
 

Introduction  1 

 
 
 
 
 
 

Fault Tolerant Computing 
in Industrial Automation 

Hubert Kirrmann 
ABB Research Center 

CH-5405 Baden, Switzerland 
 

2nd Edition 2005 

 

 

Abstract: 

Fault-tolerant computing encompasses the methods that let computers perform their intended function or at least 
keep their environment safe in spite of internal errors in hardware and software.  

This tutorial on fault-tolerant computing is focussed on industrial automation in general and embedded computers in 
particular. It describes the computer architecture and the software methods used.  

It is divided into 9 sections:  

Definition of reliability, availability and safety with their metrics 

Behaviour of plants in presence of computer malfunction, and derived requirements 

Detection and correction of errors 

Dependable computer architectures for safe and reliable applications 

Recovery methods 

State saving and recovery 

Database recovery 

Standards 

Dependability calculations 



 

2  Fault-tolerant Computers 

0 Introduction 

Industrial processes, power generation, transmission and distribution, banks, airlines, railways and numerous other 
applications rely increasingly on computers for their daily operations. Computer failures are bound with heavy 
economic losses and in some cases even with danger to life and limb.  

The reliability of computers has been traditionally kept high by proper design, testing and installation, preventive 
maintenance procedures and by a comprehensive field service. The improvement in computer reliability obtained by 
these traditional methods is considered insufficient in many new installations, especially since computers are 
increasingly trusted for critical positions formerly filled by humans.  

Since technology and the laws of physics limit the reliability of the components, a reliability increase can only be 
achieved by embedding redundant elements. Computers that incorporate redundancy for protection against failures 
are known under the generic name of fault-tolerant computers. 

A fault-tolerant system has the unique property that its overall reliability is higher than the reliability of its constituting 
parts. The typical question of fault-tolerance is "Can a reliable bridge be built with weak beams?" and the technical 
answer is "In principle yes, if enough beams are available and they are correctly mounted". The secret of fault-
tolerance is how to structure these redundant beams so that the failure of one does not bring the whole bridge 
down.  

A computer failure manifests itself by wrong or missing data. Depending on the application, one or the other may be 
more dangerous or costly. In some applications, neither wrong nor missing data is tolerable. So, before speaking of 
tolerance of the computer, one should consider the tolerance of the plant controlled by a computer with respect to 
failures of that computer. After all, if someone breaches the law (and gets caught) it is not him, but his judge that 
must be tolerant. 

Fault-tolerant computers incorporate a certain amount of redundancy (duplication, triplication of most parts). 
Depending on the application, it could be more important to use this redundancy to detect errors (so as to prevent 
wrong output) or to keep on working (so as to prevent missing data). In fact, error detection and correction are 
closely related. 

Over the last years, the interest in fault-tolerant computers has been cyclic: every now and then, there is a growing 
attention for them and a few years later, the fever vanishes and the interest focuses on simplex designs again. The 
times of greatest interest in fault-tolerant computers coincided with the application of computers in new domains 
which were formerly handled by other means: the first worry of the future users at the introduction of a computer in 
their domain concerns the dependability of the machine: "what happens if it fails?” Usually, the users are over-
cautious and set the requirements so high that they can hardly be fulfilled with the technology available at the time 
of introduction. The minimum requirement is that the new system must be more reliable than the one it replaces.  

For instance, the early computers were equipped with thousands of vacuum tubes which failed at the rate of about 
one every hour. These designs had no other remedy than to use fault-tolerance. As technology improved, as 
transistors supplanted vacuum tubes as computing elements, the additional price of redundancy was not justified 
any more, and simpler computers were built. The same game repeated itself with the introduction of computers in 
the space exploration, and with the transition from transistors to integrated circuits.  

Telephone exchanges and control centres have been using fault-tolerance techniques to achieve a very high 
availability for decades. These applications tolerate short disruptions and occasional data or communication losses 
but service must be restored quickly. 

Computers have monitored industrial plants for many years. However, they were only seldom used in critical 
applications, and direct digital control is always backed-up by some analog protection mechanism. This situation will 
change in view of the increasing complexity of the industrial processes. In power plants, the number of input and 
output sensors has risen from a few 100 to over 10000 within a few years. The processing of that huge amount of 
data would require some 200 persons to handle it. Although the decisions are still taken by the operator, computers 
are already today irreplaceable for monitoring the process and transmitting orders. The reliance on the computer is 
large: the operator has to trust that the measurements shown by the computer are correct. Although usually the 
plant can be shut down safely in case of damage to the computer, the economic losses are so high that fault-
tolerant computers are required to reduce the frequency and duration of computer-originated downtime.  

As industrial plants become more and more complex, the operator will be unable to process the incoming 
information and react in time. Alarm situations can today produce 60 pages of display within 15 s. Process control 
computers will have to take decisions by themselves, and enter into areas which were traditionally reserved for the 



 

Introduction  3 

operator and highly specialized analog and electromechanical devices, like those used in power line protection. 
Unattended plants will become common, as difficulties increase in finding operators to man them.  

In airplanes, the digital autopilot is taking increasing responsibility with every new design. Since the Airbus A320, the 
aircraft cockpit is digital, the only analog instrument remaining being the mercury ball. The pilot has to rely on the 
correct displays and the correct forwarding of his commands. The joystick has ceased to have any direct effect on 
the control surfaces: it is replaced by "side-sticks" similar to the one used in videogames and all commands are 
relayed digitally over buses like MIL-1553. But even with this "fly-by-wire" technique, the pilot is still in the control-
loop or can intervene at any time. Temporary malfunctions can still be tolerated, as long as the computer is back 
on-line quickly. During the landing phase, even short disruptions are unacceptable.  

The aerospace industries, and especially the space missions, have paved the way of highly reliable fault-tolerant 
computers, as the loss of the computer, even for a short time, is equivalent to the failure of the mission. The Saturn 
V rocket used triplicate guidance computers. The US Space Shuttle relies entirely on its quintupled control 
computer for the launch and re-entry phase.  

The next airplane generation will move the pilot out of the loop and make him an observer of the computer. The 
increasing price of energy will bring new airplane designs in which drag is reduced at the expense of loss of the 
natural stability. For instance, in classical airplanes, the tail's surface does not contribute to lift; on the contrary, it 
dips the airplane to ensure stability. Some future planes will have the tail acting as a lifting surface, and the centre of 
gravity will be moved between wings and tail. The plane will then depend on the correct function of the control 
computer to fly at all, since no pilot could stabilize such a plane by hand. The failure of the control computer would 
cause the loss of the airplane. The acceptance of such a dependency by the pilots is, however, another matter, 
although computer-controlled ground following systems that guide the plane just above tree-level have been 
successfully introduced.  

Will the up-and-down of fault-tolerant computers continue in the future? As the technology of integrated circuits 
progresses, the number of transistors increases at the same rate as the reliability of the individual transistors, so 
overall reliability reaches a ceiling. There has been even a certain slackening of the reliability of some parts as 
competition heats up and prices drop. Problems like sensitivity to cosmic rays and trapped alpha-sources in the 
packages set physical limits to the reliability. On the other hand, hardware costs have dropped enough so as to 
make redundancy cheap. The complete replication of a computer just for the sake of fault-tolerance would have 
been unthinkable 20 years ago. Fault-tolerance features only represent today a few percent of the total cost of an 
industrial control system. It becomes unacceptable to let the function of a complete plant depend on a single 
integrated circuit. 

Fault-tolerant computers are not going to disappear again; rather, all future computers will incorporate fault-tolerant 
features to an increasing degree. Users have been used to some fault-tolerant features and will continue to ask for 
them. More than twenty companies are offering dedicated fault-tolerant computers for applications such as time-
sharing, transaction processing, communications, industrial control, aircraft and space applications. The economical 
benefits of fault-tolerance are recognized, even if fault-tolerance only serves the purpose of reducing the repair 
time. Fault-tolerance is now an established discipline of computer architecture.  

The human aspects of fault-tolerant computing are not treated here, but deserve a remark. As the computer 
assumes more and more routine chores, the human operator is only required in infrequent emergency situations 
and can be quite bored for the rest of the time. The very presence of a human person in critical applications is 
disputed. The statistics of aircraft crashes show that human factors can become a major uncertainty factor, 
although the statistics do not show how many accidents did humans avoided. The danger is rather that the 
introduction of reliable computers could slacken the sense of responsibility of the humans around it, who will trust 
them more and more, until their reliance becomes excessive.  



 

4  Fault-tolerant Computers 

Summary 
This tutorial explains the basic concepts and methods in fault-tolerant computing. It is intended as an introduction to 
the state of the art and to the understanding of the current literature on this topic, which is best represented by the 
annual International Conference on Dependable Systems and Networks (www.dsn.org)1. 

The topics explained in this tutorial are represented in Table 1:  

design
errors

physical
faults

N/M 
voting

hot 
sparing

warm 
standby

cold 
standby

sofware 
supportcoding

error 
masking

error 
recovery

fault 
tolerance

fault 
detection

fault 
avoidance

fault 
handling

dependability

plant 
tolerance

dependability 
evaluation

9

8

3 4 4 4 5 6 6 7 8

2

 

Table 1: Topic Tree of this Tutorial. 

Chapter 1 introduces the notions and definitions of reliability, availability, redundancy, fault-tolerance and 
reconfiguration with little maths – Chapter 9 repeats these notions under the maths aspect.  

Chapter 2 studies the impact of faults and malfunction of a computer on its environment. Several requirements 
are deduced from the tolerance of a plant to malfunctions of the computer that controls it. Three classes of 
computers emerge, corresponding to high integrity, high availability and high reliability.  

Chapter 3 explains the kind of errors that occur in computing systems, how to detect them and how to survive 
them. The fault-tolerant computers are classified according to the principle they use to maintain continuous 
operation: work-by (replicated execution on several processors), or stand-by (updating of the spare by the working 
unit). 

Chapter 4 describes coding and work-by techniques in which a number of processors execute the same task in 
parallel, with emphasis on the techniques for coding, massive redundancy, voting and dual hot-sparing. The 
problem of synchronizing work-by units is considered in detail.  

                                                      

1 This conference is a successor to the Symposium on Fault Tolerant Computing (FTCS) sponsored by the IEEE Computer 
Society, and to the Working Conference on Dependable Computing for Critical Applications (DCCA) sponsored by the IFIP.  



 

Summary  5

Chapter 5 describes the techniques used in recovery, in which the spare unit is maintained by regular updates 
rather than by replicated computing. The methods used to continue computation in case of error are discussed. The 
difference between backward error recovery and forward error recovery is outlined and the impact on the outer 
world is considered. A scenario of recovery is developed.  

Chapter 6 considers state saving and restoring for recovery. It begins with a model of computation and a model of 
storage. The storage is divided into volatile storage and stable storage, the outer world into reversible and 
irreversible. The methods used in saving and restoring the volatile state, in restoring the stable state and in treating 
interactions with the environment are presented.  

Chapter 7 applies the concepts of Chapter 6 to the recovery of databases. This Chapter is devoted to software 
techniques that serve as a second defence against hardware faults.  

Chapter 8 considers the standardisation aspects of fault-tolerant programming, and especially with conformance 
testing and certification.  

Chapter 9 explains the mathematical tools for the evaluation of reliability and availability. The analysis goes to 
the depth required to evaluate simple systems.  

The Appendix lists the most common fault-tolerant computers available on the market in 1986. Some of these 
products may already have disappeared from this active market, but they are still mentioned under the premise that 
technical excellence is no guarantee for commercial success. 

A second Appendix presents a glossary of the most important terms and their definition. 

Each Chapter closes with a list of references. 



 

6  Fault-tolerant Computers 

 



 

Chapter 1 Definitions and Principles 7

1 Definitions and principles 

1.1 Definitions 

Definitions may often seem self-evident. However, the intuitive notion everyone has of a term may not be 
appropriate in the context of reliability. The word "fault", for instance, has other meanings in theology, geology, 
metallurgy or orthography than in this context. Especially, when using such terms as "reliability" and "availability" 
caution is at place, since their formal definition are somewhat different from their every day’s use. For example, the 
term "availability" in the sentences "the availability of cheap microprocessors..." and "the availability of the plant 
exceeded 99%" is used with totally different meanings.  

The basic principles of redundancy and fault-tolerance are introduced with no special emphasis on computers, as 
these concepts could be applied to mechanical and electrical devices as well. This should remind that the computer 
is only one piece of the equipment. To clarify the terminology, a glossary is appended to this tutorial (Appendix 1). 

1.2 Mission, Failure, Malfunction, Faults and Errors 

Computers, electronic devices, industrial plants, etc. are complex systems that depend on the correct function of a 
large number of elements to work properly. We will speak of an "element" when considering a part of a system 
which we do not want to detail further, although it may well consist itself of sub-elements. When we do not want to 
detail whether we consider a system or an element, we speak of an item.  

An item is required to provide a certain service under given conditions for a stated period of time, that is, to fulfil a 
specific mission, defined by a mission specification.  

Example: 
The mission of a car can be defined as: "transport up to 5 persons over roads at a maximum speed of at least 130 km/h 
while consuming less than 3 l/km over a useful lifetime of at least 20 years". 

A failure occurs when car is not capable of performing its mission – regardless how significant the deviation from 
the specification is. It does not need to be an accident.  

Example: 
It is not a failure of the car if it can't transport people over railroads, but if the car consumes more than the amount 
specified, this can be considered a failure with respect to the specification.  

Therefore, the definition of a failure is bound to the idea of a contract, and to the notion of quality. Success or 
failure, like quality, is not a property of an element, but a point of view of an external user. For any analysis, one 
should first quantify exactly what one understands as a failure. 

A general definition of a failure is:  

"A failure is the termination of the ability of an item to perform its required function" 

(by definition of the IEC- International Electrotechnical Commission).  

The above definition supposes that the mission specification includes a yes/no criterion like reject/accept. Complex 
systems exhibit a variety of failure modes, some major, some minor. In these cases, one should define service 
classes or performance levels, as we shall see below. 

The above definition makes no assumption about the duration of the failure: it rather expresses a transition. 
"Failure" can also express a state. When it is necessary to make the distinction, we will use "failed" (for the state) 
and "failure” for the event. 

An item can cease to provide the required service during a certain time, but return to service shortly afterwards, 
either because the cause of the disruption (for instance an external disturbance) disappeared by itself or because 
the item was repaired, either by its own means or by an external action.  

"A malfunction is a temporary disruption of service." 

This disruption is not necessarily caused by damage. In the power utilities, an outage is the inability to supply 
electrical energy – this may be due to network instability.   



 

8  Fault-tolerant Computers 

When the malfunction becomes longer, for instance when a repair must take place, or when the failed state is 
definitive, one speaks of a breakdown. The maximum duration of a malfunction is part of the mission specification: 
if it is exceeded, then a mission failure happens.  

Example: 
In air traffic control system, a temporary disturbance of a few seconds could be acceptable, if the radar can catch itself up 
and generates correct pictures again. A malfunction of ten minutes is clearly unacceptable.  

We are interested in the origin of a failure. 

"A fault is the cause of a failure." 

There are two kinds of faults: those due to an external action or aging (physical faults) and those due to a poor 
design (design faults). A fault in a system does not necessarily lead to a failure of the system, if the fault can be 
handled properly, e.g. if the system is fault-tolerant, or if the fault was only temporary.  

If the considered device is a logical machine, then a mission failure can be caused by an error.  

"An error is a departure from the intended state of a data item, and by extension an incorrect behaviour of a logical 
machine." 

An error can be caused by incorrect algorithms (design faults), or by faulty logical elements (physical faults).  

Although the ultimate mission of a computer depends on the application, one can generally state its mission as:  

"The mission of a computer is to produce the intended data and only them in due time" 

One distinguishes two failure modes of a computer, the integrity breach and the punctuality breach. These two 
failure modes have different impact according to the computer's role, as we shall see in Chapter 2. 

Integrity breach: the computer generates erroneous data (in addition to the correct data). 

 This failure, that is analogous to lying, is generally considered as the worst, but this may not always be true: the 
computer produces incorrect data, which have not been recognized and filtered out as such. The merit of a 
computer with respect to the correctness of its output data is its integrity, which is given by the probability that 
erroneous data are prevented from leaking out to the environment. A computing system that rather stops than 
output erroneous data is fail-stop or fail-silent. The fail-stop element is the basis for building integer systems 
and in general for fault-tolerant systems.  

Punctuality breach: the computer is not providing the required data at the requested time. 

 A malfunction may lead to a failure or not depending on its duration. The mission is considered as failed if the 
maximum permitted malfunction duration is exceeded, i.e., if the required data are not delivered in time or not at 
all. The probability that the data are in time is expressed by the punctuality of the computer. A computing 
system that can continue punctual service in spite of faults is called a persistent system.  

1.2.1 Reliance and Dependability 

"reliance is a measure of the user's dependence on the correct function of an item." 

The higher the reliance, the worse the consequences of an incorrect function [Randell 78].  

"dependability is quality of the delivered service such that reliance can justifiably be placed in this service" 

[Laprie 85] 

Dependability is a subjective measure that encompasses all aspects related with the eventuality of failures.  

Example: 
Home users of personal computers know that their drives are not reliable. They back-up them regularly, and when they 
remain in the word processor for a long time, they save the work to disk before taking a break and also every now and 
then. Their reliance on the PC is low.  

 On the other hand, users of servers rely heavily on the automatic back-up and journaling. They do not make back-ups and 
a major server breakdown would have serious economical consequences. The reliance on the network server is greater, 
and accordingly, it should have a greater dependability.  



 

Chapter 1 Definitions and Principles 9

1.2.2 Reliability 

"The reliability of an item is the probability that this item provides the required service under given conditions for a 
stated period of time" 

(By definition of the International Electrotechnical Commission) 

Reliability is the probability that a given mission be fulfilled. Reliability depends on many factors, such as 
manufacturing, testing, environment stress, and in particular on the mission duration. Reliability is normally 
expressed in function of service time, and as such, it is a function that always declines with time - all things abide. 
The most important factor of the environment is temperature, the second being mechanical vibrations (Figure 1-1). 

2500 h 5000 h 7500 h 10000 hours

time

100 %

laboratory

R ( t )

vehicle

1 year

T = 25º

40º

85º

25º
40º

85º

 

Fig. 1-1: Reliability in Function of time for one Item, with temperature as parameter. 

Reliability can be expressed by an analytical function of time and other factors, but for practical purposes, one 
prefers to express it by a single number, for instance, by the Mean Time To Failure or MTTF. 

The failure rate of an item is the probability that the item may fail in the next small time interval. 

The MTTF is the expected average time during which the item will perform without fault. 

Example: 
the MTTF of a light bulb is 10000 hours. Its failure rate is 1 per 10000 hours, or 10-4 h-1, meaning that there is one chance 
in 10’000 that it fails during the next hour.  

As Chapter 9 will explain, the MTTF is not always an adequate measure for fault-tolerant systems. 

Some prefer to express reliability as the probability of accomplishing a certain mission time without failing. This 
deserves an explanation.  

Example: 
The space probe Voyager was designed to fulfil a mission of four years on way to Jupiter and Saturn with a probability of 
success better than 0.95. The spacecraft has in the meantime exceeded its mission time and left Pluto behind, exceeding 
its specification. 

Or conversely, one can express the reliability by stating which mission time can be reached while maintaining an 
acceptable reliability level (ARL).  

Example:  
Figure 1-2 shows that item 2 is more reliable than item 1 for the prescribed mission time, and item 1 has a longer mission 
time than item 2 for the prescribed ARL. As will be explained later, item 2 incorporates redundancy while item 1 does not.  



 

10  Fault-tolerant Computers 

R ( t )

R    ( t    )

R    ( t    )

ARL

0

0
mission time

2

1

t    ( 1 )mt    ( 2 )m t

item 2

item 1

m

m

t    m

 

Fig. 1-2: Reliability in Function of Time for Two Different Items. 

When a system depends on a certain number of elements for its function, the reliability of the system is the product 
of the reliabilities of the individual parts, which is always lower than the lowest elemental reliability. This is expressed 
in the saying: "any chain is weaker than the weakest of its links". We will see that fault-tolerant systems can, 
contrarily to that saying, achieve a higher reliability than the reliability of their individual elements, since some of their 
elements are ordered as parallel "chains".  

1.2.3 Availability 

Once an item fails, one of two things can happen: either the item is discarded (such as a transistor) or the item can 
be repaired (such as a car - usually). A repairable item functions during a certain time, called operational or up 
time. When it ceases to function, it is repaired. The duration of the non-operational time is called down time. 
According to our previous definition, down time is a malfunction.  

The reliability of the item defines the Mean Up Time (MUT), which is the mean time during which the item is 
operational after a repair. The MUT is for our purposes identical to the above MTTF (mean time to fail).  

The maintainability defines the quality of the repair team or organization. It is expressed by the mean repair time or 
Mean Down Time (MDT). The term Mean Time To Repair (MTTR) is sometimes used in place of MDT, or to 
express the fact that the down time is divided into a fixed latency period and a repair period.  

The interval between two successive failures is called Mean Time Between Failures (MTBF), which is equal to 
MUT + MDT.  

A repairable item is defined by its availability.  

Stationary availability is defined as the relation of the sum of all operating times to the useful lifetime. 

A = availability = lim
Σ up times 

Σ (up times + down times) t →∞
=

MUT

MUT + MDT
=

MTTF

MTTF+ MTTR
 

Availability is frequently expressed in %, or in down time per operation time; more intuitively, availability can be 
expressed by the unavailability, (1-A):  

Example:  
a telephone exchange is required to have an availability of 99.9994%, i.e. 3 minutes of downtime per year. 



 

Chapter 1 Definitions and Principles 11

Thus, there exists a fundamental distinction between reliable items and available items. When a reliable item fails, 
its life ends. When an available item fails, it can be repaired or otherwise returned to service after a relatively short 
down time. An available item oscillates all its life long between the states "up" (working) and "down" (out of service). 
We can express the life cycles of these two classes of items in the Figure 1-3:  

good failed downdownup

repair

failure

reliable system available system

good failed

State

MTTF

time

up down downup up

MTBF

MTTF MTTR

State

time

failure

mean value = availability

 

Fig. 1-3: Reliability and Availability 

Each of the above states can consist of several sub-states, as we shall see. 

Any real system has an end, that is, every system is ultimately a non-repairable system. A car for instance is an 
available system when considering smaller repairs such as tyre or battery changes, and as long as it does not suffer 
too high a damage or breaks down into rust. Therefore, when we consider an available system, we consider 
implicitly only a part of its lifespan, called the useful lifespan.  

A reliable system is in principle non-repairable, while an available system is in principle repairable. When 
considering a system, consisting of different elements, the elements may be themselves repairable or non-
repairable. Ultimately, available systems consist of reliable elements:  

Example:  
A light bulb is a reliable element: once it has failed, it cannot be repaired and is thrown away. The lighting of the cellar is 
an available system: When a bulb fails, one can replace it by another, but the replacement takes some down time.  

Conversely, reliable systems may consist of repairable elements - but only if the system is fault tolerant, as we shall 
see (Section 1.2). 

Note that the same system can be both available and reliable, depending on the specification of the mission.  

The distinction is best stated in terms of state and transition diagrams. The system transits from one state to the 
other at every fault or repair transition. A reliable system is characterized by absorbing states, or trapping states 
from which there is no return (or repair). An available system has no trapping state. Note also that the reliable 
system can also be repaired, as long as it does not run into a trapping state. Therefore, the same system can be 
reliable or available, depending on whether we consider trapping states or not.  

Example: 
Figure 1-4 shows the transition diagram of the same system, once considered as a reliable and once as an available 
system. If one of the two repair transitions would be removed, the available system would become a reliable one.  

 



 

12  Fault-tolerant Computers 

good

fail

fail

all

fail

ABC

ok
all

up

downall
ABC

ABC

ok
all

down

ABCABC

ABAB ABAB
down

 

Fig. 1-4: Reliable and Available Systems, Trapping States. 

Finally, the distinction between a malfunction in a reliable system and down-time in an available system should be 
made, although both correspond to a non-function state: In principle, the duration of the down time of an available 
system has no upper bound, while an excess duration of a malfunction in a reliable system leads to a failure. This 
distinction will become important in fault-tolerant systems that require a certain time to repair themselves, and 
therefore produce a malfunction of limited duration. If the fault cannot be handled within the maximum permitted 
malfunction duration, a failure occurs.  

1.2.4 Graceful Degradation 

The above notions of availability and reliability base on a yes/no criterion: either the item is up or down, either the 
mission is performed or not. A more subtle distinction is made when considering that the system may loose only a 
part of its functionality at each fault, without failing completely. This is termed graceful degradation. Graceful 
degradation supposes that classes of functionality or performance are defined in the mission specification, and that 
a correspondence is made between classes of faults and classes of performance.  

Example: 
the functions of a computer in a power-dispatching centre may be divided into important functions, like display and 
command, and other less important ones like operation statistics. Also, one can specify that the display actualisation must 
be made in 3 s in the normal case, but accept that this rate goes down to 10 s under degraded conditions. Then, one must 
specify which percentage of the time a degraded operation is allowed. Finally, the designer of the computing system must 
meet these requirements by defining the fault modes and assigning to them functions and performance.  

Graceful degradation can be expressed by in the state diagram, by weighting the different states in function of the 
remaining functionality. Gracefully degradable systems exhibit a set of states that correspond respectively to full 
functionality, to diverse degrees of degraded functionality and to the loss of functionality.  

Example: 
Figure 1-5 describes a triplicated system, for instance three independent production robots operating in parallel. The total 
throughput is a function of the number of robots remaining. The availability of each machine defines the average 
throughput.  



 

Chapter 1 Definitions and Principles 13

P = 1 P = 2/3 P = 1/3 P = 0

repair repair repair

one of 3
units fail

one of 2
units fail

last unit

fails

down
 

Fig. 1-5: Gracefully Degradable System 

In some cases, the objective of graceful degradation is not to continue to provide the original service, but to provide 
a reduced service sufficient to lead the system to a safe state.  

For instance, a twin-motor aircraft that suffers a motor failure should use its redundancy to reach the nearest 
airport, not to fly its intended route with one motor at reduced speed. The risk of a catastrophic second failure would 
be too great.  

1.2.5 Safety and Security 

Safety is the probability that an element does upon a failure enter a state that can cause damages. 

Safety is not a function of the element that may fail, but of the function of that element in a system. An element is 
considered safe if it does not fail in a forbidden way.  

Example: 
a switch used in a high-power distribution grid is considered to fail safely if it fails in the open position. Its safety is defined 
by the probability of not going to the closed state upon a failure. 

One assumes that an element is safe as long as it does not fail. That is, increasing the reliability always increases 
the safety. A system is considered fail-safe if it can cope with faults of its elements in such a way that the resulting 
damages are acceptable. A state diagram similar to that of graceful degradation can express the safety of a system. 
Some states denote full functionality, others fail-safe and other fail-unsafe states (Figure 1-6).  

safe

safe safe

unsafeunsafe

repair
recover

safe stop

failure unmanageable

 

Fig. 1-6: Safe System States 

In the above diagram, the system is unsafe when an unmanageable fault occurs, and safe either when the system 
is working or stopped. 

A computer's safe and unsafe fail states depend on the application, as will be seen in Chapter 2. Most of the time, 
one assumes that the computer is safe if it ceases operation, unsafe if it outputs erroneous data. In this case, the 



 

14  Fault-tolerant Computers 

safety is given by the integrity of the computer. But some plants have no safe side and depend on computer control 
to remain in a safe state.  

Example 
 if an autopilot is controlling an unstable aircraft, a few erroneous data items would increase the noise of the control 
system and can be are tolerated if infrequent, but a lengthy malfunction leads to a crash. Thus, safety is given by the 
reliability of the computer. 

Safety considerations often dictate the availability of an item.  

Example 
The space shuttle depends on a flight computer to return to earth. For safety reasons, there are five of them on board, 
only one being necessary to fly the plane. The probability that all five fail during the same flight is extremely thin. 
However, that probability rises to unacceptable levels if the shuttle had only three computers, or even only one computer 
running at take-off. Any malfunction of one of the computers leads to cancellation of the flight, i.e. decreases the shuttle’s 
availability. 

Safety and availability are to a certain extent mutually exclusive, they compete for the same resource: redundancy,  

Example: 
If one replaces the fuses of the electric appliances by copper bars, the availability of the device increases, but the safety 
is dramatically decreased.  

Safety problems occur generally when the trust in the system is excessive. 

Example: 
Anti-skid brakes have a negative impact on safety since drivers of ABS-equipped cars tend to drive faster, 
 trusting that the ABS will shorten the brake distance, which is not always the case. 

Security, finally, is a related notion that concerns the protection against malicious generation or falsification of data 
and against malicious reading of data. Security in computing systems is generally enforced by physical shielding 
and data encryption with cryptographic algorithms. In general, increasing the security will reduce the availability, 
since more elements are present. Increasing the security can also reduce the functionality and render the computer 
awkward to use. A completely secure computing system is one to which nobody has access. We do not consider 
security issues here, although they are without doubt a fundamental problem which can hamper the development of 
computers, and which involves legal as well as technical aspects.  

1.3 Increasing dependability 

The following section introduces general notions of dependability improvement, which are not limited to the 
computing field, but apply to a large measure to electronic circuit design and mechanical design as well. These 
notions will be refined in Chapter 3 with special emphasis on computing systems.  

1.3.1 Fault Avoidance and Fault Tolerance 

There are two basic philosophies to increase the dependability of a system: fault avoidance, which is related to 
component quality, and fault tolerance, which is related to repair. In both cases, one consider the system as 
consisting of items which can fail.  

Fault avoidance considers the system as one chain of links, the failure of any of which causes a system failure. 
Fault avoidance aims at improving the reliability of the individual links, and especially of the weakest. Fault 
avoidance is normally the cheapest way of achieving moderate improvements in reliability. The key to fault 
avoidance is quality: improvement of the component reliability, careful and generous design, exhaustive testing, 
regular maintenance and proper care to the equipment. However, fault avoidance reaches its limit when the 
required reliability is higher than the reliability of the worst element. As requirements in reliability increase, the cost 
of reliable elements soars and above a certain level, fault avoidance is not any more cost-effective and fault 
tolerance should be introduced.  

Similarly, if availability is looked for, then fault avoidance includes means to reduce the mean time to repair, but 
even with a great effort, the mean time to repair cannot be brought down to less that a few minutes, and fault 
tolerance comes to play.  

Since this tutorial is dedicated to fault tolerance, we will not return to the otherwise interesting subject of fault 
avoidance. We refer for this to the literature: [Siewiorek 82, Spectrum 81].  



 

Chapter 1 Definitions and Principles 15

Fault tolerance on the other hand improves the dependability by replicating portions of the chain, that is, by 
introducing redundant portions that are not needed for fault-free operation. Then, individual links can fail without 
breaking the chain and the reliability of the chain can be higher than the reliability of the best link, provided one 
could distribute the load on the remaining links. Fault tolerance requires means to recover from a failure by inserting 
redundant links as links fail. This can be done by hand or automatically.  

Fault tolerance expresses the ability of a system to survive the failure of some of its parts and continue to provide its 
intended function when this occurs (reliability), or at least a part of that function (graceful degradation).  

Now, the difference between a repairable system and a fault-tolerant one is hazy. We assume that a fault-tolerant 
system is capable of performing a reconfiguration without human intervention when a fault of one of its elements 
occurs, that is, a new distribution of its functions among the remaining parts, with only a short disruption of service 
or even none.  

Although conceptually similar, a repairable system needs a relatively long malfunction time during which it is not 
capable of performing its function. So, in principle, a system that can be manually repaired within an acceptably 
short time should be termed a fault-tolerant system, but we will restrict our definition to automatic repair:  

A fault-tolerant system can overcome faults of its elements without human intervention and with an acceptably short 
malfunction, while retaining a part or totality of its functionality afterwards. 

1.3.2 Implementing fault tolerance 

Redundant functional units, called spares, achieve continuous operation in spite of faults. A spare generally 
corresponds to a unit that is exchangeable, repairable and replaceable. It is called a field (or line) replaceable unit 
(RU). Figure 1-7 gives the general outline of a fault-tolerant system:  

plant

reconfiguration unit

spare 1 spare 2 spare 3 spare 4
redundant
units

repair unit

 

Fig. 1-7: Functional Redundancy. 

One (spare) unit performs the intended function. Upon failure of that unit, another unit is switched in its place by the 
reconfiguration unit. A repair unit, if it exists, can repair failed units. The repair unit could imply manual 
intervention. Repaired units can be reintegrated to return the system to its original reliability.  

The quantity of spares determines how many faults a fault-tolerant system can survive. Note that a human-
repairable system has in principle an infinite number of spares.  



 

16  Fault-tolerant Computers 

1.3.3 Single Point of Failure 

A fault-tolerant system should be designed so that it can overcome a fault of any of its elements. This is not always 
technically feasible nor economically viable. A non-redundant element is termed a "single point of failure", since 
its fault causes the failure of the whole system.  

Example: 
 if three redundant hydraulic equipments are installed on an aircraft, but all circuits are located on the same tail structure, 
the lost of that structure would rip out all redundant circuits at the same time. However, considering this structure to be 
reliable enough can be a legal design trade-off.  

Single points of failure may be introduced by some mode of failure rather than by the presence of elements that are 
not physically replicated. For instance, spares should always fail independently. If the fault of one spare causes the 
fault of another spare, or if the same cause originates the fault of several spares, the system may loose in one fault 
all its redundancy. We are then in the presence of the feared common mode fault, which can defeat any fault-
tolerant system. A common mode fault is to be treated as a single point of failure.  

Example: 
 if computers are physically replicated, but use the same program, a bug in that program will bring the system down. A 
very frequent assumption is that only one fault can take place at a time. A fault during reconfiguration can defeat the 
recovery mechanism and is therefore also considered as a single point of failure. 

1.3.4 Removing a Single Point of Failure 

Most fault-tolerant systems use some kind of switching or voting unit like Figure 1-7 shows. This switching unit is a 
single point of failure. For that reason, one tries to replicate the switching device also, or to move it as far as 
possible into the controlled process.  

Figure 1-8 shows a replicated valve controller. If the outputs of both units go to the valve, then a failure of the valve 
or the wire to it brings the whole system down. A replication of the valve by a system of 4 valves allows to open or to 
close the circuit under any circumstances, when either valve circuit is stuck open or stuck closed.  

Now, if the system is fail-safe when the valves are closed, then a simple series connection is sufficient. If it is fail-
safe when the valves are open, then a parallel connection is sufficient.  



 

Chapter 1 Definitions and Principles 17

fluidnon-redundant process

single points
of failure

safe when flow stops safe when flowing

voters

safe if flow can be controlled

controller

controller

controller

controller

controller

controller

controller

controller

controller

 

Fig. 1-8: Displacing the Single Point of Failure into the Process. 

In the Figure 1-8, the highly reliable case (no fail-safe side) is solved by a series/parallel system of four valves. Any 
of the valves may fail, either stuck open or stuck closed. Additionally, the system is safe-open for a double fault in 
which two valves on opposite tubes are stuck open. To achieve fail-closed for stuck-open valves, a by-pass must be 
added (dashed line).  

However, such a quad valve circuit does not protect against malfunctions of the controller, which could open two 
valves at the same time. A second redundancy of the controller is therefore required. This is depicted here in form 
of a triplicate system, whose outputs are voted upon by voters. The voters are unreliable elements, but the failure of 
a voter is identical to that of a valve, so there are no consequences. 

Thus, the switching unit may be implemented by using redundancies in the plant, rather than by an actual switch. In 
any case, the switch being a critical element will require special attention in the design. Replicating portions of the 
process, or even the whole of it, displace a single point of failure into the process. However, at some point, 
economic considerations may dictate the presence of a single-threaded component.  



 

18  Fault-tolerant Computers 

1.3.5 Massive and Sparing Redundancy 

In massive redundancy, (also called "static redundancy”), fault tolerance is achieved by numerous parallel units 
which perform the same function independently, the process being designed in such a way that it can tolerate the 
failure of any of these units without taking special actions to remove the faulty unit or include a repair. The 
redundant units all participate actively in the function; there is no dedicated spare or working unit.  

Example: 
20 cables support a bridge, but 15 of them are sufficient to bear the load. Upon rupture of one cable, the load redistributes 
itself among the remaining cables if the anchorage has been properly designed. 

On the other hand, one considers sparing redundancy (also called "dynamic redundancy”), in which one unit does 
the work and one or several spares exist, which could perform the same function. Upon fault of the working unit, it is 
removed from service and a spare is inserted.  

Example: 
The spare tyre in a car is a sparing redundancy. Its inclusion requires a removal and insertion operation,  
which takes a certain time. A truck with dual tyres is, by contrast, an example of massive redundancy. It can continue to 
run upon puncture of one tyre, possibly at reduced speed, until it reaches a repair place.  

Sparing redundancy requires fewer resources than massive redundancy and avoids problems due to the parallel 
activity of several replaceable units. On the other hand, it requires a certain amount of intelligence and switching to 
recover from a fault, and has problems of its own, which are detailed in the next section.  

To reduce the number of spares, one must consider the class of reconfigurable systems for which on-line repair is 
done by spare pooling. In spare pooling, one spare can be shared by several functional groups. This supposes 
that the spare can adapt to different functionalities:  

Example: 
A company holds spare personal computers. Whoever needs one can obtain one from the spare pool while his own is 
being repaired. The number of spares can be calculated knowing the failure rate of a computer, the Mean Time to Repair 
and number of users, as a function of the required availability and of the probability of spare exhaustion.  

1.3.6 Implementing Sparing Redundancy 

We detail here some typical problems that arise with sparing redundancy. 

An important premise for sparing redundancy is that the spare is in a working condition at the time of switchover. 
Spares may also fail, even when they are not active. If this situation is not dealt with, the redundancy may be lost, 
and, what is worse, without notice. Such an undetected fault is termed a lurking fault. It is one of the most 
dangerous situations, since a lurking fault may appear only when the spare is inserted on-line and cause a system 
failure.  Periodical exercise is a traditional method to find lurking errors.  

Example: 
a lurking fault exists when the spare tyre of a car is flat, but the driver does not notice it. The car has lost its redundancy. 
For that reason, the driver should check periodically the function of its reserve tyres. 

1.3.7 Spare readiness and replacement time 

The switchover from the working unit to the spare is not an instantaneous operation. Further, a spare may require 
some time to be ready to take over the function of the faulty unit.  

The switchover can be compared to the removal and insertion of a spare tyre, and the readiness to the necessity to 
inflate the replacement tyre.  

One distinguishes "hot spares" for which the activation of the spare takes a negligible time, "warm spares" which 
require a certain time to come on-line and "cold spares", which are in a dormant state.  

In fault-tolerant computers, spare computing elements exist as redundant hardware. This hardware must be loaded 
with the correct information in its memory to be ready for service. Three situations may occur:  

• hot spare: the spare hardware is exactly in the state of the working unit (possibly because it is doing the 
same calculations at the same time) and it can be inserted just by flipping a switch.  



 

Chapter 1 Definitions and Principles 19

• warm spare: the spare is loaded with a valid, but obsolete state and requires a certain time, e.g. a dozen of 
seconds, to be actualised (brought up-to-date) before inserting. Care must be taken about what happens during the 
switching time.  

• cold spare: the hardware is void and must be loaded completely (for instance from a disk) to start up again. 
Further, the spare must get itself acquainted with the current situation (for instance it may have to ask all the 
peripherals for their status before starting work). This can take several minutes.  

NOTE: the terms "hot redundancy", "warm redundancy" and "cold redundancy" used in reliability theory (Chapter 9) are 
not related to the above terms. They refer to the failure rate of the spares, (respectively whether they fail at the same rate 
as the working part or at a lesser rate), and not to the degree of readiness of the spare. 

1.3.8 Decomposing a Fault-tolerant System 

Modular decomposition applies to the design of complex and large systems. Fault tolerance can also be applied at 
the element or module level, rather than at the system level. Replaceable units correspond then to modules or 
groups of modules of the system. The size of a replaceable unit i.e. its granularity, is a design option which is 
strongly influenced by technology.  

There are several advantages in dividing a complex system into smaller fault-tolerant units:  

• Modular decomposition allows an easier design, and simpler repair and maintenance of available systems. It is 
also able to distribute better the redundancy, by increasing the reliability of the weaker parts.  

 Example: 
In a computing system, the reliability goal can be achieved by triplication of the power supply, duplicating the disk and 
with a single CPU, rather than duplicating the whole. 

• Crossover becomes possible. The smaller the replaceable units are, the better the theoretical reliability. Indeed, 
if a large system is replicated, one single fault in the working systems is sufficient to bring that system down and 
require the activation of the spare, which may fail at the first single fault it experiences. If the large system is 
divided into numerous duplicated units, then it can suffer the failure of several individual units without failing. 
This is shown by Figure 1-9:  

1 2 3

1 2 3

1 2 3

1 2 3

large units small units with crossover

 

Fig. 1-9: Large and Small Size of the Replaceable Units. 

There are also two limits that must be considered, which will be discussed in Chapter 9:  

• Small units are located close to one another and therefore, independency of fault is difficult to achieve. If 
both units are, for instance, located on the same integrated circuit wafer, it is probable that the redundant unit will 
fail when the working unit fails, for instance because of overheating.  

• Insertion of a spare is bound with a certain risk that it fails. When large units are replicated, there is at one 
extreme only one switching unit, while at the other there is a large number of switching units, exactly one for each 
RU. The probability that any of these switching units fail is not negligible, even if they are themselves replicated.  

1.3.9 Fault Tolerance and Repair 

Although we ruled out (manual) repair in the definition of fault-tolerant systems, repair can be combined with fault-
tolerance to increase reliability and availability.  

Consider first a non-repairable system, as Figure 1-10 shows. 



 

20  Fault-tolerant Computers 

unit 1 fails

unit 3 fails

unit 2 fails

TTF 1

TTF 3

TTF 2

0 1 2 3

one of 3
fails

one of 2
fails

remaining
fails

3

time

level of 
redundancy

 

Fig. 1-10: Non-repairable, Redundant System. 

This system will fail when all spares are exhausted. As Chapter 9 will show, such a non-repairable system brings a 
significant increase in reliability for a short mission time only, but on a long mission time it brings no increase in 
reliability: 

Example: 
A pilot has an average lifetime of 70 years, and there is a certain probability that he fails on a flight of ten hours. For that 
eventuality, there is a co-pilot beside him, which has about the same life expectancy as the pilot. Note that the probability 
that one of them suffers of heart attack on this flight is double now, but it is very unlikely that both the pilot and the co-pilot 
fail during the same flight, since they are both healthy people, except possibly if they ate the same turtle soup before take-
off (common mode failure).  

 However, it would make little sense to send the same crew in a spaceship on a 100-year trip to Sirius, and expect one of 
the pilots to be still alive at arrival. Even manning the spaceship with 100 pilots will not help. One can envision a solution 
by keeping the redundant crew hibernated (by reducing their failure rate). Another solution is reproduction on board, which 
is a regeneration or repair process, which we will consider next.  

The key to long mission times is repair. We must distinguish here between on-line and off-line repair.  

On-line repair depicts the repair of a spare without disruption of the operation.  

Off-line repair requires a momentary stop of operation to repair the system.  

Thus, a reliable system may be repaired on-line, but not off-line. Fortunately, most reliable systems may be halted 
from time to time for repair, when the mission involves phases during which the computer is not required. This is 
then called scheduled repair.  

Example: 



 

Chapter 1 Definitions and Principles 21

 A competition car in a rally over the desert can be considered a reliable system. The car looses the race if a tyre is 
punctured and a reserve is not immediately available for mounting. The acceptable malfunction duration is only about one 
minute, sufficient to change a tyre, but not to repair it.  

 The car carries a certain amount of redundancy: if a tyre bursts, one of the (few) reserve tyres is used. In the non-
repairable case, the car fails if all its reserves tyres are exhausted and a tyre bursts.  

 Now consider that a set of new reserve tyres can be obtained at determined oasis in the trip (service station): the 
reliability is equal to that of the exhaustion of spares in the interval between oasis. The reliability of the car will depend on 
the time it takes to go from one station to the other. This illustrates the concept of scheduled repair.  

 A better reliability can be achieved if the tyres are repairable during the trip, for instance by the crewman while the car is 
racing. In that case, the reliability is equal to the exhaustion of spares while the others are being repaired. It depends 
therefore on the mean time to repair and on the mean time to fail of each tyre. This illustrates the concept of on-line repair: 
the car needs not stop long for repair.  

 Now, if the failure of the car is not considered dramatic, for instance if the same car is used for a leisure excursion, then 
one can consider it as an available system. Tyre exhaustion leads then to an off-line repair.  

Thus, the distinction between an available system and a reliable one depends on the consequences of the failure of 
that system, whether one would like to consider it as catastrophic or just a nuisance.  

The following Figure 1-11 shows the life of a reliable, on-line repairable system. Whether it is considered as a 
reliable or available system depends on whether one likes to consider off-line repair (dashed line):  

all good all good
# good units

TTF 2
TTR 1

unit 2 unit 1
up down

TTR 2
time to repair unit # 2

TTR 2

0 1 2 3

one of 3
fails

one of 2
fails fails

last one

on - line on - line off - line
repairrepairrepair

TTR 3

0

1

2

3

time to mission failure 

unit 1
up

unit 2
down

unit 3
down

unit 2
down

unit 1
down

survives fails

time

 

Fig. 1-11: Life of a Triplicated, Fault-tolerant, On-line Repairable System. 



 

22  Fault-tolerant Computers 

The mean time to restore the previous configuration (to reconfigure) is in all cases critical, since a fault during 
reduced reliability can lead to redundancy exhaustion and to mission failure. Only a reliability study can decide 
whether the maintenance team should be called at each detection of a persistent error, or only on schedule during 
the work hours, or regularly every week for instance. Here, the economics of fault-tolerant systems come to play: it 
may be cheaper to duplicate or triplicate a computer than to maintain a repair team in constant alert 24 hours a day.  

Although on-line repair increases reliability and availability, it is less evident that on-line repair can also reduce them. 
On-line insertion remains a somewhat dangerous operation: automatic reconfiguration can fail because of a second 
fault, and the presence of a maintenance team significantly reduces the reliability of the working unit(s)  

Actual example: the maintenance team comes in and switches off the working machine instead of the faulty 
machine.  

Furthermore, depending on the hardware design, the operation of removing and inserting faulty units may be 
problematic. 

Example: 
inserting a repaired board in a working bus (live insertion) can cause currents of several amperes to be switched as the 
on-board capacitors charge. This current surge will disturb the bus signals and cause transmission errors.  

1.3.10 Fault-tolerance and Dependability Definitions 

The introduction of fault-tolerance obliges us to adapt the above definitions. 

We define the reliability of a fault-tolerant system as the probability that the system as a whole has not ceased 
fulfilling its mission at time t = T, (assuming it was in working conditions at the origin time t = 0). Reliability is 
expressed by the Mean Time To Mission Failure or MTTMF.  

Similarly, we define the availability of a fault-tolerant system as the probability that it is fulfilling its mission at time t 
= T, provided it was in working conditions at t = 0 (it may have failed several times in between). Availability depends 
on the Mean Time Between Mission Failure MTBMF and the Mean Time to Mission Repair (MTTMR).  

The interesting factor is how often components of the system fail, and how frequently the system must be repaired 
on-line. This factor will dictate the organisation of the repairs and influence the economic factors, and in particular 
how often the repair team must be called – and paid. We define the susceptibility as the probability that one or 
more components be in a failed state at time t. The susceptibility is expressed by the mean time between element 
failures (MTBEF). The maintainability of the elements is expressed by the mean time to element repair (MTTER). 

Note that a fault-tolerant system has always a higher susceptibility than a non-redundant one: the higher the amount 
of redundancy, the higher the probability that a component fails. 

The sure thing about a duplicated system is that it will fail twice as often as a non-replicated one.2 

Finally, we define the persistency of a fault-tolerant system as the probability that it survives a fault in one of its 
components. 

Normally, fault-tolerant systems are 1-persistent, i.e. they can outlive the failure of one of their components, but not 
necessarily a second failure while the first one is not yet repaired. A multi-persistent system is able to outlive N 
simultaneous, independent element failures.  

1.3.11 Summary 

Figure 1-12 summarizes different classes of systems in terms of state diagrams:  

                                                      
2  Assuming spare have the same failure rate, i.e. hot redundancy is used.  

 



 

Chapter 1 Definitions and Principles 23

good failed

down

ok

up

failedpart
failed

up
up

damaged

ok faileddamaged

up

damagedup down

failure

failure

fault failure

failurefault

failure

fault

fault failure

failurefault

repair repair

ok

unsafe
oper

safe
stop

unsafe
stop

safe
oper

p = 1 p < 1 p = 0

on - line repair off - line repair

on - line repair

off - line repair

( off - line ) repair

reliable

available
( off - line repairable )

redundant
non - repairable
reliable

( off -line repairable )
available
redundant

on - line repairable
redundant

reliable

on - line repairable
redundant

available

degradable ,
repairable
available

safety
aspects

operational stop

down

dangerous if
function loss

not integer
dangerous if

 

Fig. 1-12: Different Classes of Systems 



 

24  Fault-tolerant Computers 

References 

[Avizienis 78] A. Avizienis,  
"Fault Tolerance: the Survival Attribute of Digital Systems", 
Proceedings of the IEEE, Vol. 66, No. 10, pp. 1109, 
October 1978 

[Laprie 85] Laprie, J.C. , 
"On Computer System Dependability: faults, errors and failures" 
Proceedings of the IEEE COMPCON Silver Spring, 
1985 

[Randell 78] B. Randell  
"Reliability Issues in Computing System Design" 
Computing Surveys, Vol.10, No. 2, pp. 123- 165, 
June 1978 

[Spectrum 81] Special Issue on Reliability, 
IEEE Spectrum, Vol. 18, No 10, 
October 1981 

[Siewiorek 82] D. P. Siewiorek & R. S. Schwarz , 
"The Theory and Practice of Reliable System Design" DIGITAL Press, 
1982 



 

Chapter 2 Plant Behaviour in Presence of Faults 25

2 Plant behaviour in presence of computer failure 

2.1 Introduction 

After the preceding discussion on terminology and operating principles, we will consider here faults and the fault 
tolerance of the computer from the point of view of the world external to the computer, i.e. from the point of view of 
the plant. How the plant reacts to computer failures will to a large extent dictate the dependability features of the 
computer.  

A computer is practically always an "embedded system", that is, it is only one part of a larger system, which it 
controls and monitors up to a certain extent. This system can be an industrial plant, a banking organization, an 
airplane reservation system or an aircraft. We will use the generic name of "plant" for the part of the system that is 
not the computer. Therefore, before one defines the specification of a fault-tolerant computer, one should consider 
the system consisting of a (controlling) computer and a (controlled) plant, and verify the consequences that a 
malfunction of the computer will have on the plant. The basic question is: "how tolerant is the plant to failures of the 
computer?" Only then can the question "how tolerant must the computer be to failure of its parts?" be answered. 

This Chapter explains that Tdomax, or "the maximum time a plant can tolerate a loss of its controller without reaching 
an unrecoverable state" is a key design factor. This factor affects directly the architecture and the mechanisms for 
standby or spare switching, and thence the computer's architecture.  

