
The IKS
 Handbook

Developing Semantic
CMS APPLICATIONS

2013

Neither the IKS consortium as a whole, nor a certain party of the
IKS consortium warrant that the information contained in this
document is capable of use, nor that use of the information is free
from risk, and accepts no liability for loss or damage suffered by
any person using this information. Neither the European
Commission, nor any person acting on behalf of the Commission,
is responsible for any use which might be made of the information
in this document.

The views expressed in this document are those of the authors and do
not necessarily reflect the policies of the European Commission.

Disclaimer

Developing Semantic
CMS Applications
The IKS Handbook
E D I T O R S :
W E R N H E R B E H R E N D T
V I O L E T A D A M J A N O V I C

This report is a product of the IKS project that is
supported and partly funded by the EU IST
Seventh Framework Programme of the European
Commission

Copyright
Salzburg Research Forschungsgesellschaft m.b.H
on behalf of the IKS Consortium.
Publisher Salzburg Research
Forschungsgesellschaft m.b.H

March 2013

ISBN: 978-3-902448-35-4

Design and Layout
John Pereira, Salzburg Research
Forschungsgesellschaft m.b.H

Copyright for the images
All images are copyright IKS Consortium unless
otherwise specified in text.

Editors
Wernher Behrendt and Violeta Damjanovic of
Salzburg Research Forschungsgesellschaft m.b.H.

Imprint

The book summarizes the results of
four years of collaborative technology
development between CMS providers
and research organizations in Europe,
plus the input from 40 early adopter
organizations, worldwide.

The book does not give you academic
depth: we have opted for enough detail
for readers to understand the system
and its components, and we have tried
to satisfy the practitioner’s interest in
IKS technology. The book has six
sections:

• Initial concepts - to acquaint you
with different notions of the term
"semantics";

• Knowledge Representation and
examples of "Semantic Web"
applications;

• Building Semantic Components
and making them usable in a
customer CMS

• Using Apache Stanbol and VIE as
semantic components for real-
world use;

• Showcases of IKS semantic
technologies in use;

• IKS, Semantic Web, Linked Data,
Artificial Intelligence – A critical
appraisal.

The book is based on several pieces of
open source software, in particular: on
Apache Stanbol, a set of "semantic
engines" that help software developers
to lift textual information to structured,
computable representations; on the VIE
libraries for connecting HTML5 based
web interfaces with semantic engines,
be they from Stanbol or from
elsewhere; on other open source
software such as Apache Tika, Apache
Chemistry or jQuery

The IKS software is available under
permissive licensing on Apache and on
github.

Foreword
This book is intended for
developers and CTOs who
need to deal with Content
Management Systems
(CMS) and with any kind of
"smart" applications that
combine web-based
information sources with
some Information System
that is being built or
adapted, for their own
organization or for a
customer.

“Interactive Knowledge Stack” (IKS) was a four-year research project
targeting small to medium CMS providers in Europe with the aim of
providing technology platforms for content and knowledge management to
thousands of end user organisations. The starting point was that CMS
technology platforms often lack the capability for semantic web enabled,
intelligent content, and therefore lack the capacity for users to interact with
the content at the user’s knowledge level.

The objective of IKS therefore, was to bring semantic capabilities to current
CMS frameworks. IKS postulated a “Semantic CMS Technology Stack”
which merges the advances in semantic web infrastructure and services
with CMS industry needs of coherent architectures that fitted into existing
technology landscapes. At the end of the four years, IKS has not only
provided specifications, but also modular instantiations of the IKS Stack.
Prototype solutions for industrial use cases were developed, ranging from
semantics-based web site management to smart, online holiday booking
systems and to demonstrators for future, ambient intelligence infotainment
in the home.

The project’s biggest success is the launching of the Apache Stanbol top-
level project, which graduated after incubation in late 2010, to full Apache
project status in September 2012. Similarly, the development of the
“Vienna IKS Editables” (VIE) has given the CMS community an easy path
from HTML5-based User Interfaces to semantic back-ends, a development
led by a Finnish small-to-medium enterprise. The VIE libraries have found
their way into top-ranking CMSs such as Drupal and Typo3. The ground
breaking approach of involving 40 further CMS providers and end user
organizations for validation of the technology has helped to disseminate
the tangible results of IKS quickly, amongst a large community.

On the following pages, we try to give readers a fast way into IKS, so that
they can also benefit from the results of 6.5 m € of European Funding
which accounted for approximately 75% of the IKS Budget.

In a Nutshelll

Table of Contents Semantic

CHAPTER 1: Initial Concepts.. 8

1.1 Semantics in Linguistics, Computer Science and in Web Engineering 9

1.2 Semantic Web: from Tim Berners Lee’s Vision to Today’s State of the Art 9

1.3 Linked Data 13

CHAPTER 2: Knowledge Representation Methods and Techniques 15

2.1 Semantics and Content Management Systems 15

2.2 Methodologies for Knowledge Modeling 16

2.3 Semantic Technologies and Tools 20

2.4 Semantic Web Success Stories 26

CHAPTER 3: IKS Methodology for Building Semantic Components into CMS 33

3.1 High Level Requirements 34

3.2 IKS Alpha: Refactoring CMS and Semantic Web Technology 38

3.3 The IKS Reference Architecture 42

3.4 The IKS Reference Implementation 46

CHAPTER 4: Apache Stanbol and VIE in a Semantic CMS Technology Stack 50

4.1 Foundational Components of IKS 50

4.2 Ambient Intelligence Components of IKS 65

CHAPTER 5: Showcases 71

5.1 Showcasing Horizontal Applications of IKS 71

5.2 Showcasing Vertical Applications of IKS 78

CHAPTER 6: Beyond CMS with semantic extensions 86

6.1 The Roaring Success of Semantic Web Technologies 86

6.2 The Dismal Failure of Semantic Web Research 87

6.3 A Pragmatist’s View on Semantic Technologies in Web Content Management 98

6.4 What’s Next? 106

References 109

CHAPTER 1: Initial Concepts
This book is about developing semantic CMSs and their applications. Semantic
CMSs differ from traditional CMSs by their capability to interact with the content,
as well as to automatically extract, manage, and store semantic metadata about
content [IKS-D4.2]. While traditional CMSs provide management tools for
document types and workflows, semantic CMSs promise knowledge
management at the level of real-world entities, through the use of ontologies.
So, while traditional CMSs target the “document” as an atomic unit, semantic
CMS treat real-world entities as atomic units. Actually, documents also become
real-world entities that are “about” other real-world entities!

Semantics comes to CMS via Semantic Web technologies. The overall idea is
to utilize ontologies that provide vocabularies, definitions, and constraints
describing the domain of interest. Information resources, agents, and web-
based applications can commit to these ontologies in order to reuse data and
knowledge effectively [HEHU03]. Semantic Web technologies embrace a
distributed approach to creating standard vocabularies that, when integrated
within CMS, can provide formal relationships to enrich the content.

A semantic CMS is designed to manage two types of data [IKS-D5.0]. The first
data type is content by itself, i.e. the kind of data that is traditionally managed by
a CMS. Content can be text or any other kind of binary data like images, video,
or sound. CMSs implement content (business) lifecycles, manage editing
responsibilities, access controls, and output channels. The second kind of data
(and this is typically missing in a CMS, or very rudimentarily managed) is
knowledge about the content that is stored within the CMS. A semantic CMS
manages such knowledge explicitly and offers features to gain further
knowledge from the available content.

In this book, we describe our development experience in building semantic
components and integrating them into existing CMSs through RESTful Web
services. We discuss the IKS Reference Architecture and its Reference
Implementation for managing and deploying semantic components and

The IKS Handbook 2013

8

vocabularies. In addition, we present the results of the two major sub-projects of
IKS: the semantic back-end of Apache Stanbol and the semantically enabled
front-end technology, called VIE (Vienna IKS Editables). Finally, we present
several vertical and horizontal demonstrators of the IKS-based semantic CMS
applications.

1.1 Semantics in Linguistics, Computer Science and
in Web Engineering
The term “semantics” (as in Semantic Web) is not an invention of web
engineers. In linguistics, semantics is a research field about how meaning is
constructed in the human mind, from words and sentences. In computing,
“formal semantics” is the study how computers behave when executing
programs written in some formal language. One of the fundamental differences
between natural languages and programming languages is that in computing,
we make the compositionality assumption according to which each sentence
(which is equal to a program statement) is composed in a precise fashion, from
the meanings of the programming keywords. Thus, meaning in computing can
be formally constructed. Such a strong claim is difficult to maintain for natural
language where the meaning of words and phrases is known to change over
time, and where competing meanings (ambiguities) are often resolved through
applying other knowledge (“context”).

The notion of Semantic Web attempts to bring formal knowledge representation
and natural language understanding closer to each other, in order to make it
possible to represent and encode everyday knowledge in a way that is process-
able and computable by machines.

1.2 Semantic Web: from Tim Berners-Lee’s Vision to
Today’s State of the Art
In 2001, an influential article in Scientific American, co-authored by Tim Berners-
Lee [BERN01], marked the start of a 10+ year period of research into extending

The IKS Handbook 2013

9

the WWW infrastructure so as to making it more “intelligent”, i.e. enabling
software robots to automatically navigate and “work their way” through the
WWW, doing useful things for their owners. The suggestive cover of that issue
of Scientific American showed a computer screen with the words: “I know what
you mean …” and the cover headline was “Get the Idea? (Tomorrow’s web
will)”. While we encourage readers to revisit the original article, we warn you
that what is now available as “semantic technologies” and “Linked Open Data”
has only one common denominator: the use of the RDF notation for expressing
things that have specific meaning. What makes the current Semantic Web work
is a mix of natural language processing capabilities, the use of controlled Web
vocabularies (ontologies) and an increasing number of data sets that have
encoded partial semantics - usually just enough to build applications that “mash
up” those partial semantics in order to create added value for a specific use.

Web ontologies have become the most widely accepted standard artifacts for
representing and reasoning upon knowledge, which is formally rendered as a
set of concepts defined either within a given domain or across multiple domains,
along with the logical relationships between and constraints upon, these
concepts. A widely accepted definition of ontology from the literature is the one
given by Tom Gruber [GRU93]: “An ontology is an explicit specification of a
conceptualization.” More recently, Tom Gruber has elaborated on that definition
and in [GRU09] writes: “In the context of computer and information sciences, an
ontology defines a set of representational primitives with which to model a
domain of knowledge or discourse. The representational primitives are typically
classes (or sets), attributes (or properties), and relationships (or relations
among class members).”

The core feature of ontologies is the possibility to define formal models of
knowledge domains by combining any type and amount of semantic structures
(such as taxonomies, mereonomies, non-hierarchical relations such as equals
and opposites) on the basis of relationships between “things”. All such “things”
are then referenced by identifiers complying to a uniform mechanism, i.e.,
Uniform Resource Identifiers (URI).

The IKS Handbook 2013

10

Each ontology provides the vocabulary (or labels) for referring to the terms in a
subject area, as well as the logical statements that describe what the terms are,
how they are related to each other, etc. One of the central roles of ontologies is
to establish further levels of interoperability, i.e. semantic interoperability,
between agents and applications on the emerging Semantic Web [BERN01], as
well as to add a further representation and inference layers on top of the Web’s
current layers [DECK00], [HEND01].

Social Semantic Web. Since about 2005, web researchers and developers
have started to combine Social Web (or Web 2.0) and Semantic Web principles,
techniques, approaches and tools into the so-called Social Semantic Web. The
Social Web is a platform for social and collaborative exchange [OREI05] where
users meet, collaborate, interact and most importantly create content and share
knowledge through, e.g., wikis, blogs, photo- and video sharing services [OP4L-
D1.1]. The Social Web transforms the “old” model of the Web into a platform for
social and collaborative exchange. Popular social websites, such as Facebook,
Flickr and YouTube, enable people to keep in touch with friends and share
content. Other services such as blogs, wikis, video and photo sharing that
together enable what recently has been defined as “life-streaming” - allowing
novice users to easily create, publish and share their own content. Furthermore,
users are able to easily annotate and share Web resources using social
bookmarking and tagging, thus creating metadata for Web content commonly
referred to as “folksonomies”. However, Social Web technologies in general,
and collaborative tagging in particular, suffer from the problems of ambiguity of
meanings. For instance collaborative tags are often ambiguous due to their lack
of precisely defined semantics. Moreover, they lack a coherent categorization
scheme, and they require significant time and a sizeable community to be used
effectively [STJO09] [OP4L-D1.1].

Among the key representatives of the Social Web are mash-ups - Web
applications allowing users to combine and integrate different types of data,
often originating from different sources. Map-based mash-ups, in which maps
are overlaid with other information, are one emerging type of tools. Tools, such

The IKS Handbook 2013

11

as Google Refine1, or Yahoo Pipes2 allow individuals to aggregate data, find
new meanings or interpretations, and present the data in interesting ways. The
suite of tools developed in the scope of MIT’s SIMILE3 project (such as Exhibit
[HUYN07a] and Potluck [HUYN07b]) facilitates the creation of Semantic Web
mash-ups. By leveraging Semantic Web technologies (primarily RDF and
SPARQL), these mash-ups are more dynamic and flexible than those offered by
simpler Web 2.0 tools and services. For example, the Potluck tool lets casual
end-users (i.e. nonprogrammers) easily make mash-ups of structured,
semantically rich data, often expressed in RDF or JSON4 format. Potluck
acknowledges the fact that the real-world RDF is messy, “broken perhaps not
just in syntax but also in semantics” [HUYN07b], and empowers users to deal
with this problem by providing them with visual editing facilities. In particular, the
tool assumes an iterative process of data integration in which the user can take
advantage of the tool’s rich visualization capabilities to explore the data, identify
data of interest as well as merge, align and/or clean up the data in an easy and
intuitive manner.

Today, many projects deal with topics related to the Social Semantic Web. For
instance, DBpedia5 is a large-scale semantic knowledge base, which re-
structures knowledge that has been socially created on Wikipedia. DBpedia
takes advantage of the common patterns and templates used by Wikipedia
authors, to gather the semi-structured information into a formal knowledge base.
The result is a huge database of shared knowledge, which allows “intelligent”
queries such as: “List the 19th century poets from England” [AUER06]. With its
capability to answer very specific queries, DBpedia can serve as a learning tool

The IKS Handbook 2013

12

1 Google Refine wepage: http://code.google.com/p/google-refine/

2 Yahoo Pipes webpage: http://pipes.yahoo.com/pipes/

3 SIMILE project webpage: http://simile.mit.edu/

4 JSON webpage http://json.org

5 DBpedia webpage: http://dbpedia.org

http://code.google.com/p/google-refine/
http://code.google.com/p/google-refine/
http://dbpedia.org/
http://dbpedia.org/

and is an excellent example of the advantages that the Social Semantic Web
paradigm brings to various domains.

1.3 Linked Data
As explained in [HEBI09]: “Linked Data provides a publishing paradigm in which
not only documents, but also data, can be a first class citizen of the Web,
thereby enabling the extension of the Web with a global data space based on
open standards - the Web of Data.” The term Linked Data refers to a set of best
practices for publishing and interlinking structured data on the Web that were
introduced by Tim Berners-Lee and have become known as the Linked Data
principles (rules) [LEE06]. These principles provide guidelines on how to use
standardized Web technologies to set data-level links between data from
different sources. Due to the fact that data from different sources is connected
by links, it is possible to crawl the data space, fuse data about entities from
different sources, and provide expressive query capabilities over aggregated
data, similarly to how a local database is queried today. Linked Data
applications discover new data sources at runtime by following data-level links,
and can thus deliver more complete answers as new data sources appear on
the Web [BIZE09].

The publication of Linked Data is loosely coordinated by the World Wide Web
Consortium’s (W3C) Linking Open Data (LOD) project. Its goal is to bootstrap
the Web of Linked Data by identifying existing data sets that are available under
open licenses, converting them to RDF according to the Linked Data principles,
and publishing them on the Web. Major publishers and consumers of Linked
Data today are classified according to their field of interests (see Table 1 in the
Appendix for more details):

- British Broadcasting Corporation (BBC, Media Metadata): The BBC
Programmes and Music sites provide data about episodes of radio and TV
programs. The data is interlinked with MusicBrainz, an open-license music
database, and DBpedia, a Linked Data version of Wikipedia. The links between

The IKS Handbook 2013

13

BBC Music, MusicBrainz, and DBpedia let applications retrieve and combine
data about artists from all three sources;

- The US Library of Congress and the German National Library of
Economics have published their subject heading taxonomies as Linked Data;

- Amazon and Google Base APIs: The RDF Book Mashup, a wrapper around
the Amazon and Google Base APIs, provides Linked Data about books;

- The Open Archives Initiative - Object Reuse and Exchange standard
(OAI-ORE) is also based on the Linked Data principles;

- W3C Linking Open Drug Data: Within the W3C Linking Open Drug Data
effort, the pharmaceutical companies Eli Lilly, AstraZeneca, and Johnson &
Johnson cooperate to interlink open- license data about drugs and clinical trials
to ease drug discovery.

From these examples it can be seen that semantic CMS applications will soon
be the norm rather than the exception. In other words, future CMS will be
expected to deal with data and text that have varying degrees of semantic
structure. IKS also contributes methods and tools for this.

The IKS Handbook 2013

14

CHAPTER 2: Knowledge Representation
Methods and Techniques
The major challenge of the IKS project was to hide the complexity of ontology
engineering and Semantic Web technologies from the developers of semantic CMSs.
As market, modularity, reusability and application interoperability are critically
important aspects for small to medium enterprises (SMEs) around CMSs, this
became important driver of the whole project.

This chapter briefly surveys Semantic Web technologies, their techniques,
formalisms, standards and applications targeting knowledge representation (KR)
technologists around CMSs.

2.1 Semantics and Content Management Systems
A CMS is a collection of software applications and their functionalities that assists
end-users in creating, editing, publishing and managing content within a collaborative
environment [IKS-D3.2]. Such systems can be classified with respect to the business
needs and production environments. For example, we distinguish between:

● Web Content Management Systems (WCMS) for publishing content on
websites;

● Mobile Content Management Systems (MCMS) that deliver content to mobile
devices, i.e. smartphones and PDAs;

● Document Management Systems (DMS), with a focus on the storage and
management of electronic documents, either authored in electronic form or
ported from paper documents;

● Enterprise Content Management Systems (ECMS) for dealing with content
that is related to the organizational processes of an enterprise.

The above classification of CMSs does not necessarily constrain the business
domain in which CMS can be used. For example, content of e-commerce portals,

The IKS Handbook 2013

15

libraries and news agencies can be managed by a CMS of any kind, whereas media
companies would gain a lesser benefit from DMSs. However, knowledge that is
present in CMSs needs to be formally modeled in order to provide features such as
reasoning and learning in CMSs. Hence, we can postulate that most, if not all of the
above CMS categories, are grounded on shared knowledge management schemes,
or knowledge patterns. Such schemes describe the usage context, language
constructs, authored data, the users of a system, as well as the system itself. In
addition, such knowledge schemes are subject to representation by specific
knowledge modeling methodologies, technologies and formats.

2.2 Methodologies for Knowledge Modeling
Rapid changes, evolution, diversity, entropy of systems create many difficulties for
people to recognize, understand and model their knowledge domains. Therefore,
knowledge modeling and engineering bridges many complex domains and implicit
knowledge existing in these domains, providing formal validation of knowledge
models in terms of their logical correctness [SOWA06].

CMSs are not specifically tailored around the roles and capabilities of knowledge
engineering. Hence, high interaction between business domain experts and
knowledge engineers is required in all tasks that relate to any form of knowledge
modeling. Therefore, we briefly survey several knowledge engineering methodologies
supporting semantic enhancement of CMSs [IKS-D3.2].

On-To-Knowledge [DFV02] [SS02] built an ontology-based tool environment to
improve knowledge management, dealing with large numbers of heterogeneous,
distributed, and semi-structured documents, which are typically found in large
company intranets and on the Web. The On-To-Knowledge project aimed to provide
(i) a toolset for semantic information processing and user access, (ii) OIL, an
ontology-based inference layer for the Web, and (iii) an associated methodology and
validation by industrial case studies.

METHONTOLOGY [FGPJ97] is a methodology enabling the construction of
ontologies at the knowledge level. METHONTOLOGY identifies the set of activities to

The IKS Handbook 2013

16

be carried out, based on the main activities identified by the software development
process and used in knowledge engineering methodologies.

A similar approach was taken in Grüninger’s and Fox’s Methodology [GRÜN94].
This methodology introduced the use of competency questions for defining atomic
problems to be directly solved by ontologies. Essentially, it involved building a logical
model of the knowledge that needs to be specified by means of the ontology."

The Methodology proposed by Uschold and King is based on the experience in
developing the Enterprise ontology [USC95].

Knowledge modeling methodology that follows the SENSUS approach is based on
SENSUS ontology, which is an ontology aimed to be used in Natural Language
Processing (NLP). SENSUS was developed at the ISI (Information Sciences
Institute), providing a broad-based conceptual structure for developing machine
translators [KNI94] [KNI95].

The Methodology of Amaya Berneras et al., was developed within the Esprit
KACTUS project [KAC96]. One of the objectives of the KACTUS project was to
investigate the feasibility of knowledge reuse in complex technical systems, as well
as the role of ontologies to support it [SCH95]. Such an approach to developing
ontologies is conditioned by application development [FLGP02]. Every time an
application is developed, the following steps must be taken:

Specification of the application, which provides an application context and a view of
the components that are modeled by the application;

Preliminary application design based on relevant top-level ontological categories;

Ontology refinement and structuring in order to arrive at a definitive design;

The principles of minimum coupling should be used to assure that the modules are
not dependent on each other and are as coherent as possible.

The Diligent Methodology [PTSS04] has its focus on the evolution of ontologies and
identified those arguments that need to be exchanged during the evolution of
ontologies, i.e. arguments supporting the discussion of ontology changes.

The IKS Handbook 2013

17

Following up on the above-mentioned ontology engineering methodologies, the FP7
EU NeOn project6 introduced the NEON Methodology for collaborative ontology
networks and semantic applications. The aim was to assure that collaborative
methodologies are usable for ontology engineers, as well as for software
practitioners. The NEON methodology [SFGP09] supports collaborative aspects of
ontology development and reuse, as well as the dynamic evolution of ontology
networks in distributed environments via contextual information. The methodology
specifically addresses the development process and different life cycle models,
methods, techniques and tools that can be used while building ontology networks.
The NEON methodology makes extensive use of the Ontology Design Patterns
(ODPs) [GP09] [IKS-D3.2]. Most pattern-based methods in ontology engineering
cover primarily the logical level by providing support for ontology learning,
enrichment, etc. [NRB09] [BLO09], while putting little or no focus on solving concrete
modeling problems, i.e. the content level. Pattern support provided by these
methodologies is automatic for the most part, such as the usage of lexico-syntactic
patterns to identify concepts or relations between concepts in a natural language text
[CIM06]. In 1997, Clark [CP97] proposed a method for constructing ontologies based
on patterns, although these were assumed to be non-evolving sets, mostly defined
with a top-down approach. Other examples include the Ontology Pre-Processor
Language (OPPL) [IRS09] and methods for applying it as a means for logical ODP
reuse, as well as the proposal for a high-level pattern language by Noppens and
Liebig [LVHN05]. Use of ODPs has also been spotted in some ontology engineering
environments, such as the logical pattern templates in Protégé37, and the template
wizard supporting OPPL pattern definitions in Protégé4.

