 120 0.0
27 AG L-CB80 5 231635 1957-1959 31 6.5
28 R L-CB87 20 751806 1950-1959 120 0.0
29 Q L-CB89 21 789234 1933-1959 324 0.0
30 A C-CB96 96 3570566 1969-1984 192 0.0
31 O L-CB92 29 928381 1932-1947 192 0.0

 

* Number of up-stream sub-basins (including the actual sub-basin) draining into the 

downstream sub-basin.   
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5.9 Conclusion  

This chapter has established a framework of methods for hydrological modelling in the Congo 

Basin. These methods encompass model calibration, a priori parameter estimation, uncertainty 

and sensitivity analysis. While these methods, with an emphasis on the application of the GW-

PITMAN model, have been successfully applied elsewhere in southern Africa, they are new to 

the environment of the Congo Basin. This implies that the approach to parameterisation should 

be carried out with a feedback loop in order to inform about the adequacy of the model structure 

to represent hydrological processes in a new environment, the discovery of new processes that 

may not be accounted for by the model structure, and the physical meaning of the model 

parameters with regard to understanding the processes. In this regard, the hydrological modelling 

in the Congo Basin involves an initial exploration of the GW-PITMAN through manual 

calibration in order to assess the general applicability of the model and check for any major 

problems with the input data and model structure. The second phase of modelling applies the 

uncertain parameter estimation approaches based on available physical property data and 

includes a feedback loop to ensure that the parameter estimation routines developed for South 

African conditions would be applicable to the Congo Basin.  
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CHAPTER 6  BASIN SCALE RAINFALL RUNOFF MODEL 
CALIBRATION 

6.1 Introduction 

The gaps in hydrological information for the Congo Basin (Shem and Dickinson, 2006) increases 

uncertainties in understanding the hydro-climatic processes in the basin, and consequently the 

risks associated with decision making for major water resources development plans. There is also 

uncertainty about the predictions of future climate and environmental change. These challenges 

make it essential to explore possible approaches to close the information gap; two possible ways 

are experimental or field research, and modelling. The latter is a choice where limited 

observations exist and can be carried out at lower cost. Some of the gaps in the observational 

data can be filled using hydrological simulation models, which if they prove practical, can be 

established with limited data, but generate sufficiently reliable information for management 

purposes. The overall objective of this study is to establish a model that is a realistic 

representation of the Congo Basin’s hydrology using the available historical data. This model 

will be used to assess future scenarios related to climate and environmental change, including 

options for water resources development in the basin. This chapter presents the results of rainfall 

runoff model calibration for the whole Congo Basin. The issues and challenges of hydrological 

modelling that arose during the model calibration and the approaches used to address them are 

also presented.  

6.2 Calibration procedures  

The GW-PITMAN model has some 18 main parameters that are used to quantify the main 

hydrological processes. Establishing these parameters in a new environment of the Congo Basin 

with little or no previous hydrological modelling information, required several steps to provide 

initial parameter sets of the model calibration that could appropriately represent the conceptual 

processes of the basin hydrology. Figure 6.1 shows the procedures used for the GW-PITMAN 

model calibration in the Congo Basin.  
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No
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Check that parameter ranges are still
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Run processes  

Calibration within the final ranges of the 
model parameters   

Non behavioural parameter sets 

Calibration tests within the initial parameter 
ranges + checks for which parameter can be kept 
constant or with a low uncertainty range

Behavioural parameter sets  

 

Figure 6.1 Procedures used for the GW-PITMAN model calibration in the Congo Basin. 

A Monte Carlo sampling approach was used to establish the initial parameter ranges (maximum 

and minimum parameter values) of the model parameters using uniform distribution. Secondly, 

Monte Carlo sampling was used to establish fixed values of some model parameters which 
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would remain unchanged during the calibration process. Using this procedure, the parameters 

RDF, PI1, PI2, AFOR, TL and RWL were fixed at specific values for the various sub-basins of 

the Congo Basin such that the manual calibration of the model focuses on the main model 

parameters of the hydrological processes such as ZMIN, ZAVE, ZMAX, ST, FT and GW. To 

provide a uniformly distributed plausible space for each parameter, the initial parameter ranges 

for the Monte Carlo runs were based on the primary information on the basin physical property 

data, experience of use of the model across different climate conditions in southern African 

region (Hughes, 1997; Mwelwa, 2004; Hughes et al., 2006), and on an understanding of the 

dominant runoff generation processes within the basin under study. Hughes et al. (2010c) 

observe that parameter ranges are expected to be narrow if a high level of confidence can be 

expressed in the basin physical property data, while poor quality of information will clearly lead 

to a wide range of possible parameter values. The prior parameter ranges of a uniform 

distribution (Table 6.1) were then sampled using a Monte Carlo approach to generate ensembles 

of possible model outputs.   

Numerical objective functions are calculated in the model on the basis of both un-transformed 

and natural logarithm-transformed data.  Based on these objective functions, the output 

ensembles were grouped into behavioural and non behavioural. The behavioural parameter sets 

were then refined using manual calibration to establish the regional scheme of the model 

parameters for the basin, including the ungauged sub-basins.  The manual calibration of the 

model aimed to assess the general applicability of the model and to check for any major 

problems with the input data.  The main focus of the manual calibration was on increasing CE 

and R2 values while limiting the difference in the mean monthly flows to within ± 5%.  

Overall, 31 gauging sites with flow records falling within the period 1931-2000 were identified 

and used for model calibration. The time series length of the streamflow records vary from one 

station to another. Depending on the situation, flow records of the gauging sites with lengthy 

time series (more than 20 years) were split to account for both calibration and validation periods. 

This follows the need to ensure that there is enough data in the calibration set to represent 

variability.  Table 6.2 shows the gauging sites used in the modelling with respect to the periods 
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for model calibration and validation. Details for the primary drainage areas are shown in 

Appendix B. 

Table 6.1 Maximum and minimum parameter values used as prior ranges of a uniform 

parameter distribution for the five main drainage units of the Congo basin. 

GWv3 
Pitman 
Parameters

Prior parameter ranges
Oubangui Sangha Lualaba Kasai Congo
Min Max Min Max Min Max Min Max Min Max

RDF 0.8 0.8 0.7 0.7 0.8 0.8 0.8 0.8 0.6 0.6
PI1 2 2 2 2 1.5 4 1.5 4 1.5 1.5
PI2 5 5 4.5 4.5 3 6 3 6 3 3
AFOR uncertain uncertain uncertain uncertain uncertain
FF 1 1.4 1 1.4 1 1.4 1 1.4 1 1.4
PEVAP Fixed Fixed Fixed Fixed Fixed
ZMIN 40 115 110 150 40 120 40 120 40 120
ZMAX 400 1200 600 1180 600 1200 600 1200 600 1200
ST 500 1500 600 1000 600 1600 600 1600 600 1500
SL 0 0 0 0 0 0 0 0 0 0
POW 1.5 5 4 6 1.5 6 1.5 6 1.5 5.5
FT 32 60 30 50 30 80 30 80 5 50
GW 5 30 15 27 5 38 5 38 20 52
R 0.3 0.8 0.3 0.6 0 1 0 1 0 0.7
TL 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
CL 0 0.3 0 0 0 0.3 0 0 0 0.3
GPOW 1.5 6 3 4.5 1.5 6 1.5 6 1.5 6
D.DENS 0.2 0.7 0.3 0.5 0.3 0.7 0.3 0.7 0.3 0.7
T 15 70 15 70 5 80 5 80 15 80
S 0.001 0.01 0.005 0.01 0.005 0.015 0.005 0.015 0.001 0.015
GW slope 0.001 0.01 0.005 0.01 0.001 0.01 0.001 0.01 0.001 0.01
RWL 10 50 5 15 10 50 10 50 10 50
RSF 0.6 3 0.4 1 0.6 3 0.6 3 0.6 3
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Table 6.2  Gauging sites used for model calibration and validation in the Congo Basin. 

ID
Gauging 

site SB*
Drainage 
area km2

Downstrea
m area

Streamflow 
records Months 

% 
Missing Calibration Validation

1 O-CB2 1 5880 O-CB29 1958-1960 21 0.0 1958-1960
2 O-CB14 1 19590 O-CB46 1953-1975 269 19.3 1953-1969 1972-1975
3 O-CB22 1 22153 O-CB70 1967-1973 80 20.0 1967-1973
4 O-CB24 1 26454 O-CB46 1952-1975 281 41.3 1952-1975
5 O-CB29 2 30503 O-CB30 1953-1975 272 11.4 1953-1975
6 O-CB30 3 31037 O-CB84 1950-1975 302 3.3 1950-1970 1971-1975
7 O-CB33 1 28333 O-CB82 1952-1975 282 21.3 1952-1975
8 O-CB44 3 51959 O-CB62 1952-1973 249 16.1 1952-1973
9 O-CB49 2 58898 O-CB56 1959-1975 204 10.8 1959-1975
10 O-CB56 3 75994 O-CB78 1953-1965 156 0.0 1953-1965
11 O-CB62 7 117644 O-CB70 1952-1956 57 5.3 1952-1956
12 O-CB78 18 389856 O-CB82 1939-1960 260 5.0 1939-1960
13 O-CB82 20 492405 O-CB83 1940-2000 732 0.0 1950-1990 1991-2000
14 O-CB83 22 524497 O-CB84 1952-1975 282 16.0 1965-1975
15 O-CB29b 2 14259 O-CB30 1957-1975 218 17.9 1957-1975
16 S-CB18 1 18098 S-CB57 1953-1971 227 22.5 1953-1971
17 S-CB52 1 38600 S-CB71 1968-1978 131 13.0 1968-1978
18 S-CB57 3 69544 S-CB71 1953-1994 492 35.0 1953-1975 1983-1994

19 S-CB71 5 143314 S-CB72 1948-1983 432 0.0 1948-1974 1978-1983

20 K-CB76 4 234770 K-CB79 1932-1959 336 0.0 1932-1951 1952-1959

21 K-CB85 15 732838 K-CB88 1932-1959 336 0.0 1932-1951 1952-1959
22 K-CB88 17 876632 C-CB96 1950-1959 120 0.0 1950-1959
23 L-CB11 1 8792 L-CB69 1971-1979 108 5.6 1971-1979
24 L-CB53 2 61975 L-CB74 1950-1959 120 0.0 1950-1959
25 L-CB68 3 119259 L-CB75 1957-1981 300 0.0 1957-1981
26 L-CB74 6 158099 L-CB86 1950-1959 120 0.0 1950-1959
27 L-CB80 5 231635 L-CB81 1957-1959 31 6.5 1957-1959
28 L-CB87 20 751806 L-CB89 1950-1959 120 0.0 1950-1959
29 L-CB89 21 789234 L-CB90 1933-1959 324 0.0 1933-1951 1952-1959
30 C-CB96 96 3570566 C-CB97 1969-1984 192 0.0 1969-1984
31 L-CB92 29 928381 C-CB93 1932-1947 192 0.0 1932-1947

 

* Number of up-stream sub-basins (including the actual sub-basin) draining into the 

downstream sub-basin.   

6.3 Model calibration results  

The calibration was carried out for the whole Congo Basin using 31 gauging sites within the 

main five drainage units of the basin. In general terms, the model has been able to capture the 

timing and magnitude of high and low flows satisfactorily. There is an acceptable 

correspondence between the observed and modelled flows, based on the overall statistical criteria 

and graphical measures used to assess the model performance. The recession of flows is also 
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captured satisfactorily. In most cases, the percentage difference in mean monthly flows has been 

constrained to within ± 5% for the calibration period. However, some of the gauging sites used 

for model validation have shown the values of the percentage greater than ± 5% for the simulated 

high flow.  The following sub-sections give the calibration results for the five main drainage 

systems of the Congo Basin. The results are shown in both the form of streamflow hydrographs 

for the period of calibration, and FDCs representing the model simulations for the full range of 

available time series (calibration and validation). The FDCs have the advantage of revealing 

simulation problems that could not be seen from the hydrographs. Figure 6.2 (a and b) shows the 

overall statistical measures of the model performance and goodness of fit between the observed 

and simulated flows for all 31 observed streamflow sites in the Congo Basin. The gauging site 

ID 31 (L-CB92) was not used in manual calibration for the final results and therefore excluded 

from Figure 6.2. During the initial calibration of the model using manual approach, this gauging 

site showed a different behaviour from the neighbouring gauging sites in terms of hydrological 

response. Therefore, the gauging site was modelled using a different approach and the results are 

presented in section 6.5 of this chapter.  
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Figure 6.2a Statistics based on standard regression and dimensionless measures of the model 

performance for the hydrological modelling of the Congo Basin.  
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Figure 6.2b Statistics based error index measure of the model performance for the 

hydrological modelling of the Congo Basin (R2, R2 ln, CE, CE ln, CE1/data, 

PBIAS, PBIAS ln, St.dev and St.dev ln are the objective functions used for the 

model assessment; see section 5.7 equations 5.9-5.12).  

6.3.1 Oubangui drainage system 

The Oubangui drains the north-eastern streams, starting from the divides of the Nile and Shari 

basin to the main trunk of the Congo River. The main gauging site in the Oubangui River is the 

Bangui station (ID13, O-CB82, catchment area: 49 2405 km2), for which monthly flow data are 

available from the GRDC from 1936 to 2005 with an average mean monthly volume of 10 119 

Mm3.  Figure 6.3 shows the simulated streamflow hydrograph for the calibration period and the 

FDC for the full range of the available flow record at O-CB82. The calibration results for O-

CB82 are representative of the Oubangui upstream drainage basin with both coefficients of 

determination (R2) and efficiency (CE)  greater than 0.8, regardless of whether ordinary or log-

transformed flow volumes are used. The value of 0.65 has also been achieved for the CE 1/data 

for which higher performance is usually difficult to achieve with the GW-PITMAN model. The 

values of PBIAS have also been minimised to -1.68 and 0.65 for both the ordinary and log 

transformed flow volumes, respectively.  
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Figure 6.3 Observed and simulated monthly flows at O-CB82 gauging site in the Oubangui 

drainage unit.  

The Oubangui drainage system can be sub-divided into the upper, mid- and lower Oubangui. The 

major tributaries of the upper Oubangui include the Uele River (Ungauged), Ouara River at 

Dembia (ID2, O-CB14, 19 590 km2), Mbomou River at Zemio (ID4, O-CB24, 26 454 km2), 

Chinko River at Rafai (ID8, O-CB44, 51 959 km2), Kotto River at Bria (O-CB49, 58 898 km2) 

and at Kembe (ID10, O-CB56, 75 994 km2), and Mbari River at Loungouba (ID3, O-CB22, 22 

153 km2), which are the headwaters of the Oubangui drainage system. Figure 6.4 shows the 

calibration results obtained in the upper Oubangui for selected gauging sites, and the statistics of 

the calibration results are presented in Figure 6.2. The calibrated maximum absorption capacity 

(ZMAX) values from the model range from 530 to 880 mm while the minimum absorption 

capacity (ZMIN) values range from 40 to 66 mm across the sub-basins. The minimum values of 

the absorption capacity are observed in the extreme east (O-CB14 and O-CB24) while the 

maximum values are observed further north in the Kotto sub-basin. The values of ST (1 500 

mm), FT (35 mm) and GW (26 mm) obtained in the Kotto sub-basin are greater than those 

obtained for other headwater sub-basins of the upper Oubangui. This situation reflects the hydro-

geological setting of the Kotto, which is conspicuously the only headstream catchment of the 

Oubangui characterised by high recharge (Döll and Flörke, 2005) and the presence of cretaceous 

carbonate formations. The model calibration at O-CB 14 and O-CB 24 were greatly influenced 

by the parameter CL, for which good calibration results were obtained with a value of 0.2, thus 

implying the role of attenuation of the monthly flow volumes. This attenuation role of monthly 
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flow volumes in the headwater sub-basins could be a manual calibration artefact. Good 

calibration results at these sites (O-CB14, 24) were also obtained with very low values of GW (5 

mm) and FT (11) mm.  
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Figure 6.4  Observed and simulated monthly flows for selected sub-basins of the upper 

Oubangui.  



172 

 

The mid-Oubangui consists of the sub-basins that are fed through the upstream tributaries. Figure 

6.5 shows the simulation results for the two gauging sites of the mid-Oubangui. O-CB78 (ID12, 

389 856 km2) receives flow from all other upstream tributaries of the Oubangui and is the main 

feeder to the O-CB82 gauging site. The model performance with CE equal or greater than 0.65 

and R2 greater than 0.7 has been achieved for O-CB78, irrespective of whether ordinary or log- 

transformed values have been used.  Similarly, the CE and R2 values greater than 0.8 have been 

achieved for the O-CB83 gauging site (ID14, 52 4497 km2), which is consistent with the 

simulations shown in Figure 6.5. However, a close look at the FDCs for both gauging sites 

shows a break point that increases the slope of the high flow component of the FDC from Q40 

and Q50 for O-CB78 and O-CB83, respectively. This break point is not seen in the simulations 

of the O-CB82 gauging site which lies between O-CB78 and O-CB83.  
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Figure 6.5 Observed and simulated monthly flows for selected sub-basins of the upper 

Oubangui.  

During the model calibration, attempts to match the simulated and observed flows at this break 

point were hampered by a substantial increase of low flows and the simulations could not be 

improved any further, given the limitation on available information about the quality of the 
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observed flows. Furthermore, attempts to modify parameter values to correct the simulation at 

these break points did not help. 

Further downstream of the mid-Oubangui is the Lobaye River that drains the western part of the 

Oubangui drainage system over 31 037 km2 and meets the main Oubangui River just below O-

CB83. Figure 6.6 shows the simulation results for the main gauging sites of the western 

tributaries of the Oubangui drainage system. CE and R2 coefficients of 0.7 to 0.9 have been 

achieved for the gauging sites in this area.  

Overall, good calibration results in the Oubangui drainage system were obtained with the RDF 

parameter fixed at 0.8. The majority of the upper Oubangui sub-basins were calibrated with PI 

values fixed at 1.5 mm (PI1) and 3 mm (PI2). Higher PI values of 2 and 5 mm were used for the 

calibration of the mid-Oubangui sub-basins as this area is more forested than the upper 

Oubangui, and the higher PI2 value (5) shows the important of secondary vegetation. The PI 

values of 2 and 3.5 mm were used for the calibration of the lower Oubangui. The distribution of 

the PI values across the Oubangui drainage system could also be explained by the importance of 

the land cover variation on the model calibration. Given the difficulty of quantifying the 

proportion of secondary vegetation for the whole basin, the initial AFOR parameter values 

obtained through the Monte Carlo runs were kept fixed during the model calibration. For the 

various sub-basins of the Oubangui, these values range from 45 to 60%. The maximum values of 

900 mm for the absorption capacities were obtained in the lower and mid-Oubangui while the 

minimum absorption capacity in these areas is between 85 and 92 mm. The low values of the 

maximum and minimum absorption capacity were calibrated for the sub-basins of the upper 

Oubangui. These values range from 530 to 600 mm for the maximum absorption capacity, and 

from 40 to 65 mm for the minimum absorption capacity. Exceptions to this trend were observed 

in the Kotto sub-basins where maximum absorption capacity values greater than 800 mm were 

calibrated. The ST parameter values obtained from the model calibration in the Oubangui 

drainage system range from 400 to 1500 mm, with values less than 700 mm for the mid-

Oubangui where the low values of FT (9 mm) and GW (8 mm) were also calibrated.  
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Figure 6.6 Observed and simulated monthly flows for selected sub-basins of the western 

tributaries of the Oubangui drainage system.  
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6.3.2 Sangha drainage system 

Figure 6.7 shows the simulation results for the gauging sites of main tributaries in the Sangha 

drainage system. These are the Sangha River at Ouesso (ID19, S-CB71, 143 314 km2) and Salo 

(ID18, S-CB57, 69 544km2), the Mambere River at Carnot (ID16, S-CB18, 18 098 km2) and the 

N’goko River at N’gbala (ID17, S-CB52, 38 600 km2). In general, there is good agreement 

between the simulated and the observed monthly flow volumes. These results are confirmed by 

the statistics of the model performance with CE and R2 values ranging from 0.7 to 0.82, 

irrespective of whether ordinary or log-transformed values have been used.  Good calibration in 

the Sangha was obtained with the RDF parameter values fixed at 0.8, and the PI parameter 

values fixed at 2 (PI1) and 4 (PI2). The proportions of secondary vegetation for the sub-basins of 

the Sangha range between 40 to 50%. A ZMIN value of 80 and ZMAX of 800 were calibrated 

for O-CB71 while a ZMIN of 100 and ZMAX of 600 were calibrated for the upstream sub-

basins.  

The ST parameter value of 1 500 mm was calibrated throughout the Sangha drainage area and 

better simulations were obtained with increased ST, which emphasises the role of soil moisture 

storage capacity in this area. This value of the ST parameter for the Sangha drainage area was 

calibrated out of the prior parameter ranges of a uniform distribution obtained through the Monte 

Carlo Sampling (Table 6.1). The role of ST in the simulation results was also evidenced during 

the model calibration for the sub-basins of the lower Oubangui. Across the sub-basins, ranges of 

20 to 57 mm and 22 to 33 mm for the parameters FT and GW, respectively, were calibrated. This 

shows that the role of sub-surface processes, including interflow and groundwater recharge for 

the Sangha drainage area, is considerable when compared to the upper and mid-Oubangui where 

low FT and GW parameter values were obtained during the model calibration.   
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Figure 6.7  Observed and simulated monthly flows for selected sub-basins of the Sangha.  
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6.3.3 Lualaba drainage system 

The Lualaba River is the major tributary that drains the south-eastern parts of the Congo Basin 

over 92 8381 km2 and generates a mean monthly flow volume of 16 446 Mm3 at the outlet 

gauging site (ID31, L-CB92).  The course of the Lualaba River is characterised by the presence 

of many lakes and wetlands, which greatly influence the flow regime of the downstream sub-

basins. Figure 6.8 shows the simulation results for two gauging sites, namely the Taragi road 

bridge on the Malagarasi River in the republic of Tanzania (ID23, L-CB11, 8 792 km2) and 

Bukama on the Lualaba River in the Democratic Republic of Congo (ID24, L-CB53, 61 975 

km2), for which the flow regime is not influenced by the lake and wetland processes. The model 

calibration performed successfully in these areas, showing the values of CE and R2 with a range 

of 0.65 to 0.76 for the L-CB11 gauging site, and greater than 0.7 for L-CB53. The other gauging 

sites identified in the Lualaba drainage area include the Chembe Ferry on the Luapula River 

from the republic of Zambia (ID25, L-CB68, 119 259 km2), Mulongo station (ID26, L-CB74) on 

the Lualaba River (158 099 km2), Kalemie station (ID27, L-CB80) in the headwaters of the 

Lukuga River and measures outflows from Lake Tanganyika (231 635 km2), the Kasongo station 

(ID28, L-CB87) on the Lualaba River (751 806 km2); the Kindu station (ID29, L-CB89) on the 

Lualaba River (789 234 km2) and  Ponthierville station (L-CB92) on the Lualaba River (928 381 

km2).  However, these gauging sites are located downstream of the existing lakes and wetlands, 

which had a negative influence on the simulation results during calibration. The storage capacity 

of these water bodies is massive (e.g. Lake Tanganyika) and greatly alters the downstream flow 

regimes. One way of improving the results in this area was to change the parameters to 

unrealistic values to compensate for inadequate model structure. It was therefore decided, based 

on these preliminary simulation results that integrating the lake and wetland storage processes 

into the modelling would provide an appropriate representation of the hydrological behaviour of 

the system. This has been achieved (see section 6.5) through the use of a conceptual wetland 

model that accounts for lake and wetland storages.   
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Figure 6.8  Observed and simulated monthly flows for selected sub-basins of the Lualaba. 

6.3.4 Kasai drainage system 

The Kasai River is the major tributary that drains the south-western streams of the Congo Basin, 

from the Angola highlands, over an area of about 754 204 km2, before joining the Lukenie River 

and thereafter the Congo River. Three main gauging sites were identified for model calibration. 

These are the Port-Francqui (ID20, K-CB76, 234 770 km2), Kutu-Moke (ID21, K-CB85, 732 

838 km2) and the Lediba (ID22, K-CB88, 876 632 km2). Figure 6.9 shows the simulation results 

for selected gauging sites of the Kasai.  These simulations are consistent with the statistics of the 

model performance (Figure 6.2) which shows a range of coefficient values between 0.6 to 0.72 

for both CE and R2, irrespective of whether the ordinary or log-transformed values were used. 

Simulation results in the Kasai show clearly that wet season flows are repeatedly over- and 

under-simulated for the entire period of calibration. This is typical of inadequate representation 

of the spatial rainfall distribution in a coarse scale model. It may also be a reflection of the 

inability of the model to simulate the high flow events appropriately. This is a problem in most 
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of the simulations obtained in this study (e.g. O-CB82, O-CB30 and S-CB71) and  is a common 

problem when modelling large catchments with limited representation of the spatial rainfall 

variation (Mwelwa, 2004).  
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Figure 6.9  Observed and simulated monthly flows for selected sub-basins of the Kasai. 

In contrast to the observation made in the northern sub-basins of the Oubangui and Sangha, a 

wide range of the parameter RDF (0.65-0.9) across the sub-basins was necessary to obtain good 

fits between the simulated and observed flows for the Kasai drainage system. Similarly, a good 

fit in the Kasai was obtained with a wide range of PI parameter values which varied from 1.5-3 

(PI1) and 3-4.5 (PI2). This difference in the parameter distribution reflects the importance of the 

variation in the land cover types for the Kasai drainage system, and is probably related to the 

presence of mosaic type of vegetation that dominates the southern sub-basins. There is a relative 

consistency in the parameters of surface runoff which range from 70-90 mm (ZMIN) and 630-

800 mm (ZMAX) for the various sub-basins. This relative consistency is also observed in the 

distribution of the parameter ST which ranges from 815 to 920 mm for the various sub-basins. 
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However, there are indications that higher values of ST could still provide good simulation 

results.  High values of the parameters FT (50-65 mm) and GW (25-36 mm) were calibrated in 

the Kasai, which suggest the importance of sub-surface flows.  

 6.3.5 Central Congo drainage system 

The Central Congo drainage system can be sub-divided into the central basin, known as the 

“Cuvette centrale”, and the lower Congo. The central basin receives flow from the four main 

upstream drainage systems and discharges into the lower Congo. Rainfall in the central basin is 

higher than other parts of the Congo, which implies that a large amount of runoff is generated in 

the catchments of the Central Congo Basin. This amount represents approximately 50% of the 

total basin streamflow (based on the downstream gauging site that accounts for 98% of the 

drainage area). However, there are no gauging stations which could be used to calibrate the 

model in this central part of the basin. The sole gauging site for the Central Congo drainage 

system is located in the lower part which drains about 98 % of the Congo Basin over an area of 3 

570 566 km2, with a monthly flow volume of about 108 147 Mm3. There are no indications in the 

literature of any previous successful hydrological model calibration carried out at this site as far 

as the author of the current study can determine.  The results achieved in this study, using the C-

CB96 Brazzaville station (ID30), are promising with regards to the reproduction of the 

magnitude, timing and recession of streamflow events. Figure 6.10 shows the simulation results 

as obtained from the model calibration at the C-CB96 gauging site.   
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Figure 6.10  Observed and simulated monthly flows at C-CB96. 
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The calibration results (simulated curves and parameter values) obtained from this site are 

satisfactory given the unknown and unquantified uncertainty surrounding the model inputs. It is 

has been possible to achieve a satisfactory fit at this site with values for the coefficients of 

determination (R2) and efficiency (CE) of 0.67 to 0.73, for both the ordinary and log-transformed 

data.  The percentage difference of mean monthly flow volumes between the observed and 

simulated flows using ordinary and log-transformed data has been constrained to 3.6 and 0.3%, 

acceptable values for water resources management. The observed high flow response is 

sufficiently captured and this is also reflected in the values of R2 (0.7) and CE (0.69) based on 

the untransformed data. The calibration exercise at this site highlighted the importance of the 

channel routing (CL) and groundwater recharge (GW) parameters. However, questions remain 

about the adequate definition of the model parameters for the ungauged central basin that 

discharges directly to the C-CB96 gauging site. Variation in the inter-annual baseflow 

component at this gauging site could not be captured sufficiently. There is little doubt that part of 

the problem in the simulated results such as inconsistency in the shape of the recession curve and 

over-estimation for the dry season flows at C-CB96 could be related to inadequate definition of 

the model parameters in the ungauged central sub-basins. There is a clear indication that an 

accurate estimation of the model parameters in the central part of the basin will improve the 

simulated downstream hydrological response. Furthermore,   explorations into the application of 

the parameters such as TL (Midgley et al., 1994) and DDENS (Tjomsland et al., 1978) would 

provide an appreciation of the basin response to the shape of recession curve. In this study, the 

TL parameter was kept at a value of 0.25 and the DDENS parameter was constrained to within 

the range 0.1 – 0.6 (Hughes et al., 2006).  