The second relevant factor is Terrmax, or "the maximum time during which a plant tolerates erratic behaviour of the 
controller without reaching an irrecoverable state". This factor directly affects the choice of the error detection 
mechanism. 

2.2 Controller and plant 

We assume that a computer is part of a system, which consists of the computer itself, or "controller" and the 
external world or "plant". The controller interacts with the plant to control and monitor it. We consider only failures of 
the controller, not of the plant. We do not consider human operators as part of the controller, but consider them as a 
part of the plant. The term "plant" is familiar in process control, but it applies also to any other physical process, like 
a chemical distillation column, an aircraft, a banking corporation or an airline reservation system. Where the 
controller ends and the real world begins is a matter of definition. 

For instance, in an airline reservation system, which consists of several computers, file storage, terminals, etc. 
arranged in a network, which interacts with the users, the controller can be one specific computer, while the plant 
consists of the rest of the network and of the users. Alternatively, the whole network can be viewed as a controller 
and the plant consists entirely of the users of the system.  

We will limit the controller to that part of the whole system that we expect to fail, and to which automatic recovery 
procedures apply in case of failure. As the physical world generally escapes to digital control, the most common 
assumption is that the plant will be the physical world outside of the computing system. The same view applies to a 
time-sharing computing centre, a microcomputer controlled appliance like a television or a banking organization. 

In summary, we consider as "controller" that part of the system which may fail and to which fault-tolerant procedures 
apply. We consider as "plant" the rest of the world, which is considered fault-free, but which can be brought into an 
erroneous or dangerous state by a failure of the controller. Our starting assumption is that the characteristics of the 
plant will dictate the dependability attributes of the controller, and hence its architecture.  

The physical variables of a plant may assume several states, some of which are proper (ensure production as 
planned), while others are improper. The states can be safe (the plant may remain indefinitely in such a state), 
others unsafe (permanence in these state will lead to damage). A plant may return from an unsafe state by proper 
control if its state is still reversible, otherwise it reached an irreversible state. A plant can be in several states with 
regard to fault tolerance. Figure 2-1 shows a simplified, but typical model: 



 

26  Fault-tolerant Computers 

failure of safety 
mechanisms
failure of safety 
mechanisms

danger

safe

normal

safe

breakdown

unsafe

damage

unsafe

shutdown

safe

plant 
repair

plant 
goes to safe 

side

plant 
has no safe 

side or 
shutdown 

fails

successful 
recovery

restart

sustained 
failure

controller 
failure

 

Fig. 2-1. Plant States 

Normal: Proper, safe state: this is the normal operation state. All plant physical variables are within the limits of 
proper operation. This covers the safe operation (this part of the state space is called the safe operation area, 
or SOPAR).  

Danger: Improper state, safe, recoverable: some of the physical variables have left the proper state space, but 
have not yet reached a critical point. The plant can return to the safe area provided an adequate control is 
undertaken within a limited time.  

Breakdown: The plant cannot be brought back to proper operation by automatic action of the controller. This 
situation will lead either to a safety shutdown, to a human intervention or to damage after a certain time.  

Shutdown: Improper state, not recoverable, safe: the plant is brought to a safe, shut-down state (e.g. standstill for 
a train). The plant cannot return to operation immediately, since the reason for the unsafe operation must be 
first found and corrected. Restarting of the plant is usually bound with human intervention and safety 
prerequisites (acknowledgement by a superior authority), which may take time and is subject to economic 
penalties. Safety-shutdown supposes that the plant has a safe side that can be reached without intervention of 
the controller (e.g. by an emergency brake).  

Damage: Improper state, not recoverable, unsafe: the plant has operated outside of the unsafe area and reached a 
damage point. The plant cannot be returned to the safe, working state, from the state it has been brought into 
by a controller failure. It is not any more operational and return to service is either impossible or a costly 
operation which requires human intervention and repair, as well as a long standstill of the plant. This case is 
economically the worst.  

Of course, at some high level of abstraction, if time and energy do not count, sufficient effort can make all plants 
reversible. Severe damage can be repaired, even a city reconstructed, but this involves human intervention and will 
not be considered here.  

The above model of a plant's state is coarse. Practical evaluation models work with dozens or hundred of states, 
depending on the complexity of the installation.  

Example:  
the behaviour of a simple substation for power distribution requires some 35 states (see Chapter 9) 



 

Chapter 2 Plant Behaviour in Presence of Faults 27

2.3 Failure mode and plant state 

2.3.1 Erratic and fail-stop behaviour of the controller 

The basic question is "how long can the plant tolerate the failure of its controller?" The answer is dependent on the 
one hand on the type of plant, (expressed by its behaviour in case of loss of controller and its transfer 
characteristics), and on the other hand on the mode of failure of the controller.  

Although a computer may fail in a number of ways, we consider only two kinds of failure of the controller that can 
cause a plant to leave the safe operation area. These are the erratic behaviour and the fail-stop behaviour: 

Erratic behaviour: The behaviour of a computer is not predictable in the case of a component failure, due to the 
large number of elements involved. The computer's output is unpredictable and may consist of wrong data that 
cannot be recognized as such by the plant. This includes the sending of the correct data, but at an inappropriate 
time. The erratic behaviour includes malicious malfunction, that is, a malfunction that looks like an intelligent 
attempt to bring the plant down. One does not know in advance whether the erratic output will have either 
dangerous effects, safe effects or no effect at all, and worst case should be assumed.  

Fail-stop behaviour: This second case is a simplification of the first, in which one assumes that all errors can be 
detected by adequate means. In the worst case the plant will not receive any inputs from the controller during a 
certain time.  

An erratic behaviour can be turned into a fail-stop one, provided: 

� That any error can be detected 

� That the erroneous information is prevented from acting on the plant. 

In most plants, it is much more likely that damage occurs when the controller is erratic than when it is stopped. 
Erratic behaviour may bring the plant into a state from which the safe working state can no longer be reached, yet a 
silence of the controller is more likely to leave the plant in the current state. The reason lies in the fact that most real 
world processes are not reversible and therefore cannot be easily brought back into a state, once that state has 
been left. Digital computers and finite state machines in general can be brought into an undefined state by the 
erratic behaviour of their inputs. 

The term fail-stop is preferable to fail-safe, since a fail-safe operation only applies to a plant that has a safe side. A 
plant has a safe side if the plant remains in a safe state when the controller is silent. Safe-side can also be achieved 
by technical means such as emergency shutdown which brings the plant to a safe state upon detection of an 
abnormal situation, by-passing the controller.  

There are cases in which erratic behaviour is less dangerous to the plant than a fail-stop behaviour. When the 
mechanisms used to implement fail-stop imply that the duration of the silence far exceeds the duration of the erratic 
behaviour, it can jeopardize some kinds of plants, especially those which lack a safe side.  

Since the effect of these two kinds of malfunction, erratic and fail-stop can be radically different, they will be 
considered separately.  

2.3.2 Effect of a Fail-stop Controller on the Plant 

In case of fail-stop, the controller ceases to generate outputs to the plant during a certain time. Usually, the plant's 
inputs are designed in such a way that the plant keeps on working with the previous orders. After the disruption, the 
controller returns to work and tries to bring the plant from its current state back to safe operation.  

To analyse this situation, let us assume that the disruption of a controller is bound with costs that increase non-
linearly with the duration of the disruption. An empiric plot is shown in Figure 2-2:  



 

28  Fault-tolerant Computers 

damages + losses

damaged
plant is

shutdown timesafety backup
triggers

T T T T

11

22

33

44

grace domax shut damage
time

 

Fig. 2-2: Damage Cost in Function of Malfunction Duration for Different Plants. 

This scenario is strongly dependent on the individual plant and Figure 2-2 has only a qualitative value. It represents 
a probability, since it depends on what happens while the computer is down: if the plant's operation is a continuous 
process which remains in equilibrium, and no perturbations occur while the computer is down, then the plant will not 
notice the loss of control at all.  

The costs of a failure can be roughly divided into 4 zones: safe zone, danger zone, safe stop and damage zone.  

Zone 1: safe zone. The plant does not leave the safe operating area. Practically all plants ignore a silence of the 
controller that lasts less than a certain "grace time", Tgrace. An observer in the plant will not even notice the 
malfunction of the controller if it is short enough, for instance when service is restored before the next command is 
due or between two samples. This is especially true when the plant has a low-pass behaviour with a time constant 
which is long with respect to the malfunction duration.  

The grace time is a direct function of the main time-constant of the plant. There are no damage costs bound to the 
grace time.  

Zone 2: danger zone. The plant enters the unsafe operation area because it is not controlled for a time larger than 
Tgrace. When a plant is stressed outside of the safe operating area, damages begin to show up. The damage cost is 
usually directly measurable, for instance in term of idle time of employees, or production delay. The cost may also 
take the indirect form of a risk taken, for instance because of additional stress and wearing of the equipment due to 
operation outside of the safe area or because of quality degradation of the product. 

For most plants, the economic losses in this region are a linear function of the outage. The duration of the linear 
losses is also a function of the time-constant of the plant.  

Zone 3: safe shutdown zone. When a plant is equipped with a safety back-up system, the plant is shut down if it 
leaves the safe area during a time longer than Tshut. 

A safety shutdown is bound with a high fixed cost, due to: kicking off users and loosing their work, loosing batches 
of material, establishing protocols, notifying authorities, reorganizing the production, returning to function, etc.  

At the same time, the plant ceases to produce. The standstill costs can climb even steeper than in the former zone, 
because related plants of the factory may be forced to cease production as a consequence. 

Zone 4: damage zone. Damage appears when the plant's safety back-up does not respond, or if the plant has no 
safe side and depends on the controller's function to remain in the safe operating area. For instance a guided 
vehicle may be severely damaged if the loss of control exceeds a time Tdamage. The outage costs soar to account for 
payment of damages to lives and property, repair of the plant, restoration of production (if it is still possible) and 
general overheads associated with the accident. However tragic the accident, its total cost will tend to an upper limit. 



 

Chapter 2 Plant Behaviour in Presence of Faults 29

We therefore define a design factor Tdomax, which is the maximum time during which a plant can tolerate a loss of 
the controller function without reaching an irreversible state (either a shutdown or damage). This time will be 
somewhat greater than the grace time Tgrace, but smaller than Tshut.  

2.3.3 Effect of Erratic Behaviour on the Plant 

A plant has no means to tell the wrong data from the correct data it receives from the controller. A correctly 
computed output that is issued at the wrong time is counted as erroneous data. The probability of unrecognised 
false data is an important parameter of a computing system, and it is known as the RER (residual error rate).  

The effect of an erratic behaviour on the plant is threefold: 

it can bring a continuous, reversible plant (e.g. a speed governor) into an unsafe state sooner than a fail-stopped 
controller would by issuing erroneous orders (e.g. an erroneous set-point): Tgrace is reduced.  

it can bring a discrete plant (e.g. a bottle filling plant) into an unsafe state out of which it is difficult to return back to 
safe operation, even if no damage occurs. Therefore, it inhibits recovery and increases the down time, even after 
the erratic behaviour has ceased.  

Some processes concede no grace time in the presence of erratic behaviour. This is true when the process is not 
reversible: closing of a high power switch, cutting of a metal sheet, closing a banking transaction. In this case, 
irreversible damage occurs at the first wrong output: safe behaviour can only be obtained by excluding the erratic 
behaviour. 

We can plot the outage cost in function of the outage time. In general, the curve is similar to Figure 2-2, with the 
difference that the time scale is shorter and the grace time may be zero.  

We define Terrmax as the maximum time during which a plant can tolerate an erratic behaviour of its controller 
without reaching an irreversible state, either shutdown or damaged. Terrmax will be greater or equal to Tdomax. If Terrmax 
= 0, then any false output can lead the plant to an irreversible state.  

2.4 Failure and recovery 

This section discusses a general model of the behaviour of the system consisting of a plant and its controller in the 
presence of an error.  

2.4.1 Fault and Recovery Cycle  

The system states are shown in Figure 2-3 as a function of time:  

controller up 
plant up

T T 

controller up

controller up
( full 

redundancy )

fault MTTD MTTR

function

1.0

controller 
recovery

detection 
latency

(reduced 
redundancy)

plant 
recovery

manif erlat time

 



 

30  Fault-tolerant Computers 

Fig. 2-3: Failure History. 

The fault treatment is divided into several phases: 

1-error manifestation   

2-error detection   

3-recovery of the controller   

4-recovery of the plant   

5-restoration of redundancy 

2.4.2 Error Manifestation 

From the moment the failure occurred until it manifests itself, a certain time Terrman elapses. "Manifestation" means 
that after a period of delay, certain conditions cause the error to show up, either as silence or as erratic behaviour. 
The plant may already be at that time in an unrecoverable state because of a lurking error, especially when the 
lurking fault affects the redundancy or the error detection mechanism.  

2.4.3 Error Detection 

After a time Terrdet, the error will (hopefully) be detected. Only then can a recovery action be undertaken. It is 
possible that the controller was giving false outputs since the manifestation of the error until this moment.  

The time Terrman + Terrdet is called the latency time Terrlat. It plays an important role since the probability of an 
undetected error dictates the reliability of the whole controller in a fault tolerant system. 

The latency time is often expressed by the mean time to detect an error (sometimes incorrectly termed as 
"coverage"). 

2.4.4 Recovery of the Controller 

The recovery of the controller will be the topic of the next Chapters. For now, it is sufficient to define the following 
controller classes: 

• masking: the controller masks all its internal failures. The above discussion is then irrelevant since there is 
no failure of the controller that would be visible to the plant.  

• fail-stop: the controller ceases function when it fails and no erroneous data reach the plant. Return to 
service requires human intervention. Fail-stop generally calls for duplication and comparison, with the output being 
stopped when there is disagreement.  

• recoverable: recovery consists of two phases: the detection phase during which the error is detected, and 
the switchover phase during which recovery is attempted.  

The detection phase takes a time Terrlat during which erroneous data can leak out to the plant. For instance, if error 
detection is done by a test that runs every 20 ms, then Terrlat can amount to 20 ms, assuming an error is detected at 
100 %. If the controller is fail-stop, then Terrlat is essentially zero. This is the ideal case. The switchover phase which 
follows takes a non-negligible time Tswitch during which the controller is not operational (silent). This phase can take 
microseconds for hot stand-by or instructions retry, milliseconds for warm stand-by, or dozens of seconds for cold 
stand-by. 

• interaction recoverable: although the controller is not operational during recovery, it is capable of 
monitoring its inputs and outputs. It will not ask again for inputs already received and will not output commands 
already sent. Such behaviour requires warm stand-by redundancy. Obviously, Terrlat + Tswitch must be < Tdomax for 
successful recovery. 

2.4.5 Recovery of the Plant 

Now, once the faulty situation has been overcome, the controller is again operational. The question is: "what action 
must the controller undertake to correct its past faulty behaviour?” The response depends on what it did to the plant 
(or did not) during the outage and especially on the kind of plant.  



 

Chapter 2 Plant Behaviour in Presence of Faults 31

The basic requirement for plant recovery is that the plant is reversible, that is, that it can be brought back into the 
safe state space by proper controller action. This is not always feasible, since time cannot be rolled back. On the 
other hand, if one can afford any cost for reversibility, then every plant can be made reversible. We will assume that 
a plant is reversible as long as no shutdown and no damage took place.  

For recovery, the most important factor is whether the plant is monotonic or not monotonic.  

Most plants in the analog control world, e.g. speed control, voltage control, are monotonic. The output of the plant 
can be brought back into the initial state by applying a signal in the reverse direction of the faulty signal. Monotonic 
plants only have a short-term memory.  

If the plant is simply proportional, then an easy way to correct errors exists: it is sufficient to output the correct value 
again.  

An example of a proportional, monotonic plant is a furnace. Its temperature tends to be proportional to its input, that 
is, to the fuel throughput. If a wrong fuel set point is issued, then the controller can correct the situation by issuing 
the correct fuel set point. The furnace will, after a while, not "remember" the wrong input.  

When the plant exhibits integral behaviour, or when there exist large perturbations, then the method of correction for 
a monotonic plant is well known from the process control field. The regulation loop is probably the oldest known 
error recovery mechanism, and it can also recover from controller failures. It relies on a comparison between the 
measured output and the desired output, and the corrective action is straightforward.  

Most digital systems and most technical processes are not monotonic. This is especially true with computer 
systems. The plant has discrete states, and once a plant passed into an incorrect state, one cannot normally return 
to the original state simply by applying the reverse order. For instance, once a "delete" command has been given, 
there are few operating systems that would allow an "undelete" to recover a file that was unduly deleted.  

The non-monotonic plants possess a long-term memory, while monotonic plants only have a short-term memory 
and are capable of forgetting. Error correction in a non-monotonic plant requires a more complicated recovery 
mechanism, but the recovery method is basically always the same:  

The state of the plant is divided into 2 parts, the suspect part, which is suspected to contain erroneous states and 
the trusted part, which is considered proper.  

For instance, if the plant is a computing centre, the memory can be considered suspect, while the disks may be 
considered sound.  

The suspect part is corrected by placing it into a defined state. If this state is one that has existed before, one 
speaks of retry. Restarting the work from that state will yield the state the plant would have reached if the controller 
had not failed, or at least yield a proper state that corresponds to it.  

The suspect part may also be replaced by a state that never existed before, to bring the plant directly into a proper 
state. This is the compensation method. Compensation assumes that the extent of damage is known and requires 
an intelligent evaluation of the erroneous state.  

Both compensation and retry are used in everyday life to recover from errors. Compensation corresponds to a 
"storno" in bookkeeping: erased in the document is not allowed, but the faulty entry must be compensated for in the 
opposite column. Retry correspond to throwing away the page and writing a correct one.  

Compensation is of course faster, but requires some intelligence to tell what is erroneous and correct it without 
introducing a new error. Retry requires more redundant information and extra time to redo the calculations.  

These methods apply quite well to the recovery of a digital computer, because digital computers are reversible 
machines, but less well to the physical world that are most of the time irreversible. We have seen that an erroneous 
output can lead the plant into an irreversible state (shutdown or breakdown), which is of course unrecoverable.  

Retry for instance would require the restoring of the plant in a previous state. Sometimes it is easy, but when the 
operation of the plant consists of parallel sequences of operations, it is practically impossible.  

Consider the problem of restoring a car production line in its former state: the conveyors should be rolled back, 
already inserted screws removed, painting stripped off, etc. Compensation is in this case the only correct solution, 
but it requires a great deal of intelligence to define a new starting point for production: one must remove the faulty 
parts, reinitialise the part counters, etc. 

When dealing with hardware errors, it is much more difficult to determine the extent of the damage. There is no 
known procedure that allows one to determine how much of the state has been contaminated by erroneous 
hardware. One tries during the design phase to at least reduce the amount of interaction between the parts by 



 

32  Fault-tolerant Computers 

establishing firewalls, either "horizontally", by separating physically the parts (e.g. by a network), or "vertically" by 
layering the structure and implementing error recovery at each layer. 

Therefore, considerable effort is made so that no erroneous output ever reaches a plant. This is the main objective 
of the safety signalling used in the railways. The general solution is to make the controller fail-stop. 

On the other hand, it is too easy to state that "no erroneous output should ever be sent to an irreversible plant". 
There are indeed situations in which an operation requires subdivision into several steps, each of which must be 
completed before the next can be done, and which additionally requires that all steps are done or none of them. 
This is the concept of atomic actions. 

We will come back to this topic when considering recovery of the environment (Chapter 6) and within a data base 
(Chapter 7).  

2.5 Plant classification 

2.5.1 Properties 

A plant's state may be: 

� Reversible or irreversible: reversible in the sense that the system by itself can return to operation without 
human intervention. Most processes are physically irreversible. We consider a plant that has been shut-down to 
be in an irreversible state. 

� Recoverable or unrecoverable: there exist means by which the system can be brought back to operation 
once erroneous orders have been given. This must be done by proper control within a limited time. If the plant is 
not recoverable then there should be no false outputs ever issued. 

� Repeatable or non-repeatable: a non-monotonic plant whose failed operation is repeatable can be 
recovered by replacing it in a previous state and resuming the computation starting from that state. If the 
operation is non-repeatable, a positive action must be undertaken to bring the plant directly from the improper 
state into a proper state. 

� Monotonic or non-monotonic: the recovery strategy for a monotonic plant is achieved by placing 
controller and plant in a regulation loop. For a non-monotonic plant, a correction action is involved.  

� Proportional or integral: a proportional plant can be corrected just by issuing the correct data again as it has 
only a short-term memory. An integral plant requires correction. 

2.5.2 Plant Parameters 

On the base of the above considerations, we divide the plants in several categories. We assume that if a plant 
cannot be brought back into proper operation without human intervention, it is in an irreversible state. This state 
includes the shut-down and the damage states. We do not consider failures of the plant itself.  

The plants are characterized by four criteria: 

1. the mean down time over the mission time, expressed by the (un)availability, which is the sum of the down 
times caused by failures of the controller. The MDT includes both successful and unsuccessful reconfiguration 
times. The latter applies only to plants with a safe side or reversible plants, since in case of unsuccessful 
reconfiguration, it is assumed that a plant without safe side is lost. The MDT does not include the down time 
due to the failures of the plant itself.  

2. the maximum uncontrolled time Tdomax, which is the maximum controller down time the plant can tolerate a 
malfunction of the controller without irreversible effects. It defines the kind of reconfiguration to be used to bring 
the plant back into operation before an irreversible state is reached: (massive, masking redundancy, hot 
standby, warm standby,...).  

3. the (recoverable/not recoverable) attribute defines whether the plant tolerates erroneous commands or not. If 
the plant is not recoverable, then an integer behaviour of the controller is required. 

4. the (safe side / no safe side) attribute specifies whether a fail-safe shutdown can be executed in case an 
unrecoverable error is detected. If a plant has a safe side, then a Mean Shutdown Time must be indicated, and 
a fail-stop behaviour of the controller may be sufficient.  



 

Chapter 2 Plant Behaviour in Presence of Faults 33

2.5.3 Classes of Plants 

2.5.3.1 Benign plants 

 (Availability < 1, Tdomax >> 0, Recoverable, Safe side) 

The damage is a direct function of the outage (outage costs are linear) 
There is no shut-down state and the plant cannot be damaged by action of the controller. 

Example : a household appliance 

2.5.3.2 Irreversible plants 

(Availability < 1, Tdomax > 0, Not Recoverable, Safe side) 

These plants suffer irreversible damage from an erratic behaviour of the controller, but can remain a relatively long 
time in the shut-down state. 

Example: a banking system, teller machine. 

2.5.3.3 Protected Plants 

(Availability < 1, Tdomax >0, Recoverable, Safe side) 

Operation outside of the safe area is detected by an equipment independent of the controller. This device triggers a 
safety mechanism that brings the plant into a safe state. The erratic behaviour of the controller is acceptable until 
the safety mechanism is triggered. This is possible because the plant and the controller can be placed within the 
same regulation loop. The triggering of the safety mechanism is associated with rising operating costs. 

Example: a railway with emergency brake and overspeed control. 

2.5.3.4 Unstable plants 

(Availability ~ 1, Tdomax <<, Recoverable, No Safe side) 

These plants do not have a safe side and rely entirely on the controller to remain in the safe operating region. 

Example: airplanes in flight, some chemical processes. 

2.5.3.5 Critical plants 

(Availability = 1, Tdomax <<, Not Recoverable, No Safe side) 

These plants do not allow any false input. Any outage of service larger than t.domax leads to damage.  

Example: air traffic control, airplanes during landing. 

Whether the outage was due to erratic or to fail-stop behaviour of the controller is not relevant, as long as the 
outage duration includes the return of the plant to safe operation.  

2.6 Implication of the plant parameters on the controller structure 

We have seen that a plant is characterized by 4 factors:  

1. how often downtime is permitted (given by the element reliability)  

2. how long an outage may last without shutdown (given by the grace time),  

3. whether the plant is irreversible (i.e. requires controller integrity)  

4. whether the plant has a safe side (i.e. allows fail-stop)  

The controller of the plant is characterized by 5 factors: 

1. the Mean Time To System Failure, which is the probability that redundancy within the controller is exhausted or 
recovery fails.  



 

34  Fault-tolerant Computers 

2. the mean time between element failure (of one of the redundant units). The MTBEF tells how often a 
failure/reconfiguration can be expected.  

3. the Mean Recovery Time which is the expected time the controller needs to recover from a failure. For success, 
this time must be smaller than the grace time.  

4. the Coverage, which is the probability of success of a recovery.  

5. the Mean Time To Repair of a damaged part. Together with the MTTEF, the MTTER determines the probability 
of a second failure during the repair time and therefore dictates the amount of redundancy required.  

Although values for these parameters are rather difficult to obtain or to measure, they present more meaningful 
starting points for the design of fault tolerant systems than the well-known notions of MTBF or availability.  

An availability of 99.9 % (better: an unavailability of 1/100) means that the plant may be down about 9 hours a year, 
or 90 seconds every day. But the damage may be intolerable in the first and acceptable in the second case. 
Therefore, the specification must include a value for the maximum permitted outage. 

2.7 Typical plants 

The following is a summary of the expected dependability goals for different kinds of plants. 

2.7.1 Telephone exchange 

The main goal of telecommunication systems is availability. Occasionally dropped communications do no harm, the 
user redials by himself if the line is lost. Misconnections and transmission noise are more problematic. The system 
must be back in operation as soon as possible. 

Availability:  A = 99.994 %( Tdown < 3 minutes/year ) (taken from Ericcson's AXE) 

"sustain 99.9875% of all established calls (no more than 1.25 out of 10000 are cut off). (AT&T's 3B20B ) 

"occasionally dropped messages and brief outages are acceptable; outages of more than a few minutes are 
undesirable, even if scheduled in advance. (BBN's Pluribus)  

Integrity:  no more than 1 false connection in about 10 000.  
 (accounting requires however full integrity)  

Grace time: < 3 minutes  

Solution:  dual, hot-sparing computers  

2.7.2 Power Plant and Telecontrol 

Computers in power plants perform SCADA functions (display of process data and forwarding of operator 
commands). A failure of the computer renders the operator blind and can even lead to the issuing of false 
commands. Power circuits are generally protected by independent safety equipments, so that false commands can 
be caught up, but nevertheless represent a risk factor. 

Power plants are therefore required to have a very high availability. Outages can be tolerated and plant failures 
shielded from the user by the interconnection grid. Outages are bound with heavy financial losses, so that a total 
power availability is specified by the utility. 

Availability: A = 99.972 % ( 12 minutes per month )  

Integrity:  very high (no falsification of commands) 

Grace time:  < 60 s  

Solution: duplicated, hot- or warm-sparing computers.  

2.7.3 Chemical Plants 

In distillation columns and cracking equipment, the quality of the produced products degrades rapidly with the 
outage time. Eventually plant shut-down may be required since the products cannot be used any more. Availability 



 

Chapter 2 Plant Behaviour in Presence of Faults 35

should be high. A high reliability is seldom required. It is requested mostly for processes which have no safe side 
like explosives and toxic products mixing.  

An important requirement is integrity: computer malfunction should not have an effect on the process, and 
especially should not lead to opening of valves or product mixing. 

Reliability: medium  

Integrity:  very high  

Availability:  high  

Grace time: depends on the process, less than 2 minutes in some cases 

Solution: duplicated computers with self-check for integrity and availability. 
Triplication and voting for safety applications.  

2.7.4 Cars and Household Appliances 

Stringent cost factors rule out component redundancy. The cost of redundancy must be traded off against failure 
during warranty time. In cars, electronic injection and exhaust regulations have introduced microcomputers on 
board. Until now, there are no fault-tolerant computers for these applications. One notable exception is the anti-skid 
used in brakes. Here, complete decoupling between the electronic parts is required. 

Availability: similar to that of the motor 

Grace time:  < 2 s 

Reliability:  no more than 1 failure/10 years 

Integrity:  not asked for, except in braking system. 

Solution:  fault avoidance, duplication and massive redundancy for brakes. 

2.7.5 Rail Vehicles 

On rail-guided vehicles such as trains or subways, electronics have been used for a long while. Recently, on-board 
computers have been used for automatic subways such as San Francisco's BART as a step toward unmanned 
vehicles, although this solution is not yet generally accepted. The first goal is fail-stop behaviour, since rail vehicles 
have a safe side (except possibly when performing an emergency braking on a bridge). Pure fail-stop impairs 
availability. If the failure rate of the on-board computer and of its checking logic would be 10-4/h, then about three 
trains a day would experience an emergency stop on the swiss railway network only (one of the densest of the 
world, however). Although reliability makes great progresses through proper design, continuous service is 
increasingly asked for.  

Availability:  similar to that of the current hardware 

Grace time:  < 10 s  

Reliability:  no more than 1 failure/10 years/vehicle 

Integrity:  very high, fail-stop required for safety features 

Solution:  TMR computers (Brown Boveri's LZB), fail-stop logic [Strelow 78] 

2.7.6 Electronically Guided Vehicles 

Non-track guided vehicles are investigated as urban transporters. The vehicle is guided by a wire in the ground or 
similar means. The same considerations apply to drive-by-wire cars, where the steering wheel commands the 
wheels by computer. No failure of the guiding computer and associated sensors can be tolerated, any error must be 
detected. Fail-stop alone is not acceptable since a guiding error could lead the vehicle off-track (at 36 km/h, the 
vehicle could be off-track by 10 m in 1 s [Schmidt 84]. Availability requirements are identical to those of railroads. 

Availability: similar to that of the motor 

Grace time:  < 1 s 

Reliability:  10-8 



 

36  Fault-tolerant Computers 

Integrity:  availability more important (fail-stop can be dangerous) 

Solution:  triplicated guidance system with analog back-up (diverse redundancy) 

2.7.7 Bank Teller 

A bank teller has no stringent reliability requirements. The availability must be high so as not to discourage 
customers. The primordial requirement is integrity: no error of the computer should have any effect on the account 
balances. Most operations are transaction-oriented (consist of an indivisible sequence of operations. Atomicity of 
transactions must be preserved. Protection against voluntary malfunction ranks high, since potential benefit 

s for intruders are large. 

Availability: 1 failure/ 18 months 

Integrity: very high 

Solution: fail-stop computer and short mean time to repair (warm stand-by) 

Some of the architectures used in transaction processing will be described in Chapter 7. 

2.7.8 Aerospace 

The reliability of the computer must be very high when the plane depends on the computer's function to fly. The 
requirements set up by the NASA are that the computer reliability must be equal to the probability of not loosing a 
wing, which has arbitrarily been set at 10-10 /h. (This is approximately one case in 1000 years assuming that 10'000 
planes are aloft at one instant). To fulfil these requirements, the NASA contracted SRI International and Charles 
Draper Labs to design a highly reliable fault tolerant computer (which were respectively named SIFT and FTMP 
[Hopkins 78, Wensley 78). General Electric [Schmid 84] and Bendix have since developed highly reliable computers 
for this purpose. Ground following computers for combat aircrafts such as the Tornado have similar reliability goals.  

The Space Shuttle [Sklaroff 76, ACM 84] is also a fly-by-wire vehicle. It relies entirely on the (quintupled) computer 
to fly. In the most critical missions phases (about 60 s after launch and in the landing phase), only a few 
milliseconds of outage would be tolerated. All five computers perform the same calculations at the same time, the 
result of four of them are voted upon, the fifth computer is of different design and serves as back-up in case a 
generic software fault would affect the other four. On orbit, reliance is lower: the synchronous mode is abandoned 
and the computers are dedicated to separate tasks, some can be powered off to lessen consumption and increase 
reliability. 

The reliability requirements are less strict for computers that perform common chores, navigation or flight 
optimisation. Here, availability is asked for, i.e. the largest possible percentage of operating time. There is one 
exception however: The computing equipment used during the last minute before landing is safety-decisive and 
therefore should have a very high reliability. This equipment is generally triplicated like in the Airbus or Boeing 767. 
The mission time is about 10 hours for an aircraft, but can amount to several weeks for the Space Shuttle. 
Therefore, the Space Shuttle requires more redundancy since repair on orbit is not foreseen. Some of these 
architectures will be described in Chapter 4.  

Availability:  about same as engines 

Reliability:  10-10 

Grace time:  some ms. 

Solution:  triplication and voting, spare pooling. 

2.7.9 Space Probes 

A typical space probe like Voyager has a mission time of several years. No repair is possible. The spacecraft 
depends on its computer to perform its mission and therefore it requires a highly reliable computer. The reliability 
goal is achieved by a high degree of fault avoidance: only proven components and design techniques are used, 
which let some design features look obsolete. The components are carefully screened and tested before and after 
insertion. The modules are individually tested and their interfaces verified. The fault-tolerance technique uses 
duplication of the computing elements with self-check. Error confinement is achieved by hardware and software 
methods [Jones 79, Rennels 78]. 



 

Chapter 2 Plant Behaviour in Presence of Faults 37

Special precautions must be taken for some functions in the spacecraft like firing of thrusters and in general for 
consumption of expendable resources. 

Availability:  depends on the mission phase. Malfunction tolerable during ride, but not at fly-by. 

Reliability: 95% success probability for a mission of 5 years 

Grace time:  depends on the function and the mission phase 

Solution: reconfiguration techniques around a hard-core, fault-tolerant computer. 

2.8 References 

[ACM 84] Communications of the ACM,  
Special Issue on Computing in Space, September 1984 

[Jones 79] Jones, C.P.,  
"Automatic Fault Protection in the Voyager Spacecraft",  
Amarin Institute of Aeronautics and Astronautics AIAA Paper No. 79-1919 

[Schmid 84] H. Schmid, J. Lam, R. Naro, K. Weir,  
"Critical Issues in the Design of a Reconfigurable Control Computer",  
14th Int. Symposium on Fault-Tolerant Computing, FTCS-14 Orlando, Florida, June 1984 

[Schmidt 84] A. Schmidt, R. Faller & W. Poettig, 
"Elektronisch gelenkter Bus"  
ELEKTRONIK, 15, pp 41-46, July 1984 

[Sklaroff 76] J.R. Sklaroff,  
"Redundancy Management Technique for Space Shuttle Computers",  
IBM J. Res. Develop. Vol. 20, No. 1, pp 20-28, January 1976 

[Strelow 78] H. Strelow, H. Uebel,  
"Das Sichere Mikrocomputersystem SIMIS",  
SIGNAL+DRAHT Vol. 70, No. 4, pp. 82-86, January 1978 





 

Chapter 5 Recovery to previous state 39 

3 Error detection and correction 

In this Chapter, we consider in detail the failure modes of a computer, means to detect errors and the basic 
techniques for fault-tolerance.  

3.1 Errors and faults in a computing system 

3.1.1 Model of a Computing System 

We will consider here only a simple model of a computer, consisting of a processor interconnected with a memory 
and peripherals I/O over a parallel bus. This computer may communicate with other computers and with further 
peripherals over a network (Figure 3-1).  

network

controller

network

controller

I / O

controller

I / O

controller

processorprocessor

memorymemory

disk
controller

disk
controller

network

parallel
bus

disk

plant

 

Fig. 3-1: Computing System. 

The techniques for fault-tolerance distinguish five kinds of elements:  

_ Busses and transmission links are basically memoryless. Errors can be corrected by retransmission.  

_ Memories (RAM, disks) have an internal state and can memorize errors. Errors can be corrected by 
overwriting.  

_ Processors, which are a complex mixture of combinatorial and sequential logic. Although theoretically a 
computer can be clearly divided into a combinatorial part (arithmetic unit) and a sequential part (registers), 
actual components must be treated as a whole. Errors must be corrected by resetting the processor and 
bringing it to the desired state by letting it execute a start-up program.  



 

40  Fault-tolerant Computers 

_ External world, which consists of elements which can be memoryless, assignment correctable, reversible or 
not correctable (see Chapter 2). Error correction may require a complex set of operations, if it is at all possible. 

_ Auxiliaries such as power supply, cooling and mechanical protection. The correct design must include 
protection against: 

• temperature increase,   

• power supply variations,   

• electro-magnetic interferences,   

• door locking,   

• operator mishaps, etc.. 

The protection against external threats can often increase reliability more than straightforward application of fault-
tolerance techniques. But since these techniques are very much installation-dependent, they will not be 
contemplated here.  

3.1.2 Failure Modes 

A computing system, as a complex machine, has usually only one correct operation and an infinity of possible 
incorrect operations. These include pathological cases in which the computer acts in a "malicious" way, defeating 
the measures taken by its designers against its possible failure. We have distinguished two general behaviours 
which a failing computer exhibits:  

erratic behaviour: providing in addition to the required service another service (integrity breach); 

fail-stop behaviour: not providing the required service during a certain time (functionality breach). 

3.1.3 Fault Origin 

Errors are incorrect data items, which cause the computer's state to deviate from the state intended by its designer 
or customer. 

Errors in digital systems are the consequences of both PHYSICAL FAULTS and DESIGN FAULTS, the first being of 
physical nature and the second of human origin.  

• Physical, or hardware faults concern malfunctions of elements due to aging, temperature, or other external 
causes. 

• Design, or software faults concern specification, software, and hardware design faults, which are consequences 
of errors of the designer (whether it is a human or a machine).  

There is a clear distinction between design and physical faults: 

A corrected design fault will not show up again, while a corrected physical fault may occur again at any time. 

Accordingly, both fault modes should be treated differently. This clear theoretical distinction gets rather blurred in 
practice. A physical fault may occur because of a design fault. 

For instance, a circuit may fail repeatedly because of a poor circuit design, a missing cooling fan or out-of-date 
manufacturing instructions.  

Conversely, a design fault may behave like a physical fault: as software complexity increases, so does the number 
of hidden bugs in it. It is not possible to guarantee that it is fault-free. When the complexity of a piece of software 
becomes high, one could also indicate a "Mean Time To Failure" for that software module.  

So, design and physical faults should be treated as conceptual helps. Figure 3-2 (taken from [Toy 78]) shows a 
statistic of the origin of failures on the ESS processors used in telephony:  



 

Chapter 5 Recovery to previous state 41 

35 %

30 %

15 %

20 %

recovery

deficiencies

procedural

software deficiencies

errors

hardware unreliability

 

Fig. 3-2. ESS Telephone Exchange - Down-Time Allocation [Toy 78] 

This diagram shows that only 20% of the errors can be attributed to physical damages, and only 15 % clearly to 
software bugs. The rest is caused by failure of the recovery process (insertion of redundancy) or is of unknown 
origin (possibly secondary faults during the recovery process). 

Faults due to human intervention are a special case. Some consider them as a design fault. Others consider them 
as the consequence of an improper design, since their origin is external to the machine: it seldom occurs that the 
operator of the machine also wrote the programs. Human faults can be avoided by making the handling of the 
machine "fool-proof". Therefore, human faults fall into the same category as improper shielding for the hardware.  

One should therefore distinguish between logical design faults and protection design faults. A logical design fault, 
such as a programming mistake, will lead to an error even if the hardware is perfect. A protection design fault is an 
insufficient protection against external threats, including arbitrary human interaction.  

3.1.4 Fault Duration 

Faults may be persistent (definitive) or transient (volatile). 

• Persistent faults relate to physical damage, for instance burned transistors. They are due to external 
interference, but can also be caused by the aging of the components. A permanent fault remains until repaired. 

• Transient faults are caused mostly by external disturbances, such as electromagnetic interferences, 
mechanical vibrations, ray flashes or decaying radioactive elements. A transient fault may cause a permanent error 
if it is memorized. Transient faults depend on the environment of the equipment. For computers in an aircraft, 
transient faults are about 100 times more frequent than persistent ones. This number drops to about 10 for fixed 
location computers. Furthermore, transient faults due to external interferences tend to occur in bursts of limited 
duration. In any case, the methods used to deal with transient faults are quite distinct from those used to fight 
permanent errors.  

We avoid using the terms of "hard" error for a permanent error and "soft" error for a volatile one, because of the 
confusion with hardware and software faults, although these terms are often used to describe memory faults. 

3.1.5 Fault Latency 

When a system depends on all its elements for its mission, then a fault of any of its elements is equivalent to the 
failure of the mission. If not all the elements are stressed at the same time, then a fault of an element does not 
necessarily cause a failure of the system, at least not immediately. The time that elapses between the occurrence of 
a fault and its manifestation is called fault latency.  

A fault of an element of a computing system does not lead immediately to a failure of the system, because not all 
parts of a computer are needed at all times.  

For instance, an algorithm to compute the square root may give a wrong result only when required to take the 
square root of 0, but it can take years until somebody notices it or the computer is scrapped. Equally, a transistor 
may be short-circuited in a part of the logic that is very seldom used.  



 

42  Fault-tolerant Computers 

This provides a chance for the fault to be found and repaired before the element is actually used. However, if such a 
fault remains undetected, it can cause a failure at an unexpected moment.  

In a fault-tolerant system, latent faults may exist in the redundant, unused spares. The latent faults are called 
lurking faults. The technique to uncover lurking faults is to exercise all functions regularly. 

Example: 
without regular testing, fire extinguishers and fire alarms loose effectiveness, but their presence gives a false sense of 
confidence. 

3.1.6 Fault Summary 

We resume the different forms of faults: 

faults

physical design

permanent transient
 

Fig 3-3 Résumé 

3.2 Redundancy forms in computing systems 

3.2.1 Redundancy Role 

Redundancy is any resource which is included in expectation of faults, but which is not needed for normal 
operation. Fault tolerance supposes that redundancy is available, i.e. more resources are provided than for an error-
free operation.  

Redundancy serves two different purposes in a fault-tolerant computer: 

_ Detect errors,  

_ Correct errors and continue operation.  

The same redundancy cannot be used for both error detection and error recovery.  

Example: 

 Two identical computers execute the same program on the same variables at the same time. Their output should be 
identical (Figure 3-3): 



 

Chapter 5 Recovery to previous state 43 

input

comparator

computer B

co - worker

computer B

co - worker

computer A

worker

computer A

worker

output A output B

difference  

Fig. 3-3: Duplication and Comparison. 

One can use this redundancy to detect an error by comparing the outputs. A discrepancy means that one of the 
computers has failed, but does not tell which one. This information can be used to shut down both computers to 
obtain a "fail-stop" behaviour, but it is insufficient to provide continuous operation. For this, a second redundancy 
would be required to decide which unit is still working.  

For error detection, plausibility redundancy is required, i.e. the redundancy does not need to execute the same 
function as the unit it checks, but should detect as many faults as possible in that unit.  

For fault-tolerance, functional redundancy is required, i.e. the redundant unit must be capable of performing the 
same function as the unit that failed if required.  

Example :  

 Consider a communication link which transmits files. If no errors are expected, the file is transmitted and treated as 
correct. Now, if errors are expected, the file is transmitted with a checksum. The checksum has typically a length of 1 
byte, while the file may have a length of 32 bytes. An adequate checksum algorithm can detect all single errors in the 
transmission. A wrong checksum signals an error. If the process has a safe side, this error signal can prevent the user 
from using the files, and this is sufficient to implement an integer system. 

 The checksum is not sufficient to correct an error. In case of a discrepancy, the receiver knows that an error occurred, but 
not which bits are faulty.  

 Correction must be done by requesting a new version of the file, which hopefully will be fault-free. Therefore, correction 
needs a functional redundancy. 

 In reality, more redundancy is needed because of the overhead associated with the handling of error messages.  

Note that redundancy can reduce the availability of a system. For instance, the above system used as a fail-stop 
pair will have a lower reliability than a single module, since it will now fail at least twice as often because of the 
added unit and error detection circuits. The fail-stop pair will however have a far higher integrity than the simplex 
system.  

One key question of fault tolerance is whether the unreliability due to the added complexity introduced for this 
purpose can be outweighed by the fault tolerance properties achieved. This question will be discussed in Chapter 9.  



 

44  Fault-tolerant Computers 

It should be remembered that redundancy is useless if it is not continuously checked. The presence of lurking faults 
is a critical issue in fault-tolerant computers. Even non-repairable systems need checking of the redundancy in 
order not to insert a faulty spare, while a good one exists.  

The redundancy may be present in form of additional hardware, in form of additional software or in form of 
additional time.  

3.2.2 Hardware Redundancy 

Hardware redundancy consists of additional hardware elements that duplicate and check the functionality of 
existing elements. It is used to detect and correct hardware errors. We distinguish three forms of hardware 
redundancy:  

1. Plausibility redundancy consists of hardware circuits, which indicate certain kinds of error. Among them are 
power monitoring circuitry, signal quality checks in serial links, and protocol monitoring functions.  

2. Functional redundancy is a total replication of the functional part (hardware). It can execute the same 
operations as the working unit, provided it is loaded with the correct information. Unlike the preceding 
redundancy forms, functional redundancy can be used either for error detection or for continuous operation (but 
not both at the same time).  

3. Coding redundancy consists of circuits used for error detection that apply coding techniques. Examples are: 
parity computation, checksum, error code generation and checking. Such codes can detect a limited number of 
errors in the data items they check. Some codes also correct errors up to a certain number. Coding redundancy 
therefore holds an intermediate place between plausibility and functional redundancy. 

Plausibility costs little and coding causes only moderate costs, but functional redundancy requires a duplication of 
the hardware and at least doubles the cost.  

3.2.3 Software Redundancy 

Software redundancy is used to fight software or design errors. Software redundancy requires a redundancy of 
design to reduce the failure due to a common source, i.e. alternate or diverse designs. A requirement for diverse 
software is the independence of the designs. This leads to a complete replication of the software production 
process by independent teams (N-version programming [Chen 78]).  

Three-version programming is today used on ultra-high-reliability computers, such as the Airbus or Space Shuttle 
navigation computers.  

To reduce the price of diverse software, some have suggested using previous versions of the same program as 
alternates. The new versions should provide the same functionality, but could be more optimised than the old 
version and provide additional services. In fact, this is one of the most common uses of software sparing: a new 
version is installed, which provides some added functionality but remains untested. Upon detection of a software 
error, the old version can be installed back again. This works only if both versions work on the same data set and 
have the same service interface. If the data sets are different, then the switching from one spare to the other 
requires a redundancy of the data sets.  

Although hardware is subject to design errors, diverse hardware designs are very rarely considered. An exception is 
the space shuttle computer, of which four processors are built and programmed by one manufacturer and the fifth 
by a different manufacturer.  

Although conceptually different, "software" redundancy can be treated similarly to "hardware" redundancy for all 
practical purposes.  

3.2.4 Time Redundancy 

Time redundancy comes in the form of a "grace time" during which the outside world is not affected by the failure. 
Time redundancy allows for corrective actions and repetitions. How much time redundancy is available depends on 
the plant concerned. The optimum strategy for fault tolerance often depends on the amount of time redundancy 
available.  



 

Chapter 5 Recovery to previous state 45 

3.3 Error detection 

Error detection is basic to fault avoidance, fault tolerance and integrity. Indeed, all fault-tolerant system require the 
previous detection of errors, except possibly systems which work by massive redundancy and ignore repair. In 
principle, complete error detection is sufficient to implement total integrity. This is required by fail-stop systems that 
would rather stop than output false data. Although fail-stop systems are not fault-tolerant (they stop operation in 
case of error rather than recovering) they are an important building block for fault-tolerant systems.  

In principle, 100% error detection requires 100% redundancy of the resource that is expected to be erroneous. The 
quality of the error detection is basic to any fault-tolerant or fail-stop system. The error detection device must be 
matched to the kind of error it is intended to detect to be efficient. The quality of error detection is measured in 
terms of how many simultaneous errors it can detect.  

One distinguishes between: 

• Initial checking, which takes place prior to operation. It begins with the testing of the components at 
reception and before insertion in the boards and ends with the pre-operation check, for instance before launch of a 
spaceship. This checking ensures that the system is error-free before operation, an assumption which is always 
made in fault-tolerant systems. Initial checking is considered as a technique for fault-avoidance, rather than fault-
tolerance.  

• Concurrent or on-line error detection takes place during normal operation and checks the correct 
execution either by dedicated hardware circuits or by replication of hardware and software. Concurrent error 
detection is capable of detecting transient errors and permits one to build fail-stop units. The falling prices of 
hardware permits the inclusion of concurrent detection circuits at a low cost. However, parts of the machine that are 
not currently used cannot be checked by on-line detection. 

• Scheduled or off-line error detection is executed by dedicated maintenance programs. A background task 
runs periodically to exercise every hardware unit of the machine. Off-line tests are shorter than initial tests and 
cannot rely on external help. Off-line tests need no redundant hardware but require test software and time 
redundancy. It is therefore appealing to implement off-line tests on existing hardware. Off-line detection has the 
advantage over concurrent detection that it can exercise the entire machine, and not only those parts which are 
currently used. It can, in particular, uncover lurking faults. On the other hand, off-line error detection is not capable 
of detecting transient errors and therefore cannot be used to implement integer systems.  

Error detection is often coupled with error confinement. In a computer, the information can flow very easily and 
errors may propagate through the whole system and corrupt it if means are not taken to stop them. Therefore, the 
computer is divided into hardware and software confinement zones, which play the same role as firewalls in 
buildings or compartments in ships. An undetected error that is allowed to leak out a confinement zone can corrupt 
another confinement zone. Worse still, these data are treated there as legal data, since they came out of a 
protected zone.  

The confinement regions are normally identical with the replaceable units (RU): ideally, an RU is self-checking and 
can confine errors within itself. We will consider hardware confinement regions in the next section.  

3.3.1 Hardware Error Detection 

A computing system consists of four kinds of components:  

1. storage (RAM, disk)  

2. transmission paths (buses and links) 

3. computation units (processors). 

4. auxiliaries (power supply, timers, etc... ) 

Auxiliaries are protected by special means. Power supplies are checked for correct voltage and frequency, timers 
are checked by timer bound counters, the temperature is monitored, etc...  

In the rest of the computer, error detection requires redundancy in storage, transmission and computation. These 
components coincide with separate confinement zones (Figure 3-4):  



 

46  Fault-tolerant Computers 

memory

bus
interfaces

bus x

bus
interfaces

bus y

BIBI

BI BI

processor

BI BI

processor

BI BI

processor

BIBI

I / O device

 

Fig. 3-4: Processor, Bus and Memory Confinement Zones 

Errors in transmission paths are detected by coding. The code to be used depends on the expected error rate. 
Parallel backplane buses, which are relatively free of disturbances, are simply protected by parity. Short serial 
buses like MIL 1553 are also protected by parity. Serial links exposed to disturbances are usually protected by cyclic 
codes, which can detect a large number of errors and are tailored to a specific medium, for instance to account for 
header corruption, synchronization errors or certain burst errors. 

Errors in memory elements are also detected by codes. The simplest code is parity, which cost only about 1/8 
redundancy, and can detect single errors. Since memories are cheap, Hamming codes are also used which perform 
detection and correction of errors. These codes are stored along with the useful data, but require only a fraction of 
the logic of the useful data. For instance, to protect effectively a memory with a width of 32 bits, 7 additional bits 
need to be stored to detect every single and double error and correct every single error.  

Errors in processing elements are more difficult to detect. The internal complexity is so high that it is relatively 
difficult to find efficient codes for error detection, since data are not only transported and stored, but also modified. 
The checking unit can become about as complex as the checked unit, but solutions exist as silicon becomes cheap. 
The most suitable method until now is to use duplication and comparison: complex elements are used in pairs and 
checked by letting them execute the same operations at the same time. An error detecting circuit then compares 
continuously the outputs of the replicated halves (Figure 3-5):  



 

Chapter 5 Recovery to previous state 47 

checker

outputoutput

enable
output buffer

comparator

input

computer B

co - worker

computer B

co - worker

computer A

worker

computer A

worker

clock

 

Fig. 3-5: Error Detection by Duplication and Comparison. 

