STRESS RESULTANT SYSTEM IN BEAMS:

BENDING MOMENT AND SHEAR FORCE

DIAGRAMS
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BEAMS

Stress Resultant System as and Equivalent Force System

The Section Principle:

Consider a statically determinate beam shown in Figure 1,
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In order to be able to determine what are the forces acting within
the material of the beam in a generic cross-section at x, a theoretical
device 1is introduced which consists of an imaginary transverse section
that is passed through the beam at x in order to remove the portion of
the beam for which x'>x. Based on more than three hundred years of
experience since the pioneering work of Galileo Galileil (1564-1642), it
is imagined that a distribution of contact forces acting on the exposed
cross-section of the retained portion of the beam are adequate to
represent the contact action of the removed part of the beam (for which
x' > x) on the remaining part of the beanm. These contact forces,

postulated to be vector-valued, are called stress vectors when they act

over unit elements of the cross-section. It is hypothesised that this
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distribution of stress vectors is capable of maintaining the remaining
part of the beam as a free-body precisely in the same mechanical state
when it is an integral part of the whole beam, The very idea of using
contact forces to represent the action of the removed part of the
structure on the remaining part was first introduced in the studies of
the strength of beams, bars and ropes by Galileo Galilei in his famous

monograph, Two New Sciences (1638), the first book on strength of

materials. This work resulted from Galileo's efforts to determine the
strength of the components of ship structures whilst he was a consulting
engineer to the Venetian shipyards. This idea was developed further by
the French Jesuit Ignace Gaston Pardies (c¢.1636-1673) in his study of
flexible suspension bridge ocables in 1673, in which he passed an
imaginary section- through the cable, and represented the action of the
removed cable on the exposed section of the remaining cable by a
tangential force. This Pardies Principle was used in 1690 by the German
mathematician, philosopher and engineer Gottfried Wilhelm Leibniz
(1646-1716) and the Swiss mathematician Johann Bernoulli (1667-1748).
Pardies Principle was systematically and explicitly used by Jacob
Bernoulli (1655-1705), the older brother of Johann, and Jacob's pupil
Jacob Hermann (1678-1733) in 1716, before Leonhard Euler (1707-1783), a
former pupil of Johann Bernoulli, made the imaginary section principle a
powerful tool of solid mechanics. The very idea of the section princi-
ple is to convert internal interacting forces acting in the section,
which are internal effects and the character of which is unknown, into
pseudo-external forces, which are external effects, the nature of which
is considered to be well-known, and to which all the apparatus of

theoretical mechanics directly applies. See Figure 2 for illustration.
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Stress Couple and Stress Resultant:
The stress vectors by their very nature are, in principle,

statically indeterminate, i.e., in order to evaluate them the internal

deformation effects of the beam have to be taken into consideration.
Since the exposed stress vector system which is distributed over the
cross-section can be treated like an external force system, it can be
replaced by an equivalent force system constructed at any point in the
cross-section, usually at the geometrical centroid of the cross-section
- a point relative to which the first moments of the cross-sectional
area vanish.

Consider a typical symmetrical cross-section under the action of

stress vectors

Ox ~ Oxx 14 °ny

which represent a planar state of stress, as shown in Figure 3.
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The stress vector Ex is acting on a cross-sectional elemenﬁ dA located
by the cross~sectional position vector
=yJ+2zk

relative to the centroid of the cross-section. As mentioned supra, the
stress vector Ex is considered to be the effect of the contact action of
the contiguous part of the beam which has been removed by the imaginary
section. Thus both ;x and X have been referred to the frame of
reference (x,y,z).

The stress vector component, Oyx+ Which acts perpendicular to the

cross-section, is usually called the normal stress. The stress vector

component, g which aects tangential to the cross-section, is called

Xy’
the shear stress. It ought to be noted that the first subscript of the
stress denotes the normal to the surface on which the stress is acting,

and the second subscript denotes the orientation of the stress as a

force. The subscript x of the stress vector ;x denotes the normal to
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the surface on which the stress vector g is acting.