The eXtreme Design (XD) Methodology [PDGB09], developed also in the context of
the NeOn project, is a pattern-based design methodology that uses a set of
competency questions as a reference source for requirement analysis. This
methodology focuses on producing modular networked ontologies that extensively
reuse ODPs. XD relies on the application of design best practices and a test-driven

The IKS Handbook 2013

18

6 FP7 EU NeOn project: http://www.neon-project.org

7 Protege website: http://protege.stanford.edu/

http://www.neon-project.org
http://www.neon-project.org

development approach for ontologies. Furthermore, the methodology takes the basic
principles of the eXtreme Programming8 methodology for software development. The
XD methodology is supported by the XD Tools9 available as an Eclipse plugin, which
is compatible with the NeOn Toolkit. In addition to patterns for modeling, patterns for
the usage of ontologies have been also proposed. For example, the reasoning
patterns shown in [VHTTW09] describe primitive reasoning services, such as
classification, realization, mapping, and their composition into more high-level
reasoning patterns, such as search, browsing, personalization, integration, and
recommendation. This can both be seen as a way of standardizing typical reasoning
tasks, but also as a way to hide the underlying primitive steps, i.e., to hide some of
the complexity from a user or system developer.

Conclusions on methodologies for Knowledge Modeling. According to the
analysis of methodologies for knowledge modeling and ontology engineering
presented in [FLGP02], the following conclusions can be drawn:

1. None of the existing methodologies are fully mature (e.g. compared with the
IEEE Standard for Developing Software Life Cycle Processes,
1074-1995), although the following scale can be established:

" METHONTOLOGY is the most mature knowledge modeling methodology,
recommendations for the pre-development processes are required, while
some activities and techniques should be specified in more detail.
METHONTOLOGY is recommended by the IEEE Foundation for Intelligent
Physical Agents (FIPA) (c.f. http://www.fipa.org/).

" In Grüninger and Fox’ s methodology [GRÜN94], neither the activities nor
the techniques for performing such activities (for example, techniques for
formulating the competency questions) are described in detail.

" Uschold and King’s methodology [USC95] has the same omissions as the
above methodology and is even less detailed.

The IKS Handbook 2013

19

8 XP: http://www.extremeprogramming.org/

9 XD Tools: http://stlab.istc.cnr.it/stlab/XDTools

http://www.extremeprogramming.org/
http://www.extremeprogramming.org/
http://stlab.istc.cnr.it/stlab/XDTools
http://stlab.istc.cnr.it/stlab/XDTools

" Berneras et al.’s methodology [SCH95] [KAC96], apart from the above
omissions, has not been used to build many ontologies and applications.

2. The proposals are not unified. At present each group applies its own
methodology. This is exacerbated by the fact that none have reached
maturity. Therefore, additional efforts are required along the lines of
unifying the existing methodologies."

3. A preliminary attempt to unify two methodologies was described in [USC96].
Its disadvantage was that the new synthesized methodology was not an
actual methodology; it was a conception of a potential methodology. This
points that the best we can do is, perhaps, to have several widely
accepted methodologies rather than one standardized.

Nonetheless, there is a starting point for solving the above problems. We have a
series of methodologies that can be used as reference points for developing
methodologies that are adaptable to different ontology types in different settings.

2.3 Semantic Technologies and Tools
Ontologies provide a number of useful features for knowledge-based intelligent
systems, knowledge representation and engineering. In order to define the semantics
of knowledge and content used in these systems, several languages were developed
so far, such as Resource Description Framework (RDF), Web Ontology Language
(OWL), and more.

RDF is the main formalism for rendering Web ontologies. It belongs to a family of
World Wide Web Consortium (W3C) specifications for representing information on the
Web. It offers a simple graph model, which consists of nodes (i.e. resources or
literals) and binary relations (i.e. statements) (c.f. http://www.w3.org/RDF/). The RDF
data model exploits a recurring linguistic paradigm in Western languages by
representing all facts as subject-predicate-object expressions, called triples. In an
RDF triple, subject and predicate represent resources identified by URIs, while the
object can either identify a resource or a literal value. Since the object of one

The IKS Handbook 2013

20

http://www.w3.org/RDF/
http://www.w3.org/RDF/

resource triple can be the subject of one or more other triples, the resulting triple set
forms a graph in which resources represent nodes and arcs depend on their role in
each triple. In that way, RDF represents a type of Semantic Network, similar to the
relational model of data that is given in [CODD70]. Such a simple model embodies a
small amount of built-in semantics and offers great freedom in creating customized
extensions [DKDA05]. For example, John Sowa identifies six categories of Semantic
Networks, which are based on relation semantics [SOWA02]:

" Definitional networks building taxonomies for conceptualisms with
inheritance (subclass) and membership (instance) relations;

" Assertional networks representing cognitive assertions about the world
with modal operators;

" Implicational networks focusing on implication relations, e.g. belief
network;

" Executable networks focusing on temporal dependence relations, e.g.
flowchart, PetriNet;

" Learning networks focusing on causal relations encoded in numerical
value, e.g. neural network, and

" Hybrid networks combining features of the above types.

In the Semantic Web, most ontologies are defined using languages such as RDF
Schema RDF(S) and/or OWL, thus falling in the category of the definitional networks.
The category of assertional networks emerges in the context of sharing instance data
and evaluating trustworthiness of such data (c.f. [YOVA02][JEBJ03][MARP03]
[SGUC03][CBHS04][DKFJ05]), while the third category of Semantic Networks (c.f.
implicational networks) is focused on ontology mapping [ZHYU04][ZHYR04].

The RDF Schema (RDFS) provides a base mechanism for sharing terminologies and
other relationships between resources (c.f. http://www.w3.org/TR/2004/REC-rdf-
schema-20040210/). RDFS provides specifications and constructs for expressing
classes and subsumption relationships (thus being able to define taxonomies), and

The IKS Handbook 2013

21

http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/

domain and range definitions for properties. RDFS is used to augment RDF to
provide better support for definition and classification [LAMG01]. In addition to
inheriting basic features from Frame Systems (c.f. [LAMG01]), RDFS provides
ontology constructs that make relations less dependent on concepts. In other words,
users can define relations as an instance of rdf:Property, describe inheritance
relations between relations using rdfs:subPropertyOf, and associate defined relations
with classes using rdfs:domain or rdfs:range. In that way, releasing bulks of
semantically structured corporate and public knowledge as RDF datasets, is one
aspect of the practice of data interoperability. Reuse of machine-readable data is best
performed along with expressing their relationships with human-readable data, which
requires formal methods for interlinking the two worlds [IKS-D3.2]. The major
advancements of such formalisms for embedding knowledge have been observed in
the form of markups for HTML and XML documents. "

Microformats represent a class of markup techniques for embedding formalized
knowledge into HTML pages [ALLS07]. A single microformat denotes a custom finite
vocabulary whose terms are embedded within (X)HTML elements and encoded as
attributes of some of their markup tags, namely @class and @rel. Microformats have
gained a wide adoption over the last half-decade, thus leading to a centralized open
community for the development and sharing of microformat vocabularies. Custom
microformat vocabularies are developed for the semantic markup of specific types of
information. The most widely used microformats are: hCalendar for events, hProduct
for details and features of products, XOXO for lists and blog rolls, and geo for
geographical coordinates. At the same time, the proliferation of microformats is
generally discouraged, as it may dramatically increase the likelihood of class
collisions, which are generally harder to keep under control.

Partly inspired by microformats, embedded RDF (eRDF) has been the first real
attempt at lifting the practice of embedding knowledge to a general-purpose level (c.f.
http://research.talis.com/2005/erdf/wiki/Main/RdfInHtml). It was devised by Ian Davis
in 2005 as a markup technique for embedding arbitrary RDF in (X)HTML documents.

RDFa [ABMP08] is an alternative to eRDF, which uses a specific XML attributes
(hence the ‘a’) to convey RDF triples in XML and XHTML elements, with an

The IKS Handbook 2013

22

http://research.talis.com/2005/erdf/wiki/Main/RdfInHtml
http://research.talis.com/2005/erdf/wiki/Main/RdfInHtml

adaptation to non-XML versions of HTML (c.f. http://www.w3.org/TR/2010/WD-rdfa-in-
html-20100304/). Formally it is intended to improve upon eRDF by supporting typed
literals and blank nodes. As opposed to eRDF, RDFa is under direct W3C support,
and is being natively supported in open-source CMSs, such as Drupal. Search
platforms like Yahoo! SearchMonkey [MIK09] are parsing and consuming RDFa for
the delivery of structured search results. A MediaWiki extension for rendering
Semantic MediaWiki markup as RDFa is also available (c.f. http://www.mediawiki.org/
wiki/Extension:RDFa)."

The Hyper Text Markup Language version 5 (HTML5) introduced more powerful
multimedia support mechanisms directly at the HTML layer [IKS-D3.1]. Apart from
multimedia, HTML5 supports semantic annotation. This is done by including RDFa in
HTML5 documents as a way to represent RDF data as XHTML (and HTML5) (c.f.
http://www.w3.org/TR/xhtml-rdfa-primer/). The magic of such specification is bringing
in singular document information about presentation and meaning, so that browser
capability for processing documents can be enhanced. Recently, W3C published the
first draft for RDFa API (c.f. http://www.w3.org/TR/2010/WD-rdfa-api-20100608/),
which provides automatic extraction and manipulation functionality. However, RDFa
was not incorporated as the official semantic markup for HTML5, which is instead
represented by microdata (c.f. http://dev.w3.org/html5/md).

Microdata essentially defines how HTML5 tags can be extended by means of the
@itemscope and @itemprop attributes, to provide extraction of RDF triples from
HTML5 documents. Although the current proposal appears limited in terms of
annotating with XML literals and assigning data types to annotation values, the
current microdata working draft includes algorithms for direct transformations from
HTML5 to RDF, as well as hints at methods to map them to the most widespread
custom annotation formats, or microformats [ALLS07] (c.f. http://
www.microformats.org). Along with markups for embedding knowledge, similar
methods have been devised for embedding transformation rules for obtaining RDF
graphs out of XML documents. For example, GRDDL (Gleaning Resource
Descriptions from Dialects of Languages) [CON07] is a W3C Recommendation of
such a technique, which consists of referencing transformations in standard elements

The IKS Handbook 2013

23

http://www.w3.org/TR/2010/WD-rdfa-in-html-20100304/
http://www.w3.org/TR/2010/WD-rdfa-in-html-20100304/
http://www.w3.org/TR/2010/WD-rdfa-in-html-20100304/
http://www.w3.org/TR/2010/WD-rdfa-in-html-20100304/
http://www.mediawiki.org/wiki/Extension:RDFa
http://www.mediawiki.org/wiki/Extension:RDFa
http://www.mediawiki.org/wiki/Extension:RDFa
http://www.mediawiki.org/wiki/Extension:RDFa
http://www.w3.org/TR/xhtml-rdfa-primer/
http://www.w3.org/TR/xhtml-rdfa-primer/
http://www.w3.org/TR/2010/WD-rdfa-api-20100608/
http://www.w3.org/TR/2010/WD-rdfa-api-20100608/
http://dev.w3.org/html5/md
http://dev.w3.org/html5/md
http://www.microformats.org
http://www.microformats.org
http://www.microformats.org
http://www.microformats.org

such as the HTML link. A thread of ongoing research focuses on conventions that use
GRDDL transforms for straightforward conversion across RDFa and microformats
(c.f. [ADI08]).

DAML+OIL and OWL (Web Ontology Language) extend RDFS and emphasize
support for richer logical inference (c.f. http://www.w3.org/TR/owl2-overview/). These
ontology languages provide a rich set of constructs based on model theoretic
semantics [HAYE04] [SCHH04]. OWL is a family of languages that allow knowledge
engineers to model domains according to the principles of Description Logics (DL).
This led to the definition of three fragments of the first version of OWL (OWL-Lite,
OWL-DL, and OWL-Full) with varying trade-offs of expressivity and decidability
[MVH04]:

OWL-Lite is the simplest variant of building a basic frame system (or an object-
oriented database) in terms of class, property, subclass relation, and restrictions.
OWL-Lite does not use the entire OWL vocabulary, while certain OWL terms are used
under restrictions.

OWL-DL is grounded on DL and focused on common formal semantics and inference
decidability. DL offers additional ontology constructs (such as conjunction, disjunction,
and negation) besides class and relation, and has two important inference
mechanisms: subsumption and consistency. Horrocks and Sattler in [HOSA02]
argued that basic inference in most variations of DLs is decidable with complexity
between polynomial and exponential time.

OWL-Full is the most expressive version of OWL but it does not guarantee
decidability. The biggest difference between OWL-DL and OWL-Full is that class
space and instance space are disjoint in OWL-DL but not in OWL-Full. That is, a
class can be interpreted simultaneously as a set of individuals and as an individual
belonging to another class in OWL-Full. The entire OWL vocabulary can be used
without any restrictions in OWL-Full."

A recent revision of OWL, known as OWL2, relies on a stack of representational
schemas that cover multiple layers of Tim Berners-Lee’s well-known Semantic Web
layer cake. OWL2 became a W3C recommendation in late 2009, leaving room to the

The IKS Handbook 2013

24

http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/

definition of three language profiles, such as OWL RL, OWL EL and OWL QL (c.f.
OWL2: http://www.w3.org/TR/2009/REC-owl2-overview-20091027/). These subsets
of OWL2 pose several restrictions on OWL language constructs and axioms in order
to address certain scalability requirements deriving from interoperability with rule
languages and relational databases.

Finally, to retrieve data from RDF/OWL ontologies, the query language SPARQL10
has been developed. SPARQL is based on the expression of triple patterns for
retrieving RDF data, and produces result sets, or RDf graphs, as output. Because of
its strong formal foundation, OWL lends itself to semantic processing by DL
reasoners; for example, software engines with the ability to infer the logical
consequences from a set of formal axioms belonging to the realm of DL. Some
reasoners are limited to the specific DL flavor of an ontology. Others can derive
inferred taxonomies and arbitrary predicates that hold implicitly for general TBoxes
(subsumption, satisfiability, and classification) and ABoxes (retrieval, conjunctive
query answering).

Semantic Web technologies brought a set of tools for annotation, search, ontology
editing, semantic wiki, semantic indexing, and so on. Early ontology engineering
environments include tools such as SWOOP11, Protégé ontology editor12 and
OntoEdit13. Recent ontology tools for knowledge modeling include NeOn toolkit14 and
TopBraid Composer15. Most of these tools rely on a plugin-based architecture and
supports advanced features such as visualization, reasoning, and query. For
populating ontologies, semi-automatic support based on information extraction, have
been proposed; for example, AktiveDoc [LCP05]. An example of a manual approach

The IKS Handbook 2013

25

10 SPARQL: http://www.w3.org/TR/rdf-sparql-query/

11 SWOOP: http://code.google.com/p/swoop/

12 Protégé: http://protege.stanford.edu/

13 A predecessor to OntoStudio: http://www.ontoprise.de/en/home/products/ontostudio/

14 NEON toolkit: http://neon-toolkit.org

15 TopBraid Composer: http://www.topquadrant.com/products/TB_Composer.htm

http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://code.google.com/p/swoop/
http://code.google.com/p/swoop/
http://protege.stanford.edu/
http://protege.stanford.edu/
http://www.ontoprise.de/en/home/products/ontostudio/
http://www.ontoprise.de/en/home/products/ontostudio/
http://neon-toolkit.org
http://neon-toolkit.org
http://www.topquadrant.com/products/TB_Composer.htm
http://www.topquadrant.com/products/TB_Composer.htm

is the Protégé plugin for annotating PDF documents, which is based on an ontology
that is embedded in the document itself [ERI07].

2.4 Semantic Web Success Stories
Sharing success stories and best practices is necessary step to provide the first
insight into these technologies and make them fit better to both the real expectations
of developers and real user’s needs. For example, the BBC (and other media actors)
are not solely using Semantic Web technology for direct, technical advantages
[SW.COM10]. The calculated guess is that just as the hyperlink revolutionized digital
content distribution, the semantic hyperlink and URI promises will an even greater
impact. Therefore, this section shows several Semantic Web-related success stories
such as SWAN (Semantic Web ANnotator), the BBC World Cup Football 2010 Portal,
the BBC London 2012 Olympics platform, the BestBuy’s use of GoodRelations/ RDFa
Markups. Based on a work of W3C Semantic Web Best Practice and Deployment
(SWBPD) Working Group, as well as work summarized in [KW-D1.4.2v2], we present
several Semantic Web best practices, case studies and use cases.

2.4.1 SWAN: Semantic Web ANnotator
SWAN is designed to perform large-scale ontology-based Information Extraction (IE)
for the Semantic Web, annotating vast amounts of documents from the Web with
semantic information (inferred metadata) [KW-D1.4.2v2]. SWAN is based largely on
KIM [POP02a], which provides indexing, disambiguation and storage components, as
well as some of the interface components. It contains two crawler versions: an HTML
crawler which directly accesses web pages according to a defined scope, and an
RSS crawler which uses the syndication mechanism of RSS 1.0 newsfeeds. The web
pages found are then passed to the IE component, which consists of a set of
processing resources implemented using GATE [CUN02b]. This pipeline of resources
performs preprocessing tasks such as tokenization and sentence splitting, followed
by high-level pattern matching and co-reference resolution, which results in a set of
semantic annotations linking the text with concepts from an ontology. The
disambiguation component performs two tasks: first, it co-refers different mentions of

The IKS Handbook 2013

26

the same instance at the document level, and second, it continuously checks if new
instances found are identical to previously found entities in other documents. Finally,
the results are stored in various databases. Entities, relations and their properties are
stored in an RDF Knowledge Repository, using Sesame. An index relating the entities
to their source documents is stored in a Document Store that is implemented on top
of Lucene Core (c.f. http://lucene.apache.org/). The annotations themselves are
stored in an Annotation Store, which is implemented as a relational database. SWAN
is designed to work on specific domains with the aim to improve the accuracy.
However, it is also deliberately designed to be scalable, and new domains are being
continuously added.

2.4.2 BBC World Cup Football 2010 Portal and London 2012
Olympics Platform
The BBC World Cup 2010 Portal (c.f. http://news.bbc.co.uk/sport2/hi/football/
world_cup_2010/default.stm) collects over 700 aggregation pages (index pages),
designed to lead users on to the thousands of story pages and content [RAY12].
Examples of index pages range from the Groups and Fixtures page through to
detailed pages for each team or player. Previous search technologies and methods
for automation and retrieval of these pages have proven to be inaccurate, e.g. it was
difficult to avoid getting content mixed up between different players with the same
surname. Therefore, BBC chose Semantic Web technologies for analyzing content
and deciding how to tag this content with precise metadata linked to uniquely
identified concepts.

The BBC World Cup 2010 Portal is arguably the first large scale, mass media site
that uses concept extraction, RDF and a triple store to deliver content. It
demonstrated that this kind of technology is ready to deliver large scale, mainstream
products. BBC developers identified several practical advantages of using such
technologies [RAY12]:

The IKS Handbook 2013

27

http://news.bbc.co.uk/sport1/hi/football/world_cup_2010/groups_and_teams/team/netherlands
http://news.bbc.co.uk/sport1/hi/football/world_cup_2010/groups_and_teams/team/netherlands
http://news.bbc.co.uk/sport1/hi/football/world_cup_2010/groups_and_teams/team/netherlands/wesley_sneijder
http://news.bbc.co.uk/sport1/hi/football/world_cup_2010/groups_and_teams/team/netherlands/wesley_sneijder

● the developers stress flexibility as the first reason why they used Semantic
Web over more traditional technology. The flexibility played both on the data
layer, where it "facilitates agile modeling" and allowed for increased query
complexity compared to relational schema databases, as on the presentation
layer. With regards to the presentation layer, the developers stressed that they
"are not publishing pages, but publishing content as assets which are then
organized by the metadata dynamically into pages, but could be re-organized
into any format we want much more easily";

● a second technical advantage mentioned is inference. Due to the reasoning
facilities of the triple store, inferred statements are automatically derived from
the explicitly applied journalist metadata concepts. This made both the
journalist tagging and the triple store powered SPARQL queries simpler and
indeed quicker than a traditional SQL approach;

● finally, dynamic aggregations based on inferred statements in turn increase
the quality and breadth of content across the site.

The BBC Olympics 2012 Platform is based on a Dynamic Semantic Publishing (DSP)
architecture, which uses LOD technology to automate the aggregation, publishing
and re-purposing of interrelated content objects, according to an ontological
architecture, providing a greatly improved user experience and high levels of user
engagement [RAY12]. The DSP architecture curates and publishes HTML and RDF
aggregations based on embedded Linked Data identifiers, ontologies and associated
inference. RDF semantics improve navigation, content reuse, repurposing, search
engine rankings, journalist determined levels of automation ("edited by exception"). In
other words, the DSP approach facilitates multidimensional entry points and a richer
navigation. The number of automated pages managed by the DSP architecture is well
in excess of ten thousand, which is impossible to manage using a static CMS driven
publishing stack.

A horizontal navigation through the BBC Sport website's is powered by specifically
designed content model. That model links ontology concepts to navigation entries,

The IKS Handbook 2013

28

which allows navigating to and automatically aggregating content from navigation. In
other words, it allows a journalist to correctly disambiguate concepts such as football
players or geographical locations. Journalist-published metadata is captured and
made persistent for querying using the RDF metadata representation and triple store
technology (i.e. OWLIM-SE16, which is used for handling massive volumes of data
and for intensive querying activities). The underlying navigation data and associated
content model are stored within a new addition to the DSP architecture, which is a
highly scaled and high performance fault tolerant Big Data Store namely MarkLogic
(c.f. http://www.marklogic.com/).

Sports statistics provided by third party suppliers are stored as XML content within the
Content Store. The BBC sports site queries these XML fragments adds value and re-
formats the statistics in a form consumable on the sports website. The Content Store
has been scaled to handle ingesting many thousands of content objects per second,
whilst concurrently supporting many millions of dynamic page renditions and
impressions a day.

Figure 1 shows the DSP architecture that combines SPARQL/XQuery, RDF store,
and XML Store.

The IKS Handbook 2013

29

16 OWLIM Edition webpage: http://www.ontotext.com/owlim/editions

This way, a technical architecture that combines a document/content store with a
triple-store proves an excellent data and metadata persistence layer for the BBC
Sport website. Replacing a static publishing mechanism with a dynamic request-by-
request solution that uses a scalable metadata/data layer removes the barriers to
creativity for BBC journalists, designers and product managers, allowing them to
make best use of the BBC's content.