This method is called "worker/checker" or "duplication and match". It is used in numerous designs, such as in the 
ESS processors [Toy 78], in the COPRA computer [Meraud 79] or in Ericcson's AXE 10 [Ossfeld 80]. Integrated 
circuits already exist which let any chip operate as worker or checker, such as the iAPX 432 [Intel 82] and Advanced 
Micro Devices's series 29300 bit-slice processor (Figure 3–6): 

 

Fig. 3-6: Worker and Checker Mode at the Chip Level. 

The worker/checker mode assumes that the replicated units are initialised in the same state, that they receive 
exactly the same inputs at the same time, that their outputs are synchronized and that in general the circuits are 
completely deterministic.  



 

48  Fault-tolerant Computers 

The synchronization between the two units can take place at the processor clock level (micro-synchronism) by using 
a common clock or at the level of bus transfers (bus synchronism) or at the input/output level (I/O synchronism). 
The tighter the synchronism, the greater the probability of failures that affect both units at the same time in the same 
way. The problem gets more complicated when several clocks exist (one for the processor, one for the baud-rate 
generator, etc...), and especially when asynchronous events must be considered, such as interrupt signals. Then, 
complex synchronization circuits are required.  

Fortunately, synchronization for error detection needs not to be perfect to allow 100% error detection. 
Synchronization errors will be flagged as a transient hardware error. Synchronization errors nevertheless impair 
availability. We will come back to this problem again when considering work-by synchronization (Chapter 4).  

The common hardware error detection mechanisms are summarized in Figure 3-7:  

E
D W' W"W

MW

encoding

decoding

W

simplex self - check duplication encoding

off - line
self - check +
diagnostics

partial coverage
through hardware
error detection

comparison of
work-by units

duplication + information
redundancy,
correction possible

in

error detection

error
outout

in

error detection 
and correction
error detection 
and correction

in in

 

Fig. 3-7: Hardware Error Detection Architectures. 

3.3.2 Software Error Detection 

The detection mechanisms used against physical faults are insufficient to detect software faults. Software errors 
can only be detected by a redundant (alternate) design.  

100% coverage of software errors requires at least two alternate designs in which independent programmers 
program the same application. A comparison program that should be 100% reliable then compares the results of 
the applications.  

The comparison program does not simply compares data, but requires a great deal of intelligence.  

Example: 
if the programs generate real numbers, rounding errors occur if the floating-point operations are not exactly identical. The 
algorithms used in both programs must therefore be identical. Then, the same algorithmic bug in the mathematical 
routines can introduce a common mode error. The efforts of the IEEE Floating Point Standardization (IEEE Task 754) 
could bring a set of verified floating-point routines, but then the verification should also extend to the implementation.  



 

Chapter 5 Recovery to previous state 49 

The other solution is to let the programs diverge, and to smooth the results in the comparison module. As long as 
the controlled process is continuous, it is relatively simple to delay the results and build a plausible value. But it 
requires a great deal of intelligence to match for instance characters sent to a video display: one program could 
write "blower on" and the other "fan operates". Small details like void lines and uppercase/lowercase can cause 
errors and dependency on a correct and comprehensive specification is therefore high. 

N-version programming is therefore not trivial, and suffers from the fact that, at the root, the requirement 
specifications are common for all programmers. In the SIFT project [Schwartz 83], the designer tried to overcome 
the specification hurdle by developing formal specification languages, which can be validated [Goldberg 84]. Using 
specification languages only shifts the problem to the detection of errors in the specifications. They do not solve the 
problem, but just displace it to a level that can be easier to manage.  

Common mode failures exist not only because of bugs in the comparison program or in the specifications. People 
tend do the same program errors in the same situation, because of common modes of thought possibly induced by 
the school they attended. Experiences with diverse software are described by [Chen 78, Avizienis 84].  

Usual techniques that do not claim 100% error detection involve check within the program. The simplest means are 
provided by the compilers themselves, which intercept programming errors during the compile phase by checking 
the syntax as well as the consistency of predicates like variable types and procedure parameters.  

In addition, compilers generate code to protect against out-of-bound array indexing or stack overflow, incorrect 
arithmetic operations and invalid pointer references at run-time.  

These techniques have been developed further in object-oriented architectures, which check at run-time for the 
correct typing of data and limit the address space to the absolute minimum currently needed to run the program 
[Intel 81]. Software errors that cause pointers to be misplaced can be detected that way, but at a great expense in 
processing time. For that reason, some languages like PORTAL and CLU do not allow the use of pointers.  

Further, an independent unit can monitor the program execution. This unit checks whether the program flows 
through legal paths and passes at determined checkpoints. The monitoring unit contains a model of the 
computation that is a form of software redundancy. For instance, the monitoring unit can check the running program 
against its description in form of a finite state machine or a Petri net.  

Good programmers anyway include a large quantity of checking routines: validity and plausibility checks, 
acceptance tests, checking of predicates. Some estimate that about one-third of the application software in large 
projects is inserted to deal with exceptional situations.  

None of these techniques can ensure 100% error detection, especially taking into account that the person who 
designs the tests is often the same as the one who wrote the program to be checked. Further, software checking is 
done after the values have been calculated, and therefore are much slower than on-line hardware error detection - 
but hardware detection is no replacement for software checks.  

Therefore, software errors should be tackled by fault-avoidance techniques in the first place, and not by fault-
tolerance techniques at run-time.  

Once a design or software fault has been corrected, the fault is finally removed. But the correction may itself 
introduce another fault. This is why one hesitates in correcting complex software errors when they are recognized: it 
is sometimes safer to program around bugs than to correct them. An application of this philosophy is found in the 
Space Shuttle software.  

3.3.3 Time Errors Detection 

Timing errors reveal hardware and software faults, since the untimely execution of a program can be due to either 
kind of fault. Timing errors are detected by setting watch-dog timers, which are generally dedicated hardware 
devices. When the program starts a time-critical section, it triggers the timer that it should reset on leaving the 
section. If the program has not left the section before the time-out elapses, the timer generates an interrupt or an 
error signal.  

The use of timers becomes problematic when the programs are non- deterministic, especially in hierarchical 
systems. Then, the timer has a certain probability of ringing, although no software or hardware fault occurred, just 
because of an infrequent temporary congestion. In reality, this congestion could also be an error, since a timing 
constraint has not been respected.  

To control the complexity of hierarchical systems, the timers are sometimes tied to a certain level of nesting. For 
instance, a subroutine is allowed a certain time to execute. If that routine calls another routine, its timer is stopped, 
while the timer of the called routine runs.  



 

50  Fault-tolerant Computers 

The health of a system can also be monitored by a background check task that periodically checks the system. It 
resets the timer if the test is successful. If that task does not run in time or gets stuck for any reason, the timer 
triggers an error signal. Conversely, that task could also generate an "I'm alive" message for other modules at 
regular intervals. If the message is overdue, the other units will assume that a fault has occurred.  

Timing errors also can manifest themselves as data errors, for instance in the case of buffer overflow.  

3.3.4 Checking the Checker 

Error detection is never perfect. First of all, some errors may remain undetected if their occurence was not foreseen 
in the design. For instance, the simultaneous inverting of 2 bits fools a parity detector. Total replication does not 
guarantee 100% error detection coverage.  

Other errors may not show up immediately. For instance, when a fault within a checked unit does not have an 
immediate consequence on its output, it therefore remains temporarily undetected. The time it takes between the 
occurrence of a fault and its detection is called error detection latency, or latency.  

Latency may be reduced by periodically exercising all parts of a unit, in such a way that they affect the outputs.  

A fundamental problem of error detectors is that the error detection circuit or algorithm may remain stuck in the 
"OK" state and that from that moment on a fault of one unit will no longer be noticed (lurking error). The non-
function of an error-detecting device is equivalent to the loss of redundancy. Indeed, the reliability of the error 
detecting circuit determines the reliability of the whole plant.  

Therefore, the checking circuit must also be exercised at regular intervals, by injecting false signals and monitoring 
the checker's response. This interval can be calculated knowing the probability of failure of the error detector and of 
the redundant parts, as we will see in Chapter 9.  

Alternatively, the checker may be built using self-checking circuits, for instance in the two-rail technique. In this 
technique, each logical signal is carried by antivalent lines, one carrying the signal and the other its logical 
complement. Both lines go through separate circuits, like Figure 3-8 shows. An error is detected when the lines 
cease to be antivalent. A whole theory of self-checking checkers, also called morphic checkers has been 
developed [Duke 72, Carter 72].  



 

Chapter 5 Recovery to previous state 51 

A B X

A B XA BX 0 10 10 10 1X X

1S 0S

S
 

Fig. 3-8: Self-Checking by Dual-Rail Technique. 

3.3.5 Checking the Redundancy 

Another lurking fault results from the loss of a spare without notice. The system is running with a damaged spare, 
but the recovery logic does not know it. The situation differs according to the three forms of hardware redundancy 
we have seen:  

• Replicated computing detects the faults in a unit that appear at the outputs. A situation can nevertheless 
occur in which one unit suffers a fault that does not show up at its outputs. The active unit may now fail, and if the 
recovery process makes use of the faulty part of the spare, the system fails. The solution is to let the spare expose 
frequently all its internal states and exercise the recovery procedure.  

• Warm spares naturally exercise the hardware. Lurking errors may exist in the redundant storage (the saved 
state may be corrupted). Scheduled error detection programs also must check this. In particular, if the storage is 
capable of single error correction, the correction must be applied sufficiently frequently so as not to let a second 
error develop.  

• Cold spares are the most difficult to check, since they are not in use. For instance, vacuum tubes and 
mechanical parts are shut down to augment their life. Lurking errors must be found by reactivating the unit from 
time to time and performing scheduled testing on them.  

3.4 Fault-tolerance 

Increases in availability and reliability rely on fault-tolerance, i.e. the ability to continue operations after the 
occurrence of a fault. By contrast, error detection allowed one only to build fail-stop systems, which were safe only 
when the plant had a safe side and which reduced availability.  

There are two basic principles for fault-tolerance, fault masking and fault recovery. 



 

52  Fault-tolerant Computers 

Masking hides the faults by coding or replication and provides a no-downtime switchover. Masking requires that 
spares are permanently inserted or can be inserted within a negligible time. 

Recovery involves an intelligent process to correct a fault and implies a non-negligible down-time in case of fault. 

Both rely on functional spares, but at different degree of readiness. 

3.4.1 Functional Redundancy 

Fault-tolerance, and also error detection by duplication and comparison, relies on functional redundancy. Functional 
redundancy in a computer appears in form of spares or replaceable units (RUs), also called Line or Field 
Replaceable Units. A replaceable unit is generally a piece of hardware or software that is self-contained and has a 
defined interface towards the rest of the machine. 

Earlier designs introduced redundancy at the component level. Siemens developed a logic family in the 60s for that 
purpose. Complete computer for safety applications were built by this technique, but they have found little 
application since.  

Although smaller RUs tend to increase the reliability of the system, there is a limit to the gains in reliability that is 
explained in section 9.3.6. One problem is that the independency of fault between two small RUs is difficult to 
evaluate and certify.  

Traditionally, replaceable units have been identical to the serviceable processors, memories, buses, links, and 
peripheral devices, which roughly correspond to the building blocks of a computer. Today, the tendency is clearly 
toward larger RU, e.g. complete computers.  

At the same time, the RU are combined with error detection mechanisms to build error confinement zones. The 
ideal would be to have fail-stop RUs.  

3.4.2 Spare Readiness 

The architecture required to achieve fault tolerance depends in the first place on the maximum allowed recovery 
time, or time redundancy. As described in Chapter 1 one distinguishes computing element spares according to their 
degree of readiness:  

_ Hot spare: the spare hardware has exactly the same state as the working unit. The spare is either inserted 
permanently (massive and voting redundancy) or it can be inserted within a negligible time, by flipping a switch 
(hot-sparing redundancy). In that last case, it may be necessary to repeat the information transfer that took 
place at the moment of switchover. Therefore, an error can be perfectly masked. The switchover is either 
instantaneous or takes some ms. 

_ Warm spare: the spare is loaded with a valid state, typically obtained by periodic copies from the working unit's 
state. The insertion of the spare is bound with a short loss of function, due to the operations necessary to 
actualise the spare by redoing computations. In addition, the interactions of the working unit with the outer world 
must be monitored to avoid asking again for information already received or to send out again data already 
sent. Current commercial computers can perform a warm switchover in some seconds. 

_ Cold spare: switchover involves a relatively long loss of function. This is the case when the spare is void of 
memory, for instance when disk storage is lost and must be reloaded from tape, when the computer must be 
taken off-line and repaired or even is exchanged against a new unit. The spare must not only be loaded with a 
correct information, but also get itself acquainted with the situation it finds at restart (for instance it may have to 
poll all peripherals before starting work). In addition, there is a loss of the interactions with the environment that 
took place since the last saving point. A cold switchover takes from a dozen seconds to several hours, 
depending on the extent of the damage.  

The main problem is how to maintain spares in an actualised state when they contain memory: it is not sufficient to 
provide replicated memory hardware; this hardware must contain the correct information as well.  

• Transmission links and busses are memoryless. It is relatively simple to switch from a defective 
transmission link to another. Possibly, some registers and buffers in the interface must be reloaded or 
cleared.  

• Memory is relatively simple to keep actualised. The classical solution is to write to duplicate memories at 
the same time. When the memory is large, this is not always economical. We will see other solutions in 
Chapter 6. 



 

Chapter 5 Recovery to previous state 53 

• Processors, I/O controllers and complete computers are more difficult to maintain actualised, since their 
internal state is extremely complex. There are two basic ways to maintain such elements actualised:  

Replicated computing or work-by is used to implement hot sparing. The spare and the working unit execute the 
same function at the same time. Since computers are deterministic machines, their internal states and outputs 
should be identical, provided they receive exactly the same inputs at the same instruction and work in close 
synchronism. Thus, which unit is actually the working unit and which is the spare unit makes no difference: it 
depends on which unit is connected to the outside world.  

State saving or stand-by is used to implement warm sparing and cold sparing. There is only one working unit, 
whose state must be saved at regular intervals, either in a dedicated storage (cold stand-by) or directly into a spare 
hardware (warm stand-by). Stand-by units may be used for other purposes while the working unit is error-free, or 
they can be maintained in a reduced failure rate state, for instance unpowered (cold redundancy).  

3.4.3 Masking 

Fault masking hides the fault from the outputs by proper coding or by replication of the computing units. There is no 
downtime bound to the fault treatment and as long as sufficient redundancy is present, the faulty case cannot be 
distinguished from the normal case. Fault masking is associated to the notion of massive redundancy, in which the 
work is executed by a large number of units working in parallel, or work-by techniques. A selection or a majority vote 
is taken on these units to choose the most probable output. One distinguishes:  

_ coding redundancy: the information is coded with an error correcting code. The algorithm can correct a limited 
number of bit errors.  

_ massive redundancy: the process builds a plausible value output by several replicated units.  

_ voting redundancy: a dedicated voter builds the most probable output among several units working in 
synchronism  

_ sparing redundancy: one unit does the work, the others are hot-spares which can be inserted in place of the 
faulty unit at any time. 

The masking techniques are summarized in the following Figure 3-9: 



 

54  Fault-tolerant Computers 

,W WWWWWWWM W W

decoding

encoding

2/3

plant plantplantplant

, ,E
D

E
D

switchvoter

hot sparingmassive redundancy 
(voting done by plant)

coding

The useful 
data and the 

code are 
processed 
separately. 

Encoding and 
decoding is a 
single point of 

failure.

The units execute the same
computations. They are 

loosely coupled. The 
selection is done by the 

plant. Errors are not 
corrected by 

reconfiguration, but rather
outvoted.

The units replicate 
computations. They are 
tightly synchronized at 
the input and output 

level. Voting is done by 
a dedicated (fail-safe) 
voter. Error detection 

can also be performed 
by the voter.

2/3 voting

The units replicate 
computations. They are 
tightly synchronized at 
the input and output 
level. Each unit is 

self-checking. Switching 
of the spare is done by a
(fail-safe) switch upon 
the indications of the 

error detectors.
 

Fig. 3-9: Masking Architectures. 

The redundant path is contained between the dotted lines. The components that are outside of the redundant path 
are single points of failure. They should themselves be made redundant if their reliability is insufficient. 

3.4.4 Recovery 

The other fault-tolerance technique is recovery. Recovery is associated to the notion of software redundancy and 
stand-by techniques. Recovery tries to correct the effects of a fault rather than to hide them. Recovery enables the 
amount of redundancy to be reduced with respect to masking at the expense of a higher complexity. At the extreme, 
only redundant storage is required. Common to all recovery techniques is the restoration of a valid state from which 
computations can be resumed, called a recovery point.  

Two methods to reach such a recovery point exist: backward error recovery and forward error recovery. 

Backward error recovery, or retry attempts to redo the failed task on the same or on other hardware. Retry 
consists of two phases: Rollback and Roll-ahead:  

Rollback restores a recovery point that is either a copy of a previous, error-free state of the machine or a 
reconstructed state that may have existed some time before the fault. Rollback is done by: 

• Reloading the lost storage parts,  

• Correcting the affected storage,  

• Including the effects of former computations and  

• Restoring the environment as far as possible 



 

Chapter 5 Recovery to previous state 55 

Roll-ahead then redoes the failed task starting from the recovery point while:  

_ Correcting the effects of the first computation  

_ Ensuring no loss or duplicates of inputs and outputs.  

To do both rollback and roll-ahead, enough information about the progress of the running task must be saved at 
regular intervals called save points in redundant back-up storage. This back-up storage can be a tape, a disk, a 
non-volatile semiconductor memory or the main memory of a spare unit. 

forward error recovery or compensation attempts to use the erroneous state and build out of it an error-free 
state, which may never have existed before. In the simplest case it can just cancel the failed task. Forward error 
recovery is related to the techniques of exception handling. It is application dependent. Forward error recovery 
requires less redundancy than backward error recovery, but at the expense of additional complexity in recovery. 
Indeed, the complexity may be so high that artificial intelligence methods become appropriate. 

We distinguish the following recovery architectures, to which both forward error recovery and backward error 
recovery may be applied:  

• Warm stand-by, also called main/back-up or primary/secondary. A stand-by spare exists which has the 
capacity to perform, if necessary, the same work as the working unit. Normally the spare unit remains idle or 
performs other tasks. The working unit keeps the spare actualised by transmitting its own state directly to the 
memory of the spare at every save point. Upon detection of an error in the working unit, the spare is switched in 
place of the working unit. The recovery takes little time since the spare is already loaded with the current task state. 
Special care must be taken to treat interactions with the outer world that took place since the last save-point. For 
this purpose, the stand-by unit should divert a part of its computing power to log the execution of the working unit.  

• Cold stand-by: There is no dedicated stand-by spare, or the spare is void of information. The state of the 
working unit is saved at each save point in a save storage (for instance a disk). In addition, the progress of input 
and outputs is recorded in a log (journal). When an error occurs, computations can be resumed on the faulty unit if 
the fault is transient. If the fault is permanent, the unit must first be repaired or a cold spare must be inserted. In 
both cases, the spare or repaired unit is reloaded with the state saved in the save storage to establish a recovery 
point and computation is resumed from that point on. Special attention must be paid to the interaction with the outer 
world. While the spare in warm stand-by could monitor all interactions with the outer world, cold standby suffers 
from a period of amnesia. A general solution does not exist. We will consider especially the application of this 
method to a database in Chapter 7.  

These architectures are summarized in Figure 3-10: 



 

56  Fault-tolerant Computers 

W

warm standby cold standby

There is only one self - checking unit which does 
the work. Its state is regularly saved in a safe 
storage. The input and output interaction must also 
be monitored in the safe storage. 

Only one self - checking unit does the work. 
Its state is regularly saved in an identical
spare unit . This unit must also track inputs
and outputs of the working unit, and is free
to do other tasks the rest of the time.

log
storage

simplex 
retry on same 
unit after repair 
or transient

error detection in 
software or concurrent

no on line repair

state saving in back-up

E

D
W

E

D
W

E

D

input

input input

input

 

Fig. 3-10: Recoverable Architectures. 

As in Figure 3-9, the part within the dotted lines is redundant. Recovery will be treated in Chapter 5, state saving 
and restoring in Chapter 6 and the special problems of databases in Chapter 7. 

3.4.5 Hybrid Techniques  

Masking is generally associated to the hardware fault-tolerance methods, while recovery is considered as a 
software fault-tolerance method. Indeed, the two methods are sometimes combined, for instance by using recovery 
techniques in case masking fails. The most common is however to use recovery techniques to reintegrate a 
repaired unit into a functioning set without shutdown of the working unit(s).  

An example is Ericcson's AXE system [Ossfeld 80]. The AXE uses hot sparing normally: two work-by units are 
executing the same work at the same time in a synchronous manner. The outputs are continuously compared, and 
the two units work as a self-checking pair. Upon detection of a discrepancy, the units separate and each one runs 
diagnostic programs to determine if it is faulty. The faulty unit disconnects itself and the non-faulty unit keeps on. 
The faulty unit can then be repaired and checked. This mode is possible since the AXE computer aims at high 
availability and has a relatively long grace time.  

To reintegrate the repaired unit as a spare, the working unit transmits its state into the repaired unit, as is done for 
recovery. One unit can also be disconnected for other purposes, like for testing new versions of the software.  

3.4.6 Spare Pooling 

Spare pooling, also called hybrid-parallel, is a very general form of fault tolerance, which uses masking as well as 
sparing techniques. The idea is that a fault-tolerant system can be configured out of a quantity of processors, 
memories and buses.  

Each processor, memory or bus acts as a replaceable unit (RU). Fault isolation is either enforced by hardware 
(voter, self-checking units) or by software (acceptance programs). If the RUs are interchangeable, then in principle 
one or several of them can serve as spare for any other, thereby reducing the hardware for redundancy. 

Figure 3-11 shows the case for 2/3 voting: 



 

Chapter 5 Recovery to previous state 57 

2/3 2/3

triad 1
spares for
both triads triad 2

spares can be 
connected in 
place of any 

failed unit

 

Fig. 3-11: Spare Pooling. 

For two-of-three voting there are always at least three RUs, called triad working in parallel (examples are: SIFT, 
FTMP). For hot-sparing, there is always a pair of self-checking units (sometimes called a "quad") working in parallel 
([Katzuki 78], iAPX 432 [Intel 81], STRATUS/32 CPS [Freiburghouse 82]).  

The recovery procedure is similar to that of hot-sparing systems. Upon failure of an element the computation is kept 
on with the remaining redundancy until a natural ending point is found, such as the end of the current task or return 
of the current procedure. To restore full reliability, the triad, (respectively the quad) is dismantled, and a spare from 
the pool is inserted in place of the faulty unit or pair.  

The reconfiguration phase is complicated and involves a constant assessment of the available resources and the 
redistribution of these resources after a failure. Reconfiguration requires that in all cases a part of the functionality is 
retained to run the reconfiguration routines.  

Some designs leave the reconfiguration task to a highly reliable part which is dedicated to that task, and which is 
implemented by voting redundancy techniques, called the hard-core. Such is the JPL-STAR [Rennels 78].  

Others distribute the reconfiguration task among all processors. Such multiprocessor systems have been 
implemented for high availability applications (Pluribus, iAPX432) and high reliability applications: FTMP [Hopkins 
78], SIFT [Wensley 78, Goldberg 84], AFTC [Schmid 84]).  

3.4.7 Graceful Degradation 

Graceful degradation is a natural by-product of systems using stand-by spares and of spare-pooling since the 
spares normally can be performing tasks which they should drop to take over the work of the failed unit. Graceful 
degradation is bound to the notion of parallel programming: it requires that the functionality can be split into 
relatively independent sections, some of which can be dropped when necessary. Graceful degradation thus requires 
a complex reconfiguration phase which may be incompatible with real-time requirements.  

3.5 A scenario of fault-tolerance 

We now describe the sequence of operations involved in a typical fault- tolerant computing system. A general 
scenario appears in Figure 3-12:  



 

58  Fault-tolerant Computers 

reduced
redundancy

redundancy
fullwo...

fault error detection
SP  SP 

upkeep
error

latency

damage
assessment

reconfiguration
( loss of function )

( function resumed )

time to repair

lurking
error

SP  

redundancy

restart

workwork work

time

 

Fig. 3-12: Phases during the Reconfiguration. 

These phases are: 

Redundancy upkeep  

Error detection and damage assessment  

Reconfiguration  

Repair  

Teaching and reintegration 

3.5.1 Redundancy Upkeep 

During normal operation, the spares must be continuously kept actualised. This is done in work-by systems by 
synchronizing the concurrent execution and in stand-by systems by periodical state saving to a stable storage. 
Synchronization or state saving takes place at determined points in the execution and costs computing power. This 
is symbolized by the SP slots in Figure 3-12.  

3.5.2 Error Detection and Damage Assessment 

When a fault occurs, it can remain undetected for a relatively long time, until it is detected as an error. The 
signalling of the error triggers the closing of the corresponding confinement zone to prevent error propagation. 
Some implementations like the iAPX 432 cannot guarantee that the error will not leak out, but rely on an error 
reporting bus to catch up the error before it has any harmful consequences.  

The error signal starts the damage assessment phase, during which the extent of the error is determined. Often, the 
damage assessment phase is delayed to allow for transient faults to pass by, since the recovery would otherwise be 
disturbed. Although the fault could be permanent, one does not know it at that time.  

3.5.3 Reconfiguration 

If the damage assessment indicates that the working unit has failed, this unit is phased out, and the spare is 
installed in its place to initiate recovery.  



 

Chapter 5 Recovery to previous state 59 

The reconfiguration strategy differs, depending on the degree of readiness of the spare: 

• Masking systems and voting systems work with the spare already inserted. They select the most plausible 
output value and do not reconfigure as long as sufficient redundancy is present. Some masking systems rely on 
adaptive voting and configure out the faulty unit to increase reliability. Essentially, the duration of the reconfiguration 
phase for masking and voting systems is zero.  

• In hot stand-by, the switchover operation is reduced to the flipping of a switch. The error can be masked if 
the operation of the switch is fast enough. Data that were transmitted at the moment of switchover could have been 
corrupted and may require retransmission. 

• In warm and cold stand-by, for backward recovery techniques, a rollback phase is inserted during which the 
spare is loaded from safe storage with the previous good state. The rollback phase is followed by a roll-ahead 
phase during which the execution is repeated. These operations require from several seconds to some hours 
depending on the extent of the damage. - Forward error recovery requires a damage correction phase, selective 
reloading and undoing of possible faulty operations. The reconfiguration time depends heavily on the application. 

3.5.4 Repair 

With the return to operation, recovery is complete, but the system is not yet restored to its previous state. It is now in 
a reduced redundancy state. If the system uses dual sparing, there is no redundancy left and a new fault will bring 
the system down. To return to full reliability, there are several alternatives:  

The simplest case only considers transient errors. The faulty unit can be declared good after extensive checking 
and reloaded with the correct information to serve as spare again; 

If the error is persistent, then a spare unit from a pool can be taught to serve as a spare. If spares are not replaced, 
mission failure can result from spare exhaustion. 

The failed unit may be on-line repaired by a maintenance team; 

The failed unit may be off-line, repaired by a maintenance team at the next scheduled maintenance. This is the 
case for spare pooling. 

3.5.5 Teaching and Reintegration 

An aspect that has been often underestimated is the teaching and reintegration operation of a repaired unit. If the 
working unit(s) can be stopped for a while for reintegration of a repaired unit (at some expense of availability) then 
the problem is reduced to a dump from one memory to the other. If reintegration must take place while the working 
unit is running, i.e. on-line, the loading of the spare with the correct information involves a catch-up phase in which 
the spare is actualised by a mixture of loading from the working unit's memory and tracking of its execution to 
update obsolete information.  

Here, the methods of teaching differ somewhat between masking systems with replicated computing and stand-by 
systems with state-saving. Teaching of a spare is a natural operation for recovery while it is an exceptional situation 
for masking.  

The last step is the reintegration of the formerly failed unit as a spare into the system. The system has returned to 
the same reliability level as existed before the fault.  

3.6 References 

[Avizienis 84] A. Avizienis,  
"Fault Tolerance by Design Diversity: Concepts and Experiments",  
IEEE Computer, Vol. 17, No. 8, pp. 67-80, August 1984 

[Avizienis 78] A. Avizienis,  
"Fault Tolerance: the Survival Attribute of Digital Systems",  
Proceedings of the IEEE, Vol. 66, No. 10, pp. 1109-1125, October 1978 

[Carter 72] W.C. Carter, A.B. Wadia, D.C. Jessep Jr ,  
"Computer Error Control by Testeable Morphic Boolean Functions",  
FTCS-8, 8th International Conference on Fault-Tolerant Computing, Toulouse , June 1978 



 

60  Fault-tolerant Computers 

[Chen 78] L.Chen and A. Avizienis,  
"N-version programming: a Fault-Tolerance Approach to Reliability ofSoftware Operation",  
FTCS-8, 8th International Conference on Fault-Tolerant Computing, Toulouse, June 1978 

[Duke 72] K.A. Duke,  
"Detect Errors in complex logic",  
Electronic Design 21, pp 88 ff October 1972 

[Laprie 85] Laprie, J.C.,  
"On Computer System Dependability: faults, errors and failures",  
Proceedings of the IEEE COMPCON, Silver Spring, 1985 

[Intel 82] Intel Corporation,  
"iAPX 432 Interconnect Architecture Reference Manual",  
Order No. 172487-001 Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 1982 

[Fitch 84] D.J. Fitch, A.M. Guercio, K.W. Johnson, G.T. Surratt,  
"DMERT: A Fault Tolerant Environment for Diverse Applications",  
FTSC-14, 14th Fault-Tolerant Computing Symposium, Orlando, Florida, pp. 336-340, June 1984 

[Freiburghouse 82] R. Freiburghouse,  
"Making Processing Fail-Safe",  
Mini-Micro Systems May 1982 

[Goldberg 84] J. Goldberg, W.H. Kautz, K.N. Levitt, R.L. Schwartz, M.W. Green, L.B. Lamport, P.M. Melliar-Smith, 
C.B. Weinstock,  
"Development and Analysis of the Software Implemented Fault-Tolerance (SIFT)Computer",  
NASA Contractor Report 172146 SRI International, Menlo Park, California 94025 1984 

[Hopkins 78] A.L. Hopkins Jr., T.B.Smith III, and J.L. Lala,  
"FTMP-A Highly Reliable Fault-Tolerant Multiprocessor for Aircraft",  
Proceedings of the IEEE, Vol 66, No 10, pp 1221-1239, October 1978 

[Meraud 79] C. Meraud, F. Browaeys,  
"A new line of Ultra-Reliable, Reconfigurable Computers for AirborneAerospace Applications",  
AGARD - Symposium on advances in guidance and control systems Ottawa, pp. 62-1 ff, May 1979 

[Ossfeld 80] B. Ossfeld & I. Jonsson,  
"Recovery and Diagnostics in the Central Control of the AXE Switching System",  
IEEE Transactions on Computers, Vol. C-29, No. 6, pp. 482-491, June 1980 

[Katsuki 78] D. Katsuki, E.S. Elsam, W.F. Mann, E.S. Roberts, J.G. Robinson, F.S. Skowronski and E.W. Wolf,  
"Pluribus - An operational Fault-Tolerant Multiprocessor",  
Proceedings of the IEEE, Vol 66, No 10, pp. 1146-1159, October 1978 

[Schmid 84] H. Schmid, J. Lam, R. Naro, K. Weir,  
"Critical Issues in the Design of a Reconfigurable Control Computer",  
FTSC-14, 14th Fault-Tolerant Computing Symposium, Orlando, pp. 36 ff, June 1984 

[Schwartz 83] R.L. Schwartz, P.M. Melliar-Smith, F.H. Vogt & D.A. Plaisted,  
"An Interval Logic for Higher-Level Temporal Reasoning",  
SRI International NASA Contractor Report 172262 

[Toy 78] W.N. Toy,  
"Fault-Tolerant Design of Local ESS Processors",  
Proceedings of the IEEE, Vol 66, No 10, pp. 1126-1145, October 1978 

[Wensley 78] J.H. Wensley, L.Lamport, J. Goldberg, M.W. Green, K.N. Levitt, P.M. Melliar-Smith, R.E. Shostak and 
C.B. Weinstock,  
"SIFT: The Design and Analysis of a Fault-Tolerant Computer for Aircraft Control",  
Proceedings of the IEEE, Vol 66, No 10, pp. 1240-1255, October 1978 



 

Chapter 4 Encoding and Masking 61 

4 Encoding and workby 

Encoding and workby are two techniques that rely on the parallel operation of redundant hardware for the sake of 
the same operation. Both techniques allow detecting and overcoming errors. For this reason, they are treated in the 
same Chapter. 

4.1 Masking 

Masking techniques intend to prevent faults or their consequences from leaving a faulty device and leaking to the 
outer world. Masking provides full integrity and punctuality. As long as sufficient redundancy remains, the faulty 
case is concealed from the external observer. Masking relies on replicated computation, in which several units 
cooperate to perform the same work simultaneously. This operation mode is vital for massive redundant, voting and 
hot-sparing systems. The same synchronisation techniques are used for error detection by duplication and 
comparison, which is the base for fail-stop systems, as we have seen.  

Two basic masking techniques exist:  

• coding redundancy is a branch of the error detection techniques. It complements the information path and 
storage elements by redundant bits. It is an efficient technique that requires little redundant hardware.  

• workby lets a number of synchronized computing elements work in parallel on behalf of the same 
operation. The redundant units may be loosely or closely synchronized. The units are matched, so they all should be 
in the same state at the same time. A choice is made among the outputs of the redundant units by a device, which 
may be a switch, a voter or a selector. We use the generic term of voter for the selecting device. A voter may itself 
be replicated. Workby requires at least a duplication of the hardware, plus additional elements for the voting. The 
number of redundant units may be quite large ( � 3) and one speaks then of massive redundancy. 

Classical forms of workby are: massive redundancy, 2/3 voting (TMR), 2/4 (quadding) and 1/2 self-check (dual 
self-check). 

The section 4.2 treats the coding techniques in detail. Section 4.3 explains the workby techniques. The last section 
4.4 focuses on the techniques for synchronisation and matching for workby operation. 

4.2 Error detection and correction by coding 

4.2.1 Coding Redundancy 

Coding serves the dual purpose of error detection and of error correction. The basic principle is shown in Figure 4-
1: 

SOURCE DATA

DATA

CHECK

SUSPECT DATA

TRANSMISSION OR 
STORAGE NOISE

ECC 
CODER

DATA'

CHECK'

ECC 
DECODER

SINDROME

BIT 
CORRECTOR 

(EXOR) CORRECTED  
DATA

DATA' DATA"

CODEWORD

uncorrectable 
error

 

Fig 4-1: Data Path for Error Detection and Correction 



 

62  Fault-tolerant Computers 

Redundant check information is deduced from the original, useful data by an ECC-coder. The check bits are 
normally less numerous than the useful data bits. The data and the check bits, which form together a codeword, 
are transmitted, respectively stored in a medium subject to noise. When the codeword is read, a certain number of 
bits may have been inverted by some noise or failure. The original data is reconstituted from the (possibly modified) 
codeword by an ECC decoder. A circuit that inverts faulty bits corrects erroneous data.  

Some simple codes only perform error detection. Error correction is then done by some other mean, like 
retransmission. In that case the correction circuit is missing, but this case will be left to the next Chapters. 

Since the error detection/correction algorithm is applied whether errors are present or not, the correction of an error 
within a device is hidden from the outside world. This makes coding a suitable technique for masking errors.  

The largest application of Error Correcting Codes is found in increasing the reliability of semiconductor memories, 
which suffer from spurious bit inversions. Indeed, the reliability increase is appreciable: in a 32-bit memory extended 
by a 7-bit Hamming Code for SEC-DED (single error correction, double error detection), the reliability improvement 
factor (RIF) for a mission of 1000 hours is 43 [Levine 76]. 

Note : the reliability improvement factor or RIF is the ratio between the unreliabilities before and after the application 
of fault-tolerance (see Chapter 9). 

Coding schemes are also applied to information transmission, although one is more normally interested in detecting 
errors than in correcting them (correction can be done by retransmission). In cases where retransmission is too 
costly or impossible (space probes, long transmission delays), error correcting codes are also used.  

Coding schemes are also used to mask errors in computing elements. But here also, one is more interested in 
detecting errors than in correcting them. 

We will explain briefly the fundamental coding schemes. 

4.2.2 Parity 

The best-known coding scheme for error detection is parity. Parity is not an error correcting code: it only allows 
detecting errors. However, suitable extensions of the parity scheme can also correct errors. Parity consists in 
appending a parity bit to a data word of k bits which is transmitted as (k+1)–th bit to form a (k+1)-bit codeword. 
The parity bit tells whether the number of "1"s in a codeword, i.e. its hamming weight, is odd or even.  

We define that an odd parity bit is chosen such that the Hamming Weight of the resulting codeword (including the 
parity bit) be odd, i.e. the parity bit has the value "1" if the number of "1s" in the symbol (excluding the parity bit) is 
even and a "0" if that number is odd. Similarly, an even parity bit sets the number of ones in the codeword 
(including the parity bit) to an even number. The even parity bit is calculated as the exclusive OR (XOR) value of all 
symbol bits. Figure 4-2 shows the building of even parity for an 8-bit message word. 

EPar 
 
1

EPar  = D7  ⊕ D6  ⊕ D5  ⊕ D4  ⊕ D3  ⊕ D2  ⊕ D1  ⊕ D0  

⊕ = Exclusive OR  

D7 
 
0

D6 
 

1

D5 
 

1

D4 
 
0

D3 
 

0

D2 
 

0

D1 
 
0

D0 
 

1

 

Fig. 4-2: Even parity (HW = 4). 

Note: Unfortunately, the reverse definition of parity appears in the datasheets of some integrated circuits: "odd" is taken in 
the sense there that the sum of the "1"s excluding the parity bit is odd, which is just the opposite of the commonly 
accepted definition.  

Note that the parity bit is generally considered as being the bit with the highest weight. This is because serial 
transmissions usually transmit the least significant bit first, and parity is then appended to the message.  

In general, the parity kind is chosen so as to force a difference between transmission and the lack of transmission. 
If a transmission is binary, i.e. if it has only two distinct levels, the quiescent level (passive level) cannot be 



 

Chapter 4 Encoding and Masking 63 

distinguished from one of the logical levels. Then the parity is chosen so that at least one bit is active when the 
dataword consists only of passive levels.  

Example: 
if the passive level is "0", the parity should be odd. If the passive level is "1", the parity should be chosen as even if the 
number of bits in the dataword is even or as odd if the number of bits is odd.  

The parity bit does not provide 100% error detection. In fact, if any 2 bits in the codeword containing the data and 
the parity bit are inverted, the parity is again correct, although a double error occurred. Therefore, the Hamming 
Distance of parity is only 2. Obviously, it is not reasonable to protect a 512-block file with a single parity bit. The 
length of the word that a parity bit protects effectively depends on the acceptable residual error rate. 

The residual error rate Rer can be calculated as follows: Let Er be the probability that one bit is in error. The 
probability that a particular bit is not in error is (1-Er). The probability that any of the n bits is in error is equal to Ern, 
and that no bit is in error is (1-Er)n.  

The probability that a given bit is in error and no other is (1-Er)n-1 · Er and, since there are n bits, the probability that 
exactly one bit is in error is n · (1-Er)n-1 · Er. Therefore, the probability that the codeword has either no error or 
exactly one error is:  

Rer = 1 - ( 1 -Er )
n

- n ·Er · (1-Er )
n-1

NOT no error exactly one  error
 

This expression can be approximated to Rer = n · (n-1) · Er
2 for Er ≈ 1. 

Example: 

 The error rate is 10-5; if the protected word size is 8 bits (n = 9), the residual error rate is 72 · 10-10.  

 But if the protected data block has a length of 512 bits, n = 513 and the Rer approximates to 2.6 · 10-5 which means that 
the probability that an undetected error takes place in the block is higher than the bit error rate, and makes parity quite 
useless. Therefore, parity is used to protect small data items, typically 7 or 8 bits wide.  

In parallel buses, parity is commonly used. DEC's SBI has one parity bit for all 32 lines of information. IEEE 896, 
MULTIBUS II, VERSABUS and NUBUS have one parity bit for every 8 information lines. 

4.2.3 Longitudinal parity 

We consider now the transmission of a sequence of words such as a file. In some transmission schemes it is not 
possible to transmit a (k+1)–th bit for each word, since the channel is not wide enough. For instance, most 
asynchronous serial channels allow the transmission of an 8-bit wide word. If one uses the 8th bit as parity, only 7 
bits remain as useful information. This is what the ASCII transmission standard recommends. However, if one 
transmits a binary file consisting of 8-bit words (for instance an object file), the chunking of 8-bit words into 7-bit 
units is not a good practice. One prefers then to transmit 8-bit words and to protect them additionally by a parity 
word every M–th word. Then parity is built over all bits belonging to the same column (Figure 4-3):  



 

64  Fault-tolerant Computers 

x x x x x x x x

1 1 1 1 1 1 1 0

1 0 1 1 0 1 1 1

0 0 1 0 0 1 1 0

0 0 0 0 1 1 0 0

1 1 0 0 0 1 0 0

1 1 1 0 1 0 1 0

0 1 0 0 0 1 0 0

0 0 0 1 1 1 1 0

0 0 0 1 1 1 0 0word 1

word 2

word 3

word 4

word 5

word 6

word 7

word 8

word 9

parity word

 

Fig. 4-3: Longitudinal, even parity over 8 bytes. 

The parity is built column-wise, hence the name "longitudinal parity". Note that longitudinal parity indicates in which 
column the error took place. In a parallel transmission that is as wide as the individual words, if a column is 
repeatedly in error, this suggests damage on a particular line. In a serial transmission, it is unlikely that the same 
column is repeatedly affected.  

4.2.4 Single error correction  

Longitudinal parity can be used to correct errors as well, when combined with horizontal parity. If a single error 
occurred, then one can detect precisely which bit is in error since its position is known in term of row and column. 
Then this bit can be inverted again and the error corrected.  

Hamming (around 1950) [HAM50] extended the principle of error correction found in the combination of longitudinal 
with horizontal parity to correct single errors. error correcting codes (ECC) are often employed to increase the 
reliability of memories. Error correcting codes are not common in parallel buses although they become attractive in 
32-bit or wider buses. The biggest advantage of error correcting codes is that the overhead of retransmission can 
be avoided. 

The method used by Hamming for single error correction (SEC) is quite simple. To a data word of k bits, r 
Hamming check bits are concatenated to form a n-bit codeword. Let's suppose, to see how it works, that a method 
exists for correcting errors in that codeword. By applying a proper algorithm to this code word, we should be able to 
generate an error report, called a syndrome, which indicates precisely the position of the erroneous bit so that we 
can invert it (we expect only one error to be present at a time). If, for instance, the syndrome length is 4 bits, we can 
check with it a codeword that is 16 - 1 = 15 bits in length. The missing combination is needed to tell that there is no 
error.  

Now, let us put down this 15-bit codeword W1..W15, without caring which bits are data and which are check bits. 
Below each position 1..15 we write the binary value of the syndrome that should be generated in case of error in 
that position (Figure 4-4).  



 

Chapter 4 Encoding and Masking 65 

no error

S3 

S2 

S1 

S0

1 

. 

. 

. 

1

2 

. 

1 

1 

.

3 

. 

. 

1 

1

4 

. 

1 

. 

.

5 

. 

1 

. 

1

6 

. 

1 

1 

.

7 

. 

1 

1 

1

8 

1 

. 

. 

.

9 

1 

. 

. 

1

10 

1 

. 

1 

.

11 

1 

. 

1 

1

12 

1 

1 

. 

.

13 

1 

1 

. 

1

14 

1 

1 

1 

.

15 

1 

1 

1 

1

Syndrome 
bits

. 

. 

. 

.

codeword :

position 6
 

Fig. 4-4: Syndrome S0..S3 and bit positions. 

The zero position corresponds to "no error". To make things more apparent, the zeros have been changed to dots. 
Consider, for instance, that after the building of the syndrome, we find S = 0110. This means that the bit in position 
6 is incorrect and should be inverted. 

Conversely, if bit 6 of the codeword is in error, then this should produce a "1" in the syndrome bits S1 and S2 and a 
"0" in S0 and S3. Now let us see how to generate such a syndrome. 

Consider the last row (S0) in Figure 4-4. Suppose that the sender uses the check bits of the codeword as parity bits 
in such a way that the parity over all bits of the codeword which have a "1" in the first syndrome row is odd. That is, 
if we build the parity over all odd positions W1, W3, W5, W7...W15, S0 will be zero. Obviously, one of these 
positions contains a parity bit, we will see which one later. 

At the destination, we can recompute the parity over the odd positions and it should still be zero if no error occurred 
in them. But if the computed parity is one, we know that one of the bits in the odd positions is in error, but we do not 
know which one. If an even location is wrong, this will not affect S0. 

Similarly, let us arrange that the parity over all bits which have a "1" in the third syndrome row S1 (W2, W3, W6, 
W7, W10, W11, W14, W15) be even. We do the same for all bit positions which have a "1" in the second row S2 
(W4..W7, W12..W15) and for all bit positions which have a "1" in the upper row (W8..W15). 

Consider that if bit 6 in Figure 4-4 is in error, then this will affect the parity of the second and third row, S1 and S2, 
but not S0 and S3. Therefore, the vector S0..S3 is 0110 and points to position 6 where the error took place. 

As explained above, there must be in the codeword one parity bit for each row that completes the parity of its row to 
"0". These parity bits are called the HAMMING BITS H3..H0. There are obvious positions for the Hamming bits: 
every time a Hamming bit is in error, it should point to its own position. Therefore, the positions for the parity bits is 
where there is only one "1" in the column, that is, at positions 1, 2, 4, and 8. The rest of the codeword is filled with 
the data bits, as shown by Figure 4-5: 



 

66  Fault-tolerant Computers 

Codeword 
position 

S3 

S2 

S1 

S0

. 

. 

. 

1

H0

1

. 

. 

1 

.

H1

2

. 

. 

1 

1

D0

3

. 

1 

. 

.

H2

4

. 

1 

. 

1

D1

5

. 

1 

1 

.

D2

6

. 

1 

1 

1

D3

7

1 

. 

. 

.

H3

8

1 

. 

. 

1

D4

9

1 

. 

1 

.

D5

10

1 

. 

1 

1

D6

11

1 

1 

. 

.

D7

12

1 

1 

. 

1

D8

13

1 

1 

1 

.

D9

14

1 

1 

1 

1

D10

15

H0 = parity over D0, D1, D3, D4, D6, D8, D10

H1 = parity over D0, D2, D3, D5, D6, D9, D10

H2 = parity over D1, D2, D3, D7, D8, D9, D10

H3 = parity over D4, D5, D6, D7, D8, D9, D10

D0 data bit

H0 hamming 
code bit

 

Fig. 4-5: Single Error Correction. 

When the information is received, the receiver builds the parities over all codeword bits including the Hamming bits. 
The resulting values of S0..S4 yield as a syndrome the position of the faulty bit. The syndrome is then fed to a logic 
circuit that inverts the faulty bit. This logic consists simply of an XOR gate placed in each data line, which 
complements the corresponding bit, and an address decoder, which selects one of the XOR gates, as will be shown 
in Figure 4-9. 

It is quite easy to find how many Hamming bits are required for a given data length. A syndrome of length r points to 
2r positions, one of which is needed to signal that there is no error, that is, the codeword has a length of 2r -1 bits, 
of which r bits are Hamming bits. Therefore, the number of data bits is 2r - 1 - r.  

Each Hamming Code is identified by the relation of code bits to data bits, as is shown in table 4-6: 

4 
11 
26 
57 

120 
247

7 
15 
31 
63 

127 
255

( 7, 4 ) 
( 15, 11 ) 
( 31, 26 ) 
( 63, 57 ) 

( 127, 120 ) 
( 255, 247 )

Hamming Code Name 

( n, k )

Data Bits 

k = n - r

Codeword Bits 

n = 2  - 1
r

3 
4 
5 
6 
7 
8 

Check Bits 

r

 

Table 4-6: Hamming Codes for SEC. 

The corresponding codes are known as hamming (n, k) codes. Note that the efficiency of the code, i.e. the relation 
data bits/code bits, increases with the codeword length. Therefore, it is more efficient to protect a long word than a 
short one, but the limit is given by the acceptable residual error rate, like for parity.  

The length of the data field (11, 26, 57, etc.) is unusual in the computer world, where word sizes are multiples of 4 
or 8. This means that, in practice, some data positions are not used. If there is only an 8-bit data word to protect, 
then we can ignore the three positions D8..D10. If some positions are not exploited, we are able not only to correct 
all single errors, but also to detect some double errors: those which yield syndromes pointing to the unused 
positions. Except for this case, a double error will fool SEC, since it lets the logic correct the wrong bit. 

Alternatively, the SEC Hamming codes can also be used to detect all double errors, but then they cannot correct 
them. Every time a syndrome appears which is different from 0, a single or double error occurred. Therefore, one 
should be careful since some manufacturers advertise their circuits for "single error correction, double error 
detection" (SEC/DED), meaning that they can do either, but not both. The following section will show how both SEC 
and DED can be made.  



 

Chapter 4 Encoding and Masking 67 

4.2.5 Single Error Correction, Double Error Detection 

SEC codes can be used for single error correction and double error detection (SEC+DED) at the expense of 
one additional check bit. With the previous SEC scheme a double error manifests itself as a seemingly correct 
syndrome which points to the wrong position.  

Suppose that a first error is present, and the syndrome points (correctly) to location 6 (0110). A second error would 
change the syndrome into any of the following just by changing one bit: 1110, 0010, 0100, 0111. Note now, that an 
error that inverts one bit changes the number of "1"s in the word, which is its Hamming Weight. If the weight was 
even, an error makes it odd, if it was odd, it is made even.  

So we now make the additional restriction on syndromes, that they all have the same Hamming Weight. A second 
error would then change the HW of the syndrome and this would be detected as a second (uncorrectable) error. To 
do so, we must sacrifice all bit positions that have an even Hamming Weight, as Figure 4-7 shows:  

Codeword 
position 

S3 

S2 

S1 

S0

. 

. 

. 

1

H0

1

. 

. 

1 

.

H1

2

. 

. 

1 

1

3

. 

1 

. 

.

H2

4

. 

1 

. 

1

5

. 

1 

1 

.

6

. 

1 

1 

1

7

1 

. 

. 

.

H3

8

1 

. 

. 

1

9

1 

. 

1 

.

10

1 

. 

1 

1

11

1 

1 

. 

.

12

1 

1 

. 

1

13

1 

1 

1 

.

D3

14

1 

1 

1 

1

15

H0 = parity over D0, D1, D2 

H1 = parity over D0, D1, D3 
H2 = parity over D0, D2, D3 

H3 = parity over D1, D2, D3 

D0 data bit

H0
hamming 
code bit

unused

D2D1D0

 

Fig. 4-7: Valid syndromes for SEC+DED. 

Only four data bit positions remain. Of course, we choose to remove the bit positions that have an even weight so 
as not to remove the Hamming bits.  

