Digital Video Broadcasting (DVB); Frame structure channel coding and modulation for a second generation digital transmission system for cable systems (DVB-C2) DVB Document A138 June 2010 # Contents | Intell | ectual Property Rights | 6 | |------------------|--|----| | Forev | word | 6 | | 1 | Scope | 7 | | 2 | References | 8 | | 2.1 | Normative references | | | 2.2 | Informative references | | | | | | | 3 | Definitions, symbols and abbreviations | | | 3.1 | Definitions | | | 3.2 | Symbols | | | 3.3 | Abbreviations | 14 | | 4 | DVB-C2 System architecture | 16 | | 4.1 | System overview | 16 | | 4.2 | System architecture | | | 4.3 | Target performance | 19 | | 5 | Input processing | 19 | | 5.1 | Mode adaptation | | | 5.1.1 | Input Formats | | | 5.1.2 | Input Interface | | | 5.1.3 | Input Stream Synchronization (Optional) | 21 | | 5.1.4 | Null Packet Deletion (optional, for TS only, NM and HEM) | 21 | | 5.1.5 | CRC-8 encoding (for GFPS and TS, NM only) | | | 5.1.6 | Baseband Header (BBHeader) insertion | | | 5.1.7 | Mode adaptation sub-system output stream formats | | | 5.2 | Stream adaptation | | | 5.2.1 | Scheduler | | | 5.2.2
5.2.3 | PaddingBB scrambling | | | 3.2.3 | - | | | 6 | Bit-interleaved coding and modulation | | | 6.1 | FEC encoding | | | 6.1.1 | Outer encoding (BCH) | | | 6.1.2 | Inner encoding (LDPC) | | | 6.1.2. | | | | 6.1.2.2
6.1.3 | 2 Inner coding for short FECFrame | | | 6.2 | Mapping bits onto constellations | | | 6.2.1 | Bit to cell word demultiplexer | | | 6.2.2 | Cell word mapping into I/Q constellations | | | | | | | 7 | Data Slice Packet Generation | | | 7.1 | Data Slice Packets for Data Slice Type 1 | | | 7.2
7.2.1 | Data Slice Packets for Data Slice Type 2 | | | 7.2.1 | FECFrame header signalling data | | | 7.2.2
7.2.2. | | | | 7.2.2.2 | | | | 7.2.2.3 | | | | 7.2.3 | Mapping onto QAM constellations | | | 7.2.3. | | | | 7.2.3.2 | | | | 7.2.4 | Mapping of the XFECFrame cells | | | 7.2.5 | Length of the Data Slice Packet for Data Slice Type 2 | | | 7.2.6 | Stuffing Data Slice Packets | 50 | | 8 | Generation, coding and modulation of Layer 1 part 2 signalling | | |--------------------|--|----| | 8.1 | Overview | 51 | | 8.2 | Preamble Header | 51 | | 8.3 | L1 signalling part 2 data | 53 | | 8.3.1 | L1 block padding | 57 | | 8.3.2 | CRC for the L1 signalling part 2 | | | 8.3.3 | L1 padding | | | 8.4 | Modulation and error correction coding of the L1 part 2 data | 58 | | 8.4.1 | Overview | | | 8.4.2 | Parameters for FEC encoding of L1 part 2 data | | | 8.4.3 | FEC Encoding | | | 8.4.3.1 | | | | 8.4.3.2 | · · | | | 8.4.3.3 | · · · · · · · · · · · · · · · · · · · | | | 8.4.3.4 | <u> </u> | | | 8.4.3.5
8.4.3.5 | · · · · · · · · · · · · · · · · · · · | | | | <u>. </u> | | | 8.4.3.6 | | | | 8.4.4 | Mapping bits onto constellations | | | 8.4.4.1 | | | | 8.4.4.2 | | | | 8.5 | Time interleaving of L1 signalling part 2 data | 66 | | 9 | Frame Builder | 68 | | 9.1 | C2 Frame structure | | | 9.1.1 | Duration of the C2 Frame | | | 9.2 | Pilot Reference Sequence | | | 9.2.1 | Data Scrambling Sequence | | | 9.2.2 | Pilot Scrambling Sequence | | | 9.2.3 | Pilot Reference Sequence | | | 9.3 | Preamble Symbol | | | 9.3.1 | Preamble Symbol overview | | | 9.3.1 | Frequency Interleaving | | | 9.3.2 | Pilot insertion | | | 9.3.3
9.3.3.1 | | | | | r · · · · · · · · · · · · · · · · · · · | | | 9.3.3.2 | T T | | | 9.3.4 | Mapping and scrambling of the signalling data | | | 9.3.5 | Notches within Preamble Symbols | | | 9.3.5.1 | | | | 9.3.5.2 | = | | | 9.4 | Data Slice generation | | | 9.4.1 | Location of Data Slices | | | 9.4.1.1 | | | | 9.4.1.2 | | | | 9.4.1.3 | | | | 9.4.1.4 | | | | 9.4.2 | Number of payload cells in Data Slice | | | 9.4.3 | Mapping of the Data Slice Packets | | | 9.4.4 | Time Interleaving | | | 9.4.5 | Frequency Interleaving | 79 | | 9.5 | Stuffing Data Slices | 80 | | 9.6 | Pilot Insertion. | | | 9.6.1 | Introduction | 80 | | 9.6.2 | Scattered pilot insertion | 81 | | 9.6.2.1 | 1 Locations of the scattered pilots | 81 | | 9.6.2.2 | • | | | 9.6.2.3 | 1 | | | 9.6.3 | Continual pilot insertion | | | 9.6.3.1 | • | | | 9.6.3.2 | | | | 9.6.3.3 | 1 | | | 9.6.4 | Edge pilot insertion | | | 9.6.1
9.6.4.1 | C I | 82 | | 9.6.4.2 | Amplitudes of | the Edge Pilots | 83 | |-------------------|-------------------------|--|-----| | 9.6.4.3 | | the Edge Pilots | | | 9.7 | - | ation | | | 10 OF
10.1 | | 4: | | | 10.1 | | n | | | 10.3 | | CS | | | Annex A | (normative): | Addresses of parity bit accumulators for $N_{ldpc} = 64800$ | 88 | | Annex B | (normative): | Addresses of parity bit accumulators for N_{ldpc} = 16 200 | 94 | | Annex C | (normative): | Input stream synchronizer | 96 | | Annex D | (normative): | Input Remultiplexing Subsystem: Splitting of input MPEG-2 Transport Streams into Data PLPs, generation of a Common PLP of a group of PLPs and insertion of Null Packets into Transport Streams | | | D.1 Ov | verview | | | | | | nput TSs into TSPSs streams and a TSPSC stream | | | D.2. Sp.
D.2.1 | | iiput 138 iito 13738 stiediiis and a 1373C stiediii | | | D.2.2 | | mon PLP from a group of TS | | | D.2.3 | Insertion of additional | Null Packets into TSPSs | 100 | | | | on Considerations | | | D.3.1 | Recombination of TSF | PSS and TSPSC in a receiver | 101 | | Annex E | (normative): | Calculation of the CRC word | 103 | | Annex F | (normative): | Bundling of PLPs | 104 | | Annex G | (informative): | Transport Stream regeneration and clock recovery using ISCR | 105 | | Annex H | (informative): | Pilot patterns | 106 | | Annex I | (informative): | Bibliography | 109 | | History | | | 110 | # Intellectual Property Rights IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp). Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document. #### **Foreword** This European Standard (Telecommunications series) has been produced by Joint Technical Committee (JTC) Broadcast of the European Broadcasting Union (EBU), Comité Européen de Normalisation ELECtrotechnique (CENELEC) and the European Telecommunications Standards Institute (ETSI), and is now submitted for the Vote phase of the ETSI standards Two-step Approval Procedure. NOTE: The EBU/ETSI JTC Broadcast was established in 1990 to co-ordinate the drafting of standards in the specific field of broadcasting and related fields. Since 1995 the JTC Broadcast became a tripartite body by including in the Memorandum of Understanding also CENELEC, which is responsible for the standardization of radio and television receivers. The EBU is a professional association of broadcasting organizations whose work includes the co-ordination of its members' activities in the technical, legal, programme-making and programme-exchange domains. The EBU has active members in about 60 countries in the European broadcasting area; its headquarters is in Geneva. European Broadcasting Union CH-1218 GRAND SACONNEX (Geneva) Switzerland Tel: +41 22 717 21 11 Fax: +41 22 717 24 81 The Digital Video Broadcasting Project (DVB) is an industry-led consortium of broadcasters, manufacturers, network operators, software developers, regulatory bodies, content owners and others committed to designing global standards for the delivery of digital television and data services. DVB fosters market driven solutions that meet the needs and economic circumstances of broadcast industry stakeholders and consumers. DVB standards cover all aspects of digital television from transmission through interfacing, conditional access and interactivity for digital video, audio and data. The consortium came together in 1993 to provide global standardisation, interoperability and future proof specifications. | Proposed national transposition dates | | | | | |--|---------------------------------|--|--|--| | Date of latest announcement of this EN (doa): | 3 months after ETSI publication | | | | | Date of latest publication of new National Standard or endorsement of this EN (dop/e): | 6 months after doa | | | | | Date of withdrawal of any conflicting National Standard (dow): | 6 months after doa | | | | # 1 Scope The present document describes a second generation baseline transmission system for digital television broadcasting via Hybrid Fibre Coax (HFC) cable networks and Master Antenna Television (MATV) installations. It specifies the channel coding, modulation and lower layer signalling protocol system intended for the provision of digital television services and generic data streams. The scope is as follows: - it gives a general description of the Baseline System for digital cable TV; - it specifies the digital signal processing in order to establish compatibility between pieces of equipment developed by different manufacturers. This is achieved by describing in detail the signal processing at the transmitting side, while the processing at the receiving side is left open to individual implementations. However, for the
purpose of securing interoperability it is necessary in this text to refer to certain implementation aspects of the receiving end. DVB-C [i.4] was introduced as a European Norm in 1994. It specifies single carrier QAM modulation and Reed-Solomon channel coding and is used today by many cable operators worldwide for television and data broadcasting as well as for forward channel transmission of the Data Over Cable System defined in [i.7]. Since 1994 enhanced digital transmission technologies have evolved somewhat: - New channel coding schemes, combined with higher order modulation, promise more powerful alternatives to the DVB-C coding and modulation schemes. The result is a capacity gain in the order of 30 % at a given cable channel bandwidth and CATV network performance. - Variable Coding and Modulation (VCM) may be applied to provide different levels of error protection to different services (e.g. SDTV and HDTV, audio, multimedia). - In the case of interactive and point-to-point applications, the VCM functionality may be combined with the use of return channels, to achieve Adaptive Coding and Modulation (ACM). This technique provides more exact channel protection and dynamic link adaptation to propagation conditions, targeting each individual receiving terminal. - DVB-C is strictly focused on a unique data format, the MPEG Transport Stream (ISO/IEC 13818-1 [i.1] or a reference to it). Extended flexibility to cope with other input data formats (such as multiple Transport Streams, or generic data formats) is now possible without significant complexity increase. The present document defines a "second generation" modulation and channel coding system (denoted the "C2 System" or "DVB-C2" for the purposes of the present document) to make use of the improvements listed above. DVB-C2 is a single, very flexible standard, covering a variety of applications by cable, as described below. It is characterized by: - a flexible input stream adapter, suitable for operation with single and multiple input streams of various formats (packetized or continuous); - a powerful FEC system based on LDPC (Low-Density Parity Check) codes concatenated with BCH (Bose Chaudhuri Hocquenghem) codes, allowing Quasi Error Free operation close to the Shannon limit, depending on the transmission mode (AWGN channel, modulation constrained Shannon limit); - a wide range of code rates (from 2/3 up to 9/10); 5 constellations, ranging in spectrum efficiency from 1 to 10,8 bit/s/Hz, optimized for operation in cable networks; - Adaptive Coding and Modulation (ACM) functionality, optimizing channel coding and modulation on a frame-by-frame basis. # 2 References References are either specific (identified by date of publication and/or edition number or version number) or non-specific. - For a specific reference, subsequent revisions do not apply. - Non-specific reference may be made only to a complete document or a part thereof and only in the following cases: - if it is accepted that it will be possible to use all future changes of the referenced document for the purposes of the referring document; - for informative references. Referenced documents which are not found to be publicly available in the expected location might be found at http://docbox.etsi.org/Reference. NOTE: While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee their long term validity. #### 2.1 Normative references The following referenced documents are indispensable for the application of the present document. For dated references, only the edition cited applies. For non-specific references, the latest edition of the referenced document (including any amendments) applies. [1] ETSI TS 101 162: "Digital Video Broadcasting (DVB); Allocation of Service Information (SI) and Data Broadcasting Codes for Digital Video Broadcasting (DVB) systems". ### 2.2 Informative references F: 17 The following referenced documents are not essential to the use of the present document but they assist the user with regard to a particular subject area. For non-specific references, the latest version of the referenced document (including any amendments) applies. | [1.1] | audio information: Systems". | |-------|---| | [i.2] | ETSI TS 102 606: "Digital Video Broadcasting (DVB); Generic Stream Encapsulation (GSE) Protocol". | - [i.3] ETSI EN 302 307: "Digital Video Broadcasting (DVB); Second generation framing structure, channel coding and modulation systems for Broadcasting, Interactive Services, News Gathering and other broadband satellite applications (DVB-S2)". - [i.4] ETSI EN 300 468: "Digital Video Broadcasting (DVB); Specification for Service Information (SI) in DVB systems". - [i.5] ETSI EN 300 429: "Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for cable systems". - [i.6] ETSI EN 302 755: "Digital Video Broadcasting (DVB); Frame structure channel coding and modulation for a second generation digital terrestrial television broadcasting system (DVB-T2)". - [i.7] CENELEC EN 50083-2:2006: "Cable networks for television signals, sound signals and interactive services Part 2: Electromagnetic compatibility for equipment". - [i.8] ETSI EN 300 421: "Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for 11/12 GHz satellite services". # 3 Definitions, symbols and abbreviations #### 3.1 Definitions For the purposes of the present document, the following terms and definitions apply: ⊕: Exclusive OR / modulo-2 addition operation 0xkk: digits 'kk' should be interpreted as a hexadecimal number active cell: OFDM Cell carrying a constellation point for L1 signalling or a PLP auxiliary data: sequence of cells carrying data of as yet undefined modulation and coding, which may be used for stuffing Data Slices or stuffing Data Slice Packets BBFrame: signal format of an input signal after mode and stream adaptation BBHeader: header in front of a baseband data field NOTE: See clause 5.1. BUFS: maximum size of the requested receiver buffer to compensate delay variations BUFSTAT: actual status of the receiver buffer C2 frame: fixed physical layer TDM frame that is further divided into variable size Data Slices NOTE: C2 Frame starts with one or more Preamble Symbol. C2 system: complete transmitted DVB-C2 signal, as described in the L1-part2 block of the related Preamble common PLP: special PLP, which contains data shared by multiple PLPs (Transport Stream) data cell: OFDM Cell which is not a pilot or tone reservation cell data PLP: PLP carrying payload data data slice: group of OFDM Cells carrying one or multiple PLPs in a certain frequency sub-band NOTE: This set consists of OFDM Cells within a fixed range of consecutive cell addresses within each Data Symbol and spans over the complete C2 Frame, except the Preamble Symbols. data slice packet: XFECFrame including the related FECFrame Header data symbol: OFDM Symbol in a C2 Frame which is not a Preamble Symbol div: integer division operator, defined as: $$x \operatorname{div} y = \left| \frac{x}{y} \right|$$ dummy cell: OFDM Cell carrying a pseudo-random value used to fill the remaining capacity not used for L1 signalling, PLPs or Auxiliary Data elementary period: time period which depends on the channel raster and is used to define the other time periods in the C2 System FEC Frame: set of $N_{\rm LDPC}$ (16 200 or 64 800) bits of one LDPC encoding operation NOTE: In case of Data Slices carrying a single PLP and constant modulation and encoding is applied, FECFrame Header information may be carried in Layer1 part2 and the Data Slice Packet is identical with the XFECFrame. FFT size: nominal FFT size for a DVB-C2 receiver is 4K NOTE: Further details are discussed in clause 10.1. for i=0..xxx-1: when used with the signalling loops, this means that the corresponding signalling loop is repeated as many times as there are elements of the loop NOTE: If there are no elements, the whole loop is omitted. Im(x): Imaginary part of x Layer 1 (L1): name of the first layer of the DVB-C2 signalling scheme (signalling of physical layer parameters) L1 block: set of L1-part2 COFDM Cells, cyclically repeated in the frequency domain NOTE: L1 Blocks are transmitted in the Preamble. L1-part1: signalling carried in the header of the Data Slice Packets carrying modulation and coding parameters of the related XFECFrame NOTE: L1-part1 parameters may change per XFECFrame. L1-part2: Layer 1 Signalling cyclically transmitted in the preamble carrying more detailed L1 information about the C2 System, Data Slices, Notches and the PLPs NOTE: L1-part2 parameters may change per C2 Frame. Layer 2 (L2): name of the second layer of the DVB-C2 signalling scheme (signalling of transport layer parameters) mod: modulo operator, defined as: $$X \mod y = X - y \left\lfloor \frac{X}{y} \right\rfloor$$ mode adapter: input signal processing block, delivering BBFrames at its output nn_D: digits 'nn' should be interpreted as a decimal number notch: set of adjacent OFDM Cells within each OFDM Symbol without transmitted energy null packet: MPEG Packet with the Packet_ID 0x1FFF, carrying no payload data and intended for padding OFDM cell: modulation value for one OFDM carrier during one OFDM Symbol, e.g. a single constellation point OFDM symbol: waveform Ts in duration comprising all the active carriers modulated with their corresponding modulation values and including the guard interval Physical Layer Pipe (PLP): logical channel carried within one or multiple Data Slice(s) NOTE 1: All signal components within a PLP share the same transmission parameters such as robustness, latency. NOTE 2: A PLP may carry one or multiple services. In case of PLP Bundling a PLP may be carried in several Data Slices. Transmission parameters may change each XFECFrame. PLP bundling:
transmission of one PLP via multiple Data Slices PLP_ID: this 8-bit field identifies uniquely a PLP within a C2 transmission signal preamble header: fixed size signalling transmitted in the first part of the Preamble, carrying the length and Interleaving parameters of Layer 1 part 2 data preamble symbol: one or multiple OFDM Symbols, transmitted at the beginning of each C2 Frame, carrying Layer 1 part 2 signalling data Re(x): Real part of x reserved for future use: value of any field indicated as "reserved for future use" shall be set to "0" unless otherwise defined START_FREQUENCY: index of lowest used OFDM subcarrier of a C2 System. The value of START_FREQUENCY shall be a multiple of D_X X^* : Complex conjugate of X XFECFrame: FECFrame mapped onto QAM constellations: - X: round towards minus infinity: the most positive integer less than or equal to x. - $\lceil X \rceil$: round towards plus infinity: the most negative integer greater than or equal to x. # 3.2 Symbols g(x) For the purposes of the present document, the following symbols apply: | Δ | Absolute guard interval duration | |-------------------------------|---| | Λ | LDPC codeword of size $N_{\rm ldpc}$ | | λ_i | LDPC codeword bits | | λ^{RM} | 32 output bits of Reed-Muller encoder | | λ_I^{RM} | Bit number of index <i>i</i> of 32 bit long output bits of Reed-Muller encoder | | $\eta_{MOD}, \eta_{MOD}(i)$ | Number of transmitted bits per constellation symbol (for PLP <i>i</i>) | | π_{p} | Permutation operator defining parity bit groups to be punctured for L1 signalling | | $\pi_{\mathcal{S}}$ | Permutation operator defining bit-groups to be padded for L1 signalling | | $A_{m,I}$ | Output vector of the frequency interleaver of OFDM Symbol / and C2 Frame m | | A_{CP} | Amplitude of the continual pilot cells | | A_{SP} | Amplitude of the scattered pilot cells | | $a_{m,l,q}$ | Frequency-Interleaved cell value, cell index q of symbol / of C2 Frame m | | B(n) | Location of the first Data Cell of symbol l allocated to Data Slice <i>n</i> in the frequency interleaver | | b | 16 bit long FECFrame signalling data vector | | $b_{e,do}$ | Output from the demultiplexer, depending on the demultiplexed bit sub-stream number θ | | | and the input bit number d_i of the bit interleaver demultiplexer | | b_{j} | Bit number of index i of 16 bit long FECFrame signalling data vector | | C/N | Carrier-to-noise power ratio | | C/N+1 | Carrier-to-(Noise+Interference) ratio | | C_i | Column of index / of time interleaver | | C_{j} | Column of index / of bit interleaver | | c(x) | Equivalent BCH codeword polynomial Cell value for carrier k of symbol / of C2 Frame m | | c _{m,l,k}
DFL | Data field length | | $D_{ m p}$ | Difference in carrier index between adjacent preamble-pilot-bearing carriers | | $D_{\rm x}^{'}$ | Difference in carrier index between adjacent scattered-pilot-bearing carriers | | $D_{\mathrm{y}}^{\mathrm{r}}$ | Difference in symbol number between successive scattered pilots on a given carrier | | d(x) | Remainder of dividing message polynomial by the generator polynomial $g(x)$ during BCH | | . , | encoding | | d_{j} | Input bit number d_i of the bit interleaver demultiplexer | | d_{o} | Bit number of a given stream at the output of the demultiplexer of the bit interleaver | | е | Demultiplexed bit sub stream number ($0 \le e < N_{substreams}$), depending on input bit number | | | d_i of the bit interleaver demultiplexer | | $f_{ m q}$ | Constellation point normalized to mean energy of 1 | | Ġ | Reed-Muller encoder matrix | BCH generator polynomial $g_1(x)$, $g_2(x)$, ..., $g_{12}(x)$ Polynomials to obtain BCH code generator polynomial g_q Complex cell of index q of a Data Slice Packet H(q) Frequency interleaver permutation function, element q / Output codeword of BCH encoder i_i BCH codeword bits which form the LDPC information bits i $\sqrt{-1}$ K_{heh} Number of bits of BCH uncoded Block $K_{\rm i}$ L1 signalling part 2 parameter selected as $N_{L1part2}(K_{\rm i}) <= N_{L1part2_Cells} \times \eta_{\rm MOD}$ $K_{\rm ldnc}$ Number of bits of LDPC uncoded Block $K_{L1 PADDING}$ Length of L1_PADDING field $K_{L1part2}$ Length of L1-part2 signalling field including the padding field $K_{L1part2 ex pad}$ Number of information bits in L1-part2 signalling excluding the padding field $K_{N,min}$ Lowest frequency carrier index of a frequency Notch $K_{N,max}$ Highest frequency carrier index of a frequency Notch K_{sig} Number of signalling bits per FEC block for L1 signalling part 2 K_{min} Lowest frequency carrier index of a C2 signal, shall be identical to the START FREQUENCY and shall be multiple of D_X K_{max} Highest frequency carrier index of a C2 signal, shall be multiple of D_X K_{total} Number of OFDM carriers per OFDM symbol *k* Absolute OFDM carrier index L_{data} Number of data OFDM Symbols per C2 Frame (excluding Preamble) $L_{\rm F}$ Number of OFDM Symbols per C2 Frame including excluding preamble L_P Number of preamble OFDM Symbols within the C2 Frame Index of OFDM Symbol within the C2 Frame (excluding preamble) Index of preamble OFDM Symbol in C2 Frame *m* C2 Frame number m(x) Message polynomial within BCH encoding m_i Input bit of index i from uncoded bit vector M before BCH encoder M Uncoded bit vector before BCH encoder M_{max} Maximum Sequence length for the frequency interleaver N_{bch} Number of bits of BCH coded Block $N_{bch\ parity}$ Number of BCH parity bits N_c Number of columns of bit or time interleaver N_{data} Number of Data Cells in a Data Slice in frequency interleaver N_{DP} Number of complex cells per Data Slice Packet Number of bit-groups for BCH shortening $N_{L1part2}$ Length of punctured and shortened LDPC codeword for L1-part2 signalling $N_{L1part2}$ Cells Number of available cells for L1 signalling part 2 in one OFDM Symbol Number of LDPC blocks for the L1 signalling part 2 $N_{L1part2_max_per_Symbol}$ Maximum number of L1 information bits for transmitting the encoded L1 signalling part 2 through one OFDM Symbol $N_{L1_TI_Depth}$ Time interleaving depth for L1 signalling part 2 $N_{L1part2_temp}$ Intermediate value used in L1 puncturing calculation N_{ldDC} Number of bits of LDPC coded Block $N_{MOD\ per\ Block}$ Number of modulated cells per FEC block for the L1-part2 signalling N_{MOD_Total} Total number of modulated cells for the L1-part2 signalling N_{pad} Number of BCH bit-groups in which all bits will be padded for L1-part2 signalling N_{punc} Number of LDPC parity bits to be punctured $N_{punc\ groups}$ Number of parity groups in which all parity bits are punctured for L1 signalling N_{punc_temp} Intermediate value used in L1 puncturing calculation N_r Number of bits in Frequency Interleaver sequence N_r Number of rows of bit or time interleaver N_{RT} Number of reserved carriers $N_{substreams}$ Number of substreams produced by the bit-to-sub-stream demultiplexer nData slice number $P_k(t)$ Power spectral density p_i LDPC parity bits Q_{Idnc} Code-rate dependent LDPC constant q Data Cell index within the OFDM Symbol prior to frequency interleaving and pilot insertion $R_{eff_16K_LDPC_1_2}$ Effective code rate of 16K LDPC with nominal rate $\frac{1}{2}$ $R_{eff_L1part2}$ Effective code rate of L1-part2 signalling R_i Row of index i of time interleaver R_i Value of element *i* of the frequency interleaver sequence following bit permutations Value of element *i* of the frequency interleaver sequence prior to bit permutations r_i Row of index i of bit interleaver r_k DBPSK modulated pilot reference sequence S₀ List of reserved carriers T Elementary period T_{Ci} Column-twist value for column C of time interleaver T_{CH} Component set of carrier indices for reserved carriers T_F Duration of one C2 Frame T_P Time interleaving period T_S Total OFDM Symbol duration T_U Useful OFDM Symbol duration BCH error correction capability t_c Column-twist value for column c of bit interleaver $\begin{array}{ccc} U & & & \text{Parity interleaver output} \\ \textit{UPL} & & & \text{User Packet Length} \\ \textit{u}_i & & & \text{Parity-interleaver output bits} \end{array}$ u^{RM} 32 bit output vector of the cyclic delay block in the FECFrame header encoding $u_{(i+2)mod32}^{RM}$ Output of the cyclic delay block for input bit *i* in the FECFrame header encoding V Column-twist interleaver output V_i Column-twist interleaver output bits $V_{m.l.i}$ Output vector of frequency interleaver, starting at carrier index i (= Data slice start carrier) of the current OFDM Symbol / and C2 Frame m V^{RM} Scrambled output sequence in the lower branch of the FECFrame header encoder V^{RM} Bit i of scrambled output sequence in the lower branch of the FECFrame header encoder W_i Bit *i* of the data scrambling sequence W^{RM} 32 bit scrambling sequence in the lower branch of the FECFrame header encoder W_i^{RM} Bit *i* of scrambling sequence in the lower branch of the FECFrame header encoder w^p Pilot synchronization sequence, build out of W_i and w' w_k^p Bit of index k of pilot synchronization sequence w' L1 block specific pilot synchronization sequence w'_i Bit of index k of L1 block specific pilot synchronization sequence X_i The set of bits in group j of BCH information bits for L1 shortening $X_{m l}$ Frequency interleaver input Data Cells of the OFDM Symbol / and the C2 Frame m x Address of the parity bit accumulator according to i_{360} in LDPC encoder $y_{i.a}$ Bit *i* of cell word *q* from the bit-to-cell-word demultiplexer Z_q Constellation point prior to normalization The symbols s, t, i, j, k are also used as dummy variables and indices within the context of some clauses or equations. In general, parameters which have a fixed value for a particular
PLP for one processing block (e.g. C2 Frame, Interleaving Frame, TI-block) are denoted by an upper case letter. Simple lower-case letters are used for indices and dummy variables. The individual bits, cells or words processed by the various stages of the system are denoted by lower case letters with one or more subscripts indicating the relevant indices. #### 3.3 Abbreviations For the purposes of the present document, the following abbreviations apply: 1024QAM1024-ary Quadrature Amplitude Modulation16QAM16-ary Quadrature Amplitude Modulation256QAM256-ary Quadrature Amplitude Modulation4096QAM4096-ary Quadrature Amplitude Modulation64QAM64-ary Quadrature Amplitude Modulation ACM Adaptive Coding and Modulation AWGN Additive White Gaussian Noise BB BaseBand BaseBand Frame BCH Bose-Chaudhuri-Hocquenghem multiple error correction binary block code BCHFEC BCH Forward Error Correction BICM Bit Interleaved Coding and Modulation C/N Carrier to noise ratio C/N+I Carrier to noise and intermodulation power ratio CATV Community Antenna Television CBR Constant Bit Rate CCM Constant Coding and Modulation CRC Cyclic Redundancy Check D Decimal notation DBPSK Differential Binary Phase Shift Keying DEMUX DEMUltipleXer DFL Data Field Length DNP Deleted Null Packets DVB Digital Video Broadcasting project DVB-C DVB System for cable transmission NOTE: As defined in EN 300 429 [i.5]. DVB-C2 DVB-C2 System NOTE: As specified in the present document. DVB-S DVB System for digital broadcasting via satellites NOTE: As specified in EN 300 421 [i.8]. DVB-S2 Second Generation DVB System for satellite broadcasting NOTE: As specified in EN 302 307 [i.3]. DVB-T DVB System for terrestrial broadcasting NOTE: As specified in EN 302 755 [i.6]. DVB-T2 Second Generation DVB System for terrestrial broadcasting NOTE: As specified in EN 302 755 [i.6]. EBU European Broadcasting Union EIT Event Information Table (DVB SI Table) EMM Entitlement Management Message FEC Forward Error Correction FFT Fast Fourier Transformation FIFO First In First Out GCS Generic Continuous Stream GF Galois Field GFPS Generic Fixed-length Packetized Stream GI Guard Interval GS Generic Stream GSE Generic Stream Encapsulation HDTV High Definition Television HEM High Efficiency Mode HFC Hybrid Fibre Coax IF Intermediate Frequency IFFT Inverse Fast Fourier Transform IS Interactive Services ISCR Input Stream Clock Reference ISI Input Stream Identifier ISSY Input Stream SYnchronizer ISSYI Input Stream SYnchronizer Indicator Kbit $2^{10} = 1 \ 024 \ bits$ LDPC Low Density Parity Check (codes) LDPCFEC LDPC Forward Error Correction $\begin{array}{lll} LSB & Least Significant Bit \\ MATV & Master Antenna Television \\ Mbit & 2^{20} = 1 \ 048 \ 576 \ bits \\ MIS & Multiple Input Stream \\ \end{array}$ MPEG Moving Pictures Experts Group MSB Most Significant Bit NOTE: In DVB-C2 the MSB is always transmitted first. NA Not Applicable NM Normal Mode NPD Null Packet Deletion OFDM Orthogonal Frequency Division Multiplex PAPR Peak to Average Power Ratio PCR Presentation Clock Reference PER (MPEG TS) Packet Error Rate PID Packet IDentifier PLL Phase-Locked Loop PLP Physical Layer Pipe PRBS Pseudo Random Binary Sequence QAM Quadrature Amplitude Modulation QEF Quasi Error Free QPSK Quaternary Phase Shift Keying RF Radio Frequency SDT Service Description Table (DVB SI Table) SDTV Standard Definition TV SIS Single Input Stream TDM Time Division Multiplex TF Time/Frequency TI Time Interleaver TS Transport Stream TSPS Transport Stream Partial Stream TSPSC Transport Stream Partial Stream Common TSPSS Transport Stream Partial Stream Synchronized UP User Packet UPL User Packet Length VCM Variable Coding and Modulation XFECFrame XFEC Frame # 4 DVB-C2 System architecture ## 4.1 System overview The generic C2 System model is represented in figure 1. The system input(s) may be one or more MPEG-2 Transport Stream(s) [i.1] and/or one or more Generic Stream(s) [i.2]. The Input pre-processor, which is not part of the C2 System, may include a service splitter or a demultiplexer for Transport Streams (TS) used to separate the services into the C2 System inputs, which are one or more logical data streams. These are then carried in individual Physical Layer Pipes (PLPs). The system output is a single signal to be transmitted on a single RF channel. Figure 1: High level C2 block diagram The input data streams shall be subject to the constraint that, over the duration of one physical-layer frame (C2 Frame), the total input data capacity (in terms of cell throughput, following Null Packet Deletion, if applicable, and after coding and modulation), shall not exceed the C2 available capacity (in terms of Data Cells, constant in time) of the C2 Frame for the current frame parameters. One or more PLPs are arranged in a group of PLPs and one or more of such groups of PLPs form a Data Slice. A C2 System may consist of one or more Data Slices. Each group of PLPs may contain one Common PLP, but a group of PLPs need not contain a Common PLP. When the DVB-C2 signal carries a single PLP there is no Common PLP. It is assumed that the receiver will always be able to receive one Data PLP and its associated Common PLP, if any. More generally, the group of statistically multiplexed services can use Variable Coding and Modulation (VCM) for different services, provided they generate a constant total output capacity (i.e. in terms of cell rate including FEC and modulation). When multiple input MPEG-2 TSs are transmitted via a group of PLPs, splitting of input TSs into TSPS streams (carried via the Data PLPs) and a TSPSC stream (carried via the associated Common PLP), as described in annex D, shall be performed immediately before the Input processing block shown in figure 1. This processing shall be considered an integral part of an extended DVB-C2 System. # 4.2 System architecture The C2 input processing block diagram is shown in figures 2, which is split into several parts. Figure 2(a) shows the input processing in case of multiple PLPs. Figure 2(a) shows the BICM module and figure 2(c) shows the frame builder module. Figure 2(d) shows the OFDM generation module. Figure 2(a): Mode adaptation for multiple input streams (PLP) Figure 2(b): Bit Interleaved Coding and Modulation (BICM) Figure 2(c): Data Slice + Frame builder Figure 2(d): OFDM generation Figure 2(e) combines the functions given in figures 2(a) to 2(d) in one simplified overall DVB-C2 block diagram. Figure 2(e): DVB-C2 modulator block diagram ## 4.3 Target performance If the received signal is above the C/N+I threshold, the Forward Error Correction (FEC) technique adopted in the C2 System is designed to provide a "Quasi Error Free" (QEF) quality target. The definition of QEF adopted for DVB-C2 is "less than one uncorrected error-event per transmission hour at the level of a 5 Mbit/s single TV service decoder", corresponding to a Transport Stream Packet Error Rate of approximately PER $< 10^{-7}$ measured at the input of the demultiplexer unit at the receiving end. # 5 Input processing # 5.1 Mode adaptation The input to the C2 System shall consist of one or more logical data streams. One logical data stream is carried by one Physical Layer Pipe (PLP). The mode adaptation modules, which operate separately on the contents of each PLP, slice the input data stream into data fields which, after stream adaptation, will form baseband frames (BBFrame). The mode adaptation module comprises the input interface, followed by three optional sub-systems (the input stream synchronizer, the Null Packet deletion unit and the CRC-8 encoder) and then finishes by slicing the incoming data stream into data fields and inserting the baseband header (BBHeader) at the start of each data field. Each of these sub-systems is described in the following clauses. Each input PLP may have one of the formats specified in clause 5.1.1. The mode adaptation module can process input data in one of two modes, normal mode (NM) or high efficiency mode (HEM). These modes are described in clauses 5.1.6 and 5.1.7 respectively. NM is in line with the Mode Adaptation in [i.3], whereas in HEM, further stream specific optimizations may be performed to reduce signalling overhead. The BBHeader (see clause 5.1.6) signals the input stream type and the processing mode. ### 5.1.1 Input Formats The input signals in terms of either single or multiple streams (one connected to each Mode Adaptation Module) (see figure 1) shall be supplied to the Mode Adaptation Module(s). In the case of a Transport Stream (TS), the packet rate will be a constant value, although only a proportion of the packets may correspond to service data and the remainder may be Null Packets. Each input stream (PLP) of the C2 System shall be associated with a modulation and FEC protection mode which is statically configurable. Each input PLP may take one of the following formats: - Transport Stream (TS). - Generic Encapsulated Stream (GSE) [i.2]. - Generic Continuous Stream (GCS) (a variable length packet stream where the modulator is not aware of the packet boundaries). - Generic Fixed-length Packetized Stream (GFPS); this form is retained for compatibility with DVB-S2, but it is expected that GSE would now be used instead. A Transport Stream shall be characterized by User Packets (UP) of fixed length O-UPL = 188×8 bits (one MPEG TS packet), the first byte being a SYNC byte (47_{HEX}) and shall be signalled in the BBHeader TS/GS field, see clause 5.1.6. A GSE stream shall be characterized by variable length packets or constant length packets, as signalled within GSE packet headers, and shall be signalled in the BBHeader by TS/GS field, see clause 5.1.6. A GCS shall be characterized by a continuous bit-stream and shall be signalled in the BBHeader by TS/GS field and UPL = 0_D , see clause 5.1.6. A variable length packet stream where the modulator is not aware of the packet boundaries, or a constant length packet stream exceeding 64 kbit, shall be