Figure 1: DSP architecture combining SPARQL/XQuery, RDF store, and
XML Store.

The IKS Handbook 2013

30

2.4.3 BestBuy’s Use of GoodRelations/ RDFa Markup
US retailer BestBuy is using GoodRelations vocabulary [GR08] to annotate web
pages with RDFa content that relates to products, stores and services [SW.COM10].
RDFa offers a standardized syntax for embedding structured data into existing static/
dynamic pages such that it can be conveniently parsed and consumed by remote
software agents. Developers have claimed that embedding RDFa has lead to
significant SEO (Search Engine Optimisation) benefits and increased traffic. For
example [ANSW10]:

• Jay Myers, a lead developer from BestBuy.com, has claimed: a 30% increase
in traffic to store pages since RDFa markup was added” [RWW10].

• Anecdotal evidence exists for Google SEO benefits, where a search for ferris
bueller best buy returns results where the RDFa annotated page appears
above the more established page.

• Traditional search engines, including Google, are now using RDFa to generate
"rich snippets" which augment keyword results with additional information,
such as ratings or location. Nick Cox from Yahoo also recently reported that
augmented search results (e.g. those with GoodRelations/ RDFa) get a 15%
higher Click-through-Rate (CTR) in Yahoo.

GoodRelations offers an agreed-upon vocabulary for publishing product, price, and
company data in RDF. Traditional Search Engine Optimization tries to put client on
top of all search results, but clearly, it can work only for one company. GoodRelations
puts clients on top of Web visibility for people who are looking for exactly their
products or services. BestBuy have claimed significant and tangible SEO benefits
through their use of RDFa. BestBuy is not the only adopter of RDFa. Tesco has also
incorporated RDFa into their online product catalog17.

The IKS Handbook 2013

31

17 Tesco online product catalog with RFDa: http://www.clothingattesco.com/men/sportswear/icat/mens-
sportswear#esp_sort=pdxtmagicnumber&esp_order=desc

http://www.bestbuy.com/
http://www.bestbuy.com/
http://jay.beweep.com/
http://jay.beweep.com/
http://www.google.com/url?q=http%3A%2F%2Fwww.readwriteweb.com%2Farchives%2Fhow_best_buy_is_using_the_semantic_web.php&sa=D&sntz=1&usg=AFQjCNE2j6M6aghyuWbkuj-oluxPtIY8kw
http://www.google.com/url?q=http%3A%2F%2Fwww.readwriteweb.com%2Farchives%2Fhow_best_buy_is_using_the_semantic_web.php&sa=D&sntz=1&usg=AFQjCNE2j6M6aghyuWbkuj-oluxPtIY8kw
http://www.google.com/url?q=http%3A%2F%2Fwww.readwriteweb.com%2Farchives%2Fhow_best_buy_is_using_the_semantic_web.php&sa=D&sntz=1&usg=AFQjCNE2j6M6aghyuWbkuj-oluxPtIY8kw
http://www.google.com/url?q=http%3A%2F%2Fwww.readwriteweb.com%2Farchives%2Fhow_best_buy_is_using_the_semantic_web.php&sa=D&sntz=1&usg=AFQjCNE2j6M6aghyuWbkuj-oluxPtIY8kw
http://www.google.com/search?q=ferris+bueller+best+buy
http://www.google.com/search?q=ferris+bueller+best+buy
http://www.google.com/search?q=ferris+bueller+best+buy
http://www.google.com/search?q=ferris+bueller+best+buy
http://products.semweb.bestbuy.com/y/products/7590289/
http://products.semweb.bestbuy.com/y/products/7590289/
http://www.bestbuy.com/site/Ferris+Bueller%27s+Day+Off+-+DVD/7590289.p?skuId=7590289&id=47476
http://www.bestbuy.com/site/Ferris+Bueller%27s+Day+Off+-+DVD/7590289.p?skuId=7590289&id=47476
http://googleblog.blogspot.com/2009/05/more-search-options-and-other-updates.html
http://googleblog.blogspot.com/2009/05/more-search-options-and-other-updates.html
http://www.slideshare.net/NickCox/ses-chicago-2009-searchmonkey
http://www.slideshare.net/NickCox/ses-chicago-2009-searchmonkey

2.4.4 Semantic Web Case Studies and Use Cases
A collection of Semantic Web case studies and use cases is given by W3C (c.f.
http://www.w3.org/2001/sw/sweo/public/UseCases/). These case studies include
descriptions of systems that have been deployed within an organization, and/or are
now used within a production environment. The examples range from the domain of
broadcasting, healthcare, life science, public institutions, search, etc. but also include
those examples of prototypes which are not currently being used in business. For
example, a use case on provenance tracking and data integration, which is known as
“Using Semantic Web and Proof Technologies to Reduce Errors in Radiological
Procedure Orders” helps to prevent medical errors that are caused by physicians
overlooking vital facts. This use case supports integration of cross-domain knowledge
and data seamlessly, based on explicit and unambiguous terms expressed in
ontologies. The explanations generated by proof engines provide evidence to
clinicians for a decision. The approach can even provide alternative solution. The final
decision is still in the hands of a clinician, but making such key information and
evidence readily available is extremely important when there are such large volumes
of data to consider. Consult W3C use case webpage18 for the description of more use
cases and case studies.

The IKS Handbook 2013

32

18 W3C use case webpage: http://www.w3.org/2001/sw/sweo/ public/UseCases/

http://www.w3.org/2001/sw/sweo/public/UseCases/
http://www.w3.org/2001/sw/sweo/public/UseCases/
http://www.w3.org/2001/sw/sweo/public/UseCases/
http://www.w3.org/2001/sw/sweo/public/UseCases/

Nowadays, there exist several hundred CMSs and Knowledge Management System
(KMS) providers in Europe [IKS-5.0]. Although, it is still hard to make Semantic Web
to operate with CMSs, many of today’s web applications are making use of
structuring mechanisms such as RDFa, as a first step towards getting semantics into
CMS. One of the main challenges of the EU FP7 IP IKS project, which targets small
to medium CMSs providers in Europe, is to improve the status quo and bring
semantic technologies to CMS vendors.

The IKS final release delivers a stack of software components extending existing
CMSs by adding semantic functionality. Most of IKS software components can be
used as standalone server-side application extensions, which can be integrated with
existing CMSs via RESTful web service interface. The rest of this section provides
description of the behavior of high level requirements covering various use cases of
IKS software components. The next step describes the IKS Reference Architecture
(RA) for semantic CMS, which gives an overview of new concepts providing semantic
functionality of CMSs. The IKS RA integrates two technology pillars:

● the content pillar that is already present in existing CMS architectures, and
● the knowledge pillar that contains novel semantic features of CMS.

The IKS Reference Implementation (RI) results in the integration of IKS final realise,
which is today known as the Apache Stanbol.

This Chapter describes each of the above mention steps of the IKS methodology for
building semantic CMSs. It starts with the discussion on high-level requirements, the
IKS Reference Architecture, Reference Implementation, and concludes describing the
IKS service integration patterns.

CHAPTER 3: IKS Methodology for Building
Semantic Components into CMS

The IKS Handbook 2013

33

3.1 High Level Requirements

3.1.1 Application Requirements
The IKS applications address a set of semantic enhancements for various CMSs. A
collection of application requirements in IKS represents a result of a detailed analysis
of CMSs of IKS consortium partners, such as Nuxeo, Open CMS, CQ5 and TXT) and
the "Brainstorming Session on Requirements for Semantic CMS"19 that opened the
project door to CMS vendors from outside of the IKS consortium. As a result of
brainstorming session, the following ten horizontal high-level requirements were
identified [IKS-D2.2]:

1. Common vocabulary - This requirement is about standardizing the terminology
and ensuring a common language for all semantic features of IKS, which guarantee
that different CMSs have the same understanding of particular features. Examples of
common vocabularies are external ontologies, taxonomies, thesauri, which have the
ability to provide horizontal domain knowledge.

2. Architecture and integration - The IKS architecture follows a RESTful service
approach. The IKS architecture must provide customization and exchangeability of
the IKS implementation. Services must be orchestrated/ recomposed to new higher
order services by reusing the existing services. Services must access information
inside the data repository of the CMS.

3. Semantic lifting and tagging – The IKS applications need to support different
tagging and content lifting techniques, automatically or semi-automatically extracting
semantics from structured and unstructured data, making suggestions about
annotations, etc. Examples of content techniques are semantic navigation
mechanism through the content items; automatic generation of micro-formats;
semantically enhanced rich text editor; changing the presentation model based on
semantic data; automatic categorization, similarity search, similarity detection,

The IKS Handbook 2013

34

19 "Brainstorming Session on Requirements for Semantic CMS" website: http://www.iks-project.eu/news-
and-events/press-releases/iks-requirements-workhsop-talking-community

visualization of the annotations, semantic history of navigation, providing APIs for
extracting ontology from unstructured data, and more.
4. Semantic search and semantic query - The key outcomes of semantic
enhancements of CMSs can be observed through semantic query and search
functionality of the system. Semantic description of content has ability to improve
search capabilities and provide better search results. Several sub-requirements came
along with that; for example: distributed querying, support for disambiguation of
search, user-friendly RDF querying, a prototype search engine understanding
microformats, etc.

5. Reasoning on content items - The important requirements of IKS horizontal
services is also extraction of implicit set of data from the explicit information, residing
in the content repositories. In addition, IKS horizontal services need to support
semantic consistency checking in CMSs.
6. Links/relations among content items - Besides semantic tagging, content items
might be linked among each other. This process can be automated by using
algorithms that reason on the provided tags and ontologies. As linking of content
items is already a standard technique in CMS, the IKS should provide novel
mechanisms to support automatic link creation, instance linking, linked data cloud,
etc.

7. Workflows - Existing CMSs already provide mechanisms to represent and
manage the workflows of content. The expectation of semantic CMSs is to support
the handling of content workflows by using semantic information associated with the
content. For example, semantic information can be used to determine the current
state of a specific content in a given workflow. The IKS should provide workflows for
semantic actions, which are similar to content workflows. In addition, it should support
customizable workflows, intelligent content workflows that are configured based on
workflow organization and hierarchy, etc.

8. Change management, versions and audit - Existing CMSs already provide
mechanisms to support tasks such as change management, versions and audit.

The IKS Handbook 2013

35

Hence, the IKS features should be aware of content changes and provide solutions to
validate semantic data. It should provide change management notifications,
mechanisms for change tracking, trust management, role management, revision of
content, policies for accessing the data user authentication, etc.

9. Multilingualism - The IKS semantic services should be aware of content in
different languages and provide functions to reason about information even if they are
created in different languages.

10. Security - Access to the content should be configured by using fine grade access
control, e.g. flags such as "reasoning-allowed" or "linkable-with", instead of traditional
"read-only" or "no-deletion". IKS should also support integration of permissions, roles
and group models, policies for accessing the data, user authentication; roles
management, trust management, etc.

3.1.2 Ambient Intelligence Requirements
High level requirements for the Ambient Intelligence (AmI) use case includes the
following [IKS-D4.1]:

1. Device Input/Output Management - This requirement is about managing all
technical operations on devices that are integrated inside the AmI environment. For
example, it enables playback of different forms of contents (e.g. audio, video, images,
speech) on the selected devices, as well as an interpretation of sensor inputs (e.g.
distance or person recognition sensors). It allows other modules to get informed
about interaction events and offers an interface to commit content objects for
presentation on the device.

2. Device Integration - This requirement enables discovery and integration of input/
output devices, which are present within the AmI environment. It also provides the
reverse process – de-installation of devices that are removed from the environment.

The IKS Handbook 2013

36

3. Context Management - This requirement enables management of the context that
is present inside the AmI environment. This includes management of a physical
situation in the AmI environment, as well as management of available devices and
their users. It bridges the physical devices, which are handled by the Device Input/
Output Management, and the situational knowledge, which is managed by the
Situation Management. It continuously checks for context changes, and informs the
Situation Management and the Knowledge Repository if changes occur.

4. Situation Management - It manages the situational part of the knowledge
representation, which describes all possible situations that can occur in the AmI
system. It covers the following aspects: (i) identification of relevant propositional
Conceptual Models (CMs) (by using determination methods such as fuzzy search),
(ii) processing of propositional CMs, (iii) alignment of propositional CMs and current
situation (i.e. modifying, comparing, creating), (iv) generation of new propositional
CMs, and (v) management of situation adjustment based on interaction messages.

5. Speech Communication - It enables speech-based communication between the
AmI system and the user. It covers tasks such as: (i) speech input interpretation, (ii)
discourse management, and (iii) dialog management. It receives speech input from
the Device Input/Output Management, retrieves content that is required from the
Knowledge Repository and sends presentation recommendations as the result back
to the Context Management.

6. Content Retrieval and Knowledge Extraction Pipeline – This requirement
retrieves content objects from external (unstructured) sources and integrates them
within the AmI environment. It performs the following tasks: (i) content aggregation,
(ii) content reengineering that transform retrieved content into an ontological
representation, (iii) content refactoring that maps the external content concepts into
AmI concepts and (iv) content filtering. The content refactorer stores content items
into the Knowledge Repository as an external knowledge. The binary parts of some
content items (e.g. audio content) are stored in the Content Repository.

The IKS Handbook 2013

37

3.2 IKS Alpha: Refactoring CMS and Semantic Web
Technology!
The development process in IKS combines two approaches: top-down design and
bottom-up prototyping. The IKS Alpha is the first software release in the project that
brought together the results of both approaches top-down and bottom-up.

The bottom-up approach was driven by the industrial partners and their requirements
with respect to semantic add-ons to their existing CMSs. The first project meeting
discussing a set of industrial requirements around semantically enhanced CMSs,
created a very basic infrastructure for further development of the IKS semantic
enhancer. Such enhancer is called FISE (Furtwangen IKS Semantic Engine). Beside
FISE, several other components evolved, such as INTERPRET; a set of FISE
services that address semantic lifting requirements; KReS services that address
models such as ontology, management functionalities; a Persistence Store which
uses different triple store implementations as its backend (Figure 2).

Figure 2: The IKS Development Process Overview

The IKS Handbook 2013

38

3.2.1 Semantic Engine (FISE)
The idea of FISE [FISE] is to create a semantic engine that is accessible through a
simple RESTful HTTP interface. Therefore, the FISE engine was build to support the
enhancement of content with semantic meta-data, as shown in Figure 3.

The FISE architecture consists of three parts: (i) a Job Manager that receives
incoming requests for enhancement of the content and delegates them to (2)
enhancement engines. In addition, FISE can (3) store the content along with the
extracted meta-data.
Each component of FISE is an OSGi bundle. At runtime, the different bundles are
linked and act together. OSGI also supports distributed component development:
once the interfaces between components are defined, each component can be
designed and implemented independently of others.

Figure 3: The FISE Approach

The IKS Handbook 2013

39

3.2.2 Knowledge Interaction (INTERPRET)
The INTERPRET component is responsible for managing and supporting interaction
of users with the content. In INTERPRET, the user's interaction is seen as task that
can be further modeled (e.g., contribute content to the CMS, retrieve content...). The
task models in INTERPRET can trigger various functionalities, such as retrieve
related content, etc. INTERPRET can be customized at any time, by adding new task
models or new functionalities to the system. It can also create recommendations on
how, when and which content should be presented (Figure 4). More technical details
on INTERPRET can be found in [IKS-D5.1].

3.2.3 Knowledge Representation and Reasoning (KReS)
The Knowledge Representation and Reasoning System (KReS) is a standalone set of
software components targeting several functionalities and requirements belonging to
the IKS knowledge management layer [IKS-D3.2].

Figure 4: The INTERPRET component

The IKS Handbook 2013

40

KReS Alpha is developed in Java as a set of OSGi components for the Apache Felix
platform. KReS provides developers with a Java API and a set of RESTFul services.
It relies on the OWLApi for the ontology management (e.g., OWL2 and OWLLink
support), on the Jena API for RDF-related features (e.g., SPARQL support), and also
contains Hermit20 as a built-in reasoner.

KReS contains five main software components, each consisting of an OSGi bundle.
KReS components are shown in Figure 5, and described below.

• API: It provides interfaces and abstract Java specifications of all components
that are intended to be of interest for CMS developers. The API is documented

Figure 5: KReS components

The IKS Handbook 2013

41

20 Hermit reasoner website: http://hermit-reasoner.com/

as a reference for all developers who wish to provide custom implementations,
or interact with KReS programmatically;

• RESTFul services: It provides a set of HTTP RESTful services for using KReS
functionalities from client applications;

• Ontology Network Manager (ONM): It implements the API for managing OWL
(including OWL2) ontologies, in order to prepare them for usage by reasoning
services, refactorers, rule engines and the like;

• Rule Manager and Inference Engine (R&I): It implements the API for the
management of rules, and the execution of rule sets (called recipes in KReS),
and the execution of reasoning tasks;

• Reengineering and Refactoring Engines (SEMION): It provides a set of
functionalities for reengineering and refactoring of models, e.g., triplification,
performed over the knowledge stored in a CMS persistence store, according
to a set of customized ontologies and rules.

More details about KReS are available in [IKS-D5.2] .

3.2.4 Persistence Store
Persistence Store provides storage and access points for the semantic data. It uses
two types of interfaces such as Java interfaces and REST interfaces. As an OSGi
bundle, Persistence Store implements those interfaces that are specified by FISE.
Figure 6 shows architecture of the Persistence Store component. The description of
the detailed architecture and implementation details are available in [IKS-D5.4].

The IKS Handbook 2013

42

3.3 The IKS Reference Architecture
Figure 7 shows two major parts of the IKS reference architecture [IKS-D4.2].: The left
side of the reference architecture includes all features, which are required to handle
content, while the right side adds semantic features. The interface features connect
these two sides via a traditional user interface.

Furthermore, the right side of the IKS reference architecture is divided into the four
main layers, such as (i) Presentation and Interaction layer, (ii) Semantic Lifting layer,
(iii) Knowledge Representation and Reasoning layer, and (iv) Persistence layer.
These four layers are further refined into a set of feature layers. Each feature layer
encapsulates required features at the different high-level layers for a semantic CMS.
Possible combination of features from each layer will be described by means of so-
called IKS service integration patterns (see Section 3.5).

Table 1 briefly describes each of the feature layers.

Figure 6: Persistence Store Architecture

The IKS Handbook 2013

43

Figure 7: IKS Reference Architecture for a Semantic CMS

The IKS Handbook 2013

44

Feature Short Description

Semantic User Interface
A semantic user interface uses available semantic
metadata and, based on the provided information,
adapts its behavior.

Semantic User Interaction
A semantic context of user interaction is provided by
the semantic user interaction features that control
overall user interaction with the system.

Knowledge Access
A knowledge access needs to ensure a standardized
access to all participating services within the
knowledge column.

Content Integration
It bridges two sides of the IKS reference architecture
by integrating existing content from the CMS with its
semantic enhancements.

Knowledge Extraction Pipelines Different knowledge extraction pipelines are used to
extract different semantic metadata from the content.

Reasoning

Based on the available semantic metadata and the
defined knowledge models, it is possible to infer new
knowledge by following semantic relations. Automatic
reasoning features are used to evaluate the available
metadata in combination with the knowledge models.

Knowledge Models
Knowledge models are used to internally represent the
semantic metadata and define the available semantic
relations. Such knowledge models are often defined in
terms of an ontology.

Knowledge Repository
In contrast to a content repository, the knowledge
repository is optimized for storing semantic metadata
and its relations.

Knowledge Administration

The different knowledge features need to be
administered and configured to be used in different
usage scenarios. Each feature has to provide an
administration interface, which is bundled in a
centralized administration console to configure the
whole stack.

Table 1: Features of the IKS Reference Architecture and their descriptions

The IKS Handbook 2013

45

In the following, we introduce the IKS reference implementation for the above
reference architecture.

3.4 The IKS Reference Implementation
The IKS reference implementation is an instance of the IKS reference architecture.
The IKS reference implementation is based on two open-source projects, such as VIE
and Apache Stanbol (Figure 8).

The objective of VIE is to ease the development of semantic web applications on user
interaction level. VIE's service-architecture provides communication to different
backend services directly from the browser. For example, the main features of the
VIE Satnbol service are text enhancement, lookup for entities in the Entity Hub,
getting metadata for specific entities, and storing entities that were created or
changed during user interaction. Hiding the complexity of the back-end engines is
essential for building long-lasting front-end applications, which are also more resistant
against future changes of the different back-end components. VIE is designed to be a
JavaScript framework that can be extended to implement custom user interface
widgets. It can use the Apache Stanbol RESTful API for implementing semantic
interaction in web applications. VIE can work together with any CMS with the goal to
decouple CMS and user interface.

The second project implementing the IKS reference architecture is Apache Stanbol,
which is focused on the development of flexible services on the server-side of a
semantic CMS. The Apache Stanbol’ components implement the knowledge side of
the IKS reference architecture starting from the Knowledge Access layer (as shown in
Figure 8).

The IKS Handbook 2013

46

The Apache Stanbol project was “incubated” in November 2010 with the aim of
supporting an open-source community adopting semantic technologies for CMSs.
The FISE component of the IKS Alpha was migrated to Apache Stanbol. Since then,
most of the IKS software was directly developed under Apache Stanbol and is freely
available. In other words, Apache Stanbol is no longer driven by the IKS project

Figure 8: The IKS Reference Implementation

The IKS Handbook 2013

47

consortium members, but attracts attention of independent open-source developers
who also contribute to its development. In September 2012, Apache Stanbol
graduated to a full project of the Apache Software Foundation.

Apache Stanbol is a modular set of components and HTTP services for semantic
CMS. It extends traditional CMS with features for semantic content enhancement. It
provides the following components, which are listed in Table 2.

Component Short Description

Apache Stanbol Enhancer

The Enhancer and its Enhancement
Engines (formerly known as the FISE
component) are the components aimed to
enhance given content with additional
semantic metadata.

Apache Stanbol Reasoner

Reasoner is used for gaining additional
knowledge by following the semantic
relations defined in the knowledge base. An
example is to retrieve the additional
knowledge that Bob is grandfather of Kate
by knowing that Pete is son of Bob and
father of Kate.

Apache Stanbol Rules

Inference Rules, also known as
transformation rules, are syntactic rules
which take premises and return a
conclusion. These rules can be used to
transform the metadata into other
vocabularies, etc.

Apache Stanbol Ontology Manager

Ontologies are used for defining the
knowledge models that describe the
metadata of content. Additionally, the
semantics of your metadata can be defined
through an ontology. The reasoners and rule
features are based on such ontology
definitions.