If the syndrome is now for instance 11 (binary: 1011), changing one of its four bits will yield one of the invalid bit 
positions (3, 9, 15 or 10), which will be flagged as a double error. However, a third error can fool SEC+DED. This 
means that 4 check bits are required to perform SEC+DED on a data word of 4 bits, and in general, the relation 
holds that 2r � 2 · n.  

We need therefore 3 check bits to protect one bit, 4 check bits for 4 bits, and so one as table 4-8 shows:  

1 
4 

11 
26 
57 

120 

4 
8 

16 
32 
64 

128 

( 4, 1 ) 
( 8, 4 ) 

( 16, 11 ) 
( 32, 26 ) 
( 64, 57 ) 

( 128, 120 )

Hamming Code Name 

( n, k )

Data Bits 

k = n - r

Codeword Bits 

n = 2  
r - 1

3 
4 
5 
6 
7 
8 

Check Bits 

r

 

Fig. 4-8: Hamming Codes for SEC+DED. 



 

68  Fault-tolerant Computers 

As for the above case of SEC, the data size of these codes is unusual in the computer world. Therefore, some 
positions remain unassigned. For instance, 5 bits are required to protect an 8-bit word with 3 unassigned positions, 
6 bits are required for 16 bit words with 10 unassigned positions and 7 bits for 32-bit words with 25 unassigned 
positions. Most of the subtleties of the hardware design apply to the correct choice of unused combinations so as to 
minimize the logic.  

Figure 4-9 shows a complete decoder circuit for SEC+DED built with standard TTL circuits [ALT79]. The data lines 
(D1..D16) and the Hamming bits (H0..H5) are applied at the input to the parity generators which build the syndrome 
bits S0..S5. The syndrome is decoded by the '138 to select one of the 16 data inverters which form the correction 
circuit. Double errors are detected by building the parity over the syndrome word, which is even when there is no 
error or a double error.  



 

Chapter 4 Encoding and Masking 69 

C 

B 

A

S2

S1

S0

C 

B 

A

S138

VCC
1K

DOUBLE 
ERROR 

DETECTOR

SBE

NO ERROR

CORRECTION CIRCUITSYNDROME DECODERSYNDROME COMPUTATION

CORRECTED 
DATA

S 280 : PARITY GENERATOR / CHECKER 
S 138 : DECODER 3 TO 8

UNCORRECTED 
INPUT CODEWORD

SYNDROME 
DECODER

DI 6 
DI 7 
DI 8 
DI 9 
DI 10 
DI 11 
DI 12 
DI 13 
H  4

A

i

S 280

DI 0 
DI 1 
DI 2 
DI 3 
DI 4 
DI 5 
DI 6 
DI 7 
H  5

A

i

S 280

DI 3 
DI 4 
DI 5 
DI 11 
DI 12 
DI 13 
DI 14 
DI 15 
H  3

A

i

S 280

DI 1 
DI 2 
DI 3 
DI 8 
DI 10 
DI 12 
DI 14 
DI 15 
H  2

A

i

S 280

DI 0 
DI 2 
DI 5 
DI 7 
DI 9 
DI 10 
DI 11 
DI 15 
H  0

A

i

S 280

DI 0 
DI 1 
DI 4 
DI 6 
DI 8 
DI 9 
DI 13 
DI 14 
H  1

A

i

S 280

� ODD

� ODD

� ODD

� ODD

� ODD

� ODD

S138

0 
1 
2 
3 
4 
5 
6 
7

0 
1 
2 
3 
4 
5 
6 
7

A

i

S 280

� ODD

�EVEN

�EVEN

�EVEN

�EVEN

�EVEN

�EVEN
S5

S4

S3

S2

S1

S0

S5

S4

ECC 
INHIBIT

DI 00 DO 00

DI 01 DO 01

DI 02 DO 02

DI 03 DO 03

DI 04 DO 04

DI 05 DO 05

DI 06 DO 06

DI 07 DO 07

DI 08 DO 08

DI 09 DO 09

DI 10 DO 10

DI 11 DO 11

DI 12 DO 12

DI 13 DO 13

DI 14 DO 14

DI 15 DO 15

S5

S4

S3

S0
S1
S2
S3
S4
S5

'S30

'S02 'S86

Double 
Bit 

Error

Single 
Bit 

Error

 

Fig. 4-9: SEC+DED circuit with integrated circuits [Alt 79]. 

There are numerous integrated memory controllers in the marketplace which offer at the same time coding and 
refresh functions for dynamic memories.  

Figure 4-9 shows the syndrome-building matrix of the INTEL memory controller for SEC+DED on 16 bits [ALT79].  



 

70  Fault-tolerant Computers 

10 

19

9 

16

11 

21

12 

22

13 

25

14 

26

15 

28

16 

32

17 

35

18 

37

19 

38

20 

41

21 

42

22 

44

8 

14

5 

8

1 

1

2 

2

3 

4

4 

7

6 

11

7 

13

Bit 

Position :

. 

. 

. 

. 

. 

.

1 
. 
. 
. 
. 
.

. 
1 
. 
. 
. 
.

. 

. 
1 
. 
. 
.

1 
1 
1 
. 
. 
.

. 

. 

. 
1 
. 
.

1 
1 
. 
1 
. 
.

1 
. 
1 
1 
. 
.

. 

. 
1 
1 
. 
.

. 

. 

. 

. 
1 
.

1 
1 
. 
. 
1 
.

1 
. 
1 
. 
1 
.

. 
1 
1 
. 
1 
.

1 
. 
. 
1 
1 
.

. 
1 
. 
1 
1 
.

. 

. 
1 
1 
1 
.

. 

. 

. 

. 

. 
1

1 
1 
. 
. 
. 
1

1 
. 
1 
. 
. 
1

. 
1 
1 
. 
. 
1

1 
. 
. 
1 
. 
1

. 
1 
. 
1 
. 
1

. 

. 
1 
1 
. 
1

S0 
S1 
S2 
S3 
S4 
S5 

H4 D4 D5 D7 D8 D9 H6 D10 D11 D12 D13 D14 D15D3H0 H1 H2 D0 H3 D1 D2 D6

 

Fig. 4-10: Syndrome Generator Table for a 16-bit Data Word. 

Note that positions 31 (011111), 47 (1001111), 55, 59, 61, and 62 are missing in Figure 4-10. These positions have 
been dropped since their Hamming Weight is 5 and consequently these bits would need to be routed to 5 different 
parity generators instead of 3 for the other combinations. If only weight 1 (check bits) and weight 3 are considered, 
then a 20-bit word can be protected. The unassigned combinations are 49, 50, 52 and 56.  

The manufacturers differ in which other combinations they drop to reduce the number of data bits to 16. Some, for 
instance, drop positions 21, 22, 41 and 42 and use combinations 49, 50, 52 and 56 instead. This is what the 
manufacturers call "modified Hamming Codes", and great care must be taken when interfacing the chips of different 
manufacturers that they have the same syndrome generator. Such errors tend not to appear to the designer, since 
most of the time, the circuit works error-free.  

Since a double error cannot anymore be corrected, measures are taken to correct every single error as early as 
possible. The classical method is scrubbing, i.e. the cells are read individually during the normal refresh and 
corrected if necessary. Furthermore, every read operation must also be a read-modify-write.  

It is not sufficient just to detect and correct data errors. A read or a write of a correct data to an incorrect memory 
location is just as dangerous as a write of incorrect data to the correct address. The solution is to store an address 
code along with the data. Therefore, write operations must first read the previous data to check the address code 
before writing the new one into it. This causes an interesting problem: since at initialisation time, memory is void, its 
checksum is incorrect. A first solution is to load the memory with dummy words before the program starts. A better 
one could just tag the memory as void during initialisation, by using an illegal Hamming bit combination (there are 
always some of them since 7 Hamming bits cover more than 32 bits). That way, one could detect when variables 
are read which have never been written: a cheap mechanism to catch software errors.  

If the same technique is used consistently in a system, covering processors and buses as well as memories, one 
can correct any single bit error. More elaborated coding schemes can correct double or triple errors at the expense 
of an increase in word width.  

However, the problem arises when the information is not only stored or transported, but also modified by a 
processor. Techniques exist to transform a code into another that respects the computation performed on the data. 
It is today feasible to build a whole processor using coding with only about 30% additional gates [Horninger 85]. 
Coding is therefore far more economical than duplication.  

The problem of coding is the close coupling between the redundant elements. A common mode of failure can affect 
several bits at the same time and lead to a false correction. Mechanical coupling is also an obstacle to 
modularisation. It is not possible to remove a faulty part and keep the rest working: so no on-line repair is possible. 
This is possibly the stricter limitation of coding.  

4.2.6 Example of a processor coding system: Philips's (4,2) 

It is relatively difficult to extend the Hamming correction scheme to a complex device as a processor, since 
information is not only transported and stored, but also modified. Further, the tight coupling of the working and the 
coding circuits is an obstacle to modularisation. An attempt to overcome this problem has been made by Philip's 
(4,2) concept [Krol 82], shown in Figure 4-10:  



 

Chapter 4 Encoding and Masking 71 

M

µ P

G
3

G
3

16        8
8

M

µ P

16       8
8

slice  2

µ P

16       8
8

slice  1

µ P

G
0

16       8
8

slice  0

8
8
8
8

G
2 1

G

slice  3

DEC DEC DEC DEC

M M M

 

Fig. 4-11: The (4,2) Fault-Tolerant Computer (taken from [Krol 82]) 

Compared to a non-redundant processor, this concept uses four processors and four memories, each memory 
being only half as wide as the simplex memory. The processors are synchronized in lock-step. The 16-bit output 
produced by each processor passes through a code generator that produces an 8-bit code. This code is stored in 
the 8-bit wide half-memory associated to the processor. The coding is such that the system can tolerate the loss of 
any of the processor/memory pairs.  



 

72  Fault-tolerant Computers 

4.3 Work-by techniques 

4.3.1 Massive Redundancy 

The simplest method for fault-tolerance is to let a sufficiently high number of computing units work in parallel. The 
units should be synchronized so that they all output the same or a similar result at the same time if they are not 
faulty. The plant then takes a plausibility or majority vote. If the plant process is continuous, the synchronization can 
be slackened. There is no necessity for error detection, except for maintenance purposes.  

Consider a reliable computing system for moving the control surfaces of an aircraft (Figure 4-12): 

control 
surfaces

motors

power 
electronics and 

control

damaged 
unit

 

Fig. 4-12: Massive Redundancy. 

Five computers in parallel control the wing. Each one is doing in parallel the same work as the other four, 
responding to the same inputs and (normally) generating the same outputs. Instead of installing a switch to decide 
which computer should move the control surface, each computer is given a portion of the control surface to move. 
So, even if one computer fails completely and systematically in the wrong direction, there will be four other 
computers to compensate for its wrong action. The result will possibly be an increased drag, but the aircraft will be 
still able to land safely. 

Massive redundancy is the method with the highest reliability, but also the highest hardware expenses. It requires at 
least three units. Further, it is not generally applicable, since only certain kinds of plants have inherent voting 
possibilities. 

In massive redundancy, the computers may be independent and not synchronized, as long as the process is 
continuous, for instance in the case of a temperature regulator. But as soon as the process becomes non-
synchronous, and the program contains branches, discrepancies among the computers may arise because of 
internal state differences, without any fault involved.  



 

Chapter 4 Encoding and Masking 73 

Consider an algorithm that should maintain an aircraft at a height of 10'000 m. Some of the computers may 
compute a value of 9'990 m, others a value of 10'010 m. A set of computers will move the elevator upwards and the 
rest move it downwards.  

Therefore, massive redundancy requires in most cases that the replicated units be in an identical computing state 
as long as no error is involved.  

4.3.1.1 Example of massive redundancy: the Space Shuttle Flight Computer 

The Space Shuttle's computer is an example of massive redundancy. Its function is to guide the Shuttle during 
launch, ascent and re-entry, to perform the navigation and guidance and to monitor the payload operations on orbit. 
The Shuttle's computer consists of five work-by processors. Four of the five processors have been developed by 
IBM and build the PASS (Primary Avionics Software System). The fifth computer, called BFS (Back-up Flight 
System) contains only the software for the most critical flight phases (ascent and reentry). The BFS can be switched 
on by the crew upon a failure of the other four as an ultimate measure against a generic software fault. The BFS 
has been developed by an independent firm (Rockwell) from a subset of the specifications and is an example of 
diverse programming. Although it participates in the inputs and computations, its outputs are ignored except for test 
purposes.  

The five processors are loosely synchronized (within 150 µs). Each monitors a separate bus to which sensors and 
effectors are connected. A mechanical device, which is essentially a steel bar to which the motors driven by each 
processor are coupled, is the voting element. There is no voting on the results by the processors themselves. Faulty 
processors are not disconnected when they suffer a failure, since the idea of letting a processor switch off itself or 
another processor was considered too risky. The only serious situation would be a "two/two split" in which two 
processors would fail in the same way, but this situation has never been observed (Figure 4-13):  

CRT 
display

payload-
interface 

Manipulator 
uplink

Solid rocket boosters 
Ground umbilicals 
Ground support 
equipment

Telemetry

Mass 
memory 

units

GNC sensors 
Main engine interface 
Aerosurface actuators 

Thrust - vector control actuators 
Primary flight displays 

Mission event controllers
Master time 

Navigation aids

28 
1 - MHz 

serial data 
buses 

( 23 shared, 
5 dedicated )

GPC 5

IOP 5

GPC 4

IOP 4

GPC 3

IOP 3

GPC 2

IOP 2

GPC 1

IOP 1

Discrete inputs and analog IOPs, control panels, and mass memories

Intercomputer (5)

Mass memory (2)

Display system (4)

Payload operation (2)

Launch function (2)

Flight instrument (5;1 dedicated per GPC)

Flight - critical sensor and control (8) 

Control 
Panels

CPU 1 CPU 2 CPU 3 CPU 4 CPU 5

 

Fig. 4-13: Space Shuttle Computer. 

The software and hardware design of the Space Shuttle's computer is discussed in detail in [ACM 84] by several 
authors. For the coming discussion, it is interesting to know that most of the problems in the Space Shuttle 
computer were caused by faulty synchronization between the computers, not by actual failures of the units. 



 

74  Fault-tolerant Computers 

4.3.2 Triple Modular Redundancy and NMR 

In voting redundancy, the majority vote is taken by a dedicated unit, called the voter rather than by the controlled 
plant. The result of the voting is output to the plant. The minimum configuration for this mode of operation is 2-out-
of-3, or 2oo3 redundancy, also called Triple Modular Redundancy or TMR. This technique can be generalized to N 
units under the name of N-modular redundancy or NMR. The Space Shuttle's avionics computer is not really an 
NMR system, since no dedicated unit does vote its outputs.  

In NMR, the faulty units are ignored, and there is no necessity to detect errors for continued operation. However, 
errors are naturally detected by the voter and signalled for maintenance and logging. Therefore, it is also a method 
for error detection.  

TMR is probably the oldest masking technique for computers: it was foreseen by Von Neumann and implemented 
for the first time back in 1954 on the SAPO computer. This computer operated with vacuum tubes and magnetic 
drums. Prof. Antonin Svoboda at the Academy of Sciences in Prague, Czechoslovakia developed it.  

TMR consists of three identical processors (a triad) that execute the same computations in parallel under control of 
a common clock. The inputs are synchronized, the outputs are voted upon by a two-out-of-three voter circuit which 
takes a majority vote (Figure 4-14): The hardware redundancy is higher than 200%, since in addition to the three 
redundant units, a (safe) voting system must be implemented.  

voter2/3

plant 
output

plant input

redundant and

synchronized units 
unit a unit b unit c

 

Fig. 4-14: Triple Modular Redundancy. 

The voter is a hard-core component: it determines the reliability of the whole system, since a failure of the voter 
leads to a total outage. To obviate failures of the voter, the voter itself must be triplicated (Figure 4-15).  



 

Chapter 4 Encoding and Masking 75 

A

B

C

module 
A

module 
B

module 
C

A

B

C

2/3

2/3

2/3

inputs processors voters outputs

 

Fig. 4-15: TMR system with triplicated voters. 

Of course, the output of the voters must be tied together at some place before the plant, thereby introducing a 
single point of failure, but in some plants it may be possible to stretch the voting out into the plant, like for massive 
redundancy. 

TMR is based on the assumption that the three computers will be in the same state if no error occurs. This is 
achieved by letting the three computers execute the same programs at the same time in close synchronism. TMR 
exists in various flavours: Static TMR and Repairable TMR, which itself subdivides in On-line-Repairable TMR and 
Spare-Pooling TMR. 

In static TMR, a first error is overcome and the operation continues. A second error leads to a total outage. 
Generally, a second error causes the whole TMR system to shut down to give at least a fail-stop behaviour. In some 
cases, the faulty unit is passivated after a second error to reduce the probability of complot (same fault in two units 
which votes out the correct output).  

The MTBEF (Mean Time Between Element Failures) of Static TMR is more than three times higher than the MTTF 
of the individual processors, as we shall see in Chapter 9. The reliability of TMR, given by its MTTMF (Mean Time 
To Mission Failure), is quite low when the mission time exceeds the MTTF of the redundant modules, as Figure 4-
16 shows.  



 

76  Fault-tolerant Computers 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.3

Reliability
TMR R2oo3(t) = 3 e

- 2 λ t
- 2 e

- 3 λ t

simplex

R1oo1( t ) = e
- λ t

time [MTTF (1oo1)]

 

Fig. 4-16: Reliability of TMR in Function of Time. 

Therefore, Static TMR is only considered for short mission times. It has been used successfully in the control 
computer of the Saturn V rocket. It is also used for the control of rail vehicles to increase the availability of fail-stop 
systems: the first fault can be survived, the second fault causes a fail-stop.  

Dynamic TMR is better suited than static TMR for longer missions (long relative to the MTTF of the parts). Dynamic 
TMR assumes that the failed unit can be replaced and the reliability restored by reconfiguration. There are two ways 
to achieve this, on-line-repairable TMR and spare-pooling TMR.  

• on-line-repairable TMR assumes that on-line repair of the failed modules is possible during operation. The 
maintenance personnel may execute the repair without stopping the computer (or at a point in time where function 
is not required). A failure only occurs when a second unit fails while the first unit is being repaired.  

• spare-pooling TMR (also called Hybrid Redundancy) replaces the on-line repair by an automatic insertion 
of a spare taken from a spare pool. We will discuss two examples in the next subsection.  

A particular problem is induced by transient errors. If an error leaves the memory of one unit in an incorrect state, 
this error can remain undetected for a long period of time, since only the outputs, not the internal states are 
compared. Now, if another error occurs in another replicated unit, it may combine with the first one and the voter will 
be confronted with three different outputs. A fail-stop system would then stop operation, but a reliable one would fail, 
since it would have no means to tell which of the three RUs still contains the correct state. It is therefore necessary 
to expose these lurking errors as much as possible at the output, for instance by checksumming the memory at 
regular intervals.  

The difficulty in dynamic TMR is the reintegration: the repaired unit must be brought exactly to the same state as 
the remaining good units (taught) and synchronized with the running units. The teaching requires a breach in the 
symmetric world of the synchronization. Without considering teaching, all units are identical, individual and isolated. 
Teaching requires a communication channel between a good unit and a repaired one, or at least a special copy 
program in every unit that must run in the background.  

Several techniques have been developed for it. One consists in separating the processors in a memory and a 
(memory-less) processing unit (PU) with a voter, such as in Figure 4-17:  



 

Chapter 4 Encoding and Masking 77 

in rails out rails

votersvoters
processors memory

a   b   cx   y    z

X

Y

Z

2/3

2/3

2/3

A

B

C

2/3

2/3

2/3

 

Fig. 4-17: Self-learning of a TMR System. 

If a memory fails, then the new memory is actualised by every write operation of the processing units. If the PU 
intends to read a datum from a memory that has not yet been written into by a former operation, then the voter will 
transmit the value of the two experienced memories and outvote the random information in the uplearned memory. 
It will not signal an error during the teaching phase, though. Of course, this method yields only exponential teaching: 
it is still possible that after a very long time, variables remain that have not yet been written into. As long as this is 
possible, the voter cannot be used for error detection. Therefore, a part of the processing power of the PU must be 
spared for a cyclic update program, which reads and writes every memory cell as a background task.  

The teaching of a failed and repaired PU is easy since these elements are assumed to be memoryless. This 
assumption does not completely hold, since each PU has an internal state. However, a PU can be forced to dump 
its contents and reload another context under program control. The normal interrupt system is sufficient for it. After 
repair of a PU, an interrupt request is sent to all PUs. The good PU and the fresh PU dump their respective contexts 
into memory and start with a new context, which is now the same for all PUs since it has been voted upon. 

The TMR technique is particularly economical in terms of hardware, although the above diagrams may seem 
complicated. In principle, one can take any three off-the-shelf processors, with no special mechanisms for error 
detection, synchronize them and let the voter(s) choose the output. In reality, a great deal of investment is required 
to provide correct synchronization and teaching (in on-line repairable TMR). The voter itself becomes a critical point 
in the design.  

4.3.2.1 An example of On-Line Repairable TMR: August Systems  

August Systems series 300 [Wensley 83] is intended for industrial process control. It consists of three identical 
processor units (containing CPU, memory and I/O controller) called Control Computer Modules (CCMs) which work 
in parallel and in synchronism (Figure 4-18):  



 

78  Fault-tolerant Computers 

control 
computer 
module 

A

interface 
A

voters

output input

termination panels

distributors

to other PIMs

analog 
outputs

analog 
inputs

digital 
outputs

digital 
inputs

PIM bus B

control 
computer 
module 

B

interface 
B

control 
computer 
module 

C

interface 
C

PIM bus C

PIM bus A

 

Fig. 4-18: August Systems' 300. 

The outputs of the three CCMs are sent simultaneously over three independent buses (PIM Buses). The peripherals 
are in charge of voting the data. The input data are either replicated on the three buses by triplicated sensors or by 
a distributor unit.  

The processors should be exactly in the same state at the same time. This implies that they work on the same set 
of input variables, even if there are slight differences between the values read on the three buses. The differences 
can arise either from a transmission error on a PIM bus or from small differences in the values generated when 
three independent analog sensors are used.  

In fact, it is far more important to synchronize correctly the inputs than to synchronize the outputs: if there is a 
discrepancy in the input data, the internal states of the three CCMs would drift apart although no error is present, 
and the voter would be presented with three different output values.  

A typical cycle used in a process control loop is shown in Figure 4-19:  



 

Chapter 4 Encoding and Masking 79 

compare 
outputs

synchronize 
results

compute

match 
inputs

synchronize 
inputs

synchronize 
outputs

 

Fig. 4-19: Control Loop Cycle. 

The input values are first read over the PIM buses. Then the CCMs exchange the values they have read and vote 
on them by software to reach a common value that will be used by all three for the computations. Since the when 
the three input values can be (legally) different, a median value algorithm calculates this common value. The CCMs 
communicate directly with one another through three dedicated buffer areas for synchronization. A CCM can read 
the memories of the other two CCMs but cannot write into them.  

After the new output value has been computed, a second vote takes place before the values are released to the 
PIM. This is not absolutely necessary since the plant is supposed to vote also on the PIM buses, but the output 
synchronisation simplifies the voting by the plant. 

The actual problem of this architecture is the on-line repair and warm start. The units must be mechanically and 
electrically constructed so that they can be removed and reintegrated while the remaining units stay on-line. In 
addition, a provision must exist to teach a freshly reinserted CCM while the other two CCMs continue normal 
operation. The reinserted unit tracks the state of one of the good units and traces itself in the current state. This 
step requires a great deal of care since the state is continuously changing. Some hints on the implementation can 
be found in [Wensley 83b].  

4.3.2.2 An Example of Spare Pooling TMR: SIFT and FTMP 

The FTMP [Hopkins 78] and SIFT [Goldberg 84, Wensley 78] are examples of spare pooling TMR or hybrid TMR. 
Both computers have been built under a NASA contract to develop a new generation of airborne computers that 
could fly fuel-efficient, but instable aircraft. The reliability of these computers should be as high as that of wing, i.e. 
about 10-10 /hour, since a loss of computer would cause the loss of the aircraft. FTMP and SIFT are competitors 
for this job. The FTMP (Fault-Tolerant MultiProcessor) has been built by Charles Stark Draper Laboratories 
(Cambridge, Massachusetts). The SIFT (Software Implemented Fault Tolerance) has been built by Stanford 
Research International (Menlo Park, California). Their architectures are very similar: both are multiprocessors, both 
use triplication and voting (TMR) and both use spare pooling to restore reliability after a failure (Figure 4-20):  



 

80  Fault-tolerant Computers 

plant

interprocessor buses (redundant)

triad betatriad alpha spares

CM CM CM CM CM CM CM CM

 

Fig. 4-20: A Generic View of SIFT and FTMP. 

The computer consists of units called LRUs (line replaceable units). Each LRU contains a processor, a private 
memory, a local memory, an I/O interface and bus interfaces. An LRU is also a unit for fault-containment. The LRUs 
are located physically in different places of the aircraft to reduce common mode errors (due to mechanical or 
electrical damage). A processing unit consists of a group of three LRUs, called a TRIAD. The LRUs of a triad are 
synchronized at the execution level and at the input and output level. They execute the same operations 
simultaneously. The receiver of the information, which can be from the same or from a different triad, vote on the 
results. When a LRU fails, the fact is discovered and signalled by the receiver. The injured triad will keep on until 
the current task is terminated. Then another triad will reconfigure the injured triad and replace the faied LRU by 
inserting a spare from the pool in flight. This is analogous to a car rolling on three wheels until it finds an opportunity 
to stop and insert the spare wheel.  

The FTMP supports 10 computers, allowing it to build 3 triads and keep one spare. The SIFT engineering prototype 
consists of 8 LRUs. It supports two triads with 2 spares. 

In that mode, they operate as a multiprocessor with three and two processors respectively. At the first failure, the 
spare is taught by one of the intact LRUs and inserted. When no more spares are available, the failed triad is 
dismembered: the computing power is reduced, but two spares are now available to resist a third or a fourth failure. 
Therefore, SIFT and FTMP support graceful degradation. 

The interconnect bus is also redundant and consists of a set of serial buses. Both SIFT and FTMP are connected to 
the plant by the standard MIL 1553 serial bus. This part is application dependent and redundancy of the I/O system 
is not specified. Each LRU has just its own MIL 1553 interface.  

SIFT and FTMP differ on their approach to synchronization and matching. While SIFT (Software Implemented 
Fault-Tolerance) uses software to vote among the results, FTMP does the voting in hardware.  

The structure of an FTMP module is shown in Figure 4-21: 



 

Chapter 4 Encoding and Masking 81 

configuration 
control 

unit

3/5

2/3 
voter

input

output

processor memory I/O

configuration 
control  

unit
1/5

configuration 
control  

unit
1/5

5 redundant 
serial links

 

Fig. 4-21: FTMP's LRU. 

FTMP uses a set of five buses, three of which form a triad, the remaining two being spares. Each serial bus 
consists itself of five lines. Each LRU transmits simultaneously over a bus triad; two buses remain as spares. The 
clock signal escapes to this rule, since at least four clock lines are required to maintain all the LRUs in synchronism, 
as we shall see. 

Each LRU is allowed to transmit over only one bus at a time by a unit called the Bus Guardian Unit (BGU) that is 
itself duplicated. Both BGUs must agree on the same transmission line to allow the processor to send on that line. 
The three processors of a triad transmit their data synchronously over the three active buses, each processor over 
its own bus. The three processors must arbitrate first for the bus since another triad could be asking for it.  

At reception, the three active buses are selected by a unit called the configuration control unit (CCU), which keeps a 
table of the active buses. The data of the three active buses are voted upon and errors are detected at that level. 
The majority result is sent to the processor.  

The configuration of the system is therefore kept by the tables of the CCUs and BGUs. When an error is detected, 
the system configurator (itself a triad) can change the tables in the CCUs and BGUs to assign either new buses to a 
unit or to disconnect a failed unit and assign another.  

By contrast, in SRI's SIFT, the synchronization and voting is done by software. The LRUs are interconnected by 
eight buses, each dedicated to one LRU. There is therefore no arbitration. (The previous design of SIFT had free-
assignable buses which would have increased reliability, but at the expense of an unacceptable arbitration delay). 
The data sent by one LRU is broadcasted to each of the other LRUs. Broadcasting one 16-bit data item (25 bits with 
address and sync) takes from 8 us to 18 us. At reception, the data is stored by the receiver in eight dedicated buffer 
areas of 256 Bytes. A software voting task then compares the data when all three copies have arrived (Figure 4-22):  



 

82  Fault-tolerant Computers 

A

1

2

3
..
8

voter 
task

work 
task

..81 1 32

voted 
input

B
voter 
task

work 
task

..82 1 32

voted 
input

C
voter 
task

work 
task

..83 1 32

voted 
input

 

Fig. 4-22: SIFT's Broadcast and Voting. 

Although all LRUs receive the broadcasted data, those for which it is not intended disregard it, but nevertheless vote 
on it to detect errors.  

The software comparison scheme of SIFT reduces system costs, since the BGUs, CCUs and multiplexers/voters of 
FTMP are critical parts for which custom ICs are required. On the other hand, the speed is impaired by the lack of 
hardware support.  

Voting and synchronization in SIFT takes some 100 µs, i.e. about 100 times as long as hardware voting. SIFT's 
processors are synchronized within 50 µs. FTMP's LRUs are synchronized within some 50 ns, since the clock is 
global to all LRUs (we will return to the clock below). Loose synchronization has at least one positive aspect: the 
resistance to flash (burst of electromagnetic energy) is greater in loosely coupled system, since there is a risk that 
two tightly synchronized units could be affected in the same way by the flash and outvote the good unit. But in 
general, loose coupling only increases the voting time.  

The biggest problem of SIFT has been that it has not met the expectancies with respect to the real-time 
requirements. A comparison study done by the FTMP team [Smith 84] and the SIFT report itself [Goldberg 84] lead 
to the conclusion that a loose synchronization and voting scheme can hardly fulfill the real-time requirements of a 
flight control system.  

However, the bulk of the work of SIFT has not been done on the hardware reliability, but in the field of the software 
correctness proof and formal specifications. In that respect, the FTMP and SIFT projects are complementary rather 
than competitors.  

4.3.3 Dual Workby 

Dual Workby is the minimum configuration for workby operation. It is also refered to as synchronous-and-match, 
hot sparing or hot-standby (we prefer to use "Stand-by" when recovery techniques are used). It relies on a pair of 
identical, synchronized units. This arrangement can be used for two different purposes, for error detection (by 
duplication and comparison), or for persistency (by spare switching) as Figure 4-23 shows: 



 

Chapter 4 Encoding and Masking 83 

selector

synchronization synchronization

output

switch
comparator

plant output

persistent integer

plant input

output

plant input

plant output

co-

worker
worker

co-

worker
worker

E

D

E

D

 

Fig. 4-23: Dual Workby. 

In both cases, the operation above the dotted line is the same: a worker unit and a co-worker, which are completely 
identical and deterministic units, are performing the same work at the same time. Their executions are 
synchronized, and the input data they receive are matched, so one can rely on the determinism of computer 
execution to maintain them in the same state. Which of the two units is connected to the plant and which is 
redundant is only decided by what is below the dotted line. 

For error detection, a simple comparator (which may be synchronized with the execution clock) detects if a 
discrepancy occurs. If this is the case, an error is signalled and the error signal may be used to sever the output to 
guarantee a fail-stop behaviour. 

Although both units are replicating computations, comparing their results with a comparator can only tell that an 
error occurred, but could not tell which unit is faulty. Therefore, an independent redundancy is required to decide 
which unit is faulty, This redundancy is not drawn on Figure 4-23. 

For fault-tolerance, a selector device chooses between one or the other unit. Since both units are in the same state, 
the switching can be instantaneous and mask the error completely. This, however, requires that an error is 
immediately detected upon its occurrence, and that the selector takes action immediately. So, the additional 
redundancy for error detection is crucial here, because unlike TMR, the masking depends on the error detection 
capability.  

The dual-workby solutions differ in the way errors are detected:  

_ quadding, or 2/4, which relies on the duplication of a fail-stop pair,  

_ dual self-check (DSC) which relies on a pair of self-checking units, whereby the amount of redundancy for error 
detection is smaller than one, and  

_ Dual Compare and Diagnose (DCD), which relies on off-line error detection. 

The selector or the comparator/switch are, like the voter in the previous example, a single point of failure, and they 
should be made highly reliable, possibly by replicating them. 



 

84  Fault-tolerant Computers 

4.3.4 Quadding 

A 100% error detection can be achieved by quadding, i.e. making each worker and co-worker a workby pair for the 
purpose of error detection. This means that the fourfold amount of hardware is required to perform the function. The 
two redundant units, active and back-up, also called worker/mirror are interchangeable, for instance by means of a 
switch (Figure 4-24).  

checkerworker checkerworker

plant output

plant input
active back-up

synchronization
synchronization synchronization

 

Fig. 4-24: Quadding. 

Quadding represents a higher hardware investment as 2/3. Accordingly, its reliability is lower: While the MTTF of a 
2/3 is only 5/6 (0.833) of a simplex system, the MTTF of quadding is 6/8 (0.75) as will be shown in Chapter 9. In 
addition, quadding requires two stages of synchronism: a first level to keep the two pairs synchronized, and a 
second level to keep the synchronism within a pair. The reason why quadding is often used is that it provides a 
higher modularity than 2/3 voting. In addition, no voter is required, and therefore hardcore (single point of failure) is 
reduced. The switch can be embeded into the plant much simpler than a voter.  

4.3.4.1 A First Example of a Quadding Multiprocessor: the iAPX 432 

The concept of quadding can be extended to multiple processor systems, as exemplified by Intel's iAPX 432 
architecture [INTEL 82, Johnson 84]. The iAPX 432 is a multiprocessor system in which processors and memories 
are interconnected by a distributed crossbar consisting of two bus arrays, the processor buses ACD and the 
memory buses MACD. At the crossing points of the two buses, the BIUs (Bus Interface Units) do the switching. The 
memories are connected by MCU (Memory Control Units) which perform addressing, refresh, error code generation 
and controls interleaving (Figure 4-25):  



 

Chapter 4 Encoding and Masking 85 

BUI

GDP MEM 
ARRAY

BIU MCU

BIU BIU

MCU

MEM 
ARRAYGDP

 

Fig. 4-25: iAPX Interconnection Architecture. 

A processor has no local memory: its state consists of a set of registers. The state of a task therefore resides in 
memory except for the register context, making it easy to swap tasks between processors to share the load among 
the existing processors.  

For integrity, each processor is duplicated at the chip level and consists of a self-checking processor pair 
(duplication and comparison). For fault-tolerance, each self-checking processor is covered by another failstop-pair 
in work-by mode. Therefore, a faulty unit can just be switched off at any moment and the work-by unit will take over. 
The switching is at the charge of the BIU (Bus Interface Unit), which is itself duplicated on each processor.  

If the fault takes place during a bus transfer, the shadow cannot take over "on-the-flight" and it is necessary to retry 
the bus transfer. In any case, a quiescent period must first elapse to let transient faults settle. This period lasts from 
16 µs to 2 s according to the application.  

This simple method requires a sophisticated error reporting system. It consists of a duplicated serial bus, running 
alongside the parallel buses ACD and MACD, which transmits the reconfiguration information to the BIUs. It is also 
used to catch-up errors which leaked out of a confinement zone because of a bus driver failure. 

Repaired processors can be reintegrated easily in the working set, since they do not hold the task's state, except for 
the register contents. Reintegration is done when the context of the processor is irrelevant, i.e. at the next task 
switch for that processor.  

Reintegration of memory is more difficult. Sometimes it is only necessary to clear the memory, which takes about 40 
ms for a 256 KB array. If this is not possible, then the content of the good memory is poured into the repaired one. 
This copy operation takes about 800 ms for a 256 KB array. It is necessary to stop the operation of the computer for 
about 1 s, since otherwise, consistency problems would arise (see above August Systems's series 300). Thus, this 
scheme can only be applied when the mission involves frequent quiescent phases during which the computing can 
be stopped (scheduled repair). 

The reliability of the iAPX 432 is therefore limited by the probability of a second fault in the same memory pair 
before a quiescent point is reached. The probability of a second processor failure before a task switch is made is far 
lower, and further, processor insertion takes much less time.  

4.3.4.2 Another Example of Quadding in Multiprocessors: STRATUS/32 

Another example of quadding is STRATUS's /32 system [Freiburghouse 82]. The architecture is similar to the iAPX 
432 (Figure 4-25). The number of interprocessor buses is limited to two, and there can be many memories 
connected to them. The processor units are fail-stop. They include local memory, which is lost when a processor 
fails. Tasks can be executed with several levels of redundancy, either on one fail-stop processor, on one processor 



 

86  Fault-tolerant Computers 

with a back-up or on a pair of work-by processors. Each of the boxes in Figure 4-26 represents a unit consisting of 
two halves, forming a fail-stop unit. 

stratalink bus

stratalink bus

stratalink 
bus 

controller

communi-
cations 

controller

communi-
cations 

controller

disk 
controller

disk 
controller

memory 
and 

memory 
controller

memory 
and 

memory 
controller

stratalink 
bus 

controller

communi-
cations 

controller

communi-
cations 

controller

disk 
controller

disk 
controller

memory 
and 

memory 
controller

memory 
and 

memory 
controller

processor processor

processor i processor i + 1

processor

stratalink 
bus 

controller

processor

stratalink 
bus 

controller

 

Fig. 4-26: The STRATUS/32 Architecture. 

STRATUS/32 considered in detail the work-by operation of disk units. Since disks particularly and mechanical 
devices in general are non-deterministic elements, their inputs must be carefully synchronized by techniques similar 
to TMR's to achieve consistency of the inputs for both replicated units. Figure 4-27 shows the structure of a disk 
controller.  



 

Chapter 4 Encoding and Masking 87 

Gate Gate

Compare 
logic

Disk-control 
logic

Disk-control 
logic

Compare 
logic

Gate

Disk

Equal enables the gate

Equal enables the gate

Unequal causes 
red light and 

interrupt to VOS

Strata Bus Bus A

Bus B

 

Fig. 4-27: The STRATUS/32 Disk Control Unit. 

4.3.5 Dual Self-Check 

The largest disadvantage of quadding is that a fourfold hardware is required to provide integer as well as persistent 
operation. This overhead does not only cost hardware and power consumption, but also unreliability. The 
redundancy can be reduced if the error detection is not done by duplication and comparison, but by coding instead. 



 

88  Fault-tolerant Computers 

Indeed, coding provides plausibility checking at a much lower price than duplication and comparison. A Hamming 
Code for single and double error detection requires only 6 check bits for 32 bits of useful data, see Table 4.6.  

Figure 4-28 shows the principle of Dual Self-Check: 

co-
worker

input

output

worker error 
detection

ED ED

sync

 

Fig. 4-28: Dual Self-Check. 

One can show (Chapter 9) that Dual Self-Check becomes more interesting than TMR when the amount of error 
checking hardware does not exceed 50% of the functional hardware. This goal can be achieved by providing ECC 
for all RAMs, parity on buses, CRC on serial transmissions and duplication and comparison for complex logic. One 
can then achieve 100% error detection coverage, which is necessary for integrity.  

DSC is used in numerous industrial controllers, such as Siemens's AS220 H and Simatic S5-135H. However, self-
checking hardware is quite difficult to built, since the design effort is practically doubled. Therefore, a tendency 
exists to reduce the coverage to save design efforts at the expense of reliability and integrity. At the end, the 
reliability will depend entirely on the error detection coverage (see Chapter 9). 

4.3.6 Duplication, Comparison and Diagnostic (DCD) 

In many cases, complete error masking is not required, but integrity primes over persistency. Then, the amount of 
error detection logic can be reduced to plausibility checking. Figure 4-29 shows the principle: 



 

Chapter 4 Encoding and Masking 89 

co-
worker

input

output

worker

sync

off-line 
diagnostics

off-line 
diagnostics

match

difference 
detector

 

Fig. 4-29: Duplication, Comparison and Diagnostic 

The workby units are operated in parallel and their outputs are compared. The output of the comparator does not 
act on a switch, but triggers a diagnostic program. The outputs are stopped and each unit performs a health check 
on itself (and possibly on the other unit). If a faulty unit is found, it is disconnected and work continues on the 
remaining unit. In this post-failure mode, a second error would lead to false output. Such a reduced-safety mode is 
normally only permitted when a human operator is supervises and during a limited time.  

A problem of DCD is that in some cases, it may not be possible to declare one of the units faulty, for instance 
because the error was only transient. Then, an arbitrary choice is made, and the unit declared faulty is reloaded with 
the state of the unit declared as good. This is necessary, since the states of the units may differ and a second error 
could occur within a short time. Again, such a reload may be prohibited in high-safety applications. 

The dependability of DCD is limited by the probability of picking up the faulty unit within an acceptable period of 
time, as Chapter 9 will show. 

4.3.6.1 An example of a DCD structure: the AXE 10 

Numerous examples of dual workby computers exist today, among them are the ESS [Toy 78], and AXE 10 
[Ossfeld 80] which are used in telecommunication switching. Their configuration is shown in Figure 4-30: 



 

90  Fault-tolerant Computers 

RPB -A

SBU

ALU

PCU

MIGCM

DSH

PSH

RSH

DS

PS

RS
LIU

TRU

TCU

UPM

BAM

PTH

RPC

CPB
RPI

CPU
CP -A

MAU

PTB

UMB

RPB - B

CPU

CP - B

RPI

RPC

PTH

BAM

UPM

TCU

TRU

LIU

SBU

ALU

PCU

MIG CM

DSH

PSH

RSH

DS

PS

RS

DS 
PS 
RS 
CPB 
RPB 
MAU 
CPU 
TCU 
ALU 
BAM 
MIG 
PCU 
TRU 
DSH

Data Store 
Program Store 
Reference Store 
Central Processor Bus 
Regional Processor Bus 
Maintenance Unit 
Central Processor Unit 
Table And Counter Unit 
Arithmetic Logic Unit 
Maintenance Buffer Unit 
Micro Instr. Generator 
Priority Control Unit 
Trace Unit 
Data Store Handler

LIU 
PSH 
UPM 
RSH 
SBU 
PTH 
RPC 
RPI 
CM 
PTB 
UMB 
CP

Link And Instr. Addr. Unit 
Program Store Handler 
Updating And Match Unit 
Reference Store Handling Unit 
Shift And Bit Handling Unit 
Processor Test Handler 
Regional Processor Controller 
Regional Processor Interface 
Control Memory 
Processor Test Bus 
Updating And Matching Bus 
Central Processor

 

Fig. 4-30: Duplication, Comparison and Diagnostic Computer (AXE 10). 

Originally, this concept was introduced for error detection: the outputs of both processors are compared. A 
mismatch indicates an error, but not which unit is faulty. Therefore, upon detection of an error, the units had to 
undergo self-check to decide which unit is faulty. The temporary loss of function is tolerable in telecommunication 
switching.  

The computations are resumed on the non-faulty unit, if one can be found. Since off-line tests cannot detect 
transient errors, it is likely that no error will show up. In this case, the computation is resumed on a randomly chosen 
unit. The other unit can now be taken off-line for repair and update.  

The separated operating mode is also useful to perform software updates: the work-by unit is loaded with a new 
version of the software and inserted in place of the working unit. If there are problems with the new software, one 
can switch back to the old version. This supposes of course that both versions operate on the same data structures.  

The next step was to make the duplicated processors self-checking: each has on-line error detection circuits and, 
for the memory, error correction circuits. Each processor is considered a fail-stop unit. Therefore, the question of 
which unit is faulty in case of discrepancy does not arise any more: switching is instantaneous. This shows that a 
DCD structure can be upgraded to a DSC structure starting from the same design and improving the error detection 
capabilities of the hardware. 



 

Chapter 4 Encoding and Masking 91 

4.4 Synchronization and matching of work-by units 

4.4.1 Synchronism and Determinism 

All the previous methods (massive, N/M voting, dual workby) assume that the working units are all exactly in the 
same state. This assumption is also made for error detection by duplication and comparison. A similar requirement 
exists for coding. 

The method to keep all units in the same state is to let them perform the same work simultaneously on the same 
inputs. This is based on the assumption that the units are absolutely identical and deterministic. Any non-
deterministic element within a unit is a source of discrepancy and must be carefully matched.  

Non-determinism may arise from analog elements, like watchdog timers, mechanical devices or variable delays in 
memory access. Although digital circuits tend to be deterministic, synchronization circuits are a potential source of 
non-determinism. Arbiters, for instance, may decide differently depending on slight variations of the order of arrival 
of signals.  

The existence of an error recovery technique in the units can cause a synchronization problem if one unit is 
correcting an error and the other(s) are not. Among other non-deterministic components are the synchronization 
circuits:  

Workby requires in addition that the inputs of the redundant units be identical and simultaneous. This requirement 
cannot most of the time be fulfilled without external help: due to slight variations in delay, interrupts may be 
responded earlier in one unit than in the other, and let the execution flow of the programs diverge. The redundant 
processors often receive their data from redundant input devices, so as not to introduce a single point of failure. In 
that case, discrepancies between the input data are expected even as a normal case.  

We will consider the following problems of synchronism: 

_ Non-determinism in the units, Execution synchronization 

_ Non-determinism in the inputs, Synchronizing and matching the inputs 

The "SYNC" circle and the "sync/match" diamond in the above diagrams remind that the requirement exists.  

4.4.2 Synchronizing the Execution 

All replicated units should have a common time reference or they will have difficulty in agreeing on a common time 
frame for inputs and outputs. The replicated units may be synchronized at the processor clock level (instruction 
synchronism), at the bus access level (bus synchronism) or only at the input/output level (I/O synchronism). 
Although in theory only a synchronism at the input/output data level is required, a closer synchronism is 
recommended to provide a smooth switchover.  

There is no such thing as an absolute time reference [Lamport 78]. One could think of implementing one by 
broadcasting the clock to all units, for instance by a radio signal. This could not prevent one unit from receiving that 
signal some nanoseconds before another. Thus, the common time reference depends on the distance between the 
units. It is theoretically not possible to achieve a closer synchronism than within the time light needs to travel from 
one extreme of the system to the other. Since propagation delays are in the order of 5 ns/m, and drivers/receivers 
add delays to it, synchronism cannot be maintained tighter than about 50 ns if the units are in the same board and 
100 ns if they are on different boards and 1 µs if they are in different crates within the same cabinet.  

To show that the problem is not trivial, consider what would happen if the outputs of a triplicated clock were applied 
to a 2/3 voter (Figure 4-31):  



 

92  Fault-tolerant Computers 

clock
A

clock
C

clock
B

?

2/3

VOTER

CLOCK A

CLOCK B

CLOCK C

2/3

CORRECT TRIPLE FREQUENCY

t

 

Fig. 4-31: Running a Triplicated Clock through a 2/3 Voter. 

Although no input is faulty, the circuit behaves as a frequency tripler. 

There are classical solutions to the synchronisation problem like crystal oscillators modulated by phase-locked 
loops. Hardware solutions have been developed which require at least four clocks to reach a common time 
reference under all situations [Smith 81, Hopkins 78, Kessels 84]. The solution used in the FTMP is shown in Figure 
4-32:  



 

Chapter 4 Encoding and Masking 93 

CR MAY USE ANY 3 OF 
THE 4 INPUTS AVAILABLE

NOTE :

CLOCK RECEIVER 
PHASE - LOCKED 
OSCILLATOR

CR   : 
PLO :

CR PLO #4

PLO #1

PLO #2

PLO #3CR

CR

CR

CR
USER 

MODULE

USER 
MODULE

CR

Fig. 4-32: FTMP's Fault-Tolerant Clocking Scheme. 

The above circuit can ensure that all machines use the same clock frequency, but not that they all see the same 
"absolute" time - keeping in mind that absolute time exists only in one place.  

A common time reference can only be achieved by communication between the units and agreement on a common 
value. Since communication takes a certain time, one cannot expect a common time reference to emerge which is 
shorter than one message exchange. Further, the synchronisation must also work in spite of failure of any of the 
participants.  

From this, it is clear that closely coupled elements can be synchronized better than loosely coupled elements. In 
fact, all synchronization methods that involve communication protocols suffer from inefficiency. 

We will therefore treat the building of common time like the matching of input data and discuss both topics together.  

4.4.3 Matching the Inputs 

To achieve exactly the same internal state, all replicated units should receive the same data at the same time, even 
in the case when they receive different data. The only exception which could be acceptable is when the process 
data are continuous and the algorithms used would let the output converge to the same value, but this would 
exclude even the use of simple integral control in a control loop. Analog TMR devices are rarely used in practice. 



 

94  Fault-tolerant Computers 

Thus, inputs must be synchronized such that all units start from the same input data vector, even if some units 
received different inputs.  

Figure 4-33 shows an example of a TMR system in which the three units receive their input data from different 
sensors.  

CA B

OUTPUT COUTPUT BOUTPUT A

INPUT A INPUT B INPUT C

 

Fig. 4-33: Synchronizing the Inputs of a TMR System. 

This synchronization implies that the units exchange the data they have received to reach a common agreement. 
Exactly the same problem occurs when the units try to agree on a common time.  

4.4.4 The Byzantine General's Problem. 

The problem of reaching a common input data or time reference value in spite of faults is an interesting 
investigation subject [Pease 80, Lamport 82, Frison 82, Moore 84, Krishna 84]. It is called "interactive consistency" 
or "source congruency" depending on whether the author is with the FTMP team or with the SIFT team.  

It appears that it is theoretically impossible for three computers to agree on a common value, and that at least 4 are 
required for this. The proof for it is known as the "Byzantine Generals' problem" [Lamport 82] but it was already 
described in a less didactical way earlier.  

A city has been attacked by three Byzantine armies. The city can be caught only if all three armies decide to march 
at the same time. They can also decide to retreat, but then they must all do it at the same time. Unfortunately, 
Byzantine generals are well-known as venal and it is likely that one of them has been bought by the city inhabitants 
with the aim of destroying the other generals' armies, for instance by letting one army attack or retreat without 
moving the others. Therefore, an algorithm must be found through which the mutually suspicious generals can 
reach a consensus on whether to attack or to retreat.  

The attack or retreat command is given by general A which communicates it to generals B and C. Since generals B 
and C are mutually suspicious, they exchange the command they received to see if they agree. One general will 
assume that the command is correct if it received it from two different persons in the same way.  

The situations which can occur are shown in Figure 4-34: 



 

Chapter 4 Encoding and Masking 95 

A

B C

A

B C

A

B C

he said he saidhe said

"attack"

"attack""attack" "attack"

he said  "attack" he said  "attack"

"attack" "attack""retreat"

"retreat" "attack"

he said "retreat"

a) b) c)

 

Fig. 4-34. The Byzantine Generals Problem 

No traitor: General B and C receive the same command and they march on. 

General A is a traitor: he sends the command of attack to B, but the command to retreat to C. B and C exchange 
their messages and find them in contradiction: they cannot take any action.  

General B is a traitor: he received the command to attack from A, but transmitted the retreat command to C. C 
himself has received the command to attack from A, so C has received two contradictory commands and cannot 
take any action.  

For general C, the cases 2) and 3) are not distinguishable: he cannot tell which one of A or B is the traitor and 
therefore cannot take any decision.  