treated as a GCS, and shall be signalled in the BBHeader by TS/GS field as a GCS and UPL = 0_D , see clause 5.1.6. A GFPS shall be a stream of constant-length User Packets (UP), with length O-UPL bits (maximum O-UPL value 64 K), and shall be signalled in the BBHeader TS/GS field, see clause 5.1.6. O-UPL is the Original User Packet Length. UPL is the transmitted User Packet Length, as signalled in the BBHeader. ## 5.1.2 Input Interface The input interface sub-system shall map the input into internal logical-bit format. The first received bit will be indicated as the Most Significant Bit (MSB). Input interfacing is applied separately for each single Physical Layer Pipe (PLP), see figure 2(a). The Input Interface shall read a data field, composed of DFL bits (Data Field Length), where: $$0 \le DFL \le (K_{beh} - 80)$$ where K_{bch} is the number of bits protected by the BCH and LDPC codes (see clause 6.1). The maximum value of DFL depends on the chosen LDPC code, carrying a protected payload of K_{bch} bits. The 10-byte (80 bits) BBHeader is appended to the front of the data field, and is also protected by the BCH and LDPC codes. The input interface shall either allocate a number of input bits equally to the available data field capacity, thus breaking UPs in subsequent data fields (this operation being called "fragmentation"), or shall allocate an integer number of UPs within the data field (no fragmentation). The available data field capacity is equal to K_{bch} - 80. When the value of DFL < K_{bch} - 80, a padding field shall be inserted by the stream adapter (see clause 5.2) to complete the LDPC/BCH code block capacity. ### 5.1.3 Input Stream Synchronization (Optional) Data processing in the DVB-C2 modulator may produce variable transmission delay on the user information. The Input Stream Synchronizer sub-system shall provide suitable means to guarantee Constant Bit Rate (CBR) and constant end-to-end transmission delay for any input data format. The use of the Input Stream Synchronizer subsystem is optional, except that it shall always be used for PLPs carrying transport streams where the number of FEC blocks per C2 Frame may vary. This process shall follow the specification given in annex C, which is similar to [i.3]. Examples of receiver implementation are given in annex G. This process will also allow synchronization of a single PLP travelling in different Data Slices, since the reference clock and the counter of the input stream synchronizers shall be the same (see annex F). The ISSY field (Input Stream Synchronization, 2 bytes or 3 bytes) carries the value of a counter clocked at the modulator clock rate (1/T where T is defined in clause 10.) and can be used by the receiver to regenerate the correct timing of the regenerated output stream. The ISSY field carriage shall depend on the input stream format and on the Mode, as defined in clauses 5.1.6 and 5.1.7 and figures 4 to 8. In Normal Mode the ISSY Field is appended to UPs for packetized streams. In High Efficiency Mode a single ISSY field is transmitted per BBFrame in the BBHeader, taking advantage that UPs of a BBFrame travel together, and therefore experience the same delay/jitter. When the ISSY mechanism is not being used, the corresponding fields of the BBHeader, if any, shall be set to '0'. A full description of the format of the ISSY field is given in annex C. ### 5.1.4 Null Packet Deletion (optional, for TS only, NM and HEM) Transport Stream rules require that bit rates at the output of the transmitter's multiplexer and at the input of the receiver's demultiplexer are constant in time and the end-to-end delay is also constant. For some Transport Stream input signals, a large percentage of Null Packets may be present in order to accommodate variable bit-rate services in a constant bit-rate TS. In this case, in order to avoid unnecessary transmission overhead, TS Null Packets shall be identified (PID = 8191_D) and removed. The process is carried out in a way that the removed Null Packets can be re-inserted in the receiver in the exact place where they were originated, thus guaranteeing a constant bit rate and avoiding the need for time stamp (PCR) updating. When Null Packet Deletion is used useful packets (i.e. TS packets with PID \neq 8191_D), including the optional ISSY appended field shall be transmitted while Null Packets (i.e. TS packets with PID = 8191_D, including the optional ISSY appended field may be removed (see figure 3). After transmission of a UP, a counter called DNP (Deleted Null Packets, 1 byte) shall be first reset and then incremented at each deleted Null Packet. When DNP reaches the maximum allowed value DNP = 255_D , then if the following packet is again a Null Packet this Null Packet is kept as a useful packet and transmitted. Insertion of the DNP field (1 byte) shall be after each transmitted UP according to clause 5.17 and figure 3. 22 Figure 3: Null Packet deletion scheme ### 5.1.5 CRC-8 encoding (for GFPS and TS, NM only) CRC-8 is applied for error detection at UP level (Normal Mode and packetized streams only). When applicable (see clause 5.1.7), the UPL minus 8 bits of the UP (after SYNC byte removal, when applicable) shall be processed by the systematic 8-bit CRC-8 encoder defined in annex E. The computed CRC-8 shall be appended after the UP according to clause 5.1.7. ## 5.1.6 Baseband Header (BBHeader) insertion A fixed length BBHeader of 10 bytes shall be inserted in front of the baseband data field in order to describe the format of the data field. The BBHeader shall take one of two forms as shown in figure 4(a) for Normal Mode (NM) and in figure 4(b) for High Efficiency Mode (HEM). The current mode (NM or HEM) may be detected by the MODE field (EXORed with the CRC-8 field). | MATYPE
(2 bytes) | ISSY 2MSB
(2 bytes) | DFL
(2 bytes) | ISSY
1LSB
(1 byte) | SYNCD
(2 bytes) | CRC-8
MODE
(1 byte) | |---------------------|------------------------|------------------|--------------------------|--------------------|---------------------------| |---------------------|------------------------|------------------|--------------------------|--------------------|---------------------------| Figure 4(b): BBHeader format (HEM) MATYPE (2 bytes): describes the input stream format and the type of Mode Adaptation as explained in table 1. The use of the bits of the MATYPE field is described below. #### First byte (MATYPE-1): - TS/GS field (2 bits), Input Stream Format: Generic Packetized Stream (GFPS); Transport Stream; Generic Continuous Stream (GCS); Generic Encapsulated Stream (GSE). - SIS/MIS field (1 bit): Single or Multiple Input Streams (referred to the global signal, not to each PLP). - CCM/ACM field (1 bit): Constant Coding and Modulation or Variable/Adaptive Coding and Modulation. - ISSYI (1 bit), (Input Stream Synchronization Indicator): If ISSYI = 1 = active, the ISSY field shall be computed (see annex C) and inserted according to clause 5.1.7. - NPD (1 bit): Null Packet deletion active/not active. If NPD active, then DNP shall be computed and appended after UPs. - EXT (2 bits), media specific (for C2, EXT=0: reserved for future use). Table 1: MATYPE-1 field mapping | TS/GS (2 bits) | SIS/MIS (1 bit) | CCM/ACM (1 bit) | ISSYI (1 bit) | NPD (1 bit) | EXT (2 bits) | |--|----------------------------|-----------------------|------------------------------|------------------------------|--------------------------------------| | 00 = GFPS
11 = TS
01 = GCS | 1 = single
0 = multiple | 1 = CCM
0 = ACM | 1 = active
0 = not-active | 1 = active
0 = not-active | Reserved for future use (see note 1) | | 10 = GSE | | | | | | | NOTE 1: For C2, EXT=reserved for future use and for S2, EXT=RO =transmission roll-off. | | | | | | | NOTE 2: For com | patibility with DVB-S | 32 [i.3], when GSE is | used with normal | mode, it shall b | e treated as a | | Continuous Stream and indicated by TS/GS = 01. | | | | | | #### Second byte (MATYPE-2): • If SIS/MIS = Multiple Input Stream, then second byte = Input Stream Identifier (ISI); else second byte = '0' (reserved for future use). NOTE: The term ISI is retained here for compatibility with DVB-S2 [i.3], but has the same meaning as the term PLP_ID which is used throughout the present document. The use of the remaining fields of the BBHeader is described in table 2. Table 2: Description of the fields of the BBHeader | Field | Size (Bytes) | Description | |------------|--------------|--| | MATYPE | 2 | As described above. | | UPL | 2 | User Packet Length in bits, in the range [0,65535]. | | DFL | 2 | Data Field Length in bits, in the range [0,58112]. | | SYNC | 1 | A copy of the User Packet SYNC byte. In the case of GCS, SYNC=0x00-0xB8 is reserved for transport layer protocol signalling and shall be set according to [1], SYNC=0xB9-0xFF user private. | | SYNCD | 2 | The distance in bits from the beginning of the DATA FIELD to the beginning of the first transmitted UP which starts in the data field. SYNCD=0 _D means that the first UP is | | | | aligned to the beginning of the Data Field. SYNCD = 65535 _D means that no UP starts | | | | in the DATA FIELD; for GCS, SYNCD is reserved for future use and shall be set to 0 _D | | | | unless otherwise defined. | | CRC-8 MODE | 1 | The XOR of the CRC-8 (1-byte) field with the MODE field (1-byte). CRC-8 is the error detection code applied to the first 9 bytes of the BBHeader (see annex E). MODE (8 bits) shall be: • 0 _D Normal Mode. | | | | 1 _D High Efficiency Mode. | | | | Other values: reserved for future use. | ### 5.1.7 Mode adaptation sub-system output
stream formats This clause describes the mode adaptation processing and fragmentation for the various modes and input stream formats, as well as illustrating the output stream format. Normal Mode, GFPS and TS See clause 5.1.6 for BBHeader signalling. For Transport Stream, O-UPL=188x8 bits, and the first byte shall be a SYNC byte (47_{HEX}). UPL (the transmitted User Packet Length) shall initially be set equal to O-UPL. The mode adaptation unit shall perform the following sequence of operations (see figure 5): - Optional input stream synchronization (see clause 5.1.3); UPL increased by 16_D or 24_D bits according to ISSY field length; ISSY field appended after each UP. For TS, either the short or long format of ISSY may be used; for GFPS, only the short format may be used. - If a SYNC byte is the first byte of the UP, it shall be removed, and stored in the SYNC field of the BBHeader, and UPL shall be decreased by 8_D. Otherwise SYNC in the BBHeader shall be set to 0 and UPL shall remain unmodified. - For TS only, optional Null Packet Deletion (see clause 5.1.4); DNP computation and storage after the next transmitted UP; UPL increased by 8_D. - CRC-8 computation at UP level (see clause 5.1.5); CRC-8 storage after the UP; UPL increased by 8_D. - SYNCD computation (pointing at the first bit of the first transmitted UP which starts in the Data Field) and storage in BBHeader. The bits of the transmitted UP start with the CRC-8 of the previous UP, if used, followed by the original UP itself, and finish with the ISSY and DNP fields, if used. Hence SYNCD points to the first bit of the CRC-8 of the previous UP. - For GFPS: UPL storage in BBHeader. - NOTE 1: O-UPL in the modulator may be derived by static setting (GFPS only) or un-specified automatic signalling. - NOTE 2: Normal Mode is compatible with DVB-S2 BBFrame Mode Adaptation [i.3]. SYNCD=0 means that the UP is aligned to the start of the Data Field and when present, the CRC-8 (belonging to the last UP of the previous BBFrame) will be replaced in the receiver by the SYNC byte or discarded. Figure 5: Stream format at the output of the Mode Adapter, Normal Mode, GFPS and TS #### High Efficiency Mode, Transport Streams For Transport Streams, the receiver knows a-priori the SYNC byte configuration and O-UPL=188x8 bits, therefore UPL and SYNC fields in the BBHeader shall be re-used to transmit the ISSY field. The Mode Adaptation unit shall perform the following sequence of operations (see figure 6): - Optional input stream synchronization (see clause 5.1.3) relevant to the first complete transmitted UP of the data field; ISSY field inserted in the UPL and SYNC fields of the BBHeader. - Sync-byte removed, but not stored in the SYNC field of the BBHeader. - Optional Null Packet Deletion (see clause 5.1.4); DNP computation and storage after the next transmitted UP. - CRC-8 at UP level shall not be computed nor inserted. - SYNCD computation (pointing at the first bit of the first transmitted UP which starts in the Data Field) and storage in BBHeader. The bits of the transmitted UP start with the original UP itself after removal of the SYNC byte, and finish with the DNP field, if used. Hence SYNCD points to the first bit of the original UP following the SYNC byte. - UPL not computed nor transmitted in the BBHeader. Figure 6: Stream format at the output of the Mode Adapter, High Efficiency Mode for TS, (no CRC-8 computed for UPs, optional single ISSY inserted in the BBHeader, UPL not transmitted) Normal Mode, GCS and GSE See clause 5.1.6 for BBHeader signalling. For GCS the input stream shall have no structure, or the structure shall not be known by the modulator. For GSE the first GSE packet shall always be aligned to the data field (no GSE fragmentation allowed). For both GCS and GSE the Mode Adaptation unit shall perform the following sequence of operations (see figure 6): - Set UPL=0_D; set SYNC=0x00-0xB8 is reserved for transport layer protocol signalling and should be set according to Reference [1], SYNC=0xB9-0xFF user private; SYNCD is reserved for future use and shall be set to 0_D when not otherwise defined. - Null Packed Deletion (see clause 5.1.4) and CRC-8 computation for Data Field (see clause 5.1.5) shall not be performed. Figure 7: Stream format at the output of the Mode Adapter, Normal Mode (GSE & GCS) High Efficiency Mode, GSE GSE variable length or constant length UPs may be transmitted in HEM. If GSE packet fragmentation is used, SYNCD shall be computed. If the GSE packets are not fragmented, the first packet shall be aligned to the Data Field and thus SYNCD shall always be set to 0_D . The receiver may derive the length of the UPs from [i.2], therefore UPL transmission in BBHeader is not performed. As per TS, the optional ISSY field is transmitted in the BBHeader. The Mode Adaptation unit shall perform the following sequence of operations (see figure 7): - Optional input stream synchronization (see clause 5.1.3) relevant to the first transmitted UP which starts in the data field; ISSY field inserted in the UPL and SYNC fields of the BBHeader. - Null Packet Deletion and CRC-8 at UP level shall not be computed nor inserted. - SYNCD computation (pointing at the first bit of the first transmitted UP which starts in the Data Field) and storage in BBHeader. The transmitted UP corresponds exactly to the original UP itself. Hence SYNCD points to the first bit of the original UP. - UPL not computed nor transmitted. Figure 8: Stream format at the output of the Mode Adapter, High Efficiency Mode for GSE, (no CRC-8 computed for UPs, optional single ISSY inserted in the BBHeader, UPL not transmitted) High Efficiency Mode, GFPS and GCS These modes are not defined (except for the case of TS, as described above). ## 5.2 Stream adaptation Stream adaptation (see figures 2(a) to 2(c)) provides: - a) scheduling (see clause 5.2.1); - b) padding (see clause 5.2.2) to complete a constant length (K_{bch} bits) BBFrame; - c) scrambling (see clause 5.2.3) for energy dispersal. The input stream to the stream adaptation module shall be a BBHeader followed by a DATA FIELD. The output stream shall be a BBFrame, as shown in figure 9. Figure 9: BBFrame format at the output of the stream adapter #### 5.2.1 Scheduler In order to generate the required L1-part2 signalling information, the scheduler shall decide together with the Data Slice builder which Data Slices of the final C2 System will carry data belonging to which PLPs, as shown in figures 2(a) to 2(c). Although this operation has no effect on the data stream itself at this stage, the scheduler shall already define the composition of the Data Slice and C2 Frame structure, as described in clause 7. ### 5.2.2 Padding K_{bch} depends on the FEC rate, as reported in tables 3(a) and 3(b). Padding may be applied in circumstances when the user data available for transmission is not sufficient to completely fill a BBFrame, or when an integer number of UPs has to be allocated in a BBFrame. (K_{bch} -DFL-80) zero bits shall be appended after the DATA FIELD. The resulting BBFrame shall have a constant length of K_{bch} bits. # 5.2.3 BB scrambling The complete BBFrame shall be randomized. The randomization sequence shall be synchronous with the BBFrame, starting from the MSB and ending after K_{bch} bits. The scrambling sequence shall be generated by the feed-back shift register of figure 10. The polynomial for the Pseudo Random Binary Sequence (PRBS) generator shall be: $$1 + X^{14} + X^{15}$$ Loading of the sequence (100101010000000) into the PRBS register, as indicated in figure 10, shall be initiated at the start of every BBFrame. Figure 10: Possible implementation of the PRBS encoder # 6 Bit-interleaved coding and modulation ## 6.1 FEC encoding This sub-system shall perform outer coding (BCH), inner coding (LDPC) and bit interleaving. The input stream shall be composed of BBFrames and the output stream of FECFrames. Each BBFrames (\mathcal{K}_{bch} bits) shall be processed by the FEC coding sub-system, to generate a FECFrame (\mathcal{N}_{ldpc} bits). The parity check bits (BCHFEC) of the systematic BCH outer code shall be appended after the BBFrame, and the parity check bits (LDPCFEC) of the inner LDPC encoder shall be appended after the BCHFEC field, as shown in figure 11. Figure 11: format of data before bit interleaving $(N_{\text{ldpc}} = 64\ 800\ \text{bits} \text{ for normal FECFrame},\ N_{\text{ldpc}} = 16\ 200\ \text{bits} \text{ for short FECFrame})$ Table 3(a) defines the FEC coding parameters for the normal FECFrame ($N_{\rm ldpc}$ = 64 800 bits) and table 3(b) for the short FECFrame ($N_{\rm ldpc}$ = 16 200 bits). Table 3(a): coding parameters (for normal FECFrame $N_{\text{ldpc}} = 64800$) | LDPC
Code | BCH Uncoded
Block K _{bch} | BCH coded block $N_{\rm bch}$ LDPC Uncoded Block K_{ldpc} | BCH
t-error correction | N _{bch} -K _{bch} | LDPC Coded Block
N _{ldpc} | |--------------|---------------------------------------|---|---------------------------|------------------------------------|---------------------------------------| | 2/3 | 43 040 | 43 200 | 10 | 160 | 64 800 | | 3/4 | 48 408 | 48 600 | 12 | 192 | 64 800 | | 4/5 | 51 648 | 51 840 | 12 | 192 | 64 800 | | 5/6 | 53 840 | 54 000 | 10 | 160 | 64 800 | | 9/10 | 58 192 | 58 320 | 8 | 128 | 64 800 | Table 3(b): coding parameters (for short FECFrame $N_{\text{ldpc}} = 16\ 200$) | LDPC
Code
Identifier | BCH Uncoded
Block K _{bch} | BCH coded block $N_{\rm bch}$ LDPC Uncoded Block K_{ldpc} | BCH
t-error
correction | N _{bch} -K _{bch} | Effective
LDPC Rate
K _{ldpc} /16 200 | LDPC Coded
Block
N _{Idpc} | |---|---------------------------------------|---|------------------------------
------------------------------------|---|--| | 1/2 | 7 032 | 7 200 | 12 | 168 | 4/9 | 16 200 | | (see note) | | | | | | | | 2/3 | 10 632 | 10 800 | 12 | 168 | 2/3 | 16 200 | | 3/4 | 11 712 | 11 880 | 12 | 168 | 11/15 | 16 200 | | 4/5 | 12 432 | 12 600 | 12 | 168 | 7/9 | 16 200 | | 5/6 | 13 152 | 13 320 | 12 | 168 | 37/45 | 16 200 | | 8/9 | 14 232 | 14 400 | 12 | 168 | 8/9 | 16 200 | | NOTE: This code rate is only used for protection of L1 pre-signalling and not for data. | | | | | | | NOTE: For N_{ldpc} = 64 800 and for N_{ldpc} = 16 200 the LDPC code rate is given by K_{ldpc}/N_{ldpc} . In table 3(a) the LDPC code rates for N_{ldpc} = 64 800 are given by the values in the 'LDPC Code' column. In table 3(b) the LDPC code rates for N_{ldpc} = 16 200 are given by the values in the 'Effective LDPC rate' column, i.e. for N_{ldpc} = 16 200 the 'LDPC Code identifier' is *not* equivalent to the LDPC code rate. ## 6.1.1 Outer encoding (BCH) A t-error correcting BCH (N_{bch} , K_{bch}) code shall be applied to each BBFrame to generate an error protected packet. The BCH code parameters for $N_{ldpc} = 64\,800$ are given in table 3(a) and for $N_{ldpc} = 16\,200$ in table 3(b). The generator polynomial of the *t* error correcting BCH encoder is obtained by multiplying the first *t* polynomials in table 4(a) for $N_{\rm ldpc} = 64\,800$ and in table 4(b) for $N_{\rm ldpc} = 16\,200$. Table 4(a): BCH polynomials (for normal FECFrame $N_{\text{ldpc}} = 64800$) | g ₁ (x) | $1+x^2+x^3+x^5+x^{16}$ | |---------------------|---| | g ₂ (x) | $1+x+x^4+x^5+x^6+x^8+x^{16}$ | | g ₃ (x) | $1+x^2+x^3+x^4+x^5+x^7+x^8+x^9+x^{10}+x^{11}+x^{16}$ | | g ₄ (x) | $1+x^2+x^4+x^6+x^9+x^{11}+x^{12}+x^{14}+x^{16}$ | | g ₅ (x) | $1+x+x^2+x^3+x^5+x^8+x^9+x^{10}+x^{11}+x^{12}+x^{16}$ | | g ₆ (x) | $1+x^2+x^4+x^5+x^7+x^8+x^9+x^{10}+x^{12}+x^{13}+x^{14}+x^{15}+x^{16}$ | | g ₇ (x) | $1+x^2+x^5+x^6+x^8+x^9+x^{10}+x^{11}+x^{13}+x^{15}+x^{16}$ | | g ₈ (x) | $1+x+x^2+x^5+x^6+x^8+x^9+x^{12}+x^{13}+x^{14}+x^{16}$ | | g ₉ (x) | $1+x^5+x^7+x^9+x^{10}+x^{11}+x^{16}$ | | g ₁₀ (x) | $1+x+x^2+x^5+x^7+x^8+x^{10}+x^{12}+x^{13}+x^{14}+x^{16}$ | | g ₁₁ (x) | $1+x^2+x^3+x^5+x^9+x^{11}+x^{12}+x^{13}+x^{16}$ | | g ₁₂ (x) | $1+x+x^5+x^6+x^7+x^9+x^{11}+x^{12}+x^{16}$ | $g_1(x)$ $1+x+x^3+x^5+x^{14}$ $1+x^{6}+x^{8}+x^{11}+x^{14}$ $g_2(x)$ $1+x+x^2+x^6+x^9+x^{10}+x^{14}$ $g_3(x)$ $1+x^4+x^7+x^8+x^{10}+x^{12}+x^{14}$ $g_4(x)$ $1+x^2+x^4+x^6+x^8+x^9+x^{11}+x^{13}+x^{14}$ $g_5(x)$ $1+x^3+x^7+x^8+x^9+x^{13}+x^{14}$ $g_6(x)$ $1+x^2+x^5+x^6+x^7+x^{10}+x^{11}+x^{13}+x^{14}$ $g_7(x)$ $1+x^{5}+x^{8}+x^{9}+x^{10}+x^{11}+x^{14}$ $g_8(x)$ $1+x+x^2+x^3+x^9+x^{10}+x^{14}$ $g_{q}(x)$ $1+x^3+x^6+x^9+x^{11}+x^{12}+x^{14}$ $g_{10}(x)$ $1+x^4+x^{11}+x^{12}+x^{14}$ $g_{11}(x)$ $1+x+x^2+x^3+x^5+x^6+x^7+x^8+x^{10}+x^{13}+x^{14}$ $g_{12}(x)$ Table 4(b): BCH polynomials (for short FECFrame N_{ldpc} = 16 200) BCH encoding of information bits $M = (m_{K_{hch}-1}, m_{K_{hch}-2}, ..., m_1, m_0)$ onto a codeword is achieved as follows: - Multiply the message polynomial $m(x) = m_{K_{bch}-1} X^{K_{bch}-1} + m_{K_{bch}-2} X^{K_{bch}-2} + ... + m_1 X + m_0$ by $X^{N_{bch}-K_{bch}}$. - Divide $X^{N_{bch}-K_{bch}} m(x)$ by g(x), the generator polynomial. Let $d(x) = d_{N_{bch}-K_{bch}-1} X^{N_{bch}-K_{bch}-1} + ... + d_1 X + d_0$ be the remainder. - Construct the output codeword /, which forms the information word / for the LDPC coding, as follows: $$I = (i_0, i_1, ..., i_{N_{boh}-1}) = (m_{K_{boh}-1}, m_{K_{boh}-2}, ..., m_1, m_0, d_{N_{boh}-K_{boh}-1}, d_{N_{boh}-K_{boh}-2}, ..., d_1, d_0)$$ NOTE: The equivalent codeword polynomial is $C(X) = X^{N_{bch} - K_{bch}} m(X) + d(X)$. ## 6.1.2 Inner encoding (LDPC) The LDPC encoder treats the output of the outer encoding, $I = (i_0, i_1, ..., i_{K_{ldpc}-1})$, as an information block of size $K_{ldpc} = N_{BCH}$, and systematically encodes it onto a codeword Λ of size N_{ldpc} , where: $$\Lambda = \{ (i_0, \lambda_1, \lambda_2, ..., \lambda_{N_{I/DPC}}) = (i_0, i_1, ..., i_{K_{I/DPC}-1}, p_0, p_1, ..., p_{N_{I/DPC}-K_{I/DPC}-1}) .$$ The LDPC code parameters (N_{IdDC} , K_{IdDC}) are given in tables 3(a) and 3(b). #### 6.1.2.1 Inner coding for normal FECFrame The task of the encoder is to determine $N_{Idpc} - K_{Idpc}$ parity bits $(p_0, p_1, ..., p_{n_{Idpc} - k_{Idpc} - 1})$ for every block of k_{Idpc} information bits, $(j_0, j_1, ..., j_{k_{Idpc} - 1})$. The procedure is as follows: - Initialize $p_0 = p_1 = p_2 = ... = p_{N_{ldpc}-K_{ldpc}-1} = 0$ - Accumulate the first information bit, I_0 , at parity bit addresses specified in the first row of tables A.1 through A.5 in annex A. For example, for rate 2/3 (A.1), (all additions are in GF(2)): $$\rho_{317} = \rho_{317} \oplus i_0$$ $\rho_{6700} = \rho_{6700} \oplus i_0$ $$\rho_{2255} = \rho_{2255} \oplus i_0$$ $\rho_{9101} = \rho_{9101} \oplus i_0$ $$\rho_{2324} = \rho_{2324} \oplus i_0$$ $\rho_{10057} = \rho_{10057} \oplus i_0$ $\rho_{2723} = \rho_{2723} \oplus i_0$ $\rho_{12739} = \rho_{12739} \oplus i_0$ $\rho_{3538} = \rho_{3538} \oplus i_0$ $\rho_{3576} = \rho_{3576} \oplus i_0$ $\rho_{6194} = \rho_{6194} \oplus i_0$ $\rho_{10057} = \rho_{10057} \oplus i_0$ $\rho_{12739} = \rho_{12739} \oplus i_0$ $\rho_{17407} = \rho_{17407} \oplus i_0$ For the next 359 information bits, i_m , m=1, 2, ..., 359 accumulate i_m at parity bit addresses $\{X + m \mod 360 \times Q_{ldpc}\} \mod (N_{ldpc} - K_{ldpc})$ where x denotes the address of the parity bit accumulator corresponding to the first bit i_0 , and Q_{ldpc} is a code rate dependent constant specified in table 5(a). Continuing with the example, $Q_{ldpc} = 60$ for rate 2/3. So for example for information bit i_1 , the following operations are performed: $$\begin{aligned} \rho_{377} &= \rho_{377} \oplus i_{1} & \rho_{6760} &= \rho_{6760} \oplus i_{1} \\ \rho_{2315} &= \rho_{2315} \oplus i_{1} & \rho_{9161} &= \rho_{9161} \oplus i_{1} \\ \rho_{2384} &= \rho_{2384} \oplus i_{1} & \rho_{10117} &= \rho_{10117} \oplus i_{1} \\ \rho_{2783} &= \rho_{2783} \oplus i_{1} & \rho_{12799} &= \rho_{12799} \oplus i_{1} \\ \rho_{3598} &= \rho_{3598} \oplus i_{1} & \rho_{17467} &= \rho_{17467} \oplus i_{1} \\ \rho_{3636} &= \rho_{3636} \oplus i_{1} & \rho_{21099} &= \rho_{21099} \oplus i_{1} \\ \rho_{6254} &= \rho_{6254} \oplus i_{1} \end{aligned}$$ - For the 361^{st} information bit i_{360} , the addresses of the parity bit accumulators are given in the second row of the tables A.1 through A.5. In a similar manner the addresses of the parity bit accumulators for the following 359 information bits i_m , m = 361, 362, ..., 719 are obtained using the formula $\{X + (m \mod 360) \times Q_{ldpc}\} \mod (N_{ldpc} K_{ldpc})$ where X denotes the address of the parity bit accumulator corresponding to the information bit i_{360} , i.e. the entries in the second row of tables A.1 through A.5. - In a similar manner, for every group of 360 new information bits, a new row from tables A.1 through A.5 are used to find the addresses of the parity bit accumulators. After all of the information bits are exhausted, the final parity bits are obtained as follows: • Sequentially perform the following operations starting with i=1. $$\rho_i = \rho_i \oplus \rho_{i-1}, \quad i = 1, 2, ..., N_{ldpc} - K_{ldpc} - 1$$ • Final content of p_i , i = 0,1,..., $N_{ldpc} - K_{ldpc} - 1$ is equal to the parity bit p_i . Table 5(a): Q_{ldpc} values for normal frames | Code Rate | Q_{Idpc} | |-----------|------------| | 2/3 | 60 | | 3/4 | 45 | | 4/5 | 36 | | 5/6 | 30 | | 9/10 | 18 | ### 6.1.2.2 Inner coding for short FECFrame K_{ldpc} BCH encoded bits shall be systematically encoded to generate N_{ldpc} bits as described in clause 6.1.2.1, replacing table 5(a) with table 5(b) and the tables of annex A with the tables of annex B. Table 5(b): $Q_{/dpc}$ values for short frames | Code Rate | Q_{Idpc} | |-----------|------------| | 1/2 | 25 | | 2/3 | 15 | | 3/4 | 12 | | 4/5 | 10 | | 5/6 | 8 | | 8/9 | 5 | #### 6.1.3 Bit Interleaver The output Λ of the LDPC encoder shall be bit interleaved, which consists of parity interleaving followed by column-twist interleaving. The parity interleaver output is denoted by U and the column-twist interleaver output by V. In the parity interleaving part, parity bits are interleaved by: $$u_i = \lambda_i$$ for $0 \le i < K_{Idpc}$ (information bits are not interleaved) $$u_{K_{ldpc}+360l+s} = \lambda_{K_{ldpc}+Q_{ldpc};s+t}$$ for $0 \le s < 360$, $0 \le t < Q_{ldpc};$ where Q_{ldpc} is defined in tables 5(a) and 5(b). The configuration of the column-twist interleaving for each modulation format is specified in table 6. **Table 6: Bit Interleaver structure** | Ma delation | Row | Columns | | |-------------|----------------------------|----------------------------|----------------| | Modulation | N _{Idpc} = 64 800 | N _{Idpc} = 16 200 | N _c | | 16QAM | 8 100 | 2 025 | 8 | | 64QAM | 5 400 | 1 350 | 12 | | 256QAM | 4 050 | - | 16 | | ZOOQAW | - | 2 025 | 8 | | 1024QAM | 3 240 | 810 | 20 | | 4096QAM | 5 400 | - | 12 | | 4090QAIVI | - | 675 | 24 | In the column-twist interleaving part, the data bits u_i from the parity interleaver are serially written into the column-twist interleaver column-wise, and serially read out row-wise (the MSB of BBHeader is read out first) as shown in figure 12, where the write start position of each column is twisted by t_c according to table 7. This interleaver is described by the following: • The input bit u_i with index i, for $0 \le i < N_{ldpc}$ is written to column c_i row r_i of the interleaver, where: $$c_{i} = i \operatorname{div} N_{r}$$ $$r_{i} = i + t_{c_{i}} \operatorname{mod} N_{r}$$ • The output bit V_j with index j, for $0 \le j < n_{ldpc}$, is read from row r_j , column c_j
, where $$r_j = j \operatorname{div} N_c$$ $c_j = j \operatorname{mod} N_c$ • So for 64QAM and N_{LDPC} = 64 800, the output bit order of column twist interleaving would be: $$\P_0, V_1, V_2, ..., V_{64799} = \P_0, u_{5400}, u_{16198}, ..., u_{53992}, u_{59231}, u_{64790}$$ A longer list of the indices on the right hand side, illustrating all 12 columns, is: 0, 5 400, 16 198, 21 598, 26 997, 32 396, 37 796, 43 195, 48 595, 53 993, 59 392, 64 791, 5 399, 10 799, 16 197, 21 597, 26 996, 32 395, 37 795, 43 194, 48 594, 53 992, 59 391, 64 790. Figure 12: Bit interleaving scheme for normal FECFrame length and 16QAM Table 7(a): Column twisting parameter tc (column 0 to 11) | Modula | Columns | | Twisting parameter t _c | | | | | | | | | | | | | | |--------|----------------|-------------------|-----------------------------------|---|---|---|---|----|----|----|----|----|----|----|--|--| | tion | N _c | N _{Idpc} | Col.
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | | | | 16 | o | 64 800 | 0 | 0 | 2 | 4 | 4 | 5 | 7 | 7 | - | - | - | - | | | | QAM | M 8 | 16 200 | 0 | 0 | 0 | 1 | 7 | 20 | 20 | 21 | - | - | - | - | | | | 64 | 12 | 64 800 | 0 | 0 | 2 | 2 | 3 | 4 | 4 | 5 | 5 | 7 | 8 | 9 | | | | QAM | 12 | 16 200 | 0 | 0 | 0 | 2 | 2 | 2 | 3 | 3 | 3 | 6 | 7 | 7 | | | | 256 | 16 | 64 800 | 0 | 2 | 2 | 2 | 2 | 3 | 7 | 15 | 16 | 20 | 22 | 22 | | | | QAM | 8 | 16 200 | 0 | 0 | 0 | 1 | 7 | 20 | 20 | 21 | - | - | - | - | | | | 1024 | 20 | 64 800 | 0 | 1 | 3 | 4 | 5 | 6 | 6 | 9 | 13 | 14 | 14 | 16 | | | | QAM | 20 | 16 200 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 5 | 5 | 5 | 5 | | | | 4096 | 12 | 64 800 | 0 | 0 | 2 | 2 | 3 | 4 | 4 | 5 | 5 | 7 | 8 | 9 | | | | QAM | 24 | 16 200 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | | | Table 7(b): Column twisting parameter tc (column 12 to 23) | Modula
tion | Columns | N _{Idpc} | Twisting parameter t_c | | | | | | | | | | | | | | |----------------|----------------|-------------------|--------------------------|----|----|----|----|----|----|----|----|----|----|----|--|--| | | N _c | | Col.