6.4 Validation results 

The validation is carried out to ascertain the degree to which the calibrated parameters can be 

representative of the simulated catchment hydrological response under different periods that 

experience somewhat different environmental conditions. Given the paucity of the observed data, 

it was difficult to determine a common period for both model calibration and validation in all 

areas. Therefore, validation in this study depends on the availability of data at the individual 
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gauging sites. Table 6.3 presents the statistical results for the gauging sites that were considered 

in model validation. Figure 6.11 and appendix C show the goodness of fit for the gauging sites 

used in model validation. It appears from these results that the percent bias for some of these 

gauging sites was above the threshold of ± 5%, for untransformed data, suggesting high 

variability in high flow simulations for the period considered in validation of the model. Overall, 

there is not much difference between the validation and calibration results and, therefore, the 

parameter sets can be considered valid. 

Table 6.3 Statistics of the GW-PITMAN model performance during validation. 

Gauging sites R2(Q) R2 (lnQ) CE(Q) CE(lnQ) CE(1/data) %Diff(Q) %Diff(lnQ) 
O-CB14 0.55 0.79 0.54 0.75 0.77 7.47 4.20 
O-CB30 0.85 0.86 0.83 0.84 0.39 0.82 1.10 
O-CB82 0.78 0.89 0.76 0.89 0.83 -8.89 -0.23 
S-CB57 0.69 0.82 0.49 0.76 0.64 9.15 2.15 
S-CB71 0.83 0.78 0.79 0.76 0.66 7.56 1.06 
K-CB76 0.59 0.66 0.48 0.61 0.63 0.92 0.02 
K-CB85 0.63 0.63 0.59 0.59 0.49 6.89 0.95 
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Figure 6.11 Simulated and observed flows during model validation for selected gauging sites. 
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6.5 Special issues of model calibration in the Congo Basin 

Modelling large river basins involves challenges of complexity of hydrological processes that 

may show very different behaviours at different scales and thus necessitates various conceptual 

model structures to represent these processes at the basin scale. This section presents the main 

issues of the hydrological processes that arose from the initial model application in the Congo 

Basin and the approaches used to address them.  

6.5.1 Accounting for lake and wetland processes in large scale hydrological modelling of 

the Congo Basin 

Wetlands and lakes are natural reservoirs which, through their ability to store transient water, 

play an important role in the modification of hydrological regimes. Hydrological characteristics 

associated with this modification include attenuation and regulation of streamflows, delays and 

increased residence, and travel times.  In a comparative study involving hydrological processes 

of two catchments with and without wetlands, Schulze (1979) showed that the presence of a 

wetland yielded greater volume of streamflow over a long duration, but with little variability. 

The processes occurring in lakes and wetlands are often overlooked and not fully incorporated in 

the conceptual development of many hydrological models of surface runoff. This part of the 

study represents an attempt to simulate the surface hydrology of the Congo Basin incorporating 

lake and wetland processes into the existing GW-PITMAN rainfall runoff model (see section 

5.3).   

The south eastern drainage area of the Congo Basin (Figure 6.12) contains several wetlands and 

lakes of global importance. The runoff generated from this drainage area is dependent upon the 

fluctuation of the lakes’ water level and the seasonal variation of water stored in the wetlands. 

Preliminary calibration runs conducted in this area using the GW-PITMAN model showed mixed 

results, largely influenced by the nature of flow processes of the existing water bodies (Hughes et 

al., 2010d; Tshimanga et al., 2011a). These preliminary simulation results suggested that 

incorporating lake and wetland storage processes into the modelling would provide an 

appropriate representation of the hydrological behaviour of the system. The approach is based on 
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the concept of a reservoir where downstream outflow takes place only when the nominal storage 

capacity is exceeded (Chapter 5). This part of the study discusses the simulation results for three 

downstream streamflow gauging sites that were used to calibrate the model with the lake and 

wetland function incorporated in the modelling. Figure 6.12 shows the spatial locations of the 

lakes and wetlands for the south-eastern drainage system of the Congo Basin. The majority of 

these water bodies lie within the Katanga-Chambeshi region (2.5 million km2), also known as the 

Paleo-Chambeshi drainage system, which is currently represented by the Upper Zambezi-

Okavango and Lualaba-Luapula systems (Cotterill, 2005). The Katanga-Chambeshi region is 

part of the greater Zambezian system and encompasses the south-eastern Congo (Katanga in the 

Lualaba), western Zambia, eastern Angola, and extends into Botswana within the Okavango-

Linyanti wetlands (Cotterill, 2005).  Other water bodies such as Lake Tanganyika lie within the 

great African rift valley, which is a result of rift valley tectonic evolution.  
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Figure 6.12  Spatial distributions of lakes and wetlands in the Lualaba drainage system 

(shaded area) of the   Congo Basin (1. Bangweulu swamps, 2. Lake Mweru, 3. 

Lake Chishi, 4. Kamalondo depression, 5. Lake Tanganyika, 6. Lake Kivu). 
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6.5.1.1  Application cases 

6.5.1.1.1 Bangweulu wetland system 

Figure 6.13 shows the maps of the Bangweulu swamps, located in Zambia, upper Congo Basin. 

The Bangweulu is one of the complex wetland systems of Southern Africa and is characterised 

by several adjacent lakes that are set in a vast swampy area. The estimated catchment area for the 

total flood plain is about 60 000 km2 while the local area occupied by the three lakes is about 20 

000 km2.  The elevation ranges between 1 014 to 1 689 m with an average elevation of 1 338 m 

while the terrain slope ranges from 0 to 18%. Most of the area is characterised by a slope of 0 to 

0.25 %, which is typical of flood plain.  Hydrologically, the Bangweulu system is fed by the 

surrounding stream tributaries, namely the Luena and Luposhi Rivers and Litandashi River from 

the west. The main source of flow to the Bangweulu is from the Chambeshi River that arises 

further south-east of the Bangweulu. The flow from the Chambeshi River is lost in the system 

through several scattered channels that connect the Chambeshi River to the Bangweulu swamps 

(Figure 6.13). Downstream outflow from the Bangweulu system is through the Mulembo River, 

which drains several small swamps in the Kasanka National Park and flows directly into the 

Luapula River, 50 km south of Lake Kampolombo (Hughes and Hughes, 1987). According to 

Hughes and Hughes (1987), the estimated storage volume of Lake Bangweulu is about 11 250 

billion m3 during high flows. The seasonal water level fluctuation is between 1-2 m at the centre 

of the basin, which causes the displacement of the flood line over a distance of 45 km 

(Debenham, 1948). Outflow from the Bangweulu system has been monitored since 1957 at the 

Luapula River (Fekete et al., 1999), which shows a mean monthly flow record of 1 663 MCM 

(L-CB68).  

These physical characteristics of the Bangweulu wetland system were used to compute the 

parameters of the wetland sub-model. The results obtained from the application of the wetland 

model coupled to the GW-PITMAN model in this study are presented in Table 6.4 and Figure 

6.14.  The results show that most of the components of the hydrological regime (high flows, low 

flows, early season and recession flows) have been sufficiently captured. The overall simulation 
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results are good with the CE and R2 values of 0.79 and 0.8, respectively, regardless of whether 

untransformed or log-transformed flow volumes are used.  

2

3

1

4

5

6
 

Figure 6.13 Maps of the Bangweulu wetland system showing a series of the main lakes and 

the streamflow channels on the left side (1. Lake Chifunabuli, 2. Lake 

Bangweulu, 3. Lake Walilupe, 4. Lake Kapolombo, 5. Chambeshi River, 6. 

Luapula River); the right side map shows the connection between the wetland and 

the streamflow channels (Debenham, 1948). 
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Table 6.4  Parameter estimates for the wetland model application at three gauging sites of 

the Lualaba drainage system. 

Parameter L-CB68 L-CB74 L-CB80 

Local catchment area (km2) 11840 12000 33000 

Residual Wetland storage (MCM) 21120 24000 1.89* 107 

Initial Storage (MCM) 35520 42000 1.9*108 

A in Area(m2) = A * Volume(m3)B 10 381 77.15 

B in Area(m2) = A * Volume(m3)B 0.6 0.8 0.65 

Channel capacity for spillage (MCM) 800 5000 0 

Channel Spill Factor (Fraction) 0.7 0.6 1 

AA in (Ret.Flow = AA*(Vol/RWS)BB) 0.8 0.45 0.8 

BB in (Ret.Flow = AA*(Vol/RWS)BB) 0.4 9.32 800 

Annual Evaporation (mm) 1500 1500 1450 

Annual Abstraction (MCM) 500 0 0 

AA scaling factor 0 0 1000 
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Figure 6.14  Observed and simulated flow volume at L-CB68 (ID25). 

6.5.1.1.2 Kamalondo depression  

The Kamalondo depression, also called the Upemba depression, is a large marshy area in the 

Congo Basin that encompasses a complex mosaic of lakes (93 lakes), which are set in a 

continuous belt of swamps. The swamps are filled through overflow of the rivers, the shallow 

channels of which are often hidden by the dense vegetation (Hughes and Hughes, 1987). The 
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cumulative area for the individual lakes is about 1886 km2, with a depth ranging from 0.5 to 

3.25m. Of these 93 lakes, only five are classified as large lakes with a surface area greater than 

50 km2.  The Kamalondo depression extends over a length of 400 km and a width of 100 km 

(Hughes and Hughes, 1987).  According to Welcomme (1979), the permanently inundated area 

of the Kamalondo depression is about 7 040 km2, which extends to 11 840 km2 during floods in 

the wet season. The mean monthly rainfall over the catchment, as interpolated from the Climate 

Research Unit data is about 85 mm, with an average monthly evaporation of 112 mm.  The 

catchment outflow has been measured for the period 1950-1959 (Lempicka, 1971) at the 

Mulongo gauging station (157 153 km2). Figure 6.15 and Table 6.4 show the results obtained 

from the application of the wetland model coupled to the GW-PITMAN model for the L-CB74.  
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Figure 6.15  Observed and simulated flow volume at L-CB74 (ID26). 

While the simulation results are in the acceptable ranges of statistical measures of model 

performance (Figure 6.2), it appears however that it remains difficult to simulate the entire 

observed hydrological response. Part of the problem could be explained by mis-interpretation of 

the appropriate physical characteristics of the wetland, and the errors in the observed data from 

Lempicka (1971), a concern that has already been raised by Mahé (1993).  
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6.5.1.1.3 Lake Tanganyika 

Lake Tanganyika together with Lake Kivu are located in the great western rift valley of Eastern 

Africa. Lake Tanganyika drains over 231 635 km2 and is shared by four countries, namely 

Burundi, the Democratic Republic of Congo, Tanzania and Zambia (Figure 6.16).  The lake 

extends over 32 900 km2 and has an average depth of 570 m, maximum depth of 1 470 m and a 

volume of 18 800 km3 (Tiercelin, 1992; Bergonzini et al., 2002).  The total length of the lake is 

estimated at 650 km. The lake water balance estimates (Coulter and Spigel, 1991; CRUL, 1998) 

reveal 14 000 MCM year-1 of inflow from rivers, 900 mm year-1 of inflow from the rainfall over 

the lake, 2 700 MCM year-1 of the lake downstream outflow, and 1 700 mm year-1 of the 

evaporation. Analysis of the historical data shows that the lowest historical lake water level 

reached 75 m below the present level, and was caused by the prevailing cooler and drier climatic 

conditions that subsequently closed the inflow from the Ruzizi River to the lake. The lake 

outflow to the Lukuga River has been measured for some years and available data exist for the 

period of 1952 to 1959 (Lempika , 1971). There are many missing values in the reported data, 

and only a period of 1957-1959 was considered for the Lukuga Pont station for this study. 

Several studies on observations of the lake water level since 1932 have been published 

(Bergonzini et al., 2002). Figure 6.17a shows the monthly water level time series for the period 

1932-1995 as reported by Bergonzini et al. (2002) for the Lake Tanganyika outlet at Kalemie 

station in the Democratic Republic of Congo. The water level time series shows that a maximum 

water level of 776.8 m was recorded in the year 1964, while the minimum water level of 772.8 m 

was recorded in the year 1949.  According to Bergonzini et al. (2002) and Sene and Plinston 

(1994), these extremes in water level are consistent with the regional observations of lake water 

level fluctuations, with particular reference to Lake Victoria. An increase of about 3 m in water 

level for the period 1961-1964 is associated with a period of high water level in Lakes Kivu, 

Turkana and Victoria as well as the high flow periods of numerous tributaries of the Congo and 

Nile Rivers (Bergonzini et al., 2002; Street-Perrot and Harrison, 1985). Based on these water 

level time series, Bergonzini et al. (2002) attempted to reconstruct the streamflow time series for 

the period 1932-1995 which shows a similar pattern  to the trend of the observed water level time 

series (Figure 6.17b). From the reconstructed monthly streamflow time series the maximum 
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monthly flow of about 1 377 m3s-1 occurs in the year 1970 while the minimum monthly flow of 

about 21 m3s-1 occurs in 1955. Based on the observed years of maximum and minimum water 

levels, it appears that the reconstructed streamflow time series shows a time delay of about 7 

years. The simulation results obtained in this study through the application of the wetland sub-

model (Figure 6.17c) show greater consistency in the pattern of flow magnitude and timing 

compared to the monitored time series of water level (Figure 6.17a).  The simulation results at 

this site (L-CB80) were compared with three years of the observed flows (Lempicka, 1971), and 

show good agreement with the coefficient of efficiency of 0.65 for untransformed flows and 

0.515 for log-transformed flows.  Table 6.4 shows the parameters of the wetland model used for 

the L-CB80.  

 

Figure 6.16 Map of the Lake Tanganyika basin showing the riparian states (dotted lines) and 

the rainfall stations (boxes) (source: Bergonzini et al., 2002). 
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Figure 6.17 Observed water levels (a) and reconstructed streamflow volume (b) (source 

Bergonzini et al., 2002), and simulated streamflow volume using the wetland sub-

model (c and d: this study). 
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6.5.1.1.4 Lower Lualaba 

Streamflows from the lakes and wetlands of the Lualaba drainage system are all discharged into 

the Lualaba River, which is one of the main tributaries of the Congo Basin. The main gauging 

sites of the lower Lualaba identified in this study include the Kasongo gauging site (ID28, L-

CB87, 751 806 km2), the Kindu gauging site (ID29, L-CB89, 789 234 km2) and the Ponthierville 

gauging site (ID31, L-CB92, 938 381 km2). As previously mentioned, the preliminary simulation 

results at these downstream gauging sites were greatly affected by the storages of the upstream 

water bodies  where the capture and release of excess flow by and from them greatly altered the 

flow regime. Figure 6.18 shows the simulation results obtained at the gauging sites of the lower 

Lualaba after inclusion of the lake and wetland processes into the hydrological modelling. The 

statistics of the model evaluation are shown in Figures 6.2, which reveal good performance with 

the values of CE and R2 lying between 0.53 to 0.65 for the L-CB87, and greater than 0.6 for the 

L-CB89.   
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Figure 6.18 Observed and simulated flow volume for the lower Lualaba gauging sites. 



193 

 

There was a major difficulty in the modelling of the L-CB92 gauging site where the observed 

flows show a sudden variation in catchment streamflow as compared to the adjacent upstream 

gauging site (L-CB89).  Further exploration involving the assessment of the nature of the 

parameters of runoff generation was necessary for the L-CB92.  

6.5.2 Modelling a sudden variation of streamflow over a relatively uniform drainage area 

in the Congo Basin 

Model predictions are particularly important in poorly gauged basins, where traditional sources 

of information, such as measurements of rainfall and stream discharge, are not available (Fenicia 

et al., 2008). Limited traditional sources of information imply that novel approaches to 

hydrological predictions have to be investigated, if models have to be applied. This has been the 

quest of hydrological research in the last decade, with a subsequent contribution to the 

approaches and theories related to the prediction in ungauged basins (Sivapalan et al., 2003; 

Wagener and Wheater, 2006; Kapangaziwiri and Hughes, 2008).  

This part of the study was conducted in the Lualaba drainage system (Figure 6.19), located in the 

south-east part of the Congo Basin. This drainage system covers about 928 381 km2, with a mean 

monthly flow volume of 16 447 Mm3 at the outlet gauging site (L-CB92).  This gauging site is 

adjacent to an upstream gauging site (L-CB89) with a mean monthly flow volume of 6 102 Mm3 

from a drainage area of 789 234 km2.  The difference in drainage area between the L-CB89 and 

the L-CB92 is therefore about 139 147 km2. However, the incremental mean monthly flow 

volume generated from this downstream sub-basin area is 2.7 times greater than the cumulative 

inflow volume from the upstream drainage area (789 234 km2), which contributes 6 102 Mm3. 

This observation reveals a particular regime of runoff generation per unit area for the sub-basin 

under study as compared to the upstream sub-basins. A previous attempt to calibrate the GW-

PITMAN rainfall runoff model at this site was unsuccessful and recommendations were made 

for further investigation involving both quality of data and processes governing the sub-basin 

runoff generation (Hughes et al., 2010d; Tshimanga et al., 2011a). A qualitative assessment of 

the data using the available hydrologic reports confirmed accuracy of the observed sub-basin 
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hydrological response as well as its consistency with the recorded historical flow at further 

downstream gauging sites (Bultot, 1971; Lempicka, 1971).  

−

 

Figure 6.19  Map of the Congo Basin showing the Lualaba drainage system (shaded area) and 

the outlet gauging sites (L-CB89 and L-CB92). 

6.5.2.1  Characteristics of the study area and approach to modelling  

Figure 6.20 shows the physical basin characteristics of the study area as derived from a Digital 

Elevation Model and the Soil and Terrain of Central Africa (SOTERCAF, http://www.isric.org) 

database.  The SOTERCAF database contains information on the location, extent and topology 

of each soil terrain unit. The Global Land Cover Map (GLOBCOVER, Bontemps et al., 2011) 

was used to assess the land cover characteristics. The sub-basin under investigation was 

delineated into 11 modelling units based on an approximate representation of the SOTERCAF 

terrain units (Figure 6.20c). Tables 6.5 and 6.6 give a summary of the sub-basin characteristics 

based on the SOTERCAF units and additional physiographic and climate variables, respectively.  
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Figure 6.20 Elevation from 1km DEM (a), SOTERCAF units (b) and 11 modelling units (c). 

In the absence of field investigation, the parameter estimation approach of Kapanganziri and 

Hughes (2008) provided a basis for conceptual understanding of the hydrological processes 

taking place in the sub-basin under study.  The above information on the basin physical 

properties (topography, land types, geology, vegetation, and climate) constituted the primary 

variables that were transformed into secondary basin variables and subsequently the basin 

parameters, using appropriate parameter estimation relationships (see Chapter 5, section 5.4).  A 

sensitivity analysis approach (Hughes et al., 2010c) was found adequate to identify the ranges of 

influential parameters which could explain the observed behaviours of the sub-basin 

hydrological response. The approach can be used to visualise the link between sensitive 

parameter and system response modes (Wagener et al., 2001). Rosero et al. (2010) showed that 

sensitive parameters exert significant influence on model predictions. 
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Table 6.5  Sub-basin physical properties based on the SOTERCAF topological units. 

Units Major landform General lithology Elevation m

Slope 

% Soils

CD80 Plain Unconsolidated sedimentary rock eolian 335-820 < 10 Xanthic Ferralsols

CD106 Dissected plain Basic metamorphic rock 548-1543 10-30 Haplic Lixisols

CD113 Plain Acid igneous rock 520-957 < 10 Haplic Ferralsos

CD114 Medium gradient hill Acid igneous rock 921-3010 10-30 Humic Cambisols

CD115 Medium gradient hill Acid metamorphic rock 578-2902 10-30 Humic Cambisols

CD116 Medium gradient mountain Acid metamorphic rock 663-3424 15-30 Haplic Acrisols

CD117 Low gradient foot slope Volcanic ash 1018-2350 < 10 Mollic Andosols

CD118 Medium gradient mountain Basic igneous rock 1203-2830 15-30 Humic Ferralsols

CD121 High gradient escarpment zone Acid metamorphic rock 790-3157 >30 Humic Ferralsols

CD123 Plain Clastic 427-2197 < 10 Humic Cambisols

CD124 Medium gradient hill Acid igneous rock 495-1461 10-30 Humic Ferralsols

CD125 Plain Acid metamorphic rock 486-1054 < 10 Haplic Acrisols

CD126 Medium gradient hill Acid metamorphic rock 566-1133 10-30 Humic Cambisols

CD132 Plain Unconsolidated sedimentary rock eolian 432-693 < 10 Xanthic Ferralsols

CD142 Depression - 1000-1600 < 10 Mollic Andosols
 

Table 6.6  Physiographic characteristics for the 11 modelling units. 

Catchments  
Area 
 Km2 

Cumulative 
Area Km2 

MMP 
mm 

MME 
mm 

Dense 
forest % 

Bush/sparse 
forest % 

Sparse crop/ 
Groundcover% 

A 5 895 5 895 111.4 99.9 49 50 1 
B 8 784 14 679 114.5 112.5 99 1 0 
C 17 276 43 302 125.8 106.7 95 5 0 
D 8 003 51 305 131 131.1 82 17 0 
E 11 347 1 1347 118.8 106.2 85 15 0 
F 8 412 8 412 128 107.2 88 10 1 
G 18 306 26 718 123.9 108.8 86 14 0 
H 5 915 5915 147.4 96.08 91 4 5 
I 22 491 28 406 120.7 109.3 79 21 0 
J 14 591 925 088 138.5 107.5 85 14 0 
K 12 268 937 556 142.9 106.9 86 12 0 
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6.5.2.2  Modelling results 

Figure 6.21 shows sample plots of the sensitive parameters of the hydrological processes for the 

sub-basin under study. The results are based on the distribution of the model response that 

resulted from 10 000 Monte Carlo input parameter samples (Hughes et al., 2010c). The output 

ensembles are ranked on the basis of the assessment criteria and then sorted into five equal 

groups. Two categories of assessment criteria used in this study are the flow metric (Mean 

Monthly Flow (MMF), Mean Monthly Recharge (MMR), FDC slope, Q10, Q50 and Q90) and 

the objective functions based on the ordinary coefficient of efficiency, coefficient of efficiency 

log-transformed and the coefficient of efficient 1/data. The flow metric accounts for both gauged 

and ungauged catchments. The normalized cumulative frequency distribution of the parameters 

of each group is plotted (Y axis) with respect to the selected flow metric or objective functions to 

assess the impacts of the individual parameter (X axis), based on the degree of divergence 

between the curves. The wide separation of the curves indicates that the parameter is very 

sensitive, based on the assessment criteria considered.  

 The sensitivity analysis plots show that the parameters ST, FT, GW, DDENS, T and S are very 

sensitive in relation to the various evaluation criteria. Based on the conceptual understanding of 

the GW-PITMAN model, these parameters are related to the sub-surface processes of runoff 

generation, which implies that the sudden variation of the streamflow observed at the sub-basin 

L-CB92 is largely the result of soil moisture runoff, and groundwater store and discharge. The 

parameters FT and GW appear to be the most sensitive throughout the 11 modelling units, with 

regard to the mean monthly recharge metric. The values of these parameters are very high 

compared to those obtained from the calibration of other sub-basins of the Lualaba drainage 

system. The FT parameter values obtained for this area are not surprising given the steep 

topography (see Table 6.7) which dominates the L-CB92 sub-basin. However, the question still 

remains about the high values of the groundwater recharge parameter (100-220 mm) given the 

pattern of rainfall input, which does not show a significant variation over the area. Possible 

explanations include fluxes of surface-groundwater interaction for which field investigations and 

application of detailed groundwater models may be necessary.  
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Figure 6.21 Regional sensitivity analysis of the parameter values used in 10000 model runs. 

The top, mid and bottom groups represent the top 20%, Middle 60% and lower 

20% of the ensembles, respectively. The mean monthly recharge is very sensitive 

to the FT and GW parameters. The simulated Q10 and Q90 are sensitive to the ST 

parameter. FDC slope, Q10, Q90 and CE are sensitive to the parameters T, 

DDENS and S.  

Table 6.7 gives the estimates of the parameter values (µ) with standard deviation (σ) for selected 

modelling units. These parameters are based on the combined physical basin characteristics and 

the application of the parameter estimation relationships for deriving the sub-basin water 
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balance. Figure 6.22 shows the pattern of the simulated monthly flow volume with regard to the 

coefficient of efficiency for both untransformed flows (left side) and log-transformed lows (right 

side). Figure 6.23 shows the FDC of the observed flow compared to the minimum and maximum 

values of the simulated monthly flow volume. 

Table 6.7 Parameter estimates (µ) with standard deviation (σ) for selected sub-basins. 

K J H C A

Model 
parameters µ σ µ σ µ σ µ σ µ σ

RDF 0.7 0 0.7 0 0.7 0 0.7 0 0.7 0

PI1 2.181 0.025 2.181 0.025 2.373 0.027 2.444 0.029 2.446 0.028

PI2 3.896 0.017 3.896 0.017 3.152 0.019 3.247 0.02 3.247 0.02

AFOR 10 0 10 0 10 0 10 0 10 0

FF 1.2 0 1.2 0 1.2 0 1.2 0 1.2 0

ZMIN 59 11.6 59.4 11.6 48.3 18.3 28.4 11 34 16.5

ZMAX 1198 7.65 1198 7.65 1179.2 58.8 1141 115.2 1131.6 127

ST 641 124 641 124 992 151 1101 160 984 146

POW 2 1.02 2 1.02 2 0.01 2 0.02 2 0.01

FT 60 27.1 60. 27 83 32 80.9 31 80 31

GW 158.5 23.7 158 23.7 167 24 166 24 168 24

R 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0

GPOW 3 0 3 0 3 0 3 0 3 0

DD 0.4 0.1 0.4 0.1 0.4 0.1 0.4 0 0.4 0.1

T 40 8 40 8 40 8 40 8 40 8

S 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001

Gradient 0.01 0 0.01 0 0.01 0 0.01 0 0.01 0

GWL 25 0 25 0 25 0 25 0 25 0

RDF 0.2 0 0.1 0 0.2 0 0.2 0 0.2 0
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Figure 6.22  Analysis of identifiability of behavioural simulations based on 10000 model runs.   

Examination of Figures 6.22 reveals that better simulations are expected with increasing monthly 

flow volume.  This situation reveals a potential problem that is probably caused by observational 
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data. Analysis of the regional flow duration curves revealed anomalous behaviours of the L-

CB92 gauging site as it could not be grouped in the regional categories of the FDCs in the Congo 

Basin.  

6.6 Discussion and conclusion 

The purpose of this part of the study was to present the calibration of a rainfall-runoff model for 

the Congo River Basin and to assess its performance and potential use in making hydrological 

predictions for the basin. The GW-PITMAN model was established for 99 sub-basins that falls 

within the five main drainage systems of the Congo Basin. Table 6.8 shows the contribution of 

the five main drainage systems to the total monthly flow volume of the Congo Basin, based on 

the C-CB96 reference gauging station. 

Table 6.8 Contribution of the main drainage areas of the Congo Basin to the total monthly 

flow volume. 

