Programming Bitcoin
Transaction Scripts

A gentle introduction

roland.kofler@gmail.com

Table of Contents

Why to Deal with Transaction Scripts?
Thinking in Transaction Scripts
Provably Unspendable Transaction
Anyone-Can-Spend Transaction
Generation Transaction
Simple Transaction
Reference for this Chapter
Anatomy of a Transaction
Lock Time
Transaction Inputs
Transaction Outputs
Build your First Transaction
Appendix | - Useful Resources

Why to Deal with Transaction Scripts?

We are at the verge of a technological disruption. Modern market society is coordinated by
trade and price, by contracts and possession. The Bitcoin technology promises to reorder all
this. Increasing the efficiency of transactions, tearing down old power monopolies in finance
and law. While the future remains uncertain, Satoshi Nakamoto and the earlier Bitcoin
community kindled an idea that can not be reversed.

New distributed and transparent products and services will emerge on the block chain.

The Bitcoin community invented valid concepts for contracts, escrows and insurance,
inheritance and property rights based on cryptography and the blockchain.

Central to all this innovations are the transaction scripts’.

' https://en.bitcoin.it/wiki/Contracts

mailto:roland.kofler@gmail.com
https://www.google.com/url?q=https%3A%2F%2Fen.bitcoin.it%2Fwiki%2FContracts&sa=D&sntz=1&usg=AFQjCNFHAmRWXSdixVlYGdN0CgpERVuHtQ

Thinking in Transaction Scripts

A new transaction is valid if the transaction scripts of its input field and the transaction script
of its predecessing transaction validates to true.

Pravious TX * -4 Input TX ScrptB * Scripth Output TX

Final program;

[ScriptA, ScriptB]

Figure: A output tx is valid only if a script program results in a boolean TRUE. The script is
composed of two scripts blocks, the execution order of the scripts is: first ScriptA from
OutputTX is executed, then ScriptB from InputTX.

The scripting language is stack-based, this means that each data, input or output is put on a
stack of other data.

The script of OutputTX is executed first: i.e. the redeemer’s code. But it is not possible to
stop the script before it is executed entirely and marking the transaction as valid. Therefore
this is no security issue. Finally the InputTX scriptB is executed and when the program
terminates its return value determines if the OutputTX is considered valid.

Provably Unspendable Transaction

The null transaction, probably the simplest one.

Soripi2 Sorplf

---------- -| Input TX | OP_RETURM ' (unspendable) | Output TX |

This transaction will always be invalid. Whatever code is in ScriptA, when ScriptB is
executed, the OP RETURN op-code stops the execution of the transaction script and

validates to FALSE.

This pattern is often used to encode data in the blockchain. After the OP RETURN you can
insert arbitrary data. The advantage is that the simple bitcoin nodes can prune the transaction
saving memory, while full nodes will hold it. This is considered good behavior when
‘misusing’ the blockchain for storing data.

Anyone-Can-Spend Transaction

---------- -| Input TX (is empty) |—'| OP_TRUE Output TX

If the outputscript of the first transaction is empty, a redeeming second transaction can
simply put TRUE on the stack so that the transaction is valid. Arguably anyone can do this if
he is lucky to spot such an ‘empty’ transaction.

Anyone-Can-Spend are currently non-standard, and not broadcasted in the network. But they
can play an important role in future. For example with Fidelity Bonds?.

Generation Transaction

Normally a Bitcoin transaction is validated against the previous transaction (the input
transaction). When a miner wins in the hashing competition and redeems his price, there is
no previous transaction. He then simply creates an Input TX with the publicly known mining
fee. Redeeming such a transaction is allowed to anyone who can provide a valid signature of
the public key in the Input TX;, i.e. the miner himself.

Y

Input TX <pubkey= OF_CHECKSIG =<signature= Output TX

Now it is time to execute the script step by step. Remember that a transaction script is
executed on a stack. At the beginning the stack is empty and the program is:

<signature> <pubKey> OP CHECKSIG

1. First the program reads the first token <signature> and since it is data, it puts it
on the stack. <signature> should be a piece of data encrypted with the private key
of the authorized redeemer

2. Now the second token is also data, so we put <pubKey> on the stack. <pubKey> is
the public key (the unhashed bitcoin address) of the redeemer. At the end of this two
operations the stack looks like this:

<pubkey=

=signature=

3. The next token is an operation. 0P CHECKSIG takes the first argument <pubKey>
from the stack and validates the second argument <signature>. Basically it tries to
open <signature> with the public key <pubKey>. If it succeeds it returns true,
thus making the transaction Output TX valid.

We have seen: only the owner of the private key can redeem the Generation Transaction, he
is the lucky miner.