The IKS Handbook 2013

48

http://iks-project.googlecode.com/svn/doc/D5.0-Final/index.html
http://iks-project.googlecode.com/svn/doc/D5.0-Final/index.html
http://iks-project.googlecode.com/svn/doc/D5.0-Final/index.html
http://iks-project.googlecode.com/svn/doc/D5.0-Final/index.html
http://iks-project.googlecode.com/svn/doc/D5.0-Final/index.html
http://iks-project.googlecode.com/svn/doc/D5.0-Final/index.html
http://iks-project.googlecode.com/svn/doc/D5.0-Final/index.html
http://iks-project.googlecode.com/svn/doc/D5.0-Final/index.html
http://iks-project.googlecode.com/svn/doc/D5.0-Final/index.html
http://iks-project.googlecode.com/svn/doc/D5.0-Final/index.html
http://iks-project.googlecode.com/svn/doc/D5.0-Final/index.html
http://iks-project.googlecode.com/svn/doc/D5.0-Final/index.html

Component Short Description

Apache Stanbol Content Hub

The Content Hub is the component which
provides persistent document storage
whose back-end is the Apache Solr. It
enables semantic indexing during text-
based document submission.

Apache Stanbol Entity Hub

The Entity Hub is the Apache Stanbol
component which deals with entities and
their metadata. It is a generic component
that is able to connect to a configurable list
of open-linked databases, enriching
information about entities from various
sources.

Apache Stanbol Fact Store

The Fact Store is used to store relations
between entities. It only uses references to
entities via their URI. The entities should be
handled by the Entity Hub.

Apache Stanbol CMS Adapter

The CMS Adapter component acts as a
bridge between JCR/CMIS compliant CMSs
and Apache Stanbol. It is used to map
existing node structures from JCR/CMIS
content repositories to RDF models, or vica
versa.

Table 3: Components of the Apache Stanbol and their short description

The IKS Handbook 2013

49

http://iks-project.googlecode.com/svn/doc/D5.0-Final/index.html
http://iks-project.googlecode.com/svn/doc/D5.0-Final/index.html
http://iks-project.googlecode.com/svn/doc/D5.0-Final/index.html
http://iks-project.googlecode.com/svn/doc/D5.0-Final/index.html
http://iks-project.googlecode.com/svn/doc/D5.0-Final/index.html
http://iks-project.googlecode.com/svn/doc/D5.0-Final/index.html
http://iks-project.googlecode.com/svn/doc/D5.0-Final/index.html
http://iks-project.googlecode.com/svn/doc/D5.0-Final/index.html

CHAPTER 4: Apache Stanbol and VIE in a
Semantic CMS Technology Stack
The major components of the IKS Semantic CMS Technology Stack are implemented
through IKS foundational components, such as Apache Stanbol, its software
components and services21.

4.1 Foundational Components of IKS
Apache Stanbol is designed to extend existing CMSs with semantic services. It can
be also used to tag extraction/suggestion, text completion in search fields, smart
content workflows, email routing based on extracted entities, topics, etc.

Apache Stanbol is built as a modular set of components (shown in Figure 9). Each
component is accessible via its own RESTful web interface. All components are
implemented as OSGi bundles, components and services. By default Apache Stanbol
uses the Apache Felix OSGi environment. For deployment, it uses the Apache
Sling launcher, and can be run as a standalone application or as a web application
that is deployable in servlet containers such as Apache Tomcat.

The IKS Handbook 2013

50

21 http://www.iks-project.eu/sites/default/files/
iks_del_5_0_design_implementation_IKS_compendium_2012.pdf

http://www2.osgi.org/Specifications/HomePage
http://www2.osgi.org/Specifications/HomePage
http://felix.apache.org/
http://felix.apache.org/
http://sling.apache.org/
http://sling.apache.org/
http://sling.apache.org/
http://sling.apache.org/
http://www.iks-project.eu/sites/default/files/iks_del_5_0_design_implementation_IKS_compendium_2012.pdf
http://www.iks-project.eu/sites/default/files/iks_del_5_0_design_implementation_IKS_compendium_2012.pdf
http://www.iks-project.eu/sites/default/files/iks_del_5_0_design_implementation_IKS_compendium_2012.pdf
http://www.iks-project.eu/sites/default/files/iks_del_5_0_design_implementation_IKS_compendium_2012.pdf

Figure 9: Apache Stanbol Components

The main features of Apache Stanbol are:
• Content Enhancement: Services that add semantic information to “non-

semantic” pieces of content;

• Reasoning: Services that are able to retrieve additional semantic information
about the content based on the semantic information retrieved via content
enhancement;

• Knowledge Models: Services that are used to define and manipulate the data
models (e.g. ontologies) that are used to store the semantic information;

• Persistence: Services that store (or cache) semantic information, i.e.
enhanced content, entities, facts, and make it searchable.

In the following, we discuss Apache Stanbol software components22.

The IKS Handbook 2013

51

22 http://www.iks-project.eu/sites/default/files
iks_del_5_0_design_implementation_IKS_compendium_2012.pdf

http://stanbol.apache.org/docs/trunk/components/enhancer
http://stanbol.apache.org/docs/trunk/components/enhancer
http://stanbol.apache.org/docs/trunk/components/reasoner/
http://stanbol.apache.org/docs/trunk/components/reasoner/
http://stanbol.apache.org/docs/trunk/components/ontologymanager/
http://stanbol.apache.org/docs/trunk/components/ontologymanager/
http://stanbol.apache.org/docs/trunk/components/contenthub/
http://stanbol.apache.org/docs/trunk/components/contenthub/
http://www.iks-project.eu/sites/default/files/iks_del_5_0_design_implementation_IKS_compendium_2012.pdf
http://www.iks-project.eu/sites/default/files/iks_del_5_0_design_implementation_IKS_compendium_2012.pdf
http://www.iks-project.eu/sites/default/files/iks_del_5_0_design_implementation_IKS_compendium_2012.pdf
http://www.iks-project.eu/sites/default/files/iks_del_5_0_design_implementation_IKS_compendium_2012.pdf

4.1.1 Apache Stanbol Enhancer
Apache Stanbol Enhancer23 and its Enhancement Engines24 are designed to support
content enhancement. Apache Stanbol Enhancer provides both a RESTful and
a Java API that allows a caller to extract features from passed content. In case of
RESTful API, Apache Stanbol takes the content and delivers it to a configurable chain
of enhancement engines. Each enhancement engine in this chain is used for a
specific purpose. There are preprocessing engines, e.g. engines for converting the
content into the correct format, engines that automatically extract semantic metadata
about the content, etc. As an example, Apache Stanbol provides an engine to
automatically determine the language of a text. Other engines are able to extract
entities such as persons and places directly from the text. The response will hold the
RDF enhancement serialized in the format that is specified in the Accept header.

 In case of Java API, after the enhancement process, ContentItem do not only
contains the metadata but also other information such as converted versions of the
passed content. The figure below provides an overview of the RESTful as well as the
Java API provided by the Stanbol Enhancer.

The IKS Handbook 2013

52

23 Apache Stanbol Enhancer webpage: http://stanbol.apache.org/docs/trunk/components/enhancer/

24 Apache Stanbol Enhancement Engines webpage: http://stanbol.apache.org/docs/trunk/components/
enhancer/engines/index.html

http://stanbol.apache.org/docs/trunk/components/enhancer/
http://stanbol.apache.org/docs/trunk/components/enhancer/
http://stanbol.apache.org/docs/trunk/components/enhancer/
http://stanbol.apache.org/docs/trunk/components/enhancer/
http://stanbol.apache.org/docs/trunk/components/enhancer/engines/index.html
http://stanbol.apache.org/docs/trunk/components/enhancer/engines/index.html
http://stanbol.apache.org/docs/trunk/components/enhancer/engines/index.html
http://stanbol.apache.org/docs/trunk/components/enhancer/engines/index.html

Figure 10: Stanbol Enhancer – RESTful API and Java API

The main interfaces and utility classes of Apache Stanbol Enhancer are as follows:
• ContentItem: A content item is the unit of content Stanbol Enhancer deal with.

It gives access to the binary content that was registered, and the graph that
represents its metadata (provided by client and/or generated). ContentItems
are created by using the ContentItemFactory.

• EnhancementEngine: The enhancement engine provides the interface to
internal or external semantic enhancement engines. Typically content items
will be processed by several enhancement engines.

• EnhancementChain: An enhancement chain represents a user provided
configuration, which describes how content items passed to this chain should
be processed by the Stanbol Enhancer. The chain defines a list of available
enhancement engines and their order of execution.

• EnhancementJobManager: The enhancement job manager performs the
execution of the enhancement process as described in the execution

The IKS Handbook 2013

53

http://stanbol.apache.org/docs/trunk/components/enhancer/contentitem.html
http://stanbol.apache.org/docs/trunk/components/enhancer/contentitem.html
http://stanbol.apache.org/docs/trunk/components/enhancer/contentitemfactory.html
http://stanbol.apache.org/docs/trunk/components/enhancer/contentitemfactory.html
http://stanbol.apache.org/docs/trunk/components/enhancer/engines
http://stanbol.apache.org/docs/trunk/components/enhancer/engines
http://stanbol.apache.org/docs/trunk/components/enhancer/chains
http://stanbol.apache.org/docs/trunk/components/enhancer/chains
http://stanbol.apache.org/docs/trunk/components/enhancer/contentitem.html
http://stanbol.apache.org/docs/trunk/components/enhancer/contentitem.html
http://stanbol.apache.org/docs/trunk/components/enhancer/engines/list.html
http://stanbol.apache.org/docs/trunk/components/enhancer/engines/list.html
http://stanbol.apache.org/docs/trunk/components/enhancer/engines/list.html
http://stanbol.apache.org/docs/trunk/components/enhancer/engines/list.html
http://stanbol.apache.org/docs/trunk/components/enhancer/enhancementjobmanager.html
http://stanbol.apache.org/docs/trunk/components/enhancer/enhancementjobmanager.html
http://stanbol.apache.org/docs/trunk/components/enhancer/chains/executionplan.html
http://stanbol.apache.org/docs/trunk/components/enhancer/chains/executionplan.html

plan provided by the enhancement chain. The enhancement job manager is
also responsible for recording the execution metadata.

• ChainManager: The chain manager allows to lookup all configured
enhancement chains. It also provides a getter for the default chain.

• EnhancementEngineManager: The enhancement engine manager allows to
lookup active enhancement engines by their name.

The enhancement structure of Apache Stanbol defines types and properties used for
the resulting metadata graph of the Enhancer. The enhancement structure defines
three types of annotations: text, entity, and topic annotation. Text annotation
describes the occurrence of an extracted feature within the parsed text. Entity
annotation suggests an entity for mention within the text
(e.g. dbpedia:International_Monetary_Fund for the mention "IMF" in the analyzed
Text). Topic annotations assign the parsed document (or parts of the document) to
topics and categories. In addition, all annotations created by Stanbol Enhancer
provide additional meta information.

The Apache Stanbol Enhancement Engines, formerly known as the FISE component,
includes the following engines and their features:

● Preprocessing:
○ Tika Engine: it provides content type detection, text extraction from various

document formats, extraction of metadata from document formats, etc.;
○ Metaxa Engine: it provides a generic framework for extracting plain text and

embedded metadata from documents, images and audio files. A large
number of standard document formats is supported in the default
configuration, ranging from office documents from the major vendors, as
well as standard image and audio formats. Special attention was given to
HTML documents. In addition to text extraction, it supports the extraction of
structured annotations embedded in HTML content, such as RDFa and
microformats;

● Language detection:

The IKS Handbook 2013

54

http://stanbol.apache.org/docs/trunk/components/enhancer/chains/executionplan.html
http://stanbol.apache.org/docs/trunk/components/enhancer/chains/executionplan.html
http://stanbol.apache.org/docs/trunk/components/enhancer/chains
http://stanbol.apache.org/docs/trunk/components/enhancer/chains
http://stanbol.apache.org/docs/trunk/components/enhancer/executionmetadata.html
http://stanbol.apache.org/docs/trunk/components/enhancer/executionmetadata.html
http://stanbol.apache.org/docs/trunk/components/enhancer/chains/chainmanager.html
http://stanbol.apache.org/docs/trunk/components/enhancer/chains/chainmanager.html
http://stanbol.apache.org/docs/trunk/components/enhancer/engines/enhancementenginemanager.html
http://stanbol.apache.org/docs/trunk/components/enhancer/engines/enhancementenginemanager.html
http://dbpedia.org/resource/International_Monetary_Fund
http://dbpedia.org/resource/International_Monetary_Fund

○ Language Identification Engine: It provides language detection for
textual content by using the Apache Tika25 software. This engine is a
pre-requisite to allow other components to activate and use language
specific resources;

○ Language Detection Engine: It provides language detection for textual
content by using a Language Detection library26, which currently
support 53 languages (c.f. https://code.google.com/p/language-
detection/wiki/LanguageList);

○ RESTful Language Identification Engine; CELI Language Identification
Engine, etc.

● Sentence detection:
○ OpenNLP Sentence Detection Engine is based on OpenNLP;
○ Smartcn Sentence Detection Engine: it adds sentence detection

support for Chinese.
● Tokenizer engines:

○ OpenNLP Tokenizer Detection Engine is based on OpenNLP;
○ Smartcn Tokenizer Engine: it adds tokenization detection support for

Chinese;
○ Paoding Tokenizer Engine: it is a part of Paoding Analyzer Integration

that adds tokenization detection support for Chinese;
● Part of Speech (POS) Tagging:

○ OpenNLP POS Tagging Engine: it is a POS tagger implementation
based on OpenNLP;

● Named Entity Recognition (NER) Engines
○ Open NLP NER Engine;
○ OpenNLP Custom NER Model Engine;
○ OpenCalais Enhancement Engine: it provides a free high-quality online

service for Named Entity Recognition and Relation Extraction in the
news domain. The Apache Stanbol OpenCalais Engine provides an

The IKS Handbook 2013

55

25 Apache Tika webpage: http://tika.apache.org/

26 Language Detection library webpage: http://code.google.com/p/language-detection/

https://code.google.com/p/language-detection/wiki/LanguageList
https://code.google.com/p/language-detection/wiki/LanguageList
https://code.google.com/p/language-detection/wiki/LanguageList
https://code.google.com/p/language-detection/wiki/LanguageList

interface to that service. It also provides means for mapping
OpenCalais entity categories to user specified categories;

● Named Entity Extraction Engine: This engine is based on the NLP features of
Apache OpenNLP. It uses its maximum entropy models to detect persons,
names and organizations;

● Linking / Suggestions
○ Keyword Linking Engine: The Keyword Linking Engine supports the

extraction of keywords in multiple languages;
○ Geonames Engine: This engine creates fise:EntityAnnotations based

on the http://geonames.org dataset. It suggests links to geonames.org
and provides hierarchical links for locations;

○ Zemanta Engine: This is an enhancement engine with Zemanta API. A
Zemanta API key is required to run this engine;

● Postprocessing / Other
○ Refactor Engine: It refactors RDF graphs of recognized entities to a

target vocabulary. It transforms enhancements according to a target
ontology, requires KRES launcher.

A detail list of available Apache Stanbol Enhancement Engines is available on the
Apache Stanbol website27.

4.1.2 Apache Stanbol Entityhub
Apache Stanbol Entityhub deals with entities and their metadata. It is a generic
component with ability to connect to a configurable list of open linked databases. It
provides information about entities relevant to the user’s domain [IKS-D4.2]. Figure
11 provides an overview of the Entityhub’ features.

The IKS Handbook 2013

56

27 http://stanbol.apache.org/docs/trunk/components/enhancer/#Using_Stanbol_Enhancer

http://stanbol.apache.org/docs/trunk/components/enhancer/
http://stanbol.apache.org/docs/trunk/components/enhancer/

Figure 11: Features of Apache Stanbol Entityhub

The main features are the following:
● Entityhub (/entityhub): It manages local entities and import entities from

websites, and defines mapping between local entities and those entities
managed by websites.

● Site Manager (/entityhub/sites): It provides unified access to all currently active
websites. Requests sent to these endpoints are forwarded to all active
websites.

● Sites (/entityhub/site/{siteId}): Sites are entity sources that are integrated
within Apache Stanbol Entityhub. There are two different types of Sites:
○ ReferencedSite: It supports local caches and indexes. A local cache

allows to locally store retrieved entity data in order to speed-up retrieval,

The IKS Handbook 2013

57

while a local index is a locally available index over the data of the remote
dataset. If such an index is available, all requests are processed using the
index. Local Indexes are created by the Entityhub Indexing tool.

○ ManagedSite: It allows users to manage their own entity by using the
RESTful API.

4.1.3 Apache Stanbol Contenthub
Apache Stanbol Contenthub is a document repository that provides semantic storage
for the content items and their semantic search services [IKS-D4.2]. Text-based
documents can be submitted, semantically indexed and searched through services of
Contenthub such as (i) storage services (i.e. Solr store, In Memory store, Clerezza
store) and (ii) search services (i.e. related keyword search, Solr search, Featured
search). All documents in the Apache Stanbol Contenthub are content items. Apart
from the actual text-based content, a content item also includes its metadata.

Apache Stanbol Contenthub provides a default configuration of Apache Solr, which
enables powerful indexing and text-based search mechanisms by indexing the
documents. When the document is submitted, semantic information about the entities
contained within that document are retrieved through the Apache Stanbol Entityhub,
and then, enhanced along with the document. A user can also provide additional
metadata related to the content item. All additional information is indexed along with
the content itself. For example, if a document submitted to the Contenthub includes
the keyword “Istanbul”, then the country information related to this keyword - “Turkey”
and the regional information such as “Marmara”, become indexed along with this
document. This leads to more accurate search results over the content items.

Search functionality of Apache Stanbol Contenthub is built on top of the Apache Solr
infrastructure. Apache Stanbol Contenthub comes together with a default “semantic”
index that corresponds to an Apache Solr core. Based on additional metadata, which
is indexed together with the content, users can build up faceted search mechanisms.
Facets are organized under categories, such as organizations, places, and people.
By using faceted search facility, users can set new filters on top of the existing facets,

The IKS Handbook 2013

58

or remove the existing filters through GUIs that allows expanding or narrowing the
search scope.

Apache Stanbol Contenthub also offers related keywords extraction based on the
latest search operation. Such functionality enhances navigation mechanisms by
giving users another similar and/or related content items. The keyword suggestion
mechanism uses three sources:

● Ontology resources: If there are ontologies which are registered within Apache
Stanbol, suggested keywords will be retrieved from these ontologies;

● Referenced sites: Related keywords can be retrieved from referenced sites,
which are registered within Apache Stanbol. For example, DBpedia comes as
a default referenced site within Apache Stanbol.

● Wordnet: If a Wordnet database is configured within Apache Stanbol, then
related keywords can be retrieved directly from the Wordnet database.

Apache Stanbol Contenthub integration with LMF and LDPath

The default semantic index of the Apache Stanbol Contenthub considers several
generic semantic relations among entities. At the same time, it offers the ability of
creating new Apache Solr cores, which directs the system while indexing and
searching only to those content items that are important in the domain. The LMF
(Linked Media Framework) project28 provides this functionality as-is. The LMF
Semantic Search module creates Apache Solr indexes via the RDF Path Language29.
A standalone library for the evaluation of the RDF Path Language is called LDPath30.
It is a simple path-based query language over RDF, which is particularly designed for
querying Linked Data Cloud by following RDF links between resources. To support
domain specific indexing, LDPath is integrated into the document submission and
search processes of the Apache Stanbol Contenthub. Users are expected to create
their LDPath programs beforehand, so that they can be used in submission and
search operations.

The IKS Handbook 2013

59

28 Linked Media Framework (LMF) webpage: http://code.google.com/p/lmf/

29 RDF Path Language webpage: http://code.google.com/p/ldpath/wiki/PathLanguage

30 LDPath webpage: http://code.google.com/p/lmf/wiki/ModuleLDPath

In addition, the LMF’s Semantic Index Manager indexes the content. Semantic
indexes are further controlled through LDPath programs, which are uniquely identified
by their names within Contenthub. Each LDPath program, submitted to Contenthub,
triggers a new Apache Solr core. In addition to document search over semantic
indexes of Apache Solr, the Apache Stanbol Contenthub provides a suggestion
(related keyword) mechanism for the query terms (given keywords). Contenthub also
provides a featured search interface, which combines the capabilities of Apache Solr
search and related keyword search, as well as tokenization service. The tokenization
service uses Entityhub in order to extract entities within the query term and to
facilitate the search according to the extracted entities.

4.1.4 Apache Stanbol Ontology Manager
When processing huge knowledge bases consisting of CMS-based data, together
with external, linked open data, scalability problems can be expected to occur. The
Apache Stanbol Ontology Manager provides a suite of functionalities such as
retrieval, aggregation, loading and concurrent management of knowledge bases. It
provides a controlled environment for managing ontologies, ontology
networks and user sessions for semantic data. It provides full access to ontologies,
which are stored into the Apache Stanbol persistence layer. Managing an ontology
network means activating or deactivating parts of a complex model, so that data can
be viewed and classified under different "logical lenses". This is especially useful
in ontology reasoning.

Key functionalities of the Apache Stanbol Ontology Manager are as follows:

● Creating customized views over the entire Apache Stanbol knowledge base.
This favors scalability in reasoning processes and implements the concurrent
management of multiple ontology networks;

● Organizing and importing controlled vocabularies, upper ontologies, design
patterns and custom ontologies into convenient ontology libraries and
configuring caching policies for them;

● Interactively accessing stored ontologies and their elements.

The IKS Handbook 2013

60

http://stanbol.apache.org/docs/trunk/components/reasoner/
http://stanbol.apache.org/docs/trunk/components/reasoner/

The OntoNet component is responsible for the creation of customized views in the
Apache Stanbol Ontology Manager. It allows for constructing subsets of the
knowledge base managed by Apache Stanbol into OWL/OWL2 ontology networks.
Organizing and importing controlled vocabularies, upper ontologies, design patterns
and custom ontologies is implemented by the Ontology Registry Manager, while the
Store component of the Apache Stanbol Ontology Manager provides access to stored
ontologies. The OntoNet component allows for setting up and managing multiple
virtual ontology networks connecting various ontologies.

4.1.5 Apache Stanbol Rules
This is a component that supports construction and execution of inference rules. An
inference rule, or transformation rule, is a syntactic rule or function, which takes
premises and returns a conclusion. It adds a layer for expressing business logics by
means of axioms that is encoded by inference rules. Axioms can be organized into a
container that is called - a recipe, which identifies a set of rules that share the same
business logic and interpret them as a whole.

Rules can be expressed and processed in three different formats - SWRL, Jena rules,
and SPARQL.

● Semantic Web Rule Language (SWRL) is a rule language, which combines
OWL DL with the Unary/Binary Datalog RuleML sublanguages of Rule Markup
Language and enables Horn-like rules to be combined with an OWL
knowledge base. Providing Apache Stanbol Rules as SWRL rules means that
they can be interpreted in classical DL reasoning. That allows for Apache
Stanbol Rules to be used with any of the OWL 2 reasoners configured in the
Apache Stanbol Reasoner component;

● Jena Rules enable compatibility with inference engines based on Jena
inference and rule language. The Apache Stanbol Reasoners component
provides a reasoning profile based on Jena inference.