Monthly f low volume Area Discharge per unit 
area 

mm/km2 (*100)Main drainage areas Mm3
% of  the 

total Km2
% of the 

total
Oubangui at Zinga 11320 10.5 524497 14.7 2.158
Oubangui at Lobaye 906 0.8 31037 0.9 2.919
Sangha at Ouesso 4380 4.1 143314 4.0 3.056
Kasai at Kutumoke 21156 19.6 732838 20.5 2.887
Lualaba at Ponthiervillle 16446 15.2 928381 26.0 1.774
Central Congo 53913 49.9 1210499 33.9 4.454
Congo at Brazzaville-Total 108147 100.0 3570566 100.0 3.029

 

Thirty one gauging sites were indentified and used for the model calibration. The major 

components of the model were calibrated to achieve an acceptable agreement between the 

simulated and the observed flow at the selected representative gauging sites of the basin. The 

overall result indicates that most of the characteristics of the observed hydrologic response are 

adequately reproduced and the model works well for the basin. There is a large variation in the 

model parameters across the various sub-basins, which reflects the heterogeneous nature of the 

hydrological processes in the basin, but could also be the result of a largely un-structured 

calibration process coupled with a high degree of equifinality contained within the model 
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structure. This variation is markedly observed in the Lualaba drainage systems where the 

hydrological processes are strongly affected by the presence of lakes and wetlands.  There is also 

an indication of strong interactions between groundwater and surface water in the Lulaba. This 

hydrological behaviour is evident through a sudden variation of streamflow in the lower part of 

the Lualaba drainage area. Some drainage areas such as the lower Oubangui, Sangha and Kasai 

show relatively a reasonable degree of consistency in the calibrated parameter values, suggesting 

a relative degree of homogeneity in hydrological processes for these areas. The central basin 

receives flows from the four main upstream drainage systems and acts as a confluence of 

hydrological complexity in the Congo Basin. The complexity in hydrological processes increases 

from upstream and is further exacerbated by the ungauged nature of the central basin, and 

therefore it is difficult to be confident that the parameter values obtained in this study for the 

central part of the basin are the adequate representations of the hydrological response.  

A few gauging sites, representative of the four upstream drainage systems, have been used in the 

model validation, thus covering the post calibration period from four to ten years (Table 5.4). 

The results obtained show that the model performs well over the two periods of calibration and 

validation, thus the calibrated parameter values can be considered valid for the basin 

hydrological response. The calibration has been largely mathematical and there is need to check 

that the parameters are also sensitive with variations in real hydrological processes. In most 

cases, the RDF parameter was not calibrated and, therefore, remained fixed to the values that are 

reasonably representative of the rainfall characteristics in the basin (Mwelwa, 2004). Depending 

on the situation, RDF values of 0.6 to 0.8 have been successfully used, with application of lower 

values of the range to the wetter sub-basins and higher values to the less wet sub-basins. Various 

authors have documented the role of different vegetation types in the interception losses (e.g. 

Valente et al., 1997; Hall, 2003). Good calibration results were obtained in this study with 

different PI values across the various sub-basins, which could be an indication of the influence of 

the various land cover types on model calibration for the basin.  In general, the parameter AFOR 

is determined a priori and is not calibrated in the model. In this study, AFOR was determined 

through initial runs of the Monte Carlo sampling and remained fixed during the model 

calibration. Overall, the AFOR values range from 20 to 60% for the various sub-basins of the 
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Congo Basin. This wider range suggests the importance of the proportion of secondary forest in 

the basin.  Experiences with the GW-Pitman model in South African catchments show that the 

catchment absorption rate parameters could be set to high values in humid catchments such that 

very little runoff is generated by this component of the model (Mwelwa, 2004). The calibration 

results in this study show that these parameters play a role in surface runoff of the Congo Basin. 

 In general, the ST parameter values of 800 to 1 000 mm were appropriate for the various sub-

basins. Higher values of ST (1 500 mm) were obtained in the Sangha and Kotto where the 

initially use of the lower values to estimate the maximum moisture storage parameter (ST) 

resulted in a shallow soil moisture storage that is rapidly exceeded and generates large amount of 

runoff. Generally, the FT parameter is expected to be high for areas of steep topography and low 

in areas of flat and lowland topography. This parameter also interacts with many factors related 

to soil type, local drainage, as well as the physical properties of the unsaturated zone 

(Kapangaziwiri, 2008). The FT values obtained in the lowland topography of the central basin 

show a variation in the range of 9 to 50 mm. At this stage, it is difficult to infer any meaningful 

interpretation of this variation and it is expected that further exploration of the parameters 

through available physical properties will provide more information on the interaction. In some 

sub-basins, the POW parameter values are higher than the upper limit of 3.0 that is assumed in 

most manual calibrations of the Pitman model. This result is, however, in agreement with the 

observation made by Ndiritu (2009).  

The recharge estimates of Döll and Flörke (2005) were used to constrain the GW parameter, and 

the simulation results were sensitive to this parameter. During calibration, it was found that it 

was necessary to use the channel routing coefficient (CL parameter) to improve the calibration at 

the most downstream gauging station (C-CB96), showing the role of attenuation for monthly 

flow volumes in the lower parts of the basin.  Given the differences in the physical 

characteristics of the various drainage units of the Congo Basin, it would be expected that these 

differences would be translated into model parameter value differences across the sub-basins. 

However, the results obtained in this study show some mixed parameter values, which would 

reflect the equifinality issue (Beven, 2001). The next step in this study is based on the 

assumption that exploration of the parameters through physical reasoning, using a set of reliable 
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physical basin characteristics, will help constrain the parameters, reduce uncertainty and obtain 

more physically realistic parameter sets.  

In practice, one of the aims of manual calibration is to identify and avoid calibrating erroneous 

rainfall-runoff signals. However, information on the quality of the rainfall data was not available 

and it is difficult to be confident that possible erroneous signals in the input data were avoided. 

Similarly, the lack of information on artificial influences on the streamflow or the potential 

errors of measurements precluded the use of additional model parameters that could account for 

the impacts. The outstanding modelling issues relate mainly to data shortage, poor definition of 

parameter values for the ungauged areas and the areas of lakes and wetlands. During the 

application of the model to the Congo Basin, it became clear that the lake and wetland processes 

have to be accounted for if the model is to be widely applicable for predictions in the basin. This 

prompted the development of a wetland land model as a sub-component to the GW-PITMAN 

model. The structure of the wetland model was developed so that it complements the main 

hydrological processes already defined in the model while accounting for the attenuation and 

release functions of the wetland and lakes. The application of the wetland model to the Congo 

Basin has demonstrated the potential of improving hydrological predictions while taking into 

account the functions of the wetland areas. The main advantage of the model was particularly 

illustrated in the simulation of Lake Tanganyika where previous simulations could not account 

for outflow volumes and timing from the lake storage. The conceptual development of the model 

for the lake slightly differed from the wetland proper case through use of parameters such as 

channel spill factor and channel capacity for spillage. There are various unknown and 

unquantified sources of uncertainty that could explain some of the discrepancies in the model 

results. Errors in the estimation of the wetlands parameters and unreliable observed data are the 

potential sources of uncertainty.  
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CHAPTER 7  PHYSICALLY-BASED A PRIORI PARAMETER    

ESTIMATION AND UNCERTAINTY ANALYSIS 

7.1 Introduction 

The importance of model predictions, particularly in areas where traditional sources of 

information such as measurements of rainfall and stream discharge are not available, cannot be 

over-emphasised (Sivapalan et al., 2003; Fenicia et al., 2008). The traditional approach to model 

parameter estimation for conceptual hydrological models is calibration (Nash, 1970). However, 

the ungauged nature of the many basins suggests that model calibration will always be fraught 

with a number of problems, rendering predictions very uncertain. Two approaches, a priori 

parameter estimation and regionalisation, have gained wide recognition in hydrological 

modelling for their ability to estimate hydrological variables in ungauged basins without 

calibration and through establishing relationships between model parameters and physical basin 

characteristics. The performance of such approaches depends on the degree of correlation that 

can be achieved between model parameters and measurable physical basin characteristics 

(Wagener, 2007). According to Andréassian et al. (2006), the a priori parameter estimation 

approaches are available for many hydrological models, but have not been fully investigated or 

validated partly because of inadequate databases of the land surface characteristics. Because 

physical basin attributes play a major role in the hydrological conditioning of catchments, it is 

therefore possible to use their measurable properties to quantify model parameters directly 

(Hughes and Kapangaziwiri, 2007; Kapangaziwiri and Hughes, 2008). This chapter presents the 

results of applying the a priori approach based on the conceptual understanding of the GW-

PITMAN model parameters and the parameter estimation approach. The parameter estimation 

procedures used have been developed and applied in South African catchments where reasonable 

results were obtained (Kapangaziwiri and Hughes, 2008; Hughes et al., 2010c). The results 

presented in this study are based on the application of the same procedures for the Congo Basin. 

While the framework was developed based on well-established databases of the physical basin 

properties such as the Agricultural Geo-referenced Information System (AGIS, 2007), the 

situation in the Congo Basin is different due to lack of a similar, formal database of the physical 
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basin properties. Therefore, this study presumes that a thorough investigation of the necessary 

information on the physical basin properties (Chapters 3 and 4) will enable the application of the 

framework in the Congo Basin.   Furthermore, the framework is applied to the Congo Basin on 

the assumption that the parameter estimation equations have proved to be valid under different 

climate conditions (Kapangaziwiri and Hughes, 2008; Hughes et al., 2010c, Kapangaziwiri, 

2010) and will not produce biased results when applied to the Congo.  

7.2 Physically-based a priori parameter estimation and uncertainty analysis 

procedures 

Figure 7.1 shows a flow chart of the procedures used to apply the uncertain parameter estimation 

framework for the Congo Basin.  The main hydro-meteorological data inputs for the modelling 

study encompass the global rainfall database from the Climate Research Unit (CRU TS v2.1; 

Mitchell and Jones, 2005) and evaporation demand data. The lack of adequate data on the basin 

sub-surface properties, such as geology and hydrogeology, prompted the use of the default 

values provided in the framework. The physical basin properties used in this study are mainly 

derived from the global datasets of land cover, soil types and digital elevation model, which 

however, are of different resolutions. A feedback loop was included in the modelling to ensure 

that the parameter estimation equations do not produce biased results when applied to the Congo 

Basin. Difficulty in interpreting and relating the basin sub-surface characteristics to the model 

parameters prompted an adjustment of some of the model parameters that control the sub-surface 

processes as well as the flow routing parameters. This adjustment mainly concerned the 

parameters of sub-surface processes for which no adequate physical basin properties were 

available. While this is not the intended purpose of the parameter estimation, it is also 

unavoidable, given the scarcity of the appropriate data (particularly the sub-surface property 

datasets) designed for hydrological uses in the Congo Basin. It should be noted that the feedback 

loop was not intended to reduce the range of uncertainty in the prediction ensembles, but to 

ensure that behavioural simulations represent the hydrological processes of the basin under 

study. The estimates of groundwater recharge were constrained within the ranges provided by 

Döll and Flörke (2005). 
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The uncertainty in model simulation is represented by the 5th and 95th percentiles of the flow 

prediction, which are the bounds within which 90% of the prediction would fall. Regional 

constraints and sensitivity analysis approaches can be used to assess model behaviours within the 

prediction interval of 5th - 95th. 

C
he

ck
 th

at
 th

e 
be

ha
vi

ou
ra

l m
od

el
s 

ar
e 

st
ill

 c
on

si
st

en
t 

w
ith

 
th

e 
 c

on
ce

pt
ua

l r
ep

re
se

nt
at

io
n 

of
 th

e 
re

al
 b

as
in

 p
ro

ce
ss

es

A
dj

us
tm

en
t b

as
ed

 o
n 

ph
ys

ic
al

 r
ea

so
ni

ng
 a

nd
 id

en
tif

ic
at

io
n 

of
 

po
te

nt
ia

l i
nc

on
si

st
en

ci
es

 i
n 

th
e 

av
ai

la
bl

e 
in

fo
rm

at
io

n 
of

 th
e 

ph
ys

ic
al

 b
as

in
 a

ttr
ib

ut
es

 

Sensitivity analysis of 
ensembles  

Upper bound: 
95th prediction

Observed response 
characteristics

Lower bound: 
5th prediction

Quantitative and qualitative values of the physical 
basin attributes 

Empirical relationships of conceptual model 
parameters and physical basin attributes  

Prior  distribution of conceptual model parameters 
(Mean, stdv, skewness, distribution type)

Sampling 

Ensembles of flow predictions 

Conceptual hydrological model  

Behavioural models Non behavioural models 

Frequency distribution properties of  physical 
basin attributes 

 

Figure 7.1 Uncertainty a priori parameter estimation procedures.  
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7.3 Parameter estimation, uncertainty and sensitivity analysis results  

The results from the application of the uncertainty parameter estimation framework are presented 

for the five main drainage sub-basins of the Congo River, namely the Oubangui (in the North 

East), Sangha (North West), Kasai (South West), Lualaba (South East) and the Central Congo 

Basin. The parameter prior distributions (assumed to be normal) are based on the assumed 

uncertainty in the physical basin property data (which, in turn, are based on the range of 

variability) and a set of estimation equations. While the parameter estimation framework was 

applied to both gauged and ungauged sub-basins, only the results for the gauged sub-basins are 

presented in this section, which provide the means for evaluation based on the observed flow 

records. The results are presented in the form of FDCs for the entire period of simulation. 

Hydrographs are also used for those gauging sites with less than three years’ flow record. In this 

study, an error index (based on percentage difference between the predicted and the observed 

monthly flow volumes) is used to estimate the spread of the uncertainty in model predictions at 

the 10th, 50th, and 90th percentiles of exceedence flow, respectively (Figure 7.2 and Table 7.1).  

Positive values of the error index imply an over-estimation of the prediction, and negative values 

imply under-estimation of the predictions. Table 7.1 shows the lower and upper prediction values 

of the mean monthly total flow volume, and the error index for the representative gauging sites 

used in the simulations.  Figure 7.3 shows the magnitude of predictive uncertainty for the 

predicted mean monthly total flow volume (lower and upper predictions), normalised by the 

observed mean monthly total flow volume. The magnitude of predictive uncertainty is also 

shown in Figure 7.4 for the lower and upper predictions at high flow (Q10) and low flow (Q90)  

normalised by Q10 and Q90 of the observed monthly flows.  Estimates of the parameter values 

(µ) and their associated measure of uncertainty (σ) are presented in Table 7.2 (a-c) for selected 

gauging sites used in the modelling.  The results of the L-CB80 gauging site are not included in 

the analysis. Better simulations at this site are obtained with the wetland sub-model which does 

not have an uncertainty component at the moment.  
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Table 7.1 Overall values of index error (%) and predicted magnitude (Mm3) of uncertainty 

in the model for the 31 gauging sites.  

Mean monthly f low Mm3

Total mean monthly 
f low volume

Q10 Q50 Q90

ID
Gauging 

sites Observed
Lower 

prediction
Upper 

prediction LB (%) UB (%) LB (%) UB (%) LB (%) UB (%) LB (%) UB (%)
1 O-CB2 183 144 223 -21.14 +22.1 -6.1 +24.1 -26.5 +16.6 -23.7 +19.5
2 O-CB14 375 259 695 -30.9 +85.1 -35.5 +65.3 -12.8 +136.2 -51.8 +99.6
3 O-CB22 580 418 837 -28.1 +44.2 -38.3 +19.5 -19.5 +82.3 -65.1 +71.9
4 O-CB24 499 220 705 -55.8 +41.4 -60.8 +30.7 -49.0 +51.4 -26.8 +152.1
5 O-CB29 900 669 1169 -25.6 +29.9 -25.2 +25.7 -27.2 +28.3 -33.1 +19.0
6 O-CB30 911 711 1223 -21.9 +34.3 -17.2 +34.9 -23.2 +36.8 -30.6 +25.1
7 O-CB33 527 247 829 -53.2 +57.2 -56.5 +55.9 -55.2 +46.8 -47.5 +82.4
8 O-CB44 1084 688 1527 -36.6 +40.9 -50.2 +27.8 -26.5 +55.0 +19.8 +173.5
9 O-CB49 669 566 945 -15.4 +41.1 -22.5 +35.7 -16.6 +25.7 -44.4 +35.9

10 O-CB56 1084 679 1476 -37.4 +36.1 -34.8 +31.6 -40.6 +44.9 -71.6 +19.7
11 O-CB62 2045 1745 3487 -14.7 +70.5 -30.9 +29.5 +5.3 +140.0 +31.3 +164.4
12 O-CB78 8586 7211 11449 -16.0 +33.3 -26.1 +7.1 -8.3 +62.3 +16.0 +104.1
13 O-CB82 10119 8249 13753 -18.5 +35.9 -28.3 +11.6 -13.1 +59.8 +38.8 +157.2
14 O-CB83 11605 7274 16781 -37.3 +44.6 -43.1 +9.2 -32.8 +80.7 +42.7 +137.3
15 O-CB29b 353 320 446 -9.2 +26.2 -6.7 +28.1 -8.1 +24.7 -15.20 +16.0
16 S-CB18 526 449 745 -14.7 +41.5 -15.5 +34.1 -16.7 +49.7 -7.34 +77.1
17 S-CB52 1050 783 1271 -25.4 +21.0 -39.1 +5.5 -8.6 +43.8 +30.82 +112.3
18 S-CB57 2059 1402 2367 -31.9 +14.9 -33.7 +3.2 -33.9 +17.8 -41.6 +17.6
19 S-CB71 4380 3609 5360 -17.6 +22.4 -17.1 +15.1 -22.1 +21.3 -10.4 +52.5
20 K-CB76 5548 3952 7386 -28.8 +33.1 -25.0 +35.2 -37.2 +26.4 -29.7 +49.0
21 K-CB85 21152 15261 24722 -27.8 +16.9 -25.5 +14.4 -35.1 +9.0 -24.6 +31.6
22 K-CB88 29834 21821 32978 -26.9 +10.5 -28.0 +3.4 -33.5 +2.3 -26.7 +15.7
23 L-CB11 179 89 255 -50.2 +42.5 -48.6 +22.4 -47.7 +54.4 -54.3 +154.4
24 L-CB53 848 561 1216 -33.8 +43.5 -27.3 +34.0 -19.0 +70.9 -73.4 +28.2
25 L-CB68 1663 1148 3493 -31.0 +110.0 -33.8 +86.1 -20.2 +158.7 -56.1 +197.2
26 L-CB74 1492 1102 2096 -26.1 +40.5 -13.9 +52.6 -22.2 +48.3 -65.5 +10.0
27 L-CB80 - - - - - - - - - - -
28 L-CB89 6102 5316 10747 -12.8 +76.1 -9.8 +70.2 -15.6 +77.2 -16.3 +116.8
29 L-CB87 4934 4592 9652 -6.9 +95.6 +0.9 +92.1 +0.7 +120.1 -24.0 +127.9
30 C-CB96 108147 97560 125098 -9.8 +15.7 -19.6 +1.2 -9.2 +19.3 -5.1 +28.5
31 L-CB92 16384 13051 19094 -20.3 +16.5 -25.5 +6.3 -17.6 +21.2 -13.7 +30.9
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Figure 7.2 Overall uncertainties in model simulations at the representative 31 gauging sites 

in the Congo Basin. Q10, Q50 and Q90 are magnitudes of flow volume at 10th, 

50th, and 90th, percentiles of the cumulative frequency distribution of flow. LB 

and UB are the lower and upper bounds of the prediction interval.  
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Figure 7.3 Magnitude of predictive uncertainty in model simulation at the respective gauging 

sites (The predicted mean monthly flow volume/ the observed mean monthly flow 

volume).  
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Figure 7.4 Magnitude of predictive uncertainty in model simulation for high flows (Q10) and 

low flows (Q90) at the respective gauging sites (Q10 and Q90 of the predicted 

monthly flow volume/ Q10 and Q90 of the observed monthly flow volume).  

Table 7.2a Parameter estimates (µ) with standard deviation (σ) for selected sub-basins. 

O-CB14 O-CB24 O-CB44 O-CB62 O-CB49 O-CB56 O-CB33 O-CB78 O-CB82
µ σ µ σ µ σ µ σ µ σ µ σ µ σ µ µ σ

RDF 0.8 0.012 0.8 0.012 0.8 0.012 0.8 0.012 0.8 0.012 0.8 0.012 0.8 0 0.8 0.012 0.6 0.012
PI1 1.5 0.016 1.5 0.016 1.7 0.016 1.6 0.016 1.5 0.016 2.0 0.016 3 0.35 2 0.16 2 0.16
PI2 3 0.016 3 0.016 3.6 0.016 3.5 0.016 3 0.016 3.1 0.016 4 0.41 5 0.16 5 0.16
AFOR 60 0 62 2 46 2 50 3 60 0 60 2 60 0 52 2 49 2
FF 1.4 0 1.4 0 1.3 0 1.4 1 1.4 0 1.4 0 1.4 0 1.3 0.012 1.3 0.012
AVAP 1560 0 1580 0 1642 0 1620 0 1645 0 1516 0 1560 0 1458 0 1465 0
ZMIN 40 18 45 11 67 11 77 27 54 11 61 11 150 32 92 29 80 29
ZAVE 145 0 150 0 150 0 160 0 408 0 223 0 350 0 300 0 355 0
ZMAX 600 107 600 87 538 87 541 117 888 87 832 87 700 180 500 107 800 107
ST 1150 180 1200 170 916 170 1000 270 1500 170 1352 170 1600 98 800 197 812 200
POW 3 0.036 3 0.036 3.8 0.036 3.5 0.36 4 0.036 4.5 0.036 3 0.82 4 0.36 4 0.36
FT 11 4.8 12 3 13 3 11 4.8 19 3 35 8 20 6.443 13 5.8 17 8
GW 5 2 5 1.4 19 4 9 3.6 18 4 26 9 16 7.937 9 3.6 13 5.8
R 0.3 0 0.3 0 0 0 0.3 0 0.3 0 0.3 0 0.3 0 0.6 0 0.5 0
TL 0.8 0 0.8 0 0.80 0 0.8 0 0.5 0 0.8 0 0.8 0 0.9 0 0.8 0
CL 0.2 1 0.2 1 0 0 0.15 1 0 0 0 0 0 0 0.1 1 0.11 0
GPOW 4 0 4 0 4 0.036 4 0.36 2.8 0.036 3 0.036 3 0.32 3.9 0.36 4 0.36
DDENS 0.35 0 0.39 0 0.41 0 0.41 0 0.38 0 0.42 0 0.42 0 0.41 0 0.4 0
T 20 8 15 3 14 3 40 8 14 3 22 3 18 4 42 8 42 8
S 0.008 0.003 0.008 0.003 0.008 0.003 0.008 0.003 0.011 0.003 0.008 0.003 0.009 0.003 0.008 0.003 0.008 0.003
RGWS 0.008 0.003 0.008 0.003 0.008 0.003 0.008 0.003 0.008 0.003 0.008 0.003 0.009 0.003 0.008 0.003 0.008 0.003

GWL 25 0 47.6 0 50 0 25 0 25 0 25 0 25 0
12.09

7 0 25 0
RSF 3 0 3 0 2 0 2 0 3 0 2 0 0.2 0 2 0.36 2 0.36
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Table 7.2b Parameter estimates (µ) with standard deviation (σ) for selected sub-basins. 

O-CB2 O-CB29 O-CB30 S-CB18 S-CB52 S-CB71 K-CB76 K-CB85 C-CB96

µ σ µ σ µ σ µ σ µ σ µ σ µ σ µ σ µ σ

RDF 0.8 0.017 0.8 0.017 0.7 0.017 0.8 0.017 0.8 0 0.8 0 0.8 0.032 0.7 0.032 0.6 0

PI1 2.208 0.16 2 0.16 2 0.16 2 0.16 2 0.016 3.222 0.016 2.164 0.034 3.222 0.034 2.5 0.34

PI2 3.049 0.16 4 0.16 3.5 0.16 3.967 0.16 4 0.016 4.552 0.016 3.072 0.018 4.552 0.018 3.2 0.36

AFOR 60 0 42 0 42 2 50 3 50 0 42 0 40 4 42 6 11 2

FF 1.4 0 1.2 0.012 1.2 0.012 1.4 0 1.4 0 1.4 0 1.2 0.032 1.2 0.032 1.2 0

AVAP 1450 0 1260 0 1260 0 1417 0 1235 0 1212 0 1273 0 1291 0 1282 0

ZMIN 9 2 88 41 88 41 34 12 100 21 80 21 100 31 102 31 42 11

ZAVE 411 0 514 0 500 0 165 0 200 0 150 0 240 0 200 0 285 0

ZMAX 907 47 800 127 900 127 689 87 600 87 800 87 728 143 740 143 865 197

ST 1260 90 1500 190 1229 190 1372 120 1700 170 1600 170 1400 218 1450 228 1140 238

POW 2 0.036 2 0.36 2 0.36 3 0.36 3 0.036 3.5 0.036 3.5 0.34 3.6 0.34 3 0.36

FT 19 4 37 11 39 11 36 9 58 14 35 14 36 14 35 19 59 18

GW 33 9 23 9 23 9 25 9 33 12 20 12 32 13 32 20 46 14

R 0.5 0 0.2 0 0.3 0 0.3 0.027 0.2 0 0.2 0 0.4 0 0.35 0 0.4 0

TL 0.25 0 0.8 0 0.8 0 0.25 0 0.8 0 0.8 0 0.8 0 0.7 0 0.7 0

CL 0 0 0 0 0 0 0 0 0 0 0 0 0.15 1 0.13 1 0.13 1

GPOW 3 0.036 4 0.36 4 0.36 4 0.36 4.5 0 4.5 0 4 0.34 4.3 0.34 4 0.36

DDENS 0.4 0 0.44 0 0.5 0 0.4 0 0.44 0 0.5 0 0.42 0 0.47 0 0.5 0

T 12 3 15 3 43 8 27 3 42 4 42 4 44 8 40 8 48 8

S 0.003 0.001 0.008 0.003 0.08 0.003 0.008 0.003 0.008 0.003 0.009 0.003 0.008 0.003 0.008 0.003 0.008 0.003

RGWS 0.01 0.001 0.008 0.003 0.08 0.003 0.008 0.003 0.008 0.003 0.009 0.003 0.008 0.003 0.008 0.003 0.008 0.003

GWL 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0

RSF 0.2 0 0.2 0 3 0 0.2 0 3 0 1 0 0.2 0 0.4 0 2 0
 

Table 7.2c Parameter estimates (µ) with standard deviation (σ) for selected sub-basins. 

L-CB11 L-CB53 L-CB68 L-CB74 L-CB89 L-CB92
µ σ µ σ µ σ µ σ µ σ µ σ

RDF 0.8 0.012 0.8 0 0.8 0 0.8 0 0.7 0.012 0.6 0.012
PI1 2.4 0.35 2.0 0.35 2.0 0.35 2.0 0.35 1.8 0.35 1.7 0.35
PI2 3.0 0.41 3.9 0.41 3.9 0.41 3.9 0.41 3.5 0.41 3.1 0.41
AFOR 45 4 50 4 50 4 50 4 55 4 15 3.102
FF 1.382 0.195 1.28 0.195 1.28 0.195 1.28 0.195 1.2 0.195 1.2 0.195
AVAP 1392 0 1356 0 1584 0 1341 0 1325 0 1204 0
ZMIN 52 21 116 21 96 34 111 48 102 38 127 29
ZAVE 244 0 377 0 392 0 532 0 368 0 700 0
ZMAX 979 172 628 107 860 192 923 213 850 120 986 213
ST 1000 198 938 92 1300 243 1500 128 1500 120 800 168
POW 4.5 0.32 4 0.312 4.6 0.32 4.5 0.32 3.8 0.32 3 0.32
FT 32 12 17 4 23 9 34 9 41 14 136 35
GW 37 17 48 12 19 9 37 10 29 12 181 36
R 0.5 0 0.7 0 0.535 0 0.5 0 0.3 0 0.3 0
TL 0.7 0 0.25 0 0.25 0 0.4 0 0.7 0 0.8 0
CL 0 0 0 0 0 0 0 0 0.15 1 0.064 1
GPOW 3.218 0.32 4 0.32 4 0.32 4 0.32 4.5 0.321 3.167 0.32
DDENS 0.47 0 0.478 0 0.451 0 0.481 0 0.497 0 0.476 0
T 52 4 42 4 22 4 41 4 47 8 40 8
S 0.008 0.003 0.008 0.003 0.008 0.003 0.008 0.003 0.008 0.003 0.008 0.003
RGWS 0.008 0.003 0.008 0.003 0.008 0.003 0.008 0.003 0.008 0.003 0.008 0.003
GWL 25 0 25 0 25 0 25 0 25 0 25 0
RSF 0.2 0 0.2 0 0.2 0 0.2 0 0.2 0 0 0
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7.3.1 Oubangui drainage system 

The Oubangui drainage system is characterised by large variations in soil and land cover types. 