Stresses are statically indetermine internal effects in a
deformable extended body, and, therefore, lie beyond the reach of rigid
body mechanics. However, for externally statically - determinate beams,
the equivalent force system of the stresses consisting of a Stress
Resultant F(g) and a Stress Couple CT(y) can be found by rigid body
mechanics. The Stress Resultant System as an Equivalent Force System
can be calculated the same way as was done for the external forces. The
Equivalent Force System of stresses relative to the centroid of the

cross-section consists of the Stress Resultant,

F(G) =sdF (5) =s g,dA
X A X A X
and the stress couple,

L@ =M (o) = i xx dF (3) = i K X g, dA

where
dF (5) = g dA
is the differential stress-force acting over dA. See Figure 3.
Referring the stress vector to the directed base of the frame of
reference gives,
F (g) = ¢ = = 3
dF (3) = g,dA = (o, T + axy3)dA (g, @) + (cxydA)J

and, therefore, the Stress Resultant,

F (o) (1 oyydAIL + (s ogydhAd] = Fi ()T + F, (0]

Fx(a)f + Fy(a)j

where Fx(o) i1s called the Normal Stress Resultant, and Fy(o) is called

the transverse Shear Stress Resultant:

Fx(o) = IJ;
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Sometimes N or T is used for Fx(o). and V is used for Fy(o). Euler used
T and V.

If the Normal Stress Resultant Fx(c) is plotted on the affine plane

Fx(o) X X, then the resulting graph is called the Normal, or Axial Force

Diagram. -
If the Shear Stress Resultant Fy(o) plotted on the affine plane

Fy(o) x X, then the resulting graph is called the Shear Force Diagram.

The Stress-Couple,

ﬁx(G) I X de(E) = i (y] + zk) x [oxdi)I + (oxydA)3]

A

ﬁ yo, dA (3xI) + £ z o, dA (kxI) + s Yoy (Fx P

+ ; z oxydA (k x P

[-; yo, dATK + [i zoxdiJJ + [_ﬁ zcxydA]i

(-f yo  dAlk = Mz(o)E
since for a symmetrical cross-section and planar state of stress

[o. (-2) = oxx(z); o, (~2) = cxy(z)!]

XX Xy
S z2o. dA = 0
A XX
J z dA = 0
A Xy
The stress-couple component,
Mz(c) z - i y oxdi

is called the Bending Moment about the z-axis.

If the Bending Moment Mz(a) is plotted on the affine Mz(o) x X
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plane then the resulting graph is called the Bending Moment Diagram.

All three diagrams are affine, and, therefore, non-metrical. On affine
plane angles and distances are meaningless.

It must be observed that in all three diagrams the plotted stress
resultants FX(O), Fy(o) and the bending moment M,(c) act on the

cross-section x with positive unit normal vector n = T.

Euler's Field Equations for Beams

Consider a beam shown in Figure U,
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If the Stress Resultant System {Fx(o), Fy(o), Mz(c)} is constructed

on the positive face of the cross-section x which has the positive unit

normal vector E+ = E, then the relationship of the Stress Resultant
System {Fx'(o), Fy.(o), Mz‘(a)} acting on the negative face of the
cross-section x of the finite beam element Ax which has the normal
vector n = - 1 with the Stress Resultant System {Fx(c), Fy(o), M_(0)}
has to b;-established.

If the finite element Ax of the beam 1is in the state of
equilibrium, then the Equivalent Force System constructed at x+Ax must

vanish:

Fx+Ax = O Fx+Ax,x=F (o)+[Fx(c)+AFx(c)]+[px(x)+px(x+Ax)/2]Ax=0 (1)

»*
X
*
x+Ax,y=Fy( 0)+[Fy( 0)+AFy( 0)]+[py(x>+py(x+Ax)/2]Ax._.o (2)

» » 2

cx+Ax 0: Mx+Ax,z'Mz (o)-AxFy (o)-[2py(x)+py(x+Ax)](Ax /6)
+[Mz(o)+AMz(c)]=0 (3)

Furthermore, if the requirement is imposed that the equilibrium

condition must also hold in the limit Ax+0, then

lim F = F .(o) +F (o) =0 . F '(a) = =-F (o) (1a)
Axs0 X X X X X
» "
1lim IF (o) = F (o) + F (o) =0 . F (0) =z =F (o) (2a)
20 y y y y
*
lim M = M ‘(o) + M (o) =0 . M (0) =z =M (0) (3a)
Ax+0 Z z z z z

This Stress Resultant Principle was established by Leonhard Euler
in 1774 by a different method. This result, as Euler demonstrated,

shows that on both faces of a section in any beam, faces which have unit

normal vectors n = 1 and - n = - 1, the stress resultant system is an

equal and opposite vector system as shown in Figure 5:

F _(0) = -F_(o) and M _(0) = = M _(0)
-n n -n n
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Figure 5

This idea was generalised to three-dimensional continuum by the
mathematician and erstwhile hydraulic engineer, Augustin Louis Cauchy
(1789-1857), in 1821 when he invented through a flash of genius the
stress tensor concept which is independent of the constitutive material
properties of the continuum, The remarkable fact is that Euler and
Cauchy, and in this order, are the greatest and the most productive
mathematicians and scientist-engineers in the history of Western
Science. Cauchy's generalisation of Euler's Stress Resultant Principle
for the continuum took the form:

-

°% -n

Inspired by Euler's work on Stress Resultant in beams, Cauchy asserted
that the difference between perfect fluids and solids as continua, apart
from their constitution, is that the stress vector ;n acts skew on any
section with the normal n in solids whereas in perfect fluids it acts
normal to any section. This very idea is still in use, and forms an

important concept of continuum mechanics.
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If the stress resultant principle expressed by (1a), (2a), (3a) are
used in (1), (2) and (3), then the equilibrium equations reduce to the

incremental form:

Froaxsx = AFg(@) + [p,(x)+(ap 72)] ax = 0 (1b)

Freax,y = AFy(0) + [p (x)+(ap /2)] 8x = 0 (2b)
2

Meeax,z = 8% Fylod + [3p 000 + ap J(ax"/6)+aM, (0)=0 (3b)

which in the 1limit Ax+0, become the Euler Field Equilibrium Equations

for Beams:

iiTO {[AFx(c)/Ax] + px(x) + (Apx/2)} = [de(o)/dx] + px(x)=0 (1e)
1lim {[AFy(o)/Ax] + py(x) + (Apx/2)} = [dFy(o)/dx] + py(x):O (2¢)

Ax+0

iiTo {[AMZ(G)/AX] + Fy(c) + [3py(x) + Apy](Ax/6)

= [sz(o)/dx] + Fy(c):O (3¢

Euler's Field Equilibrium Equations can be expressed in the traditional

form:
[de(o)/dx] = - px(x) (1)
F z -
[d y(c)/dx] py(x) (2
[sz(o)/dx] = - Fy(c) (3)

These important field equations were established by Euler in 1771 as a
special case of his more general dynamic field equations.

If the loading intensities px(x) and py(x) are smooth functions of
X, then the stress resultants Fx(u) and Fy(a). and the stress couple
Mz(o) can be obtained from the loading by integration:

From (1),

Fx(o) - px(x)dx +C

1
From (2),

H

Fy(o) -r py(x)dx +C

2
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NZ(O) = -/ Fy(a)dx + C3

This integration method, whether it is analytically or graphically
carried out, is often used in constructing the Normal Force, the Shear
Force, and the Bending Moment Diagram.

If the Euler Field Equations for Beams given by (1), (2) and (3)
are integrated between two definite 1limits, say X4 and Xy then
convenient expressions for the Stress Resultant, or Stress Couple acting
at X, can be obtained in terms of the corresponding quantity at Xqe
Normal Stress Resultant (also called Axial Force):

/2 LdF,(o)/dx1dx = /2 dF, (o) = - 1§ p (x)dx
or

F2(o) = Fl(o) = = /§ p (x)ax (1)
Transverse Shear Stress Resultant (also Shear Force):

fﬁ[dFy(o)/dx]dx = fﬁ dFy(a) z - j? py(x)dx
~or

Fe(a) = Filo) = = /5 p (x)dx (2)
Stress Couple (Bending Moment):

75 (M, (o) /axlax = sfaM (o) = = s§ F (o)ax
or

Mo(o) = M1(o) = = f{F (oddx (3)
These integrated results of Euler Field Equations are usually expressed
in a form in which the quantity at Xy is expressed as the difference

between the same prescribed quantity at X, and another appropriate

quantity integrated between limits X4 and x2:
1
F2(0) = F (o) = /2 p (x)dx (1
2 1 2
Fy(c) = Fy(o) - “py(x)dx (2)
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MZ(a) = M1(o) - S9F (o)dx (3)
These integrals can be carried out analytically if px(x) and py(X)
are given as smooth function of x, and F;(o), F;(o), and M;(o) are

prescribed.
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