12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | | | | 16 | 8 | 64 800 | - | - | - | - | | | | | | | | | | | | QAM | 0 | 16 200 | - | - | - | - | | | | | | | | | | | | 64 | 12 | 64 800 | - | - | - | - | | | | | | | | | | | | QAM | 12 | 16 200 | - | - | - | - | | | | | | | | | | | | 256 | 16 | 64 800 | 27 | 27 | 28 | 32 | | | | | | | | | | | | QAM | 8 | 16 200 | - | - | - | - | | | | | | | | | | | | 1024 | 20 | 64 800 | 21 | 21 | 23 | 25 | 25 | 26 | 28 | 30 | | | | | | | | QAM | 20 | 16 200 | 5 | 7 | 7 | 7 | 7 | 8 | 8 | 10 | | | | | | | | 4096 | 12 | 64 800 | | | | | | | | | | | | | | | | QAM | 24 | 16 200 | 2 | 3 | 7 | 9 | 9 | 9 | 10 | 10 | 10 | 10 | 10 | 11 | | | # 6.2 Mapping bits onto constellations Each FECFrame (which is a sequence of 64 800 bits for normal FECFrame, or 16 200 bits for short FECFrame), shall be mapped to a coded and modulated FEC block by first demultiplexing the input bits into parallel cell words and then mapping these cell words into constellation values. The number of output Data Cells and the effective number of bits per cell η_{MOD} is defined by table 8. Demultiplexing is performed according to clause 6.2.1 and constellation mapping is performed according to clause 6.2.2. Table 8: Parameters for bit-mapping into constellations | LDPC block length (N _{ldpc}) | Modulation mode | η _{MOD} | Number of output
Data Cells | |--|-----------------|------------------|--------------------------------| | | 4096QAM | 12 | 5 400 | | | 1024QAM | 10 | 6 480 | | 64 800 | 256QAM | 8 | 8 100 | | 64 600 | 64QAM | 6 | 10 800 | | | 16QAM | 4 | 16 200 | | | | | | | | 4096QAM | 12 | 1 350 | | | 1024QAM | 10 | 1 620 | | | 256QAM | 8 | 2 025 | | 16 200 | 64QAM | 6 | 2 700 | | | 16QAM | 4 | 4 050 | | | QPSK | 2 | 8 100 | | | | | | ### 6.2.1 Bit to cell word demultiplexer The bit-stream V_i from the bit interleaver is demultiplexed into $N_{substreams}$ sub-streams, as shown in figure 13. The value of $N_{substreams}$ is defined in table 9. Number of sub-streams, Modulation N_{Idpc} N_{substreams} QPSK Any 2 16QAM Any 8 64QAM Any 12 64 800 16 256QAM 16 200 1024QAM 20 12 64 800 4096QAM 16 200 24 Table 9: Number of sub-streams in demultiplexer The demultiplexing is defined as a mapping of the bit-interleaved input bits, V_{di} onto the output bits $b_{\theta,d0}$, where: - do = di div $N_{substreams}$; - e is the demultiplexed bit sub stream number $(0 \le e < N_{substreams})$, which depends on di as defined in table 10; - v_{di} is the input to the demultiplexer; - di is the input bit number; - b_{e,do} is the output from the demultiplexer; - do is the bit number of a given stream at the output of the demultiplexer. Figure 13: Demultiplexing of bits into sub-streams Table 10(a): Parameters for demultiplexing of bits to sub-streams for codes rates 1/2, 3/4, 4/5, 5/6, 9/10(8/9) | | | | | | | 100 | lula | tio. | . 60. | 1122 0 | <u> </u> | |)CV | _`
¬ | , | | | | | | | | |---|--|---------------------------------------|----------------|--------------------------------------|-----------------|---------|------|----------|----------|--------|-------------------|-------------------|-------------------|--------------|----------|------|----------|-----|----|----|----|----| | | | | | 1 | <u> </u> | VIOC | iuia | tior | ı foı | rma | τ | 0 | 2 SK | 1 | | | | | | | | | | | | _ | | | | | | | | | | 0 | 1 | | | | _ | | | | | | | | | | | odul | | | | | | 16QAM | | | | | | | | | | | | | | Input bit-number,
di mod N _{substreams} | | | | | | | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | | | | | | | | | | nbe | | 7 | 1 | 4 | 2 | 5 | 3 | 6 | 0 | | | | | | | | | | | | | Mod | ulati | on f | <i>e</i>
orm | at | 1 | | <u> </u> | | | 640 | QAN | / | <u> </u> | | <u> </u> | | 1 | | | | | | | Inp | ut bit | -nur | nbe | ۲, | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | | | | | | | | | nod / | | | | U | <u>'</u> | | J | 4 | 3 | 0 | ′ | 0 | 9 | 10 | ' ' | | | | | | | | Out | out b | it-nu
<i>e</i> | mbe | er, | 11 | 7 | 3 | 10 | 6 | 2 | 9 | 5 | 1 | 8 | 4 | 0 | | | | | | | Mod | ulatior | fori | nat | | | | | 25 | 6Q | ΑM | (<i>N</i> | ldpc | = 6 | 4 80 | 00) | | ı | ı | | | | | | Inp
<i>di</i> m | ut bit-n
nod <i>N_{su}</i> | umbe | er,
ams | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | ; | | | | | out bit-r
e | | | 15 | 5 1 | 13 | 3 | 8 | 11 | 9 | 5 | 10 | 6 | 4 | 7 | 12 | 2 | 14 | 0 | - | | | | | | М | dul | atio | n fo | rma | at | 25 | 56Q | ΑM | (N | ldnc | = 1 | 6 20 | 00) | | 1 | 1 | | 1 | | | | | | lı
dı | put
mod | bit-r | num | ber, | , | 0 | 1 | 2 | | ĺ | | | | | | | | | | | | | | | utpu | | | | | 7 | 3 | 1 | 5 | 2 | 6 | 4 | 0 | | | | | | | | Modu | ulation | forma | t | 1024QAM (N _{ldpc} = 64 800) | Inpu
di m | it bit-nu
od <i>N_{sut}</i> | mber, | С | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | 11 | | 13 | | 15 | 16 | 17 | 18 | 19 | | | ut bit-n | | 8 | 16 | 7 | 19 | 4 | 15 | 3 | 12 | 0 | 11 | 10 | 9 | 13 | 2 | 14 | 5 | 17 | 6 | 18 | 1 | | Modu | ılation | format | | 1024QAM (N _{ldpc} = 16 200) | Inpu | ıt bit-nu | mber, | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | | 12 | | | 15 | 16 | 17 | 18 | 19 | | | od N _{sub} | | | ' | | 3 | 4 | 5 | 0 | | 0 | Э | 10 | ' ' | 12 | 13 | 14 | 13 | 10 | 17 | 10 | 19 | | Outp | ut bit-n
<i>e</i> | umber, | 8 | 3 | 7 | 10 | 19 | 4 | 9 | 5 | 17 | 6 | 14 | 11 | 2 | 18 | 16 | 15 | 0 | 1 | 13 | 12 | | | | Mod | ulati | on f | orm | at | | | 40 | 960 | QΑN | /I (N | l _{ldpc} | , = 6 | 64 8 | 00) | | | | | | | | | | Inp
<i>di</i> m | ut bit
od 1 | -nun
I _{subs} | nber
tream | , | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | | | | | | | | | out bi | | | | 8 | 0 | 6 | 1 | 4 | 5 | 2 | 3 | 7 | 10 | 11 | 9 | | | | | | | | Mod | | | orm | at | | 40 | 960 |)AN | ۱ (۸ | l _{Idno} | , = 1 | 6 2 | 00), | ра | rt 1 | | | | | | | | | | ut bit | | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | 11 | | | | | | di mod Nsubstreams | | | | | ns | - | ' | | 3 | 7 | J | 0 | | 0 | 9 | 10 | ' ' | - | | | | | | Output bit-number,
e | | | | | | 10 | 15 | 4 | 19 | 21 | 16 | 23 | 18 | 11 | 14 | 22 | 5 | | | | | | | Modulation format | | | | | | | 40 | 960 |)AN | ۱ (۸ | I _{Idpo} | , = 1 | 6 2 | 00), | pa | rt 2 | | | | | | | | | | Inp
<i>di</i> m | ut bit
od 1 | -nun
I _{subs} : | nber
tream | ,
ns | 12 | | 14 | | | | | | 20 | | | | | | | | | | | | out bi | | | | 6 | 17 | 13 | 20 | 1 | 3 | 9 | 2 | 7 | 8 | 12 | 0 | | | | | | | <u> </u> | | | | | | | | | | _ | • | • | • | | _ | | | | | | | Table 10(b): Parameters for demultiplexing of bits to sub-streams for code rate 2/3 only | | | | | | | Мс | dul | atio | n f | orn | nat | QF | PSK |] | | | | | | | | | |-----------------|--|---|-------------|-------------------|----------------------------|----------------------------|----------|----------|--------------------------------------|-------|-------|------------|---------------|-------|------|------|--|-----|-------------------|----|----|----| | | | | | | | | | | | | | 0 | <u>1</u>
1 | | | | | | | | | | | | | | M | odu | lati | on 1 | orn | nat | | | | | À | / | | | 1 | | | | | | | | | | l
a | npu
li mo | t bit | :-nur
V _{subs} | nbe | r,
ms | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | | | | | | | | | | | ut b | it-nu | | | 7 | 1 | 4 | 2 | 5 | 3 | 6 | 0 | | | | | | | | | | Modu | ılat | ion | | _ | 1 | | | 64QAM | | | | | | | | | | | | | | | | Inpu | ıt bi | t-nu | mb | er, | 0 | 1 | 2 | 3 | 4 | 5 | | | | 9 | 10 | 11 | | | | | | | | <i>di</i> m | od <i>i</i> | N _{sut} | stre | ams | U | ı | 2 | 3 | 4 | э | 6 | 7 | 8 | 9 |
10 | 111 | | | | | | | | Outp | ut b | oit-n
<i>e</i> | uml | oer, | 11 | 7 | 3 | 10 | 6 | 2 | 9 | 5 | 1 | 8 | 4 | 0 | | | | | | | Modu | lation | for | mat | | | | | 2 | 560 | QAM | (N | ldpc | = 6 | 4 80 | 00) | | | | | 1 | | | | Inpu
di mo | t bit-nu
od <i>N_{sub}</i> | mb | er, | 0 | 1 | 2 | 3 | 4 | 5 | | 7 | 8 | | | 11 | 12 | 13 | 14 | 15 | ; | | | | Outpu | ut bit-n | uml | ber, | 7 | 2 | 9 | 0 | 4 | 6 | 13 | 3 | 14 | 10 | 15 | 5 | 8 | 12 | 2 11 | 1 | - | | | | | е | M | odu | lati | on 1 | forn | nat | 2 | 560 | QAM | (<i>N</i> | Idno | = 1 | 6 20 | 00) | | | | | 1 | | | | | | ī | npu | t bit | -nur | nbe | r, | 0 | | | | | | | | 1 | | | | | | | | di mod N _{sub}
Output bit-nu | | | | V _{subs}
it₋nı | strea. | ms
or | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 1 | | | | | | | | | e | | | | e
e | 11110 | CI, | 7 | 3 | | | | | | | | | | | | | | | | Modulation format | | | | | | | 10 | 24 | QAN | /I (N | ldpo | , = 6 | 64 8 | 00) | | | | | | | | | Input
di mod | bit-nun
d <i>N_{subs}</i> | nber,
treams | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | | Output | t bit-nu
e | mber, | 8 | 16 | 7 | 19 | 4 | 15 | 3 | 12 | 0 | 11 | 10 | 9 | 13 | 2 | 14 | 5 | 17 | 6 | 18 | 1 | | Modula | ation f | ormat | | | | | | | 1024QAM (N _{ldpc} = 16 200) | | | | | | | | <u> </u> | | | | | | | Input | bit-nun
d N _{subs} | nber, | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | | | | 14 | 15 | 16 | 17 | 18 | 19 | | Output | t bit-nu | mber, | 8 | 3 | 7 | 10 | 19 | 4 | 9 | 5 | 17 | 6 | 14 | 11 | 2 | 18 | 16 | 15 | 0 | 1 | 13 | 12 | | | e | Modu | | | | | | | | | QAN | | | | | | | | $\overline{\Box}$ | | | | | | | Inpu | | | | | | | | | | | idpo | ; - (| | 33) | | | - | | | | | | | <i>di</i> mo | od / | V _{sub} | strea | ams | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | | | | | | | | Outp | ut b | it-nı
<i>e</i> | umb | er, | 8 | 0 | 6 | 1 | 4 | 5 | 2 | 3 | 7 | 10 | 11 | 9 | | | | | | | | Modu | | | | | | 40 | 960 | AI | N (N | ldpc | , = 1 | 6 2 | 00), | ра | rt 1 | | | | | | | | | Inpu
di mod | l N | subs | stre | ams | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | | | | | | | | Output hit_number | | | 10 | 15 | 4 | 19 | 21 | 16 | 23 | 18 | 11 | 14 | 22 | 5 | | | | | | | | | | Modulation format | | | | | 40 | 960 | lΑΩ | V (V | Idpo | , = 1 | 6 2 | 00), | ра | rt 2 | | 1 | | | | | | | | Input bit-number, di mod N _{substreams} | | | 12 | | | | 16 | | | | | | | | | | | | | | | | | di mod N _{substreams} Output bit-number, e | | 6 | 17 | 13 | 20 | 1 | 3 | 9 | 2 | 7 | 8 | 12 | 0 | | | | | | | | | | Į. | [1 | <u>e</u> | | | | | | | | | - | | | | | | • | 4 | | | | Except for 256QAM with N_{ldpc} =16 200 and 4096QAM with N_{ldpc} =64 800, the words of width $N_{substreams}$ are split into two cell words of width $n_{mod} = N_{substreams}/2$ at the output of the demultiplexer. The first $n_{mod} = N_{substreams}/2$ bits $[b_{0,do}.b_{Nsubstreams/2-1,do}]$ form the first of a pair of output cell words $[y_{0,2do}.y_{n_{MOD-1,2do}}]$ and the remaining output bits $[b_{Nsubstreams/2,do}.b_{Nsubstreams-1,do}]$ form the second output cell word $[y_{0,2do+1}.y_{n_{MOD-1,2do+1}}]$ fed to the constellation mapper. In the case of 256QAM with N_{ldpc} =16 200 and 4096QAM with N_{ldpc} = 64 800, the words of width 8 from the demultiplexer form the output cell words and are fed directly to the constellation mapper, so: $$[y_{0,do}.y_{nmod-1,do}] = [b_{0,do}.b_{Nsubstreams-1,do}]$$ The application of the parameters in tables 10(a) and 10(b), for the demultiplexing of the bit-stream V_i from the bit interleaver, is subordinated to the validity of a specific modulation and code rate combination, since DVB-C2 only supports a list of selected ModCod configurations, as shown in tables 11(a) and 11(b) (X indicates a valid configuration). Table 11(a): ModCods for $N_{ldpc} = 64800$ | | | | Modulati | on format | | | |-----------|------|-------|----------|-----------|---------|---------| | Code rate | QPSK | 16QAM | 64QAM | 256QAM | 1024QAM | 4096QAM | | 2/3 | NA | NA | X | NA | NA | NA | | 3/4 | NA | NA | NA | X | X | NA | | 4/5 | NA | X | X | NA | NA | NA | | 5/6 | NA | NA | NA | X | X | X | | 9/10 | NA | X | X | X | X | X | Table 11(b): ModCods for $N_{ldpc} = 16\ 200$ | | | | Modulati | on format | | | |-----------|------|-------|----------|-----------|---------|---------| | Code rate | QPSK | 16QAM | 64QAM | 256QAM | 1024QAM | 4096QAM | | 1/2 | N/A | X | NA | NA | NA | NA | | 2/3 | N/A | NA | X | NA | NA | NA | | 3/4 | N/A | NA | NA | X | X | NA | | 4/5 | N/A | X | X | NA | NA | NA | | 5/6 | N/A | NA | NA | X | X | X | | 8/9 | N/A | X | X | X | X | X | # 6.2.2 Cell word mapping into I/Q constellations Each cell word $(y_{0,q}, y_{\eta mod-1,q})$ from the demultiplexer in clause 6.2.1 shall be modulated using either QPSK, 16QAM, 64QAM, 256QAM, 1024QAM, 4096QAM constellations to give a constellation point z_q prior to normalization. The exact values of the real and imaginary components $Re(z_q)$ and $Im(z_q)$ for each combination of the relevant input bits $y_{\theta,q}$ are given in tables 12(a-m) for the various constellations: Table 12(a): Constellation mapping for BPSK | <i>y</i> _{0,<i>q</i>} | 1 | 0 | |--------------------------------|----|---| | Re(z _q) | -1 | 1 | | Im(z _q) | 0 | 0 | Table 12(b): Constellation mapping for real part of QPSK | <i>y</i> _{0,<i>q</i>} | 1 | 0 | |--------------------------------|----|---| | Re(z _q) | -1 | 1 | Table 12(c): Constellation mapping for imaginary part of QPSK | y _{1,q} | 1 | 0 | |---------------------|----|---| | Im(z _q) | -1 | 1 | Table 12(d): Constellation mapping for real part of 16QAM | У _{0,q} | 1 | 1 | 0 | 0 | |------------------|----|----|---|---| | У _{2,q} | 0 | 1 | 1 | 0 | | $Re(z_q)$ | -3 | -1 | 1 | 3 | ## Table 12(e): Constellation mapping for imaginary part of 16QAM | у _{1,q} | 1 | 1 | 0 | 0 | |------------------|----|----|---|---| | у _{3,q} | 0 | 1 | 1 | | | $Im(z_q)$ | -3 | -1 | 1 | 3 | #### Table 12(f): Constellation mapping for real part of 64QAM | У _{0,q} | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | |---------------------|----|----|----|----|---|---|---|---| | У _{2,q} | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | | У _{4,q} | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | | Re(z _q) | -7 | -5 | -3 | -1 | 1 | 3 | 5 | 7 | #### Table 12(g): Constellation mapping for imaginary part of 64QAM | y _{1,q} | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | |------------------|----|----|----|----|---|---|---|---| | y _{3,q} | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | | | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | | у _{5,q} | | | | | | | | | | $Im(z_q)$ | -7 | -5 | -3 | -1 | 1 | 3 | 5 | 7 | #### Table 12(h): Constellation mapping for real part of 256QAM | Y _{0,q} | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |---------------------|-----|-----|-----|----|----|----|----|----|---|---|---|---|---|----|----|----| | y _{2,q} | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | | | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | | y _{4,q} | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | | У _{6, q} | | | | | | | | | | | | | | | | | | Re(z _q) | -15 | -13 | -11 | -9 | -7 | -5 | -3 | -1 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | #### Table 12(i): Constellation mapping for imaginary part of 256QAM | Y _{1,q} | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |------------------|-----|-----|-----|----|----|----|----|----|---|---|---|---|---|----|----|----| | y _{3,q} | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | | | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | | у _{5,q} | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | | у _{7,q} | | | | | | | | | | | | | | | | | | $Im(z_q)$ | -15 | -13 | -11 | -9 | -7 | -5 | -3 | -1 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | Table 12(j): Constellation mapping for real part of 1024QAM | Y _{0,q} | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |---------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|----|----|----|----| | y _{2,q} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | | y _{4,q} | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | | у _{6,q} | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | | y _{8,q} | | | | | | | | | | | | | | | | | | Re(z _q) | -31 | -29 | -27 | -25 | -23 | -21 | -19 | -17 | -15 | -13 | -11 | -9 | -7 | -5 | -3 | -1 | | Y _{0,q} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | y _{2,q} | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | | у _{4,q} | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | | У _{6,q} | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | | y _{8,q} | | | | | | | | | | | | | | | | | | $Re(z_q)$ | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | 25 | 27 | 29 | 31 | ## Table 12(k): Constellation mapping for imaginary part of 1024QAM | y _{1,q} | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|----|----|----|----| | у _{3,q} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | | y _{5,q} | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | | у _{7,q} | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | | y _{9,q} | | | | | | | | | | | | | | | | | | $Im(z_q)$ | -31 | -29 | -27 | -25 | -23 | -21 | -19 | -17 | -15 | -13 | -11 | -9 | -7 | -5 | -3 | -1 | | y _{1,q} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | y _{3,q} | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1
 0 | 0 | 0 | 0 | | у _{5,q} | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | | У _{7,q} | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | | y _{9,q} | | | | | | | | | | | | | | | | | | $Im(z_q)$ | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | 25 | 27 | 29 | 31 | Table 12(I): Constellation mapping for real part of 4096QAM | Y _{0,q} | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |---------------------|-----|-----|-----|-----|-----|-----|--------|--------|--------|-----|-----|-----|-----|-----|-----|-----| | у _{2,q} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | У _{4,q} | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | | у _{6,q} | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | | y _{8,q} | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | | y _{10,q} | | | | | | | | | | | | | | | | | | Re(z _q) | -63 | -61 | -59 | -57 | -55 | -53 | -51 | -49 | -47 | -45 | -43 | -41 | -39 | -37 | -35 | -33 | | Y _{0,q} | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | y _{2,q} | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | y _{4,q} | 1 0 | 1 | 1 | 1 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | y _{6,q} | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | | | 1 | 1 | 0 | 0 | | у _{8,q} | ő | 1 | 1 | Ö | Ö | 1 | 1 | 0 | ő | 1 | 1 | Ö | Ö | 1 | 1 | 0 | | у _{10,q} | | | | | | | | | | - | - | | | | - | | | $Re(z_q)$ | -31 | -29 | -27 | -25 | -23 | -21 | -19 | -17 | -15 | -13 | -11 | -9 | -7 | -5 | -3 | -1 | | Y _{0,q} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | - 0,q | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | у _{2,q} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | y _{4,q} | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | | у _{6,q} | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | | у _{8,q} | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | | y _{10,q} | | | | | | | | | | | | | | | | | | $Re(z_q)$ | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | 25 | 27 | 29 | 31 | | Y _{0,q} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | y _{2,q} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | y _{4,q} | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | у _{6,q} | 0 | 0 | 0 | 0 | 1 | 1 | 1
0 | 1
0 | 1
0 | 1 0 | 1 | 1 | 0 | 0 | 0 | 0 | | | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | | 0 | 0 | | 1 | 0 | | У _{8,q} | | | | | | | | | | ' | ' | | | ' | | | | y _{10,q} | 33 | 35 | 37 | 39 | 41 | 43 | 45 | 47 | 49 | 51 | 53 | 55 | 57 | 59 | 61 | 63 | | $Re(z_q)$ | SS | აა | 31 | 39 | 41 | 43 | 40 | 41 | 49 | 01 | ეე | ວວ | 37 | ວອ | ΟI | US | Table 12(m): Constellation mapping for imaginary part of 4096QAM | y _{1,q} | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |--------------------------------------|-----|-----|-----|-----|-----|-----|--------|-----|--------|--------|-----|-----|-----|-----|--------|-----| | y _{3,q} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | у _{5,q} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | у _{5,q}
У _{7,q} | 0 | 0 | 0 | 0 | 1 | 1 | 1
0 | 1 | 1
0 | 1
0 | 1 | 1 | 0 | 0 | 0 | 0 | | | 0 | 1 | | 1 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | | У _{9,q} | | ' | ' | | | ' | ' | | | ' | ' | | | ' | ' | 0 | | y _{11,q} | -63 | -61 | -59 | -57 | -55 | -53 | -51 | -49 | -47 | -45 | -43 | -41 | -39 | -37 | -35 | -33 | | Im(z _q) | | | | | | | | | | | | | | | | | | y _{1,q} | 1 | 1 | 1 1 | 1 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 1 | 1 | 1 | 1 1 | | у _{3,q} | 1 | 1 | 1 | 1 | 1 | | 1 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | у _{5,q} | 0 | Ö | Ö | Ö | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ő | ő | ő | Ö | | у _{7,q} | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | | y _{9,q} | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | | y _{11,q} | | | | | | | | | | | | | | | | | | $Im(z_q)$ | -31 | -29 | -27 | -25 | -23 | -21 | -19 | -17 | -15 | -13 | -11 | -9 | -7 | -5 | -3 | -1 | | y _{1,q} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | y _{3,q} | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | y _{5,q} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1
0 | 1 0 | | y _{7,q} | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | | y _{9,q} | Ö | 1 | 1 | Ö | Ö | 1 | 1 | ő | ő | 1 | 1 | Ö | Ö | 1 | 1 | Ö | | у _{11,q} | | | | | | | | | | | | | | | | | | $Im(z_q)$ | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | 25 | 27 | 29 | 31 | | y _{1,q} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | у _{3,q} | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | У _{5,q} | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | | у _{7,q} | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | | у _{9,q} | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | | у _{11,q} | | | | | | | | | | | | | | | | | | $Im(z_q)$ | 33 | 35 | 37 | 39 | 41 | 43 | 45 | 47 | 49 | 51 | 53 | 55 | 57 | 59 | 61 | 63 | The constellations, and the details of the Gray mapping applied to them, are illustrated in figures 14 and 15. Figure 14: The QPSK, 16QAM and 64QAM mappings and the corresponding bit patterns Figure 15: The 256QAM mapping and the corresponding bit pattern Tables 12(j) and 12(k) provide the description of 1024QAM mapping and the corresponding bit pattern. Tables 12(l) and 12(m) provide the description of 4096QAM mapping and the corresponding bit pattern. The constellation points Z_q for each input cell word $(y_{0,q}, y_{\eta mod-1,q})$ are normalized according to table 13 to obtain the correct complex cell value f_q to be used. **Table 13: Normalization factors for Data Cells** | Modulation | Normalization | |------------|---------------------------------| | QPSK | $f_q = \frac{Z_q}{\sqrt{2}}$ | | 16QAM | $f_q = \frac{Z_q}{\sqrt{10}}$ | | 64QAM | $f_q = \frac{Z_q}{\sqrt{42}}$ | | 256QAM | $f_q = \frac{Z_q}{\sqrt{170}}$ | | 1024QAM | $f_q = \frac{Z_q}{\sqrt{682}}$ | | 4096QAM | $f_q = \frac{Z_q}{\sqrt{2730}}$ | # 7 Data Slice Packet Generation The complex cells of one or two FECFrame shall form a Data Slice Packet. The Data Slice Packets for Data Slice Type 1 only transmit the FECFrame data and rely on a pointer within the Level 1 Signalling Part 2 to detect their start. The Data Slice Packets for Data Slice Type 2 carry a FECFrame header that allows for synchronization to the Data Slice Packets without any additional information. The FECFrame header also signals the Modulation and Coding parameters and the PLP ID, which may change every Data Slice Packet. # 7.1 Data Slice Packets for Data Slice Type 1 The complex cells g of Data Slice Packets transmitted in Data Slices of type 1 (DSLICE_TYPE='0') shall be formed by the $\left[N_{ldpc}/\eta_{MOD}\right] = N_{DP}$ complex cells of one LDPC codeword, i.e.: $$g_q = f_q \quad q = 0,1,..., N_{DP} - 1$$ The signalling for Data Slices of type 1 is done within the DVB-C2 preamble, i.e. the Layer 1 – part 2. Additional signalling is not required, as only a single PLP with fixed modulation and coding parameters per DVB-C2 frame is allowed for Data Slices Type 1. # 7.2 Data Slice Packets for Data Slice Type 2 Data Slice Packets for Data Slice Type 2 shall carry an additional FECFrame Header in front of one or two FECFrames, which signals the PLP_ID, the Coding and Modulation parameters of the following XFECFrame, and the number of XFECFrames following one header. The structure of these Data Slice Packets is given in figure 16. Figure 16: Data Slice Packet, consisting of FECFrame header and following XFECFrame packet ## 7.2.1 FECFrame header signalling data The 16 information bits of the FECFrame header are defined as follows, in which the MSB shall always be mapped first: PLP_ID: This 8-bit field uniquely identifies a PLP within a C2 system. PLP_FEC_TYPE: This field shall signal the size of the following FECFrame (0 = 16 200 bits, 1 = 64 800 bits). PLP_MOD: This 3 bit field signals the used QAM mappings according to table 14. Table 14: PLP_MOD values for the available QAM mappings | Value | QAM mapping | |------------|-------------------------| | 000 | Reserved | | 001 | 16QAM | | 010 | 64QAM | | 011 | 256QAM | | 100 | 1024QAM | | 101 | 4096QAM | | 110 to 111 | Reserved for future use | PLP_COD: This field signals the LDPC code rate of the following FECFrame according to table 15. Please note that not all possible PLP_MOD and PLP_COD combinations are supported (see tables 11(a) and 11(b)). Table 15: PLP_COD values for the different code rates | Value | Code rate | |------------|-------------------------| | 000 | Reserved | | 001 | 2/3 | | 010 | 3/4 | | 011 | 4/5 | | 100 | 5/6 | | 101 | 8/9 (16K LDPC code) | | 101 | 9/10 (64K LDPC code) | | 110 to 111 | Reserved for future use | HEADER_COUNTER: This 1 bit field signals the number of FECFrames following this FECFrame header. '0' indicates that one FECFrame is following the FECFrame header. '1' indicates that 2 FECFrames are following the FECFrame header, while both FECFrames shall have the same PLP ID, PLP FEC TYPE, PLP MOD and PLP COD. ## 7.2.2 Coding of the FECFrame header The encoding of the FECFrame header data shall ensure a robust synchronization and decoding of the L1 signalling part 1 data. Therefore, the encoding scheme as shown in the figures 17(a) and 17(b) is applied. Initially the 16 bits of the L1 signalling part 1 are FEC encoded by a Reed-Muller (32,16) encoder. Subsequently each bit of the 32 bit Reed-Muller codeword is split to form an upper and a lower branch. The lower branch applies a cyclic shift within each Reed-Muller codeword and
scrambles the resulting data using a specific PN sequence. The data is then mapped on a QPSK constellation for the robust FECFrame header or on a 16QAM constellation for the high efficiency FECFrame header. Figure 17(a): Robust FECFrame header Figure 17(b): High efficiency FECFrame header #### 7.2.2.1 Error Coding The 16 information bits are FEC encoded by a Reed-Muller (32,16) code. The generator matrix for this Reed-Muller (32,16) code G is shown as follows: Table 16(a): Definition of the Reed-Muller encoder matrix The 32 Reed-Muller encoded data bits vector $\lambda^{RM} = \begin{bmatrix} RM \\ 0 \end{bmatrix}, \dots, \lambda_{31}^{RM}$ is obtained by the matrix multiplication of the 16 bit long FECFrame signalling data vector $\boldsymbol{b} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \dots, \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ with the generator matrix, i.e. $$\lambda^{RM} = b \cdot G$$ All operations are applied modulo 2. ## 7.2.2.2 Cyclic Delay As depicted in figures 17(a) and 17(b), the 32 Reed-Muller encoded data bits λ_i^{RM} of the lower branch shall be cyclically delayed by two values within each Reed-Muller codeword. The output of the cyclic delay block shall be: $$U_{4+2 \mod 32}^{RM} = \lambda_i^{RM} \quad i = 0,1,...,31$$ ### 7.2.2.3 Scrambling of the lower branch The data of the lower branch shall be scrambled with the scrambling sequence: $$W_0^{RM}$$, W_1^{RM} ,..., $W_{31}^{RM} = 0.000111$, 1.001110 , 0.001110 , 1.000111 , 1.001111 , 1.11100 , 1.11100 This 32 bit output sequence V_i^{RM} is obtained by applying modulo 2 operation between the cyclically shifted data U_i^{RM} and the scrambling sequence W_i^{RM} : $$V_i^{RM} = U_i^{RM} \oplus W_i^{RM}$$ $i = 0,1,..,31$ ## 7.2.3 Mapping onto QAM constellations The 32 resulting bits of the upper and the 32 bits of the lower branch shall be mapped onto QAM constellations. Therefore, the same mapping means as described in clause 6.2.2 shall be used. There are 2 different FECFrame header architectures available. While the QPSK based FECFrame header is applied for cable channels with lower C/N, the 16QAM based FECFrame header provides a more efficient implementation (i.e. smaller header length) for cable channels with higher C/N values. #### 7.2.3.1 Robust FECFrame header The robust FECFrame header shall be modulated using QPSK as defined in clause 6.2.2 to obtain the 32 complex cell values f_a . The 32 mapper input cell words shall be defined as: $$V_{0,i}, V_{1,i} = V_i^{RM}, V_i^{RM} = i = 0,1,...,31$$ This means that the bits of the upper branch are always mapped onto the real part and the bits of the lower branch are always mapped onto the imaginary part of the QAM cell. #### 7.2.3.2 High efficiency FECFrame header The high efficiency FECFrame header shall be modulated using 16QAM as defined in clause 6.2.2 to obtain the 16 complex cell values f_q . The 16 mapper input cell words shall be defined as: $$V_{0,i}, V_{1,i}, V_{2,i}, V_{3,i} = V_{2i}^{RM}, \lambda_{2i+1}^{RM}, V_{2i}^{RM}, V_{2i+1}^{RM} = i = 0,1,...,15$$ This means that the bits of the upper branch are always modulated onto the MSB of the real and imaginary axis, while the bits of the lower branch are always modulated onto the LSB of the real and imaginary axis. ## 7.2.4 Mapping of the XFECFrame cells The 32 cells for the robust FECFrame Header or the 16 cells for the high efficiency FECFrame Header shall be mapped onto the first cells of the Data Slice Packet, i.e. $g_0 = f_0$, etc. The FECFrame header is followed by the $\left\lceil N_{Idpc}/\eta_{MOD} \right\rceil$ complex cells of one complete LDPC codeword. If HEADER_COUNT='1', one further FECFrame having the same PLP_ID, PLP_MOD and PLP_COD shall follow the first one. # 7.2.5 Length of the Data Slice Packet for Data Slice Type 2 The length N_{DP} of a Data Slice Packet for Data Slice Type 2 can be calculated by means of the FECFrame Header data only. The length for packets using the robust FECFrame header shall be: $$N_{DP} = 32 + XFECFRAME_LENGTH \cdot (+ HEADER_COUNTER)$$ and $$N_{DP} = 16 + XFECFRAME_LENGTH \cdot (+ HEADER_COUNTER)$$ for the high efficiency FECFrame header. The value XFECFRAME_LENGTH for the different values of PLP_MOD and PLP_FEC_TYPE are listed in table 16(b). Table 16(b): Length of the FECFrame | PLP_FEC_TYPE | PLP_MOD | XFECFRAME_LENGTH | |--------------|---------|------------------| | 0 | 000 | NA | | | 001 | 4 050 | | | 010 | 2 700 | | | 011 | 2 025 | | | 100 | 1 620 | | | 101 | 1 350 | | | 110 | 1 158 | | | 111 | 1 013 | | 1 | 000 | 900 | | | 001 | 16 200 | | | 010 | 10 800 | | | 011 | 8 100 | | | 100 | 6 480 | | | 101 | 5 400 | | | 110 | 4 629 | | | 111 | 4 050 | ## 7.2.6 Stuffing Data Slice Packets Stuffing Data Slice Packets provide a mechanism to fill up Data Slices of Type 2 with Auxiliary Data. Stuffing packets shall use the PLP_MOD value '000'. Accordingly they have the minimum FECFrame length of 900QAM cells, while their total length shall be defined according to clause 7.2.4. The settings for the related stuffing FECFrame header are: PLP_ID: n/a (arbitrary value) PLP_FEC_TYPE: 1 (= 64 800 bits) PLP_MOD : (= 900QAM cells length) PLP_COD: n/a (arbitrary