The dominant soils include a variety of Ferralsols, Arenosols, Regosols, Nitosols, Gleysols and 

Lithosols. As shown in Figure 3.24, the depths related to these dominant soils range from 10 cm 

(Lithosols) to 400 cm (Orthic ferralsols). This implies that there are areas of shallow and deep 

soils across the sub-basins of Oubangui. Deep soil implies deep storage capacity and shallow soil 

would result in low storage capacity. The surface slope ranges from 0.01 to 34%, with 80% of 

the basin having slopes of less than 6%. Variation in topography and soil depths suggests that ST 

is an important parameter of uncertainty.  Similarly, there is a large variation in the distribution 

of the vegetation types in the Oubangui, which consists of mosaic vegetation and broadleaved 

deciduous or evergreen forest/ woodland. This variation in physical basin properties is translated 

into the model parameters of surface processes (ZMIN, ZMAX and also ST) which have been 

estimated with a wide range of uncertainty (standard deviation of the parameter values). The 

Oubangui area is characterised by low recharge and low soil water capacity (Döll and Flörke, 

2005). This is also reflected in the low values of groundwater recharge rate and interflow (GW 

and FT). The most northern part of the Oubangui, in the upper Kotto, is characterised by a 

Cretaceous carbonate formation which represents a complex structure of dual porosity, inter-

granular porosity, joints, fractures and local karstification. This geological formation is typical of 

the central basin formations where high recharge is expected to occur. This is illustrated in mean 

values of the parameters GW and FT for the sub-basins O-CB33, O-CB49 and O-CB56 (Table 

7.2a).   

The Oubangui drainage system has two major sub-systems; the eastern tributaries that drain into 

the Bangui gauging site (O-CB82, 4.4N, 18.79E) and the western tributaries that drain into the 

Oubangui just below the Bangui gauging site (3.6N, 18.4E). The simulated FDC uncertainty 

band (5th - 95th percentiles) in the western tributaries is more evenly distributed around the 

observed FDC from low to high flows (Figure 7.5), which implies that the estimated parameters 

are contributing equally to the uncertainty in the model simulations. The error index is 

approximately evenly distributed, irrespective of whether 10th, 50th or 90th percentiles are used. 

Figure 7.6 shows the sensitivity analysis results at a representative gauging site of the western 
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tributaries of the Oubangui (O-CB30), where the model parameters appear less sensitive for most 

of the criteria used in the evaluation. Only the groundwater recharge parameter is very sensitive 

in relation to the Mean Monthly Recharge (MMR) metric, which is not surprising given the 

structure of the model. The headwaters of this drainage area (O-CB2) show a different situation, 

with the parameters of the surface runoff, based on the various evaluation criteria, being 

sensitive. This is probably due to the influence of the basin physiographic characteristics on 

parameter estimation. There is a perceptible difference in the physiographic properties between 

the downstream sub-basin (O-CB30) which is more forested and the headwater sub-basin (O-

CB2) which is less forested. These differences in the properties of the physical basin attributes 

are expected to play an important role in the hydrological processes of the two categories 

(headwater and downstream) of sub-basins. The effect of interaction of the model parameters for 

the downstream sub-basin could also be important in influencing the sensitivity of the 

parameters. The simulated hydrograph of the predictive uncertainty for O-CB2 is shown in 

Figure 7. 5. Figure 7.7 shows the sensitivity analysis of the parameters for the sub-basin O-CB2. 

Simulations in the eastern tributaries of the Oubangui drainage system show that the largest 

uncertainty in the model occurs at high flows. Based on conceptual understanding of the GW-

PITMAN model structure, the parameters related to surface runoff generation, namely ZMIN, 

ZMAX, ST, are responsible for this large uncertainty in the model simulations. These parameters 

are sensitive in relation to CE untransformed, which is sensitive to model performance at high 

flows. Depending on the location of the sub-basins under study, the sensitivity analysis of the 

model parameters in this area shows some mixed results, based on the different criteria used. 

Figure 7.8 shows the simulated prediction intervals for selected sub-basins of the eastern 

tributaries of the Oubangui drainage system. Appendix B shows the model sensitivity plots for 

three headwater sub-basins (O-CB14, O-CB33 andO-CB49) and one downstream sub-basin (O-

CB82) in the eastern tributaries of the Oubangui. 
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Figure 7.5 FDCs representing the simulated prediction intervals of uncertainty (5th and 95th 

percentiles of the model output ensemble-grey band) against the observed flow 

(solid line) for the eastern sub-basins of the Oubangui drainage system.  
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Figure 7.6 Regional sensitivity analysis plots showing the varying sensitivity of the model 

parameters for the O-CB30 based on seven evaluation criteria.  The red line 

indicates the top 20% of the better performing parameters and the blue line 

indicates the lower 20% of the less well performing parameters (Top and lower 

20% only apply to CE and CEln).    
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Figure 7.7 Regional sensitivity analysis plots showing the varying sensitivity of the model 

parameters for the O-CB2 based on seven evaluation criteria.  The red line 

indicates the top 20% of the better performing parameters and the blue line 

indicates the lower 20% of the less well performing parameters (Top and lower 

20% only apply to CE and CEln).    

.   
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Figure 7.8 FDCs representing the simulated prediction intervals of uncertainty (5th and 95th 

percentiles of the model output ensemble-grey band) for the western sub-basins of 

the Oubangui drainage system.  
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While the uncertainty at low flows is lower, it is important to note the difficulty to capture 

accurately the low flow components in the eastern tributaries of the Oubangui. For some sub-

basins, such as the O-CB82, the lower limit of the prediction interval over-estimates the observed 

flows at 90th of the FDC by 38%. Overall, it can be noted that this region experiences very low 

flows due to little infiltration and recharge. This area is dominated by group I of the regional 

flow duration curve (RFDC I, Chapter 4) which is representative of a region where hydrological 

processes are essentially driven by surface runoff.  

7.3.2 Sangha drainage system 

The Sangha drainage system is dominated by woody trees which constitute more than 80 % of 

the vegetation cover (70% of broadleaved evergreen forest and 18% of broadleaved deciduous 

forest/woodland). The first observation is that the use of this information to estimate the AFOR 

parameter resulted in simulations which were not consistent with the observed hydrological 

response. The inconsistency in the land cover information has already been highlighted in 

Chapter Three of this thesis. The uncertainty related to the land cover dataset used in this study 

(GLOBCOVER, Bontemps et al., 2011) has been discussed by Fritz et al. (2011) who advocated 

ways to improve the dataset. The Sangha area is dominated by Ferralsols which are associated 

with Nitosols, Arenosols, and Acrisols.  According to Webb et al. (1991), Nitosols are the 

deepest soil with about 800 cm (see Chapter 3, Figure 3.24). Seventy percent of the area is 

covered by sandy clay loam and the basin slope ranges from 0 to 24%. Sangha is represented by 

group III of the regional flow duration curve (RFDC III), which has the characteristics of a 

hydrological regime dominated by high base flow with medium flood flows. Given the presence 

of a good forest cover, deep soils and the variation in the basin topography, it is assumed that ST, 

FT and GW which are the parameters of sub-surface processes will play an important role in the 

runoff generation processes. The mean values obtained for these parameters are higher with more 

than 10% uncertainty (expressed as the standard deviation as a % of the mean parameter values).  

Figure 7.9 shows the results of parameter estimation procedures for the Sangha drainage system. 

Similar to the western tributaries of the Oubangui, the simulations in the Sangha show a more 

evenly distributed band of uncertainty around the observed FDC. Sensitivity analysis in the 
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Sangha (S-CB71: Appendix D) shows that the parameters FT and GW appear more sensitive 

with regard to the CEln, monthly recharge, FDC slopes and Q90 criteria used for evaluation. 

These evaluation criteria show the importance of hydrological processes with particular 

emphasis on sub-surface processes. Compared to the eastern tributaries of the Oubangui, this 

region appears to have more sustained low flow, which could be a consequence of good forest 

cover that favours infiltration.  This region also has higher rainfall which could favour recharge 

when compared to the eastern sub-basins of the Oubangui. Another important observation made 

in the Sangha during the application of the parameter estimation procedures is related to the 

estimation of the maximum storage capacity (ST). The estimated mean ST parameter in this area 

is 1 600±170 mm which shows deeper soils, giving higher moisture storage capacity. The 

observation was that some of the reported soil depths (e.g. USGS, 2001 - less than 200 cm) 

resulted in very low ST values. In these high rainfall environments these low values lead to 

numerous periods when the maximum storage is exceeded by the rainfall and a large amount of 

runoff is generated by the model. These excessive runoff volumes are not evident in the observed 

data. Webb et al. (1991) provide some evidence to suggest deeper soils and the use of these data 

resulted in much higher ST values, after which most of the simulations results for the sub-basin 

became more behavioural compared with the observed data.  

S-CB18 is a headwater sub-basin of the Sangha, which is characterised by about 50% of 

Ferralitic arenosls. Dystric nitosols and Plinthic ferralsols account for about 30% and 20% 

respectively.  The sand fraction occupies more than 50% of the soil particle size, associated with 

clay, which represents about 30% of the soil particle size. The sub-basin mean slope is about 6% 

and the land cover is dominated woody trees.  Compared to the downstream sub-basins of the 

Sangha, the sensitivity analysis in the S-CB18 shows that the various evaluation criteria are 

sensitive to surface and sub-surface runoff. Appendix D shows the sensitivity analysis plots for 

S-CB18. This observation suggests that the sensitivity of the model parameters at the 

downstream sub-basins is largely under the influence of parameter interaction rather than the 

land cover types as previously discussed for the case of the western tributaries of the Oubangui 

drainage system.  
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Figure 7.9 FDCs representing the simulated prediction intervals of uncertainty (5th and 95th 

of the mean runoff volume) against the observed flow (solid line) for the sub-

basins of the Sangha drainage system. 

7.3.3 Kasai drainage system 

The soil texture is dominated by sand and clay (light) with some loamy sand and sandy clay 

loam. Vegetation includes a variety of land cover types, with woody trees representing about 

60% of the total area covered by different land cover types. As in the case of the Oubangui, there 

is mosaic vegetation. The slope gradient across the Kasai is steep which may have an influence 

on regional groundwater slopes. The estimated mean basin slope in the Kasai is 12.6% with 

maximum values of 39%. The Kasai drainage system is represented by group IV of the regional 

flow duration curve (RFDC IV) which shows similar characteristics with RFDC III. In summary, 

Kasai is generally well drained with moderate to steep gradient and good surface cover, which 

imply that there will be rapid moisture distribution during rainfall events, and therefore 

substantial sub-surface flows. 
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Figure 7.10 shows the results of parameter estimation procedures for the Kasai drainage system. 

The simulations in the Kasai show a more evenly distributed band of uncertainty around the 

observed FDC. The sub-surface processes appear to play an important role in this area. This is 

illustrated by the sensitivity analysis where the parameters FT and GW are more sensitive in 

relation to the CEln, monthly recharge, FDC slopes and Q90 criteria used for evaluation (K-

CB76: Appendix D). The parameter groundwater storativity (S) is also sensitive in this area. In 

addition, the flow routing parameter (CL) is sensitive when using both CE and CEln.  

0

2000

4000

6000

8000

10000

12000

14000

16000

0 5

1
0

1
5

2
0

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6M

o
nt

h
ly

 F
lo

w
 V

ol
u
m

e
 (

M
m

3
)

% Time Equalled or Exceeded

K-CB76

0

20000

40000

60000

0 5

1
0

1
5

2
0

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6M

on
th

ly
 F

lo
w

 V
o
lu

m
e
 (

M
m

3
)

% Time Equalled or Exceeded

K-CB85

0

10000

20000

30000

40000

50000

60000

70000

1 7

1
2

1
8

2
4

3
0

3
6

4
1

4
7

5
3

5
9

6
4

7
0

7
6

8
2

8
8

9
3

9
9

M
o
nt

h
ly

 F
lo

w
 V

ol
u
m

e 
(M

m
3
)

% Time Equalled or Exceeded

K-CB88

 

Figure 7.10 FDCs representing the simulated prediction intervals of uncertainty (5th and 95th 

of the mean runoff volume) against the observed flow (solid line) for the sub-

basins of the Kasai drainage system. 

7.3.4 Lualaba drainage system 

The physical basin property data show very large variations across the sub-basins of the Lualaba 

drainage area. The dominant soils encompass a variety of Acrisols, Ferralsols, Gleysols, 

Luvisols, Nitosols, Arenosols, Regosols, Andosols and Vertisols. As shown in Figure 3.24, these 
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large variations in the types of dominant soils also encompass a wide range of soil depths which 

stretch from 10 cm to 800 cm, thus implying that there will be much uncertainty in the ST 

parameter across the sub-basins. This is illustrated in the estimates of the model parameters 

(Table 7.2c) where a wide range is observed in the mean values of the parameter ST (with 

standard deviation of up to 20 % of the mean parameter values) across the sub-basins.  The soil 

texture is also very diverse with sandy clay loam accounting for about 37%. This variation is also 

seen in the land cover which consists of important proportions of natural and semi-natural 

terrestrial vegetation, woody trees, shrub, and herbaceous land cover types. Extreme slopes of 

84% are found in this region. As shown in Table 7.2c, the variations in the surface cover and soil 

types are also translated into uncertainty values for ZMIN and ZMAX which are the parameters 

of surface runoff processes.  A characteristic of the Lualaba drainage system is the abundance of 

swamps and lakes. Hydrologically, Lualaba exhibits the characteristics of a water stressed region 

as shown by group V of the regional flow duration curve (RFDC V). The complex nature of the 

topography, the variations in soil depths and land cover, as well as the presence of lake and 

wetland storage processes make it difficult to isolate the effect of individual parameters on the 

runoff generation processes. It is assumed that uncertainty in this area will largely depend on the 

effect of parameter interaction across the sub-basins.  

The results of parameter estimation in the Lualaba drainage system (Figure 7.11) shows that 

there is larger spread of uncertainty from moderate to high flows (50th to 1th percentiles 

exceedence flow) than in the simulated low flows (50th to 99th percentiles exceedence flow). 

Based on the conceptual understanding of the GW-PITMAN model, this is a consequence of 

uncertainty in the infiltration and soil moisture parameters of the model. Throughout the 

Lualaba, the role of groundwater storativity is highlighted, which implies that groundwater 

storage is an important component of the hydrological processes in this drainage system (L-

CB11, L-CB53, L-CB89: Appendix D). The role of the channel routing parameter is also 

highlighted for the catchments of the Lake Tanganyika basin (L-CB11).   
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Figure 7.11 FDCs representing the simulated prediction intervals of uncertainty (5th and 95th 

of the mean runoff volume) against the observed flow (solid line) for the sub-

basins of the Lualaba drainage system. 
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The sensitivity analysis shows that the parameters FT and GW are sensitive in relation to both 

CE and CEln criteria of evaluation.  The ST parameter is also sensitive in relation to the FDC 

slope and Q10 FDC. The largest uncertainty is obtained in the simulations of the sub-basins 

located in the lower part of the Lualaba. Part of this uncertainty is attributed to the dynamics of 

water bodies of the Lualaba which exert a significant influence on the flow regime of the 

downstream sub-basins.  Except for the observed flow data from the GRDC (L-CB89 and L-

CB92), all other flow data used for the lower Lualaba were obtained from Lempicka (1971), and 

the accuracy of this dataset has already been questioned (Mahé, 1993). 

7.3.5 Congo drainage system 

Based on the representative gauging site at the most downstream sub-basins of the Central 

Congo, this area belongs to group III of the regional flow duration curve (RFDC III), which 

shows consistent baseflow and medium flood flow. Figure 7.12 shows the observed flow and the 

simulated prediction interval for C-CB96 which is representative of flow for the whole Congo 

Basin. The uncertainty in the simulations, in relation to the observed flows, is evenly distributed, 

but is more biased towards a lower prediction interval at 10th percentile exceedence (-19.6 to 

+1.2) and more biased towards an upper prediction interval at 90th percentile exceedence (-5.1 to 

+18.5). This observation suggests that the a priori ensembles are generating high storage 

capacity which is less exceeded by the effective rainfall inputs, thus tends to under-estimate the 

high flow components of the FDC, as well as to generate excessive base flow that over-estimates 

the low flow components of the FDC. This observation is also influenced by a large difference 

between ZMIN and ZMAX, thus leading to large amount of rainfall being absorbed, and 

resulting in a low surface runoff rate. The situation may also reflect the uncertainty in the model 

structure. The largest uncertainty comes from the parameter ST, ZMIN and ZMAX. In principle, 

these parameters generate local runoff for the catchment being modelled. It is difficult to 

estimate these parameters for the most downstream area that receives flow from over 3.5x106 

km2 of the upstream drainage area. There are possible interactions in model parameters and the 

hydrological processes of the upstream sub-basins which might have an influence on local runoff 

generation for the sub-basins of the Central Congo Basin.  Initially, it was presumed that sub-

dividing the central basin into smaller sub-basins would resolve the issue of size and therefore 
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address the challenge of parameter estimation in this area. However, uncertainty in the central 

basin is propagated through all the other sub-areas including the ungauged ones, and properly 

estimating the parameters of runoff generation in this region depends upon adequate 

quantification of all upstream interactions. The sensitivity analysis shows that many parameters 

of surface runoff are less sensitive to the many criteria of model evaluation (C-CB96: Appendix 

D).  
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Figure 7.12 FDCs representing the simulated prediction intervals of uncertainty (5th and 95th 

of the mean runoff volume) against the observed flow (solid line) for the 

representative downstream sub-basin of the Congo drainage system. 

7.4 Exploring the effect of spatial scales on model uncertainties  

There are various ways of reducing uncertainty in model parameter estimation. One of the 

approaches includes the reduction of the spatial scale of the modelling units. The main 

assumption of this approach is that the spatial variability in the physical basin properties 

determines the uncertainty in model parameters, which can be reduced by reducing the modeling 

scales (Hughes et al. 2010c).  This study was carried out in two headwater sub-basins of the 

Northern Congo Basin. The sub-basins were randomly chosen, but the exercise could have been 

carried out anywhere in the basin, provided there are means for evaluating and validating the 
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model simulations. The approach consists of reducing the spatial scale of modelling and 

repeating the parameter estimation process for each of the determined smaller scale units to 

evaluate the effects of scale on the range of parameter and prediction uncertainty. Figure 7.13 

shows the two sub-basins (S and O) where the parameter estimation framework has been applied. 

The sources of physical property information includes soil types from ISRIC WISE (Batjes, 

2006), soil depth from Webb et al. (1991), geology (www.uni-koeln.de), hydrogeology (Döll and 

Flörke, 2005), vegetation (USGS, 2001) and Leaf Area Index (Scurlock et al, 2001). Table 7.3 

shows the values of the physical basin properties as derived from the available global datasets.  

The parameter estimation procedures were initially applied at the sub-basin scale and then on a 

smaller scale for O (Figure 7.13 A). The sub-basin O was delineated into five modelling nodes: 

Oa, Ob, Oc, Od, and Oe. The smaller scales were chosen, based on slope gradient across the sub-

basin scale and the main tributaries. The results of the application of the parameter estimation in 

this part of the study are presented in Figure 7.14. The uncertainty bands for the two sub-basins 

are relatively similar, with mean monthly flows ranging from -29.4% to +17.8% of observed 

values for O and -36.4% to +22.8% for S. The greatest uncertainty lies in the parameters that 

generate outflow from the main moisture storage (FT), the catchment absorption parameters 

(ZMIN and ZMAX) and the groundwater recharge parameter.   

Table 7.3    Physiographic characteristics of the modelling units.  

Basin properties S Oa Ob Oc Od Oe

Area Km2 71074 5911 8348 5285 10915 566 
Cumulative Area Km2 71074 5911 14259 5285 30460 31025 
Flow record MCM 1971.5 182.9 353 - 940.641 906 
built up land % 0.1 - - - - -
crop/wood mosaic % 0.4 0.2 - - 0.3 -
Savanna % 70.5 88.4 95.4 49.7 28.1 20.1 
Evergreen broad leaf forest % 29.0 11.4 4.6 50.3 71.6 79.9 
MMP mm 125.6 126.1 130.1 133.4 130.9 137.5 

MAE mm 1326.0 1399.6 1354.7 1354 1324.4 1350.6 
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Figure 7.13  Physical basin properties maps of the study area illustrating the drainage pattern 

(A), topography(B), soil types (C) and vegetation (D). 

The left hand side of Figure 7.14 shows the uncertainty results for the outlet of sub-basin O after 

repeating the parameter estimation procedures for five nodes within the total sub-basin and 

running the model with smaller spatial units. Although the uncertainty band has certainly been 

reduced, the higher simulations are mostly below the observed values for the majority of the flow 

duration curve (mean monthly flows from -20.0% to +0.6% of observed). Clearly, this case study 

shows that spatial scale variability in the properties of the physical basin attributes is not the only 

issue of focus for reducing uncertainty in the model predictions. Representation of the functional 

properties of the physical basin attributes that condition the behaviour of the streamflow 

response is also very important. In this study, uncertainty due to the spatial variability has 

certainly been reduced, but at the expense of behavioural parameters, thus resulting in a loss of 

important information about the observed streamflow response. Part of this problem is attributed 

to the coarse resolution of the datasets used to estimate the parameter values at the reduced 
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scales, and the correctness of the interpretation of the hydrological information based on datasets 

which are not primarily prepared for hydrological uses. This can impact hugely on the 

simulations given critical discrepancies in some the global datasets (see Fritz et al., 2011). 

Sometimes a trade-off is to be made between capturing the observed hydrological response with 

uncertainty and reducing uncertainty but at the expense of the observed hydrological response.  

 

 

 

 

 

 

Figure 7.14 Simulated results for O (left side - sub-basin and nodal parameter estimation as 

flow duration curves) and S (right side – sub-basin parameter estimation as time 

series) compared with observed flows. The grey band shows uncertainty at the 

sub-basin scale and the white band shows uncertainty with the nodal parameter 

estimation. 

7.5 Exploring the model input uncertainty 

Uncertainties in model simulations have multiple sources, including errors of input data. One of 

the advantages of the a priori parameter estimation is that once the range of prior parameters is 

established for a given catchment, it can be used to assess the model behaviour against various 

inputs. In this part of the study, two sources of rainfall data, Climate Research Unit dataset (CRU 

TS 2.1) and Global Historical Climate Network (GHCN-v1) were used to force the model based 

on the prior parameter ranges. CRU TS 2.1 has already been described in Chapter Three. GHCN-

v1 contains historical temperature, precipitation, and pressure data for thousands of land stations 

worldwide (Vose et al., 1992; Peterson and Vose, 1997). The period of record varies from station 
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to station. In this part of the study, 160 GHCN-v1 land stations were identified for the Congo 

Basin and a simple data quality check showed that the dataset contained many missing values 

(maximum of 74.2 % over 1164 months), which prevented the use of the dataset for basin scale 

hydrological modelling. For this analysis, a 20-year over-lapping period (1940 to 1959) was 

identified in the Kasai drainage system for both CRU TS 2.1 and GHCN-v1 rainfall input data, 

which were then used to force the model independently, but with the same set of prior parameter 

ranges. The prior parameter ranges were sampled to generate ensembles of possible behavioural 

models. The results obtained are based on 5 000 runs of the Monte Carlo sampling. Figure 7.15 

and Table 7.4 show differences in model output at K-CB85, as a result of rainfall input 

uncertainty to the model (Figure 7.16). The analysis is based on comparison of the 5th and 95th 

percentiles of the output ensembles. Table 7.4 shows the values of error index for the uncertainty 

in the model simulation. 
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Figure 7.15 FDCs representing the simulated prediction intervals of uncertainty (5th and 95th 

of the mean runoff volume) against the observed flow (solid line) for K-CB85 as 

result of rainfall input uncertainty to the model. 
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Figure 7.16 Cumulative frequency curves showing differences in rainfall inputs to the model. 

Table 7.4  Differences in mean monthly flow volume as result of rainfall input uncertainty 

for the K-CB85 gauging site.  

Simulation CRU GHCN
Q10 -33.5 +44.6 -18.2 +16.3
Q50 -52.8 +15.4 -23.6 +23.3
Q90 -69.3 +28.2 -8.6 +58.4
Total simulation -47.6 +32.1 -17.6 +28.4

 

The results suggest that there is more uncertainty in CRU rainfall input (-47.6 to +32.1) than in 

GHCN rainfall input (-17.6 to + 28.4). More uncertainty in the CRU occurs at high flows, thus 

suggesting that part of the problem of over-simulation of observed flows during the model 

calibration at the gauging site K-CB 85 (see Chapter 6, Figure 6.9) is related to the inadequate 

rainfall inputs to the model.  This problem was observed for many of the gauging sites used in 

the model calibration, which suggests the effect of the less than adequate rainfall definition for 

the model. Although uncertainty in the simulated flows results from the rainfall input 

uncertainty, it should be noted that parameter sets cannot be considered independent of rainfall 

inputs.  
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7.6 Exploring the use of regional flow duration curves for hydrological 

model predictions in the Congo Basin 

In Chapter Four, regional flow duration curves (RFDCs) were constructed based on non-

parametric procedures of statistical ranking and graphical analysis (Smakhtin et al., 1997) of 

streamflow time series from the existing gauging sites in the Congo Basin.  The approach 

consisted of standardising the FDCs for all gauging sites within the basin and then constructing 

regional flow duration curves by superposing and averaging FDCs of similar patterns within a 

geographic area. For any sub-basin (gauged and ungauged) located within this area, the FDC can 

be estimated as the product of a dimensionless RFDC and the mean monthly flow estimate 

(Castellarin et al., 2004). These RFDCs represent the hydrologically homogenous regions of the 

Congo Basin and can be used to assess, or to constrain model predictions in both gauged and 

ungauged areas of the basin. This part of the study attempts to use the RFDCs that were initially 

developed, to assess the model predictions in the Congo Basin. This procedure can be considered 

as an approach to model validation for the ungauged sites. The analysis is based on the 

ensembles of possible behavioural models which were generated from prior parameter ranges for 

both gauged and ungauged sub-basins (see section 7.3). Figure 7.16 shows the results of the 

model predictions based on RFDCs for selected gauged and ungauged sub-basins.  The selected 

gauged sub-basins are represented by RFDC II (S-CB18, S-CB57 and S-CB71) and RFDC IV 

(K-CB76). The ungauged sub-basins that fall within the representative RFDCs are O-CB 31 

(RFDC V), S-CB39 (RDFC II), and K-CB6 and K-CB32 (RFDC IV). The results are presented 

as monthly flow depth (mm). These results collectively show that there is a scope for using 

RFDCs to increase confidence in parameter estimation procedures and model predictions for the 

ungauged areas of the Congo Basin. In most simulations, the RFDCs lie within the uncertainty 

band of model predictions from low to high flows for both gauged and ungauged sub-basins. 

Some discrepancies are observed for the sub-basins K-CB32 (Kasai, RFDC IV) and O-CB31 

(Oubangui, RFDC V) where the low flow part of the RFDCs lies outside the uncertainty band.  
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Figure 7.16 FDCs representing the simulated prediction intervals of uncertainty (5th and 95th 

of the mean runoff volume) against the observed flow (solid black line) and 

regional flow duration curve (solid red line).  
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7.7 Discussion and conclusion  

The uncertainty in the parameter estimation process can be related to the resolution and 

appropriateness of the available physical property data information, as well as to the scale of 

modelling, the spatial variation in physical properties and the procedures (parameter estimations 

equations) used to estimate the parameters. The uncertainty due to the appropriateness of the 

available information is important where physical property data are scarce and not necessarily 

developed for hydrological uses. The uncertainty due to spatial variation in physical properties 

becomes important in large basins where spatial variability in the physical properties 

(topography, vegetation, soil types and geology) can be high. The main issues pertaining to the 

application of the parameter estimation framework for the Congo Basin remain the inadequacy 

of physical basin property data and the variability in the physical basin properties. There is little 

doubt that part of the uncertainty could have been brought about by the procedures used to 

estimate the parameters, but correctly identifying the problems is also dependent on a better 

understanding of the real hydrological processes. 