One can generalize the problem by building groups of generals, and to consider each group as a super-general. 
This way, one can see that to solve this problem you need at least 3t + 1 participants to cope with t traitors. A more 
formal proof can be found in [Pease 80].  

There are however two ways to solve this situation with only 3t participants: 

1. Encryption. General A should encrypt his message such that B cannot falsify it, for instance, by writing the 
command on security paper with his seal and signature. Situation 3) can no longer occur, since B cannot falsify 
the command it received from A. The worst he can do is not deliver it. So, if situation 2 occurs, C knows that A 
is the traitor. Several techniques for data encryption with public keys have been developed which could serve 
this purpose.  

2. Atomic broadcast. If the message system is such that the command is transmitted simultaneously to all 
participants, then A cannot send a different message to C and B, and situation 2) cannot occur any more. In 
addition, since C and B broadcast their commands, the traitor will be immediately uncovered.  
This transmission requires that the message is either received identically or not at all by all participants. Some 
networks such as Brown Boveri's PartnerBus support in hardware the construct of atomic broadcast, by a token 
passing mechanism. In other networks, one must implement it by software. Atomic broadcast requires that the 
message be encoded with an error detecting code such as a CRC. Then, the probability is extremely small that 
any participant recognizes a false message as good. An additional complication comes from retransmission: a 
good message retransmitted at an inopportune time is also a false message - the traitor could store a valid 
"attack" message and deliver it in place of the "retreat" message. Therefore, it is important that the messages 
be stamped with a sequence number - and that each participant receives exactly one copy of each message. 
The daytime is not adequate as a time stamp, since there would be no control of lost messages, and since the 
message exchange is used precisely to establish a common daytime.  

The problem can be complicated by considering random transmission delays, time-outs and unreliable messengers, 
but at the end, it is worth asking oneself how likely it is that a malicious error will appear in a faulty computing 
system. A software error in all the replicated units is much more likely.  



 

96  Fault-tolerant Computers 

REFERENCES 

[ACM 84] Special Issue on Computing in Space,  
Communications of the ACM , September 1984 

[Davies 78] D. Davies & J.F. Wakerly,  
"Synchronisation and Matching in Redundant Systems",  
IEEE Transactions on Computers, Vol. C-27, No.6, pp.531-539 , June 78 

[Freiburghouse 82] R. Freiburghouse,  
"Making Processing Fail-Safe",  
Mini-Micro Systems , May 1982 

[Frison 82] S.G. Frison & J.H. Wensley,  
"Interactive Consistency and its Impact on the Design of TMR Systems",  
FTCS-12, 12th. Int. Symp. on Fault-Tolerant Computing, Santa Monica, pp. 228–233 , June 1982 

[Horninger 85] K.H. Horninger, H.P. Holzapfel,  
"Fehlertolerante VLSI-Prozessoren",  
GI-Fachgespräch 'Themengebiete FTCS-16', Munich 1985 

[INTEL 82] Intel Corporation,  
"iAPX 432 Interconnect Architecture Reference Manual",  
Order Number 172487-001, 1982 

[Kessels 84] J.L.W. Kessels,  
"Two Designs of a Fault-Tolerant Clocking Scheme",  
IEEE Transactions on Computers, Vol. C-33, No. 10, pp 912-919, October 1984 

[Krishna 84] C.M. Krishna, K.G. Shin,  
"Synchronization and Fault-Masking in Redundant Real-Time Systems",  
FTCS-14, 14th. Int. Symp. on Fault-Tolerant Computing, Orlando, pp. 152-157 , June 1984 

[Krol 82] Th. Krol,  
"The '(4,2)-Concept' Fault-Tolerant Computer",  
FTCS-12, pp. 49-54 , June 1982 

[Lamport 78] L. Lamport,  
"Time, Clocks and the Ordering of Events",  
Communications of the ACM, Vol. 21, No. 7, pp. 558-565, July 1978 

[Lamport 82] L.Lamport, R. Shostak, & M. Pease,  
"The Byzantine Generals Problem",  
ACM Transactions on Programming Languages and Systems, Vol.4, No.3,  
pp. 382-401, July 1982 

[Levine 76] Len Levine & Ware Meyers,  
"Semiconductor Memory Reliability with Error Detecting and Correcting Codes",  
IEEE COMPUTER, Vol. pp. 43-49 , October 1976 

[Moore 84] W.R. Moore, N.A. Haynes,  
"A review of synchronisation and matching in fault-tolerant systems",  
IEE Proceedings, Vol. 131, Pt.E, No.4, pp. 119-124, July 1984 

[Pease 80] M. Pease, R. Shostak, & L. Lamport,  
"Reaching Agreement in the presence of faults",  
Journal of the Association for Computing Machinery, Vol.27, No.2, pp. 228-234 , April 1980 

[Smith 81] T.B. Smith,  
"Fault-Tolerant Clocking Scheme",  
FTCS-11, 11th Int. Symp. on Fault-Tolerant Computing, Portland, pp. 262-264, June 1981 

[Smith 84] T.B. Smith,  
"Fault-Tolerant Processor Concepts and Operation",  
FTCS-14, 14th Int. Symp. on Fault-Tolerant Computing, Orlando, pp. 158-163, June 1984 



 

Chapter 4 Encoding and Masking 97 

[Wensley 83] J.H. Wensley,  
"Industrial-Control System does Things in Three for Safety",  
Electronics, pp 98-102, January 27, 1983 

[Wensley 83a] J.H. Wensley,  
"An Operating System for a TMR Fault-Tolerant System",  
FTCS-13, 13th Int. Symp. on Fault-Tolerant Computing, Milano, pp. 452-455 , June 1983 

[Wensley 78] J.H. Wensley et al.,  
"SIFT: The Design and Analysis of a Fault-Tolerant Computer for Aircraft Control",  
Proceedings of the IEEE, vol. 66, no. 10, pp. 1240-1255, October 1978 





 

Chapter 5 Recovery to previous state 99 

5 Recovery to previous state 

5.1 Principles of recovery 

In the previous Chapters, we considered the masking of faults by coding, massive redundancy, voting and hot-
spares. Masking ensures that no fault leaks to the external world and that the duration of the outage is essentially 
equal to zero. The conditions to achieve masking are total error coverage and a close synchronism between 
replicated units.  

In some cases, such a close synchronization is not feasible, for instance when the units are distributed over a wide 
area and interconnected by a network. A loose synchronization can also be desired to reduce the coupling of the 
units and therefore avoid common modes of failure. Further, the amount of hardware redundancy of masking 
systems is high - at least a triplication of the computing elements is required in addition to special elements like 
voters and self-checking comparators. And finally, the masking methods cannot deal easily with software faults, 
since diverse (replicated) software is costly and since the nature of software faults makes total error coverage 
unlikely. This is indeed the Achille's heal of masking systems: errors which manage to leak out of them cannot be 
corrected anymore.  

The alternate to masking redundancy is recovery, also called dynamic redundancy. Recovery techniques intend 
to correct errors rather than masking them.  

The basic strategy of recovery after an error is detected consist of:  

_ Reloading the lost storage parts, 

_ Undoing all effects of the fault in the storage which survives and 

_ Continuing computation from that state.  

Operations that the failed unit may have executed before it crashed and especially its interactions with the plant 
must also be considered. 

The two technique of recovery are compensation of errors and retry of a failed operation: 

_ Retry (backward error recovery) is quite a natural technique for transmission links: if a transmission fails, for 
instance because a message is lost or corrupted, then retransmission is attempted on the same hardware. 
Practically all protocols in data networks use retry as a fault-tolerance mechanism. Retry is particularly simple in 
transmission lines because these devices do not have memory: retry uses only time redundancy. When the 
element has a memory, such as a computer or a data base, retry requires that the element be restored to a 
previous state before repeating the operation. This restoring requires that a copy of the previous state have 
been saved in anticipation of a failure.  

_ Compensation (forward error recovery) requires active correction of the errors and their consequences by a 
compensation program. Compensation is a common practice in book-keeping for instance, where wrong entries 
may not be erased, but must be compensated for in the opposite column by a storno entry. This is an intelligent 
process that is application dependent. Compensation is only possible for software errors, as the extent of the 
damage must be known.  

Fault tolerance by recovery techniques is attractive for three main reasons:  

Recovery allows continuing the operations on the same machine when the error is transient. This is interesting 
since about 90% of the errors are transient. The amount of redundant hardware is modest, especially when 
compared with TMR systems. 

Recovery is also helpful when error coverage is not complete, that is, when wrong data can leak out of a processor. 
This is often the case when dealing with software errors.  

Recovery applies to typical problems of consistency in databases as a consequence of voluntary and expected 
cancels. Here, the cancel may be due to the peculiarity of a consistency algorithm, for instance to remove 
deadlocks or version conflicts.  

On the other hand, recovery has some disadvantages with respect to masking: 

1. Recovery is conceptually more complicated than masking, whose only real challenge is synchronisation.  



 

100  Fault-tolerant Computers 

2. Recovery diverts computing power at run-time to save periodically the execution state in prevision of a failure. 
Although this saving is in principle only necessary for retry, compensation also requires a minimum of valid 
state.  

3. Recovery involves a certain disruption of function. During that disruption, interaction with the environment could 
take place. It is therefore difficult to realize hot spares (spares which are inserted within negligible time) with 
recovery. Recovery is used for warm sparing (short loss of function) and most of the time for cold sparing 
(relatively long loss of function and amnesia about interactions).  

4. Recovery techniques can be considered as being one abstraction level on top of masking techniques, which are 
essentially hardware methods. Recovery techniques are used at different levels in the hierarchy of a computer, 
beginning at levels near to the hardware (instruction retry) up to high software levels within the application 
(database recovery). In fact, masking and recovery appear as complementary rather than competing 
techniques, especially in the sense of multiple lines of defence. 

For instance, volatile CPU errors and page faults can be handled by retry, the whole CPU can be built as a masking, 
dual work–by system and the database built on this computer can be protected by recovery methods. Finally 
compensation methods are the high school of recovery: a meaningful compensation requires a good knowledge of 
the application.  

The topic of recovery is divided into several sections: 

1. Basic architectures, warm stand–by and cold stand–by  

2. Basic scenario of recovery: forward and backward recovery 

3. Methods used for state saving and restoring (Chapter 6) 

4. Recovery in databases (Chapter 7) 

5.2 Recoverable architectures 

Recovery relies on only one working unit. Redundancy for recovery comes in form of warm or cold STAND-BY 
units, i.e. units which do not participate in the actual computations, but which can be inserted within a reasonable 
time to replace the failed unit. In the meantime, the stand-by unit can contribute to performance by doing some 
other job while the system is error-free.  

In contrast to work-by, which maintains the (hot) spare actualised by replicating the computation, stand–by 
maintains the spare actualised by transferring parts or totality of the state of the (unique) working unit at regular 
intervals in a safe place. When an error occurs, this state is loaded into the spare, which is connected in place of 
the working unit and resumes the interrupted computations.  

The actualisation of the spare is not a continuous process: the saving of the working state takes place at 
determined places in the execution of the program, which are called save-points. The save-points cannot be put 
arbitrarily close to one another since the communication overhead would be too large if every modification of the 
state of the working unit would be communicated to the spare. This necessarily causes the state of the spare to lag 
behind the worker's state by at most one save-point.  

The two main stand-by techniques, warm stand-by and cold stand–by are described in the next subsections. In both 
cases, one assumes that the working unit and the spare or back-up storage are fail-independent, i.e. it is unlikely 
that both would fail at the same time.  

5.2.1 Warm stand-by 

Warm stand–by, also called main/back-up, or primary/secondary appears to have the same architecture as dual 
work-by. Both use a second unit that is functionally identical to the working unit. The difference is that the stand- by 
spare is not performing the same computations as the working unit, but can do some other useful work. One can 
however only take advantage of this free computing power when graceful degradation is feasible. 

The working unit keeps the spare actualised by copying to it its current state at each save-point, over a data 
channel, sometimes called "update bus". The memory of the spare unit serves as a repository for the state of the 
working unit. Therefore, the spare is already loaded at recovery time and it is immediately available. In addition, the 
spare can monitor the activity of the working unit to track possible interactions of the working unit with the plant 
since the last save-point. This is symbolized by the dotted lines in Figure 5-1:  



 

Chapter 5 Recovery to previous state 101 

WORK 
MEMORY

BACK-UP 
MEMORY

WORK 
MEMORY

BACK -  UP 
MEMORY

PP

I / O I / O

WORKING UNIT UPDATED UNIT 
(WARM STANDBY)

SWITCH

 

Figure 5-1: Warm Stand–by. 

In Figure 5-1, the stand-by unit has conceptually two storages: one for its current tasks, and one as a back-up for 
the working storage of the working unit. The same is true for the storages of the working unit, only that the back-up 
storage of the working unit is normally unused. It is only there in case the roles of working and stand-by unit are 
inverted.  

Warm stand-by has the advantage that the second unit is free to perform other tasks, except for that small portion 
of its computing power that it uses for keeping itself actualised. This actualisation function can even be done by a 
dedicated device like a DMA-controller at little expense. This is symbolized in Figure 5-1 by the link unit. Thus, 
warm stand–by increases the overall computing power, provided that graceful degradation is possible.  

Example : the TANDEM-16 computer uses warm stand–by. The architecture consists of several processors 
interconnected by a dual, high-speed bus called Dynabus (Figure 5-2). 



 

102  Fault-tolerant Computers 

 

Figure 5-2: Tandem-16 Computer 

For warm stand-by, it is sufficient to consider a pair of nodes. A task performed in one node posseses a back-up 
copy of its state in another node. The changes to the working task's state are communicated to the stand–by over 
the Dynabus. The copies are triggered by special "checkpoint" instructions, which are inserted by the programmer in 
each task. At each save-point, the processor copies the current state of the running task, including stack, heap and 
processor registers (processor context) to the back-up task's memory space over the Dynabus.  

Upon detection of an error in the working unit, control is passed to the stand-by unit which continues computations. 
It first runs a special program prepared beforehand, which among other tasks will release locked resources. Then it 
continues the computations based on the last state saved. For this, the peripherals are dual-ported so they can be 
accessed from either node. The former working unit is taken off-line, checked and repaired if necessary, and then 
reinserted as a stand-by.  

Although the warm spare is ready to take over at any time, it requires a short, but non-negligible outage time. 
Further, some state saving methods introduce additional delays to reduce storage requirements or for errors 
confinement. The result is a recovery gap.  

The recovery gap can last some 10 s in a typical system. This may be insufficient for time critical applications, but it 
is in most cases acceptable for benign plants and for human interaction. The real problem is that the spare may be 
unaware of commands sent or received signals since the last save point. Therefore, it will be necessary for the 



 

Chapter 5 Recovery to previous state 103 

spare to also track the interaction of the working unit with its environment. We will come back to this interaction 
problems in the next Chapter.  

5.2.2 Cold Stand–by 

In cold stand-by, the state of the working unit is regularly saved to back-up storage, which is essentially passive 
(e.g. a disk or a tape). By contrast, the state in warm stand–by was saved directly into the memory of the spare unit, 
which was then ready to take over with little delay. A cold spare has no relevant internal state, i.e., the spare is not 
actualised before insertion. One reason for this could be that the spare is taken from the repair shop, or from a pool 
of non-dedicated spares. A more frequent case, common in computing centres, is that there is no actual spare: the 
faulty computer must be taken off-line, repaired and reinstalled. Since these operations void the computer's 
memory, it must first be reloaded from the back-up storage before continuing.  

Although the hardware is not duplicated, the minimum requirement is that the storage must be replicated as shown 
in Figure 5-3. As we shall see in the next Chapter, approximately a threefold replication of storage is required. 

Worker
SPARE
STORE

Error 
Detector

restore

save

output

input

 

Figure 5-3: Cold Stand–by 

Upon detection of an error in the working unit, the cold spare or the repaired working unit is inserted and then 
reloaded with the last relevant state which was saved in the back-up storage. 

Cold stand–by is used at different levels in the hierarchy, from the bottom hardware levels up to complex software 
levels:  

• Some processors implement instruction retry for redoing failed computations (IBM 370, UNIVAC 1100). 
All activity of the CPU is logged and the storage is assumed not to fail. In case of CPU error, the CPU is restored to 
its previous state with the help of a log of the CPU's activity and the instruction is restarted. The technique is similar 
to the handling of page faults in microprocessors which support virtual memory: when the memory address is not 
present in physical memory, these processors interrupt the failed instruction, start a routine to read the missing 
page from memory and redo the interrupted instruction. Such techniques are implemented in all major 32-bit 
processors. Instruction retry uses the same mechanism, with the difference that the instruction is only re-executed. 
An instruction retry takes some ten microseconds.  

• If the contents of the semiconductor memory are lost, but its hardware remains intact, for instance in case 
of transient error or operating system crash, the computer can reboot by itself using state information saved on disk. 
For this it may need to cancel the task it was currently executing and to correct information already written on disk. 
This recovery takes less than one minute.  

• If the computer is damaged, then the computations could be kept on in a cold spare unit which must first be 
connected and loaded. This form of recovery takes some minutes, and, if off-line repair must be performed, it can 
take some hours.  



 

104  Fault-tolerant Computers 

• The worst case is that the whole computer and its disks is lost, for instance in a fire or a severe operating 
system crash. Little of the computation is lost if the state of the installation has been regularly saved on tape. This 
operation is typically done once a week, so at most one week of work is lost. Several techniques allow to reduce this 
interval by continuous back-up. Recovery takes about one hour. 

The duration of cold stand–by depends on the extension of the damage. The problem of cold stand–by is not so 
much the duration of the outage itself but the fact that a cold spare is not capable of monitoring the working unit's 
interaction with the environment since it is either completely passive or not existant.  

Besides the relatively long down time, the main problem of cold stand–by is that interactions done by the working 
unit between its last save point and the moment it failed escape to logging. These aspects will be investigated in the 
next Chapter.  

5.2.3 Other Architectures 

The state actualisation technique developed for stand-by can also be applied to on-line repair of work-by systems: 
Once a working unit fails, is outvoted or switched off, the system works with reduced redundancy. If the former 
working unit can overcome its fault (for instance because the fault was only transient) then it can re-join the system 
and serve as hot-spare again. To do this, the spare must first be actualised and synchronized to the same 
instruction as the other unit(s). This operation must also be performed if the on-line repair is done by hand. The 
techniques used for actualisation are basically the same as for warm stand–by.  

5.3 Compensation (Forward Error Recovery) 

Compensation tries to bring the system from the faulty state it is in to an error-free state. It assumes that the 
hardware is still intact and a part of the state is still sound. A special program tries to manage the situation and bring 
the task's state to a point from where the computation can be resumed. This involves undoing the uncorrect and 
possibly also the correct, but inconsistent effects of previous computations, redoing computations which have not 
yet be done, and doing other meaningful computations until an error-free state is reached from where normal 
computations can be resumed. Errors that cannot be corrected are compensated for. Compensation is related to 
the techniques of exception handling. In particular, the termination of a faulty task, releasing of all its resources and 
updating of the system tables is a typical forward recovery technique used today in all multi-user operating systems.  

Figure 5-4 shows a typical execution of a forward error recovery: 

S i-1 S i

Serr

CRASH

S +1i iS +2

 

Figure 5-4: Forward Error Recovery. 

Although forward error recovery in principle does not need to restore a previous state, it would be unthinkable to 
restart the tasks from scratch. Therefore, forward error recovery relies on some storage which contains information 
about the progress of the task(s) which crashed. In general, forward error recovery requires an extensive 
knowledge of the current state, especially about the possible extension of damage, and intelligence to appreciate 
which steps must be undertaken to bring the uncompleted action to an end. Therefore, the forward error recovery 
technique works best when dealing with anticipated errors such as exception conditions in a program. We will 
devote little attention to forward error recovery since it is very much application dependent and lacks an accepted 
theory [Mili 85].  



 

Chapter 5 Recovery to previous state 105 

5.4 Retry (Backward Error Recovery) 

Retry attempts to restore an error-free state which prevailed at some point earlier in time, and to resume the 
computations from that point on, using the same program as the one which failed. Retry consists of two distinct 
operations, rollback and roll-ahead.  

• rollback consists in using previously stored information to restore a known-good state which prevailed at 
some earlier point in time, called the recovery state. This state can be restored by reloading lost storage and 
undoing the inconsistent parts of the surviving storage.  

• roll-ahead consists in restarting the computations from that restored state, while considering possible 
actions which have occurred since the detection of the error (Note that roll-ahead has nothing to do with forward 
error recovery)  

A trivial recovery state is the reset state of the computer. This is called a cold-start. Cold start is generally not 
acceptable because all computations done since the cold-start are lost.  

To achieve a minimum loss in computations, the program is divided in recovery intervals separated by save-
points, which play the role of firewalls in time. At each save point, the current state of computation is saved in a safe 
place. When an error occurs, the rollback procedure will use this information to restore the state which prevailed at 
the save point. The restored state is called a recovery point. 

One also finds the terms of "recovery point", "retry point" or "checkpoint" in place of save point. The difference is 
that a retry point is only established at recovery time while a save-point is an action taken repeatidly at run-time. It 
may further be necessary to drop some save points and restart from a retry point which corresponds to an earlier 
save point, or even from a state which did not exist before. This is why one must distinguish between retry points 
and save-points. "Recovery point" is used in both the sense of "retry point" and of "save point" depending on the 
author. 

The distance between save points is a trade off between computation loss and recovery time. The closer the save 
points, the less computations are lost in case of crash and the faster recovery will be. On the other hand, frequent 
state saving steals a substantial part of the computing power. Further, we will see that the save points should not be 
inserted at random: the clever insertion of save points in a program can substantially reduce the amount of time and 
hardware required for state saving and restoring. The recovery points should divide the program into repeatable 
sequences. 

The following Figure 5-5 shows the typical execution of a backward error recovery: 

S i-1 S i

S i-1 S i

Serr

ROLLAHEAD

BACK-UP

S +1i iS +2

iS +2S +1i

,,
ROLLBACK

BACK-UP

CRASH

SAVE SAVE

 

Fig. 5-5: Backward Error Recovery (Retry) 

The probability of a second failure during recovery cannot be neglected. In fact, it is highly probable since hardware 
errors tend to show up in bursts. Therefore, both the operations of rollback and of roll-ahead should be repeatable 
at will, with the same results, even if they are interrupted by a second failure. One says that such operations are 
IDEMPOTENT.  

Most of the work of recovery is to make repeatable, idempotent operations out of operations which are non-
repeatable by nature. 



 

106  Fault-tolerant Computers 

5.5 Scenario of retry 

5.5.1 Recovery Script 

We shall consider a general scenario of retry, which applies to both warm and cold stand–by (Figure 5-6): 

FAULT

RESTART

( ROLLAHEAD )

t

,

next state saving

DAMAGE
ASSESSMENT

STATE
RESTORING
( rollback )

Si Si+2Si-1
Si-1

STATE 
SAVING

STATE 
SAVING

STATE 
SAVING

iS +1

ERROR 
DETECTION

 

Figure 5-6: Phases During Recovery 

The phases of recovery are: 

_ state saving  

_ error detection and damage assessment  

_ restoration of a valid state  

_ restarting computation 

5.5.2 State Saving 

During normal operation, the working unit's state must be regularly saved to back-up storage in prevision of an 
error. The information saved at each save-point depends on which parts of the computer are likely to fail. One 
distinguishes between:  

• Volatile storage: its content cannot be trusted after a crash and is considered as lost (e.g. the processor's 
registers). In prevision of loss of storage, the actual state of the modified variables must be saved at each save 
point. 

• Stable storage: its content remain the same after a crash, but could be inconsistent, perhaps because of 
unfinished operations (e.g. the database). In prevision of storage correction, the value of variables as they were 
before the modification took place are saved in an UNDO LOG at each save point.  

• Environment: it is not affected by the crash but may interact with the computer during recovery in an 
undesired way, for instance by sending data which are not received or receiving uncontrolled commands. In 
prevision of interaction with the environment, all activities are recorded at each log point in a journal. A log point 
should be taken for each interaction between two save points.  



 

Chapter 5 Recovery to previous state 107 

How this is done and how the state is restored is described in detail in the next Chapter. 

It is important that the storage in which the state and the logs are recorded is stable, i.e. survives a crash. For this, it 
is sufficient that the working storage and back-up storage be not decay-related, i.e. one assumes that there is no 
failure mode that could let them fail both at the same time. 

• In the case of warm stand-by, the back-up storage is the memory of the spare, which is physically 
independent. 

• In the case of cold stand-by, the back-up storage is some kind of external storage, for instance a disk or a 
non-volatile RAM memory; 

In addition to state saving, warm-stand–by requires the stand–by unit to monitor the execution of the working unit, 
as we shall see. With the rest of the computing power, the spare can perform other tasks, if any. 

The information saved at each save point depends in the first place on which storage of the machine is considered 
as volatile, which is considered as stable and which belongs to the environment 

5.5.3 Error Detection for Recovery  

Error detection is done by one of the methods explained in Chapter 3. We consider three possible situations, 
depending on the error latency:  

the error has been detected before it left the confinement zone. This assumption can be enforced by fail-stop units.  

the error has left the confinement zone and corrupted storage, but the corresponding operations have been 
recorded in a log and can be still undone. An error can still be corrected if it leaks only to stable storage, but not if it 
managed to leak to the environment, as long as one can keep track of it.  

the error has corrupted the outer world beyond the possibilities of repair. This is an unrecoverable case which we 
consider equivalent to a mission failure: it requires human intervention for correction. In some cases, it can be 
handled automatically by forward error recovery, which is of course application-dependent. 

5.5.4 Rollback 

After detection of an error, the rollback procedure is invoked. Rollback uses the information which has been saved 
during normal operation at each save point to restore the recovery point. Restoration is implemented in different 
ways, depending on which state must be reconstructed:  

• The volatile state, which is lost in a crash, is reconstructed by reloading the hardware with the back-up copy 
taken at the last recovery point. This copy has the same size as the physical storage.  

In warm stand–by, the volatile state is already loaded in the stand-by unit and the computations can be continued on 
that unit. Because of delays in transmission and buffering, it may be necessary to update the spare with the latest 
data still waiting in a queue (redo operation).  

In cold stand-by, the back-up state is loaded into a spare (or into the repaired working unit). Here also, some 
redoing may be required in order to save storage. 

• The stable part of the storage, (that which survived the crash), may still need correction. This is done by 
undoing the last, inconsistent operations. Undoing assumes that the current state is erroneous, but that the errors 
can be corrected. For undoing, one must save the value of the variables before modifying them (save-old-value). 
The UNDO phase selectively restores the modified variables to their previous value until the recovery point is 
reached. 

• The external world is difficult to restore to a previous state. Recovery depends very much on the particular 
application. In some cases, given commands that have not yet been executed can be cancelled. In others cases, 
executed commands can be compensated by other commands, but it is quite difficult to command a machine to roll 
back to a previous state. 

The rollback may be perfect, in the sense that the unit can be returned exactly to the same state as prevailed at the 
last save point, or it may be imperfect. Of course, the law of physics prohibits such a thing as perfect rollback: all 
physical processes are irreversible and time cannot be rolled back. So, a weakened definition calls "perfect 
rollback" a restoring of all information to their previous value, such that repeating the execution from that point 
would yield exactly the same result as the first execution. Perfect rollback is relatively simple to achieve as long as 
there have been no interaction of the computer with the environment. For instance, this is a common assumption 



 

108  Fault-tolerant Computers 

made in the case of instruction retry, where the operations take place in the closed world between processor and 
storage. But the very presence of input/output devices make perfect rollback questionable. 

Rollback restores the system: volatile storage, stable storage and environment to a state they had before the fault. 
Perfect rollback can never be achieved, but only approximated. 

5.5.5 Roll-ahead 

After a starting state has been established either by reloading or undoing, computations can be resumed from that 
state on. These computations are however not necessarily identical to the computation which has been interrupted 
by the fault. Roll-ahead must take into account what the rollback could not undo. We distinguish two cases: 

• If rollback was perfect, roll-ahead can consists simply in continuing computations from the recovery point 
with the same program, without special precautions. The execution can take the same path, but with different 
results and outputs, or even take a completely different path. In the latter case, the difference with forward recovery 
(compensation) is not great. Indeed, when a task is cancelled, for instance because of a software error or deadlock 
break, it is not desired that this task be executed again, so the second execution can take a different path or even 
not take place at all.  

• If rollback was imperfect, then roll-ahead must consider actions taken by the working unit between the 
recovery point and the present time, since rollback could not cancel them. The script for roll-ahead is the same 
program which has been interrupted by the fault, except for all the interactions with parts which could not be rolled 
back. Roll-ahead must try especially not to duplicate outputs already done by the crashed task, and not to ask again 
for inputs that were already sent. Roll-ahead consists of a careful repetition of the former computation. It is 
complete when the program reaches the next recovery point that the failed execution was not able to reach.  

Even if rollback is not perfect, roll-ahead would be no problem if every action could be repeated at will with the same 
effect, i.e. if every action could be IDEMPOTENT.  

Performing a write operation to memory or a read operation from memory is basically idempotent. 

Most operations, even within a computer, are not idempotent. Examples are: 

• A read-modify-write (for instance incrementing an index)  

• Printing of a cheque or a bill.  

• A command to a stepper motor control or another non-reversible device.  

• A read from file or from a network buffer 

Unfortunately, most actions with the environment are not idempotent. Roll-ahead can deal with this by not repeating 
output or input actions already done and by doing every action the failed program did not manage to do. This 
requires a perfect tracking of the interaction between the computer and its environment. A perfect tracking must 
be done by an independent unit, such as the stand–by unit, but cannot be provided by cold stand–by. 

Thus, idempotency depends both on the environment and on the kind of operation. Especially, it depends on the 
placement of the recovery points, as we shall see in the next Chapter. 

Roll-ahead is a careful re-execution of the failed program which considers the imperfections of rollback, and tries to 
avoid loss or duplication of interactions.   

We will consider these aspects in more details in the next Chapter, and especially distinguish the techniques for 
state saving and restoring. 

5.6 Summary of the recovery techniques 

Backward error recovery is only a conceptual view: backward error recovery is a form of forward error recovery in 
which the extension of damage extends to the whole state. The recovery strategy consists of using the original 
program to repeat the operation. Whether we consider it to be forward or backward recovery depends on whether 
we look at the recovery process as done by an external entity or by the computing system itself. 

On the other hand, forward recovery by efficient exception handlers requires that the system be rolled back to a 
defined point in execution to take appropriate actions, and backward error recovery must take into account the 
irreversible real world.  



 

Chapter 5 Recovery to previous state 109 

So, concepts like rollback and roll-ahead provide a general framework, to which it will be necessary to append 
exceptions. We will in the following Chapters discuss backward error recovery and leave forward error recovery as 
a technique to deal with anticipated software faults.  

We summarize the recovery techniques in the following diagram, which will be developed further in Chapters 6 and 
7. 



 

110  Fault-tolerant Computers 

RECOVERY

BACKWARD RECOVERY

FORWARD RECOVERY

Volatile Storage Stable Storage Environment

STATE 
SAVING 
THROUGH:

back-up and 
save-after-value

stable storage and 
save-before-value

journal

ROLLBACK BY:

(redo fifo) (undo stack) (interaction log)

reloading and 
redoing

selective undoing cancellation and 
correction

ROLLAHEAD BY:
IMPERFECT PERFECT 

redo crashed 
program, following 
the same path the 

2nd time

does a journal 
exists ?

Yes

execution can 
take any path 2nd 

time

No

ROLLBACK 
RESULT ?

rollahead prevents 
duplication and masks 
the fault except for the 

time lost through 
recovery

rollahead can only 
recover assignment 

correctable storage by 
re-execution

application 
dependent

 

5.7 References 

[Mili 85] A. Mili 
"Towards a Theory of Forward Error Recovery", 
IEEE Transactions on Software Engineering, Vol SE-11, No. 8, pp. 735-748, August 1985 



 

Chapter 6 State Saving and Restoring 111 

6 State saving and restoring 

In this chapter, we will review in detail the techniques used to save the state of a computation and to restore it for 
backward error recovery. These techniques apply to all stand-by (backed-up) systems.  

The problem we address here is how to take save points, how to perform rollback, i.e. restore a computer to a 
previous state, and what should be done when continuing computations at roll-ahead.  

First we define a model of computation, and what a computation state is. This will allow us to estimate the 
information quantity which should be saved at each save point.  

Then, the hierarchy of storage is defined by dividing the state of a computation into a volatile state, a stable state 
and the environment. The corresponding three basic techniques for rollback and roll-ahead are discussed: 

• FULL BACK-UP and SAVE-AFTER-VALUE (SA) for recovery of the volatile state  

• STABLE STORAGE and SAVE-BEFORE-VALUE (SB) for correction of the stable state 

• INTERACTION LOG for dealing with interactions between the computer and its environment.  

6.1 A model of computation 

Retry or Backward Error Recovery relies on rollback, i.e. on means to restore a previous, known good state on the 
same or on a different hardware after an error occurs. To achieve this, it is necessary to save the current state at 
regular intervals at each save point. Before discussing how save points are taken, it is necessary to understand 
what the state of a task is.  

6.1.1 Task State 

We consider the simplified model of a computer consisting of processing elements (PU) which do not contain 
memory, and of storage which contains the state of the task(s) in execution.  

To this purpose, the PU's registers are considered as separate from the computing function of a PU. The code of 
the program executed by the PU is not part of the task's state. In fact the program could be cast into a PROM or a 
ROM, or be part of the instruction set. We will assume that the program code is not modifyable and therefore 
disregard it.  

The inputs and outputs must be modelled separately. The outputs can be considered as being that part of the state 
that is made visible to the outside, the inputs are that part of the state of another machine that has an influence on 
the machine considered. 

The task state (or state variables) is the set of data that defines completely the progress of a task at a given 
moment [Horning 73]. 

The execution of a task can be seen as a sequence of actions, which bring the task state Si to another state Si+1 
(Figure 6-1): 

S i 

Computation i + 1

S i + 1

Computation i + 2

S i + 2

Computation i + 3

State State State

 

Fig. 6-1: Computation as a Sequence of States. 

Even the execution of a No-Operation instruction is an action: it increments the program counter. The operation 
performed on the state is specified by an instruction, and may additionally depend on the value of the inputs.  

The abstract notion of "task state" in the theory of computation becomes a concrete meaning in fault-tolerant 
computers: if we could interrupt a computation at any given time and completely void the memory and reset the 
processor, the task state would be defined as the set of information we need to reload into memory and processor 



 

112  Fault-tolerant Computers 

in order to continue the interrupted computation at a later time exactly as if there had been no interruption (except 
for some time lag). 

Recovery mechanisms require that the state of a task be saved at defined points in the execution, in order to 
resume it later. Therefore, it is important to determine the amount of information that belongs to the state and must 
be saved.  

Obviously, the state is fully defined by the contents of the disks, semiconductor memory and by the registers of the 
processor and of its I/O devices. But only a subset of this storage is required to define the current state.  

At any time, the state of a task consists of a relevant part, which must be saved, and an irrelevant part, which 
needs not be saved to reconstruct the total state. The amount of relevant state information is a function of the level 
of nesting in which the task finds itself, i.e. it is a function of the progress of execution. 

Let us begin at the rock-bottom of the machine: if a processor would be interrupted at any point in the middle of a 
processor instruction, the amount of storage one would need to save to proceed from that point on would be very 
high: the relevant state would consist of all internal registers, even those which are only accessible to the micro-
program. Even the temporary and dynamic storages should be saved; Even of the exact state of the electrical 
pulses along the signal lines would belong to the state. It is obviously not possible to save such a large quantity of 
information.  

One can get a feeling of this by considering the interrupt mechanism in current processors: an interrupt causes the 
processor to be interrupted after it finished an instruction. The state of the processor that is saved at interrupt time 
consists at the minimum of two words: the PC (program counter) and the PSW (processor status word).  

Processors that support virtual memories allow interruption in the middle of an instruction in case of page fault. 
These processors, like the MC 68010, have to save a larger amount of internal information than they do for normal 
interrupt handling, since interrupts are recognized at the end of an instruction only and do not affect the micro-
program registers. The 68010 saves in case of page fault no less than 29 words, which include internal registers 
normally not visible to the programmer.  

At a higher abstraction level, a procedure can be seen as a complex instruction. During execution of a procedure, 
its local variables clearly belong to the state. Once the procedure is exited, these local variables are not defined 
anymore and can be forgotten as any other off-the-stack information.  

As instructions become more complex, the amount of relevant state within an instruction increases, and conversely, 
less state is relevant between two instructions. This is true of all interpreters: if the task is doing interpretation, for 
instance interpreting a program in Basic, its state would be minimum between two statements, since most internal 
variables of the interpreter are irrelevant between two statements.  

At the highest level of granularity, a task can be considered to be a very complex instruction of an interpreter that 
brings the file system from one state to another; the memory belongs to the irrelevant state. For instance, a text 
editor is mapping the previous state of a text file to a new state. Then, the relevant state consists only of the state of 
the files after or before an execution of the task. In case of crash, the state of the main memory is considered 
irrelevant; tasks that were in progress at the moment of crash will have to be restarted. This view is taken by most 
transaction systems: the relevant state is on disk, the content of the processor and memory can be lost and are 
irrelevant.  

Finally, a computing system can be viewed as a machine that generates its outputs based on its inputs and its 
internal state. The internal state is irrelevant as long as the machine does not communicate with the outer world.  

The amount of state to be saved depends therefore on the dynamic structure of the execution, and more exactly on 
the level of abstraction considered: Therefore, the amount of information that belongs to a task's state at a given 
moment (and which should be saved to conserve that state) is a function of the dynamic nesting of the program. It 
is therefore also a function of time. Figure 6-2 shows the relevant state size as a function of time for procedure 
calls. The variations of context size during execution of instructions is shown as a kind of noise.  



 

Chapter 6 State Saving and Restoring 113 

RELEVANT 
STATE 
SIZE

Procedure Calls

Task Beginning Procedure 
Returns t

 

Fig. 6-2: Relevant State Information in Function of Time. 

6.1.2 Taking Save Points 

To minimize the amount of information to be saved, save points must be taken at carefully chosen places in the 
program.  

• Taking a save point at any moment, for instance in the middle of an instruction, would require the saving of 
a exceedingly huge quantity of information, including the content of the micro-program registers. 

• Taking a save point after each instruction would require saving all registers at each instruction. This is only 
feasible when one expects the instruction to fail with a high probability, for instance in anticipation of page faults.  

• Taking save points when the execution returns to the main module, or when a task is finished will minimize 
the amount of state to be saved, since most of the variables are then irrelevant. As one increases the level of 
granularity, the more variables become irrelevant, and the less state must be saved.  

If the save points are implanted at points which are optimal for minimum state information, the interval between the 
recovery points may become too large for them to be of any use. The recovery time could exceed the allocated 
grace time.  

Further, one must also consider the interaction between processor, stable storage and environment in placing the 
save points. This aspect will be discussed along with the recovery techniques. We will see that it may be necessary 
to insert save points at places which are not optimum from the point of view of information transfer to maintain the 
state consistent. 

A last aspect which must be considered in the insertion of save points is the application dependency: it is most of 
the time less costly to implant save points at regular intervals (for instance upon triggering by a clock) than to afford 
the additional programming burden associated with the optimum placing of save points by the programmer. 

Examples: In the TANDEM 16 computer, the insertion of save points, called "checkpoints" is left to the application 
programmer, which must know when it is wise to take them. The COPRA computer also uses save points (called 
"retry points"), but these are automatically inserted by the compiler, and remain invisible to the application 
programmer  

6.2 A model of storage 

Before one can decide on the technique to use for state saving and restoration one must make assumptions about 
the damages that results from the crash.  

The state of a task is kept in different storage parts in the computing system: registers of the processing unit, 
cache, RAM, disk and archival storages. Further, the state of the computer is not the only relevant state: in an 
embedded system, the state of the external world must be considered as being part of the task's state. We will 
classify the storage depending not on their physical location or technology, but on their dependability, as shown on 
Figure 6-3:  



 

114  Fault-tolerant Computers 

PROCESSOR 
REGISTERS, 

CACHE, 
RAM MEMORY

BUFFERED RAM, 
DISKS

LOG STORAGE, 
REVERSIBLE 

PROCESS

ENVIRONMENT

GENERAL 
PHYSICAL 
PROCESS

VOLATILE 
STORAGE

STABLE 
STORAGE 

(ASSIGNMENT 
CORRECTABLE)

STABLE STORAGE 
 

(CORRECTABLE)

STABLE STORAGE 
 

(IRREVERSIBLE)

 

Fig. 6-3: Hierarchy of Storage with Respect to Recoverability. 

• volatile storage: this is a part of the task's state which is lost or cannot be trusted anymore after a crash. A 
common assumption is to treat every unbuffered semiconductor storage (CPU's registers, cache, RAM) as volatile. 
Files which have been opened for writing them are often located in RAM should be treated as volatile. The CPU 
designers consider the CPU registers as belonging to volatile storage, and expect to be able to restore them if they 
are lost. We shall consider as volatile storage every part of the storage which is actually used for computations and 
which is not replicated.  

To restore volatile storage, there must exist a full copy of its relevant parts in an independent storage.  

• stable storage: stable storage is not lost in case of crash. Stable storage can be stable by nature (it is not 
really stable, but the probability of failure is low) or by construction. In this latter case, stable storage can be 
implemented by a combination of volatile storages that should not fail at the same time. One calls them fail-
independent or not decay-related). Stable storage is realized in database systems by replicated ("mirrored" or 
"shadowed") disks, in semiconductor storage by duplicated memories. ECC-protected memory is not considered 
stable. ECC is merely a mean to reduce their failure rate.  

Example: a stable storage can be implemented by writing the data into two (volatile) memory units, which are 
supposed not to fail both at the same time. This assumption is justified when both storages belong to two separate 
nodes or are powered separately. These memories are individually checked by an error detecting code (correction 
is not necessary). Data is read from one memory only, and checked. If the data read is correct, the computation 
continues. If the data is incorrect, the data is read from the other memory and checked. If the second data are 
correct, it is written into the other memory to correct it in prevision of transient errors. If the second data is incorrect, 
too, continued operation cannot be ensured.  



 

Chapter 6 State Saving and Restoring 115 

This method has been applied to semiconductor storage and disks. Disks cannot be written into simultaneously. 
Therefore, a pair of disks is used. One disk holds the old valid state, while the other is being actualised to the new 
state. Then the other disk is actualised. This way, a crash during the write operation will leave one disk intact. If one 
wants to be sure that the write did took place, one can read the disk after having written the information into it and 
repeat the write till success. This method is known as shadow disks or mirrored disks in commercial computing. 
Note that writing to stable storage requires more than double the time to write to a normal disk (Figure 6-4):  

DISK A DISK B

PROCESSOR

disk controller

SWITCH

 

Fig. 6-4: Shadow Disks. 

Although stable storage is not affected by the crash, it can be corrupted by erroneous information if the processor is 
not fail-stop. Another and more frequent reason is that the processor did not output false data, but did not complete 
a sequence of operations that it began. The volatile state is then inconsistent. Stable storage can be corrected by 
overwriting selectively the erroneous or inconsistent data with their previous values. To restore a stable storage, 
there must exist in an independent storage a log to undo all the changes that have been done to the stable storage 
since a defined starting point.  

• environment: The environment can also be considered as a kind of stable storage. We set here an 
arbitrary limit and consider the following kinds of storages as being typical of the environment of a computer. We will 
include in the environment all parts of the computer and its external world that cannot be recovered just by 
overwriting the erroneous data with correct data. 

The environment can be assignment correctable, reversible or irreversible.  

An assignment correctable environment behaves like a stable storage: it can be corrected by writing a new value 
into it.  

Examples: 
- a Digital-to-Analog converter that outputs a set-point for a controller.  
- a  memory location also behaves that way. 

A correctable environment is a storage that can be corrected by an action different from overwriting. Erroneous 
information can be compensated for, for instance by inverse actions or cancel messages.  

In simple cases, there exists a undoing action for each do–action: closing a switch can be corrected by opening it 
again (if no damage has yet resulted). A text editor may have an undo key that undoes the effect of the last 



 

116  Fault-tolerant Computers 

operation by an inverse operation (the operation "delete word" is undone by the operation "undelete word" which 
restores the previous word). 

All output instructions that cause incremental changes to the plant must be corrected by a positive undo–action.  

Example: 
an erroneous command that was sent to a stepper motor, “advance by 23 steps” requires a corrective action "step back 
23 steps" (if it is not yet too late).  

The undo operation can become quite complicated and involve humans. 

Example: 
when a wrong instruction is given to open a cement silo, there is no "un-open" instruction. The rollback involves humans 
shuffling the substance back to the silo and modifying the production.  

An irreversible environment is a part of the stable storage that cannot be corrected once erroneously written into 
and which will make error recovery fail. The irreversible storage lies outside of the confinement region of the 
processor that writes into it. For instance, if the designer's assumption is that an error cannot leave a node, the 
storage on any other node belongs to the irreversible storage. Most of the outside physical process belongs to this 
category. We will therefore consider that any erroneous information that leaks to the plant leads to a total outage of 
the computer.  

Example: 
 the erroneous closing of a high power switch to ground has to be counted to irreversible storage.  

A grey zone exists between irreversible and reversible systems when time is concerned.  

Example: 
when a false data item may be sent to a mailbox, it can still be corrected (it is assignment correctable) as long as nobody 
has read the mailbox - i.e. as long as nobody did consume the data. After that, communication has taken place with the 
reading entity, which must then be involved in the recovery process. If the other entity is not reversible, then a failure 
occurs.  

The following Figure 6-5 shows the hierarchy of storages according to their behaviour in case of failure: 

Disks, 
Buffered RAM

Environment

assigment 
correctable

assigment 
correctable

correctable irreversible

VOLATILE STABLE

STORAGE

assigment 
correctable

Registers, 
RAM

 

Fig. 6-5: Hierarchy of Recoverable Storages. 

The above distinction into volatile storage, stable storage and environment is not a static assignment, but depends 
on which faults are anticipated. It may well be that the same storage belongs to two different categories depending 
on the kind of fault expected. 

Example: A computing system consists of a processor, an ECC-code protected RAM memory and a database 
consisting of fail-stop disks.  



 

Chapter 6 State Saving and Restoring 117 

For the first case, we assume that a fault in the processor has erased its registers, but that memory and disk have 
survived. The previous state of the processor can be reconstructed from RAM memory, considered as stable. 
Inconsistent modifications to the memory and disk state must be corrected. This is called a hot restart.  

As a second case, we consider that the memory failed, but that disks survived. The memory and the processor can 
be reloaded from a copy maintained on disk. Modifications to the disk state since the taking of the save point must 
be corrected. This is called a warm restart.  

As the worst case, the database on disk is considered as lost. Its state can be reconstructed from an archival copy 
(back-up) on tape, for instance. This is called a cold restart.  

And if we cannot rely on any stable storage to reconstruct the database state, well, this means trouble! 

6.3 State saving and restoring of the volatile state 

6.3.1 Principles 

We assume here the processor proceeds through execution by modifying a work storage, which contains the 
current state of the task. The working storage is volatile, it is not trusted and considered as lost in case of failure. 
Therefore, a full copy of the state, called a back-up state must exist in a safe place to resume operation. This 
repository is the save storage, also called back-up storage. 

The back-up copy must preferably be held in a non-volatile storage, or at least in a storage of which one assumes 
that it will not fail at the same time as the work storage. The minimum requirement is that the save storage be fail-
independent from the work storage. 

Note: the save storage (copy of the volatile storage) is logically independent from the stable task state (part of the 
state which survives). Both can however be recorded on the same physical medium. 

The full copy must contain a valid state of the task, i.e. all information necessary to resume computations from that 
state on, including the state of the processor, its coprocessors and MMU registers and of the I/O registers. The 
save storage has therefore at least the same size as the work storage, plus the processor registers. A 100% 
storage redundancy is therefore required. A simple arrangement is shown on Figure 6-6:  

save point information

fail independent

WORK 
STORAGE 

 
( volatile )

SAVE  
STORAGE 

( fail 
independent)

PROCESSOR

reload for ROLLBACK

 

Fig. 6-6: Work and Save Storage. 



 

118  Fault-tolerant Computers 

The bar in the way between the storages symbolizes that they are fail–independent, i.e. they belong to two different 
confinement regions. 

The ideal would be to keep the back-up copy continuously actualised. One could for instance perform every write in 
the work storage and in the back-up storage at the same time or one after the other. This is however not sufficient. 
The reason is that the back-up state consists not only of the variable's state in memory, but must also contains the 
state of the processor's registers. Therefore, one would need to save the processor's registers at every write 
operation. This would take most of the computing power of the processor for state saving. 

Therefore, the back-up state is only actualised at regular intervals, which correspond to the save points of the 
program. At these places, the current state of memory and the processor's registers are copied to safe storage. But 
we will see that a continuous copy is nevertheless possible. 

6.3.2 Full Back-up 

The simplest technique consists in making a full copy, or full back-up of the volatile storage to the save storage at 
every save point (Figure 6-7):  

 SAVE POINT

inconsistent

PROCESSOR

copy whole work storage

reload for ROLLBACK

work work worksave save
PROCESSOR 

ACTIVITY

WORK 
STORAGE :

SAVE 
STORAGE : i i + 1i - 1

i + 1 i + 2i

WORK 
 

STORAGE

STATE SAVE 
 

STORAGE

S S S

S S S

 

Fig. 6-7: Full Back-Up. 

The timing diagram below the blocks represents the state of the work and the save storage in function of time. The 
shaded triangular area expresses the fact that the corresponding storage is changing in an unpredictable way.  

The full-copy technique is applied in most commercial computing centres. To protect against a disk crash, the whole 
database is copied from the disks to tapes and stored in a safe place. A full back-up takes quite a long time, up to 
several hours, since all disks are supposed to belong to the volatile storage (for the kind of crash envisioned) and 



 

Chapter 6 State Saving and Restoring 119 

the computer is halted during that time to prevent inconsistent copies. Therefore, such full-back-up only can take 
place once a week or once a month. When a major crash occurs, the operating system is restarted, the tape copy is 
loaded into the disks, and work is resumed. 

6.3.3 Protection against Crash during Copy 

The state in the back-up storage is inconsistent during copy. The solution is to use two back-up storages, which we 
will call now state save units (SSU). The SSUs are used alternatively, one serving as a depository for the former 
state while the other is being actualised (Figure 6-8): 

S i

S                                   S i +1i - 1

S i

S i +1

S i - 2

S i +2

PROCESSOR 
ACTIVITY

FULL 
COPY

FULL 
COPYWORK WORK

WORK 
STORAGE:

SSU   :1

SSU    :2

full 
copy

odd 
beat

even 
beat

PROCESSOR

STATE SAVE 
UNIT 
# 1

STATE SAVE 
UNIT 
# 2

WORK 
STORAGE 

 
(volatile)

reload

SAVE STORAGE (stable)

t

odd 
beat

 

Fig. 6-8: Using Two Separate State Save Units. 

Example: 
This only reflects the experience that it is unwise to use the same tape to hold the back-ups of two successive save 
points. If the processor or the volatile storage crashes during the update, the tape will be in an inconsistent state and 
cannot be used any more. Rather, a minimum of two tapes must be used. In a computing centre, one could use one for 
the even days and one for the odd days. Anyway, a computing centre would not rely on just two tape copies for all back-
ups, since the cost of tapes is negligible and one can afford to keep the back-ups of several weeks. This guards further 
against error latency problems, that is against errors that are only detected a long time after they occurred. For instance it 
may be necessary to reconstruct files that were erroneously erased some weeks ago, with several save points in 



 

120  Fault-tolerant Computers 

between. We do not however consider this problem here, since we consider firstly hardware errors, and secondly assume 
that every error is immediately detected (fail-stop behaviour).  