value) HEADER_COUNTER: 0 Stuffing Data Slice Packets can be used in any Data Slice and any location in the C2 Frame. Both regular Data Slice Packets and stuffing Data Slice Packets overlap over different C2 Frames if their end does not coincide with the end of the C2 Frame. If the Data Slice is discontinued in the following C2 Frame the stuffing Data Slice Packet is only transmitted partially up to the end of the C2 Frame (i.e. not completed in the following C2 Frame). In the case where the remaining part is less than the number of cells in FECFrame header and the data is discontinued the next C2 frame, the remaining cells should be transmitted. The FECFrame headers of stuffing Data Slice Packets shall match with the L1 settings of the related Data Slice. The data content of the 900QAM stuffing Data Cells is arbitrary but shall meet the average QAM cell energy requirement. # 8 Generation, coding and modulation of Layer 1 part 2 signalling ### 8.1 Overview Figure 18 illustrates the C2 Frame structure and the related preamble with embedded L1 signalling part 2. The number of Preamble Symbols depend on the amount of L1 signalling, i.e. the number of underlying Data Slices and PLPs and L1 TI mode. This clause concentrates on the structure and the syntax of the L1 signalling part 2 rather than the preamble coding and modulation (being described in more detail in clause 8.4). L1 signalling part 2 indicates OFDM parameters of the C2 channel as well as all relevant information for the Data Slices, PLPs and Notch bands. Figure 18: The L1 part 2 signalling structure ## 8.2 Preamble Header A fixed length Preamble Header of 32 OFDM Cells shall be inserted in front of the L1 TI-block at each Preamble Symbol as shown in figure 19. All L1 part 2 headers in one C2 Frame shall be same. The Preamble header describes L1-part2 length and TI mode of L1 block. The 16 information bits of the Preamble header are FEC encoded by a Reed-Muller (32,16) code and encoded by QPSK same as the QPSK based FECFrame header in clause 7.2.2. Figure 19: Preamble header generation and signalling fields L1_INFO_SIZE: This 14-bit field indicates the half size of the L1-part2 including L1 signalling part 2 data and L1 block padding, if present, in bits as shown in figure 20. The value of $K_{L1part2_ex_pad}$ shall be calculated by adding 32 (the length of CRC) to L1_INFO_SIZE×2. Figure 20: The size indicated by the L1_INFO_SIZE field L1_T1_M 0 DE: This 2-bit field indicates the mode of time interleaving for L1-part2 of current C2 Frame. The time interleaving mode is signalled according to table 17. See clause 8.5 for more information. Table 17: Signalling format for the L1_TI_MODE field | Value | Mode | |-------|----------------------| | 00 | No time interleaving | | 01 | Best Fit | | 10 | 4 OFDM Symbols | | 11 | 8 OFDM Symbols | # 8.3 L1 signalling part 2 data Table 18 indicates the detailed use of fields for L1 signalling part 2 data. Table 18: The signalling fields of L1 signalling part 2 data | Field | Size (bits) | |-------------------------------|-------------| | NETWORK_ID | 16 | | C2_SYSTEM_ID | 16 | | START_FREQUENCY | 24 | | C2_BANDWIDTH | 16 | | GUARD_INTERVAL | 2 | | C2_FRAME_LENGTH | 10 | | L1_PART2_CHANGE_COUNTER | 8 | | NUM_DSLICE | 8 | | NUM_NOTCH | 4 | | for i=0NUM_DSLICE-1 { | | | DSLICE_ID | 8 | | DSLICE_TUNE_POS | 14 or 13 | | DSLICE_OFFSET_LEFT | 9 or 8 | | DSLICE_OFFSET_RIGHT | 9 or 8 | | DSLICE_TI_DEPTH | 2 | | DSLICE_TYPE | 1 | | if DSLICE_TYPE=='1' { | | | FEC_HEADER_TYPE | 1 | | } | | | DSLICE_CONST_CONF | 1 | | DSLICE LEFT NOTCH | 1 | | DSLICE NUM PLP | 8 | | for i=0DSLICE_NUM_PLP-1 { | | | PLP ID | 8 | | PLP BUNDLED | 1 | | PLP TYPE | 2 | | PLP PAYLOAD TYPE | 5 | | if PLP TYPE=='00' or '01' { | | | PLP GROUP ID | 8 | | } | | | if DSLICE TYPE=='0' { | | | PLP_START | 14 | | PLP_FEC_TYPE | 1 | | PLP MOD | 3 | | PLP COD | 3 | | } | | | PSI/SI REPROCESSING | 1 | | if PSI/SI_REPROCESSING=='0' { | | | transport stream id | 16 | | original_network_id | 16 | | } | - | | RESERVED 1 | 8 | | } | | | RESERVED 2 | 8 | | } | | | for i=0NUM NOTCH-1 { | | | NOTCH START | 14 or 13 | | NOTCH WIDTH | 9 or 8 | | RESERVED 3 | 8 | | } | | | RESERVED_TONE | 1 | | RESERVED 4 | 16 | | INLOCITY LD_T | 110 | NETWORK_ID: This is a 16-bit field which uniquely identifies the current DVB-C2 network. C2_SYSTEM_ID: This 16-bit field uniquely identifies a C2 System within the DVB-C2 network. START_FREQUENCY: This 24-bit field indicates the start frequency of the current C2 System by means of the distance from 0 Hz and gives the unsigned integer value in multiples of the carrier spacing of the current C2 System. The value of '0' means 0 Hz. The START_FREQUENCY shall be identical to the OFDM subcarrier with the smallest absolute carrier index $k =
K_{min}$ that actually transmits the DVB-C2 preamble for the given C2 system. Additionally, the START_FREQUENCY shall be multiples of the pilot spacing D_X and the START_FREQUENCY shall not change between different C2 frames. C2_BANDWIDTH: This 16-bit field indicates the bandwidth of the current C2 system. The C2_BANDWIDTH field multiplied with the pilot spacing D_X +1 represents the bandwidth of the C2 system in OFDM subcarriers. The value shall not change between different C2 frames. The bandwidth of the current C2 system is defined by the frequency spacing between the edge pilots next to the most left and the most right Data Slice of the current C2 system. GUARD_INTERVAL: This 2-bit field indicates the guard interval of the current C2 Frame, according to table 19. | Value | Guard interval fraction | |----------|-------------------------| | 00 | 1/128 | | 01 | 1/64 | | 10 to 11 | Reserved for future use | Table 19: Signalling format for the guard interval C2_FRAME_LENGTH: This 10-bit field gives the number of Data Symbols per C2 Frame (L_{data}). The C2 System according to the present document does only allow C2_FRAME_LENGTH = 0x1C0 (448 decimal). All other codes for C2_FRAME_LENGTH are reserved for future use. L1_PART2_CHANGE_COUNTER: This 8-bit field indicates the number of C2 Frames ahead where the configuration (i.e. the contents of the fields in the L1 signalling part 2 except for the PLP_START and L1_PART2_CHANGE_COUNTER) will change. The next C2 Frame with changes in the configuration is indicated by the value signalled within this field. If this field is set to the value '0', it means that no scheduled change is foreseen. For example, value '1' indicates that there is change in the next C2 Frame. NUM_DSLICE: This 8-bit field indicates the number of Data Slices carried within the current C2 Frame. The minimum value of this field shall be '1'. NOTE 1: Both the number of Data Slices and the number of PLPs for each Data Slice of a C2 System are chosen such that the overall L1-part2 signalling does not exceed 32 766 bit. NUM_NOTCH: This 4-bit field indicates the number of Notch bands. If there is no Notch band within the current C2 Frame, this field shall be set to '0'. The following fields appear in the Data Slice loop: - DSLICE_ID: This 8-bit field uniquely identifies a Data Slice within the C2 System. - DSLICE_TUNE_POS: This field indicates the tuning position of the associated Data Slice relative to the START_FREQUENCY. Its bit width shall be 13 bits or 14 bits according to the GUARD_INTERVAL value. When GUARD_INTERVAL is '00', the bit width of this field shall be 13 bits and indicate the tuning position in multiples of 24 carriers within current C2 Frame. Otherwise the bit width of this field shall be 14 bits and indicate the tuning position in multiples of 12 carriers within the current C2 Frame relative to the START_FREQUENCY. DSLICE_TUNE_POS must be a value at least 1704 carriers from the edge of a broadband notch or the start or end of the C2 system. - DSLICE_OFFSET_LEFT: This field indicates the start position of the associated Data Slice by means of the distance to the left from the tuning position and shall be two's complement integer of 8 bits or 9 bits according to the GUARD_INTERVAL value. When GUARD_INTERVAL is '00', this field shall be two's complement integer of 8 bits and indicate the distance from the tuning position in multiples of 24 carriers within current C2 Frame. Otherwise this field shall be two's complement integer of 9 bits and indicate the distance from the tuning position in multiples of 12 carriers within current C2 Frame. - DSLICE_OFFSET_RIGHT: This field indicates the end position of the associated Data Slice by means of the distance to the right from the tuning position and shall be two's complement integer of 8 bits or 9 bits according to the GUARD_INTERVAL value. When GUARD_INTERVAL is '00', this field shall be two's complement integer of 8 bits and indicate the distance from the tuning position in multiples of 24 carriers within current C2 Frame. Otherwise this field shall be two's complement integer of 9 bits and indicate the distance from the tuning position in multiples of 12 carriers within current C2 Frame. NOTE 2: DSLICE_OFFSET_LEFT and DSLICE_OFFSET_RIGHT may both have positive or negative values, which means that the complete Data Slice is left or right hand side of the tuning position. • DSLICE_TI_DEPTH: This 2-bit field indicates the time interleaving depth within the associated Data Slice according to table 20. Table 20: Signalling format for the time interleaving depth | Value | TI depth | |-------|----------------------| | 00 | No time interleaving | | 01 | 4 OFDM Symbols | | 10 | 8 OFDM Symbols | | 11 | 16 OFDM Symbols | • DSLICE_TYPE: This 1-bit field indicates the type of the associated Data Slice according to table 21. The Data Slice Type 1 is only for the transmission of a single PLP with fixed modulation and coding parameters within a Data Slice. See clause 7 for more information. Table 21: Signalling format for the Data Slice type | Value | Data Slice type | |-------|-------------------| | 0 | Data Slice Type 1 | | 1 | Data Slice Type 2 | The following field appears only if the DSLICE TYPE is '1'. • FEC_HEADER_TYPE: This 1-bit field indicates the type of the FECFrame header within the associated Data Slice according to table 22. Table 22: Signalling format for the FECFrame header type | Value | FECFrame header type | |-------|----------------------| | 0 | Robust mode | | 1 | High efficiency mode | - DSLICE_CONST_CONF: This 1-bit field indicates whether the configuration of the associated Data Slice is variable or fixed. If this field is set to value '1', the configuration of the associated Data Slice shall not change. Otherwise this field shall be set to '0'. A value of '1' is only allowed in combination with Data Slices Type 2. - DSLICE_LEFT_NOTCH: This 1-bit field indicates the presence of the left neighboured Notch band of the associated Data Slice. If the start of associated Data Slice is neighboured by Notch band, this field shall be set to '1'. Otherwise this field shall be set to '0'. - NOTE 3: The DSLICE_LEFT_NOTCH field can be used by a receiver to assist in finding the number of Data Cells of the current Data Slice. The continual pilots positioned on the edge of the Notch band change the number of Data Cells of its right neighboured Data Slice. See clause 9.6.4.1 for more information. - DSLICE_NUM_PLP: This 8-bit field indicates the number of PLPs carried within the associated Data Slice. The minimum value of this field shall be '1'. - NOTE 4: Both the number of Data Slices and the number of PLPs for each Data Slice of a C2 System are chosen such, that the overall L1-part2 signalling does not exceed 32 766 bit. The following fields appear in the PLP loop: - PLP ID: This 8-bit field identifies a PLP within the C2 System. - PLP_BUNDLED: This 1-bit field indicates whether the associated PLP is bundled with other PLP(s) or not within the current C2 System. If the associated PLP is bundled, this field shall be set to '1'. Otherwise this field shall be set to '0'. - PLP_TYPE: This 2-bit field indicates the type of the associated PLP. PLP_TYPE shall be signalled according to table 23. Table 23: Signalling format for the PLP_TYPE field | Value | PLP type | | | |-------|-------------------------|--|--| | 00 | Common PLP | | | | 01 | Grouped Data PLP | | | | 10 | Normal Data PLP | | | | 11 | Reserved for future use | | | • PLP_PAYLOAD_TYPE: This 5-bit field indicates the type of the payload data carried by the associated PLP. PLP_PAYLOAD_TYPE shall be signalled according to table 24. See clause 5.1.1 for more information. Table 24: Signalling format for the PLP_PAYLOAD_TYPE field | Value | Payload type | |----------------|-------------------------| | 00000 | GFPS | | 00001 | GCS | | 00010 | GSE | | 00011 | TS | | 00100 to 11111 | Reserved for future use | The following field appears only if the PLP_TYPE is '00' or '01'. • PLP_GROUP_ID: This 8-bit field identifies with which PLP group within the C2 System the current PLP is associated. This can be used by a receiver to link the Data PLP to its associated Common PLP, which will have the same PLP GROUP ID. The following fields appear only if the DSLICE TYPE is '0', i.e. the Data Slice Type 1 is used. - PLP_START: This 14-bit field indicates the start position of the first complete XFECframe of the associated PLP within the current C2 Frame. It uses the cell addressing scheme defined in clause 9.4.3. - PLP_FEC_TYPE: This 1-bit field indicates the FEC type used by the associated PLP. The FEC type shall be signalled according to table 25. - PLP_MOD: This 3-bit field indicates the modulation used by the associated PLP. The modulation shall be signalled according to table 25. The signalling is valid for the first XFECframe starting within the DVB-C2 frame. Table 25: Signalling format for the PLP_MOD and the PLP_COD fields | PLP_FEC_TYPE | PLP_MOD | PLP FEC type | Modulation | XFECFrame Length | |--------------|---------|--------------|------------|------------------| | | 000 | | Reserved | NA | | | 001 | | 16QAM | 4 050 | | | 010 | | 64QAM | 2 700 | | 0 | 011 | 16K LDPC | 256QAM | 2 025 | | 0 | 100 | TOK LDFC | 1024QAM | 1 620 | | | 101 | | 4096QAM | 1 350 | | | 110 | | Reserved | 1 158 | | | 111 | | Reserved | 1 013 | | | 000 | | Reserved | 900 | | | 001 | | 16QAM | 16 200 | | | 010 | | 64QAM | 10 800 | | 1 | 011 | 64K LDPC | 256QAM | 8 100 | | ! | 100 | 04K LDFC | 1024QAM | 6 480 | | | 101 | | 4096QAM | 5 400 | | | 110 | | Reserved | 4 629 | | | 111 | | Reserved | 4 050 | NOTE 5: The XFECframe length of the associated PLP is determined by PLP_FEC_TYPE and PLP_MOD as shown in table 25. • PLP_COD: This 3-bit field indicates the code rate used by the associated PLP. The code rate shall be signalled according to table 26. When PLP_COD is '101', the code rate is determined by PLP_FEC_TYPE. If
PLP_FEC_TYPE is set to '0', PLP_COD of '101' means the code rate of 8/9. Otherwise it means the code rate of 9/10. Please note that not all possible PLP_MOD and PLP_COD combinations are supported (see tables 11(a) and 11(b)). Table 26: Signalling format for the code rate | Value | Code rate | | | | |------------|-------------------------|--|--|--| | 000 | Reserved for future use | | | | | 001 | 2/3 | | | | | 010 | 3/4 | | | | | 011 | 4/5 | | | | | 100 | 5/6 | | | | | 101 | 8/9 (16K LDPC code) | | | | | 101 | 9/10 (64K LDPC code) | | | | | 110 to 111 | Reserved for future use | | | | • PSI/SI_REPROCESSING: This 1-bit field indicates whether PSI/SI reprocessing is performed or not. This can be used by a receiver to recognize if it can rely on the related PSI/SI parts. When PSI/SI reprocessing is performed, this field shall be set to '1', otherwise it shall be set to '0'. The following fields appear only if the PSI/SI_REPROCESSING is '0'. - transport_stream_id: This is a 16-bit field which serves as a label for identification of this TS from any other multiplex within the delivery system (see also [i.4]). - original_network_id: This 16-bit field gives the label identifying the network_id of the originating delivery system (see also [i.4]). - RESERVED_1: This 8-bit field is reserved for future use. - RESERVED 2: This 8-bit field is reserved for future use. The following fields appear in the Notch loop: - NOTCH_START: This field indicates the start position of the associated Notch band and gives the unsigned integer value relative to the START_FREQUENCY. Its bit width shall be 13 bits or 14 bits according to the GUARD_INTERVAL value. When GUARD_INTERVAL is '00', the bit width of this field shall be 13 bits and indicate the start position in multiples of 24 carriers within the current C2 Frame. Otherwise the bit width of this field shall be 14 bits and indicate the start position in multiples of 12 carriers within the current C2 Frame. - NOTCH_WIDTH: This field indicates the width of the associated Notch band and gives the unsigned integer value. Its bit width shall be 8 bits or 9 bits according to the value of GUARD_INTERVAL. When GUARD_INTERVAL is '00', the bit width of this field shall be 8 bits and indicate the width in multiples of 24 carriers within the current C2 Frame. Otherwise the bit width of this field shall be 9 bits and indicate the width in multiples of 12 carriers within the current C2 Frame. - RESERVED_3: This 8-bit field is reserved for future use. - RESERVED_TONE: This 1-bit field indicates whether some carriers are reserved. When there are reserved carriers within the current C2 Frame, this bit shall be set to '1', otherwise it shall be set to '0'. The positions of reserved carriers for reserved tones within a C2 Frame are given in clause 9.7. - RESERVED_4: This 16-bit field is reserved for future use. ## 8.3.1 L1 block padding This 1-bit field is inserted following the L1 signalling part 2 data to ensure that the length of L1 signalling part 2 including L1 signalling part 2 data and L1 block padding is a multiple of 2 (see figure 20). If the total length of L1 signalling part 2 is not a multiple of 2, this field shall be inserted at the end of the L1 signalling part 2 data. The value of the L1 block padding bit, if any, shall be set to '0'. ## 8.3.2 CRC for the L1 signalling part 2 A 32-bit error detection code is applied to the entire L1 signalling part 2 including L1 signalling part 2 data and L1 block padding. The location of the CRC field can be found from the length of the L1 signalling part 2, which can be calculated using L1 INFO SIZE in the Preamble header. The CRC-32 is defined in annex E. # 8.3.3 L1 padding This variable-length field is inserted following the L1 signalling part 2 CRC field to ensure that multiple LDPC blocks of the L1 signalling part 2 have the same information size when the L1 signalling part 2 is segmented into multiple blocks and these blocks are separately encoded. Details of how to determine the length of this field are described in clause 8.4. The value of the L1 padding bits, if any, are set to '0'. # 8.4 Modulation and error correction coding of the L1 part 2 data #### 8.4.1 Overview The L1 part 2 data is protected by a concatenation of BCH outer code and LDPC inner code. The L1 part 2 data shall be first BCH-encoded. The length of the L1 part 2 data bits varies depending on the complexity of the underlying Data Slices. The L1 part 2 data can be segmented into multiple blocks. A segmented L1 part 2 data has a length less than BCH information length $K_{bch} = 7032$. Therefore, a shortening operation (zero padding) is required for BCH or LDPC encoding. After BCH encoding with zero padded information, the BCH parity bits of the L1-part2 data shall be appended to the L1 part 2 data. The concatenated L1 part 2 data and BCH parity bits are further protected by a shortened and punctured 16K LDPC code with code rate 1/2 ($N_{ldpc} = 16200$). Note that the effective code rate of the 16K LDPC code with code rate 1/2 is 4/9, where the effective code rate is defined as the information length over the encoder output length. Details of how to shorten and puncture the 16K LDPC code are described in clauses 8.4.3.1, 8.4.3.4 and 8.4.3.5. Each coded L1 signalling part 2 shall be bit-interleaved (see clause 8.4.3.6) and then shall be mapped onto constellations (see clause 8.4.4). Note that only 16QAM is used for encoding of L1 signalling part 2. The conceptual processing of coding and modulation of L1 signalling part 2 is shown in figure 21. Figure 21: Encoding and Modulation of L1 signalling part 2 Since the length of L1 signalling part 2 is variable, the resulting number of needed L1 frames is also varying. Each L1 FECFrame packet corresponds to one L1 block within an OFDM Symbol. As soon as more than one L1 FECFrame packet is needed, the same number of Preamble Symbols in consecutive OFDM Symbols is needed. If the length of L1 part 2 data exceeds a predetermined number $N_{L1 part2_max_per_Symbol}$ (see clause 8.4.2), the L1 part 2 data shall be divided into equidistant blocks. $N_{L1 part2_max_per_Symbol}$ means the maximum number of L1 information bits for transmitting the coded L1 signalling part 2 through one OFDM Symbol. Figures 22 (a) and 22 (b) show the handling example for the following cases: - a) L1 part 2 fits into one L1 part 2 LDPC FECFrame (see figure 22 (a)). - b) L1 part 2 exceeds one L1 part 2 LDPC FECFrame (see figure 22 (b)). Details of the segmentation are described in clause 8.4.2. Figure 22(a): L1 part 2 fits into one L1 part 2 LDPC FECFrame Figure 22(b): L1 part 2 exceeds one L1 part 2 LDPC FECFrame According to the signalling field for time interleaving in L1 signalling part 2 header, 'L1_TI_MODE', the time interleaving can be applied to L1 FECFrame (see clause 8.2). Details of the time interleaving are described in clause 8.5. If there are cells remaining from each Preamble Symbol after mapping each L1 FECFrame to the Preamble Symbol, the L1 FECFrame including L1 part 2 header is cyclically repeated until the complete preamble block is filled, as shown in figure 23. The information on the structure of a cyclically repeated L1 FECFrame in a Preamble Symbol is obtained by detecting and extracting of L1 part 2 header. Figure 23: Allocation of L1 FECFrame to L1 blocks (Preamble blocks) # 8.4.2 Parameters for FEC encoding of L1 part 2 data The number of L1 part 2 data bits is variable and the bits shall be transmitted over one or multiple 16K LDPC blocks depending on the length of the L1 part 2 data. The number of LDPC blocks for the L1 part 2 data, $N_{L1part2_FEC_Block}$ shall be determined as follows: $$N_{L1 part2_FEC_Block} = \left[\frac{K_{L1 part2_ex_pad}}{N_{L1 part2_max_per_Symbol}} \right],$$ where $\lceil x \rceil$ means the smallest integer larger than or equal to x, and $K_{L1\,part2_ex_pad}$, which can be found by adding 32 to the parameter 2×L1_INFO_SIZE, denotes the number of information bits of the L1 part 2 signalling excluding the padding field, L1_PADDING (see clause 8.3.3). $N_{L1part2_max_per_Symbol}$ is 4759 which is chosen as the minimum value among the maximum values of K_i satisfying that $N_{L1part2_(K_i)}$ is less than or equal to $N_{L1part2_Cells} \times \eta_{\text{MOD}}$, for i = 1, 2, ..., 8. Here, $N_{L1part2_Cells} (= 2 808)$ denotes the number of available cells for L1 signalling part 2 in one OFDM Symbol, η_{MOD} denotes the modulation order 4 for 16QAM, and $N_{L1part2_(K_i)}$ is the length of the encoded L1 signalling part 2 with K_i information bits for $N_{L1part2_FEC_Block} = i$. Then, the length of L1_PADDING field, $K_{L1part2_PADDING}$ shall be calculated as: $$K_{L1 part2_PADDING} = \left[\frac{K_{L1 part2_ex_pad}}{N_{L1 part2_FEC_Block}} \right] \times N_{L1 part2_FEC_Block} - K_{L1 part2_ex_pad}.$$ The final length of the whole L1 signalling part 2 including the padding field, $K_{L1part2}$ shall be set as follows: $$K_{L1 part2} = K_{L1 part2} ex pad + K_{L1 PADDING}$$ The number of information bits in each of $N_{L1part2_FEC_Block}$ blocks, K_{sig} is then defined by: $$K_{sig} = \frac{K_{L1 \, part2}}{N_{L1 \, part2} \, FFC \, Block}$$. Each block with information size of K_{sig} is protected by a concatenation of BCH outer codes and LDPC inner codes. Each block shall be first BCH-encoded, where its N_{bch_parity} (= 168) BCH parity check bits shall be appended to information bits of each block. The concatenated information bits of each block and BCH parity check bits are further protected by a shortened and punctured 16K LDPC code with code rate 1/2 (effective code rate: $R_{eff_16K_LDPC_1_2} = 4/9$). Details of how to shorten and puncture the 16K LDPC code are described in clauses 8.4.3.1, 8.4.3.4 and 8.4.3.5. For a given K_{sig} and modulation order (16QAM is used for the L1 signalling part 2), N_{punc} shall be determined by the following steps: Step 1) Calculate
the number of puncturing bits as follows: $$N_{punc_temp} = \left[\frac{6}{5} \times (K_{bch} - K_{sig}) \right],$$ where K_{bch} is 7032 for the 16K LDPC code with code rate 1/2, and the operation $\lfloor x \rfloor$ means the largest integer less than or equal to x. A temporary size of puncturing bits is calculated by multiplying the shortening length by a fixed number 6/5. The effective LDPC code rate of the L1 signalling part 2, $R_{eff_L1part2}$ is always lower than or equal to $R_{eff_16K_LDPC_1_2}$. $R_{eff_L1part2}$ tends to decrease as the information length K_{sig} decreases. This rate control ensures that the receiving coverage for the L1 signalling part 2 is preserved after the shortening and puncturing. The multiplicative coefficient 6/5 is the ratio of the puncturing length to the shortening length and it is chosen as the best value among those formed of (B+1)/B for an integer B. Step 2) $$N_{L1 part2_temp} = K_{sig} + N_{bch_parity} + N_{ldpc} \times (1 - R_{eff_16 K_LDPC_1_2}) - N_{punc_temp}$$. For the 16K LDPC code with effective code rate 4/9, $N_{Idpc} \times (1 - R_{eff_16K_LDPC_1_2}) = 9000$. Step 3) According to the value of time interleaving field, 'L1_TI_MODE', in the L1 part 2 header (see clause 8.2), $N_{L1part2}$ shall be calculated as follows: $$N_{L1 \, part2} = \begin{cases} \text{If L1_TI_MODE} = 00 \text{ or } 01, \\ \hline \frac{N_{L1 \, part2_temp}}{2\eta_{MOD} \times N_{L1 \, part2_FEC_Block}} \\ \hline \text{Otherwise,} \\ \hline \frac{N_{L1 \, part2_temp}}{2\eta_{MOD} \times N_{L1_TI_Depth}} \\ \hline \times 2\eta_{MOD} \times N_{L1_TI_Depth} \\ \hline \end{pmatrix} \times 2\eta_{MOD} \times N_{L1_TI_Depth}$$ where η_{MOD} is 4 for 16QAM, and $N_{L1_TI_Depth}$ is 4 and 8 for L1_TI_MODE = 10 and 11, respectively, as shown in clause 8.2. This step guarantees that $N_{L1part2}$ is a multiple of the number of columns of the bit interleaver, $2\eta_{\text{MOD}}$, (described in clause 8.4.3.6) and that $N_{L1part2}/\eta_{\text{MOD}}$ is a multiple of the number of OFDM Symbols for transmitting L1 signalling part 2. Note that the number of OFDM Symbols for transmitting L1 signalling part 2 are $N_{L1part2_FEC_Block}$ and $N_{L1_T1_Depth}$ for 'L1_TI_MODE = 00, 01' and 'L1_TI_MODE = 10, 11', respectively. Step 4) $$N_{punc} = N_{punc_temp} - (N_{L1 part2} - N_{L1 part2_temp}).$$ $N_{L1part2}$ is the number of the encoded bits for each information block. After the shortening and puncturing, the encoded bits of each block shall be mapped to $N_{MOD_per_Block} = \frac{N_{L1part2}}{\eta_{MOD}}$ modulated symbols. The total number of the modulation symbols of $$N_{L1part2_FEC_Block}$$ blocks, N_{MOD_Total} is $N_{MOD_Total} = N_{MOD_per_Block} \times N_{L1part2_FEC_Block}$. When 16QAM is used, a bit interleaving shall be applied across each LDPC block. Details of how to interleave the encoded bits are described in clause 8.4.3.6. Demultiplexing is then performed as described in clause 8.4.4.1. The demultiplexer output is then mapped to a 16QAM constellation, as described in clause 8.4.4.2. ## 8.4.3 FEC Encoding #### 8.4.3.1 Zero padding of BCH information bits K_{siq} bits defined in clause 8.4.2 shall be encoded into a 16K (N_{ldpc} = 16200) LDPC codeword after BCH encoding. Since the K_{sig} is always less than the number of BCH information bits (= K_{bch} = 7032) for a given code rate 1/2, the BCH code shall be shortened. A part of the information bits of the 16K LDPC code shall be padded with zeros in order to fill K_{bch} information bits. The padding bits shall not be transmitted. All K_{bch} BCH information bits, denoted by $\{m_0, m_1, ..., m_{Kbch-1}\}$, are divided into $N_{group} (= K_{ldpc}/360)$ groups as follows: $$X_j = \left\{ m_k \middle| j = \left\lfloor \frac{k}{360} \right\rfloor, 0 \le k < K_{bch} \right\} \text{ for } 0 \le j < N_{group}$$ where X_i represents the jth bit group. The code parameters (K_{bch} , K_{ldpc}) are given in table 27 for L1 part 2 data. Table 27: Code parameters (K_{bch} , K_{ldpc}) for L1 part 2 data | | K _{bch} | K _{ldpc} | |----------------------|------------------|-------------------| | L1 signalling part 2 | 7 032 | 7 200 | For $0 \le j \le N_{group} - 2$, each bit group X_j has 360 bits and the last bit group $X_{N_{group}-1}$ has 360 - $(K_{IdDC} - K_{DCh}) = 192$ bits, as illustrated in figure 24. Figure 24: Format of data after LDPC encoding of L1 signalling part 2 For the given K_{sig} , the number of zero-padding bits is calculated as $(K_{bch} - K_{sig})$. Then, the shortening procedure is as follows: Step 1) Compute the number of groups in which all the bits shall be padded, N_{pad} such that: If $$0 < K_{sig} \le 360$$, $N_{pad} = N_{group} - 1$ Otherwise, $$N_{pad} = \left| \frac{K_{bch} - K_{sig}}{360} \right|$$ - Step 2) For N_{pad} groups $X_{\pi_{S}(0)}$, $X_{\pi_{S}(1)}$, ..., $X_{\pi_{S}(M_{pad}-1)}$, all information bits of the groups shall be padded with zeros. Here, π_{S} is a permutation operator depending on the code rate and modulation order, described in table 28. - Step 3) If $N_{pad} = N_{group} 1$, $(360 K_{sig})$ information bits in the last part of the bit group $X_{\pi_S(N_{group}-1)}$ shall be additionally padded. Otherwise, for the group $X_{\pi_S(N_{pad})}$, $K_{bch} K_{sig} 360 \times N_{pad}$ information bits in the last part of $X_{\pi_S(N_{pad})}$ shall be additionally padded. - Step 4) Finally, K_{sig} information bits are sequentially mapped to bit positions which are not padded in K_{bch} BCH information bits, $\{m_0, m_1, ..., m_{Kbch-1}\}$ by the above procedure. - EXAMPLE: Suppose for example the value of K_{sig} is 3986. In this case, from step (1), 8 groups would have all zero padded bits, and from step (2) these groups would be those with numbers 18, 17, 16, 15, 14, 13, 12.11. From step (3), and additional 166 bits would be zero padded in Group 4. Finally from step (4) the 3 986 bits would be mapped sequentially to Groups 0, 1, 2, 3 (360 bits each), the first part of Group 4 (194 bits), Groups 5, 6, 7, 8, 9, 10 (360 bits each), and group 19 (192 bits). Figure 25 illustrates the shortening of the BCH information part in this case, i.e. filling BCH information bit positions not zero padded with K_{sig} information bits. Figure 25: Example of shortening of BCH information part Table 28: Permutation sequence of information bit group to be padded for L1 signalling part 2 | Madel | -4: | | $\pi_{S}(j) \ (0 \le j < N_{group})$ | | | | | | | | | | |----------------|-----|--------------------|--------------------------------------|-------------|------------------------|-------------------------|------------------------|------------------------|------------------------|------------------------|-------------|------------------------| | Modula and cod | - | N _{group} | $\pi_{\mathcal{S}}(0)$ | $\pi_s(1)$ | $\pi_{\mathcal{S}}(2)$ | $\pi_s(3)$ | $\pi_{\mathcal{S}}(4)$ | $\pi_{\mathcal{S}}(5)$ | $\pi_{\mathcal{S}}(6)$ | $\pi_{\mathcal{S}}(7)$ | $\pi_s(8)$ | $\pi_{\mathcal{S}}(9)$ | | | | | $\pi_s(10)$ | $\pi_s(11)$ | $\pi_s(12)$ | $\pi_{\mathcal{S}}(13)$ | $\pi_s(14)$ | $\pi_s(15)$ | $\pi_s(16)$ | $\pi_s(17)$ | $\pi_s(18)$ | $\pi_s(19)$ | | 16QAM | 1/2 | 20 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 4 | 10 | | IOQAW | 1/2 | 20 | 9 | 8 | 7 | 3 | 2 | 1 | 6 | 5 | 19 | 0 | ### 8.4.3.2 BCH encoding The K_{bch} information bits (including the K_{bch} - K_{sig} zero padding bits) shall first be BCH encoded according to clause 6.1.1 to generate $N_{bch} = K_{ldpc}$ output bits $(i_0 \dots i_{N_{bch-1}})$. ## 8.4.3.3 LDPC encoding The $N_{bch} = K_{ldpc}$ output bits $(i_0 ... i_{Nbch-1})$ from the BCH encoder, including the $(K_{bch} - K_{sig})$ zero padding bits and the $(K_{ldpc} - K_{bch})$ BCH parity bits form the K_{ldpc} information bits $I = (i_0, i_1, ..., i_{K_{ldpc}-1})$ for the LDPC encoder. The LDPC encoder shall systematically encode the K_{ldpc} information bits onto a codeword Λ of size N_{ldpc} : $$\Lambda = (i_0, i_1, ..., i_{K_{ldpc^{-1}}}, p_0, p_1, ..., p_{N_{ldpc^{-K} ldpc^{-1}}})$$ according to clause 6.1.2. ## 8.4.3.4 Puncturing of LDPC parity bits When the shortening is applied to encoding of the signalling bits, some LDPC parity bits shall be punctured after the LDPC encoding. These punctured bits shall not be transmitted. All N_{ldpc} - K_{ldpc} LDPC parity bits, denoted by $\{p_0, p_1, ..., p_{N_{\text{ldpc}}}, K_{\text{ldpc}}, -1\}$, are divided into Q_{ldpc} parity groups where each parity group is formed from a sub-set of the N_{ldpc} - K_{ldpc} LDPC parity bits as follows: $$P_j = \rho_k \mid k \mod Q_{ldpc} = j, \ 0 \le k < N_{ldpc} - K_{ldpc}$$ for $0 \le j < Q_{ldpc}$, where P_j represents the jth parity group and Q_{ldpc} is given in table 5(b). Each group has $(N_{ldpc} - K_{ldpc})/Q_{ldpc} = 360$ bits, as illustrated in figure 26. Figure 26: Parity bit groups in an FEC block For the number of parity bits to be punctured, N_{punc} given in clause 8.4.2. Step 1) Compute the number of groups in which all parity bits shall be punctured, $N_{punc\ qroups}$ such that: $$N_{punc_groups} = \left| \frac{N_{punc}}{360} \right| \text{ for } 0 \le N_{punc} < N_{ldpc} - K_{ldpc}$$ - Step 2) For N_{punc_groups} parity bit groups $P_{\pi_P(0)}$, $P_{\pi_P(1)}$, ..., $P_{\pi_P(N_{punc_groups}-1)}$, all parity bits of the groups shall be punctured. Here, π_P is a permutation operator depending on the code rate and modulation order, described in table 29. - Step 3) For the group $P_{\pi_{P}(N_{punc_groups})}$, \P_{punc} and P_{punc_groups} parity bits in the first part of the group shall be additionally punctured. Table 29: Permutation sequence of parity group to be punctured for L1 signalling part 2 | Modulat | tion | Order of parity group to be punctured, $\{ \pi_{P}(j), 0 \le j < Q_{ldpc} = 25 \}$ | | | | | | | | | | | | |
