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ABSTRACT 
Embodiment has long been regarded as an important (if 
sometimes intellectually suspect) means of introducing 
students to mathematical concepts such as whole numbers, 
fractions, geometric forms, and so forth. Indeed, the 
venerable educational tradition of creating “mathematical 
manipulatives” may be seen as an attempt to exploit 
students’ physical intuitions as a stepping-stone toward the 
understanding of abstract mathematical concepts. 
Historically, however, this tradition of manipulative design 
has tended to focus on relatively elementary mathematical 
concepts; and there has been little systematic effort to 
create tangible artifacts and activities that promote an 
introduction to more advanced mathematical ideas typically 
taught at the high school, undergraduate, and graduate 
levels. This paper argues that a productive strategy for 
expanding the range of embodied design is to focus 
precisely on this underexplored landscape of “difficult” 
mathematics. We sketch some potential areas in which 
novel technologies could enable an expansion of 
“embodied advanced mathematics”. 
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INTRODUCTION 
In mathematics education, the notion of “embodiment” as a 
pedagogical strategy is weighted down with a long history 
of philosophical debate. On the one hand, the subject 
matter of mathematics deals fundamentally with 
abstractions–numbers, functions, groups, and so forth–
whose generality and importance are derived, arguably, 
from their immateriality. None of us has ever seen or 
touched a number, a straight line, a bijection, or a set; and 
mathematical expertise consists, in part, of being able to 
operate on such notions as “pure” abstractions. At the same 
time, our first encounters with these ideas are motivated 
and mediated by physical experience: small collections of 
discrete objects inform us about numbers, sketches and 

craftwork introduce us to geometric shapes, repetitive or 
stereotyped tasks provide us with intuitions about 
algorithms and functions. In other words, even if embodied 
activities and ideas do not represent the endpoint (or the 
desired endpoint) of mathematical expertise, they appear to 
represent an inevitable and perhaps crucial step in the 
development of that expertise. (Cf. the introductory section 
of Chao et al. [1] for a good discussion of the ways in 
which manipulatives are hypothesized to help students.) 

In practice, this viewpoint is reflected in the use of a wide 
variety of “mathematical manipulatives” in classrooms 
worldwide. Such artifacts include (among many others): 
rods of varying lengths to represent whole numbers; 
balance beams to provided physical intuitions about 
multiplication; clock faces to illustrate modular arithmetic; 
and pegboards to introduce notions of geometric shapes. It 
should be stressed that these artifacts are by no means 
“royal roads” to surefire mathematical understanding, as 
researchers such as Resnick and Omanson [4] and Uttal et 
al. [7] have argued; for instance, understanding the implied 
connection between a manipulative and its abstract referent 
may itself be a difficult task, requiring explicit instruction 
and practice. Nonetheless, allowing for these cautionary 
notes, the continued prominence and use of manipulatives 
in mathematics classroom reflects, we believe, at least the 
pragmatic confidence of educators that they have positive 
impact (likely both intellectual and affective) on children’s 
mathematical development. 

The intent of this article is not, in any event, to debate the 
merits of manipulatives in general or any one manipulative 
in particular; for our purposes, we accept that given 
appropriate circumstances (which may well included 
explicit instruction), the mathematical metaphors realized 
by concrete manipulatives can be both helpful and 
motivating in math education. Rather, our goal here is to 
reflect on the potential for novel technologies to enhance 
the exploration of as-yet-uncharted territory for 
manipulatives. This is a notion pioneered by the work of 
Resnick and his colleagues at the MIT Media Lab in their 
design of “digital manipulatives” [5]; but those efforts, 
important as they were (and are), represent only a portion 
of a much more expansive investigation of manipulatives 
that is still waiting to be done. 
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In pursuing this investigation, we might well begin with an 
important issue (though not by any means the only 
important issue): namely, the choice of mathematical 
content represented by manipulatives. Broadly speaking, 
manipulative designers seem to focus almost exclusively on 
elementary mathematics: whole numbers, fractions, simple 
two-dimensional shapes, and so forth. This is not a 
universal rule–some popular mathematical puzzles might 
be cast as “manipulatives” for more advanced content. 
(One might, for example, plausibly describe an artifact like 
the Rubik’s Cube puzzle as a manipulative for the subject 
of group theory,) Still, the standard, garden-variety 
examples of classroom manipulatives are virtually all 
drawn from elementary mathematics. 