● SPARQL is a query language for RDF. A natural way to represent
transformation rules in SPARQL is by using the CONSTRUCT query form.
Apache Stanbol Rules can be converted to SPARQL CONSTRUCTs and

The IKS Handbook 2013

61

executed by any SPARQL engine. Apache Stanbol Rules provides a particular
SPARQL engine that is called Refactor, which performs transformation of RDF
graphs based on transformation rules from Apache Stanbol. The latter allows,
for instance, the vocabulary harmonization of RDF graphs to be retrieved from
different sources in Linked Data.

Apache Stanbol Rules allows for integrity check for data fetched from heterogeneous
and external sources, to prevent unwanted formats and inconsistent data. It also
provides information integration and vocabulary harmonization for different
semantically enhanced contents.

4.1.6 Apache Stanbol Reasoner
The Apache Stanbol Reasoner component provides a set of services that take
advantage of automatic inference engines. This module implements a common API
for reasoning services, providing the possibility to perform different reasoners in
parallel. This module includes OWL API and Jena-based abstract services, which
provide implementations for Jena RDFS, OWL, OWLMini and Hermit reasoning
service. The Apache Stanbol Reasoner can be used to automatically infer additional
knowledge and obtain new facts in the knowledge base.

4.1.7 Apache Stanbol FactStore
The Apache Stanbol FactStore component lets a user store relation between two or
more entities called - a fact [IKS-D4.2]. FactStore stores only the relations between
entities, while Entityhub handles entities themselves. Fact Store is used to store N-
ary facts according to a user defined fact schema.

A fact schema can be defined by specifying roles with corresponding types of entities,
which take a part in the fact. It provides a simple way to define and store facts, and
can be used in those scenarios which do not required a complex ontology to be
defined. For example, the fact schema, which describes a person as an employee of
an organization, consists of two roles:

● “person” (type “http://iks-project.eu/ont/person”) and

The IKS Handbook 2013

62

http://iks-project.eu/ont/person
http://iks-project.eu/ont/person

● “organization” (type “http://iks-project.eu/ont/organization”).
The list of roles must correspond to the list of defined roles in the fact schema. The
values are URIs. Entityhub is used to resolve references to the entities that are
identified by their URIs. When querying for the existing facts, Fact Store defines a
simple JSON-LD-based query language that requires the user to be informed about
the URIs of the participating entities. JSON-LD-based language can be extended to
query for combinations of facts, which allows for a simple reasoning mechanism.

4.1.8 Apache Stanbol CMS Adapter
This component acts as a bridge between CMSs and the Apache Stanbol. It interacts
with CMSs through JCR and CMIS specifications. That way, any content repository
that is compliant with JCR or CMIS specifications, can make use of CMS Adapter
functionality. One of its main features is bidirectional mapping between RDF data and
content repository structure. In other words, it can transform the content repository
structure into an RDF format or populate the content repository based on an external
RDF data. Furthermore, it lets users commit of content repository items, together with
their properties and enhancements to the Apache Stanbol Contenthub.

4.1.9 VIE Widgets
VIE.js31 (also known as Vienna IKS Editables) is a JavaScript library that implements
decoupled CMSs and semantic interaction in web applications. VIE bridges
Backbone.js and Semantic Web technologies. It also enables easy interaction with
RDFa annotated content and a connection with various semantic services, such as
Apache Stanbol and DBpedia. VIE supports dealing with namespaces, relations
between entities, content type system. It is also used as a basis for a wide variety of
tools ranging from content annotators to full front-end editing interfaces and semantic
browser extensions. In the following, we list several VIE widgets:

● Form generator: it generates Backbone Forms schemas;

The IKS Handbook 2013

63

31 VIE webpage: http://viejs.org/

http://iks-project.eu/ont/organization
http://iks-project.eu/ont/organization

● Autocomplete: it uses VIE.find service method to make autocomplete
suggestions. In addition, VIE.find method can query different backend and
frontend data sources;

● Create.js content editing (c.f. http://createjs.org/): It is a comprehensive web
editing interface for CMSs, designed to provide a modern, HTML5-based
environment for managing content. It can be adapted to work on almost any
CMS backend;

● Image Search: This widget uses Flickr API for image search;
● Autotagger: It displays a list of found entities in a tag cloud;
● Annotate.js: It is semi-automatic annotation editor developed to support rich

HTML editors.

4.1.2 Semantic User Interaction: VIE Editor
The VIE Editor is a result of interaction pattern analysis supporting web-applications
development. In its first release, VIE targeted the development of decoupled CMSs
based on semantic annotations of a webpage. The underlying principle of decoupling
CMS is to encode knowledge about the content directly in the content, allowing users
to know how to deal with different parts of the content. This gives search engines a
deeper understanding about webpages . The second release of VIE extended its
capabilities to ease the development of semantic interaction. The API now offers a
DSL to handle different namespaces seamlessly, maintain ontological hierarchies
(including fully-typed, multiple inheritances) and access semantic backend services
such as:

● VIE.analyze(): It analyzes DOM elements depending on the registered engines
(e.g., RDFaparsing, Apache Stanbol Enhancer, Zemanta) and returns an array
of found entities.

● VIE.load(): It loads all properties for the given entity from external services into
VIE.

● VIE.save(): It saves knowledge about an entity to a service. This service can
be the entityhub of Apache Stanbol, but also the local storage of the browser.

The IKS Handbook 2013

64

● VIE.find(): It queries semantic services, e.g., all Persons whose names start
with "Bar".

By default, VIE comes with the ontology, which is provided by http://schema.org.
However, VIE is ontology-agnostic and allows to easily extend, remove or change the
ontology.

4.2 Ambient Intelligence Components of IKS
One of use cases in IKS implements an intelligent, Ambient Intelligence bathroom
[IKS-D4.1]. Ambient Intelligence (AmI) has been characterized in many different
ways; for example, “AmI implies intelligence that is all around us” [MAMI06] or that is
“a vision of future daily life […]that intelligent technology should disappear into our
environment to bring humans an easy and entertaining life” [CRUT06]. The diverse
definitions assembled by Cook et al. [COOK09] highlight AmI features such as
context-aware, personalized, anticipatory, adaptive, transparent, ubiquitous,
intelligent. The vision of AmI focuses similarly on the human needs as on the
technology development.

Figure 12 elaborates logical architecture for the AmI use case that is designed and
implemented to demonstrate content and knowledge features of the IKS CMS
technology stack. All modules of logical architecture are split into several components
that communicate directly or via broadcast messages.

The IKS Handbook 2013

65

Figure 12: Component-specific elaboration of logical architecture of AmI system

In the following, we provide a description of AmI architecture modules and their
components [IKS-D4.1].

The IKS Handbook 2013

66

4.2.1 Components of Device Input/Output Management
Device Input Interpretation Component is responsible for the interpretation of
inputs sent from devices within the bathroom environment. Results are broadcasted
to all major modules. The functionality of Device Input Interpretation Component
encompasses three tasks:

(1) the component cares for the interpretation of device inputs (especially inputs
from activity recognition devices);

(2) the component broadcasts interpreted device events to other modules, and

(3) the component redirects these inputs to the Context Management Module
for the evaluation of inputs (i.e. in case that input of a device is too
complex (e.g., audio streams)). Furthermore, it provides an interface that
enables devices to communicate events.

Device Access Component is responsible for the status management of devices,
within the AmI bathroom environment. It has ability to send content items to specific
devices for presentation. The main task of this component is orchestration of the
device status “busy” to avoid a simultaneous presentation of multiple contents on one
device. In addition, it cares for the presentation of content items on devices that are
currently integrated in the AmI environment. It also provides an interface for
presenting content items on a specific preselected device.. After a successful content
presentation, the component triggers the Device Input Interpretation Component to
broadcast this information as an event.

4.2.2 Components of Device Integration
Device Detection Component is responsible for the detection of devices within the
AmI bathroom environment. It continuously checks whether a device is already
integrated into the environment. To complete the device detection cycle, it also
detects whether devices already left the bathroom environment. The component
further provides an interface to explicitly inform the Device Integration Component
about devices, which are available in the AmI bathroom.
Device Integration Component is responsible for the integration of detected devices
into the technical environment of AmI bathroom. One of the major functionalities of

The IKS Handbook 2013

67

this component is retrieval of the semantic representation of the device that has to be
integrated. Afterwards, this semantic representation of the device is integrated into
the Knowledge Repository. The component also cares for the retrieval of the OSGi
based native device library, integration of this library into the technical I/O
environment, as well as update when the device is removed from the AmI bathroom.

4.2.3 Components of Context Management
Device Selection Component is responsible for the selection of appropriate
presentation devices, for the presentation of specific content items. Based on the
information about all devices available in the AmI bathroom, the component can filter
these devices regarding information on how they fit to the content item (e.g., whether
type of content item is supported by the output device) as well as the current physical
context (e.g., privacy of a device). Semantic descriptions of device references are
retrieved from the Situation Processing Component of Situation Management module
that decides how to present a specific content item.
Context Adjustment Component retrieves events broadcasted by the Device Input
Interpretation Component of Device Input/Output Management module. This leads to
context adjustments (e.g., user movement). If such an event is received by the
component, the context representation is updated in Knowledge Repository using the
Context Knowledge Access Component of Knowledge Access module. If this event
led to a context change, this is communicated to the Situation Adjustment Component
of Situation Management module for further adjustments of the situation. In parallel,
the Context Adjustment Component cares for management of the contextual part in
Knowledge Repository.

4.2.4 Components of Situation Management
Situation Processing Component continuously checks whether some situation can
be covered by a pro-active system action. This is possible if all requirements are
fulfilled, which are necessary to perform the next step within the current situation.

Situation Recognition Component continuously compares the current situation
state to determine if a change of situation type should be performed.

The IKS Handbook 2013

68

Situation Adjustment Component analyses context according to evaluation of
changes of the current situation representation. This evaluation is triggered by
general context changes that are communicated by the Context Adjustment
Component of Context Management module to the Situation Adjustment Component.
If a relevant change is evaluated, the current situation and the physical bathroom
situation are adapted to the change that is recognized in the Context Adjustment
Component.

4.2.5 Components of Speech Communication
Discourse Management Component is responsible for the interpretation of the
context of discourse (i.e., information coming from already loaded interaction). The
component receives an interpretation from native device libraries of the Device Input/
Output Management module and the speech recognizer. Speech recognizer checks a
speech interpretation against the discourse history, in order to enrich and/or
disambiguate interpretation. Once the discourse management task is performed, the
interpretation of user intention is passed to the Dialog Management Component.

Dialog Management Component is responsible for the management of dialog
interaction. After the interpretation of user intentions is passed from the Discourse
Management Component, the dialog management component decides on the next
steps which are required to perform user commands. If the intention is clearly
specified, the component broadcasts the command or the content item requested by
the user to the Situation Processing Component of Situation Management module or
to Device Access Component of the Device Input/Output Management module.

4.2.6 Components of Content Retrieval & Knowledge Extraction
Pipeline
Content Aggregator Component is responsible for registering and accessing
external services, which can include web services, content repository services or
CMSs, from which information can be retrieved via various protocols. The output of
content aggregation is retrieved content from external sources. The retrieved content
may appear in various formats.

The IKS Handbook 2013

69

Content Reengineer Component. After retrieving the content from external sources,
an alignment with the contextual part of the knowledge representation is needed. The
first step to achieve such an alignment is to transform the retrieved content into a
common ontological representation. The Content Reengineer Component is
responsible for such transformation process. Since RDF has become de facto
method for conceptual description or information modeling, RDF is aslo used for
representing knowledge in the IKS AmI system.

Content Refactorer Component performs the second step in the alignment process.
Once external content is transformed to a common ontological representation, there
is still a need for alignment to map external content concepts to AmI ODP concepts.
To perform such a mapping, the content refactorer requires access to the contextual
part of the knowledge representation using the Context Knowledge Access
Component of the Knowledge Access Module. Refactoring is based on refactoring
patterns, which are RDF descriptions of an alignment between two ontologies.
Content Refactorer Component interacts with the Context Knowledge Access
Component of the Knowledge Access module by making generated knowledge
available to other modules of the system.

Content Filter Component allows integration of the content aligned/reengineered by
the Content Refactorer Component/Content Reengineer Component, according to the
user preferences. A preference is expressed considering some characteristic owned
by the content item. For example, the UserContentPreferences ontology expresses
the relation between AmI users and content items in terms of user preferences about
specific content item features, while UserEventPreferences ontology expresses the
relation between AmI uses and external event items.

The IKS Handbook 2013

70

CHAPTER 5: Showcases

5.1 Showcasing Horizontal Applications of IKS
Horizontal applications of IKS are designed to cover many different kinds of CMS
providers, or individual users, such as applications that address the need of the news
and media industry (e.g. Nuxeo), enterprise publishing and search market (e.g.
WordLift, Alkacon, Adobe), or AmI ubiquitous technology industry.

5.1.1 NUXEO Integration for the News Industry
Nuxeo is a generic CMS platform commonly used to build content-driven applications
such as office document management, document versioning and lifecycle
management, multimedia asset management, while supporting metadata based
browsing of a collection of photos, videos and audio assets. To demonstrate the
integration of the existing IKS components into such a platform, we demonstrate
semi-automated text enrichment for the AFP (Agence France Press) News Agency.
AFP journalists produce text and multimedia (photo, audio and video) news reports
about events all around the globe. Those reports are aggregated in topical feeds with
a structured format, such as NewsML format, as defined by the International Press
Telecommunication Council (IPTC). In addition, the NewsML feed includes text body
of the article and metadata about the context of the event, i.e. the headline, the event
date, the reporting date, the main geographical location of the event, the list of
persons, organization and places mentioned in the body, the topical categorization
according to the IPTC subjects hierarchy.

AFP News Agency provides journalists and editors with the tools that increase the
precision of writing and assist in filling the correct values for structured fields, as
intuitively as possible. As the first step, the journalist writes the title and the main body
of the article. Once the article is saved in Nuxeo’s document repository, it can be
further edited by adding metadata, attaching files, comments, reviews, etc. By
integrating the Nuxeo’s editing tools with the Apache Stanbol, the default user
interface is upgraded with a widget called “Manage links”. This widget allows user to

The IKS Handbook 2013

71

link articles to semantic entities from DBpedia knowledge base, which are additionally
indexed via the Apache Stanbol Entityhub component to provide fast and reliable
response in a situation of overloaded DBpedia knowledge base. In addition, manual
linking of articles and semantic entities can be skipped by initiating automatic analysis
of a document. That way, text of the article is added to a processing queue for
automated text analysis and linking. Once the automatic analysis of a document is
done, the document automatically displays the new results (Common metadata,
State, People, Organizations, Places). The resulting annotations can be used in two
ways: (1) to export a NewsML XML file that encapsulates the text body of the articles,
authorship metadata and semantic annotations; and (2) to provide fast and effective
topic navigation in the article database.

Nuxeo’s work on integrating Apache Stanbol services for entity indexing, detection
and automated linking is demonstrated online at: http://temis.demo.nuxeo.com
(demo/demo). In addition, Nuxeo presented Apache Stanbol integration at the
SemWeb.Pro 2012 conference that was held in May in Paris:32 as well as at the IKS
Workshop in June 2012 in Salzburg33:

5.1.2 Adobe Integration with Stanbol Contenthub
Adobe integration of Apache Stanbol is based on Sling-Stanbol integration
component. Apache Sling is a web framework based on the Java Content Repository
(JCR), which is used to store and manage content. Sling applications use either
scripts or Java servlets, which are selected based on simple name conventions, to
process HTTP requests in a RESTful way. Both Sling and Apache Stanbol run on the
Java Virtual Machine (JVM) and both adhere to the OSGi standards for
modularization. In addition, Sling-Stanbol integrates IKS-related components such as
annotateJS and VIE, that additionally enable user interaction with the content and its
enhancement.

Sling-Stanbol demonstration video is given at: http://vimeo.com/31509786

The IKS Handbook 2013

72

32 http://www.semweb.pro/conference/semwebpro2012

33 http://vimeo.com/45633053

http://temis.demo.nuxeo.com/
http://temis.demo.nuxeo.com/
http://www.semweb.pro/conference/semwebpro2012
http://www.semweb.pro/conference/semwebpro2012
http://vimeo.com/45633053
http://vimeo.com/45633053

In principle, running the launcher of the Sling-Stanbol deploys its HTML interfaces
under the local server. Users can connect to the Sling’ WebDav server by filling in the
“Connect to Server” window. After processing newly added file, it is sent to WebDav
end-point and automatically enhanced via Apache Stanbol’ Enhancement Engine.
Users can browse the submitted files, see annotations, and edit the document.

Sling-Stanbol’s Content observer component retrieves newly submitted files and
submits them further to Apache Stanbol Contenthub. After populating the Contenthub,
keyword search or faceted search can be done over the stored content.

5.1.3 Alkacon – Integration of IKS technology into OpenCMS
Alkacon’s motivation to integrate the components of Apache Stanbol within its own
OpenCMS technology was threefold: (i) to support semantically annotated content for
Search Engine Optimization (SEO); (ii) to enhance editing of OpenCMS with inline-
editing capabilities via VIE; and (iii) to provide semantic content enrichment by using
VIE and Apache Stanbol components.

Alkacon was driven by the Google Web Toolkit (GWT) and Java technologies during
implementation of its OpenCMS technology. Alkacon implemented GWT wrapper
around the Vie JavaScript library, which enables a Java/GWT developer to make full
use of the VIE capabilities. They also implemented a content service that translates
OpenCMS data types and OpenCMS contents into the VIE entities. Apart the VIE-
GWT wrapper, Alkacon started a new project called Acacia Editor (Acacia Editor
webpage: https://github.com/alkacon/acacia-editor). It is based on an CMS
independent editor that is highly customizable and currently supports web form
rendering, inline editing of RDF annotated HTML content, interface for content
retrieval and persistence service. As WYSIWYG-component for inline-editing, Acacia
uses an adjusted version of Hallo.js (Hallo.js webpage: http://hallojs.org/) that was
also initially developed in the course of the IKS project. Editable content elements are
tagged with RDFa annotations. Next to semantic and the SEO benefit these
annotations making the client able to tell the server which pieces of content have
been changed and to which resource a concrete pieces of content belongs. Alkacon
live demo is online present at: http://iks.alkacon.com

The IKS Handbook 2013

73

https://github.com/alkacon/acacia-editor
https://github.com/alkacon/acacia-editor
https://github.com/alkacon/acacia-editor
https://github.com/alkacon/acacia-editor
http://iks.alkacon.com/
http://iks.alkacon.com/
http://iks.alkacon.com/
http://iks.alkacon.com/

5.1.4 WordLift – Integration into WordPress
WordLift is a WordPress plug-in that is based on Apache Stanbol. It is aimed to enrich
user-created text (a blog post, article or web page) with HTML Microdata annotations,
which follow the Schema.org vocabulary that is already adopted by the major search
engines, such as Bing, Google, Yahoo! and Yandex.

WordLift relies on Apache Stanbol Enhancer in two ways:

(1) named-entity recognition in text and their linkage to entities in Linked Data is
realized by using NLP and Linking Suggestions Enhancement Engines of
the Apache Stanbol;

(2) generation of Schema.org-compliant annotations for recognized named-
entities is realized via Refactor Engine, which is a post-processing
enhancement engine. Refactor Engine uses the annotation graph which
generate fully semantically harmonized text annotations for named-
entities.

WordLift34 reads web pages or blog posts, understands it and enriches it by querying
the Semantic Web and by adding the most relevant information using HTML
Microdata. All the information retrieved can be manually edited by the author of the
post (or page) and uses a markup vocabulary that all major search providers (Google,
Bing and Yahoo!) recognized.

Through a simple Plug-In all available contents will be instantly compliant with
schema.org specifications for a better SEO. It is currently enhancing content entities
related to people and places.

5.1.5 Ambient Intelligence Integration
This use case combines semantically enhanced content and knowledge management
within an interactive content-enhanced bathroom. From end-user perspective, it
provides the following services, as shown in Figure 14:

The IKS Handbook 2013

74

34 WordLift webpage: http://wordpress.org/extend/plugins/wordlift/

● Weather Information Service: A service that provides weather information
in the bathroom. Interaction: Distance sensor in front of the mirror triggers
today's weather information to be displayed on the mirror.

● Event Recommendation Service: A service that recommends events
(e.g., theatre play, concert, movie in the cinema, etc.) in the bathroom.
Interaction: The distance sensor in front of the mirror triggers three events
to be displayed in the mirror.

● Ticket Order Service: A service that allows you to order tickets for events.
Interaction: (a) Distance sensor in front of the mirror triggers event
recommendations to be displayed in the mirror, (b) a ticket can be request
by touching an event, (c) a verification question is asked via the speakers
and (d) the array microphone listens to the answer by the user.

● Personalized Music Service: A service that plays music from a music
collection in the bathroom. Interaction: Distance sensor in front of the
eScreen starts the playlist and wiping along the touch-sensitive interaction
border stops the music again.

● !Personalized News College Service: A service that provides a
personalized news collage (e.g., a news collage that addresses your
interests sport and politics, etc.) in the bathroom. Interaction: (a) User asks
for today's news from within the bathroom; the request is captured by the
microphone array (b) the news are then displayed via text or video
depending on the location of the user on the eScreen, the Shower or the
mirror.

● Adaptive News Service: A service that provides the same news as
described above but in different ways (e.g., via audio or via text and
images) depending on the location of the user in the bathroom. Interaction:
Distance sensors in front of the mirror, eScreen or Shower trigger the form
(text or video) of the news such that the user can "take" them from one
location to another within the bathroom.

The IKS Handbook 2013

75

Figure 13 - Spatial placement of the six information and communication services. Note: IK point
stands for Interactive Knowledge

From the technical perspective, the interactive AMI bathroom prototype is an instance
of a modular Ubiquitous Information System (UIS), which consists of several loosely
coupled, exchangeable modules. The main modules involved in the AmI case are as
follows:

● Knowledge Repository Module (KRM). It manages storage and
orchestration of knowledge representations and content items in the
system. Every content item is referenced by URI, and all changes are
communicated via semantically formatted messages. KRM cares not only
about the message propagation between the modules. It also provides
several utilities to simplify the work with the knowledge representations
and content items. It provides rule-based reasoning capabilities and

The IKS Handbook 2013

76

semantic listeners to enable access on the contextual and situational part
of the managed knowledge representations.

● Device Management Module (DMM). All devices from a physical
environment provide their semantic device metadata, which describes their
functionalities. In this way, devices can be integrated and removed from
the environment at runtime. Other modules can query devices which are
currently available and use those devices for the presentation of contents.