----------|------|--|------------------|-----------------|---------------|---------------|-------------|---------------|-----------------|-----------------|---------------|---------------|---------------|-------------| | and code | | $\pi_{\rho}(0)$ | $\pi_P(1)$ | $\pi_{\rho}(2)$ | $\pi_P(3)$ | $\pi_{P}(4)$ | $\pi_P(5)$ | $\pi_P(6)$ | $\pi_{\rho}(7)$ | $\pi_{\rho}(8)$ | $\pi_P(9)$ | $\pi_{P}(10)$ | $\pi_P(11)$ | $\pi_P(12)$ | | | | $\pi_{P}(13)$ | $\pi_{\rho}(14)$ | $\pi_{P}(15)$ | $\pi_{P}(16)$ | $\pi_{P}(17)$ | $\pi_P(18)$ | $\pi_{P}(19)$ | $\pi_{P}(20)$ | $\pi_{P}(21)$ | $\pi_{P}(22)$ | $\pi_{p}(23)$ | $\pi_{P}(24)$ | - | | 16QAM | 1/2 | 6 | 4 | 13 | 9 | 18 | 8 | 15 | 20 | 5 | 17 | 2 | 22 | 24 | | IOQAW | 1/2 | 7 | 12 | 1 | 16 | 23 | 14 | 0 | 21 | 10 | 19 | 11 | 3 | - | #### 8.4.3.5 Removal of zero padding bits The $(K_{bch} - K_{sig})$ zero padding bits are removed and shall not be transmitted. This leaves a word consisting of the K_{sig} information bits, followed by the 168 BCH parity bits and $(N_{ldpc} - K_{ldpc} - N_{punc})$ LDPC parity bits. #### 8.4.3.6 Bit interleaving for L1 signalling part 2 When 16QAM modulation is used for the L1 signalling part 2, the LDPC codeword of length $N_{L1part2}$, consisting of K_{sig} information bits, 168 BCH parity bits, and (9 000 - N_{punc}) LDPC parity bits, shall be bit-interleaved using a block interleaver. The configuration of the bit interleaver for the chosen 16QAM modulation is specified in table 30. Table 30: Bit Interleaver structure | Modulation and | d code rate | Rows Nr | Columns Nc | |----------------|-------------|--------------------------|------------| | 16QAM | 1/2 | N _{L1part2} / 8 | 8 | The LDPC codeword is serially written into the interleaver column-wise, and serially read out row-wise (the MSB of the L1 signalling part 2 is read out first) as shown in figure 27. Figure 27: Bit interleaving scheme for L1 part 2 (16QAM) ## 8.4.4 Mapping bits onto constellations Each bit-interleaved LDPC codeword shall be mapped onto constellations. The L1 signalling part 2 is first demultiplexed into cell words according to clause 8.4.4.1 and then the cell words are mapped into constellations according to clause 8.4.4.2. ## 8.4.4.1 Demultiplexing of L1 signalling part 2 Each bit-interleaved LDPC codeword, a sequence of $N_{L1part2}$ (= K_{sig} + 168 + 9 000 - N_{punc}) bits shall be mapped onto constellations by first demultiplexing the input bits into parallel cell words and then mapping these cell words into constellation values. The number of output Data Cells and the effective number of bits per cell, η_{MOD} are defined in table 31. The input bit-stream V_{di} is demultiplexed into $N_{substreams}$ sub-streams $b_{e,do}$, as shown in figure 13 in clause 6.2.1. The value of $N_{substreams}$ is also defined in table 31. Details of demultiplexing are described in clause 6.2.1. For 16QAM, the parameters for demultiplexing of bits to cells are the same as that of table 10(a) in clause 6.2.1. Table 31: Parameters for bit-mapping into constellations | Modulation mode | η_{MOD} | Number of output Data Cells | Number of sub-streams, N _{substreams} | |-----------------|--------------|-----------------------------|---| | 16QAM | 4 | N _{L1part2} / 4 | 8 | For 16QAM, the output words from the demultiplexing of width $N_{substreams}$ [$b_{0,do}$. $b_{N_{substreams-1,do}}$] are split into two words of width $\eta_{MOD} = N_{substreams}/2$, [$y_{0,2do}$. $y_{\eta_{MOD-1,2do}}$] and [$y_{0,2do+1}$. $y_{\eta_{MOD-1,2do+1}}$], as described in clause 6.2.1. #### 8.4.4.2 Mapping onto QAM constellations The cell words of each coded L1 signalling part 2, $[y_{0,q}.y_{\eta_{MOD}-1,q}]$ are mapped into constellations f_q according to clause 6.2.2, where q is the index of the cells within each bit-interleaved LDPC codeword. For each coded L1 signalling part 2, $0 \le q < N_{MOD\ per\ Block}$ # 8.5 Time interleaving of L1 signalling part 2 data The purpose of time interleaving of the L1-part 2 data is to make L1-part2 data transmission more robust than the payload data, especially when time interleaving is applied to Data Slice. Time interleaving of L1-part2 data is identical to that of Data Slice except that pilot and reserved tone positions in a preamble are completely excluded in time interleaving process. The Time Interleaver (TI) shall operate at L1-part2 data level before the L1 XFECFrame with L1 header is repeated to fill a L1 block symbol bandwidth. The time interleaving and L1 block building with different interleaving parameters are depicted in figure 28. The L1_TI_MODE indicates the depth of L1-part2 data time interleaving and signalled in L1 header signalling. L1_TI_MODE = "00" means no time interleaving is applied for L1-part2 data. When L1_TI_MODE = "01" (best-fit), the time interleaving depth is the minimum number of OFDM Symbols necessary for carrying a L1 block, or $N_{L1part2_FEC_Block}$ (see clause 8.4.2 for more details of segmentation of L1-part2 data). Otherwise, the time interleaving depth is explicitly signalled and the depth is 4 OFDM Symbols when L1_TI_MODE = "10" as shown in figure 28. Figure 28: Time interleaving of L1-part2 data All L1-part2 Data Cells after constellation mapping are grouped into one L1 TI block. As a result, there exists one L1 TI block per C2 Frame. The length of time interleaving period T_P is calculated as: $$T_P = T_S \times N_{L1_TI_DEPTH},$$ where T_S is a total OFDM Symbol duration and $N_{L1_TI_DEPTH}$ is the time interleaving depth determined by L1_TI_MODE signalled in L1 header signalling. The TI shall be a twisted row-column block interleaver like as in the Data Slice. The number of rows N_r of a TI memory is equal to N_{L1} TI DEPTH and the number of columns N_c is calculated as: $$N_c = N_{MOD\ Total}/N_{L1\ TI\ DEPTH},$$ where N_{MOD_Total} is the total number of the L1-part2 Data Cells. Note that $N_{L1_TI_DEPTH}$ should be equal or larger than minimum number of OFDM Symbols required for carrying the L1 block, $N_{L1part2_FEC_Block}$ Details of required number of bits and cells for carrying L1-part2 data is described in clause 8.4.2. The input L1-part2 Data Cells are serially written into the TI memory in a diagonal direction, and serially read out rowwise as shown in figure 29. Figure 29: Time interleaving of L1 data (N_{MOD TOTAL}=208, N_{LI TI DEPTH}=4) Assuming d_i (i = 0, ..., N_{MOD_Total} -1) as the L1-part2 Data Cells input to the time interleaver, the column index C_i the row index R_i and associated twisting parameter T_{C_i} to store d_i is calculated as: $$C_i = i \mod N_c$$ $$T_{C_i} = C_i \mod N_r$$ $$R_i = (T_{C_i} + (i \operatorname{div} N_c)) \mod N_r.$$ Every cell position in the TI memory is uniquely defined by a coordinate (R_i, C_i) . The L1-part2 Data Cells d_i are written in positions (R_i, C_i) : ``` for(i = 0; i < N_{MOD_Total}; i = i + 1) \{ GENERATE(R_i, C_i); WRITE d_i to(R_i, C_i); \} ``` Note that the time interleaving structure shall not be changed after frame building although neither pilot nor reserved tone position is considered in L1-part2 data time interleaving process, which is different from the case of Data Slice. # 9 Frame Builder This clause defines the frame builder functions that always apply for a C2 System. The function of the frame builder is to assemble the cells of the Preamble Symbols(s) as well as the cells produced for each of the Data Slices into arrays of active OFDM Cells corresponding to the preamble structure and each of the Data Slices and OFDM Symbols which make up the overall frame structure. The frame builder operates according to the dynamic information produced by the scheduler (see clause 5.2.1) and the configuration of the frame structure. ## 9.1 C2 Frame structure The C2 Frame structure is shown in figure 30. The C2 Frame structure comprises L_P Preamble Symbols ($L_P \ge 1$) followed by L_{data} Data Symbols. The Preamble Symbols are divided in frequency direction into L1 block symbols of same bandwidth (3 408 subcarriers or approximately 7,61 MHz). The Data Slices have an arbitrary bandwidth as a multiple of the pilot pattern specific granularity but shall not exceed the L1 block symbol bandwidth. Frequency Notches can be inserted into the C2 signal across a C2 Frame. The insertion of frequency Notches is described in clauses 9.3.5 and 9.4.1.3. Figure 30: The C2 Frame structure: The C2 Frame starts with at least one Preamble Symbol (L_P) followed by L Data Symbols The special properties of the Preamble Symbols are explained in clause 9.3. The L1 block symbols of the Preamble Symbol(s) allow reliable time and frequency synchronization and also carry the L1 signalling data part 2. The L1 signalling part 2 data to be carried is described in clause 8.3, its modulation, error correction and coding and the mapping of this data onto the L1 block symbols is described in clause 8.4. ## 9.1.1 Duration of the C2 Frame The beginning of the first Preamble Symbol marks the beginning of the C2 Frame. The data part of the C2 Frame consists of $L_{data} = 448$ symbols (approx. 203,8 ms for GI = 1/64 or 202,2 ms for GI = 1/128, $T_{IJ} = 448 \mu s$). The number of Preamble Symbols L_P can be derived from the length information at the beginning of each L1 signalling part 2 block. The C2 Frame duration is therefore given by: $$T_F = (L_P + L_{data}) \times T_s$$ where T_s is the total OFDM Symbol duration. # 9.2 Pilot Reference Sequence # 9.2.1 Data Scrambling Sequence The reference sequence described below is used to scramble the preamble data and is used to generate the pilot's modulation. Figure 31: Generation of PRBS sequence The PRBS sequence, W_i is generated according to figure 31, where W_i is the i-th output value of the PRBS generator. Its
polynomial for the PRBS generator shall be: $$X^{11} + X^2 + 1$$ The shift register is initialized with all '1's so that the sequence begins with W_0 , W_1 , W_2 ... = 1,1,1,1,1,1,1,1,1,1,0,0... ## 9.2.2 Pilot Scrambling Sequence The pilots shall carry a unique synchronization sequence W_k^p , where k is the absolute OFDM carrier index. The sequence is defined as: $$W_k^P = W_k \oplus W_i' \text{ with } i = \text{mod } K_{L1} \supseteq D_P$$ Where: k is the OFDM carrier index, W_i' is the i-th output of the PRBS generator defined below, W_k is the k-th output of the reference sequence defined in clause 9.2.1 and $D_P = 6$ is the separation of the preamble pilots. Please note that i' is always an integer value, as the reference sequence is only defined for pilot positions (i.e. $k \mod D_P = 0$). Figure 32: Definition of pilot modulation The corresponding sequence W_i' is generated by the PRBS defined in figure 32. Its polynomial shall be: $$X^{10} + X^3 + 1$$ The register is initialized to all '1's and the sequence begins W_0' , W_1' , W_2' ... = 1,1,1,1,1,1,1,1,1,0,0... # 9.2.3 Pilot Reference Sequence The preamble pilots shall be differentially BPSK modulated against each other. Therefore, the pilot reference sequence is generated by differential modulation of the pilot scrambling sequence, which is achieved by an XOR operation. The pilot reference sequence for each OFDM pilot at position k is therefore given by: $$r_{k} = \begin{cases} w_{k}^{P} & \text{if } k \mod K_{L1} = 0\\ r_{k-6} \oplus w_{k}^{P} & \text{otherwise} \end{cases}$$ where I_k only has to be defined if k is multiple of 6. # 9.3 Preamble Symbol ## 9.3.1 Preamble Symbol overview At the beginning of every frame a Preamble Symbol shall be sent. The Preamble Symbol is constructed with L_P OFDM Symbols, while the Preamble Symbol shares the same OFDM parameters as the normal Data Symbols. In the frequency domain, the preamble is subdivided into L1 Signalling Blocks. Each L1 Signalling Block contains all Layer 1-part 2 information as defined in clause 8. The definition of the OFDM Cell $\mathcal{C}_{m,l,k}^P$ is calculated generically for $k=0,...,\infty$. However, this definition is for simplicity only and only the OFDM carriers $K_{\min} \leq k \leq K_{\max}$ have to be calculated and are transmitted, where K_{\min} is the lowest frequency used by the C2 Signal and K_{\max} is the highest frequency used by the C2 Signal. This structure is also depicted in figure 33. The carriers outside the actual signal bandwidth are referred to as virtual signalling data. Their purpose is the clarification of the cyclic frequency structure of the signalling data. Figure 33: Preamble symbol structure in the frequency domain # 9.3.2 Frequency Interleaving The purpose of the preamble frequency interleaver is the separation of neighbouring data cells and to avoid error bursts caused by narrow band interferers or frequency selectivity. Therefore, the same frequency interleaver as for the Data Slices shall be used (see clause 9.4.5), which works on the N_{L1} =2 840 data cells of each L1 Block. The interleaved vector $A_{l_p}^P = (a_{l_p,0}^P, a_{l_p,1}^P, \dots a_{l_p,N_p-1}^P)$ is defined by: $$a_{I_{P,q}}^P = X_{I_{P,H_0(q)}}$$ for even symbols in the preamble ($I_P \mod 2 = 0$) for $q = 0,1,...,N_{L1}-1$ $$a_{I_{P,q}}^P = X_{I_P, H_1(q)}$$ for odd symbols in the preamble $(I_P \mod 2 = 1)$ for $q = 0, 1, ..., N_{L1} - 1$ with $N_L = 2840$. #### 9.3.3 Pilot insertion The pilots of each Signalling Block are uniquely defined and allow for the time and frequency synchronization to the preamble. Unlike the normal pilots, the pilots within the preamble are transmitted at the same power lever as the data, i.e. they are not boosted. The pilots are differentially BPSK modulated against each other, giving a receiver the possibility to synchronize on this differentially encoded reference information. Figure 34: L1 Block signalling #### 9.3.3.1 Locations of the preamble pilots A given OFDM carrier k of the Preamble Symbol is a pilot if the following equation is fulfilled: $$k \mod D_P = 0$$ Where: k is the OFDM carrier index and $D_P = 6$ is the separation of the preamble pilots. #### 9.3.3.2 Amplitude and modulation of the preamble pilots The pilots shall be modulated as: Re $$\sigma_{n,I_p,k}^{\bullet} \stackrel{1}{\ni} A_{PP} \cdot 2 \left(2 - r_k \right)$$ Im $\sigma_{n,I_p,k}^{\bullet} \stackrel{1}{\ni} 0$ Where A_{pp} is the amplitude of the preamble pilots, I_k is the pilot reference sequence as defined in clause 9.2.3, m is the C2 Frame, I_p is the Preamble Symbol number and k is the absolute carrier index. The amplitude of preamble pilots (A_{pp}) is fixed to A_{pp} =6/5 in case of 1/128 Guard Interval and fixed to A_{pp} =4/3 in case of 1/64 Guard Interval. ## 9.3.4 Mapping and scrambling of the signalling data The OFDM Cells that are not occupied by pilots shall carry signalling data. As the signalling data is cyclic in the frequency domain, it shall be scrambled. The content of each data preamble OFDM Cell k is defined as: Re $$\mathcal{E}_{n,l_p,k}^{\rho}$$ \xrightarrow{f} Re $\mathcal{E}_{l_p,q}^{\rho}$ \xrightarrow{f} Im $\mathcal{E}_{n,l_p,k}^{\rho}$ $\xrightarrow{f$ Where $a_{I_p,q}^P$ is the output of the frequency interleaver of OFDM Symbol I_p at index q, W_k is the k-th output of the reference sequence defined in clause 9.2.1 and $K_{L1} = 3408$ is the number of OFDM carriers per L1 Signalling Block. Since Data Slices are typically not aligned to L1 signalling blocks the receiver tuning window typically contains parts of different L1 signalling blocks. The re-ordering of the included sub-carriers to retrieve the L1 block in the frequency domain (i.e. after FFT on receiver side) is shown in figure 35. Figure 35: Retrieving a complete L1 block out of two partial L1 blocks Depending on the receiver tuning frequency ft, (given as actual tuning position as OFDM subcarrier mod K_{L1}) the reordered L1 Block (including pilots) is described as follows (3 584 subcarrier receiver example): - $f_t \mod K_{L1} < 1704$: $L1_{subcariers} = [L1_m(f_t \dots (f_t + 1704)), L1_{m-1}((f_t + K_{L1} 1703) \dots K_{L1})]$ - $f_t \mod K_{L1} >= 1704$: $L1_{subcariers} = [L1_{m}((f_t 1703) ... K_{L1}), L1_{m+1}(1 ... (ft K_{L1} + 1704))]$ With m as the index of the L1 block. ## 9.3.5 Notches within Preamble Symbols Equivalent to Data Slices Preamble Symbols may contain Notches. The cells within preamble Notches shall not carry any transmit power. Preamble Notches always coincide with Data Slice Notches, i.e. the same OFDM sub-carriers are omitted. Notches can be applied to Preamble Symbols in 2 different ways. #### 9.3.5.1 Narrowband Notches Narrowband Notches have a bandwidth below 48 OFDM subcarriers. The Data Slices bandwidth is a multiple of the guard interval granularity (i.e. 11, 23, 35, 47 subcarriers for GI = 1/64 or 23, 47 subcarriers for GI = 1/128). The lack of L1 signalling in narrowband Notches is compensated by the preamble FEC. Only one narrowband Notch shall be allowed at any tuning position of 3408 OFDM subcarriers (i.e. 7.61 MHz for the 8 MHz mode and 5.71 MHz for the 6 MHz mode) bandwidth. #### 9.3.5.2 Broadband Notches Broadband Notches have a bandwidth higher than 47 subcarriers. For Data Slice decoding the receiver tuner shall not tune to a region with a broadband Notch since a reliable L1 decoding cannot be guaranteed (missing L1 blocks cannot be recovered by the preamble FEC in every case). Broadband Notches shall not be inserted in the C2 System unless at least one neighboured continuous L1 signalling block region above 3 408 subcarriers is available. During initial acquisition to a C2 System this allows the receiver to recognize the broadband Notch and to retune to a frequency range with consistent L1 signalling data. Broadband Notches shall always be located between different Data Slices. In case the set of subcarriers of C2 system neighboured to a broadband notch is below 3408 subcarriers (i.e. L1 blocks can't be decoded in a reliable way), all Data Slices within this set of subcarriers shall use the Data Slice Type 2 and be configured to 'fixed' (i.e. DSLICE CONST CONF flag in L1 part 2 signalling is set to 1). In any case the minimum set of subcarriers of a C2 System neighboured to a broadband notch is 841 subcarriers, ensuring that at least 5 continual pilots are available in the related frequency band for proper signal processing in receivers. ## 9.4 Data Slice generation Data Slices can be treated as separate channels and no interleaving is performed between different ones. Each Data Slice is identified by a start OFDM carrier $K_{DS, \min}$ and an end OFDM carrier $K_{DS, \max}$, whereby $K_{DS, \min} \ge K_{\min}$ and $K_{DS, \max} < K_{\max}$. Data Slices shall only start and end at scattered pilots positions and end next to a scattered pilot position. Additionally, Data Slices shall not overlap each other. #### 9.4.1 Location of Data Slices #### 9.4.1.1 Start and end OFDM carrier of Data Slices The start and the end frequency of the Data Slices is signalled in the Layer 1 Signalling by means of the START_FREQUENCY, the DSLICE_TUNE_POS, the DSLICE_OFFSET_LEFT and DSLICE_OFFSET_RIGHT values. While the START_FREQUENCY and the DSLICE_TUNE_POS are quasi static between different C2 Frames, the other two values may change every frame, depending on the chosen mode. As the Data Slices shall only start at scattered pilots positions and end next to them, the signalling depends on the value \mathcal{D}_{χ} (which depends on the Guard Interval size). Furthermore, the value of START_FREQUENCY shall be a multiple of \mathcal{D}_{χ} as well. Thus, the start frequency and end carrier of a Data Slice shall be: $$K_{DS,\min} = \mathbb{Q}SLICE_TUNING_POS + DSLICE_OFFSET_LEFT \supseteq D_X + START_FREQUENCY$$ $$K_{DS,\max} = \mathbb{Q}SLICE_TUNING_POS + DSLICE_OFFSET_RIGHT \supseteq D_X
+ START_FREQUENCY - 1$$ #### 9.4.1.2 Maximum width of Data Slices The width of each Data Slice shall not exceed 3 408 OFDM carriers (7,61 MHz for $T_U = 448 \, \mu s$), i.e.: $$K_{DS,\text{max}} - K_{DS,\text{min}} < 3408$$ If the width of a Data Slice exceeds 3 408 OFDM carriers, the receiver shall ignore the Data Slice, i.e. treat it as not present. #### 9.4.1.3 Minimum width of Data Slices The Layer 1 signalling may indicate Data Slices without any payload capacity. Such Data Slices may be used if no payload data has to be transmitted. These Data Slices shall be signalled by: No Data Slices with negative width shall be signalled. If Data Slices with negative width are received, these Data Slices shall be ignored by the receiver. If DSLICE_TYPE is '0' and the Data Slice has a width > 0, the Data Slice shall be able to transmit at least one complete Data Slice Packet. #### 9.4.1.4 Notches within Data Slices Data Slices may contain Notches. The cells within these Notches shall not carry any transmit power. The start and the end carrier of each Notch are indicated within the corresponding Layer 1 signalling. Notches always start and end next to scattered pilot positions. The start carrier and end carrier of each Notch shall be defined as: $$K_{N,\min} = NOTCH_START \cdot D_X + START_FREQUENCY + 1$$ $$K_{N,\max} = \text{(NOTCH_START} + NOTCH_WIDTH \text{)} D_X + START_FREQUENCY - 1$$ where D_X is the guard interval dependent pilots repartition. Notches having a NOTCH_WIDTH of 0 shall be ignored by the receiver. ### 9.4.2 Number of payload cells in Data Slice The number of payload cells per Data Slice per OFDM Symbol N_{DS} equals $\mathcal{K}_{DS,\text{max}} - K_{DS,\text{min}} + 1$ minus the number of continual pilots, scattered pilots, reserved tones and cells that are located in Notches. Please note that the number of payload cells in a Data Slice may vary between different OFDM Symbols in one C2 Frame. ## 9.4.3 Mapping of the Data Slice Packets The Data Slice Packets shall be mapped onto the N_{DS} Data Cells per OFDM Symbol. Data Cells within a Data Slice are cells, which are not pilots, reserved tones or Notches. The Data Slice Packet data $g_0, \dots g_{N_X-1}$ shall be mapped onto the Data Cells $a_{m,l,k}$ of the OFDM Symbol in an increasing value of the carrier index k within the range: $$K_{DS \min} \leq k \leq K_{DS \max}$$. If the data of one Data Slice Packet exceeds the length of a C2 Frame, the data shall cross seamlessly into the next C2 Frame. If a Data Slice was not present in the previous C2 Frame (a Data Slice of width 0 was present), the Data Slice Packet data shall be mapped to the first available Data Cell of the Data Slice. For DSLICE_TYPE='0' the start of the first complete Data Slice Packet shall be signalled within the PLP_START value of the Layer 1 signalling. If the Data Slice has zero width, the PLP_START shall be set to zero. If no payload data is to be transmitted for DATA_SLICE_TYPE '1', dummy Data Slice Packets shall be transmitted instead (see clause 7.2). ### 9.4.4 Time Interleaving The time interleaver (TI) shall operate at Data Slice level. The parameters of time interleaving may be different for different Data Slices within a C2 System, while it is the same for all PLPs within a Data Slice. The exact number and positions of all pilots and reserved tones within each Data Slice shall be known to the TI prior to frame building. The Data Cells from a Data Slice builder for each Data Slice shall be grouped into TI blocks. The start and/or end of Data Slice Packets of each PLP constituting the Data Slice may not be aligned with those of TI blocks. Each TI block within the Data Slice shall contain $N_{DSLICE_TI_DATA_CELL}$ payload Data Cells carried by $N_{DSLICE_TI_DEPTH}$ Data Symbols. $N_{DSLICE_TI_DEPTH}$ is known from DSLICE_TI_DEPTH signalled in L1 signalling part2 (see clause 8.3). $N_{DSLICE_TI_DATA_CELL}$ is calculated as: $$N_{DSLICE_TI_DATA_CELL} = \sum_{l \in TIDIOCK} N_{DS}^{\prime}$$ where N_{DS}^{I} is the number of payload cells of I-th Data Symbol of the TI block, which is described in clause 9.4.2 in more detail. Every TI block of the Data Slice shall have the same number of payload cells. The length of time interleaving period T_P is defined as: $$T_P = T_S \times N_{DSLICE\ TI\ DEPTH},$$ where T_S is a total OFDM Symbol duration. Simple and typical TI memory space (one per Data Slice) is identical to the space of $N_{DSLICE_TI_DEPTH}$ Data Symbols within the Data Slice. In other words, the TI memory space includes the positions of all pilot and reserved tone cells as well as $N_{DSLICE_TI_DATA_CELL}$ Data Cells. The pilot and reserved tone cell positions within TI memory may be filled with dummy zeros. Notch bands in the Data Slice may be discarded from the TI memory. The TI shall store in the TI memories the Data Cells from the output of Data Slice builder. As the number and position of all pilots and reserved tones are previously known to the TI, the Data Cells should not be stored in pilot or reserved tone positions. Reserved pilot and reserved tone positions in the TI memory guarantees the time interleaving structure of Data Cells (shown in figure 37) are unchanged after frame building. Typically, the time interleaver will also act as a buffer for Data Slice cells prior to the process of frame building. This can be achieved by means of two memory banks for each Data Slice. The first TI block is written to the first bank. The second TI block is written to the second bank whilst the first bank is being read from and so on, see figure 36. Figure 36: Example of operation of time interleaver memory banks The TI shall be a twisted row-column block interleaver: the number of rows N_f in the interleaver is equal to the time interleaving depth $N_{DSLICE_TI_DEPTH}$ and the number of columns N_c to Data Slice width N_{DSLICE_WIDTH} . The Data Slice width is identified by: $$N_{DSLICE_WIDTH} = K_{DS,max} - K_{DS,min}$$, where $K_{DS,max}$ and $K_{DS,min}$ is the start and end OFDM Cell index of the Data Slice respectively. More details of Data Slice configuration is described in clause 9.4.1.1. The input cells are serially written into the interleaver memory in a diagonal direction, and serially read out row-wise as shown in figure 37. Assuming the index *i* ranging from 0 to ($N_{DSLICE_TI_CELL}$ -1), where $N_{DSLICE_TI_CELL}$ is the total number of cells within $N_{DSLICE_TI_DEPTH}$ Data Symbols of the Data Slice and calculated as: $$N_{\text{DSLICE_TI_CELL}} = N_{\text{DSLICE_TI_DEPTH}} \times N_{\text{DSLICE_WIDTH}}$$ The column index C_i the row index R_i and associated twisting parameter T_{Ci} is calculated as: $$C_{i} = i \mod N_{c}$$ $$T_{C_{i}} = C_{i} \mod N_{r}$$ $$R_{i} = (T_{C_{i}} + (i \operatorname{div} N_{c})) \mod N_{r}.$$ Then, every cell positions in the TI memory is uniquely defined by a coordinate (R_i, C_i) . The input Data Cells d_k ($k = 0, \ldots, N_{DSLICE_TI_DATA_CELL}$ -1) are written in positions (R_i, C_i) ($i = 0, \ldots, N_{DSLICE_TI_CELL}$ -1) within the TI memory only if the positions are assigned for payload Data Cells: ``` k = 0; for(i = 0; i < N_{DSLICE_TI_CELL}; i = i+1) \{ GENERATE (R_i, C_i); if (R_i, C_i) = data \ cell \ position \{ WRITE \ d_k \ to (R_i, C_i); k = k+1; \} \} ``` Note that the TI outputs only Data Cells from the TI memory excluding dummy pilot cells and reserved tones. As a result, the input and output Data Cell rates are unchanged after time interleaving. Figure 37: Time interleaver (D_x =12, Gl=1/64, N_r =8, N_c =48, DSLICE_WIDTH=4) ### 9.4.5 Frequency Interleaving The frequency interleaver operates on the Data Cells of one OFDM Symbol that comprise the slice of cells allocated to a given Data Slice. Its purpose is to map the Data Cells of this slice from the frame builder onto the $N_{\rm data}$ data carriers allocated for the given Data Slice in each OFDM Symbol. For Data Slice n, the frequency interleaver shall process the Data Cells $X_{m,l} = (x_{m,l,0}, x_{m,l,1}, ..., x_{m,l,N_{data}(n)-1})$ of the OFDM Symbol l of C2 Frame m from the frame builder. The parameter M_{max} is defined as 4096, i.e. the smallest power of 2 higher than the maximum Data Slice width of 3 408 OFDM Cells. For Data Slice n with $N_{\text{data}}(n)$ data carriers in OFDM symbol l of M_{max} sub-carriers the interleaved vector $A_{m,l} = (a_{m,l,0}, a_{m,l,1}, a_{m,l,2}...a_{m,l,N_{\text{data}}(n)-1})$ is defined by: $$a_{m,l,q} = X_{m,l,H_0(q)}$$ for even symbols of the frame $(l \mod 2 = 0)$ for $q = 0,...,N_{\text{data}}(n)-1$ $$a_{m,l,q} = x_{m,l,H_1(q)}$$ for odd symbols of the frame (/mod 2 = 1) for $q = 0,...,N_{\text{data}}(n)-1$ $H_{0}(q)$ and $H_{1}(q)$ are permutation function based on the sequence R_{1} defined by the following. An $(N_f - 1)$ bit binary word R_i is defined, with $N_f = \log_2 M_{\text{max}}$, where R_i takes the following values: $$i = 0,1: R_{j}[N_{f}-2, N_{f}-3,...,1,0] = 0,0,...,0,0$$ $$i = 2: R_{j}[N_{f}-2, N_{f}-3,...,1,0] = 0,0,...,0,1$$ $$2 < i < M_{\text{max}}: \{ R_{j}[N_{f}-3, N_{f}-4,...,1,0] = R_{j+1}[N_{f}-2, N_{f}-3,...,2,1];$$ $$\text{where: } N_{f} = 12 \text{ and } R_{j}[10] = R_{j+1}[0] \oplus R_{j+1}[2] .$$ A vector R_i is derived from the vector R_i by the bit permutations given in Table 32. Table 32: Bit permutations for the 4K mode | R' _i bit positions | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |-------------------------------|----|----|---|----|---|---|---|---|---|---|---| | R_i bit positions (H_0) | 7 | 10 | 5 | 8 | 1 | 2 | 4 | 9 | 0 | 3 | 6 | | R_i bit positions (H_1) | 6 | 2 | 7 | 10 | 8 | 0 | 3 | 4 | 1 | 9 | 5 | Each permutation function H(q) is defined by the following algorithm: $$q = 0;$$ for $(i = 0; j < M_{\text{max}}; j = j + 1)$ $\{ H(q) = (j \mod 2).2^{N_r - 1} + \sum_{j=0}^{N_r - 2} R_j(j).2^j;$ if $(H(q) < N_{\text{data}}(n)) \quad q = q + 1; \}$ A schematic block diagram of