It is worthwhile to speculate on why this should be the 
case. Why don’t we see manipulatives designed for use by 
high school students, or undergraduates–or, for that matter, 
by professional mathematicians? In part, the answer may 
lie in biases originating in the constructivist learning 
theories articulated by Piaget and others, in which the use 
of concrete objects is associated with an earlier stage of 
cognition–a stage that precedes facility with abstract 
concepts. For Piagetian theory, then, it is singularly 
appropriate to employ concrete manipulatives at an earlier 
stage of cognition (the “concrete operational” stage), and 
less appropriate (or even unnecessary) to employ such 
objects at the later, “formal operational”, stage. 

This intellectual stance–in which there is presumably less 
need for manipulatives as “abstraction training wheels” for 
older students–is reinforced by all sorts of subtle cultural 
biases and traditions as well. The culture of higher-level 
mathematics is undeniably more focused on issues such as 
proof and symbol manipulation than on “building 
intuitions” in the informal way typical of manipulative use. 
Indeed, there is a historical thread of distrust for physical 
intuitions exemplified by the “Bourbaki” school of 
mathematics education, which largely shunned even the use 
of visual aids such as diagrams. (Cf. [6]) The Bourbaki 
mathematicians felt that the goal of pure mathematics 
education should be to emphasize “rigor” (and presumably 
felt that visual intuition was inconstant with that goal). 
Admittedly, the Bourbaki school represents a somewhat 
extreme point of view, pedagogically speaking, in its near-
total reliance on symbolic presentation; but this is an 
exaggerated version of a subtle tone of distrust in 
visual/embodied intuition that appears to run through much 
of the advanced mathematics curriculum. 

We feel that this distrust is as misplaced for higher-level 
mathematics as it is for elementary mathematics. Indeed, 
there are plausible counterarguments to be made in favor of 
a renewed exploration of manipulative design for more 
advanced students. First, one might argue that there is an 
even greater call for intuition-building when the subject 
matter is advanced or arcane than there is for elementary 
mathematics. After all, a young child learning about whole 
numbers can find, in her everyday environment, a variety 

of ready-made “manipulatives” for the purpose: money, 
calendar numbers, floor numbers of tall buildings, and so 
forth. But an undergraduate attempting to learn about (say) 
Laplace transforms, quaternions, or complex polynomials 
has virtually no support in doing so from her day-to-day 
environment. If anything, this should suggest that there 
ought to be a proportionally greater effort in designing 
educational artifacts for those topics whose “environmental 
support” is invisible. 

Beyond this, there is an affective or motivational 
component to the use of manipulatives that should spur 
exploration in this area. For many students, mathematics is 
a forbidding subject precisely because of its distance from 
physical intuition. How does one form embodied 
representations of matrices, transcendental numbers, or 
higher-dimensional spaces? The very difficulty of the task 
reflects the essential dividing ground between what we tend 
to think of as “elementary” and “advanced” mathematics. 
(Cf. also Eisenberg and DiBiase [3].) 

The time is now right, we believe, for a renewed 
exploration of embodied design aimed at topics in higher 
mathematics. As noted above, there is both an intellectual 
argument to be made–that advanced mathematics is 
singularly in need of intuitive examples and activities–and 
an affective argument to be made–that embodied activities 
form a motivational bridge to the study of higher math. 
Perhaps most provocatively, the advent of a wide variety of 
accessible new technologies–fabrication tools, projection 
devices, responsive or adaptive materials, embedded 
computation–collectively offer a tremendous opportunity 
for trying out novel designs. 