● Context & Situation Management Modules (CSMM). It is responsible for
a continuous update of contextual parts of the knowledge representation
based on changes in the environment. The AmI ODPs (Ontology Design
Patterns) are semantic representations of all concepts that are involved in
the bathroom situation, e.g. the user and his preferences, content items
like weather information, device descriptions like presentation devices,
sensors or lights in the environment. The module continuously adapts
semantic representation of the context to the current state in the
environment. It also provides the capability to store content items of
different forms retrieved from the Semantic Content Extractor Module.

● Situation Management Module. It uses the contextual part prepared by
the Context Management Module in combination with the situational parts,
i.e. semantic descriptions of situation patterns described as AmI Pre-
Artifacts. This module searches for situation descriptions from the
situational part of the knowledge representation that fit to the current
situation and react accordingly. Hereby, a continuous analysis of the
contextual representation is conducted. This process is managed by two
components: (1) Situation Recognition & Processing and (2) Situation
Adjustment. The first component addresses the recognition, processing
and broadcasting of situational changes. Since situation recognition and
processing tasks are highly interconnected, these two conceptual issues
are realized in one component. By contrast, the Situation Adjustment
component cares for the adjustment of the situation based on contextual
changes in the bathroom environment, e.g., in case the user moves to
another location.

The IKS Handbook 2013

77

● Speech Communication Module. It is responsible for speech
interpretation/ generation, and discourse/ dialogue management. It
recognizes spoken user input and interprets the user requests. As a result,
hypotheses are made and checked against the situational context to
identify the expected tasks and broadcast them to the system. After
performing expected tasks, a multimodal presentation is produced and
broadcasted to the Device Access Component.

● Semantic Content Extractor Module (SCEM). It is responsible for
collecting external content from different sources and aligning this content
with the AmI System. SCEM is composed of four subcomponents, such as:
(1) Content Aggregator, (2) Content Reengineer, (3) Content Refactorer
and (4) Content Filterer. These subcomponents work through the Content
Retrieval & Knowledge Extraction Pipeline. The Content Aggregator
obtains content either in XML or RDF format. If the content is in XML
format, it is transformed into RDF format. Once the content is in RDF
format, the Content Refactorer further transforms it into another RDF which
is processable by the AmI System.

SCEM transforms content into a standard representation that is managable by
the AmI System. It gathers content from NYTimes, BBC, WeatherBug, Google
Calendar, Google Movies, Eventful, and Eventim. While serving the content,
SCEM considers user preferences. For instance, it does not show social
events that would overlap with existing calendar entries of users.

Video clip demonstrating AmI applications of IKS is online35.

5.2 Showcasing Vertical Applications of IKS
In contrasts with an horizontal application, a vertical application addresses
requirements of a single market, i.e. software that helps doctors manage patient
records, insurance billing, etc. IKS vertical applications encompass a tourist use case
(Pisano),

The IKS Handbook 2013

78

35 http://www.youtube.com/watch?v=xIFX0Wjx3tc

http://www.nytimes.com/
http://www.nytimes.com/
http://www.bbc.com/
http://www.bbc.com/
http://weather.weatherbug.com/
http://weather.weatherbug.com/
https://www.google.com/calendar/
https://www.google.com/calendar/
https://www.google.com/calendar/
https://www.google.com/calendar/
http://google.com/movies
http://google.com/movies
http://eventful.com/
http://eventful.com/
http://www.eventim.de/
http://www.eventim.de/
http://www.youtube.com/watch?v=xIFX0Wjx3tc
http://www.youtube.com/watch?v=xIFX0Wjx3tc

5.2.1 Pisano Touristic Applications
Pisano integrated semantic technologies based on Apache Stanbol into its
packagemaster touristic system. Semantic functionality should help product
managers to analyse hotel informations and tour descriptions, and better retrieve the
information. The objective of packagemaster system is to automatically generate
additional information that better describe tour attributes and improve the quality of
tour content. Also, an important goal is to reduce the time spent on data
management.

The Product Editor (Webpage of Pisano’s Product Editor: http://www.iks-pisano.de/)
of the Pisano’s packagemaster system is used for creating and maintaining all the
information about a tour. This also includes descriptions that are provided in text form,
which can be maintained by using the VIE widget (annotate.js).

For the content manager of a tour operator, who is not meant to or does not wish to
maintain complex content, the website provides the option of signing in and editing
defined text sections with the VIE widget (annotate.js) and adding additional
information to them.

This functionality is ideal for making quick and simple adjustments without having to
access the maintenance system. The ability to integrate additional data into the
content through the IKS enhancer makes work much easier for the content manager.

For more details on the eTourism application see Pisano’s websites36.

5.2.2 Polymedia Publishing Applications
In the first year of the IKS project, Polymedia designed and developed a
demonstrator that was based on their existing CMS. The demonstrator was aimed to
provide an environment for testing the impacts of changes and integrating new
components into an CMS-based editor. A scenario foresees a publisher who’s writing
an article about a considered subject. For that sake, Polymedia replaced the existing
proprietary editor with the Hallo editor, which allows for creating annotations within

The IKS Handbook 2013

79

36 http://www.iks-pisano.de, http://iks.cic.de/

http://www.iks-pisano.de
http://www.iks-pisano.de
http://iks.cic.de/
http://iks.cic.de/

textual documents. The following Figure 14 shows the automatic content enrichment
via Hallo editor.

Figure 14: Polymedia Site Publishing

The following enrichment involves additional analysis based on LOD (Linked Open
Data) (Figure 15). It also uses the Apache Stanbol Enhancer for extracting concepts,
images and DBpedia links. The textual content and its generated metadata are then
saved within the Polymedia CMS database for further processing and querying.

The IKS Handbook 2013

80

Figure 15: Polymedia Site Publishing with LOD enrichment

Business validation of a new Polymedia demonstrator tool assumed creation of a
specific multimedia use case. That use case foresees two actors such as the
publisher, who’s using the demonstrator tool to prepare the chosen video by adding
tags and the user, consuming the video via a semantic player, that is capable of
reproducing the multimedia content while interpreting the tags in real-time. The
demonstrator tool leverages on the following components developed in IKS: Semantic
Video Annotation Services (Editor + Player) and VIE Image widget (Player). In other

The IKS Handbook 2013

81

words, the idea behind the demonstrator tool is to enable the semantic video
annotations through the Polymedia CMS Video Editor (which is included in KIT
Cosmos) (Figure 16) and the video playback harnessing the annotated video to
provide an enriched consumption experience (i.e.; through VIE widgets) for the end-
user.
The scenario is centred on the editorial office of a website dealing with cinema, using
a video annotation software to add semantic tags to the various stages of the
considered movie, while storing the generated semantic metadata in an internal
repository. The Polymedia CMS Video Editor allows the content producer (e.g.; the
journalist) to choose a video content and edit it before publishing, moving the timeline
at the desired point, adding start/end markings, cutting and pasting video segments
with single-frame precision, etc.

Figure 16: Defining a video segment within the Polymedia CMS Video Editor

The IKS Handbook 2013

82

The demonstrator tools is extended by allowing addition of semantic tags to a specific
video segment: for example, the publisher can add semantic information about the
scene and link it to a specific available plug-in. Every plug-in allows entering specific
metadata. Once the annotation phase is completed, all resulting metadata are saved
via IKS Semantic Video Annotation Services, which handle metadata into a format
compatible with the type of data to be stored.

Concerning the Semantic Player tool (Figure 17), Polymedia initially developed a
HTML5-based video player capable of playing back the video content published and
annotated by the Polymedia/KIT Cosmos video editor. Such video player is compliant
with the popcorn.js metadata format, thus interfacing video annotation services
provided by IKS, and retrieving both the video reference and the metadata associated
with it.

Figure 17: A Semantic Player

The IKS Handbook 2013

83

5.2.3 Semantic Management of Health Related Data with Apache
Stanbol
This showcase is based on health datasets from the LOD cloud, such as SNOMED/
CT, RxNORM and ART (Adverse Reaction Terminology). After populating the CMS
with health related documents, the documents are indexed via Apache Stanbol
Contenthub, by creating an index in LDPath language. LDPath language is a query
language for experimenting with the Linked Data Cloud. Figure 19 shows LDPath
program submission interface.

After creating the initial index, the documents from the Adobe’s CRX CMS are
submitted to Apache Stanbol Contenthub via the CMS Adapter component. As a
result, all the documents (Articles) are submitted to the newly created index. Once the
content enhancement process is completed, Apache Stanbol Contenthub requests
additional knowledge from Apache Stanbol Entityhub for each of the named entities
that are recognized during the enhancement process. At the end of the indexing
process, the new index is obtained embracing semantically meaningful information
from the external RDF datasets. In addition, these information are used to provide
semantic search functionalities for the documents. The next steps bring more
refinement search, i.e. more restricted search on diseases, specific drugs and
medications.

The IKS Handbook 2013

84

http://code.google.com/p/ldpath/
http://code.google.com/p/ldpath/
http://code.google.com/p/ldpath/
http://code.google.com/p/ldpath/

Figure 18: LDPath program submission interface

This showcase emphasizes several features, such as (i) the domain specific
enhancement using the Apache Stanbol Enhancer component, (ii) the ability to create
customized, use-case specific indexes, (iii) the ability to interact with JCR/CMIS
compliant CMSs, to retrieve documents from these systems and use them in the
domain specific enhancement and indexing features.

The IKS Handbook 2013

85

CHAPTER 6: Beyond CMS with semantic
extensions ...
We are coming to the end of our excursion into semantic content management and it
is legitimate to ask whether the technologies developed in IKS are on a trajectory that
will revolutionize knowledge and content management; whether IKS was a credible
but fated attempt to rescue a research strand that has run its course; or whether IKS
has given the pragmatist in web engineering a useful set of tools with which modern
web-scale applications can be built. In various research and technology forums, such
questions are hotly debated and anybody with an interest in the topic should have the
chance to assess the spectrum of opinions and lines of argument around semantic
web technology and as a conclusion, about the role IKS technology is playing. We
take the roles of the ardent supporter, the devil’s advocate and the pragmatic
software engineer to shed some light on the issues.

6.1 The Roaring Success of Semantic Web Technologies
In the previous chapters, we have already given a number of examples that illustrate
how well the WWW has been served and enriched by semantic technologies. No
other community has done more to promote RDF and this is now yielding benefits for
the open government and linked data movements. Google and the other proponents
of schema.org, who had first opted for microdata exclusively, have extended their
range to include RDFa lite37. The GoodRelations ontology is being integrated into
schema.org and is extending semantics potentially to every business on the planet38,
as long as it is connected to the Web.

With the development of the Web Ontology Language OWL, academics made it
possible to open the arcane world of description logics to the WWW. Over the past 10
years, they made it possible to interoperate between relational databases, RDF and

The IKS Handbook 2013

86

37#http://blog.schema.org/2012/06/semtech-rdfa-microdata-and-more.html

38 http://blog.schema.org/2012/11/good-relations-and-schemaorg.html

http://blog.schema.org/2012/06/semtech-rdfa-microdata-and-more.html
http://blog.schema.org/2012/06/semtech-rdfa-microdata-and-more.html

OWL based reasoning engines and they developed SPARQL, a database query
language that reaches across the different formalisms. Even the well-established
world of relational databases has been challenged by RDF-based “triple stores” that
combine traditional data storage with reasoning capabilities formerly known from
expert systems, and all this is available over the Web and can be used very easily,
with HTML5 enabled web browsers.

If we add to the technical and theoretical achievements, the concrete usage of RDF
and some reasoning facilities, in large scale applications such as the BBC’s Olympic
and football World Cup coverage then the case in favour of semantic technologies is
evident and needs no further justification.

6.2 The Dismal Failure of Semantic Web Research
Twelve years after the famous article by Tim Berners-Lee, James Hendler and Ora
Lassila in Scientific American, we can safely put the semantic web to REST (the pun
with the upper-case characters is intended). What is left is RDF as a vague but useful
data identification language for the WWW, schema.org as the only ontology of any
noticeable size, that also has some wider use, and we have RESTful services as the
single useful API on the WWW, with which everything is done that agents were
promised to do, but these agents never appeared, for whatever reasons.

The reasons for the failure are as follows – we first present them briefly and then
explain the details:

(1) No reference architecture - The research agenda never included Web
Engineering and architecturally, semantic web discourse never got beyond
the semantic layer cake. As several papers identified starting
approximately in 2005, this layer cake was often mistaken for a systems
architecture.

(2) No specific intelligence - The term “semantic” was intended to express that a
future WWW would exhibit some form of intelligence or understanding
towards the user, as opposed to just being a fast growing document store
that would soon be too large to be indexed efficiently, for information

The IKS Handbook 2013

87

retrieval. The truth of the matter is that it is precisely the indexing and
document retrieval technology, improved by large-scale statistics-based
indexing that has kept the Web operational and has made Google one of
the largest companies, world-wide. The technologies that are claimed
successes of the “semantic” movement were known beforehand or have
been adopted by the semantic web proponents in order to make their
systems at least do something useful.

(3) No superior modeling – Undoubtedly, there has been impressive work on
ontologies over the past 20 years, ranging from medical ontologies to
general “upper ontologies” such as DOLCE and BFO, but applications that
use these sophisticated ontologies have remained a rare sight, and the
machineries are usually best handled by the inventors themselves. The
more complex a knowledge model gets, the smaller the community that
can do useful things with it. The vast majority of knowledge models
however, is constituted of simple data schemas representing useful
knowledge such as the famous “friends of a friend” (FOAF) or the
“description of a project” (DOAP).

(4) No coherent development framework – You can use Protégé to develop
ontologies or RDF schemas. You must use a triple store to manage RDF-
instances. You need an OWL reasoner to compute OWL statements. You
need an extended OWL reasoner to compute SWRL or RIF rule
statements. You need a completely different infrastructure if you want to
use semantic web services. And when you got all these glued together,
you are still not connected with your Drupal, Typo3 or other CMS! And
neither are you compatible with OODBMS or RDBMS.

(5) No convincing use cases – there are use cases of semantic web technology
and several of them are successes. But do these suffice to give the
technology a green light for broad adoption by smaller technology
providers? Here, the argument gets into “shades of grey” because some
cases that are hailed as semantic successes could also be interpreted as

The IKS Handbook 2013

88

“it would also work with conventional technology” and some cases could
even be interpreted as “only the conventional elements make it work, the
semantic elements are not actually the success factors”.

(6) DARPA Challenges are missing for semantic technologies – The field of
semantic technologies still defines its own challenges and these are often
of the sort: “Look, we can translate between your (semantic web) tool and
my semantic web tool”.

6.2.1 No reference architecture
Around 1999, Tim Berners-Lee drew a diagram outlining the elements needed for the
semantic web.

Figure 19: Semantic Layer Cake according to Tim Berners-Lee

The IKS Handbook 2013

89

However, what was originally meant to be an illustration of how technologies of the
time could be used to create a real Stack, the layer cake illustration turned into an
obstacle for independent thinking, because for too long, nobody dared to challenge
the details, in fear of spoiling the idea.

A very entertaining talk in rhymes, by James Hendler called “My take on the Semantic
Web Layer cake” (2009, http://www.youtube.com/watch?v=Pv9fpW6bhdo) illustrates
well the complexity of the technologies (“this layer cake/ I must confess/ Really is a
bloody mess/ / To many folks / it’s causing stress!”). The actual talk closes with the
up-beat message that the community should be proud of what has been achieved,
despite the large number of partially coherent technologies. From a systems
engineering point of view, we would still emphasize that indeed, semantic web
technologies are causing more stress than they yield benefits. Patel-Schneider
proposed a revised “syntax architecture” [PATS05] to allow different syntaxes for
various semantic web languages. While this is in principle, a solution to deal with
different formal semantics and differing expressivity, it led the semantic web away
from being a machinery for the mainstream developer and the average technology
user. Horrocks et al [HPPH05] also analyzed the then emerging “stack” of semantic
web languages. They were leaning more to the description logic approach and saw a
danger in Datalog-type languages entering the language stack of the semantic web.
They painted a picture of two competing stacks which they wanted to replace by one
stack which had description logics (via OWL) firmly written into its core. Gerber et al.
[GMB08] took the argument further by adding software engineering considerations,
criticizing that the layer cake was mixing e.g. technologies and languages, and that
despite everybody using the diagram, there was actually no paper formally defining
the semantic web stack or cake. The authors then proposed a comprehensive
layered architecture, which they claimed to have validated. The point for web
engineering and content management is that the semantic web community was and
still is, arguing over what kind of puritanism is better, while everybody else is building
web-scale applications that do real jobs for real business! To make this point even
clearer: what was termed an “architecture” discussion, above, was in fact a conflict
over syntaxes and semantic scopes of data description languages. To this day, there
is no coherent semantic web stack that starts with URIs and ends with a well-

The IKS Handbook 2013

90

http://www.youtube.com/watch?v=Pv9fpW6bhdo
http://www.youtube.com/watch?v=Pv9fpW6bhdo

understood application layer. IKS was of course, also not able to fix these inherent
problems, but is offering a reference architecture for semantically enabled CMS
where at least the functionality is described down to API calls.

6.2.2 No specific intelligence
Assuming the above, language stack of the Semantic Web as a given, and accepting
that each of the languages has one or more implementations that make it possible to
write software applications with them, we should be able to work out specific
implementation stacks with which programmed behavior can be achieved. If we follow
the 2006 Semantic Web Stack (see figure) from bottom up, then we have:

URIs that denote resources in the virtual space. XML encodes any form of data
including URIs. RDF is an XML-based, URI-enabled data specification language that
describes multigraphs (graphs with different types of edges). RDF Schema is a data
modeling language for RDF graphs. Then things become complicated: from 2006 on,
the agreed-upon layer cake shows a remarkable departure from Tim Berners-Lee’s
original model: the original layer cake from 2001 presented ontology vocabularies as
the step from the general languages to the concrete modeling level. We assume that
the following layer of “Logic” in the 2001 model was meant to refer to the interpreters
of specific ontologies, but the re-written version of 2006 replaced the “ontology
vocabulary” layer by RDFS, OWL, RIF and SPARQL.

In other words, where originally, domain specific reasoning was supposed to be
defined, we suddenly had yet more, generic knowledge representation notations and
semantics, and the interpreting task was pushed to the next level up, called “unifying
logic”. This makes no sense at all because the idea of a stack is to become more
specific as you go up its layers: so any “unifying logic” worth its salt would simply
replace the four partial logics that it “unifies”! The fundamental criticism towards the
2006 “Stack” is: to build a reference model that can deal with a heterogeneous world
is a good thing, but to build a reference model that is inherently heterogeneous just
because of a conflict of opinion is simply a flawed model, because it has not even
been hit by the modeling challenges of the outside world, yet, and it is already
uncertain as to what it can express and how.

The IKS Handbook 2013

91

In 2007, Dan Brickley expressed his frustration with the architectural state of affairs
like this (http://www.flickr.com/photos/danbri/428172848/):

Figure 20: Dan Brickley’s frustration with the architectural state of the semantic layers
In 2009, when James Hendler voiced his friendly criticism of the semantic web stack,
and the “bloody mess” he referred to, looked like this (http://www.semanticfocus.com/
blog/entry/title/introduction-to-the-semantic-web-vision-and-technologies-part-1-
overview/):

The IKS Handbook 2013

92

http://www.flickr.com/photos/danbri/428172848/
http://www.flickr.com/photos/danbri/428172848/

Figure 21: The 2009 consensus on the layers of the semantic web

There is wide agreement in the community that the unifying logic , proof and trust
elements are still subject to research. If we take this seriously then it follows that
“User Interface and Applications” still have to wait for some breakthroughs before we
will see any methodologically sound Semantic Web applications. As the diagram also
shows there is a further inherent conflict with the introduction of RIF. While SPARQL
as a query language is in fact, offering complementarity to the data description

The IKS Handbook 2013

93

languages of RDFS and OWL, RIF on the one hand, tries to remain an interchange
format for different rule languages and semantics, but on the other hand, also needs
(yet other!) implementations of such languages in order to be usable. The result is a
quagmire of restrictions and incompatible modeling choices at the core of what the
semantic web is supposed to support: machines that model understanding of human
intention with respect to complex situations (i.e. any aspect of the world that can be
supported by federated computing systems). We have given this section the heading
“no intelligence”: the reason is that at the core, proponents of description logics have
“won” the academic battle, but have lost the war when it comes to commercial
applications and industrial uptake. In IKS, this is reflected in the hard work that the
research group on reasoning had to put in, in order to make OWL-based machinery
work together with serious content management applications and with RDF-based
data repositories. One major problem was a lack of modularity at the beginning, on
the part of the semantic web “engines” that turned out to be too monolithic for
straightforward interoperation with existing CMS.

6.2.3 No superior modeling
It is often claimed by the proponents of the semantic web that building ontologies is
somehow, a more coherent, complete and sound way of doing knowledge
representation. At least in computing, we need more than knowledge representation.
In most cases, computational modeling is the capture of some essential behavior and
the attempt to program a machine to exhibit that essential behavior. To model any
sort of behavior in a machine, we need three elements: defined components, defined
interactions between components and some way of specifying the desired behavior
as the result of components interacting in response to some stimulus. The original
idea of the Semantic Web was still true to this idea: Ontologies should define the
components (note that ontologies were seen as a means to an end), agents should
embody the interactions and should be programmable for some purpose. Finally,
RDF was seen as a sufficient coding standard to represent information on the web.
Since agents were not academically fashionable at the time, they were conveniently
forgotten by the semantic web research community. Similarly, since real ontologies
about real domains require real understanding of both knowledge representation and

The IKS Handbook 2013

94

of the target domains, young researchers preferred to invent new notations and stay
clear of murky modeling issues in specific domains. In other words, the semantic
web got stuck on the first rung: none of its specified languages goes anywhere
beyond letting you define static components for arbitrary ontologies. It does not help
you with the description of semantic “modules” (components and their interactions)
and it does not offer any modeler-friendly tools to specify desired behavior. On the
contrary, it forces the developer to cope with inherently inconsistent tools. Even at the
level of just making information persistent, it forces developers to fight with tools
whose “impedance mismatch” could also be described as “incompatibility”.
Researchers like Pat Hayes and Ian Horrocks spent years, arguing over the formal
semantics of RDF vs OWL or DAML. Similarly, we have now LD-Path vs SPARQL
and most web-spanning queries start with good old information extraction techniques
to first establish which data sources can be tackled with which querying tool. The
Linked Data movement seems to have given the Semantic Web communities a way
back into mainstream web engineering: small RDF-encoded ontologies for large
datasets and simple forms of reasoning that can be achieved with a variety of means
(even by clever indexing, using information retrieval techniques).