the algorithm used to generate the permutation function is represented in Figure 38. Figure 38: Frequency interleaver address generation scheme for the 4K mode OFDM The output of the frequency interleaver for Data Slice n is the interleaved vector of Data Cells $A_{m,l} = (a_{m,l,0}, a_{m,l,1}, a_{m,l,2}, ... a_{m,l,N_{\text{data}}(n)-1})$ that is then allocated to Data Cells $V_{m,l,l}$ of symbol / of C2 Frame m according to: $$V_{m,l,B(n)+i} = a_{m,l,i}$$ where B(n) is the location of the first Data Cell of symbol /allocated to slice n and $i = 0,1,2,\ldots,N_{\text{data}}(n)-1$. ## 9.5 Stuffing Data Slices Within an OFDM signal Stuffing Data Slices may be transmitted. The Stuffing Data Slices shall not be signalled within the L1 signalling. Pilots and dummy carriers shall be transmitted at the same positions as in normal Data Slices. The modulation of the cells not mapped to pilots or reserved tones shall carry a mean power value of 1. The transmitter shall ensure a random-like distribution of the modulation values. ### 9.6 Pilot Insertion #### 9.6.1 Introduction Various cells within the OFDM frame are modulated with reference information whose transmitted value is known to the receiver. Cells containing reference information are transmitted at "boosted" power level. These cells are termed scattered, continual and edge pilots. The locations and amplitudes of these pilots are defined in clauses 9.6.2 to 9.6.4. The value of the pilot information is derived from a reference sequence, r_k which is a series of values, one for each transmitted carrier on any given symbol. The reference sequence is defined in clause 9.2.3. The pilots can be used for frame synchronization, frequency synchronization, time synchronization, channel estimation and can also be used to follow the phase noise. Table 33 gives an overview of the different types of pilot and the symbols in which they appear. This clause only describes pilots inserted to Data Symbols i.e. scattered, continual and edge pilots. Preamble pilots are described in clause 9.3.3. Table 33: Presence of the various types of pilots in each type of symbol (X=present) | Symbol | PILOT TYPE | | | | | | | |----------|------------|-----------|------|----------|--|--|--| | | Scattered | Continual | Edge | Preamble | | | | | Preamble | | | | Х | | | | | Data | Х | X | X | | | | | The following clauses specify values for $c_{m,l,k}$ for certain values of m, l and k, where m and l are the C2 Frame and symbol number as previously defined, and k is the OFDM carrier index (see clause 3.2). ### 9.6.2 Scattered pilot insertion Reference information, taken from the reference sequence, is transmitted in scattered pilot cells in every symbol except Preamble Symbol(s) of the C2 Frame. The locations of the scattered pilots are defined in clause 9.6.2.1, their amplitudes are defined in clause 9.6.2.2 and their modulation is defined in clause 9.6.2.3. #### 9.6.2.1 Locations of the scattered pilots The locations of scattered pilots depend only upon the symbol index *l*, carrier index *k* and the GI fraction. A given carrier *k* of the OFDM signal on a given symbol / will be a scattered pilot if the appropriate equation below is satisfied: $$k \operatorname{mod}(D_X \cdot D_Y) = D_X(/\operatorname{mod} D_Y)$$ where: D_{χ} , D_{γ} are defined in table 34. k: 0 RF origin carrier index. /: Data Symbol index. Table 34: Parameters defining the scattered pilot patterns | GI Fraction | Separation of pilot bearing carriers (D_X) | Number of symbols forming one scattered pilot sequence (D_{γ}) | |-------------|--|---| | 1/64 | 12 | 4 | | 1/128 | 24 | 4 | The scattered pilot patterns are illustrated in annex H. #### 9.6.2.2 Amplitudes of the scattered pilots The amplitudes of the scattered pilots, A_{SP} , are fixed as 7/3. This amplitude is commonly used for continual pilots and edge pilots as well. #### 9.6.2.3 Modulation of the scattered pilots The phases of the scattered pilots are derived from the reference sequence given in clause 9.3. The modulation value of the scattered pilots is given by: $$\text{Re}\{c_{m,l,k}\} = A_{SP} 2(1/2 - r_k)$$ $$Im\{ c_{m,l,k} \} = 0.$$ where A_{SP} is as defined in clause 9.6.2.2, r_k is defined in clause 9.3, m is the C2 Frame index, k is the frequency index of the carriers. ## 9.6.3 Continual pilot insertion In addition to the scattered pilots described above, a number of continual pilots are inserted in every symbol of the frame except for Preamble Symbol(s). The number and location of continual pilots are the same for all GI fractions (i.e. for scattered pilot patterns). #### 9.6.3.1 Locations of the continual pilots The continual pilot locations are defined within a block of $K_{L1} = 3\,408$ carriers and this pattern is repeated to support the entire range of possible carriers. The K_{L1} carrier index block is aligned with the L1 signalling block, whose length is also K_{L1} . The continual pilot locations within the K_{L1} carrier index block are defined in table 35. A given carrier index k of the OFDM signal will be a continual pilot if $k \mod K_{L1}$ is matched with one of the numbers in table 34. **Table 35: Continual Pilot Carrier Indices** | Indices | | | | | | | | |---------|-------|-------|-------|-------|-------|-------|-------| | 96 | 216 | 306 | 390 | 450 | 486 | 780 | 804 | | 924 | 1 026 | 1 224 | 1 422 | 1 554 | 1 620 | 1 680 | 1 902 | | 1 956 | 2 016 | 2 142 | 2 220 | 2 310 | 2 424 | 2 466 | 2 736 | | 3 048 | 3 126 | 3 156 | 3 228 | 3 294 | 3 366 | | | ### 9.6.3.2 Amplitudes of the Continual Pilots The amplitudes of the continual pilots, A_{CP} , are fixed as 7/3. This amplitude is commonly used for scattered pilots and edge pilots as well. #### 9.6.3.3 Modulation of the Continual Pilots The phases of the continual pilots are derived from the reference sequence given in clause 9.3. The modulation value for the continual pilots is given by: Re{ $$c_{m,l,k}$$ } = 2 A_{CP} (1/2 - r_k) Im{ $c_{m,l,k}$ } = 0. where r_k is defined in clause 9.3. ## 9.6.4 Edge pilot insertion In addition to the scattered and continual pilots, a number of edge pilots are also inserted at the 'edge' carrier locations in every symbol except Preamble Symbol(s). The number of edge pilots depends upon the number of spectrum Notches within an OFDM signal. #### 9.6.4.1 Locations of the edge pilots There are two kinds of edge carrier; those carriers at the upper and lower extremes of the OFDM spectrum and those carriers either side of a spectrum Notch. The edge pilots are inserted in both cases. The lowest frequency edge pilot of the OFDM spectrum is inserted by replacing potential data and scattered pilot carriers. On the other hand the highest frequency edge pilot of the OFDM spectrum is inserted as an extra carrier to the data carriers. This ensures that the edge pilots are on the scattered pilot bearing carriers. These pilot locations are shown in figure 39. Figure 39: OFDM spectrum edge pilot locations Edge pilots are also placed either side of spectrum Notches. The edge pilot for the lower frequency edge of a Notch is inserted at carrier index $K_{N,min}$ -1, whereas the edge pilot for the higher frequency edge of a Notch is inserted at carrier index $K_{N,max}$ +1. Where $K_{N,min}$ and $K_{N,max}$ are the start and end carrier indices for a spectrum Notch, details are defined in clause 9.4.1.3. These edge pilots will lie on scattered pilot bearing subcarriers. These pilot locations are shown in figure 40. Figure 40: Spectrum Notch edge pilot locations NOTE: The edge pilot locations are always be at integer multiples of D_x . They are scattered pilot bearing carriers. ### 9.6.4.2 Amplitudes of the Edge Pilots The amplitude of the edge pilots and the scattered pilots is 7/3. #### 9.6.4.3 Modulation of the Edge Pilots The modulation of these cells is exactly the same as for the scattered pilots, as defined in clause 9.6.2.3: Re $$\{c_{m,l,k}\} = 2 A_{SP} (1/2 - r_k)$$ Im $\{c_{m,l,k}\} = 0$. ## 9.7 Dummy carrier reservation Some OFDM Cells can be reserved for varying purposes, e.g. PAPR reduction. The amplitudes of these cells can be defined freely, while their power level shall not exceed the power level of pilots within the data OFDM Symbols. In the Data Symbols excluding Preamble Symbols, the set of carriers corresponding to carrier indices defined in table 36 or their circularly shifted set of carriers shall be reserved depending on the OFDM Symbol index of the Data Symbol, when the reserved tones are activated by a relevant L1 signalling part 2, 'RESERVED_TONES'. The amount of shift between two consecutive OFDM Symbols shall be determined by the separation of pilot bearing carriers, D_X and the number of symbols forming one scattered pilot sequence, D_Y (see table 34 in clause 9.6.2.1). Furthermore, the reserved carrier patterns are repeated at every interval of 8 blocks of K_{LT} =3 408 carriers. Thus, in the Data Symbol corresponding to Data Symbol index I of a C2 Frame, the OFDM Cell is a reserved tone if: $$\ell \mod \P \cdot K_{L1} - D_{\chi} \mod D_{\chi} \in S_0 \qquad 0 \le l < L_{Data}$$ where k is the absolute carrier index, L_{data} denotes the number of Data Symbols in a C2 Frame, and S_0 is the set of carrier indices listen in table 36. Positions of reserved carriers within Notches shall be excluded from the set of reserved carriers. Table 36: Reserved carrier indices S_0 ``` Reserved Carrier Indices S_0 161, 243, 296, 405, 493, 584, 697, 741, 821, 934, 1021, 1160, 1215, 1312, 1417, 1462, 1591, 1693, 1729, 1845, 1910, 1982, 2127, 2170, 2339, 2365, 2499, 2529, 2639, 2745, 2864, 2950, 2992, 3119, 3235, 3255, 3559, 3620, 3754, 3835, 3943, 3975, 4061, 4210, 4270, 4371, 4417, 4502, 4640, 4677, 4822, 4904, 5026, 5113, 5173, 5271, 5317, 5426, 5492, 5583, 5740, 5757, 5839, 5935, 6033, 6146,
6212, 6369, 6454, 6557, 6597, 6711, 6983, 7047, 7173, 7202, 7310, 7421, 7451, 7579, 7666, 7785, 7831, 7981, 8060, 8128, 8251, 8326, 8369, 8445, 8569, 8638, 8761, 8873, 8923, 9017, 9104, 9239, 9283, 9368, 9500, 9586, 9683, 9782, 9794, 9908, 9989, 10123, 10327, 10442, 10535, 10658, 10739, 10803, 10925, 11006, 11060, 11198, 11225, 11326, 11474, 11554, 11663, 11723, 11810, 11902, 11987, 12027, 12117, 12261, 12320, 12419, 12532, 12646, 12676, 12808, 12915, 12941, 13067, 13113, 13246, 13360, 13426, 13520, 13811, 13862, 13936, 14073, 14102, 14206, 14305, 14408, 14527, 14555, 14650, 14755, 14816, 14951, 15031, 15107, 15226, 15326, 15392, 15484, 15553, 15623, 15734, 15872, 15943, 16043, 16087, 16201, 16299, 16355, 16444, 16514, 16635, 16723, 16802, 16912, 17150, 17285, 17387, 17488, 17533, 17603, 17708, 17793, 17932, 18026, 18081, 18159, 18285, 18356, 18395, 18532, 18644, 18697, 18761, 18874, 18937, 19107, 19119, 19251, 19379, 19414, 19522, 19619, 19691, 19748, 19875, 19935, 20065, 20109, 20261, 20315, 20559, 20703, 20737, 20876, 20950, 21069, 21106, 21231, 21323, 21379, 21494, 21611, 21680, 21796, 21805, 21958, 22027, 22091, 22167, 22324, 22347, 22459, 22551, 22691, 22761, 22822, 22951, 22981, 23089, 23216, 23290, 23402, 23453, 23529, 23668, 23743, 24019, 24057, 24214, 24249, 24335, 24445, 24554, 24619, 24704, 24761, 24847, 24947, 25089, 25205, 25274, 25352, 25474, 25537, 25612, 25711, 25748, 25874, 25984, 26078, 26155, 26237, 26324, 26378, 26545, 26623, 26720, 26774, 26855, 26953, 27021, 27123 ``` # 10 OFDM generation The function of the OFDM generation module is to take the cells produced by the frame builder, as frequency domain coefficients and to transform them into the frequency domain. #### 10.1 IFFT - OFDM Modulation This clause specifies the OFDM structure to use for each transmission mode. The transmitted signal is organized in frames. Each frame has duration of T_F , and consists of L_F OFDM Symbols. Each symbol is constituted by a set of K_{total} carriers transmitted with a duration T_S . It is composed of two parts: a useful part with duration T_U and a guard interval with duration T_U . The guard interval consists of a cyclic continuation of the useful part, T_U , and is inserted before it. The allowed combinations of FFT size and guard interval are defined in table 38. The symbols in a C2 Frame are numbered from 0 to $L_{\rm F}$ -1. All symbols contain data and reference information. Since the OFDM signal comprises many separately modulated carriers, each symbol can in turn be considered to be divided into cells, each corresponding to the modulation carried on one carrier during one symbol. The carriers are indexed by $K \in [K_{\min}; K_{\max}]$ and determined by K_{\min} and K_{\max} . The spacing between adjacent carriers is $1/T_U$ while the spacing between carriers K_{\min} and K_{\max} are determined by K_{total}/T_U . The emitted signal is described by the following expression: $$\mathbf{S}(t) = \operatorname{Re} \left\{ \sum_{m=0}^{\infty} \left[\frac{1}{\sqrt{K_{total}}} \sum_{l=0}^{L_F-1} \sum_{k=K_{\min}}^{K_{\max}} \mathbf{c}_{m,l,k} \times \psi_{m,l,k}(t) \right] \right\}$$ Where: $$\psi_{m,l,k}(t) = \begin{cases} e^{j2\pi \frac{k}{T_U}(t-\Delta-lT_g-mT_F)} & mT_F + lT_S \le t < mT_F + \P + 1 \\ 0 & \text{otherwise} \end{cases}$$ and: *k* denotes the carrier number; denotes the OFDM Symbol number starting from 0 for the first Preamble Symbol of the frame; *m* denotes the C2 Frame number; K_{total} is the number of transmitted carriers, i.e. $K_{total} = K_{max} - K_{min} + 1$; $L_{\rm F}$ total number of OFDM Symbols per frame (including the preamble); $T_{\rm S}$ is the total symbol duration for all symbols, and $T_{\rm S} = T_{\rm LL} + \Delta$; $T_{\rm II}$ is the active symbol duration defined in table 38; Δ is the duration of the guard interval, see clause 10.2; $c_{m/k}$ is the complex modulation value for carrier k of the OFDM Symbol number / in C2 Frame number m; $T_{\rm F}$ is the duration of a frame, $T_{\rm F} = L_{\rm F} T_{\rm s}$; K_{min} Carrier index of first (lowest frequency) active carrier; K_{max} Carrier index of last (highest frequency) active carrier. The OFDM parameters are summarized in table 38. The values for the various time-related parameters are given in multiples of the Elementary Period T and in microseconds. The Elementary Period T is specified for each channel raster bandwidth in table 37. Table 37: Elementary period as a function of channel raster bandwidth | Channel Raster | "6 MHz" | "8 MHz" | |---------------------|---------|---------| | Elementary period T | 7/48 µs | 7/64 µs | **Table 38: OFDM parameters** | Parameter | "6 MHz"
1/64 | "6 MHz"
1/128 | "8 MHz"
1/64 | "8 MHz"
1/128 | | |---|-----------------|------------------|-----------------|------------------|--| | Number of OFDM carriers per L1 Block K_{L1} | 3 408 | 3 408 | 3 408 | 3 408 | | | Bandwidth of L1 Signalling Block (see note) | 5.71 MHz | 5.71 MHz | 7.61 MHz | 7.61 MHz | | | Duration T_{U} | 4096 <i>T</i> | 4096 <i>T</i> | 4096 <i>T</i> | 4096 <i>T</i> | | | Duration $T_U \mu s$ (see note) | 597.3 | 597.3 | 448 | 448 | | | Carrier spacing 1/T _U (Hz) (see note) | 1 674 | 1 674 | 2 232 | 2 232 | | | Guard Interval Duration Δ/T _u | 64T | 32T | 64T | 32T | | | Guard Interval Duration Δ/T _u μs (see note) | 9.33 | 4.66 | 7 | 3.5 | | | NOTE: Numerical values in italics are approximate values. | | | | | | ### 10.2 Guard interval insertion Two different guard interval fractions ($\Delta/T_{\rm u}$) are defined. Further details are given in table 38 in clause 10.1. ## 10.3 Spectrum characteristics The OFDM Symbols constitute a juxtaposition of equally-spaced orthogonal carriers. The amplitudes and phases of the Data Cell carriers are varying symbol by symbol according to the mapping process previously described. The power spectral density P_k (f) of each carrier at frequency: $$f_k = \frac{k}{T_{ii}}$$ for $K_{\min} \le k \le K_{\max}$ is defined by the following expression: $$P_{k}(f) = \left[\frac{\sin \pi (f - f_{k})T_{s}}{\pi (f - f_{k})T_{s}}\right]^{2}$$ The overall power spectral density of the modulated Data Cell carriers is the sum of the power spectral densities of all these carriers. A theoretical DVB transmission signal spectrum is illustrated in figure 41. The blue curve illustrates the theoretical spectrum of a 7,61 MHz wide signal (The first used subcarrier K_{min} is located at the relative frequency of 0 MHz). The red curve illustrates the lower frequency edge of a 445 MHz wide signal. Because the OFDM Symbol duration is larger than the inverse of the carrier spacing, the main lobe of the power spectral density of each carrier is narrower than twice the carrier spacing. Therefore the spectral density is not constant within the nominal bandwidth. NOTE: This theoretical spectrum takes no account of the variations in power from carrier to carrier caused by the boosting of the pilot carriers. 88 Figure 41: Theoretical DVB-C2 signal spectrum for guard interval fraction 1/128 and different signal bandwidths (8 MHz and 445 MHz (lower edge only)) No specific requirements are set in terms of the spectrum characteristics after amplification and filtering, since it is considered to be more appropriately defined by the relevant standardization authorities, depending on both the regions and the frequency bands in which the C2 System is to be deployed. # Annex A (normative): Addresses of parity bit accumulators for N_{ldpc} = 64 800 Example of interpretation of table A.1. $$\begin{array}{l} \rho_{317} = \rho_{317} \oplus i_0 \quad \rho_{2255} = \rho_{2255} \oplus i_0 \quad \rho_{2324} = \rho_{2324} \oplus i_0 \quad \rho_{2723} = \rho_{2723} \oplus i_0 \quad \rho_{3538} = \rho_{3538} \oplus i_0 \\ \rho_{3576} = \rho_{3576} \oplus i_0 \quad \rho_{6194} = \rho_{6194} \oplus i_0 \quad \rho_{6700} = \rho_{6700} \oplus i_0 \quad \rho_{9101} = \rho_{9101} \oplus i_0 \quad \rho_{10057} = \rho_{10057} \oplus i_0 \\ \rho_{12739} = \rho_{12739} \oplus i_0 \quad \rho_{17407} = \rho_{17407} \oplus i_0 \quad \rho_{21039} = \rho_{21039} \oplus i_0 \\ \rho_{3777} = \rho_{377} \oplus i_0 \quad \rho_{2315} = \rho_{2315} \oplus i_0 \quad \rho_{2384} = \rho_{2384} \oplus i_0 \quad \rho_{2783} = \rho_{2783} \oplus i_0 \quad \rho_{3598} = \rho_{3598} \oplus i_0 \\ \rho_{3636} = \rho_{3636} \oplus i_0 \quad \rho_{6254} = \rho_{6254} \oplus i_0 \quad \rho_{6760} = \rho_{6760} \oplus i_0 \quad \rho_{9161} = \rho_{9161} \oplus i_0 \quad \rho_{10117} = \rho_{10117} \oplus i_0 \\ \rho_{12799} = \rho_{12799} \oplus i_0 \quad \rho_{17467} = \rho_{17467} \oplus i_0 \quad \rho_{21099} = \rho_{21099} \oplus i_0 \\ \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \\ \rho_{21857} = \rho_{21857} \oplus i_{359} \quad \rho_{23795} = \rho_{23795} \oplus i_{359} \quad \rho_{23864} = \rho_{23864} \oplus i_{359} \quad \rho_{24263} = \rho_{24263} \oplus i_{359} \\ \rho_{25078} = \rho_{25078} \oplus i_{359} \quad \rho_{25116} = \rho_{25116} \oplus i_{359} \quad \rho_{27734} = \rho_{27734} \oplus i_{359} \quad \rho_{28240} = \rho_{28240} \oplus i_{359} \\ \rho_{30641} = \rho_{30641} \oplus i_{359} \quad \rho_{31597} = \rho_{31597} \oplus i_{359} \quad \rho_{34279} = \rho_{34279} \oplus i_{359} \quad \rho_{38947} = \rho_{38947} \oplus i_{359} \\ \rho_{42579} = \rho_{42579} \oplus i_{359} \\ \rho_{1958} = \rho_{1958} \oplus i_{360} \quad \rho_{10057} = \rho_{2007} \oplus i_{360} \quad \rho_{3294} = \rho_{3294} \oplus i_{360} \quad \rho_{4394} = \rho_{4394} \oplus i_{360} \quad \rho_{12762} = \rho_{12762} \oplus i_{360} \\ \rho_{14505} = \rho_{14505} \oplus i_{360} \quad \rho_{14593} = \rho_{14593} \oplus i_{360} \quad \rho_{14692} = \rho_{14692} \oplus i_{360} \quad \rho_{16522} = \rho_{16522} \oplus i_{360} \end{array}$$ $\rho_{17737} = \rho_{17737} \oplus i_{360}
\quad \rho_{19245} = \rho_{19245} \oplus i_{360} \quad \rho_{21272} = \rho_{21272} \oplus i_{360} \quad \rho_{21379} = \rho_{21379} \oplus i_{360}$: : : : : : : : **DVB BlueBook A138** Table A.1: Rate 2/3 (*N*_{ldpc} = 64 800) | 317 2255 2324 2723 3538 3576 6194 6700 9101 10057 12739 17407 21039 | 10574 11268 17932 | |--|----------------------| | | 15442 17266 20482 | | | | | 127 860 5001 5633 8644 9282 12690 14644 17553 19511 19681 20954 21002 | 390 3371 8781 | | 2514 2822 5781 6297 8063 9469 9551 11407 11837 12985 15710 20236 20393 | 10512 12216 17180 | | 1565 3106 4659 4926 6495 6872 7343 8720 15785 16434 16727 19884 21325 | 4309 14068 15783 | | 706 3220 8568 10896 12486 13663 16398 16599 19475 19781 20625 20961 21335 | 3971 11673 20009 | | 4257 10449 12406 14561 16049 16522 17214 18029 18033 18802 19062 19526 20748 | 9259 14270 17199 | | 412 433 558 2614 2978 4157 6584 9320 11683 11819 13024 14486 16860 | 2947 5852 20101 | | 777 5906 7403 8550 8717 8770 11436 12846 13629 14755 15688 16392 16419 | 3965 9722 15363 | | | | | 4093 5045 6037 7248 8633 9771 10260 10809 11326 12072 17516 19344 19938 | 1429 5689 16771 | | | 6101 6849 12781 | | 1085 2434 5816 7151 8050 9422 10884 12728 15353 17733 18140 18729 20920 | 3676 9347 18761 | | 856 1690 12787 | 350 11659 18342 | | 6532 7357 9151 | 5961 14803 16123 | | 4210 16615 18152 | 2113 9163 13443 | | 11494 14036 17470 | 2155 9808 12885 | | | | | | 2861 7988 11031 | | 1778 6973 10739 | 7309 9220 20745 | | 4347 9570 18748 | 6834 8742 11977 | | 2189 11942 20666 | 2133 12908 14704 | | 3868 7526 17706 | 10170 13809 18153 | | 8780 14796 18268 | 13464 14787 14975 | | 160 16232 17399 | 799 1107 3789 | | 1285 2003 18922 | 3571 8176 10165 | | | | | 4658 17331 20361 | 5433 13446 15481 | | 2765 4862 5875 | 3351 6767 12840 | | 4565 5521 8759 | 8950 8974 11650 | | 3484 7305 15829 | 1430 4250 21332 | | 5024 17730 17879 | 6283 10628 15050 | | 7031 12346 15024 | 8632 14404 16916 | | 179 6365 11352 | 6509 10702 16278 | | 2490 3143 5098 | 15900 16395 17995 | | | | | 2643 3101 21259 | 8031 18420 19733 | | 4315 4724 13130 | 3747 4634 17087 | | 594 17365 18322 | 4453 6297 16262 | | 5983 8597 9627 | 2792 3513 17031 | | 10837 15102 20876 | 14846 20893 21563 | | 10448 20418 21478 | 17220 20436 21337 | | 3848 12029 15228 | 275 4107 10497 | | 708 5652 13146 | 3536 7520 10027 | | 5998 7534 16117 | 14089 14943 19455 | | 2098 13201 18317 | 1965 3931 21104 | | | | | 9186 14548 17776 | 2439 11565 17932 | | 5246 10398 18597 | 154 15279 21414 | | 3083 4944 21021 | 10017 11269 16546 | | 13726 18495 19921 | 7169 10161 16928 | | 6736 10811 17545 | 10284 16791 20655 | | 10084 12411 14432 | 36 3175 8475 | | | 2605 16269 19290 | | 679 9878 13547 | 8947 9178 15420 | | 3422 9910 20194 | 5687 9156 12408 | | | | | 3640 3701 10046 | 8096 9738 14711 | | 5862 10134 11498 | 4935 8093 19266 | | | 2667 10062 15972 | | 1073 3012 16427 | 6389 11318 14417 | | 5527 20113 20883 | 8800 18137 18434 | | 7058 12924 15151 | 5824 5927 15314 | | | 6056 13168 15179 | | 772 7711 12723 | 3284 13138 18919 | | 555 13816 15376 | 13115 17259 17332 | | | 1.0.10 11.200 11.002 | # Table A.2: Rate 3/4 (*N*_{ldpc} = 64 800) | 0 6385 7901 14611 13389 11200 3252 5243 2504 2722 821 7374 1 13592 6980 5797 821 1351 2721 272 74445 73 137 1360 1708 6359 13444 1 13692 6980 5797 821 1351 272 1297 14445 13137 13600 1708 6359 13444 1 7876 11407 14569 6880 1829 1231 130 16000 2831 230 1524 14670 2 7 1600 5890 15876 9446 12216 1400 6303 541 14181 13025 7358 2 8 1600 6890 15876 9446 12216 1400 6303 541 14181 13025 7358 2 8 1600 6890 15876 9446 12216 1400 6303 541 14181 13025 7358 2 8 1600 6890 15876 9446 12216 1400 6303 541 14181 13025 7358 2 8 1600 7580 7580 7580 7580 7580 7580 7580 75 | | | |--|---|----------------| | 2 7862 7977 6321 13612 12197 14449 15137 13860 1708 6399 13444 3 1560 11304 6575 12422 3464 8312 8772 7306 5705 14327 7866 4 7626 11407 14599 8689 1628 2113 10809 9283 1230 15241 4870 5 1610 6569 1576 9446 12515 1400 6303 5411 14181 13925 73559 8 16025 7632 8 16409 8880 3405 7883 7982 15338 6970 10388 10278 9675 4861 3 16407 14599 9689 1628 2113 10809 9283 1220 15241 4870 8 16408 8880 3405 7883 7982 15338 6970 10388 10278 9675 4861 3 16407 14407 14599 9689 1628 2113 10809 9283 1278 9675 4861 3 16407 14407 1459 1459 1459 1459 1459 1459 1459 1459 | 0 6385 7901 14611 13389 11200 3252 5243 2504 2722 821 7374 | 23 5865 1768 | | 2 7862 7977 6321 13612 12197 14449 15137 13860 1708 6399 13444 3 1560 11304 6575 12422 3464 8312 8772 7306 5705 14327 7866 4 7626 11407 14599 8689 1628 2113 10809 9283 1230 15241 4870 5 1610 6569 1576 9446 12515 1400 6303 5411 14181 13925 73559 8 16025 7632 8 16409 8880 3405 7883 7982 15338 6970 10388 10278 9675 4861 3 16407 14599 9689 1628 2113 10809 9283 1220 15241 4870 8 16408 8880 3405 7883 7982 15338 6970 10388 10278 9675 4861 3 16407 14407 14599 9689 1628 2113 10809 9283 1278 9675 4861 3 16407 14407 1459 1459 1459 1459 1459 1459 1459 1459 | 1 11359 2698 357 13824 12772 7244 6752 15310 852 2001 11417 | 24 2655 14957 | | 3 1500 11804 6975 13292 2946 3812 8777 27306 5795 14327 7866 7 4626 11407 14599 6898 1628 1213 10809 9288 1224 1220 15224 14870 7 1626 1407 1459 9889 1628 1213 10809 9288 1224 120 1524 14870 8 1610 5899 15876 9446 12515 1400 6303 5411 14181 13925 7358 8 16025 78372 1452 1538 5970 10388 10278 6975 4651 9 4655 14128 9 623 6655 4755 546 9781 2071 7312 3399 7250 4952 12505 9 223 6655 4755 546 9781 2071 7312 3399 7250 4952 12505 9 223 6655 4755 546 9781 2071 7312 3399 7250 4952 12505 9 223 6655 4755 546 9781 2071 7312 3399 7250 4952 12505 9 223 6655 4755 546 9781 2071 7312 3399 7250 4952 12505 9 223 6655 4755 546 9781 2071 7312 3399 7250 4952 12505 9 223 6655 4755 546 9781 2071 7312 3399 7250 4952 12505 9 223 6655 8736 4917 16874 6120 2134 15944 14786 1750 2692 1480 1 2 3655 8736 4917 16874 6120 2134 15944 14786 1750 2692 1480 1 38 316 3820 568 9823 6757 80 9757 4216 15658 813244 2622 2 36 2905 5257 1 4 14463 4852 15733 3041 11193 12860 13673 8152 6551 15108 8758 3 7 9406 4791 1 3009 13352 1 4 1463 6906 1 5 349 11941 1 8 2009 14460 4 1 7820 15380 9 221 5891 1 8 2009 14460 4 1 7820 15380 9 27 7490 14559 9 27 747 1738 9 1 747 767 9 27 7490 14559 9 27 747 1738 9 1 7768 1400 9 2 77490 14559 9 2 777 1738 9 1 7768 1400 9 2 77490 14559 9 2 777 1738 9 1 7768 1400 9 1 7768 1400 9 1 7776 1400 9 1 7776 1400 9 1 7776 1400 9 1 7776 1400 9 1 7776 1400 9 1 7777 1408 9 1 7778 1400 9 | | | | 4 7626 11407 14599 9689 1628 2113 10809 9283 1220 15241 4870 5 1610 5699 15679 9448 1251 61400 6303 5411 14181 13925 7358 6 4059 8836 3405 7853 7992 15336 5970 10388 10278 9575 4651 7 4441 3963 1532 1091 12638 7459 12030 1222 1201 5212 406 8 0007 8411 5771 3497 843 14202 875 9186 6225 13908 3563 8 0007 8411 5771 3497 843 14202 875 9186 6225 13908 3563 8 0007 8411 5771 3497 843 14202 875 9186 6225 13908 3563 8 0007 8411 5771 3497 843 14202 875 9186 6225 13908 3563 8 0007 8411 5771 3497 843 14202 875 9186 6225 13908 3563 8 0007 8411 5771 3497 843 14202 875 9186 6225 13908 3563 8 11 1986 1088 1090 7090 8685 13134 10158 7183 485 7425 9238 8 13 38 38 38 38 38 38 38 38 38 38 38 38 38 | | | | 5 1610 5699 15876 9446 12515 1400 6303 5411 14181 13025 7358 | | | | 8 A059 8836 3405 7853 7992 16336 6970 10368 10278 9676 4661 | | | |
7.4441 9863 9165 2109 12683 7459 12030 12221 629 15212 406 8007 8411 5771 3497 534 1202 875 9186 925 13090 3563 9.3232 6625 4795 546 9781 2071 7312 3399 7250 4932 12652 9.3232 6625 4795 546 9781 2071 7312 3399 7250 4932 12652 9.3232 6625 4795 546 9781 2071 7312 3399 7250 4932 12652 9.3232 6625 4795 546 9781 2071 7312 3399 7250 4932 12652 9.3252 6625 4795 546 9781 2071 7312 3399 7250 4932 12652 9.3252 663 73 9481 1592 15 7558 11046 10615 11545 14784 7961 15619 9.3252 663 73 9481 1597 15753 341 11193 12860 13673 8152 6551 15108 8758 13.8316 3320 505 8923 6757 806 7957 4216 15088 13244 2862 13.8316 3320 505 8923 6757 806 7957 4216 15088 13244 2862 14.4463 4825 1573 3041 11193 12860 13673 8152 6551 15108 8758 13.8316 11981 13.9316 13820 509 8923 6757 806 7957 4216 15088 1324 2862 14.418 6248 12.2666 13875 12.2666 13875 12.2766 13875 12.2767 138 12.2061 1382 13845 14.418 1482 14.418 1482 14.418 1482 14.418 1482 14.418 1482 14.418 1484 14.418 148 | | | | 8 8007 8411 5771 3487 543 14202 875 9186 6225 13908 3563 9 3232 6625 4795 546 9781 2077 3731 2399 7250 4992 12652 10 8820 10088 11090 7089 6586 13134 10168 7183 488 7455 9238 11 1903 10818 1192 15 7558 11046 10615 11545 41784 7961 15619 12 3655 8736 4917 15874 5129 2134 15944 14768 7150 2692 1469 13 3816 3820 505 8923 6775 806 7597 4216 15689 13244 2622 14 14463 4852 15733 3041 11193 12860 13673 8152 6551 15108 8758 13 149 11981 15 1349 11981 15 1349 11981 16 13416 6906 17 13098 13352 40 9477 13098 13352 40 9476 14777 18 2009 14400 41 7820 15380 42 1179 7398 42 1179 7398 42 1179 7398 42 1179 7398 42 1179 7398 42 1179 7398 42 14172 2967 42 7677 19023 42 14172 2967 43 779 10459 45 777 790 27 45 777 9023 46 6739 13870 47 7785 7400 47 7785 | 6 4059 8836 3405 7853 7992 15336 5970 10368 10278 9675 4651 | 29 4655 14128 | | 9.3232 6625 4795 546 9781 2071 7312 3399 7250 4932 12652 10 8820 10088 1109 07069 6686 51314 0108 7183 488 7455 9238 11 1903 10818 119 215 7558 11046 10615 11545 14784 7961 15619 23 655 873 4491 715874 5129 2134 15944 14786 7150 2692 1469 13 8316 3820 505 8923 6757 806 7957 4216 15589 13244 2622 14 14463 4825 15733 3041 11193 12860 13673 8152 6561 15108 8758 15 3149 11981 16 13416 6906 17 13098 13352 40 8476 14717 18 2009 14460 18 7207 4314 20 3312 3945 21 4416 6248 22 2666 13975 23 757 19023 21 4416 6248 24 7703 6216 25 767 19023 27 771 9023 27 771 9023 27 771 9023 27 771 9023 27 771 9023 27 771 9023 27 771 9023 27 771 9023 27 771 9023 27 771 9023 27 771 9023 27 771 9023 27 771 9023 27 771 9024 28 657 2466 28 6590 7248 28 6590 7248 28 6590 12834 39 370 3152 31 13917 4365 30 30 477 7057 30 3477 905 30 3477 9152 31 13917 4365 30 30 477 9156 30 3477 905 30 3477 9152 31 13917 4365 30 60 60 60 60 60 60 60 60 60 60 60 60 60 | 7 4441 3963 9153 2109 12683 7459 12030 12221 629 15212 406 | 30 9584 13123 | | 10 8820 10088 11090 7086 6585 13134 10168 7183 488 7455 9238 11 9030 1081 11921 57585 11004 10161 15154 14784 7961 15619 12 3055 8736 4917 15874 5129 2134 15944 14768 7150 2692 1469 13 3016 3920 505 8923 6775 906 7957 4216 15589 13244 2622 14 14463 4852 15733 3041 11193 12860 13673 8152 6551 15108 8758 15 3149 11981 16 13416 6906 17 13098 13352 40 84771 1477 13098 13352 40 84771 14777 13098 13352 40 84771 14777 13098 13352 40 84771 14777 13098 13352 40 84771 14777 13098 13352 40 84781 14777 1478 1478 1478 1478 1478 14 | 8 6007 8411 5771 3497 543 14202 875 9186 6235 13908 3563 | 31 13987 9597 | | 10 8820 10088 11090 7086 6585 13134 10168 7183 488 7455 9238 11 9030 1081 11921 57585 11004 10161 15154 14784 7961 15619 12 3055 8736 4917 15874 5129 2134 15944 14768 7150 2692 1469 13 3016 3920 505 8923 6775 906 7957 4216 15589 13244 2622 14 14463 4852 15733 3041 11193 12860 13673 8152 6551 15108 8758 15 3149 11981 16 13416 6906 17 13098 13352 40 84771 1477 13098 13352 40 84771 14777 13098 13352 40 84771 14777 13098 13352 40 84771 14777 13098 13352 40 84771 14777 13098 13352 40 84781 14777 1478 1478 1478 1478 1478 14 | 9 3232 6625 4795 546 9781 2071 7312 3399 7250 4932 12652 | 32 15409 12110 | | 11 1903 10818 119 215 7558 11046 10615 11545 14784 7961 15619 13 8365 8798 4917 15874 5122 134 15944 14768 1750 2062 1469 13 8316 3820 505 8923 6767 806 7957 4216 15589 13244 2622 13 63 163 820 505 8923 6767 806 7957 4216 15589 13244 2622 13 63 14461 1981 13 14463 4852 15733 3041 11193 12880 13673 8152 6551 15108 8758 13 1449 11981 15 3149 11981 15 2009 14460 19 7207 4314 20 1179 7393 21 4418 6248 21 179 7393 21 4418 6248 24 1179 7393 24 4417 2967 25 7577 9023 27 477 9023 27 7479 1023 28 727 7492 28 727 748 28 727 748 28 727 748 28 727 748 29 72 748 29 72 748 20 72 748 | | | | 12 385 8736 4917 15874 5129 2134 15944 14768 7150 2692 1469 13 8316 3820 505 8923 6757 806 7957 2421 615598 13244 2622 13 143483 4852 15733 3041 11193 12860 13673 8152 6551 15108 8758 13 149 11943 15 13449 11943 15 13449 11943 15 13456 6906 19 2812 8521 17 13098 13352 18 2009 14460 19 7207 4314 19 7207 4314 20 3312 3945 14 416 6248 14 7703 6216 22 2666 13975 0 3477 7067 23 757 19023 24 14172 2967 27 777 138 26 6135 13670 4 7785 1400 27 7490 14559 28 8567 2466 6 2494 7703 29 8599 12634 20 3347 3152 31 3947 1482 31 13917 4365 30 10973 1482 31 1931 1382 264 32 244 1370 30 10973 1482 31 1931 13949 41 7707 7842 52 8676 7902 39 470 3152 31 528 115049 10 1810 904 31 1819 17667 31 1819 17667 31 1819 17667 31 1819 17667 31 1849 41 7707 7842 42 1417 2967 52 1676 7902 33 470 3152 43 2846 13167 53 110973 1482 41 11133 2924 44 48 60 60 60 60 60 60 60 60 60 60 60 60 60 | | | | 18 8216 8220 605 8922 8767 806 7957 4216 15589 13244 2622 18 14463 4852 15733 3041 11193 12860 13673 8152 6551 15108 8758 18 13416 6906 17 13088 13352 40 8476 14717 18 2000 14460 19 7207 4314 20 1179 7939 20 3312 3945 21 4418 6248 22 2669 13975 23 757 9023 24 14172 2967 25 757 9023 26 13351 3670 27 7490 14559 25 727 7138 26 1351 3670 27 7490 14559 25 727 7138 27 7490 14559 26 727 7458 27 7490 14559 28 757 7466 29 85697 1248 28 11397 74365 29 8599 12834 20 72 7490 14559 29 8599 12834 20 72 7490 14559 20 8697 1248 21 13917 4365 21 13917 4365 21 13917 4365 21 13917 4365 21 13918 4382 21 13917 4365 21 13918 4382 21 13917 4365 21 13918 4368 21 13918 4388 21