The principle of the use of multiple copies for tapes cannot be extended directly to warm stand-by, or to other 
methods which use a semiconductor memory as a save storage, since such memories are costly. But we can 
deduce from it that the back-up storage of the stand-by must be at least twice as large as the working storage of the 
working unit, i.e. contain one valid copy and one copy in the process of copying.  

When considering cold stand-by implemented in hardware, for instance by non-volatile RAMs, exactly the same 
considerations apply. One needs a save storage twice as large as the working storage. We will see means to 
reduce the back-up storage's size at the expense of a longer recovery time. 

6.3.4 Partial Back-Up 

A full back-up takes quite a long time. We have seen that a computing centre can afford such a back-up only about 
once a week. But even at the hardware level, the time for saving can be considerable. 

If the state consists of 64KB of RAM, copying it with a processor in DMA mode which can do a read or a write 
operation every 1 µs costs 2 · 65536 µs = 130 ms, without counting the time required to save the registers and set 
up the DMA transfer. If the distance between save points is 1 s, then about 13 % of the computing time is lost to 
state saving. If a maximum recovery time of 10 ms is required, this solution is clearly impracticable.  

To bring the save points closer, partial back-ups (sometimes incorrectly named "incremental checkpoints") are 
used. For this, a full copy of the state must exist in the save storage. This copy has been taken at the last FULL 
SAVE POINT, which is a special save point at which the totality of the state has been saved.  

The storage itself is divided into regions, which are generically called domains. A domain is a part of the storage 
that is modified as a whole, atomically. A domain can be a file in a database system, or a memory location in a 
process control computer. Every time a domain is modified, its new value is recorded in a redo-log (also called a 
redo-FIFO when it is implemented in hardware), along with the value of the processor registers and pointers. 

In cold stand–by, all changes to the objects which have occurred since the last taking of the full copy (last full back-
up) are recorded in the log, which is organized as a FIFO (Figure 6-9): 

PROCESSOR

WORK 
STORAGE 
(volatile)

SAVE

new value of 
modified objects

save

+
reload full 
copy and 

apply log of 
changes to it

FIFO LOG OF 
CHANGES 
( fail indep. )

merge

full 
copy

work

SAVE 
STORAGE 

(stable)

RESTORE

State Save 
Unit 

( fail indep.)

 



 

Chapter 6 State Saving and Restoring 121 

Fig. 6-9: Partial Back-Up and Redo-Fifo. 

This method is common to back-up databases: a full save point is taken for instance every week (back-up) on tape. 
Each time an object is modified, a save point is taken and its new value is recorded on disk or on a streamer tape. 
That way, a redo-log of changes to all objects modified since the last full save point is kept in save storage. After a 
crash, the full back-up is loaded into the spare (or the repaired processor) and the log of changes since the last full 
back-up is applied to it, in the same order as the changes were made (hence the name "fifo"). The redo–fifo can be 
considered as a shortcut to computation: it prevents the repetition of computations which have taken place since the 
last full back-up was made by merely substituting the result in the computation. The playing of the log can be quite 
costly in time, but it should occur very seldom. The playing of the log is done during a phase called redoing. 
Redoing is not identical to roll-ahead. Rather, redoing is a shortcut to computation which does not use the 
interrupted program as a script, but redoes the assignments maintained in the log.  

The following Figure 6-10 shows how recovery is done: 

REDOREDO

SP SP

CRASH

ROLLAHEAD

CP

S
i i + 1

∆

S

∆

S

Save SaveSave

i + 1
S SS

i i + 2

i + 2

ACTION ACTION

FULL SAVE 
POINT

PARTIAL 
SAVE POINT

PARTIAL 
SAVE POINT

RELOAD

RELOAD 
FULL COPY APPLY REDO FIFO TO FULL COPY

RECOVERY 
POINT

 

Fig. 6-10: Save Points, Recovery Point and Roll-ahead. 

6.3.5 On-Line Back-Up Actualisation 

To reduce the recovery time, the full copy can be actualised in parallel with the computations: each time an object is 
modified, it is automatically added to the redo-log, and this modification is added to the full back-up. The redo at 
crash time will be minimized since only the last modification will need to be added. The time for keeping the full copy 
actualised is taken from the normal computing time, but it is in any case less than the time required for a full copy. It 
is nevertheless wise to keep the full back-up and the redo-log separately, in case of problem in the actualisation 
program. 

In computers with cold stand–by, a background task could continuously actualise the full copy of the state by 
applying the redo log to it. To this purpose, two copies of the state must be maintained, and actualised one after the 
other, to cope with a possible crash during copy.  

In warm stand-by, the contents of the Redo-Fifo are directly used to actualise the full copy, since there are only one 
or two state save units. At every save point, the content of the fifo is copied into the state save units, first actualising 



 

122  Fault-tolerant Computers 

one unit, then the second to avoid the problem of a crash during the copy operation. Therefore, there is no 
necessity to redo the computations at recovery time.  

An example of partial back-up is used in the TANDEM 16 computer: The state is saved on a task-by-task basis, i.e. 
each object is a task state. At each "checkpoint", the contents of stack and heap of the task are saved, along with 
the registers of the processor and some administration information. This information is used to actualise the state 
copy which resides in the stand-by node.  

6.3.6 Continuous Copy  

To reduce further the recovery time, one could perform each modification on the work storage and the back-up 
storage simultaneously. This actualisation costs practically no time if the processor's bus can be operated in 
broadcast mode, i.e. a write accesses the work storage and the back-up storage simultaneously (Figure 6–11):  

S

SP SP 
i - 1 i

i

SAVE 
STORAGE

WORK WORK WORK

SSU - A

SSU - B

WORK 
STORAGE

S'
i -1

S
i -1

S"
i -1

S"
i -2

S"
i 

FULL 
COPY

PROCESSOR 
ACTIVITY

FULL 
COPY

S'
i

time

State Save Unit 
B 

(actualized 
explicitely)

State Save Unit 
A 

(eavesdrop)

odd 
beat

even 
beat

WORK 
STORAGE

PROCESSOR

SAVE

RESTORE

 

Fig. 6-11: Continuous Copy. 



 

Chapter 6 State Saving and Restoring 123 

The function is quite simple: we can suppose that both state save units (SSUs) have the same state Si-1 at save 
point i-1 (see Figure 6-11) a time ti-1. While SSU-B keeps the state Si-1 which prevailed at the save point i-1, SSU-
A is actualised by the processor from state Si-1 to Si. At the end of the recovery interval, when reaching save point i, 
the processor's registers are copied into state save unit A. The copy in SSU-A is now consistent and its state is Si. 
Before continuing operation, the processor must first actualise SSU-B from state Si-1 to state Si. After that, the 
processor continues execution, actualising SSU-A from Si to Si+1. 

The actualisation of SSU-B could be done by copying the content of SSU-A into it before continuing. This solution 
would require a DMA controller to copy SSU-A to SSU-B, but little would be gained in time with respect to the 
solution shown in Figure 6-11.  

One could gain more by copying only what has been changed from state Si-1 to Si and not dumping the whole of 
SSU-A. So, one possibility is to use a redo-fifo, which records all changes performed between Si-1 and Si, and 
which is dumped into the SSU after a save point has been reached and before the processor is allowed to keep on 
(Figure 6-12):  

FIFO 
DUMP

²S

SSU - A 
(actualized 

by 
broadcast)

WORK 
STORAGE

PROCESSOR

FIFO 
DUMP

SSU - B 
(actualized 

by FIFO 
dump)

SAVE 
STORAGE

FIFO

WORK 
STORE

i - 1

S i - 1

²S i ²S i +1

S i 

WORK WORK WORK

SSU - A

SSU - B

FIFO 
DUMP

S i 

S i + 1

S i - 1 S i S i - 2 S i + 1

S i - 2

S i - 1

FIFO

DUMPSAVE

RESTORE

PROCESSOR 
ACTIVITY

 

Fig. 6-12: Actualising one Copy by Broadcast, the other by Redo-Fifo. 



 

124  Fault-tolerant Computers 

6.3.7 Merge Back-Up 

The Redo-Fifo solution is attractive, but a more elegant solution exists. The reason why the FIFO, or an additional 
complete copy is necessary is that the SSU which holds state Si-1 must be brought from state Si-1 to state Si in 
order to serve as a back-up until save point Si+1. Now, one could bring the SSU to state Si by copying the other 
SSU into it, and from state Si to Si+1 by following the processor's activity (Figure 6-13):  

WORK 
STORAGE

SAVE 
STORAGE

WORK 
STORE

SSU - A

SSU - B

S i - 1

S i - 1

S i 

S i + 1

MERGE 
SWITCH

odd beat

even beat

EVEN BEAT EVEN BEATODD BEAT

time

SSU - A 
(previous 

state)

SSU - B 
(actualized 

by broadcast 
and copy)

PROCESSOR

copy 
device

full copy
 

Fig. 6-13: Merge Back-Up. 

The idea of merge back-up is to perform both operations simultaneously. As Figure 6-13 shows, as one SSU 
retains the state Si-1, the other is simultaneously updated by copying the contents of the first SSU and by following 
the processor's activity through broadcast. This only works if the updates coming from both sources, the other SSU 
and the processor, are coordinated. The rules that must be followed are: 

An object that has been modified by the processor may not be changed any more by an update coming from the 
other SSU. 

The processor is not allowed to proceed after the next save point as long as the copy of the first SSU has not been 
completed. 



 

Chapter 6 State Saving and Restoring 125 

To realize rule 1, each entry in the SSU needs one additional bit (a tag) that marks it as modified by the processor 
during that interval. At the beginning of the recovery interval, all "modified" tags must be reset.  

The merge back-up costs also a non-negligible overhead time for the processor, which consists of the time required 
by rule 2 and the time required to reset the "modified" tags. Unfortunately, unless one uses custom memories with a 
reset pin, the resetting of all tabs takes about as long as dumping the memory, so this solution is not as interesting 
as it looked like.  

6.3.8 Merge and Swap 

A last improvement can be made by not actually copying the values, but only by moving pointers to them. There are 
still two copies of the state in the SSU, but the consistent set consists of memory locations belonging to a double-
size SSU. That means that to one memory location of the working store correspond two memory locations in the 
(now unique) SSU. To each memory location, a pointer tells whether the location belongs to the (consistent) 
previous state or to the state that is in the process of building. The arrangement is similar to Figure 6–13. The 
principle is show in Figure 6-14.  



 

126  Fault-tolerant Computers 

1 
x

new old TM

2 
x

3 
x

4 
x

A 
 
 

B 
 
 

C 
 
 

D

1 - initial position

1 
5

new old TM

2 
x

3 
6

4 
x

2 - interval 1: A := 5; C := 6; 

values values

1 
5

old new MT

2 
x

3 
6

4 
x

A 
 
 

B 
 
 

C 
 
 

D

3 - checkpoint - invert meaning

1 
5

old new MT

2 
x

3 
6

4 
x

4 - copy before modify 

values values

1 
5

old new MT

2 
x

7 
6

4 
x

5 - C := 7 , copied till B only

1 
5

new old TM

2 
x

7 
6

4 
x

6 - end of interval 2: invert meaning 

values values

A 
 
 

B 
 
 

C 
 
 

D

 

Fig. 6-14: Merge and Swap Pointers. 

The principle of operation is that it is easier to modify a pointer to a variable than to copy values from one SSU to 
the other. In this scheme, each variable is stored in two memory locations, corresponding to the two states required: 
one that is valid and the other that is been actualised. For instance, variable A in Figure 3-14 is stored in two 
locations with values 1 and x. The two values are stored in the same physical storage: there is no need for two 
physically separate SSU anyhow; the only requirement is that the SSU be fail-independent from the work storage. 



 

Chapter 6 State Saving and Restoring 127 

To each variable, four tag bits are associated: 

_ O- an "old" bit which points to the one of the two values that represent the last valid state. The vector of the “old” 
pointers therefore always represents the previous, valid state. 

_ N- a "new" bit that points to the one of the two values which is modifiable in the current cycle. The vector of the 
"new" pointers does not represent a consistent state until copy is finished and the next checkpoint is reached. 

_ M- a "modified" (M) bit which tells that the (new) value has been modified during the current cycle and 
consequently should be copied during the next cycle. 

_ T- a "transfer" (T) bit which means that this value has been modified during the previous cycle and should now 
be transferred.  

The operation can be followed from Figure 3-14:  

1. Initially, the SSU is loaded with the values of variables A, B, C and D. Admitting that these values have not been 
modified since several cycles, the "old" as well as the "new" pointers point to their current values (1,2,3,4). None 
is tagged as modified. Let's call the state pointed to by the "old" set as Si-1 state. 

2. The variables A and C are modified. Since a value pointed to by an "old" pointer cannot be modified (it belongs 
to the consistent state Si-1), the "new" pointer is flipped and the value is written. At the same time, the 
"modified" bit is set. 

3. At the end of cycle i, a checkpoint is taken. The meaning of "old" and "new", respective "M" and "T" is reversed. 
At that point, both "new" and "old" sets point to a valid state. The "new" set points now to state Si-1 while the 
"old" set points to state Si. 

4. The previous valid set Si-1 is discarded and the values actualised to form state Si+1. To this effect, memory is 
scrubbed from one end to the other by a piece of logic within the stable storage. The variables marked "T" 
(transfer) have been modified during the cycle i and their "new" pointer must therefore be flipped to point to the 
valid value. There is however an exception, as now follows:  

5. The scrubbing of memory takes place in parallel with write operations to the variables. If a variable has been 
modified during the current cycle i+1, such as here C:= 7, it must not be copied. In this case, the "T" bit is reset 
and the variable is tagged as "modified". When scrubbing comes to this position, it will overlook it since the 
variable is already actualised.  

6. When the end of cycle i+1 is reached, the "new" set points to state Si+1 and the old set to Si. The meaning of 
the pointers is again reversed and the game keeps on.  

The whole process works only as long as the scrubbing of memory takes less time than the recovery interval 
between two consecutive checkpoints. This is normally the case. This method allows a very efficient state saving, 
since only four bits of information must be modified during scrubbing. While the information itself can be stored into 
a memory which is just as fast as the work storage, the tag bits can be stored in a high-speed memory to fasten 
scrubbing.  

A full description can be found in [Krings 85]. 

6.3.9 FIFOs Back-Up 

All the above solutions require the back-up storage to consist of two independent state save units. This is not due to 
the fact that a state save unit could fail, since the back-up storage is considered to be fail-independent from the 
work storage. A failure from the back-up would not cause a failure of the processor. The reason for doubling the 
SSU is that the processor may fail during the copy operation and leave there an inconsistent copy, from which 
recovery is not possible.  

Now, we could come back to the idea of the FIFO depicted in Figure 6-12. If we are ready to pay some additional 
time at rollback time, a back-up store which uses only one SSU and two fifos may be used, as shown in Figure 6-
15: 



 

128  Fault-tolerant Computers 

² S

PROCESSOR
FIFO A

FIFO B
WORK 

STORAGE 
(volatile)

SAVE 
STORAGE

odd 
beat

even 
beat

even 
beat

odd 
beat

S
i - 1

S
i 

S
i +1

CRASH

S S SS

work work work

FIFO - A

FIFO - B

WS

SSU

i - 2, i - 1

² S
i - 3, i - 2

activity

restore

State Save 
Unit

i - 1 i i +1i - 2

 

Figure 6-15: State Saving with one SSU and two Fifos 

Suppose that the work storage is at state Si at the beginning of a recovery interval. While the processor is 
transforming state Si into state Si+1, all changes from Si to Si+1 are recorded in FIFO-A. In the next interval, the 
fifos are exchanged, and FIFO-B will record the updates from Si+1 to Si+2. Thus, at RP i, FIFO-B contains the 
updates performed between RPi-1 and RPi and will remain unchanged until RPi+1; FIFO-A is void, and will be used 
to record the values from RPi to RPi+1.  

Now, while the processor is proceeding from state Si to Si+1, the state save unit will be brought from state Si-1 to Si 
by writing the contents of FIFO-B into it. It may be objected that if a crash occurs now, the state save unit will not be 
in a consistent state. This is true, but we assumed that the back-up storage and the work storage are fail-



 

Chapter 6 State Saving and Restoring 129 

independent. Therefore, if the processor or the work storage crash, the operation of copying the fifo into the state 
save unit can continue, and bring the SSU to state Si.  



 

130  Fault-tolerant Computers 

6.4 Restoring the stable storage 

6.4.1 Dealing with Stable Storage 

Stable storage contains that portion of the state which is assumed not to fail, but which may contain incorrect 
entries. One may wonder why the entries may be incorrect even if the storage is not affected by the crash. There 
are at least three reasons for this:  

the processor was faulty at the time the entries were made (wrong address or wrong data) - this is the case when a 
full error coverage cannot be provided and the processor is not fail-stop. The situation is further typical of software 
errors, for which complete coverage is difficult to achieve.  

the processor is not faulty, but a part of its state is volatile (internal registers). It is therefore necessary to undo the 
volatile storage back to the last point where the volatile state of the processor was saved, i.e. to the last save point. 
This is not yet a sufficient reason to rollback the stable state, since a second execution would generate the same 
results as the first. However, rollback is necessary if the processor relies on the former value of a variable to 
generate the new one (e.g. increment an index). A careful positioning of the save points can deal with this problem, 
at the expense of a frequent and unpredictable taking of save points.  

the state in stable storage corresponds to a calculation which must be cancelled, for instance to break a deadlock 
or cancel a transaction. In this case, perfect rollback must be achieved so all effects of the former execution are 
erased.  

6.4.2 Instruction Retry Mechanism 

The second point of this list shows that an undo operation is not necessary if one follows some rules in the insertion 
of save points. A typical application of this idea can be found in retry mechanisms for processors. The retry 
mechanism is a device that allows the reloading of the processor registers after a crash. For this, a copy of the 
registers as they were before the execution is maintained in a hardware save storage. If an error occurs, the 
processor is reloaded and the computations continued. Since most errors are transient, this method significantly 
increases the dependability of the processor. Such a mechanism is implemented in the IBM 370 and UNIVAC 1000 
computers.  

As an example, we will now explain how recovery is done in the COPRA computer [Meraud 76]. The COPRA has 
an instruction retry mechanism that relies on two save register sets working alternatively. One register set holds the 
last save point while the second is being actualised. The task state is in stable storage (Figure 6-16):  



 

Chapter 6 State Saving and Restoring 131 

PROCESSOR

STABLE STORAGE

SAVE 
REGISTER SET 

SP 
A := 5 
B := 7 
A := 8 
SP 
C := B + 3

Since B is used in a 
computation, a save 

point must be inserted 
before consuming it

BEGIN

save
restore

MEM MEM

 

Fig. 6-16: Retry Mechanism of COPRA 

The stability of storage is achieved by writing simultaneously into two independent memories (each protected by 
parity). Read is done only from one. If a read error occurs, the processor retries the read from the other memory 
unit, and if the read is successful, it is copied to the failed memory before continuing. This mechanism deals 
effectively with volatile faults and justifies the assumption of a stable storage. 

At each save, the volatile part (essentially the processor's registers) is saved in the retry hardware, in a way similar 
to an interrupt handling.  

The peculiarity of the COPRA mechanism is that undoing is made superfluous by inserting saves in such a way that 
the program is divided in repeatable sequences. The assumptions are: 

_ the processor never writes incorrect data to stable storage, i.e. the processor is fail-stop. This is realized by a 
self-checking pair of processors.  

_ the processor's execution does not depend on data which have been generated since the last save. This is 
enforced by the correct insertion of save points.  

_ the second execution of the processor will overwrite every variable which the first execution did modify (same 
execution track). This assumes that the machine is deterministic.  

Under these assumptions, it is sufficient to put the processor in the state it had at the last save point and let it 
execute the program again from that point on. The objects modified since the last save point will be overwritten by 
the same values at the second execution.  

This method implies that the saves are exactly chosen, following the following set of rules, according to:  

Rule 1: a save point has to be implanted between the use and the production of an internal variable.  

Rule 2: the production of external variables is made in two steps: first the external variables are produced, prepared 
in a register and then validated at the same time as the save point is finished. 

Rule 3: a save point is created between the time an external variable is read and the time it is consumed by the 
program.  

Rule 1 ensures that the processor's execution path does not depend on a variable that it produces. Rule 3 ensures 
that the execution path does not depend on external variables which may change.  

Let's consider an example: 

 



 

132  Fault-tolerant Computers 

SavePoint;     (* section 1 *) 
A := 6; 
C := A + 3; 
B := A + 1; (* B is produced, A is consumed *) 
C := B + A; (* A and B are consumed *) 
SavePoint;     (* section 2 *) 
B := C;      (* a save point has been inserted since B  *) 
               (* is produced after having been consumed  *) 
A := B + C (* no need to insert an additional RP since *) 
           (* exists already *) 

Note how assumption 3 plays: When section 1 is repeated, the value of C must be overwritten by the second 
execution (C:= A + 3). It is that way returned to its previous value by an implicit undoing.  

Indivisible increments are not allowed.  

For instance, A := A + 1; must be coded by: 

Intermediate := A; 
SavePoint 
A:= Intermediate + 1; 

Rule 3 ensures that the execution is always repeated with the same inputs, even if the input changes in between: 

SavePoint; 
Read(Port2, Position); 
SavePoint; 
A := Position * 360; 

If the execution crashes before the 2nd SavePoint, it will read a new value of the input, but not consume it again. 
That ensures that once the second save point is reached, there will be no repetition of the input. 

Let us look at the third rule: it ensures that an output is repeated in case of crash:  

SavePoint; 
Output(Port12, SetPoint); 

We could modify Rule 3 in the sense that the output is not repeated in case of crash: 

Output ( Port12, SetPoint ); 
SavePoint; 

Remains the slight probability that the crash takes place exactly between the output and the save point - hence the 
requirement that the output be made atomically with the save point: the same pulse which causes the save point to 
be taken (loading of the register's state) also loads the output register. The uncertainity window that remains does 
not exceed 20 ns. Although this does not give a 100% probability of success, one can evaluate the probability of 
failure and in most cases neglect it when considering other sources of unreliability. 

The insertion of save points in the COPRA computer is done automatically by the compiler based on the above 
rules. On the average, there is a save point every 10 to 20 machine instructions. The overhead due to the save 
points does not exceed 8 %. 

6.4.3 Save-Before-Modify  

The above method of state restoration in the stable storage deals effectively with hardware errors. It is however not 
capable of dealing with software errors, since it is not possible to provide a 100% coverage against software errors, 
and some false data could reach the stable storage.  

A restoration of the previous state in presence of false data is possible if all interactions between the processor and 
the stable storage are monitored, and the value of each object that is to be modified is first saved in a stable storage 
before it is updated. An object can be modified several times between two save points, but only the value saved at 
the first modification is important. The storage medium is therefore conceptually an undo stack, in which pairs of 
address and data are recorded (Figure 6-17) before the objects are updated. All writes accesses to the stable 
storage are therefore intercepted by the rollback stack, which performs a READ operation on the object before it 
writes into it. 



 

Chapter 6 State Saving and Restoring 133 

PROCESSOR

STACK

STABLE 
STORAGE

save previous value

restore previous 
value

write new 
value 

after saving 
previous 

value

3

12

 

Fig. 6-17: Undo Stack for Stable Storage. 

Restoring consists of applying the stack's entries to the stable storage in the reverse order in which the changes 
have been made, hence the concept of the save stack. An example is given in Figure 6-18: 

former     restored 
state: computations: crash: recovery:  state: 
 
A: 3 A:= 5; B:= 3; A:= 7;  A:= 5; B:= 4 A:= 3  A: 3 
B: 4     B: 4 
C: 5     C: 5 
 A:3; B: 4; A: 5   
 (saved in stack) 

Fig. 6-18: Example of Save-Before-Value. 

This method is used by several existing systems. The stack can be either a physical element [Kubriak 82] or just a 
conceptual stack maintained by the program itself. For instance, IBM's database system IMS uses a log of changes 
to the objects known as undo-log, which is recorded on a disk (a tape is difficult to read backwards). The basic rule 
is that the value of the object must be recorded before it is modified. A crash between modifying and recording 
would otherwise leave the state unrecoverable. 

We must distinguish the entries to the stack from the taking of the save point. At the save point, a consistent view of 
all volatile parts of the system has been recorded. At every save point, only the previous value of a variable that is to 
be modified is recorded. At rollback time, the undo-stack is applied to the current state until the last save point is 
reached, as Figure 6-19 shows:  



 

134  Fault-tolerant Computers 

SP SPCP

S
i

∆∆∆∆ ∆∆∆∆S SS
i

- -

Restore 
volatile 

state

Apply UNDO stack to stabl e state

RELOAD UNDOS i+1 S i+2

i+1 i+2

Save Save Save
all volatile state before value before value

ACTION

S i+1 S i+2

ROLLAHEAD

ACTION ACTION

CRASH

UNDO

 

Fig. 6-19: Rollback, Save Points and Recovery Points.  

We see now why it was necessary to make a distinction between save point and recovery point: 

A SAVE POINT is a point in execution at which a part or whole of the state is saved. This may be in form of a 
before-image, an after-image, a complete dump or a set of undoing operations. 

A RECOVERY POINT is a point in the execution at which one can conceptually return and resume the execution 
after an error occurred. Not every save point can become a recovery point. Further, a recovery point is not 
necessarily tied to a saving of a task state; it can consist of the recording of a few markers.  

We will also speak of "restoring a recovery point" when restoring a previous state at recovery time. 

6.4.4 Technical Improvements: Recovery Cache 

A variable may be modified several times, but only the value prior to the first modification is relevant. By unrolling 
the stack, as shown in Figure 6-18, unnecessary assignments to variables are made (consider variable A for 
instance).  

The recovery time could be shortened if only the first assignment to an object within a recovery block would give 
rise to an entry. Therefore, a mechanism could determine whether the object has already been saved or not. Such a 
mechanism is an associative memory, which has become popular under the name of "recovery cache". Although 
one can argue whether the term of recovery cache is well chosen, we will retain it.  

A recovery cache is an associative memory connected between a processor and a (stable) memory, which 
intercepts the writes and performs a save-before-value in case the object has not yet been modified during the 
recovery interval. Such a recovery cache has been implemented at the University of Newcastle-Upon-Tyne [Lee 80], 
Figure 6-20:  



 

Chapter 6 State Saving and Restoring 135 

memory

• intercepts writes 
• saves previous value 
• writes new value

memory

PROCESSOR 
(PDP-11)

RECOVERY 
CACHE 
DEVICE

other 
peripherals

 

Fig. 6-20: Recovery Cache. 

The recovery cache has however some problems of its own: first, it requires a "cache invalidate" signal that clears 
the cache at every recovery point. Since clearing a memory takes as long as writing to every location, the taking of a 
recovery point takes quite a long time.  

Second, the cache must be able to give room to all entries. No object can ever be discarded. Therefore, the cache 
must have exactly one entry for every object that can be modified and so will be quite large. Its operation is 
therefore fundamentally different from the operation of a cache, which only holds a subset of the objects that could 
be modified. To limit the cache size, a mechanism decides that the cache is full and triggers a recovery point.  

Third, the recovery task requires that all entries in the cache be passed to stable storage. Since one does not know 
when the cache is void (are they still modified entries in the cache), the cache dump takes a long time.  

Since the recovery cache has been designed to deal with software errors and exception handling, the occurrence of 
rollback can be quite frequent. It is therefore still doubtful that the recovery cache has any advantage over a simple 
stack.  

6.4.5 Comparison between save-before-value and save-after-value 

It is interesting to compare the two mainstreams in state saving, save-before-value for stable storage and save-
after-value for volatile storage. Their properties are summarized in the following synoptic table:  

 



 

136  Fault-tolerant Computers 

 save-after-value save-before-value 

Used for:  stand-by  retry 

Trusted state:  stable back-up storage + redo-fifo 
contents 

(if there is no redo-fifo, then the 
back-up storage is doubled) 

stable work storage 
+ undo-stack contents 

(if there is no undo-stack, then the 
implantation of recovery points 
must follow precise rules) 

Lost state:  task's state only processor's state 

State saving by:  

 

saving a complete copy of the state 
and recording in the REDO-FIFO 
the new value of every object 
after it has been modified. 

recording in the UNDO stack the 
previous value of every object 
before it is modified and 
recording the volatile part at the 
recovery point. 

Recovery state reached by:  loading the spare with the archival 
state, and redoing the operations 
by applying contents of FIFO if 
necessary. 

undoing the stable storage by 
restoring the changed objects to 
their former value, stored in the 
stack in addition, restoring of the 
volatile part by independent 
means. 

Rollback time:  

 

warm stand-by: short  

(switchover and actualisation):  

cold stand–by: 

 hot restart: short 

 (instruction retry) 

 warm restart: medium 

 (memory reload from disk) 

 cold restart 

 (loss of disk storage) 

short - depending on the distance 
between recovery points. 

 

Technical 

 

replace the FIFO by a cache that 
holds the last modification only. 

(BBC's trace cache) 

replace the STACK by a cache that 
holds the earliest value only  

(Randell's recovery cache) 

Implementation:  

 

IBM's IMS REDO-LOG  

Feridun's state-save units 

IBM's IMS UNDO-LOG 

Randell's recovery blocks 

Multiple rollbacks  yes, if the FIFO is kept and the 
archival storage points to the 
earliest  recovery point 
(otherwise one state copy is 
needed for every recovery point) 

yes, if the former values are kept in 
the stack for several recovery 
points along with the value of the 
volatile part at that places 

Suited mainly for: hardware errors software errors 

Hardware cost:  

 

+ 100% storage capacity of backed 
volatile storage  

+ 100% to back stable storage 
during copies.  

If a FIFO is used, the FIFO must be 
doubled to allow copies. 

+ 100% needed to implement a 
stable storage with a pair of 
volatile storages 

The STACK must be in stable 
storage, too 

 

 



 

Chapter 6 State Saving and Restoring 137 

6.5 Recovery and the environment 

Until now, we considered recovery within a closed computing system, as an interaction between processor, volatile 
memory, database and logs. Within that world, the conceptual view of perfect rollback was achievable, since a 
computer is basically an assignment reversible machine.  

When the environment is considered, the complexity of recovery increases. Rollback and Roll-ahead become quite 
complicated issues.  

Rollback of the environment is complicated or impossible.  

Roll-ahead must prevent omission and duplication of interactions and requires in most cases a perfect tracking of 
interactions. 

6.5.1 Avoiding Rollback and Roll-ahead 

Since rollback and roll-ahead are problematic, the best would be to avoid them altogether by taking recovery points 
atomically with every output or input action.  

So, the data received should be immediately consumed and a recovery point taken in the same operation. If the 
probability of a crash between the reception of the data and the taking of the recovery point is acceptably small, the 
operation can be considered atomic.  

The classical solution is to divide the output operation in two phases, similar to the order sequence in the military for 
firing: ARM - FIRE. The "Arm" order has no effect and can be repeated at will, and becomes an effect only when 
followed by the "Fire" command. The "Fire" command can be then repeated at will with no effect.  

The same method is applied in safety equipments: the values are output to the plant, but they are just buffered. This 
operation can be repeated any number of times if necessary. Then, a VALIDATION ORDER is sent, which makes 
the orders effective. The validation pulse will have no effect if sent a second time, since it is ignored until a new 
value is sent to the device.  

Therefore, the validation pulse must take place "instantaneously" with the taking of a rollback point. It will not be 
repeated by roll-ahead, since there will be no rollback for it.  

This kind of "instantaneous" actions is intuitively suspect, since there is a small probability that the computer fails 
during the validation pulse, that it reaches some devices and not some others, etc... However, one must think how 
small this probability is: if the pulse lasts some 100 ns to be effective, and the rollback interval is 10 ms, a gain in 
reliability of 10000 has been achieved. The COPRA designers count that the period of uncertainty is not more than 
20 ns. This may be sufficient to fulfil the specifications, especially when the plant itself is less reliable.  

Atomicity can be assumed when the mechanisms for state saving are implemented in hardware. But as soon as 
one must deal with saving operations on disk or in memory, the atomicity of the operation is not admissible any 
more.  

6.5.2 Rollback of the Environment 

The environment cannot be rolled back. If a ground station missed the radio signals of a landing space probe, they 
will never come again. When time plays a role, when a computer is embedded in a physical environment, such as 
an industrial plant, the assumption of reversibility is at best an ideal, which holds as long as the computing system 
did not do any unrecoverable actions while it was faulty, such as opening the valves of a dam by itself. There are 
some limited ways by which one can rollback an external process:  

• If the environment is assignment reversible, one can treat it as a part of stable storage, and correct the value by 
overwriting it with the previous value.  

 Assignment reversion of peripherals only works in rare cases, such as signal lamp pattern, setting of set-point 
in a control loop or positioning of a disk head over a specific track.  

 When the external world consists of a computing system, then the correction can consist in letting this 
computing system rollback itself. This can lead to a propagation of rollbacks, as we shall see. We will detail 
these aspects in the next chapter.  



 

138  Fault-tolerant Computers 

• If the environment is correction reversible, one can write in the undo-log an undo instruction which reverses 
the action. In fact, the undo-log is in reality a stack of undoing actions. All outputs that correspond to 
unidirectional state transitions in the plant require a corrective action distinct from the original action.  

 There could be a message on the display of the user inviting her to repeat the question.  

 A bottle filling chain could be brought to an initial state by a rollback procedure, removing half-filled bottles, 
resetting the bottle counters, and relying on some human help to remove the stuck pieces.  

• If the environment is irreversible, then it is best to prevent actions on it, and leave repetition to rolleahead. 
Unfortunately, most actions on the real world are irreversible, either physically (such as firing a rocket) or 
because the correction involves too much work (such as deleting a file). Erroneous actions to irreversible 
environments must be prevented, and cannot be neither repeated nor left undone. Therefore, irreversible 
operations require:  

a fail-stop behaviour of the computer in order not to do any false action  

a perfect tracking of the interactions in order to prevent loss or duplication of outputs and inputs at roll-ahead. 
Alternatively, the action must be performed atomically with the taking of the recovery point, like in the COPRA 
computer, as we shall see below.  

6.5.3 Roll-ahead of the Environment 

As a simplification for roll-ahead, we will assume that every part of the environment which received false data has 
been rolled back. The simplest way to achieve this is not to let out any false data (fail-stop).  

We consider now the repetition of interactions at roll-ahead. The problem we face is that one cannot be sure how 
far the failed process progressed before failing. Therefore, loss or duplication of output or input can result.  

If one repeats an output and the failed processor already did it, then a duplicate appears which can cause a failure. 
If one does not repeat at roll-ahead, and the failed processor did not reach the output instruction, then the output is 
missing, which also may cause a failure.  

Finally, there remains the problem of data received while the computer is in the process of recovery. Here, one 
must count with data losses or else rely on a mechanism that can perfectly track interactions with the environment. 
This can be achieved by warm-stand–by, but not by cold-stand–by.  

The rules to follow during roll-ahead are quite simple: 

Input: if a task received inputs from the outside world before it failed: 
 
 I1- the source must be readable several times with same effect 
 I2- or the read information must have been tracked 
 I3- or the sender must also be rolled back so as to repeat the sending. 

Output: if the task made outputs to the outside world before it failed, 
 
 O1-  the receiver must not care about repetition  
 O2- or the actions of the failed processor must have been tracked 
 O3- or the receiving task must be rolled back.  

Note that the input and output rules with the same numbers are symmetrical. Next we will look in detail at these 
rules: 

6.5.4 Idempotent Input and output 

Rule 1: 

If the input can be made by idempotent reads, and the output made by idempotent writes, then roll-ahead just 
consists in repeating the original computation 

Input Rule 1:  

"Inputs shall be idempotent" 



 

Chapter 6 State Saving and Restoring 139 

This is the case when the computer reads from ADC converters, status registers, or files, and every other time the 
information read does not change when input is repeated. This is obviously not the case when reading the registers 
of serial ports.  

The data value read the second time may be different from the value read the first time, if this does not affect the 
algorithms or lead to data losses. For instance, if one reads a temperature for a regulation task, it makes no big 
difference if one reads the temperature one second later, even if it changed in between.  

The condition is however that the value of the data read may not influence the execution path. For instance, there 
must not exist any program branch that depends on the value read. If this were the case, the second execution 
could depart from the failed execution track and the stable storage could not be corrected any more.  

Therefore, it is necessary to insert a recovery point between reading a value and using its results in the program. An 
example has been seen with the input rules of the COPRA computer [Meraud 76]. Clearly, inputs are not repeatable 
when events should be registered. Such is the case for instance when a photocell signals to the controller that a 
bottle just passed by a detector.  

Output Rule 1:  

"Outputs shall be idempotent" 

Doing more than once has the same effect as doing it once. This is often the case for the output to digital-analog-
converters or to set-points of analog controllers. When the receiver is assignment-reversible, it can even tolerate 
faulty outputs.  

Example: Outputting a set-point of -3500 K to a furnace will do no harm if the correct set-point of 600 K is issued 
within a short time.  

In some cases, the receiver is equipped to handle duplication, for instance duplication of messages: each message 
carries an individual sequence number. If the message is repeated, it gets the same sequence number as the first 
one, and the receiver will discard it. Thus, the idempotency is implemented by the construction of the receiver.  

6.5.5 Traceable Input and Output 

Rule 2: 

If idempotent reads and writes are not possible, it is necessary to prevent duplication or loss. This can be achieved 
by keeping track of every interaction the failed process had with its environment since the last recovery point. 

The objective of this second rule is to make input and output operations durable. Durability means that once an 
interaction has been completed, it will not be repeated. Rather, its results will be used instead of the actual 
interaction. This is an extension of the notion of durable operations, which cannot be repeated once they have been 
successfully completed. Rather, an attempt to repeat them will cause the operation to be replaced by its result: 
calling it just updates the state with the corresponding data. Durability assumes that all interactions can be perfectly 
tracked.  

Input Rule 2:  

"Non-idempotent reads must be durable" 

All data received by the failed computer since the last recovery point is buffered in a safe place, called an interaction 
log or journal. At roll-ahead, whenever an input interaction is encountered which has already been done, roll-ahead 
reads the results of the read from the interaction log instead of performing an actual read from the environment. 
Once the journal is void, the program then keeps on with the data received from the environment. This mechanism 
assumes that the order of reads is the same in the first and second execution.  

The interaction log may be maintained in stable storage by the processor which is subject to failure, as is done for 
instance in word processors (see below). If a failure between the reading and the storing is feared, then an 
independent receiver that tracks the input stream of the working unit must record the reads. This tracking has the 
additional advantage that it allows unsynchronized communication, i.e. it can record events which otherwise would 
have gone lost during recovery, but perfect tracking requires warm stand-by hardware.  

Example: A fault-tolerant word processor could intend to rollback to the latest instruction. Then, the whole state of the editor is 
part of the relevant state, including the position of cursors, the page being displayed, the search parameters, etc... Some 
10K of information should be saved at every rollback point to perform recovery during the work of the editor. The 
approach taken traditionally in text editors is to consider the state during the execution of the editor as irrelevant. Only the 
state that prevailed before the editing session is reconstructed, and the editor must be restarted manually. Since this 
would involve loosing completely the work done since the beginning of the session, the restoration work is done by a 



 

140  Fault-tolerant Computers 

journal that records (e.g. in a file) all entries done by the user since the starting of the session. At recovery time, the 
editor is restarted, the initial file is loaded and journal is played to the editor as though it would be a user input. Then, 
when the journal has been played, the input is switched back to the user's console. This technique is not identical to the 
redo-log method, though, since the original program itself does the recovery. The journal is just an interaction log of the 
input: it speeds up roll-ahead by making superfluous the rollback of the user.  

Output Rule 2: 

"Non-idempotent writes must be durable" 

When the output is not idempotent (for instance it consists of incremental orders to a stepping motor, or service 
messages in a network), then a monitoring of outputs must be performed by an OUTPUT LOG. Perfect tracking of 
the output requires an independent unit since the same unit is amnesic of all what occurred since the last rollback 
point.  

At roll-ahead, already executed writes will be just skipped (there is no state update like there is for a read). This is 
done by consulting the output log. The monitoring memory needs not compare the output messages with the 
messages which already were sent: since one assumes that the second execution will follow exactly the footsteps 
of the first, a simple counter is sufficient. The counter is loaded initially with the number of output operations 
performed since the recovery point. The counter inhibits the outputs until as many values have been output as the 
first execution did, then the outputs are enabled.  

The mechanism used to implement durability of input and output requires that roll-ahead follows exactly the same 
execution track as the failed execution, and this can only be guaranteed if the input stream is the same for roll-
ahead as for the failed execution and if execution is purely deterministic. 

If the roll-ahead could follow a different track, then the monitoring unit must have a great deal of intelligence: it must 
recognize duplicates which may come in a different order, and which may have different contents. The problem still 
remains if values are output which the failed execution was not supposed to send, or values are not repeated which 
the failed execution did already send. This is a case which can only be handled by forward recovery. 

In short: 

Durable interactions require that the execution path at roll-ahead be identical to the execution path followed during 
the failed operation 

Or stricter: 

The input values received during the roll-ahead operation must be identical to the input values the task has received 
in the failed execution. 

6.5.6 An Example of Interaction Tracking: Auragen System 4000 

Auragen's System 4000 [Glazer 84] has a warm stand–by architecture similar to the TANDEM 16's (Figure 6-21): 



 

Chapter 6 State Saving and Restoring 141 

message 
processor

Application 
Processor

1 MB 
Main Memory

Disk 
Processor

I/O 
Processor

C
lu

st
er

bu
s 

20
 M

B
/s

disk

disk

Streamer Tape message 
processor

Application 
Processor

1 MB 
Main Memory

Disk 
Processor

I/O 
Processor

C
lu

st
er

bu
s 

20
 M

B
/s

Systembus 1    16 MB/s

Terminal Controller

Terminal Controller

Systembus 2    16 MB/s

Printer Controller

ON-LINE BACK-UP

 

Fig. 6-21: Auragen's System 4000. 

Auragen's 4000 consists of a number of nodes (clusters) which communicate over a high-speed (16 Mbyte/s) 
SystemBus. This bus is duplicated for availability, but conceptually, one has to deal with only one transmission path.  

Each on-line node owns a back-up node, which lies in a physically distinct place. Up to 16 on-line/back-up pairs can 
be connected to the SystemBus. The back-up node may be performing other tasks than the on-line node for which it 
stands by. The distribution of tasks among the processors must ensure that an on-line task and its back-up task are 
not located on the same unit, since each node is assumed to fail as a whole. 

The AUROS operating system implements recovery: a state saving (called "checkpointing") is done automatically at 
regular intervals (called "synchronization points"), at which the state of the working task is communicated to the 
back-up task. The taking of save points is usually triggered by a timer (but can be explicitely by the programmer). 
The programmer must not care about the interaction with the outer world since: 

• The processor is fail-stop (memory and buses are protected by error detecting codes, the processors 
(Motorola's 68000), are built as self-checking pairs, so no false results will leak to the process.  



 

142  Fault-tolerant Computers 

• All interactions with the environment take place through messages. The protocole ensures that no loss or 
duplication of messages occur. When a message is sent by an on-line task, it is received by three destinations: the 
destination task and the back-up of both the sending and the destination task. The interaction is monitored in the 
communication processor of the back-up unit: the stand-by maintains a fifo (queue) of all messages received by the 
on-line unit, and a counter for all messages which the on-line unit did send. This interaction fifo is called a "queue-
and-count" system by its designers.  

The queue-and count mechanism is shown in Figure 6-22: 

workreceive

queue

receive

queue count

work

total 
save 
point

restore recovery point

dequeue work
de- 

count

count

sendON-LINE

BACK-UP

work

CRASH

send

send receivework

already 
sent !

already 
received !

BACK-UP 
(NOW 

ACTIVE)

time

work

ROLLBACK

ROLLAHEAD

not yet 
done

not yet 
done

 

Fig. 6-22: Queue and Count in AUROS. 

Upon detection of an error, the back-up starts with the state as it received it at the last checkpoint ("synchronization 
point"). There is no redo phase. The back-up restarts computations at that point and the interaction with the outer 
world is taken care of during roll-ahead. 

When the program encounters a "receive" instruction during roll-ahead, it reads first the interaction fifo to see if the 
message has already been received. In this case, instead of reading the messages from the environment, they are 
read from the interaction fifo.  

When the program encounters a "send" instruction during roll-ahead, it reads first the counter to see if a message 
has already been sent. If this is the case, no sending is done and the counter is decremented. When the counter 
reaches zero, the message is actually sent.  

The receive/dequeue function, resp. the send/decount function is implemented by the same driver. For the 
programmer, the back-up task is just a copy of the on-line task. The difference is made by a status register in each 
node, which tells the operating system whether the task is executing as on-line or as back-up during roll-ahead. To 
off-load the application processor, all interaction tracking is done by the communication processor. 

This of course assumes that the execution takes the same path the second time as it did the first time, which should 
be the case since the system is fail-stop. This mechanism also supports concurrency without domino effects (see 
next section). It is efficiently handled by a communication co-processor located in each node.  



 

Chapter 6 State Saving and Restoring 143 

6.5.7 Rollback of the Partner Task 

Rule 3:  

If input and output are neither idempotent, nor durable, the corresponding sender or receiver must be rolled back. 

This situation applies especially to the problem of cold stand-by, since warm stand-by can monitor the activity of the 
working unit and implement durable interactions, as we have seen with the Auros system. It applies also to warm-
stand–by units which do not monitor the activity, like in Tandem systems: data which have been received during the 
recovery are lost. In case the partner is a parallel task running on another computer (or on the same in case of 
multitasking), roll-ahead can only continue when it arrives at an input/output instruction by first rolling back the 
sender task (Figure 6-23). 

SEND

RECEIVE

t
B

t
A

RP 1.3

RP 2.3

RP 1.4

RP 2.4

time

TASK 1

TASK 2

 

Fig. 6-23: Propagating Rollback. 

In principle, one could have rolled back both tasks at the same time when recovery was initialised, and not first roll 
back one task and then the other during roll-ahead. But at the last recovery point, there was no mean to tell which 
interactions the task would do until the next recovery point, since this would require a prediction of the task's 
execution path. Therefore, it is necessary to propagate rollback at roll-ahead.  

Consider a crash of task 1 which occurs at time tA. Since task 1 communicated with task 2 since its last RP, task 2 
will be forced to roll back when task 1 rolls ahead. This is easier said than done. Firstly, although it is fairly obvious 
from the drawing that task 1 crashed AFTER it communicated with task 2, task 2 cannot know it. Task 2 must be 
informed of the crash of task 1 before it reaches RP 2.4. After it passes RP 2.4 , task 2 will be not be able to return 
to RP 2.3 (except if several rollback states are kept, but this only shifts the problem until exhaustion of the redo-log). 
Therefore, synchronization is required: both participants in a communication should not be allowed to reach their 
next rollback point before both of them are ready to do so. This restriction severely limits the parallelism. 

As an improvement, task 2 could ignore the rollback order if the crash occurred at time tB, because the 
communication did not yet take place. Task 1 cannot distinguish whether the communication effectively took place 
or not, since it is amnesic of what happened since the last RP.  

The probability of having to propagate rollback is minimized if tasks in cold stand–by systems take a recovery point 
or save the input log just after an input or an output is done. There remain a small probability of a crash between the 
reading of the data and the taking of the save point.  

Both cases can be dealt with by letting the receiver acknowledge each data item after having saved it. Figure 6-24 
shows a typical conversation between two tasks. Note that the fault is most of the time a communication failure. 
Then rollback is normally not automatic, but programmed by the user. Programmed rollback is more efficient than 
using the mechanism implemented for the case of a crash. The other task is ordered to rollback either explicitly (by 
a Negative Acknowledge signal or NAK) or implicitly (by a time-out). 



 

144  Fault-tolerant Computers 

ROLLBACK ON NAK

ROLLBACK ON TIME-OUT
crash between read and 

RP will let task 1 ask 
again for data

ROLLBACK ON NAK

ROLLBACK ON TIME-OUT

crash between reception 
of ACK and RP will let 
task 2 repeat sending

gray zone

RP
ask 
for 

data
reply 
data

RP ACK 
(NAK)

RP

WAIT ON 
REPLYTASK 1

TASK 2

RP

WAIT ON 
ACK

 

Fig. 6-24: Conversation between two Tasks. 

Unfortunately, the time between reception of the data and sending of the acknowledgement may be too large in 
real-time systems, so that one normally acknowledges only the reception, not the taking of the recovery point. Then, 
a crash may leap in between and lead to an unrecoverable failure.  

We will now generalize this case to a system of communicating tasks. 

6.5.8 Rollback of a System of Communicating Tasks 

In the above, we only considered the state saving and the restoration of a single, assignment reversible machine. 
We consider as a generalization a network of (reversible) computers that communicate with one another. The same 
problem may occur in a multitasking single node, when task recovery occurs on an individual task-by-task basis: a 
multitasking operating system is just simulating a multiprocessor system. 

If a task that failed had communicated with another task since the last rollback point, both tasks must be rolled 
back. If the failed task did a read operation, the sender of the information should be rolled back to repeat the read 
again. If it did a write, the sender should do the write again. Therefore, rollback can be propagated from one faulty 
node to a quantity of other nodes with which it communicated. Figure 6-25 shows the execution of a system of 
communicating tasks as a function of time.  



 

Chapter 6 State Saving and Restoring 145 

RP 10 RP 11 RP 12 RP 13

RP 22

RP 30 RP 31 RP 32

RP 21 RP 23 RP 24

RP 14

TASK 1

TASK 2

TASK 3

1 2 3

 

Fig. 6-25: Rollback of a System of Communicating Tasks 

Note that the rollback points are asynchronous, i.e. every task takes an RP as it likes. The communication consists 
of messages, and, to simplify, we consider that all communication involves a buffering (the signal is not lost if there 
is no receiver waiting) and is acknowledged (the sender waits until the information is picked up).  

If the rollback points are poorly chosen, a rollback may cause another to occur.  

Consider a crash at place C: Task 1 rolls back to position RP 1.2, but since it communicated with task 2, task 2 
retires to RP 2.2. In the meantime, task 2 had communicated with task 3, which must return to RP 3.1. 
Unfortunately task 3 communicated with task 1, which must return to RP 1.1, and so on, until all task are reset to 
the origin state RP 1.0, RP 2.0 and RP 3.0. This is called a domino effect.  

To prevent the domino effect, the recovery points must be carefully chosen. Communicating tasks are only allowed 
to pass their next rollback point when all tasks with which they have communicated since the last RP are also ready 
to do so. The system of communicating tasks is known as a conversation [Randell 75]. The reaching of the 
common rollback point involves a synchronization between all members of the conversation. The taking of the 
common rollback point is a commitment. Once a commit point has been reached, no more rollback is possible.  

The practical importance of this technique is not so high as the theoretical work done on it would lead one to 
believe. There are easy measures against the domino effect. The simplest consists in taking an RP before each 
communication, or better, to embed the recovery point in the communication primitive. This is a question of how 
much one is willing to pay for taking recovery points.  