6.2.4 No coherent development frameworks
When there is a lack of coherent underlying models, it follows that there will be a lack
of coherent development tools and frameworks. Nonetheless, the fact that there are
commercial products available suggests that there is a core set of technologies for
which entrepreneurs have seen market opportunities. Tools such as TopBraid™
provide an Eclipse-based environment for building ontologies using RDF, RDF
schema and OWL. They also have OWL reasoning and usually SPARQL for querying
RDF graphs / OWL ontologies. TopBraid™ offers four ways of handling rules: Jena
Rules, using the Jena inference API, OWLIM, or their own implementation of SPIN
(SPARQL Inference Notation). The use of the engines can be configured in the
development environment. In order to deal with all notational eventualities, we can
view the source code as RDF/XML, Turtle, or N3, and we can switch on or off,
whether we want to see imported classes – in other words – whether we want to see
the inheritance hierarchy of a given class. This makes for an impressively complex

The IKS Handbook 2013

95

tool, but without further libraries, it still does not get us to deploy a working semantic
Web application. Heitmann et al. [HCHD11] identify four challenges and at least three
of these are “home-made” by the choices made by the proponents of semantic web
technology: a) Mismatch of data models between components: graph-based RDF vs
object oriented vs relational; b) distribution of application logic across components,
and c) missing guidelines and patterns.

We can see – over the past two or three years - that research groups are beginning
to tackle these issues with the development of Linked Data Servers, such as the
currently incubating Apache Marmotta (http://marmotta.incubator.apache.org). It
remains to be seen whether these tools give semantic web technologies a second
chance or whether they just salvage a few useful elements that will then become part
of mainstream web application building.

6.2.5 No convincing use cases
The majority of real-world applications that have been reported come either directly
from research institutions or have been developed for validation purposes, by
industrial companies in the course of large research projects. Even projects that can
be attributed to a single industry player were usually done in one the organisation’s
research department and not by their IT department. The W3C maintains a list of use
cases with 48 entries at the time of writing (January 2013): (http://www.w3.org/2001/
sw/sweo/public/UseCases/)

We concede that use cases do exist and that there are applications particularly in
data integration, that show potential. The use case descriptions at W3C are too
superficial to conclude anything in terms of “how much semantics?” or “depth of
reasoning” and the community has found it difficult to prove any unique selling
proposition of semantic web technologies. The recent case of “IBM Watson” a
software application that beat human contestants at the quiz-game “Jeopardy” uses –
according to Chris Welty, one of its designers – some semantic web elements.
However, Welty has pointed out that Watson also uses a number of other techniques
that make up its overall performance, and that its performance would be impossible to
achieve with just relying on Semantic Web technologies.

The IKS Handbook 2013

96

http://marmotta.incubator.apache.org
http://marmotta.incubator.apache.org
http://www.w3.org/2001/sw/sweo/public/UseCases/
http://www.w3.org/2001/sw/sweo/public/UseCases/
http://www.w3.org/2001/sw/sweo/public/UseCases/
http://www.w3.org/2001/sw/sweo/public/UseCases/

6.2.6 No real world challenges
From very early on, the semantic web communities detached themselves from
serious domain-driven modeling efforts. At the beginning this was tolerable – for a
period of time a new field should be granted to find its feet. But after a few years, the
new field should emerge with convincing answers to some significant challenges. A
real challenge is of the sort that DARPA set, for autonomous vehicles, in 2004:

The first competition of the DARPA Grand Challenge was held on March 13, 2004 in
the Mojave Desert region of the United States, along a 150-mile (240 km) route that
follows along the path of Interstate 15 from just before Barstow, California to just past
the California–Nevada border in Primm. None of the robot vehicles finished the route.
Carnegie Mellon University's Red Team and car Sandstorm (a converted Humvee)
traveled the farthest distance, completing 11.78 km (7.32 mi) of the course before
getting hung up on a rock after making a switchback turn. No winner was declared,
and the cash prize was not given. Therefore, a second DARPA Grand Challenge
event was scheduled for 2005.

(Source: http://en.wikipedia.org/wiki/
DARPA_Grand_Challenge#History_and_background)

Only a year later, practically all contestants reached the finishing line and the
challenge became a tightly fought race.

There have been several semantic web challenges over the years, but none so far,
has been of the “Jeopardy/Watson” kind, or like the DARPA Grand Challenge.

This leaves us – when taking the role of the devil’s advocate – to conclude that
“Semantic Web Technology” is a misnomer: Semantic Web has remained primarily a
fringe field of ICT research, with a mixed agenda and with fragmentation of
approaches that range from simple SKOS based thesauri encoded in RDF, to
description logics-based reasoners interpreting one of at least four possible rule
languages. And it leaves the Web-Developer bewildered at the lack of clarity, from a
field that claims “declarative knowledge representation” as one of its unique value
propositions.

The IKS Handbook 2013

97

http://en.wikipedia.org/wiki/Mojave_Desert
http://en.wikipedia.org/wiki/Mojave_Desert
http://en.wikipedia.org/wiki/Interstate_15
http://en.wikipedia.org/wiki/Interstate_15
http://en.wikipedia.org/wiki/Barstow,_California
http://en.wikipedia.org/wiki/Barstow,_California
http://en.wikipedia.org/wiki/California
http://en.wikipedia.org/wiki/California
http://en.wikipedia.org/wiki/Nevada
http://en.wikipedia.org/wiki/Nevada
http://en.wikipedia.org/wiki/Primm,_Nevada
http://en.wikipedia.org/wiki/Primm,_Nevada
http://en.wikipedia.org/wiki/Carnegie_Mellon_University
http://en.wikipedia.org/wiki/Carnegie_Mellon_University

For readers who wish to follow in-depth, critical views and occasional defenses of
semantic web technologies, we recommend the archives of the ontolog-forum mailing
list.

6.3 A Pragmatist’s View on Semantic Technologies in
Web Content Management
Having taken the roles of staunch supporter and devil’s advocate for semantic web
technologies in the previous sections, we shall now return to the line that has
dominated work on the IKS project, namely, focusing on concrete improvements that
can be taken up by developers of web-based content management applications. This
– pragmatist’s view – is reflected in the main contributions that IKS has been able to
make, in the past four years. We will summarize the state of affairs achieved, by
revisiting the major components:

• Web-based content editing (create.js)
• Management of editable objects (VIE)
• Apache Stanbol components

o Enhancer
o Entityhub
o Contenthub
o Ontology Manager
o Rules
o Reasoners
o CMS Adapter
o FactStore

The IKS Handbook 2013

98

Figure 22: IKS layers and components (F. Christ et al. 2012)

6.3.1 Pragmatics of the User Interface – create.js and Vienna IKS
Editables
In IKS we set out with a “grand vision” of AI-type, intelligent user interfaces that would
turn an application into some smart agent that lets the user interact with “knowledge
content” that would be increasingly available on the WWW. In the course of the first
year, we had to accept that the reality of web based content management starts with
issues that research has long declared as solved. One of these issues is the

The IKS Handbook 2013

99

separation of form and content. It seems that every new generation of developers is
faced with sufficiently new technologies so that the issue must be rediscovered or at
least, re-interpreted. One such re-interpretation of federated information management
was given by Henri Bergius, in the context of web-centered content management
[BERG11]: he proposed to address the problem of web-frameworks that force
developers to accept monolithic content management stacks. This led first to the
development of a web-editing library (VIE) and later to a generalization (create.js) that
offers an important connecting element between web-based application building and
semantic web technology. This important practical issue of contemporary CMS would
have been ignored if we had taken a purist’s view insisting solely on tackling “new
frontiers”. However, there was a price to pay: the question how a complex knowledge
domain can be represented and interacted with, via a user interface that is somehow
“driven” by the ontology, was not answered by IKS. Instead, the question how to
interact in a principled fashion, with content and with knowledge statements
expressed in RDFa, has been answered! This has opened the door for semantic
technologies to be more easily interfaced with content management while remaining
modular on both sides.

6.3.2 Semantic Enhancement Engines
Big data stores are a very valuable asset as the history of Google teaches us. Big
multilingual content stores are even more valuable, because the holder of the data
can use large scale statistical methods to gain insights and learn from the data, as
the examples of facebook or twitter teach us. The European Union is banking on
machine translation [EUR13] in order to keep the costs of translation services low
despite an increase in translations needed. These examples work well for the large
organizations, because they are able to meet four preconditions:

a) they have a very large quantity of data available

b) the institutions/companies have extremely large computing resources

c) there are human experts in the loop that can kick-start machine learning

The IKS Handbook 2013

100

d) there are expert developers who can build a variety of information processing
tools

In a typical SME setting, none of these four pre-conditions are met sufficiently well:
the data is limited to what the end user organization has and needs for its business,
the ICT resources are geared towards the primary business and humans are also
focused on the primary business and have no time for anything that is considered
“extra work”, and finally, developers in SMEs do not find the time to acquire deep
information processing knowledge. This has resulted in a situation where SME
technology providers have fallen far behind the quality standards expected by end
users who are normally served by the machineries of the large organizations, from
Google to Amazon, Facebook or ebay.

With its semantic enhancement engines, IKS has lowered the barriers for technology
providing SMEs mostly with respect to d) by building a range of tools that make
information processing tasks more feasible for SME Web CMS developers. This
means that technology providers can create added value applications for their
customers, more easily. Enhancement engines follow the UNIX principle of doing
relatively small tasks (e.g. Named Entity Recognition) that can be combined to form
“Enhancement Chains”.

6.3.3 Semantics meet Content – Entityhub and Contenthub
In order for a semantic system to work, we need some kind of knowledge base. In
traditional content management, the best one can expect is a controlled vocabulary
from which metadata is generated, manually or automatically. In IKS, we developed
the Entityhub as the center of semantic data management. Content gets analyzed,
indexed and the “entities” that we recognize, get stored in the entity hub. What’s
more, the entity hub allows us to manage also external resources: a “managed site” is
a resource that we analyze and replicate within the entity hub. Managed sites can
also be connected to our internal entity hub via mappings to our own terms. Thinking
federated, a “referenced site” is one which the entity hub is aware of, but which is
only accessed by our system “as is”, i.e. there is no local replication and we accept
the terms and availability of the external resource as a given.

The IKS Handbook 2013

101

These management schemes for semantically enhanced content have proven very
useful for CMS technology providers because the schemes give them control over
how a client wants to deal with internal and external resources, within an intranet
information space.

The Stanbol Contenthub is an Apache Solr based document repository which
enables storage of text-based documents and customizable semantic search
facilities. The Contenthub exposes an efficient Java API together with the
corresponding RESTful services. A document within Contenthub is referred as a
"Content Item". A content item consists of metadata of the document in addition to the
text-based content of the document. Contenthub has two main subcomponents,
namely Store and Search. Store is responsible for persistent storage of content items
while Search provides strong semantic search facilities over the content items.

6.3.4 Keeping your semantics in order – Ontology Manager
The Apache Stanbol Ontology Manager provides a controlled environment for
managing ontologies, ontology networks and user sessions for semantic data
modeled after them. It provides full access to ontologies stored into the Stanbol
persistence layer. Managing an ontology network means that you can activate or
deactivate parts of a complex model from time to time, so that your data can be
viewed and classified under different "logical lenses".

Stanbol OntoNet implements the API section for managing OWL and OWL2
ontologies, in order to prepare them for consumption by reasoning services,
refactorers, rule engines and the like. Ontology management in OntoNet is sparse
and not connected: once loaded internally from their remote locations, ontologies live
and are known within the realm they were loaded in. This allows loose-coupling and
(de-)activation of ontologies in order to scale the data sets for reasoners to process
and optimize them for efficiency.

The IKS Handbook 2013

102

Figure 23: OntoNet setup with sessions, scopes and spaces.

OntoNet allows the construction and management of ontology networks,
programmatically via its Java API or RESTful Web Services39.

6.3.5 Rules and Reasoning
The Stanbol Reasoners component provides a set of services that take advantage of
automatic inference engines. The module implements a common API for reasoning
services, providing the possibility to plug in, different reasoners and configurations in
parallel. Currently, the module includes OWLApi and Jena based abstract services,
with concrete implementations for Jena RDFS, OWL, OWLMini and the HermiT
reasoning service.

The IKS Handbook 2013

103

39 http://stanbol.apache.org/docs/trunk/components/ontologymanager/ontonet/

http://owlapi.sourceforge.net/
http://owlapi.sourceforge.net/
http://jena.sourceforge.net/
http://jena.sourceforge.net/
http://stanbol.apache.org/docs/trunk/components/ontologymanager/ontonet/
http://stanbol.apache.org/docs/trunk/components/ontologymanager/ontonet/

The Reasoners module expose a REST endpoint with the following preloaded
services:
• /rdfs, which is based on Jena RDFS reasoner and supports almost all of the

RDFS entailments.
• /owl, a Jena reasoner configured to support OWL (with some limitations,)
• /owlmini, another Jena configuration that partially supports OWL
In addition a service which uses the HermiT reasoner to exploit the full OWL 2
specification is also available.

Each reasoner can be accessed with one of three tasks:
• check: to perform a consistency check. This service returns HTTP Status 200

if data is consistent, 204 otherwise (at the current state of implementation the
service does not include an explanation about why the input is inconsistent)

• classify: to materialize all inferred rdf:type statements.
• enrich: to materialize all inferred statements.

6.3.6 Connecting with CMIS compliant systems – CMS Adapter
The CMS Adapter acts as a bridge between content management systems and
Apache Stanbol. All components of Apache Stanbol also provide RESTful services
which allow accessing them directly from outside. The CMS Adapter interacts with
content management systems through JCR and CMIS specifications. In other words,
any content repository compliant with JCR or CMIS specifications can make use of
CMS Adapter functionalities. Currently, the CMS Adapter offers two main
functionalities: "Bidirectional Mapping" and "Contenthub Feed".

Bidirectional Mapping provides two-way mappings between JCR/CMIS compliant
content repositories and external RDF data. When using this feature it is possible to
generate RDF data from a content repository or to populate a content repository
based on the external RDF data.

The IKS Handbook 2013

104

The Contenthub Feed is realized by a two-step process involving the sequential
execution of RDFBridge and RDFMapper services of CMS Adapter. Considering the
update of the content repository based on external RDF data, in the first step the
given raw RDF data is annotated with standard terms by RDFBridge. There are a few
terms that are described in the CMS Vocabulary section. The RDFMapper processes
the annotated RDF and updates the content repository accordingly. From the other
direction, in the first step, the content repository structure is transformed into RDF
annotated with the CMS Vocabulary terms by RDFMappers. In the second step
RDFBridges add implementation specific annotations.

The bidirectional mapping feature makes it possible for content management
systems, to exploit open linked data that is already available on the web. By mapping
external RDF data, any existing content repository items can be updated or new ones
can be created. The Contenthub Feed feature aims to manage content repository
items within the Contenthub component of Apache Stanbol. The management
process includes only two types of operations, submit and delete. Submission and
deletion operations can be done based on the identifiers of paths of the content
repository items. During the submission process, properties of content repository
items are collected and they are stored along with the actual content. This enables
the implementation of faceted search over the properties of items.

6.3.7 From Entities to Relations and Statements – FactStore
The FactStore manages relations between entities identified by their URIs. A relation
between two or more entities is called a fact. The FactStore lets users store n-ary
facts according to a user-defined fact schema. The FactStore only stores the relation
and not the entities. It only uses references to entities by using the entities' URI. The
entities themselves should be handled by another component, e.g. the Entityhub. A
fact is defined by a fact schema which is defined over types of entities.

A fact schema can be defined between an arbitrary number of entities. In most cases
a fact schema is defined between two or three entities. For example, the fact schema
'works-for' can be defined as a relation between entities of type 'Person' and
'Organization'. The Fact Store interface allows the creation of custom fact schemata

The IKS Handbook 2013

105

http://stanbol.apache.org/docs/trunk/components/entityhub/
http://stanbol.apache.org/docs/trunk/components/entityhub/

and to store facts according to these custom schemata. The Fact Store provides a
simple way to define and store facts. This component is meant to be used in
scenarios where a simple solution is sufficient and it is not required to define a
complex ontology with reasoning support.

6.4 What’s next?
The Interactive Knowledge Stack was a vision that postulated a tight integration of
content generation and knowledge-based application building. That vision had to face
a number of “reality checks”:

(1) “Semantic user interface”: we had hoped for graphical user interfaces that
could be parameterized at domain entity level, i.e. where there would be
an API that connected a domain-specific language with a domain-specific
user interface. The only application that got some way towards this
objective was the ambient intelligent bathroom and even there, critics may
say that too much is still hard coded and where it demonstrates flexibility,
too much effort needs to be spent to achieve it.

Our real progress for the user interface came at a level where we did not expect it: in
the VIE and create modules, we used interface features of the evolving HTML5
specification and combined them with a number of existing open source javascript
libraries such jquery and backbone.js that are popular with web developers, but do
not rank high on anybody’s research agenda. When put together, one ends up with a
semantics aware front-end that can communicate well with any RDF-aware backend
and, suddenly, we had a relatively tight, yet flexible connection between web-based
content management and semantic technologies using RDFa.

(2) “Programming environment for knowledge based content”: The principal
investigator had hoped for some streamlining in OWL-based reasoning
tools, either initiated by IKS or coming from elsewhere in Semantic-Web-
Land. This did not happen in the lifetime of the project and the AI-related
groups in the semantic web remain entrenched in their partial solutions
that still fragment the field and that keep industry as cautious and skeptical

The IKS Handbook 2013

106

as before. In Stanbol, the semantic technologies group at CNR managed
to modularize their own ontology and reasoning “monolith” (KReS) thus
giving IKS a more flexible set of tools for actually adding reasoning
facilities to content management. We cannot claim that OWL-based
reasoning has now entered CMS in a big way, as a result of IKS, but we
have opened routes for adding RDF- and OWL-based semantics to CMS
thus making CMS vendors fit for linked data and improving the
methodology for linking CMS with reasoners.

(3) “Tightly coupled interaction”: The vision of a tightly coupled stack met with
opposition from the developers’ quarter. They argued for loose coupling as
the only way of delivering web-scale interoperation services. As a result,
the standard mode of operation in IKS is RESTful interfaces, but we
managed to convince the development team that OSGi bundling would
also help. This is the tightest form of coupling that IKS offers.

(4) “Statistics or logical inference”: most CMS vendors have to address content
management at web-scale dimensions. In particular, the Web has
developed hugely search-centric, because the Web’s major characteristic
is its federatedness. This sounds like a contradiction in terms, but it is not:
the large amount of data and the little amount of structure that
characterizes the Web, requires large-scale search facilities, and search
engines from AltaVista to Google have shown that there is a large demand
and that large scale search can, not only be done, it is also to date, the
winning formula over any schemes that require more structure and more
rules to be followed. This has resulted in IKS exploring how NLP tools can
be used to “lift” web content to more structure, so as to make it amenable
to rule-based and logic-based inference.

To summarize the state of the art, as seen after the IKS project:

(a) the combination of a practical, HTML5 based user interface with some
widely adopted libraries that connect web content with RDFa, has helped

The IKS Handbook 2013

107

to move semantic models into traditional content management, at
affordable cost to developers.

(b)Semantic web researchers have begun to understand the impedance
mismatch between the semantic web layer cake and real software
architectures for web-scale content management.

(c) RESTful rules.

(d) Search rules.

Those of us looking for new research challenges should perhaps carefully look at (d):
is large-scale search the only paradigm in which WWW-scale information sharing can
be supported? We may add another question to this: Will search still work when
billions of devices start emitting billions of streams of data, over that same Web-
infrastructure?

The IKS Handbook 2013

108

References
[ABMP08] Ben Adida, Mark Birbeck, Shane McCarron, and Steven Pemberton. Rdfa

in xhtml: Syntax and processing. a collection of attributes and processing rules
for extending xhtml to support rdf. w3c recommendation. Technical report, The
World Wide Web Consortium (W3C), October 2008.

[ADI08] Ben Adida. hGRDDL: Bridging microformats and RDFa. Journal of Web
Semantics, 6(1):54–60, 2008.

[ALLS07] John Allsopp, 2007. Microformats: Empowering Your Markup for Web 2.0.
Friends of ED, March 2007.

[ANSW10] What are the success stories of the Semantic Web/ Linked Data? Online
available: http://answers.semanticweb.com/questions/1533/what-are-the-
success-stories-of-the-semantic-weblinked-data

[AUER06] Auer, S., Dietzold, S., Riechert, T. (2006). OntoWiki – A Tool for Social,
Semantic Collaboration. In proceedings of the 5th International Semantic Web
Conference (ISWC 2006), Athens, GA, USA, pp. 736-749

[BAT89] Bateman, J. A.; Kasper, R. T.; Moore, J. D.; Whitney, R. A. A General
Organization of Knowledge for Natural Language Processing: The Penman
Upper Model. USC/Information Sciences Institute. Marina del Rey. 1989.

[BER11] “Decoupling Content Managament” (2011), professional blog entry, http://
bergie.iki.fi/blog/decoupling_content_management/)

[BIZE09] Bizer, C. The Emerging Web of Linked Data. IEEE Information Systems.
2009

[BERN01] The Semantic Web. Scientific American, Vol. 284, No. 5, pp. 34–43.
[BLO09] Eva Blomqvist. Ontocase-automatic ontology enrichment based on ontology

design patterns. In The Semantic Web - ISWC 2009, 8th International Semantic
Web Conference, ISWC 2009, Chantilly, VA, USA, October 25-29, 2009.
Proceedings, volume 5823 of Lecture Notes in Computer Science, pages 65–
80. Springer, 2009.

[CIM06] P. Cimiano. Ontology Learning and Population from Text - Algorithms,
Evaluation and Applications. Springer, 2006.

[COCK02] A. Cockburn, Agile Software Development, Addison-Wesley, 2002.

The IKS Handbook 2013

109

http://bergie.iki.fi/blog/decoupling_content_management/
http://bergie.iki.fi/blog/decoupling_content_management/
http://bergie.iki.fi/blog/decoupling_content_management/
http://bergie.iki.fi/blog/decoupling_content_management/

[CON07] Dan Connolly. Gleaning resource descriptions from dialects of languages
(grddl). World Wide Web Consortium, Recommendation REC-grddl-20070911,
September 2007.

[CRUT06] Crutzen, C. K. M. "Invisibility and the Meaning of Ambient Intelligence,"
International Review of Information Ethics (6), 2006, pp. 1-11.

[COOK09] Cook, D.J., Augusto, J.C. and Jakkula, V.R. "Ambient intelligence:
Technologies, applications, and opportunities," Pervasive and Mobile
Computing (5), 2009, pp. 277-298."

[CP97] Peter Clark and Bruce Porter. Building concept representations from reusable
components. In Proceedings of AAAI’97. AAAI press, 1997.

[CBHS04] Carroll J.J., Bizer C., Hayes P., Stickler P.. Named Graphs, Provenance
and Trust. HP Lab; 2004.

[CODD70] Codd EF. A relational model of data for large shared data banks. Commun
ACM 1970;13(6):377–387.