The datasets of the physical basin properties used in this study were mainly derived from the 

global datasets. Clearly, deriving meaningful hydrological information from datasets mostly 

prepared for non-hydrological purposes poses a huge challenge, an aspect upon which the 

success of the parameter estimation process depends. The coarse resolution of the existing 

physiographic datasets further complicates the issue, rendering the parameter estimation process 

a complex task. In this study, it was necessary to combine different sources of information on the 

basin physical properties in order to achieve behavioural simulations for the sub-basins. The 

sources of information used included a land cover map of Africa (USGS, 2001), the global land 

cover map (GLOBCOVER, Bontemps et al., 2011), a global Leaf Area Index from field 

measurement (Scurlock et al., 2001). the Harmonized World Soil Database Version 1.1 

(Nachtergaele et al., 2010), the Soil and Terrain Database and the World Inventory of Soil 

Emission Potentials (ISRIC-WISE soil type version1), the soil depth from the global dataset on 

soil particle size (Webb et al., 1991), the geological map of Africa (USGS, 2002), the hydro-

geological properties of Africa (Seguin, 2005), and the global groundwater recharge database of 
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Döll and Flörke, (2005). However, the coarse resolution of the datasets is probably a major 

source of uncertainty that could also have played an influential role in the parameter estimation 

process. Some of the global datasets on the basin physical properties report an average soil depth 

of less than 200 cm. Initially, the use of this information to estimate the maximum moisture 

storage parameter (ST) resulted in a shallow soil moisture storage that is rapidly exceeded and 

generates a large amount of runoff. The soil property characteristics of Webb et al. (1991) 

provide some evidence of deeper soils in the basin. The use of this information resulted in an ST 

parameter range, which is consistent with such a high rainfall environment.  

Major difficulties in the parameter estimation procedures arose with the use of groundwater store 

and discharge parameters. While the groundwater recharge parameter was constrained to within 

the values of the global dataset of groundwater recharge provided by Döll and Flörke (2005), this 

was not the case for other parameters, such as aquifer storativity, transmissivity, regional 

groundwater slopes, drainage density and depth to groundwater. It is important to mention that 

this information is not provided in any of the existing regional maps and it was even difficult to 

give the right interpretation and relate the default characteristics provided in the framework to 

the existing regional or global dataset on geology and hydrogeology. This is one of many issues 

that could have contributed to uncertainty in the model predictions.  

The prediction of the hydrological response in the western tributaries of the Oubangui drainage 

system is characterised by large uncertainty in the high flow part of the FDC. This uncertainty is 

the effect of large uncertainty in model parameters that generate surface runoff, which are 

subject to high variability of the surface cover and soil types in the Oubangui. It is the contention 

of this study that revisiting parameter estimation with reduced spatial scales, based on 

improvements in available data, will reduce the uncertainty in the model due to the spatial 

variability of the surface cover.  Large uncertainty at high flows was also observed in the 

Lualaba drainage system. In addition to the extremely high variability of the physical basin 

properties observed in the Lualaba, the contribution of the upstream lakes and wetlands to the 

model uncertainty is also considerable. Although efforts were made to establish a wetland model 

to account for the dynamics of lake and wetland processes, it is worth noting, as mentioned in 

Chapter Six, that there is still uncertainty, probably due to inappropriate quantification of the 
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physical parameters of the wetland processes and therefore, the propagation of this uncertainty in 

the model would affect the model outcomes. Relatively even distribution of uncertainty in the 

model simulation was observed in the western sub-basins of the Oubangui and in Sangha and 

Kasai drainage systems. These areas also show a relatively higher degree of homogeneity in the 

physiographic settings. Assessment of the basin hydrological similarity based on regional FDCs 

shows that these areas have similar hydrological responses which fall under the categories of 

groups II, III and IV of the regional flow duration curves (RFDCs, Chapter 4).  

The results show that model parameter sensitivity is largely dependent upon the criteria used for 

model evaluation in the sensitivity analysis. Differences in parameter sensitivity of contiguous 

sub-basins also suggest the influence of sub-basins’ physical properties on the parameter 

sensitivity. One limitation with the RSA method used in this study is the use of qualitative 

(visual) interpretation of the sensitivity analysis results, which precluded an assessment of the 

order of importance or quantitative ranking of the sensitive parameters, as well as the effects of 

parameter interactions. There is little doubt that some of the non-influential parameters could be 

a result of an inappropriate combination of the parameters. It is important to note that the usual 

application of the GW-PITMAN model ranges from 50 to 1 000 km2 and that some less sensitive 

parameters could be caused by the problem of interaction, as well as the large scale to which the 

model is applied in this study. Sensitivity analysis is undertaken to help identify or understand 

the manner in which the catchment processes can impact the model results (Tang et al., 2007).  

In this study the sensitivity analysis results show how change in parameter sensitivity occurs 

with change in the assessment criteria used and with the spatial distribution of the sub-basins.  

In general terms, the parameters of the surface processes are less sensitive in the central sub-

basins and more sensitive in the head waters. This is a consequence of the importance of 

upstream flows relative to the local contribution of the parameters of the sub-areas in the central 

basin. The parameters of the sub-surface processes such as ST, POW, FT, GW and GPOW are 

sensitive to various assessment criteria used in the sensitivity tests. These parameters are very 

sensitive to the mean monthly recharge metric criterion; an observation that highlights the 

importance of sub-surface flows within the basin and which is not surprising, given the wetter 

and more vegetated conditions in the basin. The headwater sub-basins of the southern drainage 
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systems (Kasai and Lualaba) are more sensitive to the storativity parameter than those of the 

northern drainage systems (Sangha and Oubangui). This situation illustrates the importance of 

the groundwater storages, which would be more important in the southern drainage systems.  

These southern drainage systems also show high values of the mean basin slope than the 

northern drainage systems. The parameters of the surface processes in the downstream sub-

basins, especially in the heavily forested and low topography areas, are less sensitive to the 

various evaluation criteria. In these areas, GW and FT parameters are very sensitive to the mean 

monthly recharge, which emphasises the role of recharge. The parameter CL (flow routing 

component) appears to be very sensitive to the coefficient of efficiency criterion for most 

downstream sub-basins, emphasizing the role of attenuation even at monthly time scales. 

Initially, it was presumed in this study that the role of the CL parameter would be effectively 

important only in the downstream sub-basins with high flow volumes. The sensivity analysis in 

this study has shown that the role of this parameter in some of the headwater sub-basins (e.g. O-

CB14, O-CB24, L-CB11) is as important as in the downstream sub-basins (e.g. K-CB76, K-

CB85, C-CB96). This observation could be explored further by looking into the physiographic 

settings that influence or control the runoff generation in these sub-basins. The critical role of the 

TL parameter in model prediction has been evidenced in this study. The initial TL value used in 

the parameter estimation was fixed at 0.25, irrespective of differences in the sub-basin’s sizes. At 

this value, the predicted high flow volumes were generally over-estimating the observed 

hydrological response up to the first 5th percentiles of the flow duration curve. This observation 

suggested that at the TL value of 0.25, the residence time for the locally generated runoff was 

shortened, thus increasing the flow concentration over a short period. Depending on the sub-

basin’s sizes, adjustment of the TL parameter to greater values (0.25 to 0.8) resulted in model 

simulations that were more acceptable.  

The GW-PITMAN model is already over-parameterised, which leads to complexity in model 

structure and thus increasing equifinality in model simulations. Sensitivity analysis can be useful 

in identifying insensitive parameters, thus contributing to increased parsimony in the model 

structure. The sensitivity tests highlighted the influential and non-influential parameters for the 

basin. The non-influential parameters could be used to reduce the number of parameters to be 
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calibrated in the model (Chapter 6). A further analysis involving localised sensitivity is required 

to determine the order of importance of the parameters and how they shape the model behaviour. 

Uncertainty analysis using different rainfall inputs to the model has shown that there is a scope 

for reducing uncertainty in the model predictions. Appropriate definition of rainfall input to the 

model is an essential choice for reducing the predictive uncertainties. The results from 

uncertainty analysis of input rainfall data show that the GHCN-v1 is more reliable than the CRU 

TS2.1, but the former could not be used for modelling at the basin scale because of the problem 

outlined in section 7.5 of this chapter.  

The main focus of applying the a priori approach to the Congo Basin was to help establish a 

model parameter space with an acceptable degree of uncertainty. This uncertainty is inherent to 

the complex nature of the hydrological processes in the basin and should be accounted for in the 

modelling. The uncertainty in the model parameter space could be further reduced through 

improved methods of data collection. Using constraints is an alternative way to reduce 

uncertainty in the model predictions. In this regard, information from the characteristics of the 

groups of regional flow duration curves developed earlier on in this study (Chapter 4) is one of 

the possibilities. The a priori parameter estimation approach, sampling procedure and regional 

sensitivity analysis used in this part of the study accepts equifinality as an inherent part of the 

modelling process, but includes an assessment of the individual parameter contributions to 

overall model uncertainty.   
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CHAPTER 8 ASSESSING SCENARIOS OF CHANGE AND IMPACTS 

ON WATER RESOURCES AVAILABILITY 

8.1 Introduction 

Very little is known about the hydrological response of the Congo Basin’s runoff to future 

changes in environmental conditions. The existing predictions for the Congo Basin, based on 

HadAM3 GCM  simulation and A2 SRES emissions scenario (Tadross et al., 2005), show 

minimum impact with a low rate of change in evaporation and runoff, and a medium rate of 

change with regard to increased risk of flooding and siltation for the horizon 2070-2079  

(Mukheibir, 2007). Estimates of ranges of percentage change in precipitation, potential 

evaporation, and runoff due to climate change in the Congo Basin (IPCC, 2001; Matondo et al., 

2004; IPCC, 2007) show an increase of about 10% for precipitation, 10 to 18% for 

evapotranspiration and 10 to 15% for runoff. However, these predictions are based on a lumped 

response of hydrological processes at the large scale and therefore ignore the spatial variability 

of the different sub-basins that exhibit inherently different hydrological regimes. This approach 

to prediction, based on averaging large scale processes to obtain a lumped response from a basin 

area of about 3.7 x 106 km2, complicates the basin-wide development of water resources plans 

and there is a risk that the adaptation measures for future environmental changes will be based on 

a very large scale which will undermine the possible impacts at smaller scales. 

One of the primary objectives of this study was to establish a hydrological model for the whole 

Congo Basin, using available historical data. The secondary objective of the study was to use the 

model and assess the impacts of future environmental change on water resources of the Congo 

Basin. The main purpose of this part of the study is to drive the hydrological model of the Congo 

Basin with Global Climate Models (GCMs) and to assess the impacts of projected climate 

change on water resources availability. This is achieved through simulation and evaluation of the 

basin hydrological response to a set of future climate scenarios, to enable a comparative analysis 

of the climate impacts for the basin.  This part of the study was carried out at the sub-basin scale 

in the northern part of the Congo Basin for which downscaled GCM data have been obtained 
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from the Climate Information Portal of the University of Cape Town 

(http://cip.csag.uct.ac.za/webclient/map, January 2012). The analysis focuses on the state 

variables of the hydrological processes such as rainfall, interception, potential 

evapotranspiration, soil moisture store, surface runoff, soil moisture runoff, and recharge, which 

were simulated using the ordinary version of the GW-PITMAN rainfall-runoff model (Hughes et 

al., 2006).  An ensemble of flow predictions is also simulated using the uncertainty version of 

the GW-PITMAN rainfall-runoff model (Hughes et al., 2010c) so as to enable evaluation of 

future uncertainty in hydrological predictions. 

8.2 Methodological approaches  

8.2.1 Global Climate Models (GCMs) 

By nature, the future is uncertain and this uncertainty can be approximated by using emission 

scenarios that capture the future development conditions in terms of energy consumption, 

population and technology (Elshamy et al., 2009).  Several types of climate scenarios, such as 

synthetic scenarios, analogue scenarios and scenarios based on outputs from GCMs have been 

used for impact studies (IPCC, 1994; Mearns et al., 1996; IPCC-TGICA, 2007). GCM 

information is used to define the change in climate between the present and future conditions. 

GCMs simulate global climate systems at the large scale, incorporating Green House Gases 

(GHGs) and climate processes. The Climate Systems Analysis Group (CSAG) of the University 

of Cape Town provides empirically downscaled data (Hewitson and Crane, 2006) at historical 

meteorological stations for all of Africa. CSAG provides two emission scenarios (A2 and B2) for 

the baseline (1961-2000), near future (2046-2065) and far future (2081-2100). For the Congo 

Basin, data for eight downscaled GCMs were obtained for the meteorological stations in the 

northern part of the basin (Figure 8.1, Table 8.1).  Since much of the spatial coverage is 

concentrated in the northern part of the basin, it has therefore been selected for analysis in this 

study using the A2 emission scenarios for the near future. The A2 storyline and scenario family 

account for a very heterogeneous world with continuously increasing global population and 

regionally oriented economic growth that is more fragmented and slower than other storylines 

(Nakicenovic et al., 2000).  
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Figure 8.1  A map showing thirteen historical meteorological stations located in the northern 

Congo basin for which GCM data were downloaded (stations inside the red oval). 

Table 8.1 Summary of the GCMs for the Northern Congo Basin. 

Model Modelling group

CCCMA-CGCM 3.1 Centre for Climate Modelling and Analysis, Canadian 

CNRM-CM 3 Centre National de Recherches Meteorologiques, France

GFDL-CM 2.1 Geophyical Fluid Dynamics Lab, USA NOOA

GISS-ER Goddard Institute for Space Studies, USA 

IPSL-CM 4 Institut Pierre Simon Laplace, France

MIUB-ECHO Meteorological Institute of the University of Bonn, Germany 

MPI-ECHAM 5 Max-Planck Institute for Meteorology, Germany

MRI-CGCM Meteorological Research Institute, Japan
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8.2.2 Dealing with uncertainty in Global Climate Models 

GCMs integrate known atmospheric physical processes, such as the heating effect of the sun, the 

heat and moisture fluxes from oceans, the effect of land surface and vegetation, and the effect of 

green house gases on the atmospheric temperature profile, in an attempt to simulate the global 

climate system through time (Hewitson and Crane, 2006). Such processes are complex to 

integrate due to the scales at which they occur, and can only be resolved through 

parameterisation of climate models (Salvi et al., 2011), which leads to uncertainties in the 

outputs. Major sources of uncertainty in GCMs arise from the way they are parameterised to 

represent variables of the global climate system, the internal structures of the GCMs and the 

methods used to downscale the GCMs to allow projections at basin scales. This means that 

different GCMs will yield different output variables depending on their skill to simulate the 

climate of a given region. These differences can be highly significant over a region with different 

GCMs showing, for instance, drier or wetter conditions (IPCC-TGICA, 2007).  Figure 8.2 shows 

discrepancies in the skills of the eight GCMs with regard to the Mean Annual Precipitation 

(MAP) for the baseline scenarios over the northern sub-basins of the Congo Basin. The maps are 

obtained through inverse distance interpolation of the MAP point values. Overall, MAP ranges 

from 1353 to 1882 mm for the eight GCMs. The highest MAP is predicted by GISS, while the 

lowest MAP over the region is predicted by MRI-CGCM 3.2a. Figure 8.3 shows differences in 

the GCM skills in reproducing the seasonal distribution of historical rainfall for a selected 

downstream sub-basin of the Oubangui sub-area (O-CB82). The analysis is based on the 

percentage deviation from the historical CRU TS 2.1. Figure 8.4 shows the uncertainty in the 

coefficient of variation of the monthly rainfall distribution for the baseline GCMs relative to 

CRU TS 2.1.  

 There is a large difference in the seasonal distribution of the eight baseline scenarios used in this 

study (Figures 8.3 and 8.4). This difference is accentuated in the dry season (November to 

March) where the baseline scenarios consistently over- and under-estimate the seasonal 

distributions of the monthly rainfall compared to CRU TS 2.1, which is also less than perfect. 

June and July, the wettest months, show a similar pattern of seasonal distribution for all the 

GCM baseline scenarios.  There is a consistent, but relatively, small under-estimation of the 
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rainfall seasonal distribution for all the GCMs in September and October. With the exception of 

MIUB-ECHO and IPSL, all baseline scenarios show great similarity in the wet season (April to 

October). A large discrepancy in the values of the monthly coefficient of variation is observed 

for the dry season (November to March).   

CCCMA – CGCM 3.1 CNRM-CM3

GFDL - CM 2.1 GISS

IPSL – CM 4
MIUB - ECHO

MPI – ECHAM 5 MRI – CGCM 3.2a

 

Figure 8.2 Differences in MAP over the Northern Congo Basin due to uncertainties in the 

GCM baseline scenarios (baseline period: 1961-2000). 
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Figure 8.3 Rainfall seasonal distributions showing deviation of eight GCM baselines from 

the historical CRU TS 2.1.  
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Figure 8.4 Coefficient of variation showing uncertainty in seasonal distributions of rainfall 

for the historical CRU TS 2.1 and eight GCM baseline scenarios.  

8.2.3 Skill tests  

The skill of a GCM for simulating climate processes is not stationary and will vary with space 

and time. As already pointed out in the previous sections, GCMs may yield quite different 

responses even for a geographically homogenous region, simply because of the way certain 

processes and feedbacks are modeled. This is due to potential sources of uncertainty based on 

simulation of future conditions and the simulation of various feedback mechanisms in models 

concerning, for example, water vapour and warming, clouds and radiation, ocean circulation and 
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ice and snow albedo (IPCC-TGICA, 2007). For this reason, some criteria are necessary in 

selecting the GCMs that simulate the present-day climate reasonably well, on the premise that 

these GCMs would also yield the most reliable representation of future climate (Smith and Pitts, 

1997; IPCC-TGICA, 2007). The skill test aims to evaluate the relative performance of GCMs in 

reproducing historical patterns of variability in climate (Hughes et al., 2011c). In this part of the 

study, a test based on a measure of relative difference of the seasonal rainfall distributions 

between the GCM baseline scenarios and the historical CRU TS 2.1 was carried out (Hughes et 

al., 2011c). The assumption is that a small relative error is likely to reproduce the pattern of 

historical rainfall seasonality, which is important for hydrological regimes of a river basin. Table 

8.2 presents a ranking based on a measure of relative difference of the seasonal rainfall 

distributions between the GCM baseline scenarios and the historical CRU TS 2.1. Table 8.3 

presents the ranking showing the percentage of performance for the eight GCMs within the 

sample of 14 sub-basins. The percentage is calculated based on the number of times a GCM is 

ranked over the 14 sub-basins used as the sample ((number of occurrence x 100)/sample size).  

Table 8.2 Ranking of the GCMs based on percentage error in seasonal rainfall distribution 

between the GCMs and the historical CRU TS 2.1. 

Sub-basin

CCCMA

3.1

CNRM-

CM3

GFDL-CM

2.1 GISS

ISPL-

CM4

MIUB-

ECHO

MPI-

ECHAM

MRI-CGCM

3.2a

O-CB2 6 1 7 8 4 5 2 3

O-CB14 2 1 7 8 6 4 3 5

O-CB22 3 1 7 8 5 4 2 6

O-CB24 2 1 7 8 6 4 3 5

O-CB29 4 7 6 8 3 1 5 2

O-CB33 3 1 6 7 8 4 2 5

O-CB44 3 1 7 8 5 4 2 6

O-CB49 3 1 7 8 5 6 2 4

O-CB56 4 1 7 8 6 3 2 5

O-CB82 5 2 7 8 6 3 1 4

O-CB83 1 8 6 5 4 2 7 3

S-CB18 6 1 7 8 3 5 2 4

S-CB57 4 3 7 8 5 2 1 6

S-CB71 3 2 7 8 6 1 4 5
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Table 8.3 Ranking of the GCMs showing the percentage of the GCMs performance for the 

14 sub-basins used in the analysis.  

GCM 1st 2nd 3rd 4th 5th 6th 7th 8th 

CCCMA 3.1 7.1 14.3 35.7 21.4 7.1 14.3 0 0

CNRM-CM 3 64.3 14.3 7.1 0 0 0 7.1 7.1

GFDL-CM 2.1 0 0 0 0 0 21.4 78.6 0

GISS 0 0 0 0 7.1 0 7.1 85.7

ISPL –CM 4 0 0 14.3 14.3 28.6 35.7 0 7.1

MIUB-ECHO 14.3 14.3 14.3 35.7 14.3 7.1 0 0

MPI-ECHAM 14.3 50 14.3 7.1 7.1 0 7.1 0

MRI-CGCM 3.2a 0 7.1 14.3 21.4 35.7 21.4 0 0

Total 100 100 100 100 100 100 100 100
 

The skill test based on seasonal rainfall distribution showed that the CNRM-CM3 and MPI-

ECHAM are the most and second-most skilful models in terms of representation of the climate 

for the northern Congo Basin, and these were selected for climate change scenarios analysis. 

CNRM-CM3 performs better in the headwater sub-basins which are less forested, but its 

performance starts decreasing for the downstream sub-basins (O-CB 29, O-CB83) where there is 

dense forest cover. This pattern is also observed with MPI-ECHAM. However, according to 

IPCC-TGICA (2007), the models giving the best pattern for present day simulation may not 

necessarily be the models providing the most reliable predictions. CSAG (2012) observes that an 

accurate representation of the observed climate by a GCM does not necessarily imply an accurate 

response to changes in greenhouse gases (GHGs). In general, this accurate response to GHGs is 

not known and it is assumed that all models represent an equally likely response (Hewitson and 

Crane, 2006). CSAG (2012) also argues that the change that occurs in GCMs under 

anthropogenic forcing does not depend on the model’s skill in the present, and therefore the skill 

of a GCM in producing an historical pattern of climate variability cannot be taken as an indicator 

of its performance to simulate future climate. In this study, the likely worst performing model 

(GISS) is also included in the analysis to represent the variation as much as possible.   
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8.2.4 Bias correction 

Figures 8.2 to 8.4 showed that there is discrepancy between the GCMs’ baseline scenarios and 

the historical observed data. This discrepancy is due to incomplete knowledge about the 

geophysical processes and the assumptions made in the development of a GCM in terms of 

parameterisation and empirical formulae (Salvi et al., 2011). Statistical transformations are 

required to remove the discrepancy (bias correction) in the monthly means and variations 

between the historical and GCM baselines, while preserving the differences between the baseline 

and future scenarios (Hughes et al., 2011b).  Literature proposes several approaches such as delta 

change (e.g. Hay et al., 2000; Hughes et al., 2011b), multiple linear regression (e.g. Moron et al., 

2008), local intensity scaling (Hashino et al., 2006), quantile mapping (Li et al., 2010), all of 

which have their advantages and disadvantages. These approaches are based on the assumption 

that the transfer function used in bias correction is time-independent and, thus, applicable in the 

future. The present study uses an approach developed at the Institute for Water Research 

(Hughes et al., 2011c), which is based on correcting the main statistical distribution 

characteristics of the baseline data to the historical data and then applying the same correction to 

the near future data to remove bias in both means and standard deviations. In this approach, the 

future monthly rainfalls are expressed as standard deviates of the baseline monthly distributions 

(using log values) and the standard deviates are rescaled with the monthly distribution statistics 

of the historical rainfall data (Equation 1). These procedures are implemented in the SPATSIM 

(Spatial and Time Series Modelling System) modelling framework. Figure 8.5 shows the results 

of bias correction for a downstream sub-basin (O-CB82), including the three selected GCMs.  

)/)(*( jkjkijkjjijk LBRsdLBRMLFRLHRsdLHRMEXPFRC −+=    Equation 8.1 

where: 

FRCi = Future rainfall after correction for month i and calendar month j in the time series of 

GCM k. 

LFRi = Logarithm of future rainfall for month i and calendar month j in the time series of GCM 

k. 

LBRMj = Mean of the logarithms of baseline rainfalls for GCM k and calendar month j. 
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LBRsdj = Standard deviation of the logarithms of baseline rainfalls for GCM k and calendar 

month j. 

LHRMj = = Mean of the logarithms of the observed historical rainfalls for calendar month j. 

LHRsdj = Standard deviation of the logarithms of observed historical rainfalls for calendar 

month j. 

8.2.5 Evaporation demand  

Long-term rainfall time series data and seasonal distribution of potential evapotranspiration are 

the main inputs that are used to drive the hydrological processes for the GW-PITMAN model.  

There is no provision for evaporation demand in the CSAG GCM data, but this can be estimated 

through a relatively simple approach based on percentage increase in the minimum and 

maximum values of temperature data for the baseline and future climate models (Equation 8.2, 

Hughes et al., 2011b). The percentage increase in the future temperature from the baseline 

scenarios is then used to rescale the historical seasonal distribution of potential 

evapotranspiration for the future scenarios.  

)(*2/)( TMinkTMaxkSQRTTMinkTMaxkHCk −+=     Equation 8.2 

where: 

HCk = Temperature component of the Hargreaves equation for GCM k, calculated for baseline 

and future conditions. 

TMaxk = Daily maximum temperature for GCM k. 

TMink = Daily minimum temperature for GCM k. 



248 

 

0.0

50.0

100.0

150.0

200.0

250.0

300.0

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep

Mo
nth

ly r
ain

fal
l (m

m)

CNRM-CM 3
CRU TS 2.1 CNRM-BL

CNRM-NF CNRM-NFC

0.0

50.0

100.0

150.0

200.0

250.0

300.0

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug SepMo
nth

ly r
ain

fal
l (m

m)

GISS-ER
CRU TS 2.1 GISS-BL

GISS-NF GISS-NFC

0.0

50.0

100.0

150.0

200.0

250.0

300.0

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep

Mo
nth

ly r
ain

fal
l (m

m)

MPI-ECHAM 5

CRU TS 2.1 MPI-BL

MPI-NF MPI-NFC

 

Figure 8.5 Seasonal distributions of the monthly rainfall data before and after bias correction 

for three climate models (a) CNRM, (b) GISS and (c) MPI (BL: Baseline, NF: 

Near future, NFC: Near future corrected).   

8.2.6 Experimental setup 

The experimental setup for both baseline and near future scenarios of climate change was 

achieved within SPATSIM for the selected GCMs. Both the ordinary version and the uncertainty 

framework of the GW-PITMAN model were used to simulate the future scenarios of climate 

change and to evaluate their impact on the availability of water resources. The ordinary version 

of the GW-PITMAN uses a single set of model parameters for each sub-basin to simulate a 

single set of state variables of surface and sub-surface processes for both present-day and future 

scenarios, and the percentage change of the simulated future variables from the historical states 
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is calculated in order to evaluate the magnitude of impacts. The parameters derived from manual 

calibration of the model (Chapter 6) are used for this purpose. In the uncertainty version of the 

model, a range of parameter inputs representing uncertainty is used as frequency distributions 

(normal distribution, see Chapter 7) to simulate an ensemble of future scenarios, which gives a 

picture of uncertainty in future projections. In this exercise, the parameter ranges of the 

physically-based a priori parameter estimation (Chapter 7) are used.  

8.3 Results  

Table 8.4 shows the observed and simulated values of the water balance for the historical 

(present-day) conditions. Figure 8.6 shows change in the values of the water balance components 

as the percentage deviation of the simulated near-future hydrological response from the 

historical. The water balance components are expressed as the long-term mean monthly values. 

The results are presented for selected headwater (O-CB14, O-CB24, O-CB44, O-CB56, and S-

CB18) and downstream (O-CB29, O-CB82 and S-CB71) sub-basins. The selected sub-basins are 

representative of four out of the six groups of regional flow duration curves, which were 

developed earlier in Chapter 4 of this study for the whole Congo Basin, namely RFDC I (O-

CB14, O-CB24, O-CB44, O-CB82), RFDC II (S-CB18 and S-CB71), RFDC III (O-CB 29) and 

RFDC V (O-CB56). There is no substantial change in the near future rainfall simulated by the 

three climate models as compared to the historical CRU TS 2.1 (Table 8.4 and Figure 8.6a). 

However, for all the three GCMs used in the study, relatively substantial changes are observed in 

potential evapotranspiration (Table 8.4 and Figure 8.6c), which consequently affects the 

simulated soil moisture store (Table 8.4 and Figure 8.6d), surface runoff (Table 8.4 and Figure 

8.6e), soil moisture runoff (Table 8.4 and Figure 8.6f) and recharge (Table 8.4 and Figure 8.6g).  