13918 4988 21 2918 4438 21 2918 4438 21 2918 4438 21 2918 14438 21 2918 14438 21 2918 14438 21 2918 14438 21 2918 14438 21 2918 14438 21 2918 14438 21 2918 14438 21 2918 14438 21 2918 14438 21 2918 14438 | | | | 14 14483 4852 15733 3041 11193 12860 13673 8152 6551 15108 8768 37 9406 4791 38 11111 4854 16 13416 6906 39 2812 8521 17 13088 13352 40 8476 14717 18 2009 14460 41 7820 15360 42 1179 7939 20 3312 3945 43 2357 8678 44 1706 226 15360 47 7067 23 257 8678 44 1706 226 15360 47 7067 23 257 8678 44 1703 6216 22 2669 13975 0 3477 7067 23 7571 9023 1 3931 13845 24 14172 2967 2 7675 12899 2 7675 12899 2 7771 7138 3 1754 8187 2 6 133 13670 4 7785 1400 2 7490 14559 5 2913 5891 2 8 8657 2466 6 2494 7703 2 8 8697 2466 6 2494 7703 2 8 8697 1283 3 15973 1482 3 13973 1482 3 13973 1482 3 13973 1482 3 13973 1482 3 13973 1482 3 13973 1482 3 13973 1482 3 1133 2924 3 2 26024 13730 10 1810 904 3 1 1332 2924 3 2 4 2 4 4 1367 3 1 2 570 3 1 3 1 4 1 2 5 70 3 1 3 1 3 1 4 1 2 5 70 3 1 3 1 3 1 4 1 2 5 70 3 1 3 1 3 1 3 1 4 1 2 5 70 3 1 3 1 3 1 3 1 4 1 2 5 70 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 | | | | 18 3149 11981 18 3149 11981 18 349 11980 18 13416 19006 39 2812 8521 17 13098 13352 40 8476 14717 18 2009 14460 41 7820 15360 19 7207 4314 42 1179 7939 23 3312 3945 21 4418 8248 43 2357 8678 21 4418 8248 44 7703 8216 22 8691 3975 23 7571 9023 23 7571 9023 23 7571 9023 24 14172 2967 25 7571 79023 26 1335 13361 13345 24 14172 2967 25 7271 7138 3 1754 8187 26 16135 13670 27 7490 14559 59 128 344 77 757 1400 27 7490 14559 59 128 344 77 2576 7902 30 3470 3152 31 3931 1345 24 8667 2466 26 949 47703 28 8699 12834 7 2576 7902 30 3470 3152 31 13917 4365 9 10426 11935 25 6024 13730 31 1918 1940 33 10973 14182 41 11332 9264 34 2464 13167 35 2881 15049 13 14916 2650 36 1103 1849 37 2058 1609 15 6009 15 6009 15 6009 13 6009 16 6009 17 8146 18 12 12 1312 3570 39 1431 7667 17 8509 4648 40 11617 8146 18 12 12 1412 2686 0 102 1284 1174 12686 0 102 1284 1174 12686 0 102 1284 1179 1498 1179 1499 1180 1499 13 14996 14 14588 11218 19 6749 12443 14 1568 11793 14 1174 12686 0 102 1284 1174 12866 1179 1379 1499 13 1499 15 1499 13 1499 17 1499 14 1586 1179 14 1586 11793 15 1415 1416 16 17 17 1850 1446 17 1879 1499 18 11791 18 11791 18 11717 18 1179 1179 18 | | | | 16 13416 6906 39 2812 8521 17 13088 13352 40 8476 14717 18 2009 14460 41 7820 15380 19 7207 4314 42 1179 7839 20 3312 3945 43 2857 8678 21 4418 8248 42 7703 8216 22 8689 13975 0 3477 7067 23 7871 9023 13 3434 52 28 869 13975 2771 7138 2787 9790 22 81 13331 13445 24 14172 2967 2 7875 12899 25 7727 7138 2 16 135 71 35 8187 2 7891 14859 2 8675 7466 5 2494 7703 29 8699 12834 2 8675 7466 6 2494 7703 2 8699 12834 2 8699 128 | 14 14463 4852 15733 3041 11193 12860 13673 8152 6551 15108 8758 | 37 9406 4791 | | 17 13098 13352 | 15 3149 11981 | 38 11111 4854 | | 17 13098 13352 | 16 13416 6906 | 39 2812 8521 | | 18 2009 14460 | 17 13098 13352 | 40 8476 14717 | | 19 7207 4314 | | | | 20 3312 3945 21 4418 6248 44 770 6216 22 2669 13975 0 3477 7067 23 7571 9023 24 1417 2067 25 7671 19023 24 1417 2067 2 7676 12899 25 7271 7138 26 6135 13670 27 7490 14559 28 6637 2466 26 62 494 7703 28 8569 12834 28 7257 2466 28 8567 2466 30 3470 3152 31 3917 4365 31 13917 4365 31 13917 4365 31 13917 4365 31 13917 4365 31 13917 4365 31 13917 4365 31 13918 4364 31 13918 4364 31 2686 4364 31 13917 4365 31 13918 4366 32 8482 11588 31 13917 4365 31 13918 4368 31 13918 43918 43918 4398 31 14668 11289 31 14918 33818 31 14918 33818 31 14918 33818 31 14918 33818 31 14918 33818 31 14918 33818 31 14918 33818 31 14918 33818 31 14918 33818 31 14918 33818 31 14918 33818 31 14918 34818 3 | | | | 21 4418 6248 | | | | 22 2666 13975 0 3477 7067 23 7571 9023 1 3931 13845 24 14172 2667 2 7675 12899 25 7571 9023 3 13754 8187 2 7675 12899 25 7271 7138 3 1754 8187 2 6 6135 13670 4 7785 1400 4 7785 1400 2 77490 14559 5 9213 5891 5891 5 9213 5891 5891 5 9213 5891 5891 5891 5891 5891 5891 5891 5891 | | | | 22 7571 9023 24 14172 2987 2 2 7675 12899 25 7271 7138 3 1754 8187 26 6135 13670 4 7785 1400 27 7490 14559 5 9213 55891 28 8687 2466 6 2494 7703 28 8589 12834 7 2576 7802 30 3470 3152 8 84821 15682 31 13917 4365 9 10426 11935 32 6024 13730 10 1810 904 33 10973 14182 31 10973 14182 31 13913 14916 2550 36 1403 1849 37 2586 1609 36 1403 1849 37 2658 1609 38 1401 176 1801 1801 1801 1801 1801 1801 1801 180 | | | | 2 7675 12899 2 7720 1738 2 6 6135 13670 3 1754 8187 2 6 6135 13670 4 7785 1400 2 77490 14559 5 9213 5891 2 8857 2466 6 2494 7703 2 8 899 12834 7 2576 7802 3 3470 3152 8 4821 15682 31 13917 4365 9 10426 11935 2 6024 13730 10 1810 904 33 10973 14182 11
11332 9264 3 2484 13167 12 11312 3570 35 5281 15049 13 14916 2650 33 1103 1849 14 7679 7842 37 2058 1069 15 6089 13084 38 9654 6095 16 3938 2751 39 14317 7667 40 15617 8146 40 15617 8146 40 15617 8146 40 15617 8146 41 1741 2686 40 15617 8146 41 1741 2686 40 12 2848 13850 40 1022 1264 41 1741 2686 41 28 488 13850 41 1793 43 1695 43 1696 43 28 1770 44 11741 2686 59 18 19 19 19 19 19 19 19 19 19 19 19 19 19 | 22 2669 13975 | 0 3477 7067 | | 25 7271 7138 | 23 7571 9023 | 1 3931 13845 | | 25 7271 7138 | 24 14172 2967 | 2 7675 12899 | | 28 6135 13670 27 7400 14559 5 2915 8891 28 8657 2466 6 2494 7703 29 8599 12834 7 2576 7902 30 3470 3152 8 4821 15682 31 13917 4365 9 10426 11935 32 6024 13730 10 1810 904 33 10973 14182 11 1332 9264 34 2464 13167 12 1311 2570 35 5281 15049 35 16103 1849 37 2058 1069 15 6089 13084 39 9654 6095 16 6089 13084 39 9654 6095 16 13 938 2751 39 14317 7667 17 8509 4648 40 15617 8146 18 12204 8917 44 1588 11218 19 5749 12443 42 13660 6243 42 13 1466 42 13 1440 4014 44 11741 2686 10 1022 1264 11 12604 9965 22 8488 13850 10 1022 1264 11 12604 9965 23 13 15 1793 26 6578 8564 28 11793 29 16 6578 8564 31 1593 31 16 11793 29 16 6578 14058 6 7922 16079 29 13 1876 6692 11 1344 4018 21 14947 396 6 7922 16079 29 13 1876 6692 11 15465 1763 30 11857 1186 31 1545 1763 31 1498 1493 31 1495 11493 31 1495 11493 31 1495 11493 31 1495 11493 31 1495 11493 31 1496 11493 31 1497 1138 31 1496 11493 31 1497 1138 31 1496 11493 31 1497 1138 31 1496 11493 31 1497 1138 31 1496 11493 31 1497 1138 31 1496 11493 31 1497 1139 31 1497 1139 31 1497 1139 31 1497 1139 31 1497 1139 31 1497 1139 31 1497 1139 31 1497 1149 31 1497 1149 31 1497 1149 31 1497 1149 31 1497 1149 31 1497 1149 31 1497 11445 31 1497 11445 31 1498 1149 31 1498 1149 31 1498 1149 31 1498 1149 31 1498 1149 31 1498 1149 31 1498 1149 31 1498 1149 31 1498 1149 31 1498 1149 31 1498 1149 31 1499 1149 31 1499 1149 31 1499 1149 31 1499 1149 31 1499 1149 31 1499 1149 31 1499 1149 31 1499 1149 31 1499 1149 31 1499 1149 31 1499 1144 31 1428 31 1421 31 1421 31 1426 1149 1146 31 1426 1149 31 1427 31 14426 1146 31 14426 1149 31 14426 1149 31 14426 1149 31 14426 1149 31 14426 1149 31 14426 1149 31 14426 1149 31 14426 1149 31 14426 1149 31 14426 1149 31 14426 1149 31 14426 1149 31 14426 114465 31 1499 114465 31 1499 114465 31 1499 114465 31 1499 11446 | 25 7271 7138 | 3 1754 8187 | | 27 7490 14559 28 8657 2466 30 3470 3152 28 8699 12834 30 3470 3152 30 3470 3152 30 3470 3152 30 3470 3152 30 360 31 3917 4365 30 101810 904 31 101810 904 31 101810 904 31 101810 904 31 101810 904 31 101810 904 31 101810 904 31 14182 31 11332 9264 32 42464 13167 32 5084 13167 33 10873 14482 31 15049 31 14916 2650 33 1103 1849 31 147 6679 7842 37 2088 1069 38 1608 39 1634 6095 30 1103 1849 31 17667 41 18 1930 82751 39 14311 7667 41 17 8509 4648 40 15617 8146 40 15617 8146 41 18 12204 8917 41 4588 11218 42 13660 6243 42 13660 6243 42 13660 6243 42 13660 6243 42 13660 6243 42 13660 6243 43 11 1414 2686 42 28 488 13850 40 1022 1264 41 1741 2686 42 28 488 13850 41 12604 9965 42 14 4942 7126 42 28 17707 42 14896 43 154 154 494 7126 44 5578 154 494 7136 45 5678 1664 45 5678 1664 47 17 18 18 12 18 18 18 18 18 18 18 18 18 18 18 18 18 | | | | 28 8657 2466 29 8599 12834 7 2576 7902 30 3470 3152 8 4521 15682 31 13917 4365 9 10426 11935 32 6024 13730 10 1810 904 33 10973 14182 11 11332 9264 42 4246 13167 35 5281 15049 13 14916 2850 36 1103 1849 14 7679 7842 37 2058 1069 15 6089 15 6089 13084 43 89654 6095 16 3938 2751 40 14581 17667 17 859 4648 40 15617 8146 40 15617 8146 41 11741 2686 40 15617 8146 41 11741 2686 41 12604 9965 42 14144 434 43 8578 7874 41 11740 2866 41 12604 9965 42 14194 27126 42 2217 2707 42 15 483 8863 43 3156 11793 43 6678 8564 44 5687 1408 45 6978 14068 46 678 8564 46 678 22 16079 47 15087 12138 48 5055 6470 49 1187 1188 40 1487 1188 41 1189 1189 41 11721 41 14 14 14 14 14 14 14 14 14 14 14 14 1 | | | | 29 8599 12834 30 3470 3152 31 3317 4365 31 319317 4365 31 10 1810 904 33 10973 14182 31 131317 4365 31 10 1810 904 33 10973 14182 31 11 11332 9264 34 2464 13167 31 12 11312 3570 35 5281 15049 36 1103 1849 37 2058 1069 36 1103 1849 37 2058 1069 38 9654 6095 39 14 7679 7842 39 14311 7667 17 8509 4648 40 15617 8146 41 81212 42 13660 6243 42 13660 6243 43 8578 7874 44 11741 2686 42 12 8488 13850 40 1022 1264 41 11741 2686 42 22 4888 13850 40 1022 1264 53 3156 11793 54 36 11493 55 6782 14058 56 978 14058 56 978 14058 56 978 14058 56 978 14058 56 978 14058 56 978 14932 57 1186 57 1186 58 5055 6470 59 1387 44932 59 1387 44939 59 1387 6692 71 5007 12138 59 1368 1793 59 12687 14932 59 1387 6692 71 5007 12138 59 1368 1793 59 1368 179 | | | | 30 3470 3152 31 13917 4365 32 6024 13730 31 13917 4365 32 6024 13730 31 10973 14182 31 111332 9264 34 2464 13167 35 5281 15049 35 5281 15049 36 1103 1849 14 7679 7842 37 2058 1069 31 94311 7667 16 9383 2751 39 14311 7667 17 8508 13084 40 15617 8146 40 15617 8146 40 15617 8146 40 15617 8146 41 18 12204 8917 44 14588 11218 42 13660 6243 42 13 14914 2084 42 13 14914 2084 43 15 1498 44 11741 2686 45 22 8488 13850 46 10 22 1264 47 1494 27126 48 23 1730 14896 49 10 12604 9965 40 14942 7126 40 156119 3184 41 1741 2686 41 12604 9965 42 14942 7126 43 1730 14896 45 14942 7126 46 15617 8144 47 1474 1474 1474 1488 48 18 18 18 18 18 18 18 18 18 18 18 18 18 | | | | 31 13917 4365 32 6024 13730 31 10973 14182 31 10973 14182 31 111332 9264 32 4246 13167 12 11312 3570 35 5281 15049 36 1103 1849 37 2058 1069 31 1496 2650 38 1965 46095 39 145 6095 39 14311 7667 17 8509 4648 40 15617 8146 41 812204 8917 41 4588 11218 42 13660 6243 42 13660 6243 43 8578 7874 42 11344 4014 44 11741 2686 42 28 488 13850 41 01022 1264 42 127 2707 43 13486 32 42 14942 7126 43 25 14943 3686 3 43 3156 11793 43 6578 4564 43 54 1514 56978 14058 57978 14058 57978 14058 57978 14058 57978 14058 57978 14058 57978 14058 57978 14058 57978 14058 57978 14058 57978 14058 57978 14058 57978 14058 57978 14058 57978 14058 57978 14058 57978 14058 57978 14058 57978 14058 57978 14058 57078 14058 57078 14058 57078 | | | | 32 6024 13730 | | | | 33 10973 14182 34 2464 13167 35 5281 15049 36 1103 1849 47 679 7842 37 2058 1069 38 9654 6095 39 14311 7667 41 688 13204 40 15617 8146 41 81 12204 8917 41 4588 11218 42 13660 6243 43 8578 7874 42 11 1344 4014 44 11741 2686 42 28 488 13850 40 1022 1264 41 23 1360 4965 43 34 1544 44 11741 2686 42 28 488 13850 43 3 1567 11793 43 26 6578 8564 43 54 1514 56978 14058 56978 14058 56978 14058 56978 14058 57 15079 58 16079 58
16079 58 16079 | 31 13917 4365 | 9 10426 11935 | | 34 2464 31367 12 11312 3570 36 1103 1849 14 7679 7842 37 2058 1069 15 6089 13084 38 9654 6095 16 3938 2751 39 14311 7667 17 8509 4648 40 15617 8146 18 12204 8917 41 4588 11218 19 5749 12443 42 13660 6243 20 12613 4431 43 878 7874 21 1344 4014 44 411741 2686 22 8488 13850 0 1022 1264 23 1730 14896 1 12604 9965 24 14942 7126 2 8217 2707 25 14983 8863 3 3156 11793 26 6578 8664 4 354 1514 27 4947 396 5 6978 14058 28 297 12805 6 7922 16079 29 13876 6692 7 15087 12138 30 11857 11186 8 5053 6470 31 14395 11493 9 10 15488 1763 33 13462 7428 11 8 121 1721 34 14526 13119 12 12431 549 35 2535 11243 13 1419 7091 36 6455 12690 14 1426 8415 37 6872 9334 15 9783 7604 38 1537 14023 16 6295 11329 39 8101 10187 17 1409 12061 40 11963 | 32 6024 13730 | 10 1810 904 | | 35 5281 15049 36 1103 1849 37 2058 1069 38 9654 6095 39 143 7679 7842 37 14311 7667 40 15617 8146 41 163938 2751 41 4588 11218 42 13660 6243 43 8578 7874 43 1578 7874 44 11741 2686 45 12204 8915 46 112604 9965 47 12604 9965 48 12604 9965 48 127 2707 49 128 128 128 128 128 128 128 128 128 128 | 33 10973 14182 | 11 11332 9264 | | 35 5281 15049 36 1103 1849 37 2058 1069 38 9654 6095 39 143 7679 7842 37 14311 7667 40 15617 8146 41 163938 2751 41 4588 11218 42 13660 6243 43 8578 7874 43 1578 7874 44 11741 2686 45 12204 8915 46 112604 9965 47 12604 9965 48 12604 9965 48 127 2707 49 128 128 128 128 128 128 128 128 128 128 | | | | 36 1103 1849 14 7679 7842 37 2058 1069 15 6089 13084 38 9654 6095 16 3938 2751 39 14311 7667 17 8509 4648 40 15617 8146 18 12204 8917 41 4588 11218 19 5749 12443 42 13660 6243 20 12613 4431 43 8578 7874 21 1344 4014 44 11741 2686 22 8488 13850 0 1022 1264 23 1730 14896 1 12604 9965 24 14942 7126 2 8217 2707 25 14983 8863 3 3 156 11793 26 6578 8564 4 354 1514 27 4947 396 5 6978 14058 28 297 12805 6 7922 16079 29 13878 6692 7 15087 12138 30 11857 11186 8 5053 6470 31 14395 11493 9 12687 14932 32 16145 12251 10 15488 1763 33 13462 7428 11 8121 1721 34 14526 13119 12 12431 549 35 2535 11243 13 4129 7091 36 6465 12690 14 1426 8415 37 6872 9334 15 9783 7604 38 15371 14023 16 6295 11329 39 8101 10187 17 1409 12061 40 11963 | | | | 37 2058 1069 15 6089 13084 38 9654 6095 16 3938 2751 39 14311 7667 17 8509 4648 40 15617 8146 18 12204 8917 41 4588 11218 19 5749 12443 42 13660 6243 20 12613 4431 43 8578 7874 21 1344 4014 44 11741 2686 22 8488 13850 0 1022 1264 23 1730 14896 1 12604 9965 24 14942 7126 2 8217 2707 25 14983 8863 3 3156 11793 26 6578 8564 4 354 1514 27 4947 396 5 6978 14058 28 297 12805 6 7922 16079 29 13878 6692 7 15087 12138 30 11857 11186 8 5053 6470 31 14395 11493 9 12687 14932 32 16145 12251 10 15458 1763 33 13462 7428 11 8121 1721 34 14526 13119 12 12431 549 35 2535 11243 13 4129 7091 36 6465 12690 44 1426 8415 37 6872 9334 15 9783 7604 38 15371 14023 16 6295 11329 39 8101 10187 77 1409 12061 40 11963 4848 18 8065 9087 41 15126 | | | | 38 9654 6095 16 3938 2751 39 14311 7667 17 8509 4648 40 15617 8146 18 12204 8917 41 4588 11218 19 5749 12443 42 13660 6243 20 12613 4431 43 8578 7874 21 1344 4014 44 11741 2686 22 8488 13850 0 1022 1264 23 1730 14896 1 12604 9965 24 14942 7126 2 8217 2707 25 14983 8863 3 3166 11793 26 6578 8564 4 354 1514 27 4947 396 5 6978 14058 28 297 12805 6 7922 16079 29 13878 6692 7 15087 12138 30 11857 11186 8 5053 6470 31 14395 11493 9 12687 14932 32 16145 12251 10 15458 1763 32 1845 12251 11 8121 1721 34 14526 13119 12 12431 549 35 2535 11243 13 4129 7091 36 6465 12690 14 1426 8415 37 6872 9334 15 9783 7604 38 15371 14023 16 6295 11329 39 8101 10187 17 1409 12061 40 11963 4848 18 8065 9087 41 15125 6119 19 2918 8438 42 8051 1 | | | | 39 14311 7667 40 15617 8146 40 15617 8146 41 4588 11218 42 13660 6243 42 13660 6243 43 114 14588 1350 41 147 141 141 141 141 141 141 141 141 1 | | | | 40 15617 8146 41 4588 11218 42 13660 6243 43 8578 7874 44 11741 2686 42 22 8488 13850 41 1264 41 1741 2686 42 13660 8965 42 14942 7126 43 3156 11793 43 551 11793 43 6578 8564 43 547 1514 43 678 1218 43 547 1218 43 547 1218 43 547 1218 43 547 1218 43 547 1218 43 547 1218 43 547 1218 43 547 1218 43 547 1218 43 547 1218 43 547 1218 43 547 1218 43 547 1218 43 547 1218 43 547 1218 553 5470 55 547 1218 55 553 5470 57 55 55 5470 57 55 55 5470 57 55 55 55 55 55 55 55 55 55 55 55 55 5 | | | | 41 4588 11218 42 13660 6243 42 13660 6243 42 13660 6243 42 13660 6243 43 8578 7874 44 1174 12686 44 11741 2686 45 22 8488 13850 46 122 1264 46 112604 9965 47 12604 9965 48 14942 7126 48 28 1730 14896 48 1356 11793 48 1458 1683 48 1514 49 14942 7126 49 14942 7126 49 14942 7126 49 14942 7126 49 14942 7126 40 14942 7126 40 14942 7126 40 14942 7126 40 15 1493 8863 40 15 16 1793 40 16 1793 40 18 18 18 18 18 18 18 18 18 18 18 18 18 | | 17 8509 4648 | | 42 13660 6243 43 8578 7874 21 1344 4014 44 11741 2686 21 2848 13850 0 1022 1264 22 1264 23 1730 14896 1 12604 9965 24 14942 7126 2 8217 2707 25 14983 8863 3 3156 11793 26 6578 8564 4 354 1514 27 4947 396 5 6978 14058 6 7922 16079 7 15087 12138 30 11857 11186 8 5053 6470 31 14395 11493 9 12687 14932 10 15458 1763 33 13462 7428 11 8121 1721 34 14526 13119 12 12431 549 35 2535 11243 36 465 12690 14 1426 8415 37 6872 9334 15 9783 7604 38 1659 1329 39 18051 14023 16 1495 1495 17 1409 12061 40 11963 4848 18 8065 9087 41 15125 6119 19 2918 8438 42 8051 14465 20 1293 14115 21 13922 13851 44 2883 14521 | 40 15617 8146 | 18 12204 8917 | | 43 8578 7874 21 1344 4014 44 11741 2686 22 8488 13850 0 1022 1264 23 1730 14896 1 12604 9965 24 14942 7126 2 8217 2707 25 14983 8863 3 3156 11793 26 6578 8564 4 354 1514 27 4947 396 5 6978 14058 28 297 12805 6 7922 16079 29 13878 6692 7 15087 12138 30 11857 11186 8 5053 6470 31 14395 11493 9 12687 14932 32 16145 12251 10 15458 1763 33 13462 7428 11 8121 1721 34 14526 13119 12 12431 549 35 2535 11243 13 4129 7091 36 6465 12690 14 1426 8415 37 6872 9334 15 9783 7604 38 15371 14023 16 6295 11329 39 8101 10187 17 1409 12061 40 11963 4848 18 8065 9087 41 15125 6119 19 2918 8438 42 8051 14465 20 1293 14115 43 11139 5167 21 3922 13851 44 2883 14521 | 41 4588 11218 | 19 5749 12443 | | 44 11741 2686 22 8488 13850 0 1022 1264 23 1730 14896 1 12604 9965 24 14942 7126 2 8217 2707 25 14983 8863 3 3156 11793 26 6578 8564 4 354 1514 27 4947 396 5 6978 14058 28 297 12805 6 7922 16079 29 13878 6692 7 15087 12138 30 11857 11186 8 5053 6470 31 14395 11493 9 12687 14932 32 16145 12251 10 15458 1763 33 13462 7428 11 8121 1721 34 14526 13119 12 12431 549 35 2535 11243 13 4129 7091 36 6465 12690 14 1426 8415 37 6872 9334 15 9783 7604 38 15371 14023 16 6295 11329 39 8101 10187 17 1409 12061 40 11963 4848 18 8065 9087 41 15125 6119 19 2918 8438 42 8051 14465 20 1293 14115 43 1139 5167 21 3922 13851 44 2883 14521 | 42 13660 6243 | 20 12613 4431 | | 44 11741 2686 22 8488 13850 0 1022 1264 23 1730 14896 1 12604 9965 24 14942 7126 2 8217 2707 25 14983 8863 3 3156 11793 26 6578 8564 4 354 1514 27 4947 396 5 6978 14058 28 297 12805 6 7922 16079 29 13878 6692 7 15087 12138 30 11857 11186 8 5053 6470 31 14395 11493 9 12687 14932 32 16145 12251 10 15458 1763 33 13462 7428 11 8121 1721 34 14526 13119 12 12431 549 35 2535 11243 13 4129 7091 36 6465 12690 14 1426 8415 37 6872 9334 15 9783 7604 38 15371 14023 16 6295 11329 39 8101 10187 17 1409 12061 40 11963 4848 18 8065 9087 41 15125 6119 19 2918 8438 42 8051 14465 20 1293 14115 43 1139 5167 21 3922 13851 44 2883 14521 | 43 8578 7874 | 21 1344 4014 | | 0 1022 1264 23 1730 14896 1 12604 9965 24 14942 7126 2 8217 2707 25 14983 8863 3 3156 11793 26 6578 8564 4 354 1514 27 4947 396 5 6978 14058 28 297 12805 6 7922 16079 29 13878 6692 7 15087 12138 30 11857 11186 8 5053 6470 31 14395 11493 9 12687 14932 32 16145 12251 10 15458 1763 33 13462 7428 11 8121 1721 34 14526 13119 12 12431 549 35 2535 11243 13 4129 7091 36 6465 12690 14 1426 8415 37 6872 9334 15 9783 7604 38 15371 14023 16 6295 11329 39 8101 10187 17 1409 12061 40 11963 4848 18 8065 9087 41 15125 6119 19 2918 8438 42 8051 14465 20 1293 14115 43 11139 5167 21 3922 13851 44 2883 14521 | | | | 1 12604 9965 24 14942 7126 2 8217 2707 25 14983 8863 3 3 156 11793 26 6578 8564 4 354 1514 27 4947 396 5 6978 14058 28 297 12805 6 7922 16079 29 13878 6692 7 15087 12138 30 11857 11186 8 5053 6470 31 14395 11493 9 12687 14932 32 16145 12251 10 15458 1763 33 13462 7428 11 8121 1721 34 14526 13119 12 12431 549 35 2535 11243 13 4129 7091 36 6465 12690 41 4126 8415 37 6872 9334 15 9783 7604 38 15371 14023 16 6295 11329 39 8101 10187 17 1409 12061 40 11963 4848 18 8065 9087 41 15125 6119 19 2918 8438 42 8051 14465 20 1293 14115 43 11139 5167 21 3922 13851 44 2883 14521 | | | | 2 8217 2707 2 5 14983 8863 3 3156 11793 2 6 6578 8564 4 354 1514 2 7 4947 396 5 6978 14058 6 7922 16079 2 9 13878 6692 7 15087 12138 8 5053 6470 3 1 14395 11486 8 5053 6470 3 1 2251 1 1493 2 16145 12251 1 15458 1763 3 1 3462 7428 1 8121 1721 3 4 14526 13119 1 2 12431 549 3 5 2535 11243 3 4 149 7091 4 1426 8415 5
9783 7604 3 18 127 7091 3 6 6295 11329 3 7 1409 12061 4 1 409 12061 4 1 8065 9087 4 1 15125 6119 9 2918 8438 20 1293 14115 21 3922 13851 4 2 883 14521 | | | | 3 3156 11793 | | | | 4 354 1514 27 4947 396 5 6978 14058 28 297 12805 6 7922 16079 29 13878 6692 7 15087 12138 30 11857 11186 8 5053 6470 31 14395 11493 9 12687 14932 32 16145 12251 10 15458 1763 33 13462 7428 11 8121 1721 34 14526 13119 12 12431 549 35 2535 11243 13 4129 7091 36 6465 12690 14 1426 8415 37 6872 9334 15 9783 7604 38 15371 14023 16 6295 11329 39 8101 10187 17 1409 12061 40 11963 4848 18 8065 9087 41 15125 6119 19 2918 8438 42 8051 14465 20 1293 14115 43 11139 5167 21 3922 13851 44 2883 14521 | | | | 5 6978 14058 28 297 12805 6 7922 16079 29 13878 6692 7 15087 12138 30 11857 11186 8 5053 6470 31 14395 11493 9 12687 14932 32 16145 12251 10 15458 1763 33 13462 7428 11 8121 1721 34 14526 13119 12 12431 549 35 2535 11243 13 4129 7091 36 6465 12690 14 1426 8415 37 6872 9334 15 9783 7604 38 15371 14023 16 6295 11329 39 8101 10187 17 1409 12061 40 11963 4848 18 8065 9087 41 15125 6119 19 2918 8438 42 8051 14465 20 1293 14115 43 11139 5167 21 3922 13851 44 2883 14521 | | | | 6 7922 16079 7 15087 12138 30 11857 11186 8 5053 6470 31 14395 11493 9 12687 14932 32 16145 12251 10 15458 1763 33 13462 7428 11 8121 1721 34 14526 13119 12 12431 549 35 2535 11243 31 34129 7091 36 6465 12690 14 1426 8415 37 6872 9334 15 9783 7604 38 15371 14023 16 6295 11329 39 8101 10187 17 1409 12061 48 8065 9087 40 11963 4848 18 8065 9087 41 15125 6119 19 2918 8438 20 1293 14115 43 11139 5167 21 3922 13851 | | | | 7 15087 12138 8 5053 6470 9 12687 14932 9 12687 14932 32 16145 12251 10 15458 1763 33 13462 7428 11 8121 1721 34 14526 13119 12 12431 549 35 2535 11243 34 129 7091 36 6465 12690 14 1426 8415 37 6872 9334 15 9783 7604 38 15371 14023 16 6295 11329 39 8101 10187 17 1409 12061 48 8065 9087 40 11963 4848 18 8065 9087 41 15125 6119 19 2918 8438 20 1293 14115 43 11139 5167 21 3922 13851 44 2883 14521 | | | | 8 5053 6470 31 14395 11493 9 12687 14932 32 16145 12251 10 15458 1763 33 13462 7428 11 8121 1721 34 14526 13119 12 12431 549 35 2535 11243 13 4129 7091 36 6465 12690 14 1426 8415 37 6872 9334 15 9783 7604 38 15371 14023 16 6295 11329 39 8101 10187 17 1409 12061 40 11963 4848 18 8065 9087 41 15125 6119 19 2918 8438 42 8051 14465 20 1293 14115 43 11139 5167 21 3922 13851 44 2883 14521 | 6 7922 16079 | 29 13878 6692 | | 8 5053 6470 31 14395 11493 9 12687 14932 32 16145 12251 10 15458 1763 33 13462 7428 11 8121 1721 34 14526 13119 12 12431 549 35 2535 11243 13 4129 7091 36 6465 12690 14 1426 8415 37 6872 9334 15 9783 7604 38 15371 14023 16 6295 11329 39 8101 10187 17 1409 12061 40 11963 4848 18 8065 9087 41 15125 6119 19 2918 8438 42 8051 14465 20 1293 14115 43 11139 5167 21 3922 13851 44 2883 14521 | 7 15087 12138 | 30 11857 11186 | | 9 12687 14932 32 16145 12251 10 15458 1763 33 13462 7428 11 8121 1721 34 14526 13119 12 12431 549 35 2535 11243 13 4129 7091 36 6465 12690 14 1426 8415 37 6872 9334 15 9783 7604 38 15371 14023 16 6295 11329 39 8101 10187 17 1409 12061 40 11963 4848 18 8065 9087 41 15125 6119 19 2918 8438 42 8051 14465 20 1293 14115 43 1139 5167 21 3922 13851 44 2883 14521 | 8 5053 6470 | | | 10 15458 1763 33 13462 7428 11 8121 1721 34 14526 13119 12 12431 549 35 2535 11243 13 4129 7091 36 6465 12690 14 1426 8415 37 6872 9334 15 9783 7604 38 15371 14023 16 6295 11329 39 8101 10187 17 1409 12061 40 11963 4848 18 8065 9087 41 15125 6119 19 2918 8438 42 8051 14465 20 1293 14115 43 11139 5167 21 3922 13851 44 2883 14521 | | | | 11 8121 1721 34 14526 13119 12 12431 549 35 2535 11243 13 4129 7091 36 6465 12690 14 1426 8415 37 6872 9334 15 9783 7604 38 15371 14023 16 6295 11329 39 8101 10187 17 1409 12061 40 11963 4848 18 8065 9087 41 15125 6119 19 2918 8438 42 8051 14465 20 1293 14115 43 11139 5167 21 3922 13851 44 2883 14521 | | | | 12 12431 549 35 2535 11243 13 4129 7091 36 6465 12690 14 1426 8415 37 6872 9334 15 9783 7604 38 15371 14023 16 6295 11329 39 8101 10187 17 1409 12061 40 11963 4848 18 8065 9087 41 15125 6119 19 2918 8438 42 8051 14465 20 1293 14115 43 11139 5167 21 3922 13851 44 2883 14521 | | | | 13 4129 7091 36 6465 12690 14 1426 8415 37 6872 9334 15 9783 7604 38 15371 14023 16 6295 11329 39 8101 10187 17 1409 12061 40 11963 4848 18 8065 9087 41 15125 6119 19 2918 8438 42 8051 14465 20 1293 14115 43 11139 5167 21 3922 13851 44 2883 14521 | | | | 14 1426 8415 37 6872 9334 15 9783 7604 38 15371 14023 16 6295 11329 39 8101 10187 17 1409 12061 40 11963 4848 18 8065 9087 41 15125 6119 19 2918 8438 42 8051 14465 20 1293 14115 43 11139 5167 21 3922 13851 44 2883 14521 | | | | 15 9783 7604 38 15371 14023 16 6295 11329 39 8101 10187 17 1409 12061 40 11963 4848 18 8065 9087 41 15125 6119 19 2918 8438 42 8051 14465 20 1293 14115 43 11139 5167 21 3922 13851 44 2883 14521 | | | | 16 6295 11329 39 8101 10187 17 1409 12061 40 11963 4848 18 8065 9087 41 15125 6119 19 2918 8438 42 8051 14465 20 1293 14115 43 11139 5167 21 3922 13851 44 2883 14521 | | | | 17 1409 12061 40 11963 4848 18 8065 9087 41 15125 6119 19 2918 8438 42 8051 14465 20 1293 14115 43 11139 5167 21 3922 13851 44 2883 14521 | | | | 18 8065 9087 41 15125 6119 19 2918 8438 42 8051 14465 20 1293 14115 43 11139 5167 21 3922 13851 44 2883 14521 | 16 6295 11329 | 39 8101 10187 | | 18 8065 9087 41 15125 6119 19 2918 8438 42 8051 14465 20 1293 14115 43 11139 5167 21 3922 13851 44 2883 14521 | 17 1409 12061 | 40 11963 4848 | | 19 2918 8438 42 8051 14465 20 1293 14115 43 11139 5167 21 3922 13851 44 2883 14521 | 18 8065 9087 | 41 15125 6119 | | 20 1293 14115 43 11139 5167
21 3922 13851 44 2883 14521 | | | | 21 3922 13851 44 2883 14521 | | | | | | | | 22 3031 4000 | | TT 2000 17021 | | | 22 3031 4000 | | ## Table A.3: Rate 4/5 ($N_{\text{ldpc}} = 64800$) | 0 149 11212 5575 6360 12559 8108 8505 408 10026 12828 | 0 5647 4935 | |---|----------------| | 1 5237 490 10677 4998 3869 3734 3092 3509 7703 10305 | 1 4219 1870 | | 2 8742 5553 2820 7085 12116 10485 564 7795 2972 2157 | 2 10968 8054 | | 3 2699 4304 8350 712 2841 3250 4731 10105 517 7516 | 3 6970 5447 | | | | | 4 12067 1351 11992 12191 11267 5161 537 6166 4246 2363 | 4 3217 5638 | | 5 6828 7107 2127 3724 5743 11040 10756 4073 1011 3422 | 5 8972 669 | | 6 11259 1216 9526 1466 10816 940 3744 2815 11506 11573 | 6 5618 12472 | | 7 4549 11507 1118 1274 11751 5207 7854 12803 4047 6484 | 7 1457 1280 | | 8 8430 4115 9440 413 4455 2262 7915 12402 8579 7052 | 8 8868 3883 | | 9 3885 9126 5665 4505 2343 253 4707 3742 4166 1556 | 9 8866 1224 | | 10 1704 8936 6775 8639 8179 7954 8234 7850 8883 8713 | 10 8371 5972 | | | | | 11 11716 4344 9087 11264 2274 8832 9147 11930 6054 5455 | 11 266 4405 | | 12 7323 3970 10329 2170 8262 3854 2087 12899 9497 11700 | 12 3706 3244 | | 13 4418 1467 2490 5841 817 11453 533 11217 11962 5251 | 13 6039 5844 | | 14 1541 4525 7976 3457 9536 7725 3788 2982 6307 5997 | 14 7200 3283 | | 15 11484 2739 4023 12107 6516 551 2572 6628 8150 9852 | 15 1502 11282 | | 16 6070 1761 4627 6534 7913 3730 11866 1813 12306 8249 | 16 12318 2202 | | 17 12441 5489 8748 7837 7660 2102 11341 2936 6712 11977 | 17 4523 965 | | 18 10155 4210 | 18 9587 7011 | | | | | 19 1010 10483 | 19 2552 2051 | | 20 8900 10250 | 20 12045 10306 | | 21 10243 12278 | 21 11070 5104 | | 22 7070 4397 | 22 6627 6906 | | 23 12271 3887 | 23 9889 2121 | | 24 11980 6836 | 24 829 9701 | | 25 9514 4356 | 25 2201 1819 | | | | | 26 7137 10281 | 26 6689 12925 | | 27 11881 2526 | 27 2139 8757 | | 28 1969 11477 | 28 12004 5948 | | 29 3044 10921 | 29 8704 3191 | | 30 2236 8724 | 30 8171 10933 | | 31 9104 6340 | 31 6297 7116 | | 32 7342 8582 | 32 616 7146 | | | | | 33 11675 10405 | 33 5142 9761 | | 34 6467 12775 | 34 10377 8138 | | 35 3186 12198 | 35 7616 5811 | | 0 9621 11445 | 0 7285 9863 | | 1 7486 5611 | 1 7764 10867 | | 2 4319 4879 | 2 12343 9019 | | 3 2196 344 | 3 4414 8331 | | | | | 4 7527 6650 | 4 3464 642 | | 5 10693 2440 | 5 6960 2039 | | 6 6755 2706 | 6 786 3021 | | 7 5144 5998 | 7 710 2086 | | 8 11043 8033 | 8 7423 5601 | | 9 4846 4435 | 9 8120 4885 | | 10 4157 9228 | 10 12385 11990 | | | | | 11 12270 6562 | 11 9739 10034 | | 12 11954 7592 | 12 424 10162 | | 13 7420 2592 | 13 1347 7597 | | 14 8810 9636 | 14 1450 112 | | 15 689 5430 | 15 7965 8478 | | 16 920 1304 | 16 8945 7397 | | 17 1253 11934 | 17 6590 8316 | | 18 9559 6016 | 18 6838 9011 | | | | | 19 312 7589 | 19 6174 9410 | | 20 4439 4197 | 20 255 113 | | 21 4002 9555 | 21 6197 5835 | | 22 12232 7779 | 22 12902 3844 | | 23 1494 8782 | 23 4377 3505 | | 24 10749 3969 | 24 5478 8672 | | 25 4368 3479 | 25 4453 2132 | | | | | 26 6316 5342 | 26 9724 1380 | | 27 2455 3493 | 27 12131 11526 | | 28 12157 7405 | 28 12323 9511 | | 29 6598 11495 | 29 8231 1752 | | 30 11805 4455 | 30 497 9022 | | 31 9625 2090 | 31 9288 3080 | | | | | 32 4731 2321 | 32 2481 7515 | | 33 3578 2608 | 33 2696 268 | | 34 8504 1849 | 34 4023 12341 | | 35 4027 1151 | 35 7108 5553 | | | • | Table A.4: Rate 5/6 ($N_{\text{ldpc}} = 64800$) | 0 4362 416 8909 4156 3216 3112 2560 2912 6405 8593 4969 6723 | 20 4766 2697 | 10 7868 5731 | |--|---------------|---------------| | 1 2479 1786 8978 3011 4339 9313 6397 2957 7288 5484 6031 10217 | 21 4069 6675 | 11 6121 10732 | | 2 10175 9009 9889 3091 4985 7267 4092 8874 5671 2777 2189 8716 | 22 1117 1016 | 12 4843 9132 | | 3 9052 4795 3924 3370 10058 1128 9996 10165 9360 4297 434 5138 | 23 5619 3085 | 13 580 9591 | | 4 2379 7834 4835 2327 9843 804 329 8353 7167 3070 1528 7311 | 24 8483 8400 | 14 6267 9290 | | 5 3435 7871 348 3693 1876 6585 10340 7144 5870 2084 4052 2780 | 25 8255 394 | 15 3009 2268 | | 6 3917 3111 3476 1304 10331 5939 5199 1611 1991 699 8316 9960 | 26 6338 5042 | 16 195 2419 | | | 27 6174 5119 | 17 8016 1557 | | 8 10587 2195 1689 2968 5420 2580 2883 6496 111 6023 1024 4449 | 28 7203 1989 | 18 1516 9195 | | | 29 1781 5174 | 19 8062 9064 | | | 0 1464 3559 | 20 2095 8968 | | 11 8204 10593 7935 3636 3882