Implementing durable interactions by means of an input/output journal is an easy way to avoid the domino effect, 
since the partner task must not be rolled back. It even works if the task erroneously asked for information. In this 
case, though, some means must be found to discard the information that has not been consumed [Russel 80].  

6.5.8.1 REFERENCES 

[Glazer 84] S.D. Glazer,  
"Fault-tolerant mini needs enhanced operating system",  
COMPUTER DESIGN, pp. 189-198, August 1984. 

[HORNING 73] J.J. Horning & B. Randell,  
"Process Structuring",  
ACM Computing Surveys, Vol 5, No. 1, pp. 5-30, March 1973. 

[KRINGS 85] L. Krings,  
"A fast recovery mechanism for fault-tolerant computers",  
Brown Boveri Research Report, 1985. 

[KUBRIAK 82] C. Kubriak,  
"Penelope: a Recovery Mechanism for Transient Hardware Failures and Software Errors",  
FTCS-12, 12th Int. Symp. on Fault Tolerant Computing, Santa Monica, pp. 127-133, June 1982. 



 

146  Fault-tolerant Computers 

[MERAUD 79] C. Meraud, F. Browaeys,  
"A new line of Ultra-Reliable, Reconfigurable Computers for Airborne and Aerospace Applications",  
AGARD - Symposium on advances in guidance and control systems,  
Ottawa 8-11 MAY 1979. 

[RUSSEL 80] D.L. Russel,  
"State Restoration in Systems of Communicating Processes",  
IEEE Transactions on Software Engineering, Vol SE-6, No. 2, March 1980. 



 

Chapter 7 Recovery in Database 147 

7 Recovery in databases 

7.1 Introduction 

The previous chapters considered techniques for masking errors and for recovering from them within a computer. In 
summary, if the computing elements are fail-stop, then no error should ever leak out. This can be achieved either in 
the case of masking or in the case of recovery. Recovery just requires some precautions to handle the interaction 
with the environment, and especially to make interactions durable, i.e. to avoid redoing an operation already done, 
and to be sure of doing every operation which has not yet been done. This last requirement can only be met partially 
by cold stand-by, but warm stand-by can provide full durability of interactions, since it is capable of tracking them. 

This chapter considers recovery in databases. It is an extension of the previous chapter. Commercial databases 
manage huge quantities of data, normally residing as files in a disk "farm" consisting of numerous disk units, which 
can be accessed simultaneously by several users. Typical applications are airline or railroad reservation systems, 
warehouse management and banks. 

In process control, databases are the heart of the SCADA-function (System Control and Data Acquisition). Up to 
10'000 process variables must be kept on-line for inspection by the plant's operator. These process variables are 
continuously updated in the background by the process. Process control databases generally reside in memory for 
fast access (300 ms in 90% of the cases), while the disk contains mostly history and static data.  

Since most of the work done on recovery concerns commercial databases, we will refer to them firstly. The same 
principles hold for process databases. Database recovery is in principle similar to the recovery of any computer 
consisting of a volatile storage and a stable storage, so the techniques we have seen in the preceding chapter are 
applicable here. The new aspects we wish to consider are: 

• Databases support transactions, which are a sequence of actions executed as a whole or not at all 

• Operations on the database may be voluntarily undone, and the mechanism to undo a sequence of 
operations must be fast. 

• the computer relies on cold stand–by. 

The last requirement is mostly a question of hardware costs: warm stand-by requires a second machine and a 
complex updating mechanism. Cold stand–by relies solely on stable storage and logs, but costs additional 
complexity during operation and recovery. We will first consider cold stand-by, the extension to warm stand-by 
being trivial.  

Recovery in databases is achieved by combining several techniques for state saving and restoring which account 
for different kinds of faults. In addition to the problems of recovery, the problem of concurrency occurs since the 
database is shared among several users. 

Whether all activities take place on one computer or on several does not matter as long as the database is 
centralized. If the database is distributed, i.e. replicated over several nodes (each node holds a copy of the 
database) or partitioned (each node holds a part of the database), then an underlying protocol cares for the 
consistent update of the replicated files. 

7.2 Concept of actions and transactions 

Any computation progresses through a sequence of actions, which maps the state Si to the state Si+1. The effect of 
an action is to create, destroy, modify or inspect objects. 

Depending on one's view of the computer, one can consider an action as one machine instruction or as a complex 
operation involving thousands of disk accesses, like reorganizing the database. 

An atomic action is an action that is either done completely, or not at all. A write to a memory location is 
considered as an atomic action at the hardware level. When an action takes a certain time, and especially consists 
of several steps, then special precautions must be taken to realize an atomic action. 

Atomic actions are the building blocks for fault-tolerant systems. Atomic actions are operations which are either 
correctly done or leave the system in the original state. This implies that an atomic action has no effect on the outer 
world until it is completed.  



 

148  Fault-tolerant Computers 

This also implies that an atomic action that did not finish can be restarted at will. Once it is finished, it should not be 
repeated any more, since its effects are permanent. 

Atomic actions are widely used for transactions in databases. A transaction progresses by modifying a database 
through a sequence of ACTIONS. All actions belonging to a transaction must be executed as a whole, regardless of 
any intermediate interruptions. A typical example is a booking program that transfers a certain sum from the 
account of a customer to the account of another customer.  

For instance, one action is withdrawing 100 Swiss Francs from Meyer's account and another is crediting them to 
Martins's account. Both actions must be implemented as a whole. Repeating or omitting any of these operations 
would lead to a failure.  

A transaction knows two possible issues: 

1. the transaction is led to a successful conclusion and then committed. The commiting of a transaction makes its 
effects permanent. A committed transaction cannot be repeated - it would then be a new transaction. 

2. the transaction is cancelled. This can be a voluntary operation (for instance when the client of the airline 
changed his mind after half of his flight has been booked), or involuntary (for instance due to a crash of the 
machine, a deadlock situation or the impossibility of finishing the transaction, for instance when two passengers 
compete for the last seat). When the transaction is cancelled by the system or a crash in an unorderly way, the 
transaction is said to be aborted.  

A durable action is an atomic action which cannot be repeated, but which will be replaced by its effects if repeated 
for recovery purposes.  

• for instance, if the computer crashes after the transaction committed, means must exist to redo the 
transaction without asking the clerks to enter the dialogue again. Instead of repeating the transaction, the result of it 
must be saved in a safe place and used to restore the state. The individual actions of a transaction must NOT be 
durable until the action is committed - if the transaction is cancelled, their effects must be undone.  

Finally, actions must be consistent. Transactions may execute in parallel with other transactions, for instance in a 
multi-user environment (pseudo-concurrency) or on different computers which access the same database (real 
concurrency). In both cases, there are certain files that can be shared among the transactions, either for reading or 
for writing. A locking mechanism must ensure that shared objects be modified in a consistent way. Therefore, an 
action must be consistent, and the accepted criterion for consistency is that an action be serializable, i.e. executes 
as if it had been done alone on the machine, before or after any other transaction, although in reality it may have 
executed concurrently with other transactions. Consistency is ensured by an appropriate locking mechanism: a 
transaction holds a lock for each object to which it needs exclusive access. For instance, a two-phase locking 
strategy can be followed, in which each transaction gathers the access rights of the objects it wants to access, 
operates on them and then releases the locks in the opposite order.  

All practical locking schemes can cause the transaction that asks for a lock to be cancelled: 

Pessimistic locking schemes first ask for all locks that the transaction may require during the transaction, perform 
the transaction and then release the locks. A transaction can then be cancelled because of deadlock (two 
transactions asking for the same locks in reverse order). Also, pessimistic locking does not allow to add locks which 
were not foreseen at the beginning. 

Optimistic locking schemes allow a transaction to access the objects without holding a lock. In most cases, there is 
no conflic between transactions, and the transactions complete normally. In some cases, however, a conflict 
occurs, and all involved transactions must be cancelled and restarted. Optimistic locking is similar to collision 
arbitration, while pessimistic locking is more related to token arbitration. Optimistic schemes are on the average 
faster than pessimistic locking schemes 

The locking mechanisms are beyond the scope of this tutorial. They can be found in Bernstein's tutorial [Bernstein 
81]. 

7.3 Model of a database 

We can consider the database as consisting of three parts: the memory storage, the disk storage and a log of 
activities which is used to reconstruct the database in case of failure: 



 

Chapter 7 Recovery in Database 149 

PROCESSOR

WORK STORAGE

DISK BUFFER 
POOL

ON-LINE LOG

STABLE 
DATA 
BASE

DISK OR 
TAPE

STABLE 
LOG

DISK

SEMICONDUCTOR 
(VOLATILE) 

MEMORY

 

Figure 7-1: Model of a Database Computer. 

Each transaction runs in its own memory space within the computer. A multitasking operating system could simply 
assign one task per transaction, the memory management ensures that the address spaces remain independent. In 
fact, the operating system lets each transaction believe that it runs on its own processor with its own address space.  

Each transaction progresses by modifying objects (records on files) in the database, which is common to all 
transactions. Some of these objects are shared by several transactions (for instance the directories). 

The database consists of files that are normally located on disk. Files that are currently opened for read or write are 
buffered in an area in memory called the buffer pool. It is much faster to access and manipulate files in RAM than 
on disk, especially for database operations (search and random access). Not all of the file is buffered: a file is 
divided into fixed-length blocks called pages, which are read from the buffer on demand. A changed page is not 
immediately copied back to the disk, since it could be used further locally. Meanwhile, the file on disk is inconsistent 
since some of its modified pages have been written back to disk and others still reside in the buffer pool.  

Neither is a file consistent when it is closed: other users could need access to that same file and its modified pages 
still reside in buffer pool. Propagation of a modified page to disk is done either by a special instruction "flush pool", 
or by the operating system itself when it runs out of buffer pool space. In the last case, the least recently used page 
(LRU) is propagated to disk. The programmer of a transaction has normally no influence over which pages are 
currently in pool.  

We will see that this buffering complicates recovery significantly. If memory is erased in a crash, the currently 
opened files will remain inconsistent. 

7.4 Failure modes in a database 

We consider four kinds of failure: set-backs, cancels, crashes and media failure. The first two affect only one 
transaction and the other two affect all transactions. The terminology and concepts are adapted from [Gray 78] and 
[Haerder 83]. 



 

150  Fault-tolerant Computers 

7.4.1 Failures which affect one transaction 

We consider: 

• Transaction CANCEL (abort or transaction failure),  

• Transaction Set-Back (action failure),  

• Crashes (computer failure),  

• Media Failure (failure of the mass storage). 

7.4.1.1 Transaction Cancel 

Cancelling a transaction erases all effects of this transaction (see Figure 7-2).  

ACTION ACTION ACTION

Set-Back 
UNDO 1

Cancel

Save Point 
1

Save Point 
2

Begin 
Transaction

End 
Transaction

Cancel 
UNDO 0

 

Figure 7-2: Transaction Cancel and Set-Back 

Cancelling can be voluntary and originated from the transaction itself because it either cannot finish or human errors 
have been committed. It can also originate in software errors or in database mechanisms as a measure to break 
deadlocks. Finally, cancelling can also be due to a crash, but this will be discussed later.  

To give an order of magnitude, normally about 3% of the transactions are cancelled for some reason. Cancels 
occur at the rate of about twice a minute in a large database. Transaction cancels are handled by UNDOING. 
Recovery only lasts some milliseconds.  

UNDOING restores all objects which have been modified by the transaction to their previous values. The 
transaction state is irrelevant. 

7.4.1.2 Transaction Set-Back 

Because of small errors in a transaction, it may be necessary to undo the last actions, without undoing the whole 
transaction. A set-back may be voluntary, as in the case of an entry error, or to leave the way free for an alternate 
action. It can be called implicitly to deal with operating errors (access violation) or it can even be used as a 
programming technique.  

To execute a set-back, the progress of the transaction is divided by firewalls called SAVE POINTS (see Figure 7-2). 
Save points are implanted by the application programmer by calling a SAVE procedure. At each save-point, the 
volatile state of the transaction is saved (typically up to 64 KB of information). The save points are numbered with 
save point 0 being the beginning of the transaction. The programmer invokes a set-back by calling an "UNDO n" 
procedure which returns the transaction to the n-th save point.  

Set-backs occur about as frequently as cancels, i.e. at the rate of several per minute. Recovery is done by 
backtracking, which takes some milliseconds. Backtracking restores the state of the transaction state as it 
prevailed at the save point and undoes all objects that have been modified since that save point. One can also undo 
several save points at once.  



 

Chapter 7 Recovery in Database 151 

7.4.1.3 Crashes 

Crashes are due to computer failure, power supply outages, or severe operating system bugs. When a crash 
occurs the processor and memory state, including the buffer pool, are completely lost. All transactions running on 
this machine are lost. A crash does not affect the objects stored on disks. But these objects can be inconsistent 
because some of their pages, which are still buffered in memory, have been lost.  

A crash affects all transactions which are currently in progress (Figure 7-3): 

T 1

T 2

T 3

T 4

T 5

CHECKPOINT

CRASH

 

Figure 7-3: Crash 

Crashes occur about once a week. Crashes are handled by a RESTART. A restart should last a few seconds. 

A restart cancels all the transactions that were active at the moment of crash and redoes the work of all the 
transactions that committed before the crash. A committed transaction may need to be redone although it has 
already terminated, as its updates may not yet have been written back into the stable storage.  

To avoid redoing old transactions, the execution is divided by firewalls, called checkpoints, which are inserted 
about every 10 minutes to minimize the work to be done at restart. So, in the above Figure 7-3, transactions T2 and 
T3 must be redone, and T4 and T5 must be cancelled, but T1 need not to be redone, since it committed before the 
firewall.  

Note that a more elaborated technique would allow one to continue the transactions that were in progress at the 
moment of the crash, by backing them to their latest save-point. This is done in some systems, but costs more state 
saving. 

Note: firewalls are usually called checkpoints, but this last term has different meanings (see vocabulary, 7.8).  

7.4.1.4 Media Failure 

A media failure is a heavy crash in which the state of the disks is lost, i.e. the disks are considered volatile. This can 
be caused by a double fault in redundant storage, by operator faults or by a severe software error. A media failure is 
not expected to occur more frequently than about twice a year.  

Recovery is done by reconstruction. A reconstruction should be completed in less than one hour. 

Reconstruction restores the state of the disk storage and performs a restart, cancelling transactions that were not 
committed and redoing transactions that were committed. 

Reconstruction is made from an archival copy of the database, at a moment when no transactions are active, for 
instance early in the morning. This copy is a full back-up copy of the database. The back-up copy is guarded in a 
safe place and heavy reliance is placed on the log, which should be crash proof.  



 

152  Fault-tolerant Computers 

7.5 Recovering from database failures 

7.5.1 State Saving 

All four above failure modes: set-back, cancel, crash and media failure are handled by gathering the following 
information during normal operation: 

_ a FULL BACK-UP COPY of the database is taken at a time when the system is TRANSACTION-CONSISTENT, 
i.e. there are no transactions in progress (for instance at 3:00 am when nobody works). Thus, the copy needs 
not include the memory state since it is irrelevant. The back-up copy is kept on tape in a safe place. It is used to 
recover from MEDIA FAILURES.  

_ a LOG of changes to the database is continuously kept in an AUDIT TRAIL. This log follows all activities of the 
database. It must be very reliable, because if it fails, no recovery is possible. For this reason, the log is often 
duplicated.  

The following information is kept in the log: 

1) Each time an object is modified, its previous value (BEFORE-IMAGE) and its new value (AFTER-IMAGE) 
are recorded in the log, along with the identity of the transaction which did the modification  (Figure 7-4) 

T 4
BEFORE

A = 5

AFTER

A = 3
T 5

BEFORE

B = 30

AFTER

B = 45

TRANSACTION NUMBER
 

Figure 7-4: UNDO and REDO LOG. 

The set of images builds an UNDO-LOG and a REDO-LOG, which correspond to the UNDO-STACK and REDO-
FIFO respectively. The before-image is used to recover from transaction cancels, set-back and crashes. The after 
image is used to recover from crashes and media failure. 

Each time a transaction begins or ends, and entry is kept in the log as: BEGIN&TRANSACTION T and 
COMMIT&TRANSACTION T. 

CHECKPOINT information tells when a checkpoint has been taken. 

Each time a SAVE-POINT is taken, enough information to reconstruct the volatile state is recorded. 

Recovery is based on the stable state and on the log for all recovery modes, except recovery from media failures, 
which relies on the full-backup and on the log. 

7.5.2 Transaction Cancel 

On cancelling, the memory space of a transaction becomes irrelevant (since the system must be restored to the 
state it had before the transaction began). All objects which have been modified by this transaction since it began 
should be restored to their previous value.  

The programmer influences the cancelling by three instructions: 

BEGIN&TRANSACTION; 

CANCEL; 

COMMIT&TRANSACTION; 

Note that CANCEL can be called implicitly, for instance by the operating system to break a deadlock. 



 

Chapter 7 Recovery in Database 153 

Undoing trusts that the disk storage is not affected, the current state of the transaction is irrelevant. 

To cancel a transaction, the log is read backwards, and each entry which corresponds to the cancelled transaction 
is extracted. An UNDO-LOG for this transaction is reconstructed. The before-image is used to restore the objects 
modified by that transaction to their previous value, until the BEGIN&TRANSACTION T mark is reached. 

Of course, if the COMMIT&TRANSACTION T mark is found, no recovery is possible. 

The undo-log must be read backward for recovery (it has the form of a stack). Therefore, it is natural that the redo 
log be kept on disk since tapes are difficult to read backwards. In fact, since cancelling occurs so frequently and 
must be quite fast, (some milliseconds), the logs are kept in memory. This complicates crash recovery.  

7.5.3 Transaction Set-back 

If smaller errors occur during transaction processing, it may not be required to cancel the whole transaction, but only 
to set it back to one of the previously set SAVE-POINTS.  

In case of set-back, the current transaction state is abandoned. Backtracking must restore the stable objects which 
have been modified since the save point and reload the transaction's state with the state saved at the save point.  

The programmer has two instructions available to handle set-back: 

SAVE n; and 

UNDO n; 

At each save-point, the system saves the transaction state (which can amount to 64KB). 

Backtracking trusts the disk storage and the log. The log is read backwards, in the same manner as for cancelling. 
Each object that has been modified by the transaction is restored to its previous value. When the n-th save point is 
reached, the state recorded in the log is reloaded into memory and the transaction can continue from this point.  

7.5.4 Crash Recovery 

The value saved at each save point is not sufficient to restore the system state after a crash. Further, there is no 
obligation for a programmer to take save points.  

Restart trusts the disk state, but the memory space of all transactions is lost. 

A restart should undo all transactions that have not yet committed (transactions T4, T5, called LOOSERS) and redo 
all transactions that have committed (transaction T1, T2, T3, called WINNERS).  

Undoing is similar to transaction cancelling, with the difference that it affects several transactions, more precisely all 
loosers. Then the winners are redone.  

Note that the redo would be unnecessary if every update of an object was propagated to the stable state BEFORE 
the action committed. Redo is made necessary because: 

some updates are buffered in the memory pool 

one must be sure that the log contains the before-image before making the actual updating because there is a 
probability of crash between writing the log and overwriting the object. 

Since all transactions that have been done since the crash would need to be redone, a firewall is introduced about 
every 5 minutes. A firewall is just an operation that ensures that the memory does not contain any information 
relevant to the database. 

The simplest way to take a firewall is to wait until no transaction is active and then to make an entry in the log just 
saying "firewall", with no special information saved. Then, the log would not need to be read back from this point. 

If there are pages in the buffer pool at that time, then all pages from buffer should be first flushed to the database 
and then a firewall entry is marked in the log, so now the content of memory is irrelevant. 

As a further complication, we depart from the former assumption that the firewall was transaction-consistent, i.e. 
taken at a time when the system is quiescent (no transaction in progress). This is the normal case, since a firewall 
should be taken about every 5 minutes and there are some hundreds of transactions active at the same time. 

Then a checkpoint must be taken when transactions are in progress. We will therefore have to consider the 
recovery of transactions of the T2 and T4 type in Figure 7-3. 



 

154  Fault-tolerant Computers 

The method described in [Gray 81] is to take an ACTION-CONSISTENT checkpoint: At the beginning, a log entry is 
made which states "BEGIN_CHECKPOINT". All transactions are prevented from continuing after they complete 
their current action. Since each action in a transaction is quite short (some milliseconds), the system reaches 
rapidly an action-consistent state. The identity of the transactions which are currently active is logged, along with a 
pointer to their most recent log records. Then, all pages which reside in the pool are propagated to disk, so the files 
on disk are now consistent. Finally, an END_CHECKPOINT is entered in the log to signal that the firewall is 
completed.  

At recovery, the log of the transactions to be undone is read back until the BEGIN_CHECKPOINT mark is found 
(there might have been some modifications between BEGIN_CHECKPOINT and END_CHECKPOINT because of 
unfinished actions). 

This is not sufficient to restore the state, since some transactions were in progress at checkpoint time. Therefore, 
the log of these transactions must be kept so one can redo them. The log entries extends therefore to the time 
previous to the taking of the checkpoint, but there is no need to consider other transaction than those which were 
active at the checkpoint. 

A more elaborated checkpoint could have prevented the cancelling of the transactions that were in progress at the 
moment of crash, by using the transaction save-points. The additional state information that must be saved must be 
traded against the probability of failure. 

7.5.5 Media Failure 

Recovering from a media failure requires that the database be restored from an archival copy. That is, a GLOBAL 
REDO from scratch must be made. For this, a before-image of the whole database must be made. This before-
image is the full-back-up copy, which is generally kept on tape. The before-image must be transaction-consistent, 
i.e. no transactions should be in progress at the time the full back-up is copied. This can be done for instance at 
3:00 am in the morning when nobody works. 

At recovery, the back-up copy is played into the database, reversing it to the state it had at the time the copy was 
made. Then, the log is read from the moment of crash backwards, to separate transactions which committed before 
the crash (winners) and transactions which were active at the moment of the crash (loosers), until the entry 
corresponding to the full back-up is reached. 

Then the redo-log is read forward, and every entry corresponding to transactions that were committed at the 
moment of the crash will be restored. Transactions that were active at the moment of the media failure are by 
default cancelled. At the end of reconstruction, the state should be the same as after a crash. Indeed, the procedure 
is exactly identical to that followed after a crash, only that the database is first reloaded with the full back-up and that 
checkpoints since the full back-up are ignored. 

7.5.6 Optimisation and Enhancements 

There are several techniques that are used to reduce the time required for recovery: 

7.5.6.1 Log Compression 

The redo log is read forward to recover. It has the form of a FIFO. If the object has been modified several times, 
only the LAST value before the crash is interesting (it contains the valid version of that object).  

The undo logs are read backward for recovery, that is, they have the form of a stack. If the object has been 
modified several times since the last recovery point, only the first value after the transaction save point is interesting 
(it contains the value of the object before the save-point, respectively. before the transaction begun).  

Since only the last value, respective the first value are interesting for recovery, a log-compression routine can be 
run in the background which transforms the log by dropping the unnecessary entries, i.e. keeping only the first value 
of the undo-stack or the latest value of the redo-stack.  

7.5.6.2 Checkpointing Consistency 

It would be far easier to have just a firewall for recovery against crashes that tells one how far back one must redo a 
transaction. Then one could drop the logs previous to that point. One can construct a transaction-consistent 
checkpoint by awaiting the cancel or commit of each transaction that was active at the moment of checkpointing. 



 

Chapter 7 Recovery in Database 155 

The artificial log is then used as a substitute for the actual checkpoint. This is especially of interest for databases 
which are on-line 24 hours a day, for instance international networks.  

7.5.6.3 On-Line Log 

Since rollback is such a frequent operation, it is interesting to maintain the most recent part of the log in memory. 
The problem is that this part of the log is lost in a crash. This by itself is not tragic, but one should avoid a situation 
in which updates to an object are written to the database BEFORE the corresponding entries of the log have been 
saved in stable storage. If this occurs, one will be incapable to recover since the previous value of that object will 
not exist any more. The solution is to force the log to stable storage before the updates are made. This is called the 
WRITE-AHEAD LOG by [Gray 78].  

7.5.6.4 Shadow Files 

Shadow files is a technique to speed up recovery from media failures. Each shadowed file exists twice physically, 
preferably on two different disks: the current version that is being updated and the shadow version that may not be 
updated. Therefore, one can survive a failure of a file which is not in the log, for instance one file which has been 
modified before the last checkpoint by a transaction which committed before the checkpoint (T1 type) and which 
has not been refreshed since. Basically, shadow files are redundant with the log and full back-up technique. 

7.6 Summary of transaction recovery 

The above techniques for database recovery show how rollback is actually implemented. One difficulty is to 
distinguish which storage is volatile and which is stable in a crash. Things would be easier if the operations were not 
delayed by the paging mechanism. The real challenge is to make such a mechanism efficient. Recovery should not 
cost more than some 5% of the system performances. It is however accepted that the redundancy of storage will be 
larger than 100%, especially when shadowed disks are used. Most of the problems deal with the fact that the above 
techniques use cold-stand–by. A complete recovery requires therefore that at least some entries be repeated, and 
at worst transactions be repeated after a crash. Most applications involve human operators which are trained for 
this. 

Database recovery ensures that the committed transactions will not have to be redone and that their effects persist 
in spite of a crash or media failure. These techniques do not ensure that the transactions will be resumed some 
time later. For this, cold stand–by is not the proper technique. Indeed, recovery would be simplified by using warm-
stand–by techniques. Therefore, the above techniques are not apt to implement highly available systems. At least, 
integrity can be guaranteed as long as no erroneous data is committed. 

7.7 Recovery in distributed systems 

Distributed transactions are one level in difficulty above recoverable transactions. A distributed transaction takes 
place on different physical nodes in a distributed system and is executed by parallel actions. The transaction is 
atomic when all of these parallel actions commit, or none of them. The problem of concurrency is not different from 
the concurrency within a database and can be treated with the same locking methods. The difference is that the 
concurrency is real, and that communication is unreliable. 

The basic protocol to realize an atomic distributed transaction is called the two-phase commit in [Lampson 81] and 
[Gray 78]: 

At the beginning, there is one dedicated unit that is the recovery manager. The recovery manager may be for 
instance the client of the transaction. 

The coordinator takes a recovery point and then broadcasts a message: "Ready to Commit ?" to all concurrent 
actions working on behalf of a transaction, asking them to accept commit.  

If the coordinator crashes shortly after, the recovery manager will start it at the last recovery point and let it send 
"Ready to Commit ?" again. 

Each participating action responds by "Ready" or "Reject" or just remain silent for a while, either because it is not 
finished or because it has crashed. 

If the coordinator receives a "Reject", it takes a new recovery point. Then it broadcasts the message "Cancel All" to 
all participants. If it crashes after that point, it will send "Cancel all" again. 



 

156  Fault-tolerant Computers 

If the coordinator receives a "Ready" from all participants, then it also takes a recovery point. From now on, it 
cannot repeat the "Ready to Commit" order any more. 

The coordinator sends a "commit" message to all participants. Whenever a participant receives a "commit" 
message, it should commit, since this message can only come if all participants are ready to commit. 

 

Figure 7-5: Two-Phase Commit. 

Note: this method has been used in sailing for thousand of years to make sure that all sailors obey to the same command. 
Every sailor is supposed to answer "Ready" when the captain yells "Ready to come about ?". Only when all sailors 
responded "Ready" does the captain give the order "About ship!". Once the captain gave the order "About ship!", he 
cannot cancel it, but can only repeat it. He may however cancel the "Ready to come about ?" any time before, either 
because the manoeuvring is not any more opportune or because somebody is not ready. But once it's started, it must 
keep on.  

Note also the similarity with the fire squad order "Arm, Aim, Fire". We have also seen the same method to achieve 
atomic outputs in safety devices, only that the physical process was the only partner. 

The two-phase commit has also some flaws. It assumes for instance that every node will come up again in the 
transaction after a finite time to complete it. If it crashes after having replied "Ready", it must execute the command 
it acknowledged at a later time. This is not possible to achieve for a crash in the above recovery scheme which 
abort current transactions. A finer degree of recovery with the saving of the transaction state at checkpoint time is 
needed to guarantee that the failed transaction will eventually continue.  

The second simplification we made was that all interactions were done by non-faulty units, i.e. all processors are 
fail-stop. This assumption holds quite well for hardware failures, but is rather difficult to enforce for software failures, 
since the coverage of software errors is lower. 

The two-phase commit has been extended to three-phase commit [Bernstein 83] and n-phase commit, with 
increasing complexity and decreasing probability of failure. In fact, it can be shown that the problem has no solution 
which is 100% reliable within a bounded time. 

The proof is known as the two army's problem [Gray 78, Yemini 79]. 

Two allied armies are camped at a certain distance and are separated by enemy lines. The generals communicate 
by messengers, which must first cross the enemy lines to reach the other army. These messengers risk to be 
caught by the enemy each time they try to reach the other army. 



 

Chapter 7 Recovery in Database 157 

The armies have only a chance to win if they attack simultaneously, i.e. if they synchronize on a time for attack. 
Since attack needs a preparation time and an army may well be delayed after it already agreed on a time, the 
generals must agree on a protocol to start attack. This protocol relies on the unreliable messengers. If a protocol 
exists which works with N unreliable messengers, then the last messenger is irrelevant, since the protocol must 
work without him. Then, the protocol must also work with N-1 messengers, and the N-1th messenger is not 
required, either.  

7.8 Software issues 

Until now, we have considered the mechanisms used for fault-tolerance. Now, we would like to expose their impact 
on the programming. 

7.8.1 Programming Constructs for Recovery 

The ambition of fault-tolerant system is to present an interface to the user which is identical to that of a non-
redundant computer, so the application programmer and the user has nothing to do with fault-tolerance. This is 
called transparent fault-tolerance. 

For instance, the inserting of checkpoints or save-points in an application program is not desired: this only reflects 
the fact that the system is not capable of providing an invisible fault-tolerance. The application programmer must 
think all the time whether it is opportune to insert a recovery point or not. Further, it makes the reliability of the 
system depend on the programming skills of the programmer, and extends the certification phase to the application 
program. 

$??? Brown, Boveri's experimental network 

The network developed at Brown, Boveri combines the process of communication and of taking of recovery points. 
Its architecture is similar to that of the Tandem or Auragen 4000. 

The basic idea is that the internal state of a node does not matter as long as it does not communicate with the 
outside world. Therefore, the operations of state saving, interaction monitoring and communication should be 
combined in one message. 

Each time a message is sent, it is received by three destinations, like in Auros. Each message carries piggy-back 
the update of the working task for its back-up task. The additional overhead is neglectable since the cost of sending 
a message is practically independent of its length. The message itself is received by the destination task and its 
stand-by task. 

The mechanism of communication is the remote procedure call. 

****************** * To be extended * ****************** 

[Aschmann 86] H.R. Aschmann Recovery in a Distributed Process Control System 

LOCUS,  



 

158  Fault-tolerant Computers 

7.9 Vocabulary 

We close by including some definitions often found in relation with databases, and which should help in scanning 
the literature: 

Audit trail: a record of all activities that have taken place on a computer. The audit trail can be used for statistics, 
or for recovery. 

Log: a record of operations that have been performed by a processor or its environment. Logs are 
generally written on disk or passed to a tape. 

DO-LOG: an entry in a log that concerns a modification performed on an object. A do-log consists of an undo-
log or a redo-log entry or both. 

REDO-LOG: an intention list of the value that all objects should have if the next recovery point would have been 
reached successfully. By extension, a list of modifications to be applied to the last full back-up as a 
shortcut to computation. 

UNDO-LOG: a log entry which records any information necessary to restore an object to its previous state, taking 
the present state as a  starting point, in particular the previous value of that object. 

AFTER-IMAGE: IBM's IMS term for an entry in the "redo-log" which contains the value of an object after its 
modification. 

BEFORE-IMAGE: IBM's IMS term for an entry in the "undo-log" which contains the value an object had 
before its modification. 

Journal: a log of input or output operations which have been performed by a task. The journal is used to 
replace input and output which already took place during the ROLL-AHEAD operation. Journalling is 
only considered in database recovery when one does not wish to cancel a transaction which was not 
committed at crash time. 

Rollback: restoring in a spare unit the state which prevailed in the failed unit at a previous point in time (recovery 
point) In a database, the recovery point can be a save-point (set-back), the beginning of a transaction 
(cancel), the last checkpoint (crash) or the latest committed transaction end (media failure). 

Roll-ahead: continuing the computation once the recovery point has been restored until the next recovery point is 
reached. The roll-ahead differs from the normal computation because it must take into account 
operations performed on the environment by the failed processor. 

Backward Error: a recovery method which consists of continuing computations 

Recovery: on a spare or repaired unit, by first restoring a state which existed previously on the failed unit 
(rollback) and then restarting computations from that point on (roll-ahead). 

Save point: a point in execution at which a copy of a part or the whole of volatile storage (part which is expected to 
fail) is built in a fail-independent storage (called transaction save-point by Gray, checkpoint by 
Tandem). This term sometimes designates the state saved instead of the saving operation. 

Recovery point: a point in the execution at which a previous state may be reconstructed, either by reload and redo 
or by undo, and from which roll-ahead is started. This term sometimes designates therestored state 
instead of the saving operation. Fire-Wall: a point in the execution beyond which no work should be 
redone (called checkpoint by Gray and Haerder). In theory, no state need be saved at a fire-wall if no 
operations are in progress. 

Back-up copy: a redundant copy of the volatile state taken at a checkpoint. Sometimes designates the redundant 
parts of a machine (back-up hardware) although "stand-by" would be more precise. 

Full Back-up: a redundant copy of the totality of the machine state. If reloaded into the physical machine, it would 
restart exactly at the state it had at the moment of saving. Full back-up is a complete copy of a 
database. 



 

Chapter 8 Software Issues 159 

7.10 References 

[BERNSTEIN 83] P.A. Bernstein, N. Goodman & V. Hadzilacos,  
"Recovery Algorithms for Database Systems",  
IFIP INFORMATION PROCESSING 83, R.E.A. PARIS September 1983. 

[BERNSTEIN 81] P.A. Bernstein & N. Goodman,  
 "Concurrency Control in Distributed Data Bases",  
Computing Surveys, Vol. 13, No. 2, pp. 185-221 June 1981. 

[GRAY 78] J. Gray,  
 "Notes on Data Base Operating System",  
Operating System Lecture Notes on Computer Science Vol. 60 Springer Verlag, 1978. 

[GRAY 81] J. Gray, P. McJones et al.,  
"The Recovery Manager of the System R Database Manager",  
Computing Surveys, Vol. 13, No. 2, pp. 223-242 June 1981. 

[HAERDER 83] T. Haerder & A. Reuter,  
"Principle of Transaction-Oriented Database Recovery",  
ACM Computing Surveys, Vol. 15, No. 4, pp. 287-318 December 1983. 

[Lampson 81] B. Lampson & H. Sturgis,  
"Atomic Transactions",  
Lecture Notes on Computer Science No. Springer, 1981 previously published by Xerox. 





 

Chapter 8 Standards and Conformance Testing 161 

8 Standardisation and Conformance Testing 

Die europäische und internationale Standardisierung fehlertoleranter Steuerungen hat in den letzen Jahren viel 
Fortschritt gemacht, sowohl durch allgemeine Richtlinien (z.B. IEC 61508) wie durch gebietsspezifische Normen 
(z.B. EN 50128/9 für die Eisenbahntechnik). Deutschland war dabei wegweisend, mit Arbeiten des TÜVs, des 
Technical Committee TC7 der EWICS und der Eisenbahnsignalisierungs-Industrie, insbesondere für das 
Europäische Signalisierungssystem ETCS.  

Im Anhang steht eine Liste von Steuerungen, die durch den TÜV geprüft worden sind. Der Verweis eines 
Herstellers auf eine erfolgreiche Typenprüfung durch den TÜV oder eine andere Instanz nach einer allgemeinen 
Richtlinie wie IEC 61508 soll nicht überbewertet werden. Die Typenprüfung untersucht lediglich den Prüfling auf 
strukturelle Fehler hin, die seine Verwendung in Gebieten verwehren würde, die eine bestimmte Integrität oder 
Stetigkeit verlangen. Die Typenprüfung sagt aber nichts darüber aus, wie wahrscheinlich ein Integritätsbruch oder 
ein Stetigkeitsbruch ist.  

Allein schon die Tatsache, dass die Anwendungssoftware nicht mitgeprüft wird, welche für mehr als die Hälfte der 
Ausfälle verantwortlich ist, zeigt, dass eine anwendungsspezifische Prüfung nachträglich unerlässlich ist. Es gibt 
zwar einige Richtlinien für die Softwaresicherheit; diese sind jedoch so allgemein formuliert, dass darüber keine 
Konformität geprüft werden kann.  

 

Die wichtigsten Sicherheitsnormen in Europa 
IEC/EN 62061 Safety of machinery - functional safety –Electrical, electronic and programmable 

electronic control systems 

IEC/EN 61511 Functional safety of E/E/PES safety related systems – 

Functional safety: safety instrumented systems for the process industry sector 

IEC 61508 
(VDE 0801) 

 Functional safety of E/E/PES safety related systems – International standard 
(allgemeine Richtlinien) 

IEC 60300 Dependability management 
 

ISO/IEC 13849 
(EN 954) 

Safety of machinery – Safety-related parts of control systems 

EN 50159 
 

Requirements for safety-related communication in closed/open transmission systems 

EN 50129 
 

Railways applications - Safety-related electronic systems for signalling 

EN 50128 
 

Railways applications - Software for railway control and protection systems 

EN 50126 
(VDE 0115) 

Railways applications - Specification and demonstration of reliability, availability, 
maintainability and safety (RAMS) – allgemeine Richtlinien 

(VDE 0116) 
 

Elektrische Ausrüstung von Feuerungsanlagen 

DIN V 19250  Grundlegende Sicherheitsbetrachtungen für MSR-Schutzeinrichtungen 
(wird durch EN 61508 abgelöst) 

IEC 880 Software for computers in the safety systems of nuclear power stations 

 



 

162  Fault-tolerant Computers 

Anforderungsklassen und Sicherheitsstufen 

IEC 
61508 

TÜV  
Anforderungs 

klassen 

Sporadischer Betrieb 

Wahrscheinlichkeit 
einer 

Funktionsweigerung 

Kontinuierlicher 
Betrieb 

Wahrscheinlichkeit 
eines gefährlichen 

Fehlers 

Gefahr/Risiko Stufe 

 

 

SIL 1 AK 2 & AK3 10-1 bis 10-2 /h 

 

10-6 bis 10-5 /h kleinere Schaden an 
Anlagen und 
Eigentum 

SIL 2 AK 4 10-2 bis 10-3 /h 10-7 bis 10-6 /h grössere Schaden an 
Anlagen und 
Eigentum. Mögliche 
Personenverletzung. 

SIL 3 AK 5 & 6 10-3 bis 10-4 /h 10-8 bis 10-7 /h Personenschutz 

SIL 4 AK 7 10-4 bis 10-5 /h 10-9 bis 10-8 /h Mögliche katastrophale 
Folgen 

 



 

Chapter 9 Introduction to Reliability Theory 163 

9 Introduction to Dependability theory and models 

This chapter consists of two parts: first the notions and definitions used in the field of dependable computing are 
presented in a somewhat more formal way than in Chapter 1. Then, calculation methods are explained for the 
different cases of non-redundant and redundant, non-repairable and repairable systems. The simple cases will be 
treated by combinatorial probability. The repair cases will be treated with the help of the theory of Markov chains. 
This theory represents the subset of reliability theory that is required for understanding fault-tolerant computing 
systems, but the calculations are the same for any other dependable system. 

Based on these notions, we will consider in this chapter six categories of systems: 

1. non-repairable, non-redundant (reliable)  

2. non-repairable, redundant (reliable)  

3. repairable, non-redundant (available) 

4. repairable, redundant (available) 

5. repairable, redundant and reliable 

6. gracefully degradable 

Finally, a table with the principal results will be displayed and some important references will be indicated.  

9.1 Reliability of a single element 

9.1.1 Reliability Definition 

Let us consider a single element which is likely to fail, but cannot be repaired. From the point of view of 
dependability, the element has two states: "good" and "failed". This is symbolized in Figure 9-1:  

0 1

good

λ(t)

failed
 

Figure 9-1: Single Element without Repair. 

The arrow from the "good" state to the "failed" state expresses that there is a probability that an element that was in 
the good state passes to the failed state. This probability is expressed by the variable 

���
 which is the failure rate. 

There is no arrow from "failed" to "good", since the element is not repairable. 

Reliability is defined as "a characteristic of an item expressed by the probability that it will perform a required 
function under stated condition for a stated period of time". 

One expresses the reliability R(t) of an item by the probability that this item will be in the working state at time t, 
provided the item was in that state at an initial instant t0 = 0 at which time its reliability was 1, and has not failed 
since. 

The reliability R(t) is therefore the probability that the element has not failed in the interval [0, t] provided that R(t0) = 
1. This is the complement of the probability that the element has failed in the interval [0, t], which is the unreliability 
F(t) = 1 - R(t).  

The reliability is always a declining function like Figure 9-2 shows. After an infinite time, the reliability will always 
reach the value of 0. The definition of the instant t=0 is a matter of convention: one can define it as the time the 
element was fabricated, tested, first put into operation or inspected for the last time.  



 

164  Fault-tolerant Computers 

ARL

MT

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Reliability

time 0.0

t0
 

Figure 9-2: Acceptable Reliability Level and Mission Time. 

Elements are seldom used up until their reliability tends to zero. Most of the time, only the left portion of the above 
curve is of practical importance. One is interested in the reliability of an element at the end of a certain mission 
time, which is the interval during which one depends on the good function of the element. The probability that the 
mission succeeds is therefore:  

R = R (mission time). 

Alternatively, one can define an Accepted Reliability Level ARL below which the mission is considered too risky and 
should be stopped. The mission time is therefore:  

mission time = R -1 (ARL) 

To express the reliability of an element, one often uses the Mean Time To Fail, or MTTF of that element, which is 
the average lifetime of the element. It is generally expressed as: 

MTTF = �
0

∞

 R ( t ) dt

 

In the above Figure, the MTTF corresponds to the surface below the plot. The term MTBF (mean time between 
failures) is sometimes used instead of MTTF in the case of repairable elements - we will come back to it. 

9.1.2 Determining Reliability 

The reliability of one particular, non-repairable element cannot be determined experimentally before the element 
fails, in which case the Figure becomes quite useless for that element. The problem is the same as to determine 
whether a match can be lighted: one cannot say before trying to light it, but after that, the only indication one gains is 
that the match WAS good, not how reliable the match IS. To determine the reliability, two ways are chosen: 
experimental reliability or previsional reliability:  



 

Chapter 9 Introduction to Reliability Theory 165 

_ Experimental reliability (or empirical reliability) is determined by studying the behaviour of a great number of 
similar parts and gaining clues on the reliability of an element. For instance, the reliability of a light bulb can be 
deduced from studying large samples, as we will see.  

_ Previsional reliability calculates the reliability of a complex system by dividing it into parts, whose reliability has 
been previously determined experimentally, and by analysing their interrelationship. This will be discussed later 
when considering a collection of elements.  

9.1.3 Experimental Reliability 

Experimental reliability is determined by gathering experimental data of the reliability of a large quantity of similar 
elements, and deducing the reliability of a typical element out of it.  

Example:  
we study a large quantity, 6500 light bulbs. At a fixed interval  �t – for instance of one hour, we check how many good 
bulbs remain and plot this number in a curve like Figure 9-3 shows:  

remaining 
good bulbs

time 

100%

Ri

R(t)

Ri+1

ti ti+1
�t  

Figure 9-3: Experimental Reliability 

One then draws a conclusion from this curve to the reliability of a single element, by observing the duality rule that 
the proportion of failed elements in a large sample is equal to the probability of failure of one element of the sample.  

The curve in Figure 9-3 expresses therefore the reliability of a single bulb as well as the proportion of remaining 
good bulbs in a large sample.  

An important Figure is the number of bulbs that fail in each time interval. It is clear that this number depends on how 
many bulbs are considered, since the more bulbs there are, the more failed bulbs there will be. So, instead of 
plotting each hour the number of remaining bulbs, we now plot the proportion of bulbs that have failed since last 
hour, and we call this relation λ:  

λ =
number of failed bulbs during the interval

number of good bulbs remaining at the beginning of the interval
 

The result is the curve of the failure rate, like is shown in Figure 9-4: 



 

166  Fault-tolerant Computers 

maturity

λ

infant 
mortality

ageing

time [h]

5

4

3

2

1

0

[10-4 / h]

1000 2000
 

Figure 9-4: Experimental Failure Rate. 

The above failure rate curve applies not only to many technical objects like light bulbs, but also to living organisms. 
It is commonly known as the "bathtub" curve: at the beginning of the life span, there is a large number of failures 
corresponding to the "infant mortality", which is generally related to manufacturing problems. The bottom part of the 
bathtub corresponds to the "maturity" phase, and the failure rate is about constant. At the end of the lifespan, the 
failure rate increases again because of ageing and wear. The failure rate of human beings is of course of special 
interest for the life insurance companies in calculating their rates.  

The failure rate, at each instant t, defines the proportion of bulbs that are likely to fail in the next small interval.∆t. If 
Ri is the number of remaining bulbs when reaching interval i, this proportion is equal to:  

R i+1 - R i = - λi · ∆t
R i  

We can now express the relationship between reliability (Figure 9-3) and failure rate (Figure 9-4) by the relation:  

Ri+1 - R i 

t i+1 - t i
= ∆R = - �i · Ri∆t

 

Since this number is proportional to the probability of a single element being good, we can let the time interval  
∆t = ti+1 - ti tend to zero and express: 

=dR(t)
dt

- λ(t) · R (t)

 

Although the reason for the failing of an element is quite complex [Spectrum 81], the experimental curves obtained 
over a great number of elements seem to follow simple mathematical laws. Therefore, we would like to obtain an 
analytical expression to characterize the reliability and the failure rate instead of curves as in Figures 9-3 and 9-4. 
Several formulas have been proposed which match different kinds of failures, but we will only consider here the 
most important one, which is the assumption of the constant failure rate, also called the assumption of the 
exponential distribution of failures.  

The assumption of the constant failure rate is valid for elements in their mature phase (bottom of the bathtub). It 
applies to elements which do not age, and for which early failures are detected and screened out. Such is a good 
approximation for semiconductors that have passed the infant mortality stage. This last assumption can be enforced 
by a mature manufacturing process, by a proper test and by a temperature cycling procedure of about one week 
after manufacturing, called burn-in.  

The process of determining the failure rate from a certain number of samples is a matter of statistical methods, 
which are described in several books, such as [Birolini 85]. We will not consider this experimental gathering of data, 
but assume that for each element, we know the failure rate. There exist several reliability catalogues for electronic 
and mechanical components, the most common being for the US market the military reliability handbook, MIL-
HDBK-217D. A companion document, MIL-STD-781, describes the procedures which apply to the acceptance 
testing of the equipment, under the assumption that the equipment obeys a constant failure rate.  



 

Chapter 9 Introduction to Reliability Theory 167 

The following table shows typical reliability values that can serve as a base for the evaluation of computers. The 
reliability is expressed by the failure rate. The MTTF is only relevant for a whole system, since it is usually so low for 
a component that it has no practical meaning. 

The failure rate is expressed by failures in 1000 million hours (10+9 h -1) or "fit” (failure-in-time)3 

One fit corresponds roughly to one failure in 114’000 years. Using fit avoids handling numerous zeroes after the 
decimal point. The following Table xx shows typical failure rates of electronic components: 

 
discrete resistor (1/4 W) 1 fit 
discrete semiconductor diode: 2 fit 
discrete silicon transistor (<1W) 3 fit 
discrete capacitor (< 10 uF) 10 fit 
TTL-LS SSI 150 fit 
HC-MOS SSI 250 fit 
TTL-LS MSI 350 fit 
integrated octal bus driver 500 fit 
LED 360 fit 
256 K DRAM 400 fit 
microprocessor 8085 1000 fit 
lamp 2000 fit 
disk controller 2500 fit 
microprocessor 8086 5000 fit 
microprocessor Pentium 1 GHz 100’000 fit  (MTTF = 10000 hours) 
power grid: 114’000 fit (MTTF = 8765 hours) 
computer (including memory) 150’000 fit (MTTF = 100’000 hours) 
power supply 333’000 fit (MTTF = 3000 hours) 
dry cells (limited life) 1500’000 fit (MTTF = 720 hours) 
 PC (industry computer) 10’000 fit  
 gateway 4000 fit 
 star coupler  1000 fir 

Table 9: typical failure rates of electronic components 

The above measures vary widely depending on the batch, the technology, the environment (benign, industry, 
aircraft, helicopter) and depend especially on the temperature, which is after time the most important factor. A rule 
of thumb for electronic equipment is that reliability is inversely proportional to the power dissipated:  

λ ~ 104 [fit per Watt] 

Note also the heavy dependence on the power supply side. Most outages of commercial computers are caused by 
power supply failures, well ahead of mechanical devices failures (disks, tapes) and memory failures. CPU failures 
are relatively rare. Indeed, in industrial process control, the reliability increases from the periphery (sensors) to the 
CPU, which is normally located in a benign and temperature controlled environment. 

We recall the following about experimental reliability: The failure rate of an element can be deduced from empirical 
studies over a large number of similar elements, by applying statistical methods. For electronic equipment, one 
assumes generally a constant failure rate over the useful lifetime of each element. This assumption allows such a 
simplification of the mathematical treatment of reliability that it is also made when this assumption is questionable, 
for instance for electronic devices which do age, such as relays and vacuum tubes.  

9.1.4 Exponential Distribution 

It is worth spending a few words on the assumption of the constant failure rate or exponential distribution. The 
constant failure rate corresponds to the mature phase of the element (bottom of the bathtub) in Figure 9-4. 
Assuming a constant failure rate considerably eases the calculations. This is why one assumes constant failure 
rates even where this is questionable.  

                                                      

3 Originally, “fit” meant something different.  



 

168  Fault-tolerant Computers 

Solving the above differential equation with a constant failure rate (�(t) = � = constant ) yields:  

R ( t )  =  e
  -  λ t

 

This curve is plotted on Figure 9-5. It matches approximately the middle part of Figure 9-4. 

0

1

R(t)

time

MTTF = 

R ( t )  =  e
  -  λ t

1
λ  

Figure 9-5: Reliability under the Assumption of a Constant Failure Rate (Exponential Distribution of 
Failures). 

The Mean Time To Fail, or MTTF of that element is found by integration as: 

MTTF = �
0

∞

 R ( t ) dt  = 
λ
1

 

     for a constant failure rate only. 

The assumption of a constant failure rate seems quite simple, but we must bring it into accordance with our 
intuition. A constant failure rate means that the proportion of elements that will fail in the next small time interval dt 
is constant and independent on how long the experiment is under way. 

For instance, if � = 0.001 per hour, it says that in the next hour, 0.001 % of the remaining elements will fail, 
independently of how long these elements have been in service and how many elements have failed until now. 

This means that every element that has not been observed to fail is considered "as good as new", just by noticing 
that it is still good. Our intuition would tell us that an element that has been in service a long time has a higher 
probability of failure than a new element. On the other hand, our intuition also tells us that an element that has been 
in service for a long time can be more trusted than a newly inserted element. In reality, these heuristic rules apply 
respectively to the end and to the beginning of the lifetime of a element which ages, and not to its mature phase. 
We consider a kind of exponential distribution when we choose flashlights off a shelf for a hike: some flashlights are 
exhausted and discarded, and we consider each of the remaining good flashlights as new, regardless of how many 
of the other flashlights we tried may have failed.  