There is little consensus in the direction of rainfall for all three models. The percentage change in 

rainfall ranges from -1.49 to 6.6%. Between all three models, CNRM shows little variation from 

the historical rainfall condition (-0.46 to 2.4%). Notable change in rainfall is observed with MPI-

ECHAM (-1.49 to 6.62%) and GISS (-0.31 to 6.25%). CNRM also shows little change in the 

pattern of interception (-2.08 to 0.48%), while substantial change is observed with MPI-ECHAM 

(-5.53 to 4.28) and GISS (0.5 to 3.39).  There is a substantial increase in the magnitude of 
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potential evapotranspiration for all three models with the percentage change ranging from 9.7 to 

10.3% for CNRM, 8.5 to 9.75% for MPI-ECHAM, and 8.93 to 9.29% for GISS. The implication 

of this increase of about 10% in potential evapotranspiration and very little increase in rainfall in 

general is observed in the pattern of soil moisture store, soil moisture runoff and recharge, which 

all show a decrease for the three GCMs (Figure 8.6).  Surface runoff shows a decrease only for 

the downstream sub-basins.  

Figure 8.7 shows change in the magnitude, duration and frequency of simulated near-future 

runoff as compared to the present day condition. In general, major changes occur at the high flow 

components of the FDC while the low flows are less affected and, in most cases, remain close to 

the historical observed flow conditions. A slight increase in runoff for the most eastern 

headwater sub-basins of the Oubangui (O-CB14 and O-CB24) is due to an increase in the near-

future rainfall for all the three GCMs, with substantial increase in soil moisture store.   

Table 8.4 Simulated mean monthly values of the present-day hydrological response 

characteristics for selected sub-basins of the Northern Congo Basin. 

Observed

rainfall (mm)

Interception 

(mm)

PEVAP

(mm)

Soil moisture 

store (mm)

Surface 

runoff  (mm)

Soil moisture 

runoff (mm)

Recharge 

(mm)

Totalrunoff 

(Mm3)

O-CB14 120 19.9 130.0 690 15.5 2.7 0.9 356

O-CB24 128 20.9 131.6 771 15.7 3.5 0.9 499

O-CB29 131 33.6 112.9 1099 1.6 21.4 5.6 900

O-CB44 127 21.4 136.8 591 16.7 3.1 4.2 1071

O-CB56 130 22.7 126.0 913 7.9 5.8 7.5 1084

O-CB82 128 31.0 122.0 434 14.3 3.4 3.3 10119

S-CB18 123 25.2 122.1 918 8.1 14.3 4.5 526

S-CB71 136 37.7 79.3 1346 10.1 24.5 12.9 4380
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(a)  Rainfall CNRM MPI-ECHAM GISS
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(b)  Interception CNRM MPI-ECHAM GISS
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(e)  Surface runoff CNRM MPI-ECHAM GISS
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(f)  Soil moisture runoff CNRM MPI-ECHAM GISS

-50

-40

-30

-20

-10

0

10

20

O
-C

B
14

O
-C

B
24

O
-C

B
29

O
-C

B
44

O
-C

B
56

O
-C

B
82

S
-C

B
18

S
-C

B
71%

 d
ev

ia
tio

n 
fr

om
 h

is
to

ri
ca

l 
m

on
th

ly
  f

lo
w

(h)  Total sub-area runoff CNRM MPI-ECHAM GISS

 

Figure 8.6  Change from the present-day mean monthly values of the simulated hydrological 

response of the Northern Congo Basin due to change in the near-future climate. 
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Figure 8.7 Change in magnitude, frequency and duration of the present-day hydrological 

response due to change in the near future for headwater and downstream sub-

basins. 
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Given the differences in the variables simulated by the GCMs, it is important to look at the range 

of projections from different models rather than just relying on a single result chosen from many 

possibilities (CSAG, 2012). An explanation for this is that reliance on a range of projections 

from different models may provide a basis for suitable adaptation measures which take into 

account different sources of uncertainty in GCMs. Figure 8.8 shows the results of uncertainty 

analysis for the two outlet gauging sites of the Oubangui (O-CB82) and Sangha (S-CB71) 

drainage areas, respectively. Simulated uncertainty for a headwater gauging site (O-CB14) in the 

eastern part of Oubangui and a downstream gauging site (O-CB29) in the western part of 

Oubangui are also presented. 

The uncertainty analysis is based on comparison of the 5th and 95th percentiles of the simulated 

output ensembles. In the O-CB82 gauging site, the simulated uncertainty band (5th-95th) for the 

near-future projection scenario shows substantial uncertainties from the present-day conditions. 

For all three models, the observed historical flow lies outside of the uncertainty band at low and 

high flows. The largest uncertainty occurs at high flow which shows a substantial decrease from 

the historical flow.  In the Sangha drainage area, all three models perform differently with the 

worst simulation being produced by CNRM where the uncertainty band lies entirely below the 

observed historical flow. MPI-ECHAM and GISS do not show substantial uncertainties from the 

present-day conditions.  
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Figure 8.9 Simulated uncertainty for the near future projection (band) compared to the 

historical flow (solid line). 
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8.4  Discussion and conclusion 

The various sources of uncertainty in climate change scenarios are related to the inherent 

properties of GCMs, limited spatial coverage of downscaled data used as input to hydrological 

models, and methods of interpolation from point data to obtain an average spatial coverage of the 

climate variables. The GCM scenarios used in this study were obtained from interpolation of a 

very sparse point dataset which could be a potential source of uncertainty in the simulated 

scenarios of future climate conditions. The results from the models should be viewed in the light 

of this problem.  

Earlier predictions of future environmental conditions for the Congo Basin emphasise an 

increase in runoff with risk of flooding and siltation. Of course, these predictions are equivalent 

to lumped processes over a large area of about 3.7 x 106 km2 and do not consider the spatial 

variability at small scale. The northern part of the Congo Basin is located in a transitional 

tropical zone (Orange et al., 1997) where slight changes in climate condition will affect the 

runoff generation processes. Based on the analysis of rainfall variability over Africa for the last 

three decades of the 20th century, Hulme et al. (2001) reported a decrease of about 2.4±1.3 % per 

decade in rainfall for the tropical rainforest regions of Africa.  According to the authors this rate 

was faster in West Africa (4.2 ± 1.2 % per decade) and in the Northern Congo (3.2 ± 2.2 % per 

decade).   

This study was conducted in the northern part of the Congo Basin, which has a transitional 

tropical regime.  Thirty sub-basins were used to capture the variability of the hydrological 

processes at the sub-basin scale. In general terms, the study shows that there is a decrease in 

runoff for the near-future projections. For the three GCMs used in this study, there is very little 

change in rainfall from the historical conditions. The major change is expected in 

evapotranspiration, due to an increase in air temperature. All models predict an increase in near-

future air temperature which ranges around 2oC for the northern part of the Congo Basin. In turn, 

there is a prediction of about 8.5 to 10.3% increase in potential evapotranspiration for all the 

models. As a result, there is a decrease in the state variables of the hydrological processes (soil 



256 

 

moisture store, surface runoff, soil moisture runoff and recharge) which affect the rate of runoff 

for the near-future projections.   

There is a clear indication of the translation of climate signal into flows. The main signal 

predicted is a more than 10% decrease in total runoff, which is the consequence of relatively 

little increase in rainfall and a consistent increase in potential evapotranspiration.  The higher 

increase in rainfall observed in the sub-basins of the Sangha River (S-CB18 and S-CB71), with 

more than 6% for MPI-ECHAM and GISS, is also counter-balanced by an increase in 

interception, thus resulting in reduction of the total runoff (-1.6 to -19.2%). As shown in Figure 

8.6, this reduction is higher in the headwater sub-basin (S-CB18: -13.4 to -19%) than in the 

downstream sub-basin (S-CB71: -1.7 to -5%). In these sub-basins, CNRM shows little increase 

in rainfall (0.08 to 1.03%) and a decrease in the interception values (-1.1 to -1.7%), but its 

contribution to decrease in runoff is higher (-15.9 to -23.2%) than in the case of MPI-ECHAM 

and GISS. These three models perform differently with regard to change in potential 

evapotranspiration, for which CNRM shows a higher increase than the other models. This 

implies that the higher reduction in runoff is essentially the effect of higher increase in potential 

evapotranspiration with little compensation in rainfall and interception. This also implies that the 

area is very sensitive to change in potential evapotranspiration for which little variation will 

affect the total runoff. Increase in monthly potential evapotranspiration counter-balance the 

increase in monthly rainfall with a net effect on runoff.  

O-CB82 and S-CB71 are the main outlet gauging sites of the Oubangui and Sangha drainage 

areas. Their contributions to the total runoff of the Congo Basin in terms of the monthly flow 

volume are in the order of 9.4% and 4.1%, respectively. This study has shown that there is a 

decrease in total monthly runoff volume at these gauging sites. For O-CB82, this decrease is in 

the order of -13%, -14.4% and -12.4% for CNRM, MPI-ECHAM and GISS, respectively; and 

for O-CB71 the respective decrease in runoff is about -15.9%, -1.7% and -4.9%. Assuming that 

all conditions in the Congo Basin remain constant, then the impact of climate change on the total 

runoff of the Congo Basin, caused by the reduced runoff in the Oubangui and Sangha drainage 

areas will be minimal. With respect to contribution from Oubangui, the change will be in the 

order of -0.15%, -0.17%, and -0.14% for CRNM, MPI-ECHAM and GISS, respectively. 
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Likewise, for Sangha the change will be of about -0.19%, -0.02%, and -0.05% for CRNM, MPI-

ECHAM and GISS, respectively. Many % change values are within bounds of modelling uncertainty 

and thus may not be statistically different. The methods used in this part of the study for choosing 

skilful climate models would need further development to consider the performance of climate 

models with regard to seasonal variation (e.g. Climate Future Framework approach by Clarke et 

al., 2011). 
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CHAPTER 9 CONCLUSION AND RECOMMENDATIONS 

The present study was carried out with the aim of addressing the challenges of hydrological 

modelling and water resources estimation of the Congo Basin. The main research questions 

covered in this study are the lack of adequate data for hydrological information, the lack of 

modelling tools that could be used to adequately represent the hydrology of the basin, the 

uncertainties due to the application of models in the basin, and the uncertainties about future 

environmental changes. This chapter summarises the main findings that come from the model 

application in the Congo Basin and makes recommendations for further improving the 

hydrological model of the Congo Basin.  

9.1 A database for hydrological information of the Congo Basin.  

Data required for hydrological modelling and prediction in a river basin encompass the attributes 

of the physical basin properties such as climate, topography, land cover, soil types, geology and 

hydrogeology. Streamflow data are also required for constraining the inevitable uncertainty in 

model simulations and/or to validate model results. A review of previous studies that attempted 

to model the hydrology of the Congo Basin showed that a lack of data was a major constraint to 

successful model applications in the basin. The development of an appropriate database was 

therefore a prerequisite to undertaking any modelling experiments. In hydrological modelling, 

data are not only used as input to the model, but also to assess the characteristics of 

physiographic controls that influence runoff generation processes, and to discover relationships 

between different physical features of a basin. Understanding these relationships should 

contribute to decisions involving conceptual formulations of models and the methods that can be 

used to establish appropriate model parameter sets. One major achievement in this study was the 

development of a database of climate, physiographic, and hydrological characteristics of the 

basin. Several local, regional and global sources of data  were explored, and contributed to 

building a database which included long-term average monthly climate variables, long-term time 

series of monthly rainfall, frequency distributions of the basin elevations and slopes, catchment 

area attributes, drainage network attributes, fractions of land cover and soil types, and time series 

of monthly streamflow records. The database also includes dimensionless attributes of the 
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physical basin characteristics which were developed through empirical relationships. This 

database was constructed for the whole Congo Basin and contributed to the delineation of the 

ninety-nine sub-basins that define the spatial distribution system used for the modelling 

assessments. These data were used to assess similarities between different parts of the basin, to 

relate physical basin attributes with observed runoff responses and to establish hydrological 

model parameter sets that can adequately represent the basin hydrological response in both 

gauged and ungauged parts of the basin. By exploring regional relationships of the basin 

similarity, the study identified relatively homogenous regions of rainfall variability (seven 

regions), physiographic settings (six regions), and hydrological responses (six regions). The first 

observation about these regional groupings is that these three categories of relatively 

homogenous regional characteristics (rainfall variability, physiographic settings, and 

hydrological responses) are sensible with regard to the geographical settings or spatial 

distributions, but the identified overlaps, or relationships, between them are weak. Although 

there are areas that show some overlap, this is not strong enough to provide a convincing 

argument for the inter-dependency between these three categories, partly because of the quality 

of the data used. The datasets of the physiographic characteristics were gathered from various 

global datasets with different resolutions and it is difficult to ensure that they are adequate 

representations of the real basin physiographic settings at the spatial scale used for modelling. 

Another problem was the lack of certain specific types of information, particularly related to sub-

surface processes, that could have been used to further disaggregate some of the identified 

regions.  

The study identified 31 viable gauging sites which were used to construct regional flow duration 

curves based on groupings of similar hydrological responses. Unfortunately, the relatively small 

number of gauging sites and the fact that there are large parts of the 3.7 106 km2 basin that are 

not represented precludes a complete regional response analysis for the whole Congo basin. The 

lack of observed flow data for large parts of the central basin area makes it very difficult to 

identify the runoff response characteristics of these areas and therefore equally difficult to 

establish appropriate model parameter sets. Many of the observed data that are available for the 

Congo Basin are at the outlets of large sub-basins, where it is very difficult to interpret the 
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hydrological response characteristics because of the large scale of the basins and because of a 

multiplicity of interacting processes. These processes include surface and sub-surface response to 

rainfall at the small scale, but also include storage and attenuation effects of wetlands, 

floodplains, natural lakes and the channel systems of large rivers. During the part of the study 

that was designed to interpret the regional runoff response characteristics of the different parts of 

the basin using the flow duration curves derived from observed data, these scale issues were 

recognised but not easily resolved.    

9.2 A hydrological model of the Congo Basin.  

In general terms, the hydrological processes in the Congo Basin are complex. This complexity is 

partly due to different response characteristics of the sub-basins that compose the Congo River 

system and partly due to the scale issues referred to in the previous section. Assessment of the 

basin physical characteristics in this study shows that the basin stretches over a large geographic 

area consisting of different combinations of physiographic characteristics. The seasonal cycle in 

the basin has a bimodal pattern of rainfall distribution. The variability in rainfall reflects the 

dependence of the rainfall on the many external and regional factors which act on atmospheric-

ocean interactions and the monsoonal processes (Balas et al., 2007; Farnsworth et al., 2011). The 

distribution of the land cover over the Congo Basin varies from dense forest cover of the central 

part of the basin to mosaic vegetation types of the peripheral catchments. Variability in land 

cover composition for the basin implies variability in surface canopy which will also affect the 

variability in rainfall interception storage across the basin.  Associated with the types of 

vegetation cover are litter depths and types, rooting depth and densities, all of which have effects 

on the water balance and runoff generation mechanisms (Bonell, 2004; Roberts et al., 2004; 

Chappell et al., 2008). Streamflow volumes in the channels of the flat central basin normally 

exhibit two maxima and two minima each year. During the high water periods, vast areas of land 

adjacent to rivers in the central basin are flooded (Hughes and Hughes, 1987).  

Clearly, to accommodate the above-mentioned variety of physical basin characteristics in 

hydrological modelling of the basin required the identification of an appropriate model structure. 

In addition to the constraints posed by the lack of data, previous modelling studies in the Congo 
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Basin also lacked a thorough understanding of climate-hydrology processes. Because this 

understanding could not be integrated into models to produce an integrated and critical model 

assessment, successful modelling of the Congo Basin has been severely hampered.  This study 

assumed therefore, that an adequate conceptual representation of storages such as interception, 

soil moisture and groundwater, as well as wetland, lake and river systems would represent the 

hydrological behaviour of the system under study. Furthermore, expressing uncertainty in 

simulations would appropriately translate our degree of confidence or belief in processes 

representation.  Following a number of trial manual calibration runs of the GW-PITMAN model 

it was concluded that this model could be successfully applied for hydrological modelling of the 

Congo Basin and has the potential to be used for solving problems of water resources assessment 

and management as well as assessing scenarios of future environmental changes. Part of this 

initial evaluation identified the need to include a wetland/natural reservoir sub-model for some 

parts of the basin and the author collaborated with other colleagues working on hydrological 

modelling of large basins to develop and test this new component of the GW-PITMAN model. 

The conclusions of the study supported the need for such a component and the simulations for 

some of the south-eastern sub-basins of the Congo (including the effects of Lake Tanganyika and 

some large wetlands) were greatly improved. 

The GW-PITMAN model was established through both manual calibration and a priori 

parameter estimation, which is embedded in an uncertainty framework. While the first approach 

was designed to assess the general applicability of the model and identify major errors of input 

data and model structure, the second approach aimed to establish an understanding of the 

processes and identify useful relationships between the model parameters and the variations in 

real hydrological processes, as well as the sensitivity of the simulations to different parameters. 

This approach was also meant to encompass information sharing between the basin physical 

characteristics and the conceptual parameters of the model. Manual calibration established the 

model for the whole Congo Basin, including 99 sub-basins and validated using 31 gauging sites. 

Assessment of the calibration results shows that the model works reasonably well and has been 

able to reproduce the desired characteristics of the hydrological response. The model calibration 

performed successfully in the various areas of the Congo Basin which exhibit inherently 
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different hydrological responses, thus proving to be robust enough to represent the complexity of 

natural processes in the Congo Basin. These areas of the Congo Basin include very wet areas in 

the central basin and more arid areas in some of the headwater sub-basins; areas of low 

topography in the central basin, and upland areas in the primary catchments that flank the Central 

Congo Basin.  

The a priori parameter estimation approach is based on the understanding of the role played by 

the physical basin attributes in conditioning the hydrological response of the catchments, and 

uses measurable physical basin properties to quantify the model parameters directly. The 

parameter estimation procedures established a feasible model parameter space for all of the sub-

basins within the Congo Basin, with an acceptable degree of uncertainty. The results suggest that 

the approach is valuable for model parameter estimation of both gauged and ungauged areas of 

the Congo River Basin.  The main advantage of establishing the feasible model parameter space, 

through a range of uncertain prior parameters for each sub-basin, is that it can be used to assess 

the model behaviour against various inputs including both present-day and future conditions of 

environmental changes. However, the application of the uncertainty version of the model, linked 

to a priori parameter estimation, revealed further issues associated with the appropriateness of 

the available physical basin data, uncertainties due to spatial discretisation of the modelling 

units, model parameter uncertainty, and uncertainty related to the model structure.  

Uncertainty in input data and correct interpretation of the available data: Uncertainties in 

model simulations have multiple sources, including errors of input data, which are exacerbated 

by incorrect interpretation of the data, particularly those data that are not primarily prepared for 

hydrological use. This type of uncertainty is unavoidable, given discrepancies in various global 

datasets of earth observations. These discrepancies result from differences in scales or 

resolutions of the datasets, classification methodology, training data and ground reference data, 

the type of satellite sensors used and the errors due to geo-referencing. Generally, local historical 

rainfall gauges in the Congo Basin are scarce. The paucity of rainfall gauges in the Congo Basin 

also means that scanty observational records are used in the reconstruction and validation of 

global datasets for the basin, thus contributing to potential errors in the quality of the datasets. In 

this study, using two different datasets to assess the uncertainty due to rainfall inputs to the 
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model has revealed that this type of uncertainty could be very important for the basin. In this 

regard, the study concludes that appropriate definition of rainfall input to the model is necessary 

for reducing the predictive uncertainties in the model.  Some of the global datasets on the basin 

physical properties showed inconsistencies in the information provided and the representation of 

the processes in the basin. This was the case for some of the global datasets with average soil 

depth of less than 200 cm, which consistently yielded a shallow soil moisture storage that is 

rapidly exceeded and generates a large amount of runoff during model simulations in the areas 

with higher rainfall. 

Uncertainty due to spatial discretisation of the modelling units: There are various ways of 

reducing uncertainty in model parameter estimation. One of the approaches includes the 

reduction of the spatial scale of the modelling units. The main thrust of this approach is that the 

spatial variability in the physical basin properties determines the uncertainty in model 

parameters, which can be reduced by reducing the modeling scales (Hughes et al., 2011). 

However, adopting a reduced spatial scale of modelling is also reliant upon the availability of the 

physical basin property data at the reduced scale.  This study has demonstrated that uncertainty 

due to this type of exercise can be very important, and can result in a loss of important 

information about the real streamflow response. Part of this problem is attributed to the coarse 

resolution of the datasets used to estimate the parameter values at a reduced modelling scale, and 

the correctness of the interpretation of the hydrological information based on datasets which are 

not prepared for direct use in hydrology. Sometimes a trade-off has to be made between 

capturing the observed hydrological response with uncertainty and reducing uncertainty, but at 

the expense of introducing bias into the simulations of hydrological response.  

Model parameter uncertainty: The basic assumption of the model application in the Congo Basin 

was that uncertainty is unavoidable in hydrological modelling and thus representing these 

uncertainties in model predictions would be the best practice. This was achieved through 

application of the a priori parameter estimation procedures which assume a degree of uncertainty 

in the primary variables of the physical basin properties. The inherent assumption in 

incorporating uncertainty in the parameter estimation procedures is that uncertainty is related to 

the spatial variability of different land cover types and terrain units within the modelling unit. 
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Therefore, different land cover types and terrain units within the modelling unit can be used to 

establish frequency distribution properties of the representative input physical basin 

characteristics. These, in turn, can be used to determine the distribution characteristics of the 

calculated secondary variables of the physical basin characteristics with an acceptable degree of 

uncertainty. The outcome of this procedure is the generation of ensemble predictions 

representing the total uncertainty. 

The application of the model in this study also revealed that there are unknown uncertainties in 

some of the parameters such as the routing parameters CL and TL. Initially, it was assumed in 

this study that the role of the CL parameter would be effectively important only in the 

downstream sub-basins, where channel storage and attenuation effects might be expected to be 

important even at the monthly time scale. The sensitivity analysis in this study suggests that the 

role of this parameter in some of the headwater sub-basins is as important as in the downstream 

sub-basins. However, it is also possible that the attenuation effect that this parameter introduces 

in the model results is associated with other processes that the model is not designed to cater for. 

This observation could be explored further by looking further into the physiographic settings that 

influence or control the runoff generation in these sub-basins and searching for other reasons for 

the existence of attenuation effects that are not adequately addressed in the model structure or 

model parameter sets currently being used. Similarly, exploration of the appropriate TL 

parameter values to apply to large catchments is required in order to reduce uncertainty in the 

model predictions. There is still uncertainty in the parameters of surface runoff for the central 

part of the basin. Comparing the observed flows with the  range of model simulations for the 

most downstream gauging site suggests a model bias toward higher lower flows (than observed) 

and lower high flows. It is also possible that part of this problem could be linked to inadequacies 

in the model structure. Hughes and Hughes (1987) point to flooding of the areas of the land 

adjacent to the rivers during high water periods in the central basin. Bwangoy et al. (2010) 

mapped the wetlands of the central basin using optical satellite imaging and found an area of 

about 359 556 km2 which was occupied by the wetlands.  This information can be explored to 

incorporate the wetland storage processes in the model for the ungauged parts of the central 

basin to remove the identified bias in the shape of the FDC and to reduce uncertainty.  
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Model structure uncertainty:  In applying the model to the Congo Basin, it became clear that the 

wetland and lake processes have to be accounted for if the model is to be widely applicable for 

predictions in the basin. This prompted the development of a wetland land model to compensate 

for inadequate structure of the ordinary GW-PITMAN model. The structure of the wetland 

model was developed so that it complements the main hydrological processes already defined in 

the main model, while accounting for the attenuation and release functions of the lakes and 

wetlands. Application of the wetland model to the Congo Basin has demonstrated the potential of 

improving hydrological predictions while taking into account the functions of the wetland areas. 

The main advantage of the model was particularly illustrated in the simulation of Lake 

Tanganyika where previous simulations could not account for outflow volumes and timing from 

the lake storage. While this approach contributed to substantially reduce uncertainty in model 

predictions, there is still uncertainty, probably due to inadequate definition of the wetland 

parameters. Adequately defining these parameters is related to ground reference data which can 

possibly be provided through field studies or satellite imagery.  

9.3 The use of the model to assess scenarios of change  

GCM data were used to drive the hydrological model of the Congo Basin using a set of baseline 

and near-future scenarios. The results obtained are expected to be useful with regard to the 

development of strategies and adaptation measures to future conditions of environmental change 

in the basin. The world predictions of future environmental conditions for the Congo Basin 

emphasise an increase in runoff with associated risks of flooding and siltation. These predictions 

have been based on large scale simulations and do not take into consideration the spatial 

variability at small scale. This study has demonstrated that there is uncertainty in the use of 

future projections based on averaging large scale processes to obtain a lumped response from a 

basin area of about 3.7 x 106 km2. This may complicate the basin-wide development of water 

resources plans as the adaptation measures for future environmental changes will be based on a 

very large scale which could ignore the possible impacts at smaller scales. In general terms, the 

study shows that the hydrological response of the basin to future conditions of climate change is 

spatially variable.  The monthly time scale used in this study is not able to offer any conclusions 



266 

 

about increased flooding and there remain further uncertainties in the estimation of future 

evapotranspiration rates. The approach used in this study has assumed increases in evaporative 

demand associated with increases in temperature, while several recent studies have questioned 

this rather simplistic relationship (e.g. Roderick and Farquhar, 2002; Eamus and Palmer, 2007; 

Donohue et al., 2010). 

9.4 Recommendations 

As far as the author of this study can determine, this is the first time that a model has been 

established that can adequately simulate the hydrology of the Congo Basin.  This is also the view 

of one of the experts of the Congo Basin who stated that “to my knowledge, this is the first time 

a model has worked reasonably well for the Congo Basin” (Mahé, comm. pers.). It is therefore 

considered important that these research findings are disseminated and further assessed in terms 

of their value for water resources planning and management. Currently the following 

organizations have been established to work towards sustainable water resources management of 

the Congo Basin: the International Commission of the Congo-Sangha-Oubangui (CICOS), the 

Lake Tanganyika Water Authority (LTA), and the water boards of the Southern African 

Development Community (SADC). Therefore, it is intended that these River Basin Organisations 

(RBOs) should be made aware of the results of the study and encouraged to make use of the 

research findings and be trained in their practical application. In addition, scientific 

communication should be boosted through the publication of scientific papers and the 

presentation of the results at conferences and workshops.  

The database of physical basin properties used in this study has been developed from various 

global datasets of climate, digital terrain model, land cover, soil types and geology, and has 

proved to be a valuable tool for understanding the physical relationships of the basin 

physiographic settings and for deriving useful attributes for hydrological modelling in the Congo 

Basin. However, this database was developed in the absence of any field evidence to ascertain 

the validity of the global and regional data, and the plausibility of assumptions about the 

dominant processes in the basin.  Therefore, it is necessary to check the adequacy of the dataset 

through ground-truthing and other local reference data. This process of validation of the dataset 
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would require a programme based on fields visits in the basin, which will not be an easy task in 

such a large region with the difficulties associated with remoteness and physical access.  

Streamflow data used in this study have been obtained without technical information such as 

water heights and rating curves to help deep analysis of uncertainty related to measurement 

errors. This is an aspect that should attract attention for further research on the reliability of the 

discharge data provided by the various distribution centres. As for the Congo Basin, Bultot 

(1971) and Lempicka (1971) provide some information on water heights and rating curves and 

this information could be used to carry out an assessment of the reliability of the historical 

discharge data for the basin. 

The model calibration in this study has proved to be adequate in simulating the desired 

hydrological information for water resources management and planning in the basin. There are 

outstanding modelling issues related mainly to the shortage of the observed data, so it is 

important to explore other sources of the observed historical data that can be used to reduce 

uncertainties and enhance the confidence in model calibration. Satellite imagery and earth 

observational data can be used to improve the definition of model parameter values for the 

ungauged areas and the areas of lakes and wetlands. 

The physically-based a priori parameter estimation procedures have proved to be a valuable tool 

for process understanding and hydrological predictions in the Congo Basin, but remain 

challenged by the lack of appropriate physical basin property data, in particular data on the sub-

surface processes. Closing this gap would ideally be achieved by field observations which, 

however, are extremely difficult to undertake in such a large and remote basin. The alternative of 

using a model, together with earth observation information, appears to be a practical approach. 