394 5968 8561 2395 7289 9267 9978 | 1 3376 4214 | 21 753 7326 | | | 2 7238 67 | 22 6291 3833 | | | 3 10595 8831 | 23 2614 7844 | | | 4 1221 6513 | 24 2303 646 | | 15 6304 7621 | 5 5300 4652 | 25 2075 611 | | | 6 1429 9749 | 26 4687 362 | | 17 7293 6786 | 7 7878 5131 | 27 8684 9940 | | | 8 4435 10284 | 28 4830 2065 | | 19 8521 1793 | 9 6331 5507 | 29 7038 1363 | | 20 6174 7854 | 10 6662 4941 | 0 1769 7837 | | 21 9773 1190 | 11 9614 10238 | 1 3801 1689 | | 22 9517 10268 | 12 8400 8025 | 2 10070 2359 | | 23 2181 9349 | 13 9156 5630 | 3 3667 9918 | | 24 1949 5560 | 14 7067 8878 | 4 1914 6920 | | 25 1556 555 | 15 9027 3415 | 5 4244 5669 | | 26 8600 3827 | 16 1690 3866 | 6 10245 7821 | | 27 5072 1057 | 17 2854 8469 | 7 7648 3944 | | 28 7928 3542 | 18 6206 630 | 8 3310 5488 | | 29 3226 3762 | 19 363 5453 | 9 6346 9666 | | 0 7045 2420 | 20 4125 7008 | 10 7088 6122 | | | 21 1612 6702 | 11 1291 7827 | | 2 2774 2452 | 22 9069 9226 | 12 10592 8945 | | 3 5331 2031 | 23 5767 4060 | 13 3609 7120 | | 4 9400 7503 | 24 3743 9237 | 14 9168 9112 | | 5 1850 2338 | 25 7018 5572 | 15 6203 8052 | | 6 10456 9774 | 26 8892 4536 | 16 3330 2895 | | 7 1692 9276 | 27 853 6064 | 17 4264 10563 | | 8 10037 4038 | 28 8069 5893 | 18 10556 6496 | | 9 3964 338 | 29 2051 2885 | 19 8807 7645 | | 10 2640 5087 | 0 10691 3153 | 20 1999 4530 | | 11 858 3473 | 1 3602 4055 | 21 9202 6818 | | | 2 328 1717 | 22 3403 1734 | | 13 9523 916 | 3 2219 9299 | 23 2106 9023 | | 14 4107 1559 | 4 1939 7898 | 24 6881 3883 | | 15 4506 3491 | 5 617 206 | 25 3895 2171 | | | 6 8544 1374 | 26 4062 6424 | | 17 10192 6157 | 7 10676 3240 | 27 3755 9536 | | 18 5668 3305 | 8 6672 9489 | 28 4683 2131 | | 19 3449 1540 | 9 3170 7457 | 29 7347 8027 | | וט טדזט וטדט | 0 0110 1701 | 20 1041 0021 | Table A.5: Rate 9/10 ($N_{\rm ldpc} = 64800$) | | T | | T | | |-------------------|--------------|--------------|--------------|--------------| | 0 5611 2563 2900 | 17 3216 2178 | 16 6296 2583 | 15 1263 293 | 14 3267 649 | | 1 5220 3143 4813 | 0 4165 884 | 17 1457 903 | 16 5949 4665 | 15 6236 593 | | 2 2481 834 81 | 1 2896 3744 | 0 855 4475 | 17 4548 6380 | 16 646 2948 | | 3 6265 4064 4265 | 2 874 2801 | 1 4097 3970 | 0 3171 4690 | 17 4213 1442 | | 4 1055 2914 5638 | 3 3423 5579 | 2 4433 4361 | 1 5204 2114 | 0 5779 1596 | | 5 1734 2182 3315 | 4 3404 3552 | 3 5198 541 | 2 6384 5565 | 1 2403 1237 | | 6 3342 5678 2246 | 5 2876 5515 | 4 1146 4426 | 3 5722 1757 | 2 2217 1514 | | 7 2185 552 3385 | 6 516 1719 | 5 3202 2902 | 4 2805 6264 | 3 5609 716 | | 8 2615 236 5334 | 7 765 3631 | 6 2724 525 | 5 1202 2616 | 4 5155 3858 | | 9 1546 1755 3846 | 8 5059 1441 | 7 1083 4124 | 6 1018 3244 | 5 1517 1312 | | 10 4154 5561 3142 | 9 5629 598 | 8 2326 6003 | 7 4018 5289 | 6 2554 3158 | | 11 4382 2957 5400 | 10 5405 473 | 9 5605 5990 | 8 2257 3067 | 7 5280 2643 | | 12 1209 5329 3179 | 11 4724 5210 | 10 4376 1579 | 9 2483 3073 | 8 4990 1353 | | 13 1421 3528 6063 | 12 155 1832 | 11 4407 984 | 10 1196 5329 | 9 5648 1170 | | 14 1480 1072 5398 | 13 1689 2229 | 12 1332 6163 | 11 649 3918 | 10 1152 4366 | | 15 3843 1777 4369 | 14 449 1164 | 13 5359 3975 | 12 3791 4581 | 11 3561 5368 | | 16 1334 2145 4163 | 15 2308 3088 | 14 1907 1854 | 13 5028 3803 | 12 3581 1411 | | 17 2368 5055 260 | 16 1122 669 | 15 3601 5748 | 14 3119 3506 | 13 5647 4661 | | 0 6118 5405 | 17 2268 5758 | 16 6056 3266 | 15 4779 431 | 14 1542 5401 | | 1 2994 4370 | 0 5878 2609 | 17 3322 4085 | 16 3888 5510 | 15 5078 2687 | | 2 3405 1669 | 1 782 3359 | 0 1768 3244 | 17 4387 4084 | 16 316 1755 | | 3 4640 5550 | 2 1231 4231 | 1 2149 144 | 0 5836 1692 | 17 3392 1991 | | 4 1354 3921 | 3 4225 2052 | 2 1589 4291 | 1 5126 1078 | | | 5 117 1713 | 4 4286 3517 | 3 5154 1252 | 2 5721 6165 | | | 6 5425 2866 | 5 5531 3184 | 4 1855 5939 | 3 3540 2499 | | | 7 6047 683 | 6 1935 4560 | 5 4820 2706 | 4 2225 6348 | | | 8 5616 2582 | 7 1174 131 | 6 1475 3360 | 5 1044 1484 | | | 9 2108 1179 | 8 3115 956 | 7 4266 693 | 6 6323 4042 | | | 10 933 4921 | 9 3129 1088 | 8 4156 2018 | 7 1313 5603 | | | 11 5953 2261 | 10 5238 4440 | 9 2103 752 | 8 1303 3496 | | | 12 1430 4699 | 11 5722 4280 | 10 3710 3853 | 9 3516 3639 | | | 13 5905 480 | 12 3540 375 | 11 5123 931 | 10 5161 2293 | | | 14 4289 1846 | 13 191 2782 | 12 6146 3323 | 11 4682 3845 | | | 15 5374 6208 | 14 906 4432 | 13 1939 5002 | 12 3045 643 | | | 16 1775 3476 | 15 3225 1111 | 14 5140 1437 | 13 2818 2616 | | | | | | | | | l . | | • | | | # Annex B (normative): Addresses of parity bit accumulators for N_{ldpc} = 16 200 Table B.1: Rate 1/2 (*N*_{ldpc} = 16 200) | 20 712 2386 6354 4061 1062 5045 5158 | 5 5924 290 | | |---------------------------------------|--------------|--| | 21 2543 5748 4822 2348 3089 6328 5876 | 6 1467 4049 | | | 22 926 5701 269 3693 2438 3190 3507 | 7 7820 2242 | | | 23 2802 4520 3577 5324 1091 4667 4449 | 8 4606 3080 | | | 24 5140 2003 1263 4742 6497 1185 6202 | 9 4633 7877 | | | 0 4046 6934 | 10 3884 6868 | | | 1 2855 66 | 11 8935 4996 | | | 2 6694 212 | 12 3028 764 | | | 3 3439 1158 | 13 5988 1057 | | | 4 3850 4422 | 14 7411 3450 | | ## Table B.2: Rate $2/3 (N_{ldpc} = 16200)$ | 0 2084 1613 1548 1286 1460 3196 4297 2481 3369 3451 4620 2622 | 1 2583 1180 | |---|--------------| | 1 122 1516 3448 2880 1407 1847 3799 3529 373 971 4358 3108 | 2 1542 509 | | 2 259 3399 929 2650 864 3996 3833 107 5287 164 3125 2350 | 3 4418 1005 | | 3 342 3529 | 4 5212 5117 | | 4 4198 2147 | 5 2155 2922 | | 5 1880 4836 | 6 347 2696 | | 6 3864 4910 | 7 226 4296 | | 7 243 1542 | 8 1560 487 | | 8 3011 1436 | 9 3926 1640 | | 9 2167 2512 | 10 149 2928 | | 10 4606 1003 | 11 2364 563 | | 11 2835 705 | 12 635 688 | | 12 3426 2365 | 13 231 1684 | | 13 3848 2474 | 14 1129 3894 | | 14 1360 1743 | | | 0 163 2536 | | ## Table B.3: Rate $3/4 (N_{ldpc} = 16200)$ | 3 3198 478 4207 1481 1009 2616 1924 3437 554 683 1801 | 8 1015 1945 | |---|--------------| | 4 2681 2135 | 9 1948 412 | | 5 3107 4027 | 10 995 2238 | | 6 2637 3373 | 11 4141 1907 | | 7 3830 3449 | 0 2480 3079 | | 8 4129 2060 | 1 3021 1088 | | 9 4184 2742 | 2 713 1379 | | 10 3946 1070 | 3 997 3903 | | 11 2239 984 | 4 2323 3361 | | 0 1458 3031 | 5 1110 986 | | 1 3003 1328 | 6 2532 142 | | 2 1137 1716 | 7 1690 2405 | | 3 132 3725 | 8 1298 1881 | | 4 1817 638 | 9 615 174 | | 5 1774 3447 | 10 1648 3112 | | 6 3632 1257 | 11 1415 2808 | | 7 542 3694 | | Table B.4: Rate 4/5 (*N*_{ldpc} = 16 200) | 5 896 1565 | 3 465 2552 | |-------------|-------------| | 6 2493 184 | 4 1038 2479 | | 7 212 3210 | 5 1383 343 | | 8 727 1339 | 6 94 236 | | 9 3428 612 | 7 2619 121 | | 0 2663 1947 | 8 1497 2774 | | 1 230 2695 | 9 2116 1855 | | 2 2025 2794 | 0 722 1584 | | 3 3039 283 | 1 2767 1881 | | 4 862 2889 | 2 2701 1610 | | 5 376 2110 | 3 3283 1732 | | 6 2034 2286 | 4 168 1099 | | 7 951 2068 | 5 3074 243 | | 8 3108 3542 | 6 3460 945 | | 9 307 1421 | 7 2049 1746 | | 0 2272 1197 | 8 566 1427 | | 1 1800 3280 | 9 3545 1168 | | 2 331 2308 | | ## Table B.5: Rate 5/6 ($N_{\text{ldpc}} = 16\ 200$) | 3 2409 499 1481 908 559 716 1270 333 2508 2264 1702 2805 | 6 497 2228 | |--|-------------| | 4 2447 1926 | 7 2326 1579 | | 5 414 1224 | 0 2482 256 | | 6 2114 842 | 1 1117 1261 | | 7 212 573 | 2 1257 1658 | | 0 2383 2112 | 3 1478 1225 | | 1 2286 2348 | 4 2511 980 | | 2 545 819 | 5 2320 2675 | | 3 1264 143 | 6 435 1278 | | 4 1701 2258 | 7 228 503 | | 5 964 166 | 0 1885 2369 | | 6 114 2413 | 1 57 483 | | 7 2243 81 | 2 838 1050 | | 0 1245 1581 | 3 1231 1990 | | 1 775 169 | 4 1738 68 | | 2 1696 1104 | 5 2392 951 | | 3 1914 2831 | 6 163 645 | | 4 532 1450 | 7 2644 1704 | | 5 91 974 | | ## Table B.6: Rate 8/9 ($N_{\text{ldpc}} = 16\ 200$) | 0 1558 712 805 | 4 1496 502 | 3 544 1190 | |------------------|-------------|-------------| | 1 1450 873 1337 | 0 1006 1701 | 4 1472 1246 | | 2 1741 1129 1184 | 1 1155 97 | 0 508 630 | | 3 294 806 1566 | 2 657 1403 | 1 421 1704 | | 4 482 605 923 | 3 1453 624 | 2 284 898 | | 0 926 1578 | 4 429 1495 | 3 392 577 | | 1 777 1374 | 0 809 385 | 4 1155 556 | | 2 608 151 | 1 367 151 | 0 631 1000 | | 3 1195 210 | 2 1323 202 | 1 732 1368 | | 4 1484 692 | 3 960 318 | 2 1328 329 | | 0 427 488 | 4 1451 1039 | 3 1515 506 | | 1 828 1124 | 0 1098 1722 | 4 1104 1172 | | 2 874 1366 | 1 1015 1428 | | | 3 1500 835 | 2 1261 1564 | | | | | | # Annex C (normative): Input stream synchronizer Delays and packet jitter introduced by DVB-C2 equipment may depend on the transmitted bit-rate and may change in time during bit and/or code rate switching. The "Input Stream Synchronizer" (see figure C.1) shall provide a mechanism to regenerate, in the receiver, the clock of the Transport Stream (or packetized Generic Stream) at the modulator Mode Adapter input, in order to guarantee end-to-end constant bit rates and delays (see also figure C2, example receiver implementation). Table C.1 gives the details of the coding of the ISSY field generated by the input stream synchronizer. When ISSYI = 1 in MATYPE field (see clause 5.1.6) a counter shall be activated (22 bits), clocked by the modulator sampling rate (frequency R_s =1/T, where T is defined in clause 10.). The Input Stream Synchronization field (ISSY, 2 or 3 bytes) shall be transmitted according to clause 5.1.7. ISSY shall be coded according to table C.1, sending the following variables: - ISCR (short: 15 bits; long: 22 bits) (ISCR = Input Stream Time Reference), loaded with the LSBs of the counter content at the instant the relevant input packet is processed (at constant rate R_{IN}), and specifically the instant the MSB of the relevant packet arrives at the modulator input stream interface. In case of continuous streams the content of the counter is loaded when the MSB of the Data Field is processed. - BUFS (2+10 bits) (BUFS = maximum size of the requested receiver buffer to compensate delay variations). This variable indicates the size of the receiver buffer assumed by the
modulator for the relevant PLP. It shall have a maximum value of 2 Mbit. When a group of Data PLPs share a Common PLP, the sum of the buffer size for any Data PLP in the group plus the buffer size for the Common PLP shall not exceed 2 Mbit. This field shall not be transmitted in case of PLP bundling as the ISCR field is required in every BBFrame for sorting of the input stream. - BUFSTAT (2+10 bits) (BUFSTAT = actual status to reset the receiver buffer = number of filled bits). If ISSYI=1, this variable shall be transmitted at least 5 times per second, replacing ISCR. This value can be used to set the receiver buffer status during reception start-up procedure, and to verify normal functioning in steady state. This field shall not be transmitted in case of PLP bundling as the ISCR field is required in every BBFrame for sorting of the input stream. Figure C.1: Input stream synchronizer block diagram Table C.1: ISSY field coding (2 bytes or 3 bytes) | | | Second Byte | Third Byte | | | | |---------------------------|-----------------------|--------------------------------|---|-------------------------|-------------------------|---| | Bit-7 (MSB) | bit-6 | bit-5 and bit-4 | bit-3 and bit-2 | bit-1 and bit-0 | bit-7 to bit-0 | bit-7 bit-0 | | 0 = ISCR _{short} | MSB of | next 6 bits of ISCR | short | Next 8 bits of | Not present | | | | ISCR _{short} | | | | ISCR _{short} | | | 1 | 0 = | 6 MSBs of ISCR _{lone} | a | | Next 8 bits of | Next 8 bits of | | | ISCR _{long} | | <i>-</i> | | ISCR _{long} | ISCR _{long} | | 1 | 1 | 00 = BUFS | BUFS unit
00 = bits
01 = Kbits | 2 MSBs of BUFS | Next 8 bits of
BUFS | Not present
when ISCR _{short} | | | | | 10 = Mbits
11 = 8 Kbits | | | is used; else
reserved for
future use | | 1 | 1 | 10 = BUFSTAT | BUFSTAT unit
00 = bits | 2 MSBs of BUFSTAT | Next 8 bits of BUFSTAT | Not present when ISCR _{short} | | | | | 01 = Kbits
10 = Mbits
11 = BUFS/1 024 | | | is used; else
reserved for
future use | | 1 | 1 | | Reserved for future use | Reserved for future use | Reserved for future use | Not present when ISCR _{short} | | | | | | | | is used; else
reserved for
future use | # Annex D (normative): Input Remultiplexing Subsystem: Splitting of input MPEG-2 Transport Streams into Data PLPs, generation of a Common PLP of a group of PLPs and insertion of Null Packets into Transport Streams ## D.1 Overview This annex defines a feature of the C2 System applicable in the case of transmission of multiple MPEG-2 Transport Streams [i.1] in a configuration of a group of PLPs and an associated Common PLP. It includes the processing (remultiplexing) that shall be applied for transporting N (N \geq 2) MPEG-2 TSs (TS_1 to TS_N) over N+1 Data PLPs (PLP1 to PLPN+1)), one of which is the Common PLP (CPLP) of a group of PLPs, see figure D.1. If this processing is not applied to a group of Transport Streams, there shall be no Common PLP for this group, and each PLP of the group shall carry the input TS without modification. When several groups of PLPs are used to carry TSs, each such group has its own independent extension functionality. This annex also describes the processing that can be carried out by the receiver to reconstruct a single input TS from the received Data PLP and its corresponding Common PLP. Figure D.1: Extended Re-multiplexing and Multiplexing Functionalities of DVB-C2 The extension consists on the network side conceptually of a remultiplexer and on the receiver side of a multiplexer. In-between the remultiplexer and the multiplexer we have the C2 System, as described in other parts of the present document. The inputs/outputs to the C2 System are syntactically correct TSs, each with unique transport_stream_ids, containing all relevant layer 2 (L2) signalling information (i.e. PSI/SI - see [i.1] and [i.4]). The various input TSs may have PSI/SI tables, or other L2 data, in common with other input TSs. When the extension is used the generated TSPS (Transport Stream Partial Stream) and TSPSC (Transport Stream Partial Stream Common) streams are however typically not syntactically correct MPEG-2 TSs, but are still carried in the MPEG-packet format. NOTE: The parallel TSs may only exist internally in equipment generating the DVB-C2 signal. The parallel TSs may e.g. be generated from a single high bit rate TS source, or may alternatively be generated by centrally-controlled parallel encoders, each producing a constant bit rate TS, with variable proportion of Null Packets. The bit rates of the input TSs may be significantly higher than the capacity of the respective PLPs, because of the existence of a certain proportion of Null Packets, which are removed by the DNP procedure. An input MPEG-2 TS shall be transported either: - in its entirety within a single PLP, in which case the TS does not belong to any group of PLPs (and there is no Common PLP); or - split into a TSPS stream, carried in a Data PLP, and a TSPSC stream, carried in the Common PLP. This annex specifies the splitting and describes how the recombination of the output streams from a Data PLP and a Common PLP can conceptually be achieved by the receiver to form the output TS. # D.2 Splitting of a group of input TSs into TSPSs streams and a TSPSC stream #### D.2.1 General When a set of N TSs (TS_1, ..., TS_N, N \geq 2) are transmitted through a group of N+1 PLPs, one being the Common PLP of a group, all TSs may have a different input bit rate, but shall carry all the data packets, which are intended to be transmitted in a Common PLP. The data packets to be carried in the Common PLP are not necessarily co-timed. However it is assumed that all TS in a group have been generated in the same Playout Centre and there may be a skew between those TS concerning the timing of the signals, caused amongst others by different propagation delays on the contribution links. There are two steps of processing. In the first step TS packets, which shall be transmitted via the Common PLP shall be replaced be Null Packets and in the second step additional Null Packet are inserted in order to reduce the buffering requirements in the receivers. Each TSPS shall have the same bit rate as the associated input TS and maintain the same time synchronization. The TSPSC is an elementary stream with the same bit rate as the input TS it was extracted from. It contains data packets common to all transport streams within the group of TSs in a certain Data Slice. TSPSC data shall not require time synchronization with the associated TSPS data. The DVB SI tables SDT or EIT shall not be transported via a Common PLP, as a processing of those tables at table ID level is not foreseen in DVB-C2. NOTE: The input TSs may contain a certain proportion of Null Packets. The split operation will not introduce further Null Packets into the TSPSs. Null packets will however be removed in the modulator and reinserted in the demodulator in a transparent way, so that the C2 System will be transparent for the TSPSs, despite Null Packets not being transmitted. Furthermore, the DNP and ISSY mechanism of the C2 System will ensure that time synchronization of the TSPSs and the TSPSC at the output of the demodulator is maintained to a certain extent. ## D.2.2 Extraction of the Common PLP from a group of TS For the purpose of specifying the split operation the TS packets that may be transmitted in the Common PLP are identified by one or several PIDs and fall into the following three categories: - 1) TS packets carrying any type of data, which does not require an exact time synchronization with other TS packets carried in other PLPs of the related group of PLPs. - 2) EPG data, e.g. based on Event Information Table (EIT) format, but not using the 'actual' and 'other' mechanisms as specified in [i.4]. - 3) Conditional Access control data, e.g. Entitlement Management Messages (EMMs). DVB-SI TS packets that may not be transmitted in the Common PLP, as this would require complex remultiplexing functionalities, fall into the following two categories: - 1) TS packets carrying Service Description Table (SDT), i.e. with PID value of 0x0011. - 2) TS packets carrying Event Information Table (EIT), i.e. with PID value of 0x0012. The TS packets targeted for transmission via the Common PLP shall be extracted from one input TS. If the input stream carrying the Common PLP data is carrying also payload data which is targeted to go into a PLP, those TS packets of that input stream, which were extracted to the Common PLP, shall be replaced by Null Packets (see figure D.2). All TS packets of the other input TSs belonging to that group of PLPs are processed such that all TS packets with the PID associated to the Common PLP are replaced by Null Packets. During the process of extraction of Common PLP data optionally components of that TS may be deleted by replacement of the related data packets by Null Packets. By processing one TS in parallel in two of the re-multiplexing lines and replacing complementary TS packets by Null Packets a separation of one TS into two partial TSs, which are targeted to be transmitted via different PLPs (with different level of robustness), can be achieved. This principle is also applicable if a split of one TS into more than two partial streams is required. Figure D.2 is simplified insofar as it does not show any Null Packets in the input TSs. In real input TSs these are of course to be expected. The absence of these packets in the figures does however not in any way affect the general applicability of the splitting/re-combining process, as described in this annex. | SDT | EMM | Audio Video | | ECM | EMM | |-------------|-------------|-------------|-------------|-------------|-------------| | TS 1 in | | | | | | | SDT | Null Packet | Audio | Video | ECM | Null Packet | | TSPS 1 out | | | | | | | Video | Audio | EMM | EPG data | EIT | ECM | | TS 2 in | | | | | | |
Video | Audio | Null Packet | Null Packet | EIT | ECM | | TSPS 2 out | | | | | | | Null Packet | Null Packet | EMM | EPG data | Null Packet | Null Packet | TSPSC out (based on data from TS2) Figure D.2: Example of generation of two TSPS and a TSPSC form two input TS ### D.2.3 Insertion of additional Null Packets into TSPSs TS packets that are not necessarily co-timed but identical on all input TSs of the group before the split shall be replaced by Null Packets in the respective TSPS at the same time positions. Furthermore packets targeted to go into the common. PLP may occur non equidistant in the input stream. If the data packets in the Common PLP do have a "bursty", characteristics and the packets of the Common PLP and the relevant Data PLP are not co-timed, the required buffer size in a receiver could be significantly increased due to the missing time correlation. The insertion of additional Null Packets in the TSPS allows smoothing the characteristics of Null Packets and thus reducing the buffer requirement in receivers. The number of inserted Null Packets shall be chosen such that a receiver with a 2 Mbit buffer is able to perform the multiplexing of Data PLP and Common PLP properly. After insertion of Null Packets a PCR restamping has to be performed. Figure D.3 gives an example of two Transport Streams where after extraction of Common PLP packets additional Null Packets are inserted. Figure D.3: Example of insertion of Null Packets into two TS / TSPS ## D.3 Receiver Implementation Considerations In view of the key role played by the transport stream as a physical interface in many existing and future receivers it is strongly recommended that at least the core of the merging function as described in this annex is implemented in a channel decoder silicon chip. In particular this applies to the generic merging function between TSPSC and TSPS to form a transport stream for generic data as defined in clause D.2 illustrated in figure D.3. The channel decoder implementations as defined above should ensure correct integration of many existing DVB system hardware and software solutions for DVB with such channel decoders. #### D.3.1 Recombination of TSPSS and TSPSC in a receiver The receiver shall recreate the targeted TS by multiplexing the received synchronized partial Transport Stream (TSPSS) with the received Common PLP Transport Stream (TSPSC). It shall replace any Null Packets which appear in the received TSPSS, by a packet from its Common PLP (TSPSC) buffer, unless this buffer is empty, see figure D.4. The output signal of the DVB-C2 demodulator delivers the Partial Transport Stream (TSPS) and the Common PLP (TSPSC) multiplexed together. Common PLP packets may be time shifted in relation to the modulator input signal and the amount of additionally inserted Null Packets at the modulator will increase the out data rate of the complete multiplexed output signal accordingly. However, after the PID filtering at the MPEG-Demultiplexer this headroom is removed completely. | Null Pack | et | Null Pack | tet | EMM I | | EP | EPG data | | Null Packet | Null Packet | |-----------|----|------------|------|-------|---------|------------|-----------|-----|-------------|-------------| | TSPSC | • | | Video | Nu | ill Packet | Audi | io | Null Pa | acket | Null Pack | cet | EIT | ECM | | TSPSS 2 | Video | Nu | Ill Packet | Audi | io | EN | И М | EPG da | ta | EIT | ECM | TSS 2 (identical with TS2, except the inserted stuffing Null Packets) Figure D.4: Example of recombination of input TS from TSPSS and TSPSC # Annex E (normative): Calculation of the CRC word The implementation of Cyclic Redundancy Check codes (CRC-codes) allows the detection of transmission errors at the receiver side. For this purpose CRC words shall be included in the transmitted data. These CRC words shall be defined by the result of the procedure described in this annex. A CRC code is defined by a polynomial of degree n: $$G_n = X^n + g_{n-1} X^{n-1} + ... + g_2 X^2 + g_1 X + 1$$ with $n \ge 1$: and: $$g_i \in \Theta_1$$, $i = 1 \dots n-1$ The CRC calculation may be performed by means of a shift register containing n register stages, equivalent to the degree of the polynomial (see figure E.1). The stages are denoted by b_0 ... b_{n-1} , where b_0 corresponds to 1, b_1 to x, b_2 to x^2 ,..., b_{n-1} to x^{n-1} . The shift register is tapped by inserting XORs at the input of those stages, where the corresponding coefficients g_i of the polynomial are '1'. Figure E.1: General CRC block diagram At the beginning of the CRC-8 calculation (used for GFPS and TS, NM only and BBHeader), all register stage contents are initialized to zeros. At the beginning of the CRC-32 calculation, all register stage contents are initialized to ones. After applying the first bit of the data block (MSB first) to the input, the shift clock causes the register to shift its content by one stage towards the MSB stage (b_{p-1}), while loading the tapped stages with the result of the appropriate XOR operations. The procedure is then repeated for each data bit. Following the shift after applying the Last Bit (LSB) of the data block to the input, the shift register contains the CRC word which is then read out. Data and CRC word are transmitted with MSB first. The CRC codes used in the DVB-C2 system are based on the following polynomials: • $$G_{32}(X) = X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^{8} + X^{7} + X^{5} + X^{4} + X^{2} + X + 1$$ • $$G_{\circ}(X) = X^8 + X^7 + X^6 + X^4 + X^2 + 1$$ The assignment of the polynomials to the respective applications is given in each clause. NOTE: The CRC-32 coder defined in this annex is identical to the implicit encoder defined in EN 300 468 [i.4]. # Annex F (normative): Bundling of PLPs In addition to the basic operation mode (i.e. one or several PLPs are located in one Data Slice) the C2 System allows spreading data of a single PLP connection over different Data Slices (PLP Bundling). As a result, the throughput rate for a single PLP connection can be increased up to the overall throughput rate of the C2 System. This operation mode is intended for advanced services that require throughput rates above the capacity of a single Data Slice. All data packets of a bundled PLP connection shall pass the same input processing block. Inserting the ISSY timestamp in the mode adaptation block is mandatory for this operation mode in order to allow the correct reordering of the packets from different Data Slices on the receiver side. At the output of the input processing block the BBFrames of the bundled PLP are spread over the different Data Slices. Figure F.1 shows the block diagram for the PLP Bundling operation mode. Figure F.1: Bundling PLP - data of a single PLP is spread over different Data Slices The bundling PLP operation mode mandates the usage of the FECFrame header for the Data Slices that contain packets from the bundled PLP. - NOTE 1: As for the basic operation mode, Data Slices that include FECFrames from a bundled PLP might also contain FECFrame packets of others PLPs. - NOTE 2: C2 receivers with a single 8 MHz reception tuner do not need to decode bundled PLPs. These C2 receivers will recognize bundled PLPs from the L1 part 2 signalling and will discard associated Data Slice Packets. ## Annex G (informative): # Transport Stream regeneration and clock recovery using ISCR When the modulator operates in a mode that employs Null Packet Deletion, the receiver may regenerate the Transport Stream by inserting, before each useful packet, DNP in the reception FIFO buffer. As shown in figure G.1, the Transport Stream clock R'_{IN} may be recovered by means of a Phase Locked Loop (PLL). The recovered modulator sampling rate R_s may be used to clock a local counter (which by definition runs synchronously with the input stream synchronization counter of figure G.1). The PLL compares the local counter content with the transmitted ISCR of each TS packet, and the phase difference may be used to adjust the R'_{IN} clock. In this way R'_{IN} remains constant, and the reception FIFO buffer automatically compensates the chain delay variations. Since the reception FIFO buffer is not self-balancing, the BUFSTAT and the BUFS information may be used to set its initial state. As an alternative, when dynamic variations of the end-to-end delay and bit-rate may be acceptable by the source decoders, the receiver buffer filling condition may be used to drive the PLL. In this case the reception buffer is self-balancing (in steady state half the cells are filled), and the ISSY field may be omitted at the transmitting side. Figure G.1: Example receiver block diagram for Null Packet re-insertion and R_{TS} clock recovery # Annex H (informative): Pilot patterns This annex illustrates each of the scattered pilot patterns, showing the pattern of pilots at the low frequency edge of the ensemble for the first a few symbols of a frame. There are two scattered pilot patterns, and each of them has four phases to start with depending upon the frequency of the low frequency edge. Figures H.1 to H.4 shows the patterns in GI 1/64 case with four different phases. Figures H.5 to H.8 show the pilot patterns in GI 1/128 with four different phases. Continual pilot carriers are not shown. Figure H.1: Scattered pilot pattern for GI 1/64 with the lower edge $k \mod D_x D_v = 0$ Figure H.2: Scattered pilot pattern for GI 1/64 with the lower edge $k \mod D_x D_v = 12$ Figure H.3: Scattered pilot pattern for GI 1/64 with the lower edge $k \mod D_x D_y = 24$ Figure H.4: Scattered pilot pattern for GI 1/64 with the lower edge $k \mod D_x D_y = 36$ Figure H.5: Scattered pilot pattern for GI 1/128 with the lower edge $k \mod D_x D_y = 0$ Figure H.6: Scattered pilot pattern for GI 1/128 with the lower edge $k \mod D_x D_y = 24$ Figure H.7:
Scattered pilot pattern for GI 1/128 with the lower edge $k \mod D_x D_y = 48$ Figure H.8: Scattered pilot pattern for GI 1/128 with the lower edge $k \mod D_x D_y = 72$ # Annex I (informative): Bibliography - CENELEC 60728-5 (Ed. 2.0): "Cable networks for television signals, sound signals and interactive services Part 5: Headend equipment". - CENELEC EN 60728-1:2008: "Cable networks for television signals, sound signals and interactive services Part 1: System performance of forward paths". - CENELEC EN 60728-11:2005: "Cable networks for television signals, sound signals and interactive services -Part 11: Safety". - ETSI ES 201 488-2: "Access and Terminals (AT); Data Over Cable Systems; Part 2: Radio Frequency Interface Specification". - ETSI TS 102 005: "Digital Video Broadcasting (DVB); Specification for the use of video and audio coding in DVB services delivered directly over IP". - U. Reimers, A. Morello, "DVB-S2, the second generation standard for satellite broadcasting and unicasting", submitted to International Journal on Satellite Communication Networks, 2004; 22. - M. Eroz, F.-W. Sun and L.-N. Lee, "DVB-S2 Low Density Parity Check Codes with near Shannon Limit Performance", submitted to International Journal on Satellite Communication Networks, 2004; 22. - ETSI EN 300 744: "Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for digital terrestrial television (DVB-T)". - CENELEC EN 50083-9: "Cable networks for television signals, sound signals and interactive services -Part 9: Interfaces for CATV/SMATV headends and similar professional equipment for DVB/MPEG-2 transport streams". # History | Document history | | | | | | | | | |------------------|-----------------------------|---|--|--|--|--|--|--| | V1.1.1 | July 2009 | Public Enquiry PE 20091122: 2009-07-25 to 2009-1 | | | | | | | | V1.1.1 | January 2010 | Vote V 20100308: 2010-01-07 to 2010-03-08 | | | | | | | | V1.1.1.1 | 14 th April 2010 | Appporved changes on basis of voting version | | | | | | | | V1.1.1.2 | 30 th April 2010 | Appporved changes on basis of voting version + further pure editorial corrections | | | | | | | | V1.1.2 | 07 th May 2010 | Appporved changes on basis of voting version + further pure editorial corrections | | | | | | | | | | | | | | | | |