To make it easier to understand, we consider another distribution. The exponential distribution has a counterpart in 
a discrete distribution called the geometrical distribution. The geometrical distribution describes a roulette or other 
kind of hazard device which has a defined probability p that an event occurs at each throw. For instance, a dice has 



 

Chapter 9 Introduction to Reliability Theory 169 

a probability of 1/6 of throwing a 2, the probability of picking an Ace of Hearts is 1/52 in a deck of 52 cards. The 
geometrical distribution expresses the probability p that the event occurs at throw number i and has not occurred 
before. The form of this distribution is shown in Figure 9-6. 

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

R[i]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23240 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2324

i [throws]

R(i) = e -0.1 t

 

Figure 9-6: Geometrical Distribution 
(Probability of not throwing a 6 with a 6-faced dice within a number I of throws) 

Note the similarity with Figure 9-5. We can assume that each throw corresponds to a small time interval dt. The 
probability of failure at each throw is always the same and equal to p (constant failure rate). As time passes, the 
probability of failure diminishes because the element may have failed before. So, we may think that the life of an 
element with a constant failure rate is similar to a hazard game in which time is sliced and a dice is thrown at each 
small time interval, deciding whether the element dies or not. Or, like the German soldier song says:  

"Das Leben ist ein Würfelspiel" - Life is a dice game. 

Other distributions than the exponential distribution are sometimes considered. Some authors use the Poisson 
distribution. The Poisson distribution applies to a large number of identical devices, and expresses the probability 
that 0, 1, 2 or k devices would fail during time t. The case k = 0 is equal to the exponential distribution, and this is 
the only relevant case for us.  

The assumption of a constant failure rate is questionable for instance for mechanical elements which age, and it 
does not describe the infant mortality processes. Here, more complex distributions like that of Weibull or Normal are 
taken. But we leave this to more appropriate textbooks, like [Shooman 68]. The exponential distribution serves our 
purposes well. 

9.2 Reliability forecast by combinatorial means 

When an element is unique or exists only in a small quantity, no experimental data exist for it. The reliability must be 
calculated on the base of the reliability of the different parts and their interaction.  

The theory of reliability states that when a system depends on two elements to function, and the elements fail 
independently, then the reliability of the system is the product of the reliability of the parts. This can be extended to 
N elements. The reliability block diagrams express this, as Figure 9-7 shows.  



 

170  Fault-tolerant Computers 

Ra Rb Rc

Ra * Rb * Rc

=

element B element Celement A

system

 

Figure 9-7: Reliability Block Diagrams. 

When a system depends on N elements for its function, and there is no redundancy, the total reliability is the 
product of the reliability of the different elements: 

R total = R 1 · R 2 ··· R n = ∏
i = 1

n

 R i

 

This expression only holds if the N elements fail independently, that is, when there is no relation between them. The 
consideration of the interdependency only brings additional complexity in the calculation, since the above 
expression gives the worst case. 

Under the assumption that R(t) is an exponential function, one just can sum the λ of the different factors: 

R ( t ) = e
 - λ

1
 t 
 · e

 - λ
2
 t
 ··· e 

- λ
 ν
 t
 = e

 -   ( λ
1
 + λ

 2
 + + + λ

Ν
 ) t

 

For instance, to evaluate the reliability of a computer board, the elements are just listed by categories. The � factor 
of each element is taken from the manufacturer's data sheets or from the handbooks, and the � factors are simply 
summed. The total is the � of the board. A finer analysis should of course consider the interaction between parts, 
but this is seldom required. The worst-case assumption that the board fails when any part of it fails is taken. 

9.2.1 Non-repairable, redundant systems 

Non-repairable, redundant systems are a class of fault-tolerant systems. Some of their parts may fail, but the 
service is still provided until the spares are exhausted. There is no repair process. This is a typical situation in 
applications where repair is impossible, such as for space probes or communication satellites. The paradigm of 
non-repairable, redundant systems is the matchbox: one can use it to light the fire as long as there is still one good 
match in it, the fact that one match is bad has no influence on the others.  

Example 
A space probe sent to Jupiter may have a mission time of 5 years, and, if the MTTF of the probe is also 5 years, the 
mission will only have a 1/e = 37% probability of success. The statistic for communication satellites over the last years 
shows that the mission success is in excess of 95% (after successful launch), which implies that the MTTF of the 
satellites is well in excess of 5 years. This can be achieved through careful selection of the parts (fault avoidance) but 
also through redundancy (fault tolerance).  

When the reliability of an element is too low to fulfil the mission, redundancy must be used. At this point, we do not 
detail how redundancy is obtained, either by parallel elements, switched elements or time redundancy. We do not 
consider either how the transition is done when a redundant component fails. We just assume that the system can 
detect the failure or mask it in some way. Redundancy is expressed in terms of reliability blocks by paralleling 
blocks, as in Figure 9-8:  



 

Chapter 9 Introduction to Reliability Theory 171 

RA

triplication n-plicationduplication

RB

RA

RC

RB

RA

RN

RB

RI

R1oo2 =  2R - R2 R1oo3 =  1 - (1-R)3 R1oon =  1 - (1-R)n
 

Figure 9-8: Redundancy. 

The most common kinds of redundancy are duplication (1-out-of-2 or 1/2), triplication (1/3) in general, n-
plication, as Figure 9-8 a,b and c shows.  

The increase in reliability that results from redundancy will now be calculated for the most important cases. 

9.2.2 Duplication 

The duplicated system (also called one-out-of-two, or 1oo2, is expressed by the reliability diagram of Figure 9–9. 
The reliability of the whole is the probability that the two elements do not fail.  

R1oo2 =  2 R - R2

R1oo2 =  2 e -λt - e -2λt

R1oo2 =  RA (1-RB)  +    (1-RA ) RB +       RARB

A good
B failed

A failed
B good

A good
B good

=  RA + RB - RA• RB

with RA = RB = R

with R = e -λt

RA

RB

 

Figure 9-9: Reliability diagram and reliability of a Non-Repairable Dual System. 

In principle, the increase in reliability provided by duplication is considerable: 

Example: 
If the reliability of one unit is .90, the redundant system will have a reliability of 0.99, i.e. the unreliability has decreased by 
a factor of 10.  

 However, if the elements are not reliable, the reliability of the dual system only increases slightly.  
if the reliability of an element is 0.5, the reliability of the redundant system will only be 0.75.  



 

172  Fault-tolerant Computers 

Assuming a constant failure rate for each device, λA and λB, and λA = λB = λ, the resulting reliability is:  

R ( t ) = 2 e
-λ t

- e
-2λ t

1oo2  

We now plot this curve along with the reliability of a single element (Figure 9-10):  

1

0

0.2

0.4

0.6

1

R1oo1(t) = e -λt

ARL = 80%

MTTF1oo1 =
λ

tM80 tM80

mission time @ ARL = 80%

0.8

R(t)

0

R ( t ) = 2 e
-λ t

- e
-2λ t

1oo2R ( t ) = 2 e
-λ t

- e
-2λ t

1oo2

 

Figure 9-10: Reliability of Duplicated versus Single System. 

Duplication increases the reliability especially near the origin, i.e. for short mission times.  

The MTTF of the duplicated system is calculated as: 

MTTF1oo2 = �
0

∞

R ( t ) dt =
λ
2

-
λ

0.5
= 1.5 ·

λ
1

= 1.5 · MTTF1oo1

 

We come to a rather strange result: The MTTF of the duplicated system is only one and a half times that of the non-
replicated one. This does not look encouraging: in fact, the MTTF of a part is seldom known with precision. 
Fluctuations of 50% on the value are common, depending on the manufacturer and the batch. This means that we 
cannot expect a significant increase in the lifetime of a system by duplication. This is quite easy to understand: if the 
redundant parts have the same failure rate, it is likely that both will fail within a given, long time.  

Example: 
This is why duplicating the internal circuits does not protect integrated circuits against solid faults. Unless one can detect 
and replace the failed circuit half immediately, the increase in reliability is negligible. However it may help against transient 
faults that leave the hardware intact.  

Therefore, the utility of duplication without repair lies in its use on a small time span near the origin: there, the failure 
of a part is unlikely, and it is even more unlikely that the redundant part will fail also.  

We see here that the MTTF is not an appropriate measure for non-repairable, fault- tolerant systems: it does not 
express the quality on a small time scale. So we should look for another measure.  

When the mission time is undefined, one can then declare the mission terminated when a certain level of reliability 
is reached. Then, the criterion is the MIF, or mission (time) improvement factor, which is the ratio of the mission 
times obtained by the different methods for a certain level of reliability.  



 

Chapter 9 Introduction to Reliability Theory 173 

Example: If the acceptable reliability level is ARL = 0.99, the mission time increases from 0.01 λ · t to 0.105 λ · t. The MIF 
obtained by a duplicated system is 10.5, which is appreciable. If the acceptable reliability level is 0.9, the MIF drops to 3.6.  

However, the MIF may not be of great interest, since normally the mission duration of a device is known in advance. 
One chooses then to express the improvement as the RIF or reliability improvement factor, which is as the ratio 
of the unreliabilities: 

Fsingle
———— = ——————
Fduplicated

(1 - Rsingle )

(1 - Rduplicated )
RIF =

 

Example:  
A twin-engine aircraft has to cross the Atlantic in a 10 hours flight.  

 The failure rate of each motor is = 0.001 h-1. (MTTF = 1000 hours).  

 The probability of failure is 1% with one motor, 0.01% with two motors; the RIF is 100.  

 However, it the same plane would fly 1000 hours without repairing a damaged motor, the probability of success would 
drop to 0.60, about the same as without redundancy (0.37), the RIF drops to 1.5, an uninteresting value.  

9.2.3 N-plication 

Triplication and in general N-plication are handled by the same methods as duplication. The simplest assumption is 
that the system requires at least one of N redundancies to function. The formula for that case is:  

RN = 1 - ( 1 - R )
N

≈ N · R  for R ≈ 1
 

As for duplication, N-plication is most interesting when the reliability level is large anyway, i.e. near the origin. 

9.2.4 Triple Modular Redundancy 

Triple modular redundancy (TMR), or 2-out-of-3 (2oo3) is often used in high reliability applications: Three 
identical units execute the same program at the same time. The results should be identical. A voter compares the 
results and takes that of the majority (Figure 9-11a).  

 



 

174  Fault-tolerant Computers 

RA

RB

RC

2/3

(RA = RB = RC)R2003

( λA = λB = λC = λ )

none failed B failed

R
2oo3

= RA · RB · RC + [ RA · RB · ( 1 - RC ) ] + [ RA · ( 1 - RB ) · RC ] + [ ( 1 - RA ) · RB · RC ]

A failedC failed

R2oo3

= 3 R 2 - 2R3

=  3e -2λt - 2e -3λt
 

Figure 9-11: Triplication and Voting (TMR) – block diagram and reliability 

Assuming that each unit has a constant failure rate λ, the reliability of the whole is: 

R2oo3 = 3 e- 2 λ t +2 e- 3 λ t 

The reliability plot of TMR is shown in Figure 9–12: 

0

0.2

0.4

0.6

0.8

1

1oo1

1oo2

time
1MTTF 1001 =
λ

1oo1 1oo2
2oo3

R ( t ) = 2 e
-λ t

- e
-2λ t

1oo2R ( t ) = 2 e
-λ t

- e
-2λ t

1oo2

R2oo3 =  3e -2λt - 2e -3λt

mission time @ ARL = 80%

R(t)

 

Figure 9-12: Reliability Plot of TMR 

An interesting result of this plot is that the reliability of TMR drops below that of a simplex system when the mission 
time comes near to the MTTF of a single element. In fact, the total MTTF is equal to:  



 

Chapter 9 Introduction to Reliability Theory 175 

MTTF2oo3 =
2 λ
3

-
3λ
2

=
6
5

·
λ
1

= 0.8333 · MTTF1oo1

 

TMR has brought no improvement in the MTTF, on the contrary. This confirms that the MTTF is not relevant to 
describe long-living redundant systems. The important parameter is the Mission Time. Figure 9-12 shows the 
Mission Times that correspond to an acceptable reliability level of 90%, for the non-redundant and for the TMR 
case.  

But even so, the MIF for a ARL = 0.99 is only 6 (it was 10 for a duplicated system). So, one can legitimately ask the 
question: what is a TMR system good for?  

TMR has the advantage of combining redundancy and error detection. If we had to add the reliability of the 
components necessary for error detection and switchover in a duplicated system, the dual system would possibly be 
worse than TMR. In fact, we should consider the reliability of the voter in the above calculations also. The point is, 
that it is easier to design and build a reliable voter for TMR than an error detection and switchover logic for a dual 
system.  

But the fact remains that static (non-repairable) TMR only makes sense when the mission duration is short with 
respect to the lifetime of the parts. When mission time becomes longer, redundancy does not offer much advantage 
and becomes even a source of unreliability - the larger the number of elements, the more likely the failure of one is.  

Example: TMR has been used in the guidance computer of the Saturn V rocket. The mission time is below 30 minutes. There, 
redundancy offers a large improvement in reliability.  

9.2.5 k-of-N systems 

The case of TMR can be generalized to a k-of-N system, for which it is necessary that at least k units out of N 
redundant units be in working conditions to perform the required work. This situation occurs for instance in 
computers with multiple processors and memories [Siewiorek 78]. We will come back to its justification when 
considering graceful degradation. The reliability of such a k-of-N system is given by:  

none failed

R koon = Rn +

1 failed

n
1 + R n-1(1-R) +

2 failed

n
2 + R n-2(1-R)2 +  ...

n - k  terms  

If we assume that all redundant units are identical and have a constant failure rate λ, we can plot the reliability of a 
system of four units as Figure 9-13 shows:  



 

176  Fault-tolerant Computers 

0.0

0.2

0.4

0.6

0.8

1.0

R(t)

R1oo4 =  4R-6R2+4R3-R4

R2oo4 =  6R2-8R3+3R4

R3oo4 =  4R3-3R4 R ( t ) = e
-λ t

1oo1R ( t ) = e
-λ t

1oo1

R1oo4 =  4R4

1
λ

time

 

Figure 9-13: k-of-N Reliability. 

Note that the reliability of a k-of-N system becomes in any case worse than the reliability of a single element after a 
long enough time.  

A general conclusion can be drawn from this: the average life of redundant systems that depends on more than one 
redundancy to function is shorter than that of a non-redundant one. Non-repairable, redundant systems are only 
justified for short mission times.  

9.2.6 Influence of Granularity 

The question is how a system should be partitioned, and especially which is the optimum size of the replaceable 
units, assuming that the recovery takes place individually for each replaceable unit.  

In principle, the smaller the replaceable unit, the higher the number of faults the system can tolerate before failure. If 
the system is partitioned into only two redundant RUs, it will fail for any fault in both units. If the system is partitioned 
into several RU, then it will only fail if both RU of the same function are faulty, as Figure 9-14 shows:  

RA1

RB1

RA2

RB2

RS

switch

RA1

RB1

RA2

RB2

RS

switch

RS

RU
switch

RURU

no crossover with crossover  

Figure 9-14: Large and Small Replaceable Units. 

The reliability calculation will be shown assuming that the system consists of N units, each of which has a reliability 
R:  

System consisting of one duplicated RU of N elements: 

R1oo2 =  1 - ( 1-Rn)2
 



 

Chapter 9 Introduction to Reliability Theory 177 

System consisting of N duplicated RUs: 

R1oo2 =  1 - ( 1-R2)n > 1 - ( 1-Rn)2
 

This result tends to show the advantage of small RUs. However, this assumes that the switching unit is a fully 
reliable element. Although the switching unit can itself be replicated, it introduces a new unreliability source. Further, 
we can include in the switching unit's reliability the common mode error probability due to the fact that the replicated 
units are closely coupled by the switch.  

We shall consider that the reliability of the switching unit does not depend on the size of the RU. This is true anyway 
for logic comparators, voters and switches. In this case, the introduction of N switching units must be considered:  

Rtotal = RRU * Rs
n
 

The results are shown graphically in Figure 9-15 

1

0.0

0.2

0.4

0.6

0.8

1.0

R(t)

1 3 5 7 9 11 13 15 17 19 21

RR

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

3 3 3

3 3 3

R

R

R

R

R

R

3 3 3

3 3 3

4 segments

time

 

Figure 9-15: Influence of Granularity. 

This shows that the reward in reliability obtained by reducing the size of granularity as getting each time smaller. 

Furthermore, it has been shown that the system reaches its highest reliability when all RUs have the same failure 
rate. Thus, a balancing of the failure rates is a wise design decision.  

Even so, these results assume that the switches are fully reliable and crossover is perfect. This is in practice difficult 
to achieve. In the end, it is only the reliability of the switches that matters.  

9.3 Available systems 

9.3.1 Definitions 

Repair is the key to long mission times. Repairable, redundant systems are quite common. Most fault-tolerant 
computers for commercial applications belong to that category. The redundancy is there to increase the availability 
and also to stretch the maintenance interval.  

When an element is repairable, the failure is not permanent. After a repair time, the element can be brought to 
operation again. Figure 9-16 shows the lifecycle of a repairable element:  



 

178  Fault-tolerant Computers 

downdownup

repair

failure

available system

up down downup up

MTBF

MTTF MTTR

State

time

mean value = availability

λ

�

 

Figure 9-16: Lifecycle of a Repairable Element. 

The element can be in one of two states, "work" (0 fault) or "failed" (1 fault). The terms "Up" for "good" and "Down" 
for "failed" are more appropriate when one wishes to emphasize that the system is repairable. A failure corresponds 
to the transition labelled �. A repair corresponds to the transition labelled µ. The system oscillates between the 
states "Up" and "Down" forever.  

We remember that this was not the case for the reliable, non-repairable, system of Figure 9-1. There, the system 
remained in the "Failed" state forever once it reached that state.  

The punctual availability A ( t ) is defined as the probability of the system being in the "Up" state at time t, provided 
that A(t) = 1 when t = 0. The availability is a function of time, but it reaches rapidly a stationary value called the long-
term availability or short "availability". The (long-term) availability is defined as: 

A
∞
 = A = lim

T→ ∞
    

T
1

 �
0

∞

 A ( t ) dt   ≈  lim
t → ∞

   A ( t )

 

The average time during which the system is not operational ("Down" state) is called the Mean Down Time (MDT), 
as opposed to the Mean Up Time (MUT), which is the average time the element spends in the "Up" state.  

The term MTBF, Mean Time Between Failure, is often used in the literature to express the average time between 
two successive transitions from "Up" to "Down". It is therefore equal to MUT + MDT. Since most systems spend 
much more time working than being repaired (hopefully), the MTBF is often equalled with the MUT. 

The (long-term) availability can be expressed as the relation of operational time (MUT) to the total lifetime (MUT + 
MDT) of the system: 

A = 
MUT + MDT

MUT
 = 

MTBF
MUT

 = 
1 + 

MUT
MDT
1

 

Like reliability, the numerical value of the availability is close to 1 for all practical purposes. Therefore, to avoid 
handling a large number of 9s after the decimal point, one prefers to express it as the unavailability, which is equal 
to: 



 

Chapter 9 Introduction to Reliability Theory 179 

A = 
MUT
MDT

 = 
A
1

 - 1  ≈  1 - A
 

Example 
to an availability of 0.995 corresponds an unavailability of 0.005, or 44 hours/year. It is found by multiplying the 
unavailability by 8765 hours (one year). 

Some like to outline the time from mission start to the first failure as Mean Time To First Failure, MTTFF.  

The maintainability M(t) of an element is the probability that this element is repaired within a time t after the failure 
occurred. It is commonly expressed by the MTTR, Mean Time To Repair, of that element. Although this is an 
approximation to reality, one usually assumes an exponential function for the time to repair. The repair rate is 
therefore a constant, µ, with:  

µ = 1 / MTTR 

The reason is that the calculations become much too complicated with any other assumption. The MTTR differs 
only from the MDT if one considers the latency time, during which a failure exists, but is not detected. 

9.3.2 Availability computation by Markov processes 

We will introduce here the method to calculate the availability and the reliability of systems by considering the state-
transition model. The bases of this theory are due to Markov, and the model we consider is termed a "continuous 
Markov model" of a system. They are other Markov models that we disregard. The calculation involves solving 
differential equations by using the Laplace transformation. It is assumed that the reader is familiar with the Laplace 
transform. A good introduction can be found in the Kleinrock's book on queuing theory [Kleinrock 75], a short form 
in [Siewiorek 82].  

Remember the simple, non-repairable system with a constant failure rate.  

The differential equation governing its behaviour was, with R(t) as the probability of being in the "good" state P0. 
(Figure 9-16a) 

good

λ(t)

failed

dt
dR(t)

 =  λ · R ( t )

0 1

 

Figure 9-16a 1oo1 reliable system 

More intuitivively, we note that this differential equation is similar to that of a leaking water tank, since the flow rate is 
function of the pressure, i.e. the level of the tank. The rate defines the outflow (Figure 9-16b): 

 



 

180  Fault-tolerant Computers 

state So

λ

P1

dp0

dt

dp1

dt

1.0

failureP0
d t

dp0 (t)
= −λ· p0 ( t )

d t
dp1 (t)

= λ · p0 ( t )
1.0

state S1  

Figure 9-16b Reliability of 1oo1: water tank model 

Solving this differential equation yields the know equation: 

R1oo1(t) = e -λt
 

For computing the availability, we extend this model by a repair rate, symbolized by a pump (cheating somewhat 
with the fluid –physics – the repair “flow” is supposed to be proportional to the tank level.  

 

state So

λ

dp0

dt

P0 P1

µ

λ

pump
(repair)

leak
(failure)

up down

state So

dp1

dtp1

1.0

µ

 

Figure 9-17: Fluid Analogy of an available system. 

As an analogy, we can consider each state as a kind of fluid tank where the height of the fluid in a tank is 
proportional to the probability of being in that state. The transitions between states can be viewed as unidirectional 
pipes with a flow rate proportional to the failure rates multiplied by the quantity of fluid in the originating tank. The 
repairable system is described by the differential equations:  



 

Chapter 9 Introduction to Reliability Theory 181 

0 1

λ

µ

dp0 =  - λ p0     + µ p1 

dp1 = + λ p0     - µ p1 

p0 (0) = 1 (initially good)

p1 (0) = 0

dt

dt

initial conditions:

 

We can solve these equations by applying the Laplace transformation. With the initial conditions P0(0) = 1 and P1(0) 
= 0 (initially good) we solve the Laplace equations: 

sP0 - 1 =  - λP0     + µ P1 

sP1 = + λ P0     - µ P1 

~ ~ ~

~~~
 

and obtain: 

P0 =  

P1 = 

~ s + µ

~

1

s s + µ + λ

λ

s + µ

=

µ

µ + λ

s

µ + λ

s + µ + λ

λ

+•

P0

~

 

We can transform these expressions back to the time domain by applying the method of the partial fraction 
expansion and performing the inverse transform, so we obtain: 

p0 (t)  =  µ + λ

- (µ + λ) tλ
+

µ

µ + λ
e

 

Figure 9-18 plots the availability A(t) = probability of being in the S0 state as a function of time: 



 

182  Fault-tolerant Computers 

A(t)

0.000

0.200

0.400

0.600

0.800

1.000

1
λ

1
µ

1
µ +λ

time

 

Figure 9-18: Availability in function of time 

Although calculating the reverse Laplace transform is an interesting hobby, it is seldom necessary to determine the 
exponential time function, since the most important parameter is the steady-state value, which is reached in a very 
short time (with a time constant about equal to 1/µ, since normally µ >> 

�
).  

Applying the end theorem of the Laplace transform that: 

lim
t→ ∞

   f ( t ) = lim
s → 0

  s F ( s )
 

We find the long-term availability as: 

A =1 -
µ
λ

 

 

The unavailability is: 

A = 
µ
λ

 

Note that the availability depends only on the relation of 
�

to µ, and not on their absolute values. 

Example: 

 Given a mean time to repair of 10 hours, and a mean time to fail of 1000 hours, the unavailability will be 0.01, and the 
availability close to 0.9901%. 

9.3.2.1 Influence of merging states 

Let us consider a dual system with repair (Figure 9-19.a): 



 

Chapter 9 Introduction to Reliability Theory 183 

0

1

3

λn
λbup down

2 λn

µn

µb

λb

S1: on-line unit failed

S2: back-up unit failed remaining unit fails

0 1+2 3

2λ λ

µ

λn = λb=λwith µn = µb = µ; 

is equivalent to:

µ

µ

µ

a)

b)

 

Figure 9-19: Dual system with repair 

The states P1' and P1" of Figure 9-19.a can be collapsed into a single state P1 when both redundant units have the 
same � and �, like Figure 9-19.b shows. 

We calculate the differential equations: 

dp3

dp0

dp1+2

dt

dt

dt

=  - 2λ p0         + µ p1 + µ p2

= +  2λ p0 - (λ+µ) p1+2 

=                 +  λ (p1+p2)
 

We find the following expressions: 

The above model assumed that the repair rates for both units are independent. This is only the case when there are 
two repair teams, for instance. Normally, only one unit at a time may be repaired. In that case, the repair rate from 
state P2 to state P1 is only ‰, as suggested in Figure 9-19. The reason for this becomes obvious when one 
considers that the diagram of Figure 9-19.b was obtained by collapsing states P1' and P1" of Figure 9-19.a. If there 
is only one repair team, then the team must choose to repair unit A or unit B first, and either the transition from P2 
to P1' or from P2 to P1" in Figure 9-19.a is missing. The availability of the dual system with a single repair team is 
then:  

In general, for any system, we can set up the Markov transition diagram and the differential equations. Then, the 
probability of the "good" states are summed and the limit value is calculated. It makes no sense to calculate the 



 

184  Fault-tolerant Computers 

time function of available systems, since availability rapidly reaches an equilibrium point. To calculate the steady-
state availability, it is not necessary to compute the Laplace Transform: a simple linear equation is sufficient, since 
in the stationary state, all dP/dt terms are zero. One must just add to the equation system the condition:  

�
ι = 0

ν−1

 Pi  = 1
 

However, once the number of states exceeds three, the numerical calculations become rather tedious. 
Furthermore, the analytical solution is only interesting when one can intuitively view the influence of each factor. 
Where the expression becomes too complicated, it is better to proceed to a numerical solution and test the 
influence of the factors.  

9.3.3 A simpler solution 

In fact, we do not need Laplace to obtain the long-term availability, since we can assume that the system is stable 
after an infinite time and therefore all dpi / dt terms are zero.  

Just setting the left side of the equations to 0 is not sufficient, since the equation system is indeterminated – we 
have to introduce the initial conditions.  

We can do this under the form that the sum of the state variables is always 1.  

Therefore, the above equation becomes: 

0 =  - λ P0     + µ P1 

1 = P0     +  P1  

and the availability is equal to the sum of the up states (there is only P0 here), with the same result as above.  

Note also that the MTTF is infinite in available systems – there is no absorbing state. 

9.3.4 General solution for availability 

After this introduction, we state the general solution for available systems 

a) decompose the system in states with defined transitions (failure and repair) 

b) for each state, determine the inflow and the outflow (Figure 9-19) 

c) set up the difference equations by letting the derivative term to zero 

d) remove one the equations and replace it by the expression: �  pi = 1 



 

Chapter 9 Introduction to Reliability Theory 185 

= � λki pk(t)  - � λik pi(t)  dt

inflow outflow

dpi(t) 

k = 1

k = N, k ≠i

k = 1

k = N, k ≠i

Pi

λ0i

λNi

PN

Pjλij
Pk λki

P0 λi0

 

Figure 9-19 Inflow and Outflow 

9.4 Example 

Let’s consider the availability of a repairable 1oo2 system, 1oo2r, such as Figure 9-20a depicts. 

down

up

0 1 2

2λ λ

µ

down state
(but not absorbing)

2µ
 

Figure 9-20a – repairable 1oo2 with two repair teams 

The transition 2 �����	��
 ����������
�����
�
�����
 ������� 
�����
������ ��� � ��������
 
 ��
 ����������� �������  �����
 ��� � ��� !
" ������#�$���
�� �� �����
 ��%

0 =  - 2λ P0           + µP1 

0 = + 2λ P0 - (λ+µ) P1 + 2µ P2

0 =                    + λP1  - 2µ P2

1 =         P0           +   P1  +     P2

- 2λ µ 0

0 λ -2µ

1 1 1

0

0

1

=

P0

P1

P2
 

And the availability / unavailability are found as: 



 

186  Fault-tolerant Computers 

A = P0 + P1 =
1

1 +
λ2

µ2 + 2λµ

D =
λ2

µ2 + 2λµ

 

9.5 Reliable systems 

The same Markov models are used for reliable systems, although the equations are not identical, since a reliable 
system has at least one absorbing state.  

9.5.1.1 Example: Reliability of a repairable 1oo2 system 

Let’s consider the reliability of a repairable 1oo2 system, 1oo2r, such as Figure 9-21a depicts. 

failed

good

0 1 2

2λ λ

µ

absorbing state

 

Figure 9-21a - State transition diagram of a 1oo2r system 

The transition rate from the good state to the one unit failed is 2
��� �	�  �����
�����
 ����
 ��
 &'��$� �� 
 ��
�����
����� (� ��� � !

" ���)
 ������� 
*
 ��
 �)� �+���� ��,
����,
�
 �� ��	� 
�� �� -��
 ��./
�����021(
 ��
�����043���
 ��
 ��� ���� �� 5 ��� �	�  �����
�����
 ��� ���� �� 5��� ���$� �� 
�
�����
�
 ��.(���  ��

 ��� ��� � !�67� 8�$�
 ��9�:;3�<�=(�	����&'��
���������
;
 ���	���� ����  �8���5���
 ��$�� � ��.(������� � &>����
 ������$�.������ ��5���
�����
 ��� ������
 ������� 
;!  

State So

2λ

dp0

dt

pump
(repair)

leak
(failure)

State So

λdp1

dtp1

1.0
leak
(2nd failure)

dp2

dt

p2

State S2

µ

 

Figure 9-21b: hydraulic model of a 1oo2r system 



 

Chapter 9 Introduction to Reliability Theory 187 

The corresponding equations are: 

dp0

dp1

dp2

initial conditions:

p2 (0) = 0

p1 (0) = 0

dt

dt

dt

=  - 2λ p0           + µ p1 

= + 2λ p0 - (λ+µ) p1 

=                    + λ p1 

p0 (0) = 1 (initially good)

 

The solution of these equation can obtained by a Laplace transformation (granted, it is tedious): 

R(t) = p0(t)+ p1(t) = e
(3λ+µ)+ W

2W W =        λ2 + 6λµ + µ2

-(3λ+µ-W) t
e

(3λ+µ)-W

2W

-(3λ+µ+W) t

-

with:

 

Figure 2-24 shows examples of results: 

0

0.2

0.4

0.6

0.8

1

R(t)

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00
16

00
18

00
20

00
22

00
24

00
26

00

1oo2 any fails

1oo2 no repair

µ = 0.1 h-1

µ = 1.0 h-1

µ = 10 h-1

λ = 0.01

MTTF (1oo1)
 

Figure 9-22: Reliability of a repairable 1oo2 system 

9.5.1.2 Mean time to fail of repairable systems 

An interesting consideration when looking at Figure 9-22 is that the plots look very much like a non-redundant 
system, only with a much high reliability. When � tends to 0 (instant repair), reliability becomes perfect.  

For repairable systems, it makes therefore sense to operate with the Mean Time to Fail.  



 

188  Fault-tolerant Computers 

This number is easy to compute with Laplace by applying the boundary theorem:  

→ � s → 0
0

T
lim p(t) dt =  lim  s P(s)

T ∞

 

In the 1oo2 example, the equations become (we keep only two equations of the three) 

-1 =  - 2 λ P0         + µP1

0  = + 2λ P0           - (λ+µ)P1  

and the MTTF is computed as: 

MTTF = P0 + P1 = 
(µ + λ) 

2λ2

1 
λ

+ = µ/λ + 3
2λ

 

9.6 General solution for the MTTF of reliable systems 

Like for the availability, there exist a simple way to compute the MTTF: 

e) decompose the system in states with defined transitions (failure and repair) 

f) for each state, determine the inflow and the outflow (Figure 9-19) 

g) remove one the equations 

h) set up the difference equations by letting the derivative term to zero, except the first 

i) calculate the sum of the non-absorbing states 

9.6.1 Example:  

Refer to the table in section 9.10. for a summary of available systems.  



 

Chapter 9 Introduction to Reliability Theory 189 

Figure 9-11b shows the corresponding state diagram. 

system up

all

ABC

ABC

ABC

ABC

ABC

ABC

ABC

ABC

ABC

ABC

allABC

down

all good 1 bad 2 bad all bad

λA

λC

λB

λA

λA

λA

λA

λB

λB

λC

λC

λC

λC

λB

λB

 

 

9.6.2 Repairable, reliable systems 

We may also be interested in the mean time between failures of a redundant system. To calculate the MTBF, one 
must change the "Down" states into trapping states. The probability of being in the "Up" states is determined, and 
the mean time between failures is obtained as the integral over time.  

We use the same method to calculate the MTTF of a reliable, repairable system. Figure 9-20 shows the situation for 
a reliable, dual system. The only difference to Figure 9-19.b is that the state "both failed" becomes a trapping state:  

Figure 9-20: MTTF of a Dual, Repairable System. 

Numerical example:  

λ= 1/1000 hours, µ = 1/10 hours. 

MTTF without repair: 1500 hours,  

MTTF with repair: 201'500 hours 

This phenomenal increase in reliability is due to the fact that the only source of total failure is the loss of the 
remaining unit during the repair of the first. We will see that in practice, the increase in MTTF is lower.  

The mean time between failures of elements of the system is of course much shorter. It can be calculated by 
making every other state than the fault-free state a trapping state. In the above diagram, the MTBF of any of the 
part is equal to µ / 2, that is, half of that of a single system. This is not surprising, since there is the double number 
of parts that can fail.  

The following Figure 9-21 shows the Markov diagram for a 2/3 voting system:  



 

190  Fault-tolerant Computers 

fail

0 1 2
2λ

�

3λ
good

 

Figure 9-21: Markov diagram of a (reliable) 2/3 voting system (TMR) 

The reliability of that system can be computed (using Laplace) as: 

R(t) = 
s1

d

s1,2
- ( � + 5λ ) ± d 

2
=

MTTF
5

6

1

λ
= +

�

λ
( )

repair term

e 
- s1 t 

+ 
s2

d
e 

- s2 t 

P0 =
s + � + 2λ

s2 + s (� + 5λ) + 6λ2

~
P1 =

3λ~

s2 + s (� + 5λ) + 6λ2

(� + 5λ)2 - 6 λ2d   =

 

Numerical example: 

λ = 0.001, µ �= 0.1 
MTTF = 34'166 hours 

Refer to the tables in section 9.10 for a summary of reliable systems. Examples of the calculations for fault tolerant 
systems are given in [Muron 76] and [Siewiorek 77].  

9.6.3 Influence of imperfect redundancy 

The above calculations show that the reliability or the availability can be boosted by repair, practically in proportion 
with the repair rate to failure rate. In reality, the increase is far lower, due to the fact that redundancy is seldom 
perfect.  

Until now, we assumed that the failure of a unit would not influence the functionality as long as one redundant unit is 
still available. This may be true for a matchbox, but in computing systems, the masking of an error or the switching 
in of a spare unit is an operation that is bound with a certain risk. For instance, in a dual system, we must take into 
account that the probability of successful switchover to the spare unit is less than one. This probability is called the 
coverage.  

More formally, coverage is defined as "the conditional probability that, given the existence of a failure in the 
operational system, the system is able to recover" by [Bouricius 69]. The word "coverage" is also used in 
conjunction with error detection. Here it is defined as the percentage of errors detected within the allocated error 
latency time in relation to the total number of errors.  

In fact, if we assume that any detected error can be corrected, and no other uncertainties remain, then the error 
coverage is identical to the recovery coverage. The error detection coverage is indeed the most important factor in 
coverage, and therefore coverage can be enhanced significantly by improving the error detection mechanisms.  



 

Chapter 9 Introduction to Reliability Theory 191 

Let's consider a dual system. We assume that only one of the redundant units is performing calculations, while the 
other remains as hot stand-by. When an error occurs, it is detected with a certain probability and switchover takes 
place. The probability that the switchover successfully takes place is the coverage (c). Figure 9-22 shows the 
corresponding Markov diagram.  

0 1 2

2λ (1-c)

λ

µ

absorbing state

2λc

good

fail
 

Figure 9-22: Dual redundant, reliable system with coverage c < 1. 

Note that the coverage does not apply to a failure of the stand-by unit, since it is assumed that a failure of the 
standby is not critical.  

The resulting equations are: 

-1  =  - 2λ P0                 + µ P1 

0  = + 2λc P0      - (λ+µ) P1 

2 ( λ + µ (1-c)  )
MTTF = P0 + P1  =

(1+2c) +  µ/λ

 

As an example, take the above case of the redundant system with 

λ = 10-3 /h, µ = 1/10 /h. 

MTTF without repair:  1500 hours 
MTTF with repair: 201500 hours 
MTTF with c = 0.9: 8575 hours 

We see that even a small lack of coverage is sufficient to let the reliability drop drastically. In fact, it makes no sense 
to increase the reliability of the system by reducing the failure rate or increasing the repair rate as long as c is large, 
since the MTTF reaches rapidly a limit that is independent from the repair rate µ:  

(1-c)
lim MTTF =

1

λλ/µ →0
   

On the other hand, it makes no sense to increase the coverage when the repair rate is low, since the MTTF tends to 
the value: 

lim MTTF =
1

λµ →0

µ

2λ
+

3

2
)(

 

An optimum is reached when: (1-c) ≈ λ/µ 



 

192  Fault-tolerant Computers 

9.7 Dependability and performance 

Until now, we assumed that the system was either working or failed. We can imagine several variations in between, 
especially under the aspect of multiprocessor computers. Graceful degradation expresses the fact that a 
redundant system goes through several stages of functionality until it eventually fails.  

Graceful degradation applies especially to multi-processor systems, in which the tasks are executed by a pool of 
processors, which are interchangeable with respect to the tasks they execute. The general case considers that the 
processing power is a function of the number of intact processors. When all processors are working, the computing 
power is highest, and diminishes as the processors fail. Only when the last processor is down, does the system fail.  

Although conceptually simple, graceful degradation is not easy to implement. It supposes that:  

The redundant unit is an active resource (participates in the function);  

Activities can be paralleled so as to take advantage of the availability of multiple resources;  

Reconfiguration is reliable (e.g. means exist to save the data held by a failed processor).  

The second point is probably the most complicated to solve. Indeed, multiprocessors increase the computing 
power, provided that the application can be divided into parts that can run in parallel. No general solution exists to 
perform the parallelisation of applications, and many algorithms do not lend themselves to a parallel execution.  

Therefore, graceful degradation is rather complex to implement, but its calculation is simple. In fact, as far as 
redundant systems without repair are concerned, calculations rely solely on the assumption that k-of-N units are 
working (see paragraph 9.3.5). We can then assume that there is a weighting factor for each number of working 
processors.  

The Markov diagrams that describe the failure model determine the probability of being in a particular state. The 
availability of computation power is then built as a weighting function over the existing states.  

A general model has been given by Baudry [Baudry 77].  

9.7.1 Safety evaluation  

The safety of a system has been defined as the probability that a disruption will not cause damage in excess of an 
acceptable value. Safety can only be defined with a specific application in mind, for which safe and unsafe states 
can be defined.  

In a computer, we consider that two kinds of behaviour can endanger the plant: either a loss of function for a time 
longer than an acceptable time, or the output of erroneous data.  

9.8 Tables 

We now summarize the calculation for each of the most frequent cases: 

9.9 Summary of the definitions 

 Dependability: a subjective measure of the user's trust in the system. 

Non-repairable systems: 

R(t): Reliability: the probability that a non-repairable item has not failed at time t, 
given it was in a working condition at time t = 0. 

I: Integrity: the probability that a computing element does not produce false data 
which cannot be recognized as such (called Credibility in [Meraud]). 

MTTF: Mean Time To Fail: the expected lifetime of a non-repairable system.  

Repairable systems: 

MTBF: Mean Time Between Failure. The mean interval between two successive 
failures of the same repairable item. 

MTTR: Mean Time To Repair. The average time it takes to repair an item. 



 

Chapter 9 Introduction to Reliability Theory 193 

MUT: Mean Up Time: The mean time during which a repairable item is operational. 

MDT: Mean Down Time: The mean time during which an item is out of service 
because of failure. 

A: Availability: the relation of the MUT to the total lifecycle of the system,  
MUT + MDT. 

U: Unavailability: the ratio of MDT to MUT in the steady state. 

Fault-tolerant Systems: 

MTTMF: Mean Time To Mission Failure is the life expectancy of a reliable fault-tolerant 
system. It is identical to MTTF for the non-redundant case. 

MTBEF: Mean Time Between Element Failures is the average time between two 
successive failures of elements (but not necessarily the same ones) of the 
system. The MTBEF depends on the MUT/MDT or MTTF of the individual 
parts and on the amount of redundant parts. MTBEF is identical to MTBF in the 
non-redundant case. 

MTTER: Mean Time To Element Repair: (applies only to a repairable unit) the mean 
time it takes to repair a failed element of an on-line repairable system. During 
that time, the system can remain operational because it is fault-tolerant, but 
further failures can bring it down if redundancy is exhausted. 

MRT: Mean Recovery Time: This is the mean time needed by a fault-tolerant 
computer to recover from a failure and resume operation. If the computer is 
unable to recover during a time Tdomax, then the system will be considered as 
failed. Further failures during the recovery time may lead to a mission failure. 
This time is essentially identical to the MTTER in the case of automatic repair. 

9.10 References 

[Baudry 77] M.D. Baudry,  
"Performance related reliability measures for computing systems", 
7th Int. Symposium on Fault-tolerant Computing, FTCS-7, Los Angeles, California, June 29-30, 1977 

[Birolini 85] A. Birolini,  
"Qualität und Zuverlässigkeit technischer Systeme", 
Springer-Verlag, 1985 

[Bouricius 69] W.G. Bouricius, W.C. Carter and P.R. Schneider,  
"Reliability Modelling Techniques for self-repairing computer systems",  
pp. 295..309, Proc. 24th Annual Conference of the ACM, 1969 

[Hopkins 78] A. Hopkins et al.,  
"FTMP - A Highly Reliable Fault-Tolerant Multiprocessor for Aircraft",  
Proceedings of the IEEE, Vol. 66, No. 10, OCT 1978, pp. 1221 - 1239 

[MIL 82] Dept. of Defence, U.S.A, 
Military-Handbook-217D, MIL-HDBK-217D,  
”Reliability Prediction of Electronic Equipments”, 
January 15, 1982 

[Muron 76] O. Muron, C. Meraud, F. Browaeys,  
"Markov Reliability Modelling of a reconfigurable system applied to the COPRA computer",  
SAGEM, 6 Avenue d'Iena, 75783 PARIS CEDEX 

[Shooman 68] M. Shooman,  
"Probabilistic Reliability: an Engineering Approach",  
Mc Graw Hill Company, LCC 68-13099 



 

194  Fault-tolerant Computers 

[Siewiorek 77] D. Siewiorek,  
"Multiprocessors: Reliability Modelling and Graceful Degradation",  
INFOTECH-State-of-the-Art Conference on System Reliability, London, 1977 

[Siewiorek 78] D. Siewiorek et al. , 
"A Case Study of C.mmp, Cm*, and C.vmp, part 1 and 2",  
pp 1178 .. 1220, IEEE Proceedings, October 1978 

[Siewiorek 82] D. Siewiorek & R. Swarz, 
"The Theory and Practice of Reliable System Design",  
DIGITAL Press, 1982 

[Spectrum 81] IEEE Spectrum,  
Special Issue on Reliability,  
 October 1981 



 

Chapter 9 Introduction to Reliability Theory 195 

 





 

Chapter 7 Recovery in Database 197 

10 Appendix A Linguistic Note on Terminology 

A precise terminology is essential for a common understanding, especially in the literature. Unfortunately, the terms 
used in reliable computing are strongly biased by their everyday use and by predefined formulas. We speak of fault 
tolerance, while in some cases it would be preferable to speak of error tolerance. Further, different languages 
express subtleties that do not exist in others. The results are endless discussions on terminology [Laprie 85]. We try 
here to reconcile the common sense of the words and a precise definition. We need a set of terms to describe the 
following situations:  

• An item ceases to provide the required service: the transition from service to lack of it is a failure of that item. The 
word "failure" makes no assumption with regard to the duration, which can be definitive or temporary: "a failure 
occurred". 

• An item is not working because of a failure: this is a malfunction, or a breakdown. While a malfunction is 
momentary, a breakdown implies a lengthy repair with human intervention. The terms "malfunction" and 
"breakdown" express a state, not an event like "failure". However, in normal usage, "failure" also refers to the period 
after the failure, without assumptions about the duration, but this usage should be avoided.  

• If the malfunction is so long that the mission cannot be fulfilled any more, this leads to a mission failure, which is 
definitive. The English language does not distinguish "mission failure" and "failure". The opposite of "mission failure" 
is "mission success", the opposite of "failure" is "function"; 

• A failure is caused by something. The cause of a failure is a fault. The fault may be an external perturbation or 
violence, a programming mistake, an exceeded temperature, a bonding fault, but it can also be the result of a poor 
design. One can argue whether the design itself has a flaw, or whether the design incorrectly protected the system 
against external threats. Such an expression as "we are looking for the failure" is therefore incorrect, what is looked 
for is a fault. A fault does not immediately nor necessarily cause a failure; 

• A fault may itself be caused by something which prepared the conditions for its occurrence. A defect is something 
that impairs the quality of a system. A defect can be so bad that the system does not work any more, it can be 
something which can lead the system to fail at some later time, it can be just some cosmetic defect. A fault may be 
a defect or an external action. Conversely, an external action can cause a defect. Unfortunately, fault and defect are 
sometimes used in the same sense ("this gem has a fault"). 

• In computing or logical elements, a fault expresses itself as a deviation from the intended state, which is especially 
visible at the output. This is called an error. An error is a manifestation of a fault. The error may originate from a 
faulty hardware (hardware fault), or also from a programming mistake (design fault). A design error or programming 
mistake introduces a defect in the program. This defect can remain unnoticed for a long time (lurking fault) until it 
manifests itself and causes data errors. These errors may be permanent or appear from time to time (intermittent). 
If these errors cannot be tolerated or corrected, a mission failure follows. 

Now, the terminology gets somewhat more complicated because of the nested nature of the phenomenon. A failure 
is due to a fault, which is itself caused by a failure, and so on. 

For instance, a data error is due to a fault in the floating point unit, which is due to the failure of a circuit, which is 
due to a design fault (a failure of the designer). Or, an error is due to a programming fault, which is itself the 
consequence of an error of the programmer. 

Consider a computer as an abstract machine, consisting of a physical layer (hardware), a logical layer (signals), an 
algorithmic layer and an application layer. This hierarchical view sheds a different light on these terms [Avizienis 82]:  

At the physical level, a departure from the specifications is seen as a physical fault. For instance a physical fault 
would be that transistor burns open because of overheating. The failure of the transistor introduces a fault in the 
circuit. 

At the logical, or signal level, a failure of a circuit occurs when a logical value is turned into its opposite. The fault is 
generally a shorted or open circuit, for instance a burned transistor, a bridge or an open-circuit. Since this is the 
level one can view with measuring instruments, the word "fault" has become a special meaning: since disturbances 
in logical circuits and power outages are caused by unintended current flows, "fault" describes such phenomenon. 
Circuit designers use the terms "bonding fault" or "stuck-at-one fault" (which, more correctly, should be called stuck-
at-high fault), power systems engineers use terms like "grounding fault". So fault has both the meaning of "origin of 
an arbitrary failure" and "origin of an electrical failure". 



 

198  Fault-tolerant Computers 

At the algorithmic level, one speaks of errors, which are incorrect data items (data error, error correction, etc..). The 
errors are caused by faults in the logic or by design faults. The same term is used to describe higher-level errors 
(algorithm errors). Note that an error may show up a long time after the fault took place; 

At the application level, the failure of a part is a fault in the system, which can cause a mission failure if the system 
is not fault-tolerant. Here also, a long time may elapses between occurrence of the error and mission failure, 
possibly because the erroneous parts were seldom used. 

The following Figure A1-1 shows the hierarchy of faults and failures: 

APPLICATION (MISSION) FAILURE 

ALGORITHMIC (DATA) ERROR 

LOGICAL (LOGICAL) FAULTS 

PHYSICAL (COMPONENT) FAILURE 

Fig. A1-1. The four universes of reliability 

Of course, when one attributes a fault to a design fault, then this is considered an error of the designer, thereby 
treating the designer as a (faulty) logical machine.  

When we try to port these definitions into several languages, the difficulty is that there is no direct correspondence 
between the terms. We choose here a correspondence of terms which tries to reflect the usage of these terms in 
the literature. Note that some terms occur several times, since some languages use them in different meanings 
(Figure A1-2):  

defect 
défaut 
Defekt 
defecto

fault 
faute 
Fehlerursache 
falla

error 
erreur 
Fehler 
error

failure 
défaillance 
Ausfall 
falla

malfunction 
défaillance 
Aussetzen 
flaqueo

breakdown 
panne 
Panne 
varada

mission failure 
échec 
Versagen 
fracaso

recovery 
recouvrement 
Wiedererlangen 
recuperación

repair 
réparation 
Reparatur 
reparación

TgraceTgrace

 

Fig. A1-2. Fault History 



 

Chapter 7 Recovery in Database 199 

The most important terms are summarized in this table: 

English Français Deutsch  

reliance dépendence Verlass  

dependability sûreté de Verlässlichkeit  
 fonctionnement 

reliable fiable zuverlässig  

reliability fiabilité Zuverlässigkeit  

available disponible Verfügbar  

availability disponibilité Verfügbarkeit  

failure défaillance Ausfall  

mission failure échec Versagen  

failure rate taux de pannes Ausfallrate  
 (de défaillance) 

malfunction, panne Aussetzen  
 (défaillance) 

breakdown panne Panne  

damage dommage Schaden  

defect, flaw défault Defekt  

fault faute Fehler(-ursache)  

error faute, erreur Fehler,  
  (Irrtum: nur 
  bei Menschen) 

safety sécurité Sicherheit  

security sûreté Schutz  

susceptibility susceptibilité Anfälligkeit  

persistency persistance Beharrlichkeit  



 

200  Fault-tolerant Computers 

10.1 References of Appendix 1  

[Avicienis 82] A. Avicienis, 
"The four-universe information system model for the study of fault-tolerance", 
Proceedings of the 12th Symposium on Fault-Tolerant Computing FTCS-12, 
pp 6..11, Santa Monica, California June 1982  

[Laprie 85] J.C. Laprie, 
"Dependable Computing and Fault-Tolerance: Concepts and Terminology", 
Proceedings of the 15th Symposium on Fault-Tolerant Computing FTCS-15, 
Ann Arbor, Michigan, pp. 2..9, 
June 1985 



 

Chapter 7 Recovery in Database 201 

 

 

 

 