Experiments such as the Gravity Recovery and Climate Experiment (GRACE), Light Detecting 

and Ranging (LiDAR) as well as the Shuttle Radar Topographic Mission (SRTM), Moderate 

Resolution Imaging Spectro-radiometer (MODIS), and radar altimetry products are becoming 

useful in detecting soil and groundwater moisture fields, the connectivity of hill slope flow paths, 

patterns of land forms, and generating water height time series in ways that can inform modelling 

studies. Application of such innovative techniques should have a positive impact on data 
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availability and can almost certainly be used to enhance confidence in parameter estimation 

procedures for the Congo Basin.  

The sensitivity tests highlighted the influential and non-influential parameters for the basin. The 

non-influential parameters could be used to reduce the dimensionality of the model parameter 

space, thus increasing the model parsimony. Further analysis involving localised sensitivity is 

required to determine the order of importance of the parameters and how they shape the model 

behaviour. In addition, information from the characteristics of the groups of regional flow 

duration curves developed in this study can be used to constrain model predictions in ungauged 

areas.  

The GCM scenarios used in this study were obtained from interpolation of a very sparse point 

dataset which could be a potential source of uncertainty in the simulated scenarios of future 

climate conditions. It is therefore important to assess the dynamics of future scenarios of 

environmental change over the whole basin, based on a refined coverage of GCM data.  

Finally, it is argued that this study has made some substantial contributions to the understanding 

of the hydrology of the Congo River Basin as well as producing some practical modelling tools 

that should be of benefit to water resources managers. However, there remain a number of 

scientific uncertainties and the focus of future research work should be orientated towards 

closing the identified gaps. The focus of future activities from the perspective of practical 

application should be on dissemination of the knowledge generated by this study as well as on 

training in the use of the developed water resources assessment techniques. 
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APPENDICES 

Appendix A  Physical property attributes for the 99 sub-basins.    

Table 4.1d Estimates of the physical basin attributes (land cover) for the 99 sub-basins. 

Sub-basin 
ID A11 A121 A122 A123 A24 B15 B16 B28 
1 10.86 24.69 53.62 10.35 0.47 0 0 0
2 0.01 99.75 0.24 0 0 0 0 0
3 21.41 40.32 0.71 0.35 0.75 0.11 0 36.35
4 7.45 92.24 0 0 0.3 0 0 0
5 17.22 67.06 9.87 0 5.85 0 0 0
6 18.46 76.15 1.02 0.15 4.2 0 0 0.01
7 0.48 97.37 1.51 0.04 0.6 0 0 0.01
8 0.31 62.99 36.69 0 0 0 0 0
9 6.21 65.77 27.66 0.35 0.01 0 0 0
10 0.81 90.88 7.45 0.67 0.17 0 0 0.02
11 32.48 42.98 20.22 2.5 1.52 0.3 0 0.02
12 10.13 88.6 1.03 0.01 0.24 0 0 0
13 9.3 87.44 3.23 0.01 0 0 0 0.02
14 0.43 75.95 23.49 0 0.13 0 0 0
15 8.57 32.62 31.48 26.55 0.78 0 0 0.01
16 34.87 54.99 8.55 0.78 0 0.02 0.02 0.78
17 31.44 42.21 18.13 7.96 0.27 0 0 0
18 0.48 97.95 1.56 0 0 0 0 0
19 10.32 80.85 1.99 0 6.83 0 0 0
20 3.72 95.95 0 0 0.28 0 0 0.04
21 7.86 90.2 0.02 0 1.91 0 0 0
22 0.85 98.28 0.4 0 0.3 0 0.02 0.15
23 0.67 89.59 6.47 0.97 0.9 0 0.02 1.39
24 5.44 86.99 3.14 0 4.42 0 0 0
25 40.69 54.17 3.67 0 1.48 0 0 0
26 0.85 98.28 0.4 0 0.3 0 0.02 0.15
27 2.29 38.45 59.26 0 0 0 0 0
28 1.53 93.04 4.23 0.97 0.23 0 0 0
29 1.17 97.87 0.21 0 0.73 0 0 0.01
30 6.99 91.34 0.46 0 0.76 0 0 0.46
31 1.45 56.07 42.48 0 0 0 0 0
32 28.6 63.85 2.33 1.86 3.24 0 0 0.12
33 0.05 99.16 0.78 0 0 0 0 0
34 14.75 85.11 0 0 0.12 0 0 0.02
35 4.65 84.33 5.27 0.18 5.55 0 0 0.04
36 4.65 84.33 5.27 0.18 5.55 0 0 0.04
37 2.35 83.21 11.39 2.01 1 0 0 0.04
38 15.71 65.78 15.93 0 2.53 0 0 0.05
39 4.65 84.33 5.27 0.18 5.55 0 0 0.04
40 6.26 86.21 6.38 0.06 0.86 0 0 0.22
41 11.45 82.91 0.02 0 5.61 0 0 0.01
42 10.28 81.88 1.15 0 6.67 0 0 0.01
43 6.33 71.47 21.19 0.31 0.67 0 0 0.03
44 14.3 62.22 23.31 0.01 0 0 0 0.15
45 23.57 53.86 15.27 0.64 6.59 0 0 0.08
46 22.07 68.75 3.2 0.01 5.97 0 0 0
47 3.52 78.92 11.58 1.23 3.98 0 0 0.76
48 18.98 79.88 0.45 0.01 0.62 0 0 0.06
49 1.08 94.33 4.6 0 0 0 0 0
50 14.59 56.7 0.02 0 28.46 0 0 0.23

 

 



290 

 

Table 4.1d Continued 

Sub-basin 
ID A11 A121 A122 A123 A24 B15 B16 B28 
51 28.09 52.01 11.06 0.98 7.78 0 0 0.08
52 2.99 91.82 0.06 0 5.07 0 0 0.06
53 1.92 94.8 2.42 0.08 0.71 0 0 0.08
54 17.21 66.86 0.78 0.04 14.89 0 0 0.21
55 15.39 71.97 0.71 0.09 11.72 0 0 0.13
56 2.62 93.65 3.45 0 0 0 0 0.28
57 3.32 95.11 0.79 0.01 0.5 0 0 0.27
58 4.34 93.33 0 0 1.91 0 0 0.42
59 5.15 86.68 5.79 1.5 0.84 0 0 0.04
60 14.45 67.2 3 0 15.1 0 0.02 0.22
61 14.19 75.8 1.94 0.4 7.34 0 0 0.35
62 35.91 43.26 4.25 0.1 15.77 0 0.02 0.7
63 9.6 75.26 0.14 0.02 14.74 0 0 0.24
64 4.82 79.87 9.8 2.01 3.46 0 0 0.04
65 2.49 73.27 16.08 0.32 3.87 0 0 3.96
66 24.87 64.7 1.76 0.44 8.02 0 0 0.19
67 26.44 59.1 5.3 0 8.27 0 0 0.89
68 0.57 81.42 17.55 0.05 0.25 0 0 0.16
69 16.34 62.95 14.63 1.54 4.06 0.07 0 0.4
70 34.47 47.31 1.96 0.19 15.94 0 0 0.13
71 2.97 92.93 0.87 0.04 2.57 0 0 0.61
72 1.7 83.55 0.05 0.01 13.82 0 0 0.87
73 9.66 78.86 6.79 0.43 4.01 0 0 0.23
74 11.01 70.13 7.4 0.61 7.19 0 0 3.67
75 2.5 77.99 18.33 0.7 0.27 0 0 0.2
76 17.55 74.49 0.98 0.04 5.92 0 0 1
77 8.33 61.84 11.58 0.31 3.51 0 0 14.45
78 55.05 32.18 4.52 0.54 5.71 0 0.1 1.91
79 29.47 62.36 1.47 0.56 5.32 0 0 0.81
80 11.99 45.78 7.62 0.47 0.39 0.19 0 33.56
81 7.43 86.13 5.03 0.2 1.14 0 0 0.08
82 4.52 89 1.43 0 4.37 0 0.08 0.61
83 2.68 78.92 1.26 0 14.85 0.24 0.18 1.86
84 6.6 75.21 0.85 0.03 16.7 0 0.01 0.6
85 39.79 39.91 0.43 0.94 17.17 0 0 1.76
86 10.24 79.09 6.62 1.03 2.61 0 0 0.42
87 20.67 73.64 1.15 0.02 4.24 0 0 0.27
88 9.4 51.78 0.34 0.1 34.98 0 0 3.39
89 24.59 70.45 2.01 0.06 2.4 0 0 0.48
90 26.49 72.27 0.02 0 0.94 0 0 0.27
91 12.26 85.97 0.01 0 1.14 0 0 0.61
92 9.36 83.32 0 0 6.3 0 0 1.02
93 11.12 87.96 0 0 0.37 0 0 0.54
94 25.03 55.42 0.27 0.01 17.57 0 0 1.7
95 6.13 32.15 3.19 0.02 55.66 0 0 2.85
96 10.66 32.31 43.73 7.11 4.35 0 0 1.84
97 15.42 39.51 39.23 1.75 1.19 0.69 0 2.21
98 13.15 33.15 50.54 0.8 1.33 0 0 1.02
99 17.65 42.59 36.36 1.69 0.78 0 0 0.93
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Table 4.1e Estimates of the physical basin attributes (available water content) for the 99 sub-

basins.  

Sub-basin 
ID AWC1 (150 mm) AWC2 (125 mm) AWC3 (100 mm) AWC4 (75 mm) AWC5 (50 mm) AWC6 (15 mm) AWC7 (0 mm)
1 32.99 0 67.01 0 0 0 0
2 0.33 0 96.71 0 2.96 0 0
3 62.04 0 1.2 0 0 0 0
4 100 0 0 0 0 0 0
5 100 0 0 0 0 0 0
6 41.5 0 58.5 0 0 0 0
7 61.33 0 38.68 0 0 0 0
8 0 0 0.3 0 99.71 0 0
9 40.63 0 59.37 0 0 0 0

10 100 0 0 0 0 0 0
11 88.91 0 0 0 11.1 0 0
12 99.99 0 0 0 0 0 0
13 100 0 0 0 0 0 0
14 6.37 0 0 0 93.54 0.09 0
15 43.01 0 56.98 0 0 0 0
16 97.54 1.7 0 0 0 0 0
17 57.06 0 42.93 0 0 0 0
18 0.94 0 35.96 0 63.11 0 0
19 99.99 0 0 0 0 0 0
20 100 0 0 0 0 0 0
21 100 0 0 0 0 0 0
22 0 0 2.58 0 97.39 0 0
23 98.47 0 0 0 0 0 0
24 39.2 0 0.03 0 60.75 0 0
25 99.98 0 0.02 0 0 0 0
26 2.1 0 1.96 0 88.72 7.21 0
27 5.51 0 1.57 0 92.9 0.02 0
28 49.47 0 50.52 0 0 0 0
29 7.93 0 78.27 0 13.8 0 0
30 0 0 7.45 0 92.55 0 0
31 9.87 0 44.71 0 45.43 0 0
32 29.2 0 70.79 0 0 0 0
33 9.75 0 1.55 0 88.71 0 0
34 99.99 0 0 0 0 0 0
35 99.99 0 0 0 0 0 0
36 81.85 0 18.04 0 0 0 0
37 10.13 0 89.86 0 0 0 0
38 100 0 0 0 0 0 0
39 41.59 0 0.78 0 57.63 0 0
40 100 0 0 0 0 0 0
41 100 0 0 0 0 0 0
42 93.96 0 4.2 0 1.84 0 0
43 98.81 0 0.64 0 0 0.07 0.48
44 0 0 18.6 0 81.41 0 0
45 100 0 0 0 0 0 0
46 59.05 0 7.87 0 33.09 0 0
47 68.61 30.54 0 0 0 0 0
48 99.98 0 0 0 0 0 0
49 0.01 0 73.34 0 26.66 0 0
50 99.99 0 0 0 0 0 0
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Table 4.1e Continued 

Sub-basin
ID AWC1 (150 mm) AWC2 (125 mm) AWC3 (100 mm) AWC4 (75 mm) AWC5 (50 mm) AWC6 (15 mm) AWC7 (0 mm)
51 92.19 0 7.74 0 0 0 0
52 80.86 0 0 0 19.13 0 0
53 99.97 0 0 0 0 0 0
54 99.6 0 0 0 0 0 0
55 99.59 0 0 0 0 0 0
56 1.99 0 5.06 0 92.96 0 0
57 37.97 0 34.55 0 27.48 0 0
58 100 0 0 0 0 0 0
59 55.98 0 42.51 0 0 1.52 0
60 99.74 0 0 0 0 0 0
61 99.81 0 0 0 0 0 0
62 42.94 0 0 0 55.1 0 0
63 99.99 0 0 0 0 0 0
64 28.67 0 71.27 0 0 0 0
65 96.24 0 0 0 0 0 0.02
66 99.8 0 0 0 0 0 0
67 97.95 0 0 0 0 0 0
68 99.99 0 0 0 0 0 0
69 76.53 15.28 3.94 0 3.84 0 0
70 88.45 0 0 0 10.42 0 0
71 41.98 0 1.42 0 56.61 0 0
72 73.77 0 19.3 0 6.92 0 0
73 6.85 0 93.13 0 0 0 0
74 96.79 0 0 0 0 0 0
75 100 0 0 0 0 0 0
76 93.89 0 4.66 0 0 0 0
77 86 0 0.55 0 0 0 0
78 65.1 0 0 0 31.44 0 0
79 85.33 0 13.56 0 0 0 0
80 62.03 0.11 0.13 0 4.15 0 0
81 99.99 0 0 0 0 0 0
82 52.41 0 0 0 44.96 1.36 0
83 81.72 0 0 0 10.46 0 0
84 74.64 0 22.21 0 1.72 0 0
85 93.83 0 4.24 0 0 0 0
86 99.67 0 0 0 0 0 0
87 99.51 0 0 0 0 0 0
88 92.93 0 4.08 0 0 0 0
89 99.38 0 0 0 0 0 0
90 99.86 0 0 0 0 0 0
91 99.55 0 0 0 0 0 0
92 98.78 0 0 0 0 0 0
93 99.55 0 0 0 0 0 0
94 97.19 0 0 0 0 0 0
95 94.9 0 1.69 0 0 0 0
96 6.05 0 92.61 0 0 0 0
97 39.66 0 58.04 0 0 0 0
98 99.11 0 0.11 0 0 0 0
99 98.79 0 0.13 0 0.21 0 0
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Table 4.1f Estimates of the physical basin attributes (top soils: 0-30cm) for the 99 sub-

basins.  

Sub-basin 
ID

Sand 
fraction

Silt
fraction

Clay
fraction

Clay
(Heavy) 

Silty
clay    

Clay 
(light)   

Silty clay
loam  Clay loam   Silt   Silt loam    

Sandy 
clay   Loam    

Sandy 
clay
loam    

Sandy
loam  

Loamy 
sand   Sand   

1 85.8 6.8 7.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 16.1 16.5 66.6
2 87.9 5.4 6.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.3 0.0 0.0 96.7
3 32.2 24.3 43.5 6.0 0.0 24.3 4.3 3.8 0.0 2.2 18.1 0.3 0.8 3.4 0.0 0.0
4 27.7 31.3 40.9 5.3 0.8 8.6 40.2 0.0 0.0 0.0 30.4 0.0 14.8 0.0 0.0 0.0
5 49.7 16.2 34.1 0.0 0.0 23.0 0.0 0.0 0.0 0.0 0.0 0.0 77.0 0.0 0.0 0.0
6 65.0 6.7 28.3 0.0 0.0 40.2 0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0 0.0 58.5
7 61.0 12.2 26.8 0.1 0.0 59.3 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 38.7
8 57.3 14.9 27.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 99.7 0.0 0.0 0.3
9 70.0 8.2 21.8 13.2 0.0 8.8 8.3 0.0 0.0 0.0 0.0 0.0 6.5 3.9 3.0 56.4
10 17.0 20.4 62.6 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
11 36.8 14.0 49.2 40.2 0.0 34.6 0.0 0.0 0.0 10.8 0.0 0.8 13.3 0.4 0.0 0.0
12 21.1 38.5 40.4 0.0 1.2 32.2 49.7 0.0 0.0 0.0 0.0 0.0 16.9 0.0 0.0 0.0
13 14.5 40.8 44.7 6.2 6.7 30.5 52.5 0.0 0.0 0.0 0.0 0.0 4.1 0.0 0.0 0.0
14 57.6 15.5 26.9 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 6.4 93.5 0.0 0.0 0.0
15 81.0 10.4 8.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.3 0.0 14.6 27.2 50.0
16 33.5 20.4 46.1 15.0 0.0 39.7 0.0 22.0 0.0 0.0 9.4 3.0 10.1 0.0 0.0 0.0
17 79.5 9.7 10.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.7 0.0 43.1 20.8 29.5
18 57.4 15.1 27.5 0.0 0.0 29.2 0.0 0.0 0.0 0.0 0.0 0.0 34.9 0.0 0.0 36.0
19 34.9 29.8 35.3 0.0 1.4 24.6 20.1 12.6 0.0 0.0 1.2 0.0 40.2 0.0 0.0 0.0
20 32.6 16.2 51.2 43.0 0.0 10.1 8.1 0.0 0.0 0.0 20.8 0.0 18.0 0.0 0.0 0.0
21 48.3 10.4 41.3 0.0 0.0 56.6 0.0 0.0 0.0 0.0 0.0 0.0 43.4 0.0 0.0 0.0
22 67.6 11.3 21.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 75.4 0.0 0.0 0.0
23 17.9 21.0 61.1 94.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 3.0 0.4 0.0 0.0 0.0
24 53.3 16.6 30.1 0.0 0.0 22.3 0.0 0.0 0.0 0.0 0.0 12.0 65.6 0.0 0.0 0.0
25 53.2 13.9 32.9 0.0 0.0 12.2 0.0 0.0 0.0 0.0 0.0 0.0 87.8 0.0 0.0 0.0
26 58.6 15.8 25.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.3 88.8 0.0 0.0 0.0
27 57.0 16.0 27.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.5 92.9 0.0 0.0 1.6
28 84.0 3.1 12.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 31.0 0.0 18.1 50.5
29 82.5 7.2 10.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 20.2 0.0 0.0 0.0
30 62.2 13.3 24.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 92.6 0.0 0.0 0.0
31 70.1 12.6 17.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.9 45.4 0.0 0.0 44.7
32 72.4 5.2 22.4 0.0 0.0 28.7 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 70.8
33 59.5 14.2 26.3 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 98.4 0.0 0.0 1.6
34 21.1 37.7 41.2 0.8 6.6 16.4 50.3 0.0 0.0 0.0 20.4 0.0 5.6 0.0 0.0 0.0
35 85.7 1.0 13.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 98.7 0.0
36 50.4 14.8 34.9 0.0 0.0 81.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.0
37 85.9 2.4 11.8 0.0 0.0 9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.0 89.9
38 51.0 15.6 33.4 0.0 0.0 6.7 0.0 0.0 0.0 0.0 0.0 0.0 93.4 0.0 0.0 0.0
39 44.0 17.9 38.1 0.0 0.0 42.4 0.0 0.0 0.0 0.0 0.0 0.6 56.2 0.0 0.0 0.8
40 47.1 20.6 32.3 6.6 0.0 17.6 0.0 18.5 0.0 0.0 0.0 0.9 56.5 0.0 0.0 0.0
41 54.9 10.4 34.7 0.0 0.0 37.7 0.0 0.0 0.0 0.0 0.0 0.0 62.3 0.0 0.0 0.0
42 65.2 16.0 18.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.6 39.1 32.3 13.3 0.7
43 56.1 18.5 25.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.4 82.6 0.0 0.0 0.0
44 66.2 11.5 22.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 81.4 0.0 0.0 0.0
45 51.2 11.8 37.0 14.8 0.0 29.0 0.0 0.0 0.0 0.0 0.0 0.0 9.3 46.9 0.0 0.0
46 50.4 12.6 37.0 0.0 0.0 45.0 0.0 0.0 0.0 0.0 0.0 0.0 47.1 0.0 0.0 0.0
47 17.6 29.3 53.1 65.8 11.0 4.2 0.0 13.5 0.0 0.0 0.0 3.0 1.7 0.0 0.0 0.0
48 53.4 11.4 35.2 19.4 0.0 1.6 0.0 0.0 0.0 0.0 4.5 0.0 74.5 0.0 0.0 0.0
49 80.8 7.5 11.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 26.7 0.0 0.0 73.3
50 77.2 2.4 20.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 52.5 0.0 47.5 0.0
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Table 4.1f Continued 

Sub-basin 
ID

Sand 
fraction

Silt 
fraction

Clay
fraction

Clay
(Heavy) 

Silty 
clay    

Clay 
(light)   

Silty 
clay 
loam  

Clay 
loam   Silt   

Silt 
loam    

Sandy 
clay   Loam    

Sandy 
clay loam    

Sandy 
loam  

Loamy
sand   Sand   

51 46.4 14.5 39.1 9.0 0.0 65.8 0.0 0.0 0.0 0.0 0.0 0.0 15.2 2.2 0.0 7.7
52 58.1 16.1 25.8 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 5.1 94.5 0.0 0.0 0.0
53 54.8 14.6 30.6 2.9 0.0 23.4 0.0 0.0 0.0 0.0 0.0 4.2 69.5 0.0 0.0 0.0
54 33.4 14.1 52.5 0.0 0.0 87.6 0.0 0.0 0.0 0.0 0.0 0.0 12.0 0.0 0.0 0.0
55 63.0 7.1 29.9 0.0 0.0 34.4 0.0 0.0 0.0 0.0 0.0 0.0 11.0 0.0 54.2 0.0
56 76.1 8.9 15.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 40.3 0.0 0.0 57.8
57 68.1 13.2 18.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.9 53.5 0.0 0.0 34.6
58 48.0 10.4 41.6 0.0 0.0 63.4 0.0 0.0 0.0 0.0 0.0 0.0 36.6 0.0 0.0 0.0
59 80.8 5.2 14.0 0.0 0.0 0.0 0.0 1.5 0.0 0.0 0.0 1.0 28.6 19.0 7.5 42.5
60 48.5 13.5 38.0 0.0 0.0 71.0 0.0 0.0 0.0 0.0 0.0 0.0 28.7 0.0 0.0 0.0
61 80.1 2.5 17.4 0.0 0.0 2.5 0.0 0.0 0.0 0.0 0.0 0.0 18.5 11.3 67.5 0.0
62 53.2 16.8 28.1 0.0 0.0 4.3 0.0 0.0 0.0 0.0 0.0 0.0 93.7 0.0 0.0 2.0
63 81.2 1.6 17.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 29.1 0.0 70.9 0.0
64 77.4 4.6 18.0 0.0 0.0 25.9 0.0 0.0 0.0 0.0 0.0 0.0 1.9 0.9 0.0 71.3
65 51.1 20.1 28.9 0.2 0.0 20.8 0.0 0.0 0.0 0.0 0.0 9.4 65.9 0.0 0.0 0.0
66 30.7 13.4 55.9 0.0 0.0 95.5 0.0 0.0 0.0 0.0 0.0 0.0 4.2 0.0 0.1 0.0
67 37.7 11.1 51.2 0.0 0.0 94.2 0.0 0.0 0.0 0.0 0.0 0.0 3.7 0.0 0.0 0.0
68 48.9 15.5 35.5 7.8 0.0 46.0 0.0 0.0 0.0 0.0 0.0 0.0 46.3 0.0 0.0 0.0
69 50.4 13.3 34.3 7.8 0.0 15.4 0.0 0.2 0.0 0.0 29.3 3.1 37.8 0.6 3.9 2.0
70 43.1 15.3 40.5 0.0 0.0 56.4 0.0 0.0 0.0 0.0 0.0 0.0 40.5 0.0 0.0 1.1
71 59.4 16.8 23.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.5 74.9 9.2 0.0 0.0
72 78.6 8.3 13.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.1 7.4 65.9 5.3 0.0
73 88.3 2.6 9.1 0.0 0.0 4.3 0.0 0.0 0.0 0.0 0.0 0.6 2.0 0.0 0.0 93.1
74 46.7 18.3 31.8 2.5 0.0 35.7 0.0 11.3 0.0 0.0 0.0 2.2 39.1 5.9 0.0 0.0
75 45.0 16.7 38.4 20.0 0.0 32.0 0.0 0.0 0.0 0.0 0.0 2.3 45.8 0.0 0.0 0.0
76 31.4 12.3 54.8 0.0 0.0 93.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4
77 38.0 21.3 40.8 14.4 0.0 36.9 0.0 0.0 0.0 0.0 0.0 4.0 30.6 0.0 0.0 0.6
78 58.9 13.4 24.2 0.0 0.0 12.9 0.0 0.0 0.0 0.0 4.5 0.0 52.9 0.0 0.0 3.5
79 37.5 11.5 49.9 0.0 0.0 83.3 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 1.1
80 48.0 18.2 33.8 2.2 0.2 12.6 0.0 3.7 0.0 0.0 13.2 6.6 28.1 0.0 0.0 0.0
81 39.4 24.4 36.2 0.0 0.0 22.6 2.4 59.8 0.0 0.0 0.8 4.4 10.1 0.0 0.0 0.0
82 45.9 15.5 37.3 16.9 0.0 15.4 0.0 0.0 0.0 0.0 8.7 6.9 50.9 0.0 0.0 1.3
83 28.6 18.4 45.2 56.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 22.7 10.5 2.5 0.0 7.8
84 63.9 10.3 25.7 18.2 0.0 3.5 0.0 0.0 0.0 0.0 0.0 4.4 25.7 24.5 0.0 22.2
85 60.3 12.7 25.1 0.0 0.0 11.8 0.0 0.0 0.0 0.0 0.0 0.0 64.0 0.0 18.1 1.9
86 45.0 24.8 30.2 5.0 1.4 4.0 0.0 37.6 0.0 0.0 0.0 36.0 8.5 7.2 0.0 0.0
87 40.4 27.1 32.6 0.0 15.2 0.0 8.7 25.5 0.0 0.0 8.6 0.9 40.6 0.0 0.0 0.0
88 78.9 3.5 14.5 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 20.9 0.0 71.6 3.0
89 58.5 17.5 24.1 0.0 11.3 0.0 0.0 0.0 0.0 0.0 4.1 3.1 50.1 3.9 26.8 0.0
90 35.4 31.5 32.9 0.0 40.4 0.0 3.8 0.0 0.0 0.0 6.7 0.0 44.6 0.0 4.5 0.1
91 47.3 22.5 29.7 0.0 24.8 0.0 3.1 0.0 0.0 0.0 15.8 0.0 36.2 0.0 19.7 0.5
92 69.9 2.2 26.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 98.7 0.0 0.1 1.2
93 64.5 9.5 25.6 4.3 0.0 0.0 1.2 0.0 0.0 0.0 0.1 0.0 93.9 0.0 0.0 0.5
94 69.2 3.6 24.3 0.0 0.0 2.3 0.0 0.0 0.0 0.0 0.0 0.0 86.9 0.0 8.0 2.8
95 65.1 14.9 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 26.0 44.1 10.4 15.4 0.8
96 88.6 5.9 5.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 18.6 79.9
97 77.4 8.0 14.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 38.9 0.8 18.6 39.4
98 48.4 12.8 38.8 17.9 0.0 18.1 0.3 0.0 0.0 0.0 0.0 0.0 62.8 0.0 0.0 0.1
99 33.5 21.8 44.6 12.0 0.0 50.5 1.9 4.1 0.0 3.4 9.7 0.0 15.8 1.7 0.1 0.0
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Table 4.1g Estimates of the physical basin attributes (sub-soils: 30-100cm) for the 99 sub-

basins.  