The remainder of this paper is devoted to briefly sketching 
out some of the possible directions for creating embodied 
representations of ideas in higher mathematics. 
Individually, each of these ideas may prove infeasible or 
unsuccessful; but collectively, they illustrate the sorts of 
ideas that we believe to be most promising for the near 
future of mathematics education. It should also be stressed 
beforehand that although the mathematical topics targeted 
through these examples are “advanced”, the artifacts 
themselves need not be thought of as exclusively for older 
students. In fact, it might well be the case that this new 
genre of manipulatives could prove entertaining and 
motivating for younger children as well, and could thus 
introduce younger children to ideas supposedly “beyond 
their age”. 

 

New-Wave Manipulatives: a Sampler 

1.Embodying the Concepts Behind Fourier Transforms 

One of the more difficult topics for undergraduates 
studying (e.g.) signal processing in electrical engineering is 
the Fourier transform, in which a signal represented in the 
time domain may be uniquely re-represented in the 
frequency domain. Students have little in the way of 
physical intuition to help understand this concept. 



We might imagine, then, constructing a device that 
combines a computational display, including several long 
rectangular windows, with a sturdy “pump-handle-like” 
input device, as sketched in Figure 1. The essential idea 
behind this device would be that the top display shows a 
periodic signal scrolling by at a constant rate. The student 
then attempts to match the periodicity of the signal by 
pumping the handle at the side of the device; her 
movements are mirrored in the signal shown in the second 
window. Once the student has matched the basic frequency 
of the topmost signal (or, conceivably, once she has 
matched a multiple of that frequency), that frequency 
component of the topmost signal is displayed in the bottom 
window.  

 
Figure 1. A rough sketch of a “Fourier series manipulative” 
as described in the text. A student pumps a handle at left 
that creates a waveform shown in the middle window of the 
device. That periodic component may then be subtracted 
from the signal in the top window to produce a reduced 
signal (which might be displayed in the bottom window, 
though that is depicted as blank in the figure). 
 

The crucial point here is that a device such as this could 
allow a student to “feel” the component frequencies of a 
composite signal through the use of a physical input device. 
The basic design here might be extended so that a variety 
of wave-composition activities could be explored. For 
instance, the student might repeatedly subtract component 
frequencies from the topmost signal, eliminating 
components one by one until the original signal is flat; or 
she might add a sequence of “pumped” signals to create a 
composite signal that would be shown, as each new 
component is added, in the upper window. 

 

2.Interacting with Non-Euclidean Geometry: Projection on 
Specialized Surfaces 

For many students of geometry, the transition from the 
intuitions of Euclidean to non-Euclidean systems is 
baffling. How could it possibly be the case that (as in 
spherical geometry) a triangle might have three 90-degree 
angles; or that similar triangles must also be congruent? 
How could it be the case that (as in hyperbolic geometry) 
there may be multiple parallels drawn to a given line 
through a chosen point off the line?  

It is feasible, we believe, to create devices through which 
students may interactively experiment with computer 
graphics on surfaces such as a sphere, concave bowl, or 
cube. In effect, we have begun work on such a system, 

developing an interactive programming system for use with 
a large spherical display at our university’s planetarium [2]; 
in this system, students can write programs that move a 
Logo-style “turtle” about on the sphere in accordance with 
the rules of spherical geometry. 

Exciting as this initial effort is proving to be, it really 
represents only one of what could be a much more 
extended genre of interactive systems derived from 
projecting computer graphics onto a standing surface. 
Consider, as a simple example, the possibility of 
suspending a large cube from the ceiling of a room, and 
employing six projectors to create images on each face of 
the cube, as sketched in Figure 2. If the projectors are 
controlled by a computer that coordinates the six projected 
images in the appropriate way, one could develop a 
“graphics-on-the-cube” system similar to the 
aforementioned spherical display.  