[CUN02b] H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan. GATE: A
Framework and Graphical Development Environment for Robust NLP Tools
and Applications. Proceedings of the 40th Anniversary Meeting of the
Association for Computational Linguistics (ACL'02). Philadelphia, July 2002

[DECK00] The Semantic Web: The Roles of XML and RDF. In IEEE Internet
Computing. Vol. 4, No. 5, pp. 63-74.

[DFV02] John Davies, Dieter Fensel, and Frank van Harmelen, editors. On-To-
Knowledge: Semantic Web enabled Knowledge Management. J. Wiley and
Sons, 2002.

[DKDA05] L. Ding, P. Kolari, Z. Ding, S. Avancha, T. Finin, A. Joshi, 2005. Using
Ontologies in the Semantic Web: A Survey. TR CS-05-07.

[DKFJ05] Ding L., Kolari P., Finin T., Joshi A., Peng Y., Yesha Y.. On Homeland
Security and the Semantic Web: A Provenance and Trust Aware Inference
Framework. In: Proceedings of the AAAI Spring Symposium on AI Technologies
for Homeland Security; 2005.

[DOBA12] M. Dow, S. Bayliss, 2012. Fedora Commons embedded semantic services
using Apache Stanbol. In Proceeding of the 7th International Conference on

The IKS Handbook 2013

110

Open Repositories, OR2012. Online available: https://www.conftool.net/or2012/
index.php?page=browseSessions&form_session=68

[ERI07] Henrik Eriksson. The semantic-document approach to combining documents
and ontologies. Int. J. Hum.-Comput. Stud., 65(7):624–639, 2007.

[EUR13] “Commission unveils new translation engine as job cuts loom”, February,
2013, http://www.euractiv.com/culture/commission-unveils-new-translati-
news-518050

[FGPJ97] M. Fernández, A. Gómez-Pérez, and N. Juristo. Methontology: from
ontological art towards ontological engineering. In Proceedings of the AAAI97
Spring Symposium Series on Ontological Engineering, 1997.

[FLGP02] M. Fernández López and A. Gómez-Perez, 2002. Overview and analysis of
methodologies for building ontologies. The Knowledge Engineering Review, 17,
pp. 129-156, doi:10.1017/S0269888902000462

[GMB08] Aurona Gerber, Alta van der Merwe, and Andries Barnard. 2008. A
functional semantic web architecture. In Proceedings of the 5th European
semantic web conference on The semantic web: research and applications
(ESWC'08), Sean Bechhofer, Manfred Hauswirth, Jörg Hoffmann, and Manolis
Koubarakis (Eds.). Springer-Verlag, Berlin, Heidelberg, 273-287.

[GP09] Aldo Gangemi and Valentina Presutti. Ontology design patterns. In Handbook
on Ontologies, 2nd Ed., International Handbooks on Information Systems.
Springer, 2009.

[GR08] Good Relations: A Web Vocabulary for E-Commerce. “GoodRelations in the
Wild”. Online available: http://wiki.goodrelations-vocabulary.org/Datasets

[GRU93] T. R. Gruber. Towards Principles for the Design of Ontologies Used for
Knowledge Sharing. In N. Guarino and R. Poli, editors, Formal Ontology in
Conceptual Analysis and Knowledge Representation, Deventer, The
Netherlands, 1993. Kluwer Academic Publishers.

[GRU09] Thomas R. Gruber. Ontology. In Encyclopedia of Database Systems, pages
1963–1965. Springer-Verlag, 2009.

[GRU93] T. R. Gruber. A translation approach to portable ontologies. Knowledge
Acquisition, 5(2):199-220, 1993. Available online: http://tomgruber.org/writing/
ontolingua-kaj-1993.htm

The IKS Handbook 2013

111

http://www.ebusiness-unibw.org/wiki/GoodRelations
http://www.ebusiness-unibw.org/wiki/GoodRelations
http://www.ebusiness-unibw.org/wiki/GoodRelations
http://www.ebusiness-unibw.org/wiki/GoodRelations
http://wiki.goodrelations-vocabulary.org/Datasets
http://wiki.goodrelations-vocabulary.org/Datasets
http://www.ebusiness-unibw.org/wiki/GoodRelations
http://www.ebusiness-unibw.org/wiki/GoodRelations
http://tomgruber.org/writing/ontolingua-kaj-1993.htm
http://tomgruber.org/writing/ontolingua-kaj-1993.htm
http://tomgruber.org/writing/ontolingua-kaj-1993.htm
http://tomgruber.org/writing/ontolingua-kaj-1993.htm
http://tomgruber.org/writing/ontolingua-kaj-1993.htm
http://tomgruber.org/writing/ontolingua-kaj-1993.htm

[GRU09] T.R.Gruber. Ontology. In the Encyclopedia of Database Systems, Ling Liu
and M. Tamer Özsu (Eds.), Springer-Verlag, 2009. Online available: http://
tomgruber.org/writing/ontology-definition-2007.htm

[GRÜN94] Grüninger, M.; Fox, M. S. The Role of Competency Questions in
Enterprise Engineering. IFIP WG 5.7 W orkshop on Benchmarking. Theory and
Practice. Trondheim, Norway. 1994.

[HAYE04] P. Hayes. RDF Semantics. http://www.w3.org/TR/2004/ REC-rdf-
mt-20040210/; 2004.

[HCHD11] Heitmann et al., “An empirically grounded conceptual architecture for
applications on the Web of Data”, IEEE Transations on Systems, Man and
Cybernetics – Part C: Applications and Reviews, 2011.

HEBI09] Heath, T., Bizer, C. Linked Data: Evolving the Web into a Global Data Space.
Synthesis Lectures on The Semantic Web Theory and Technology. Online
available: http://linkeddatabook.com/editions/1.0/

[HEHU03] Hefflin, J. and Huhns, M. N., 2003. The Zen of the Web. In IEEE Internet
Computing. Vol. 7, No. 5, pp. 30-33.

[HEND01] Agents and the Semantic Web. In IEEE Intelligent Systems. Vol. 16, No. 2,
pp. 30-37.

[HPPH05] Semantic Web Architecture: Stack or Two Towers? Horrocks, Ian; Parsia,
Bijan; Patel-Schneider, Peter F; Hendler, James A, In: Fages, François;
Soliman, Sylvain. PPSWR: Principles and Practice of Semantic Web
Reasoning, Third International Workshop, PPSWR 2005, Dagstuhl Castle,
Germany, September 11-16, 2005, Proceedings; Springer; 2005. p. 37-41.

[HOSA02] I. Horrocks, U. Sattler. Description Logics Basics, Applications, and More.
Tutorial at ECAI-2002, http://www.cs.man.ac.uk/ ∼horrocks/Slides/ecai-
handout.pdf; 2002"

[HUYN07a] Huynh, D. F., Karger, D. R., & Miller, R. C. (2007). Exhibit: lightweight
" structured data publishing. In Proceeding of the 16th International Conference
" on World Wide Web, Banff, Alberta, Canada, pp. 737-746.
[HUYN07b] Huynh, D. F., Karger, D. R., Miller, R. C. Potluck. (2007). Data Mash-Up

Tool for Casual Users. In Proceeding of the 6th International Semantic Web
Conference, Busan, Korea, pp. 239-252.

The IKS Handbook 2013

112

http://tomgruber.org/writing/ontology-definition-2007.htm
http://tomgruber.org/writing/ontology-definition-2007.htm
http://tomgruber.org/writing/ontology-definition-2007.htm
http://tomgruber.org/writing/ontology-definition-2007.htm
http://tomgruber.org/writing/ontology-definition-2007.htm
http://tomgruber.org/writing/ontology-definition-2007.htm
http://www.w3.org/TR/2004/
http://www.w3.org/TR/2004/
http://linkeddatabook.com/editions/1.0/
http://linkeddatabook.com/editions/1.0/
http://linkeddatabook.com/editions/1.0/
http://linkeddatabook.com/editions/1.0/
http://www.cs.man.ac.uk
http://www.cs.man.ac.uk

[IKS-D2.2] F. Christ, G. Engels, S. Sauer, G.B. Laleci, E. Alpay, T. Namli, A.A. Sinaci,
F. Tuncer, 2009. IKS Deliverable - Report 2.2. “Requirements Specification for
the Horizontal Industrial Use Case”. Online available: http://www.iks-project.eu/
sites/default/files/iks-d22-requirements-horizontal-case-20100304.pdf

[IKS-D3.1] M. Romaneli et al., 2010. IKS Del. D3.1 “Model of Knowledge Based
Interaction”. Online: http://www.iks-project.eu/resources/model-knowledge-
based-interaction

[IKS-D3.2] A. Adamou et al., 2010. “Ontological Requirements for Industrial CMS
Applications”. IKS Project IKS Del. D3.2. Online: http://stlab.istc.cnr.it/
documents/iks/IKS-D3.2.pdf

[IKS-D4.1] S. Janzen, E. Blomqvist, A. Filler, S. Gönül, T. Kowatsch, A. Adamou, S.
Germesin, M. Romanelli, V. Presutti, C. Cimen, W. Maass, S. Postaci, E. Alpay,
T. Namli, G. Banu Laleci Erturkmen. IKS Deliverable – D4.1 Report: AmI Case
Design and Implementation (Public), 2011.

[IKS-D4.2] F. Christ, A.A. Sinaci, S. Gonul, G. Engels, B. Nagel, S. Sauer, O. Grisel,
R. Kurz, 2012. D.4.2. Horizontal Industrial Use Case Design and
Implementation. Online available: http://www.iks-project.eu/sites/default/files/
iks_d42_horizontal_industrial_use_case_20120229.pdf

[IKS-5.0-Alpha] F. Christ, G. Engels, B. Nagel, S. Sauer, S. Germesin, E. Daga, O.
Kilic, 2010, IKS Alpha Development. Online available: http://wiki.iks-project.eu/
index.php/IKS_Alpha_Development

[IKS-D5.0] IKS Deliverable 5.0. Design anf Implementation of Interactive Knowledge
Stack (Compendium). F. Christ at all., March, 2012. Online: http://www.iks-
project.eu/sites/default/files/
iks_del_5_0_design_implementation_IKS_compendium_2012.pdf

[IKS-D5.1] IKS Deliverable 5.1. Intermediate Report – Interaction and Presentation.
[IKS-D5.2] IKS Deliverable 5.2. Intermediate Report – Knowledge Representation and

Reasoning.
[IKS-D5.3] IKS Deliverable 5.3. Intermediate Report – Semantic Lifting.
[IKS-D5.4] IKS Deliverable 5.4. Intermediate Report – Semantic Data Access and

Persistence Components.

The IKS Handbook 2013

113

http://www.iks-project.eu/resources/model-knowledge-based-interaction
http://www.iks-project.eu/resources/model-knowledge-based-interaction
http://www.iks-project.eu/resources/model-knowledge-based-interaction
http://www.iks-project.eu/resources/model-knowledge-based-interaction
http://stlab.istc.cnr.it/documents/iks/IKS-D3.2.pdf
http://stlab.istc.cnr.it/documents/iks/IKS-D3.2.pdf
http://stlab.istc.cnr.it/documents/iks/IKS-D3.2.pdf
http://stlab.istc.cnr.it/documents/iks/IKS-D3.2.pdf
http://wiki.iks-project.eu/index.php/IKS_Alpha_Development
http://wiki.iks-project.eu/index.php/IKS_Alpha_Development
http://wiki.iks-project.eu/index.php/IKS_Alpha_Development
http://wiki.iks-project.eu/index.php/IKS_Alpha_Development

[IRS09] L. Iannone, A. Rector, R. Stevens. Embedding knowledge patterns into owl.
In 6th Annual European Semantic Web Conference (ESWC2009), pages 218–
232, June 2009.

[JEBJ03] J. Golbeck, B. Parsia, J. Hendler. Trust Networks on the Semantic Web. In:
Proceedings of Cooperative Intelligent Agents; 2003.

[KAC96] The KACTUS Booklet version 1.0. Esprit Project 8145. September, 1996.
(http://www.swi.psy.uva.nl/prjects/ NewKACTUS/Reports.html

[KNI94] K. Knight, S. Luck. Building an Large Knowledge Base for Machine
Translation. Proceedings of the American Association of Artificial Intelligence
Conference (AAAI- 94). Seattle (USA). 1994.

[KNI95] K. Knight, I. Chancer, M. Haines, V. Hatzivassiloglou, E.H. Hovy, M. Iida, S.K.
Luk, R.A. Whitney, K. Yamada, Filling Knowledge Gaps in a Broad- Coverage
MT System. Proceedings of the 14th IJCAI Conference. Montreal (Canada).
1995.

[KW-D1.4.2v2] J.Z. Pan, Lancieri, L., Maynard, D., Gandon, F., Cuel, R., Leger, A.
Deliverable 1.4.2v2. Success Stories and Best Practices. Knowledge Web
project. http://knowledgeweb.semanticweb.org/semanticportal/deliverables/
D1.4.2v2.pdf

[LAMG01] O. Lassila, D. McGuinness. The Role of Frame-Based Representation on
the Semantic Web. Stanford University; 2001.

[LCP05] V. Lanfranchi, F. Ciravegna, D. Petrelli. Semantic web-based document:
Editing and browsing in aktivedoc. In Proceedings of the 2nd European
Semantic Web Conference , Heraklion, Greece, May 29-June 1 2005.

[LEE06] T.B.Lee, 2006. Linked Data. Online available: http://www.w3.org/
DesignIssues/LinkedData.html

[LVHN05] T. Liebig, F. W. von Henke, O. Noppens. Explanation support for owl
authoring. In Thomas Roth-Berghofer and Stefan Schulz, editors, ExaCt,
volume FS-05-04 of AAAI Technical Report, pages 86–93. AAAI Press, 2005.

[MAMI06] Maeda, E. and Minami, Y. "Steps towards Ambient Intelligence," NTT
Technical Review (4), 2006, pp. 50-55.

[MAGR11] G. Madhu, A. Govardhan, T.V. Rajinikanth, 2011. Intelligent Semantic Web
Search Engines: A Brief Survey. International journal of Web & Semantic

The IKS Handbook 2013

114

http://knowledgeweb.semanticweb.org/semanticportal/deliverables/D1.4.2v2.pdf
http://knowledgeweb.semanticweb.org/semanticportal/deliverables/D1.4.2v2.pdf
http://knowledgeweb.semanticweb.org/semanticportal/deliverables/D1.4.2v2.pdf
http://knowledgeweb.semanticweb.org/semanticportal/deliverables/D1.4.2v2.pdf

Technology (IJWesT) Vol.2, No.1, January 2011. Online: http://arxiv.org/abs/
1102.0831

[MARP03] R. Matthew, A. Rakesh, D. Pedro. Trust Management for the Semantic
Web. In: Proceedings of the Second International Semantic Web Conference;
2003.

[MIK09] P. Mika. Year of the Monkey: Lessons from the First Year of Searchmonkey.
In Stefan Fischer, Erik Maehle, and Rüdiger Reischuk, editors, GI
Jahrestagung, volume 154 of LNI, page 387. GI, 2009.

[MVH04] D.L. McGuinness & F. van Harmelen. OWL web ontol- ogy language
overview. W3C recommendation, W3C, 2004. http://www.w3.org/TR/2004/
REC-owl-features-20040210/."

[NRB09] N. Nikitina, S. Rudolph, S. Blohm. Refining ontologies by pattern-based
completion. In E. Blomqvist, K. Sandkuhl, F. Scharffe, V. Svatek (Eds.),
Proceedings of the Workshop on Ontology Patterns (WOP 2009), collocated
with the 8th ISWC 2009, Washington D.C., Vol. 516. CEUR Workshop
Proceedings, 2009.

[OP4L-D1.1] Social Semantic Web technologies and tools and their educational
applications. Online available: http://op4l.fon.bg.ac.rs/sites/default/files/
OP4LD1.1.pdf

[OREI05] O'Reilly, T. (2005). What Is Web 2.0 – Design Patterns and Business
Models for the Next Generation of Software. Online available

[PATS05] Peter F. Patel-Schneider: A Revised Architecture for Semantic Web
Reasoning. PPSWR 2005: 32-36.

[PDGB09] V. Presutti, E. Daga, A. Gangemi, E. Blomqvist. eXtreme Design with
content ontology design patterns. In E. Blomqvist, K. Sandkuhl, F. Scharffe, V.
Svatek (Eds.), Proceedings of the Workshop on Ontology Patterns (WOP
2009), Washington D.C., Vol. 516. CEUR Workshop Proceedings, 2009.

[POP02a] B. Popov, A. Kiryakov, A. Kirilov, D. Manov, D. Ognyanoff and M. Goranov,
2004. KIM -- Semantic Annotation Platform, Journal of Natural Language
Engineering.

[PTSS04] H. Sofia Pinto, Christoph Tempich, Steffen Staab, and York Sure. Diligent:
Towards a fine-grained methodology for distributed, loosely-controlled and

The IKS Handbook 2013

115

http://arxiv.org/abs/1102.0831
http://arxiv.org/abs/1102.0831
http://arxiv.org/abs/1102.0831
http://arxiv.org/abs/1102.0831
http://op4l.fon.bg.ac.rs/sites/default/files/OP4LD1.1.pdf
http://op4l.fon.bg.ac.rs/sites/default/files/OP4LD1.1.pdf
http://op4l.fon.bg.ac.rs/sites/default/files/OP4LD1.1.pdf
http://op4l.fon.bg.ac.rs/sites/default/files/OP4LD1.1.pdf
http://www.informatik.uni-trier.de/%7Eley/db/conf/ppswr/ppswr2005.html
http://www.informatik.uni-trier.de/%7Eley/db/conf/ppswr/ppswr2005.html

evolving engingeering of ontologies. In Ramon L´opez de M´antaras and
Lorenza Saitta, editors, Proceedings of the 16th European Conference on
Artificial Intelligence (ECAI 2004), August 22nd - 27th, pages 393–397,
Valencia, Spain, AUG 2004. IOS Press.

[RAY12] Rayfield, J. 2012. “Sports Refresh: Dynamic Semantic Publishing”. Online
available at: http://www.bbc.co.uk/blogs/bbcinternet/2012/04/
sports_dynamic_semantic.html

[RWW10] R. Mac Manus, 2010. How Best Buy is using the Semantic Web. Source:
ReadWrite Web. Online available: http://readwrite.com/2009/12/02/
top_10_semantic_web_products_of_2009

[SCH95] G. Schreiber, B. Wielinga, W. Jansweijer. The KACTUS View on the ‘O’
World. In Proceedings of the National Dutch AI Conference. NAIC’95. 1995.

[SCHH04] P. Patel-Schneider, P. Hayes, I. Horrocks. OWL Web Ontology Language
Semantics and Abstract Syntax. http://www.w3.org/TR/2004/ REC-owl-
semantics-20040210/; 2004.

[SGUC03] P. da Silva Pinheiro, D. McGuinness, R. McCool. Knowledge Provenance
Infrastructure. Data Engineering Bulletin 2003; 26(4): 26–32.

[SOWA02] J. Sowa. Semantic Networks. http://www.jfsowa.com/pubs/ semnet.htm
(last modified: 08/12/2002 12:18:06); 2002.

[SFGP09] M.C. Suárez-Figueroa & A. Gómez-Pérez. NeOn methodology for building
ontology networks: a scenario-based methodology. In Services & Seman- tic
Technologies (S3T 2009) International Conference on Software, editor,
Proceedings of the International Conference on Software, Services & Semantic
Technologies (S3T 2009), 2009.

[SOWA06] J. Sowa. The Challenge of Knowledge Soup. In Research Trends in
Science, Technology and Mathematics Education, edited by J. Ramadas & S.
Chunawala, Homi Bhabha Centre, Mumbai, 2006.

[SS02] Y. Sure & R. Studer. On-To-Knowledge methodology. In Davies et al. [DFv02],
chapter 3, pages 33–46.

[STJO09] Stankovic, M., and Jovanovic, J. (2009). TagFusion - A System for
Integration and Leveraging of Collaborative Tags," Annals of Information

The IKS Handbook 2013

116

http://www.bbc.co.uk/blogs/bbcinternet/2012/04/sports_dynamic_semantic.html
http://www.bbc.co.uk/blogs/bbcinternet/2012/04/sports_dynamic_semantic.html
http://www.bbc.co.uk/blogs/bbcinternet/2012/04/sports_dynamic_semantic.html
http://www.bbc.co.uk/blogs/bbcinternet/2012/04/sports_dynamic_semantic.html

Systems, Special Issue on Semantic Web & Web 2.0. Springer-Verlag, Berlin,
Germany, pp. 3-23.

[SWA97] Swartout, B.; Ramesh P.; Knight, K.; Russ, T. Toward Distributed Use of
Large-Scale Ontologies. Symposium on Ontological Engineering of AAAI.
Stanford (California). Mars, 1997.

[SW.COM10] “What are the success stories of the Semantic Web/ Linked Data?”
Online available at semanticweb.com: http://answers.semanticweb.com/
questions/1533/what-are-the-success-stories-of-the-semantic-weblinked-data
(last access: October 23, 2012)

[USC95] Uschold, M., King, M. Towards a Methodology for Building Ontologies.
Workshop on Basic Ontological Issues in Knowledge Sharing. 1995.

[VHTTW09] Frank van Harmelen, Annette ten Teije, and Holger Wache. Knowledge
engineering rediscovered: towards reasoning patterns for the semantic web. In
Proceedings of the 5th International Conference on Knowledge Capture (K-
CAP 2009), September 1-4, 2009, Redondo Beach, California, USA, pages 81–
88. ACM, 2009.

[VPST05] Denny Vrandecic, H. Sofia Pinto, York Sure, and Christoph Tempich. The
diligent knowledge processes. Journal of Knowledge Management, 9(5):85–96,
October 2005.

[YOVA02] G. Yolanda, R. Varun. Trusting Information Sources One Citizen at a Time.
In: Proceedings of International Semantic Web Conference 2002, pp. 162–176.
2002

[ZHYU04] D. Zhongli, P. Yun. A Probabilistic Extension to Ontology Language OWL.
In: Proceedings of the 37th Hawaii International Conference On System
Sciences (HICSS-37). Big Island, Hawaii; 2004.

[ZHYR04] D. Zhongli, P. Yun, P. Rong. A Bayesian Approach to Uncertainty Modelling
in OWL Ontology. In: Proceedings of 2004 International Conference on
Advances in Intelligent Systems - Theory and Applications (AISTA2004).
Luxembourg-Kirchberg, Luxembourg; 2004.

The IKS Handbook 2013

117

http://answers.semanticweb.com/questions/1533/what-are-the-success-stories-of-the-semantic-weblinked-data
http://answers.semanticweb.com/questions/1533/what-are-the-success-stories-of-the-semantic-weblinked-data
http://answers.semanticweb.com/questions/1533/what-are-the-success-stories-of-the-semantic-weblinked-data
http://answers.semanticweb.com/questions/1533/what-are-the-success-stories-of-the-semantic-weblinked-data

IKS Handbook 2013

118

119

The IKS Handbook
iks.project.eu

ISBN: 978-3-902448-35-4
2013