Sub-basin 
ID

Sand 
fraction

Silt 
fraction

Clay 
fraction

Clay
(Heavy) 

Silty 
clay    

Clay 
(light)   

Silty clay
loam  

Clay 
loam   Silt   

Silt 
loam    

Sandy
clay   Loam    

Sandy 
clay loam    

Sandy 
loam  

Loamy 
sand   Sand   

1 83.9 6.1 10.1 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 16.1 16.1 0.4 66.6
2 87.6 4.3 8.1 0.0 0.0 0.0 0.0 0.3 0.0 0.0 3.0 0.0 0.0 0.0 0.0 96.7
3 35.5 21.6 42.9 11.0 0.0 22.7 4.3 0.8 0.0 2.2 6.5 0.3 12.0 1.2 2.2 0.0
4 30.9 29.8 39.3 5.3 0.0 39.0 40.2 0.8 0.0 0.0 14.8 0.0 0.0 0.0 0.0 0.0
5 46.5 15.8 37.8 0.0 0.0 23.0 0.0 0.0 0.0 0.0 0.0 0.0 77.0 0.0 0.0 0.0
6 63.5 6.6 29.9 40.2 0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0 0.0 0.0 0.0 58.5
7 58.0 11.0 31.0 0.1 0.0 59.3 0.0 0.0 0.0 0.0 0.0 0.0 0.6 1.4 38.7 0.0
8 47.4 13.0 39.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99.7 0.0 0.0 0.0 0.0 0.3
9 68.2 7.9 23.9 13.2 8.3 8.8 0.0 0.0 0.0 0.0 0.0 4.5 5.9 0.0 3.0 56.4

10 11.3 16.0 72.7 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
11 27.7 8.6 52.6 61.8 0.0 13.0 0.0 0.0 0.0 0.0 9.2 0.0 5.0 0.0 0.0 11.1
12 25.8 36.8 37.4 0.0 0.0 32.2 49.7 1.2 0.0 0.0 16.9 0.0 0.0 0.0 0.0 0.0
13 21.6 38.6 39.8 6.2 0.0 30.5 52.5 6.7 0.0 0.0 4.1 0.0 0.0 0.0 0.0 0.0
14 47.9 14.0 38.1 0.0 0.0 0.0 0.0 6.4 0.0 0.0 93.5 0.0 0.0 0.0 0.0 0.0
15 79.4 9.1 11.5 0.0 0.0 0.0 0.0 8.3 0.0 0.0 0.0 0.0 14.6 20.1 7.0 50.0
16 29.9 18.7 51.4 18.5 0.0 75.5 0.0 0.0 0.0 0.0 2.2 0.0 0.0 3.0 0.0 0.0
17 75.5 8.9 15.6 0.0 0.0 0.0 0.0 6.7 0.0 0.0 0.0 0.0 43.1 7.3 13.5 29.5
18 52.3 12.5 35.3 29.2 0.0 0.0 0.0 11.5 0.0 0.0 23.4 0.0 0.0 0.0 0.0 36.0
19 34.4 27.8 37.8 0.0 0.0 25.8 20.1 14.0 0.0 0.0 40.2 0.0 0.0 0.0 0.0 0.0
20 29.9 14.8 55.3 43.0 0.0 29.5 8.1 0.0 0.0 0.0 11.0 0.0 8.5 0.0 0.0 0.0
21 46.6 9.4 43.9 0.0 0.0 56.6 0.0 0.0 0.0 0.0 43.4 0.0 0.0 0.0 0.0 0.0
22 60.8 11.2 28.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 48.2 0.0 27.2 0.0 0.0 0.0
23 12.0 16.6 71.4 94.0 0.0 1.3 0.0 0.0 0.0 0.0 0.0 3.0 0.1 0.0 0.0 0.0
24 46.3 15.6 38.2 0.0 0.0 22.3 0.0 12.0 0.0 0.0 45.8 0.0 19.8 0.0 0.0 0.0
25 49.4 13.5 37.1 0.0 0.0 12.2 0.0 0.0 0.0 0.0 27.3 0.0 60.5 0.0 0.0 0.0
26 47.3 13.0 32.5 0.0 0.0 0.0 0.0 0.8 0.0 0.0 88.8 1.2 0.0 0.0 0.0 7.2
27 47.9 14.2 37.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 92.9 5.5 0.0 0.0 0.0 1.6
28 79.6 3.8 16.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.3 43.3 5.7 3.8 46.7
29 80.5 6.3 13.1 0.0 0.0 0.0 0.0 1.5 0.0 0.0 20.2 0.0 0.0 0.0 0.0 0.0
30 53.8 13.3 32.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 92.6 0.0 0.0 0.0 0.0 0.0
31 65.9 11.2 22.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 45.4 9.8 0.0 0.0 0.0 44.7
32 71.4 5.1 23.5 28.7 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 5.8 65.0
33 50.4 13.6 36.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 98.4 0.0 0.0 0.0 0.0 1.6
34 27.3 35.4 37.3 0.8 0.0 34.4 50.3 6.6 0.0 0.0 8.0 0.0 0.0 0.0 0.0 0.0
35 80.7 2.0 17.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.0 98.7 0.0 0.0
36 46.7 13.1 40.2 0.0 0.0 81.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.0 0.0
37 84.0 1.9 14.0 4.5 0.0 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 54.9 34.9
38 48.5 15.5 36.0 0.0 0.0 6.7 0.0 0.0 0.0 0.0 0.0 0.0 93.4 0.0 0.0 0.0
39 36.4 15.7 48.0 42.4 0.0 0.6 0.0 0.0 0.0 0.0 56.2 0.0 0.0 0.0 0.0 0.8
40 40.4 19.1 40.5 6.6 0.0 17.9 0.0 18.1 0.0 0.0 56.5 0.9 0.0 0.0 0.0 0.0
41 53.5 9.8 36.8 0.3 0.0 43.1 0.0 0.0 0.0 0.0 10.7 0.0 46.0 0.0 0.0 0.0
42 59.0 14.7 26.3 0.0 0.0 1.8 0.0 12.8 0.0 0.0 39.1 0.0 32.3 9.8 3.5 0.7
43 48.5 17.7 33.8 0.0 0.0 0.0 0.0 16.2 0.0 0.0 82.6 0.6 0.0 0.0 0.0 0.0
44 58.8 11.7 29.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 42.4 0.0 39.1 0.0 0.0 0.0
45 48.4 10.7 40.9 43.7 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 46.9 9.2 0.0 0.0
46 47.5 11.7 40.7 0.0 0.0 59.1 0.0 0.0 0.0 0.0 7.6 0.0 25.5 0.0 0.0 0.0
47 14.5 28.5 57.0 65.8 11.0 14.2 0.0 3.5 0.0 0.0 1.7 3.0 0.0 0.0 0.0 0.0
48 45.4 10.3 44.3 19.4 0.0 9.1 0.0 0.0 0.0 0.0 67.9 0.0 3.7 0.0 0.0 0.0
49 78.3 6.5 15.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 26.7 0.0 0.0 0.0 0.0 73.3
50 72.1 2.5 25.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 39.2 0.0 13.2 47.5 0.0 0.0
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Table 4.1g Continued 

Sub-basin 
ID

Sand 
fraction

Silt 
fraction

Clay 
fraction

Clay
(Heavy) 

Silty 
clay    

Clay 
(light)   

Silty
clay loam  

Clay 
loam   Silt   

Silt 
loam    

Sand
y clay   Loam    

Sandy 
clay loam    

Sandy 
loam  

Loamy 
sand   Sand   

51 44.0 12.7 43.3 20.6 0.0 54.2 0.0 0.0 0.0 0.0 7.9 0.0 2.2 7.3 7.7 0.0
52 49.2 15.4 35.4 0.0 0.0 5.3 0.0 8.7 0.0 0.0 85.9 0.2 0.0 0.0 0.0 0.0
53 59.5 11.0 29.5 2.9 0.0 29.6 0.0 0.0 0.0 0.0 15.6 4.2 0.0 47.7 0.0 0.0
54 28.0 13.7 58.3 78.8 0.0 8.8 0.0 0.0 0.0 0.0 12.0 0.0 0.0 0.0 0.0 0.0
55 57.6 7.5 35.0 34.4 0.0 0.0 0.0 0.0 0.0 0.0 11.0 0.0 0.0 54.2 0.0 0.0
56 72.4 8.3 19.3 0.0 0.0 2.0 0.0 0.0 0.0 0.0 40.3 0.0 0.0 0.0 0.0 57.8
57 62.2 11.7 26.0 0.0 0.0 11.9 0.0 0.0 0.0 0.0 53.5 0.0 0.0 0.0 0.0 34.6
58 49.4 9.7 40.9 0.0 0.0 63.4 0.0 0.0 0.0 0.0 0.2 0.0 36.4 0.0 0.0 0.0
59 77.4 4.5 18.1 1.6 0.0 0.0 0.0 0.0 0.0 0.0 18.9 1.0 12.1 22.4 2.0 40.5
60 43.2 11.3 45.5 0.0 0.0 71.0 0.0 0.0 0.0 0.0 3.3 0.0 25.4 0.0 0.0 0.0
61 74.3 3.1 22.6 2.5 0.0 0.0 0.0 0.0 0.0 0.0 18.5 0.0 11.3 67.5 0.0 0.0
62 43.8 15.7 38.6 0.0 0.0 42.9 0.0 0.0 0.0 0.0 3.3 0.0 51.8 0.0 0.0 2.0
63 75.6 2.2 22.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 26.1 0.0 3.0 70.9 0.0 0.0
64 75.0 4.8 20.2 5.3 0.0 20.5 0.0 0.0 0.0 0.0 1.9 0.0 0.0 0.9 35.2 36.1
65 47.9 17.6 34.4 0.2 0.0 5.3 0.0 9.3 0.0 0.0 81.4 0.0 0.0 0.0 0.0 0.0
66 25.6 13.2 61.2 91.8 0.0 3.7 0.0 0.0 0.0 0.0 4.2 0.0 0.0 0.1 0.0 0.0
67 40.5 9.9 49.6 0.0 0.0 98.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
68 42.6 14.6 42.8 7.8 0.0 46.0 0.0 0.0 0.0 0.0 46.3 0.0 0.0 0.0 0.0 0.0
69 41.6 13.8 38.8 22.7 0.0 0.5 0.0 0.0 0.0 0.0 28.7 0.0 38.8 0.0 3.5 5.8
70 40.1 13.4 45.4 0.0 0.0 88.5 0.0 0.0 0.0 0.0 0.0 0.0 8.4 0.0 0.0 1.1
71 51.3 15.6 33.1 0.0 0.0 8.6 0.0 5.9 0.0 0.0 69.0 5.9 9.2 0.0 0.0 0.0
72 72.0 8.1 19.9 0.0 0.0 0.0 0.0 1.5 0.0 0.0 7.4 0.6 65.9 5.3 0.0 0.0
73 87.8 2.7 9.5 4.2 0.0 0.1 0.0 0.0 0.0 0.0 2.0 0.6 0.0 0.0 0.4 92.8
74 44.6 17.3 38.1 2.5 0.0 35.7 0.0 11.3 0.0 0.0 30.1 2.2 5.9 9.0 0.0 0.0
75 38.7 15.7 45.6 20.0 0.0 32.0 0.0 2.3 0.0 0.0 45.8 0.0 0.0 0.0 0.0 0.0
76 26.8 12.3 59.5 93.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4
77 32.5 19.4 48.1 14.4 0.0 35.2 0.0 4.0 0.0 0.0 32.4 0.0 0.0 0.0 0.0 0.6
78 53.6 11.7 31.3 3.0 0.0 43.1 0.0 0.0 0.0 0.0 0.7 0.0 23.6 0.0 0.0 3.5
79 33.3 11.4 54.2 83.3 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 1.1
80 41.5 17.2 41.3 2.2 0.2 24.0 0.0 5.4 0.0 0.0 24.0 0.0 6.3 0.3 0.0 0.0
81 37.7 24.8 37.5 0.0 0.0 23.4 2.4 59.8 0.0 0.0 10.1 4.4 0.0 0.0 0.0 0.0
82 38.1 13.4 45.9 16.9 0.0 24.0 0.0 1.8 0.0 0.0 43.4 3.7 7.5 0.0 0.0 2.6
83 23.1 15.0 54.0 56.6 0.0 0.0 0.0 0.0 0.0 0.0 10.5 22.7 2.5 0.0 0.0 7.8
84 59.6 8.8 31.6 18.2 0.0 0.0 0.0 8.0 0.0 0.0 11.4 0.0 38.8 0.0 0.0 22.2
85 53.7 11.9 32.5 11.8 0.0 0.0 0.0 0.0 0.0 0.0 55.9 0.0 8.1 18.1 0.0 1.9
86 43.4 23.9 32.7 5.0 0.0 4.0 0.0 39.1 0.0 0.0 8.5 36.0 7.2 0.0 0.0 0.0
87 39.6 24.2 36.2 0.0 0.0 8.6 8.7 40.7 0.0 0.0 40.6 0.9 0.0 0.0 0.0 0.0
88 74.2 4.1 18.7 0.4 0.0 0.0 0.0 0.0 0.0 0.0 11.8 0.0 9.1 71.6 0.0 3.0
89 54.3 15.3 30.4 0.0 0.0 4.1 0.0 11.3 0.0 0.0 50.1 3.1 3.9 26.8 0.0 0.0
90 38.7 25.4 35.7 0.0 0.0 6.7 3.8 40.4 0.0 0.0 44.6 0.0 0.0 4.5 0.0 0.1
91 47.3 19.2 33.0 0.0 0.0 15.8 3.1 24.8 0.0 0.0 36.2 0.0 0.0 19.7 0.0 0.5
92 61.0 2.2 35.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 98.7 0.0 0.0 0.1 0.0 1.2
93 59.8 9.2 30.6 4.3 0.0 0.1 1.2 0.0 0.0 0.0 27.6 0.0 66.3 0.0 0.0 0.5
94 63.0 3.7 30.5 0.0 0.0 2.3 0.0 0.0 0.0 0.0 60.9 0.0 26.1 8.0 0.0 2.8
95 63.4 12.2 24.3 0.0 0.0 0.0 0.0 25.9 0.0 0.0 13.9 0.1 40.5 14.5 0.9 0.8
96 87.4 6.4 6.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 5.9 12.7 79.9
97 75.5 7.8 16.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.7 0.0 26.0 0.0 18.6 39.4
98 43.6 12.3 44.1 17.9 0.3 21.6 0.0 0.0 0.0 0.0 27.2 0.0 32.1 0.0 0.0 0.1
99 27.4 21.2 51.3 15.4 1.9 65.7 0.0 0.0 0.0 3.4 0.4 0.0 12.1 0.0 0.1 0.0
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Table 4.1h Estimates of the physical basin attributes (dominant soils) for the 99 sub-basins.  

Sub-basin
ID Af Ao Bc Be Bh Fh Fo Fp Fr Fx Gd Ge Gh Gp Ix Jd Je Lf Nd Ne Nh Oe Qc Qf Rd Tm Vp WR
1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.4 0.0 0.0 13.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 66.7 1.8 0.0 0.0 0.0
2 1.9 0.0 0.0 0.0 0.0 0.0 0.0 3.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 94.8 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.8 7.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.9 0.0 0.0 0.0 15.1 0.0 13.2 0.0 0.0 0.0 0.0 16.7 0.0 33.7
4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 78.9 0.0 21.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.1 0.0 0.0 0.0 0.0 84.9 0.0 0.0 0.0 0.0
7 0.0 0.0 0.0 0.0 0.0 0.0 73.9 0.0 0.0 26.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
8 0.0 0.0 0.0 0.0 0.0 0.0 4.7 95.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0
9 0.0 0.0 0.0 0.0 0.0 0.0 44.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 55.9 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
11 0.0 0.0 0.0 0.0 0.0 2.8 69.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 24.9 0.0 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 63.5 0.0 36.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 66.6 0.0 33.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
14 0.0 0.0 0.0 0.0 0.0 0.0 33.2 60.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.6 0.0 0.0 30.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 45.0 7.0 0.0 0.0 0.0
16 0.0 0.0 0.0 0.0 19.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 30.1 0.0 27.4 0.0 0.0 0.0 0.0 0.0 21.4 0.7
17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 45.4 0.0 0.0 13.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 27.3 14.0 0.0 0.0 0.0
18 0.7 11.5 0.0 0.0 0.0 0.0 0.2 24.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28.6 0.0 0.0 0.0 0.0 34.1 0.0 0.0 0.0 0.0
19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 36.9 0.0 60.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20 0.0 0.0 0.0 0.0 0.0 0.0 57.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.2 0.0 24.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
21 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
22 0.0 0.0 0.0 0.0 0.0 0.0 45.9 4.2 24.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.6 0.0 0.0 0.0 0.0
23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 84.2 10.5 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.2 0.0 0.0 0.0 0.0 1.6
24 0.0 0.0 0.0 0.0 0.0 0.0 81.7 0.1 3.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
25 0.0 0.0 0.0 0.0 0.0 11.9 58.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 30.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
26 0.0 0.0 0.0 0.0 0.0 0.0 20.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.1 0.0 0.0 0.0 77.2 0.0 0.0 0.0 0.0
27 0.0 0.0 0.0 0.0 0.0 0.0 9.3 82.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 7.2 0.0 0.0 0.0
28 0.0 0.0 0.0 0.0 0.0 0.0 34.2 0.0 0.0 5.1 0.0 0.0 0.0 0.0 0.0 0.0 0.7 5.6 0.0 0.0 0.0 0.0 0.3 54.2 0.0 0.0 0.0 0.0
29 0.0 0.0 0.0 0.0 0.0 0.0 20.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.1 0.0 0.0 0.0 77.2 0.0 0.0 0.0 0.0
30 0.0 0.0 0.0 0.0 0.0 0.0 99.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0
31 0.0 0.0 0.0 0.0 0.0 0.0 9.9 34.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 44.0 11.9 0.0 0.0 0.0
32 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.2 0.0 0.0 0.0 0.0 82.8 0.0 0.0 0.0 0.0
33 0.0 0.0 0.0 0.0 0.0 0.0 67.3 30.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.9 0.0 0.0 0.0 0.0
34 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 42.1 0.0 45.4 0.0 0.0 0.0 0.0 12.4 0.0 0.0
35 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 98.2 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
36 0.0 0.0 0.0 0.0 0.0 0.0 0.0 76.8 0.0 23.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
37 0.0 0.0 0.0 0.0 0.0 0.0 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.7 0.0 0.0 0.0 9.6 84.4 0.0 0.0 0.0 0.0
38 0.0 0.0 0.0 0.0 0.0 0.0 98.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
39 0.0 0.0 0.0 0.0 0.0 0.0 54.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 44.3 0.0 0.0 0.0 0.0 1.3 0.0 0.0 0.0 0.0
40 0.0 0.0 0.0 0.0 0.0 2.4 70.7 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.6 0.0 0.0 0.0 0.0
41 0.0 0.0 0.0 0.0 0.0 0.0 85.5 0.0 0.0 14.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
42 0.0 0.0 0.0 0.0 0.0 0.0 57.2 0.0 0.0 15.1 0.0 0.0 21.9 0.0 0.0 0.0 0.0 0.0 2.1 0.0 0.0 0.0 0.0 0.4 3.2 0.0 0.0 0.0
43 0.1 0.0 0.0 0.0 0.0 0.0 82.0 0.0 0.0 0.0 0.0 16.6 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
44 0.0 0.0 0.0 0.0 0.0 0.0 44.4 0.4 36.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.4 0.0 0.0 0.0 0.0
45 0.0 0.0 0.0 0.0 0.0 0.0 1.8 0.0 4.0 49.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 44.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
46 0.0 0.0 0.0 0.0 0.0 0.0 64.5 0.0 27.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.1 0.0 0.0 0.0 0.0
47 0.0 0.0 0.0 0.0 0.0 0.0 6.1 0.0 51.5 0.0 0.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.0 22.5 0.0 0.0 8.7 0.9
48 0.0 0.0 0.0 0.0 0.0 13.1 0.0 82.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.8 0.0 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
49 0.0 0.0 0.0 0.0 0.0 0.0 12.2 13.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 74.4 0.2 0.0 0.0 0.0
50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 84.8 15.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table 4.1h Continued 

Sub-basin 
ID Af Ao Bc Be Bh Fh Fo Fp Fr Fx Gd Ge Gh Gp Ix Jd Je Lf Nd Ne Nh Oe Qc Qf Rd Tm Vp WR
51 0.0 0.0 0.0 0.0 0.0 0.0 71.8 0.0 0.0 28.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
52 0.0 8.4 0.0 0.0 0.0 0.0 86.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 5.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
53 0.0 0.0 0.0 0.0 0.0 0.0 19.5 0.0 27.8 49.9 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.9 0.0 0.0 0.0 0.0 0.0
54 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 58.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 41.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
55 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
56 0.0 0.0 0.0 0.0 0.0 0.0 42.3 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 57.2 0.0 0.0 0.0 0.0
57 0.0 0.0 0.0 0.0 0.0 0.0 50.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.4 0.0 0.0 0.0 0.0 37.5 0.0 0.0 0.0 0.0
58 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
59 0.0 0.0 0.0 18.5 0.0 0.0 14.2 0.0 0.0 3.2 0.0 0.0 0.0 6.4 5.1 0.0 2.5 4.7 0.0 0.0 0.0 0.0 0.0 44.7 0.7 0.0 0.0 0.0
60 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
61 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 29.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 70.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
62 0.0 0.0 0.0 0.0 0.0 0.0 35.3 0.0 59.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0
63 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 87.8 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
64 0.0 0.0 0.0 0.0 0.0 0.0 23.2 0.0 0.0 13.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 4.1 0.0 0.0 0.0 30.8 27.6 0.0 0.0 0.0 0.0
65 0.0 0.0 0.0 0.0 0.0 0.0 70.4 0.0 0.0 0.0 0.0 9.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.9 0.0 0.0 0.0 0.0 0.0 3.9
66 0.0 0.0 0.0 0.0 0.0 0.0 6.5 0.0 0.0 93.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
67 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
68 0.0 0.0 0.0 0.0 0.0 0.0 74.5 0.0 25.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
69 52.2 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 3.7 0.0 0.0 0.0 0.0 37.3 4.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.0
70 0.0 0.0 0.0 0.0 0.0 0.0 88.0 0.0 8.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.4 0.0 0.0 0.0 1.0
71 0.0 5.8 0.0 0.0 0.0 0.0 72.4 0.0 0.0 6.3 0.0 0.0 0.0 0.0 0.0 6.0 0.0 0.0 7.8 0.0 0.0 0.0 0.0 1.8 0.0 0.0 0.0 0.0
72 0.0 0.0 0.0 0.0 0.0 0.0 17.9 0.0 0.0 54.1 0.0 0.0 5.6 0.0 0.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 21.1 0.0 0.0 0.0 0.0
73 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.1 24.9 0.0 0.0 0.0 0.0 71.3 1.2 0.0 0.0 0.0
74 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 36.9 16.1 0.0 14.5 0.0 0.0 0.0 0.0 0.0 0.0 13.6 0.0 0.0 0.0 1.8 15.0 0.0 0.0 0.0 1.9
75 0.0 0.0 0.0 0.0 0.0 0.0 60.6 0.0 30.1 0.0 0.0 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.1 0.0 0.0 0.0 0.0
76 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 35.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 45.6 0.0 0.0 0.0 0.0 19.0 0.0 0.0 0.0 0.3
77 0.0 0.0 0.0 0.0 0.0 1.5 46.2 0.0 0.0 0.0 0.0 7.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 2.0 0.0 30.7 0.0 0.0 0.0 12.2
78 0.0 0.0 0.0 0.0 0.0 0.0 64.4 0.0 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28.2 0.0 0.0 0.0 2.9
79 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 52.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.9 0.0 0.0 0.0 0.0 29.4 0.0 0.0 0.0 1.2
80 3.7 0.0 12.2 0.0 0.0 3.7 15.6 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0 5.9 2.3 2.7 18.6 0.0 0.0 0.0 0.0 0.0 2.1 32.1
81 0.0 0.0 0.0 0.0 0.0 0.0 33.4 0.0 62.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
82 0.0 0.0 0.0 0.0 0.0 0.0 85.5 6.4 0.0 0.0 1.6 0.0 0.0 0.0 1.2 0.0 0.0 0.0 0.0 1.7 0.0 0.0 0.0 0.0 1.6 0.0 0.0 2.0
83 0.0 0.0 0.0 0.0 0.0 0.0 62.9 0.0 0.0 1.5 32.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.6
84 0.0 0.0 0.0 0.0 0.0 0.0 30.8 0.0 0.0 33.9 2.9 0.0 4.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 23.5 0.0 0.0 0.0 1.2
85 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 42.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 54.7 0.0 0.0 0.0 2.1
86 0.0 0.0 0.0 0.0 0.0 0.0 2.5 0.0 85.1 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.6 0.0 0.0 0.0 0.0 5.4 0.0 0.0 0.0 0.0
87 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 71.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
88 0.0 0.0 0.0 0.0 0.0 0.0 5.9 0.0 0.0 85.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.7 0.0 0.0 0.0 3.1
89 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
90 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
91 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 97.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4
92 0.0 0.0 0.0 0.0 0.0 0.0 2.1 0.0 0.0 88.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
93 0.0 0.0 0.0 0.0 0.0 0.0 79.4 0.0 0.0 15.8 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9
94 0.0 0.0 0.0 0.0 0.0 0.0 17.7 0.0 0.0 66.5 10.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0
95 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 32.7 26.5 0.0 34.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 4.4
96 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 82.3 9.0 0.0 0.0 2.6
97 0.0 0.0 0.0 0.0 0.0 0.0 13.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 75.2 9.0 0.0 0.0 2.7
98 0.0 0.0 0.0 0.0 0.0 0.0 89.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.0 0.8 0.0 0.0 5.7
99 0.0 0.0 0.0 0.0 0.0 0.0 87.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.4 2.9 8.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9
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Appendix B  Physical layouts showing details of the primary drainage areas (Oubangui, 

Sangha, Lualaba, and Kasai), drainage network and sub-basins that are nested within others. 
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Sangha drainage area 
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Lualaba drainage area 
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Kasai drainage area 
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Appendix C Model performance during validation. 

0
100
200
300
400
500
600
700
800
900

1000

19
72

19
73

19
74

19
75M

on
tlh

y F
low

 V
olu

m
e 

(M
m

3 )

Years

O-CB14 Observed Simulated

0
100
200
300
400
500
600
700
800
900

1000

0 10 20 30 40 50 60 70 80 90 100

M
on

th
ly 

Flo
w 

Vo
lum

e 
(M

m
3 ) 

% Time Equalled or  Exceeded

O-CB14 Observed Simulated

0

1000

2000

3000

4000

5000

6000

7000

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94M

on
tlh

y F
low

 V
olu

m
e 

(M
m

3 )

Years

S-CB57 Observed Simulated

0
1000
2000
3000
4000
5000
6000
7000
8000

0 10 20 30 40 50 60 70 80 90 100

M
on

th
ly 

Flo
w 

Vo
lum

e 
(M

m
3 ) 

% Time Equalled or  Exceeded

S-CB57 Observed Simulated

0

2000

4000

6000

8000

10000

12000

19
52

19
52

19
53

19
53

19
54

19
54

19
55

19
56

19
56

19
57

19
57

19
58

19
59

19
59M

on
tlh

y F
low

 V
olu

m
e 

(M
m

3 )

Years

K-CB76 Observed Simulated

0

2000

4000

6000

8000

10000

12000

0 10 20 30 40 50 60 70 80 90 100

M
on

th
ly 

Flo
w 

Vo
lum

e 
(M

m
3 ) 

% Time Equalled or  Exceeded

K-CB76 
Observed

Simulated

0

10000

20000

30000

40000

50000

60000

19
52

19
53

19
54

19
55

19
56

19
57

19
58

19
59

M
on

tlh
y F

low
 V

olu
m

e 
(M

m
3 )

Years

K-CB85 Observed Simulated

0

10000

20000

30000

40000

50000

0 10 20 30 40 50 60 70 80 90 100

M
on

th
ly 

Flo
w 

Vo
lum

e 
(M

m
3 ) 

% Time Equalled or  Exceeded

K-CB85 
Observed

Simulated

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 10 20 30 40 50 60 70 80 90 100

M
on

th
ly 

Flo
w 

Vo
lum

e 
(M

m
3 ) 

% Time Equalled or  Exceeded

O-CB30 
Observed

Simulated

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 10 20 30 40 50 60 70 80 90 100
M

on
th

ly 
Flo

w 
Vo

lum
e 

(M
m

3 ) 

% Time Equalled or  Exceeded

O-CB30 
Observed

Simulated

 



304 

 

Appendix D  Regional sensitivity analysis plots showing the varying sensitivity of the 

model parameters for the O-CB2 based on seven evaluation criteria.  The red line indicates the 

top 20% of the better performing parameters and the blue line indicates the lower 20% of the less 

well performing parameters (Top and lower 20% only apply to CE and CEln).    
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