For this device, one could experiment with “cubic 
geometry” (which in many respects is similar to spherical 
geometry, though here the surface curvature is concentrated 
at the eight vertices of the cube): for example, one can 
make an equiangular triangle with three right angles by 
having that triangle surround one of the vertices of the 
cube. Beyond writing programs to display on such a 
surface, one might also experiment with pointing devices 
(e.g., a laser-pointer) to act as a mouse-like selection tool 
for points on the surface; the act of pointing or drawing 
lines “directly” on a surface would likely prove an 
important element in building embodied intuitions about 
non-planar geometry. Finally, it should be noted that a 
“cubic display” is but one example of a surface display that 
might be explored in this fashion: for example, a set of 
projectors employed to create images on the surface of a 
pseudosphere could allow students to experiment, 
interactively, with the (notoriously non-intuitive) rules of 
hyperbolic geometry. 

 
Figure 2. Displaying a curve on a cubic surface. Here, two 
projectors (of a presumed six) are shown projecting a 
continuous closed curve drawn on two faces of the cube. 
The projectors are controlled by a desktop computer whose 
job is to coordinate the separate light sources in accordance 
with the forms drawn on the cube’s surface. 
 

3. Handheld Objects to Represent Infinite Series 

Consider the infinite series of values: 1, ½, ¼, … in which 
each successive value is half that of the previous one. Such 



series usually represent something of a hurdle to students 
when they are first encountered (often in connection with a 
calculus course): for instance, the series approaches 0 as a 
limiting value, and the sum of the values in the series is 
well-defined (with the value 2). For students, series of this 
type may be an early (and confusing) encounter with 
manipulating objects that are represented as potentially 
infinite symbolic expressions. 

We might experiment with the creation of 
“manipulatives”–handheld artifacts with embedded 
computation–to represent objects of this sort. For example, 
suppose we imagine a small computational device, about 
the size of a pocket-watch, equipped with a display screen 
and a rotating dial, as sketched in Figure 3. The idea behind 
this device is that one can treat it as containing, in one 
finite space, the entirety of an infinite series of symbols that 
can only be viewed a bit at a time through the display 
screen. In the figure, we are looking at a few of the terms of 
the infinite series mentioned above; by turning the dial, we 
could “scroll through” more terms of the series for as long 
as we wish (in practice, of course, the user will only look at 
a finite number of terms, so the illusion of a “potentially 
infinite” series is maintained).  By turning the dial 
backward, we could return the displayed series to its initial 
values at the head of the series. 

The “handheld series box” of Figure 3 is thus a physical 
object that represents an infinite series in such a way that at 
any given moment, the user can look at any chosen chunk 
of the series. Conceivably, such artifacts could be designed 
so that they can be manipulated and combined in ways 
appropriate to the represented objects: for instance, one 
might add two series together, elementwise, by linking their 
corresponding handheld objects (we’ll leave this technique 
unspecified for now), and use the addition process as a 
means of specifying the values for a third handheld object. 
Thus, one might add together (e.g.) two physical copies of 
our sample series to create the new series: 2, 1, ½, ¼, … 
which could itself be represented in a freshly-initialized 
handheld object.  

 
Figure 3. An “infinite series” object. The display window in 
the box shows elements of an infinite series. By scrolling the 
dial beneath, one can shift the view of the series to the right 
or left, revealing any arbitrary portion of the series and 
giving the illusion of a functionally infinite object.  

The same basic design employed for representing infinite 
series could likewise be explored for purposes of 
representing other infinite (but easily computed) series of 
values. For example, one might create a box like that of 
Figure 3 to display the value of pi to arbitrary precision, 
employing the dial to scroll through successive values for 
as long as one might wish. 

 

4. Other Possibilities 

The three sample manipulatives mentioned here represent 
only a few illustrative possibilities along a path of 
“embodied mathematics” for advanced topics. Still other 
possibilities (for which there is insufficient space in this 
essay) include artifacts to represent and construct models of 
such notions as Markov chains and discrete finite automata. 
More generally, these sample ideas signal what could be a 
renewed interest in examining the role of embodied 
cognition in mathematical understanding at all levels, and 
in making accessible those areas of mathematics usually 
thought to be beyond the capabilities of all but the most 
dedicated students. 
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