Simple Transaction

2 “This mechanism may be used in the future for fidelity bonds to sacrifice funds in a provable way.”
https://en.bitcoin.it/wiki/Script#Anyone-Can-Spend_OQutputs

https://www.google.com/url?q=https%3A%2F%2Fen.bitcoin.it%2Fwiki%2FScript%23Anyone-Can-Spend_Outputs&sa=D&sntz=1&usg=AFQjCNGSVLFxPHpkwfsOTdIJUDMduDAJHA

The standard transaction script looks like this:

Input TX

OF_DUP =signature= Qutput TX
OP_HASH160 <pubKey>
<pubkayHash> » °F Y

OP_EQUALVERIFY
OP_CHECKSIG

Therefore the full script looks like this:

<signature> <pubKey> OP DUP OP HASH160 <pubKeyHash>

OP EQUALVERIFY OP CHECKSIG

Lets step through the execution of the program:
1. the two data tokens are put on the stack in the first two steps of the program

Stack

<pubkey=

<signature=

2. The operation OP_DUP duplicates the first element on the stack, so that we get:

<pubkey=

=pubkey=

=signature=

step executed in script:

DP_DUP
IZ)P_HF‘;SH'_ a0
<pubKevHash>
OF EQUALVERIFY
OF CHECESIG

3. The operation OP_ HASH160 hashes the first element on the stack, so that we get:

=pubKeyHashz=

=pubkey=

<signature=

Las]

~DUF
OP_HASH160
<pubKeyHash>
OF EQUALVERIEY
OF CHECESIG

.
L

4. <pubKeyHash> is put on the stack:

=pubkeyHash=>
<pubKeyHash2=> COF_DUFP B

CF HASHI1&0
<pubKey= <pubKeyHash>

OP EQUALVERIFY
<signature> OP CHECKSIG

5. The operation OP_ EQUALVERIFY compares the first two elements of the stack, in
reality this is a composed operation: OP_ EQUAL and OP_VERIFY are executed.
OP_ EQUAL puts TRUE on the stack if the two elements are the same. OP_ VERIFY
marks a transaction valid, if the top stack element is true. And removes the top stack
element if its TRUE, if its false it leaves it there.
Generally a command executed on the stack takes its parameters from the stack,
and puts its result at the stack. So 0P VERIFY behaves normally if its FALSE,
because it leaves the result on the stack, but it behaves abnormally when its TRUE . It
removes the result TRUE from the stack to continue with the next parameters.
The result of a positive validation is therefore:

OP_DUP
OP HASH160

<pubkey= <pubKeyHash>
OP _EQUALVERIFY

<signature> OP CHECKSIG

6. Finally the signature on the stack is verified with OP CHECKSIG in the same way as
in the Generation Transaction. TRUE is returned if the check succeeds.

OB _DUP
OP HASH1&0
<pubKevyHash>
OF EQUALVERILIEY
U= OP CHECKSIG

The simple transaction therefore is not so simple at all. First we prove that the public key that
the redeemer states is the same as we had in the Input TX, than we verify if the redeemer
has the right secret key by verifying the signature of the transaction.

Reference for this Chapter

Description of opcodes and details of the scripts https://en.bitcoin.it/wiki/Script

https://www.google.com/url?q=https%3A%2F%2Fen.bitcoin.it%2Fwiki%2FScript&sa=D&sntz=1&usg=AFQjCNHdAqR_1yOzsl7t18SvoTXxDOdrVw

I’'m writing this to learn, not for profit. If you feel like to honor my work, I'd take a hat tip of 1 Euro or 1
Dollar and say thank you: 1MxzAKcsTxie4adJn2ncL8FR8ZYVQHABtBH
4 tips in 6 days/ somebody thinks this has value, I'm happy.

Anatomy of a Transaction

What we called [scriptA, scriptB] in the Bitcoin protocol is refered as [scriptSig,
scriptPubKey], probably because scriptSig provides most often a proof that scriptPubKey
has to verify. In the same way a public key (pubKey) would verify a signature (sig).

TX2

scriptPubKey [*°°

| |s.n:‘.riptF'uch;.- |

scriptSig

TX1

| scriptSig :I

scriptPubkey

scriptFub ke

sCriptPu

scriptSig

Figure: A chain of transactions with different numbers of inputs and outputs. The first transaction
TX1 has no input, it is a generation fransaction (a reward for your mining effort), it then has two
outputs, which is unusual for a mined transaction, but not impossible, One goes to TX2 which
has 3 outputs, the uppermost goes to a transaction not depicted, the second is unspent, and

the third goes to transaction four. Try to explain the rest for yourself.

Lets take a look at a real transaction on the block chain. For example the transaction with the
following transaction hash:
00144cd602ef6ed674f64ec0f229d9fb2a195e35¢c7dc05a49ce7d74903aef93e.

Here is a JSON format version of the binary code of the transaction:

"hash":"00144cd602ef6e...", The hashcode serves as an ID for the transaction
"ver":1, A versioning for future enhancements, currently always 1
"vin sz":1, Number of incoming transactions
"vout sz":2, Number of outgoing transactions
"lock time":0, Block height or timestamp when transaction is final
"size":226, Transaction size in bytes
"in": [Incoming transactions
{
"prev_out": { First incoming transactions output
"hash":"26be31...", The “hash” value of the previous transaction

https://www.google.com/url?q=https%3A%2F%2Fblockchain.info%2Faddress%2F1MxzAKcsTxie4aJn2ncL8FR8ZYvQHABtBH&sa=D&sntz=1&usg=AFQjCNHte2-ddcJgtFG_KdFu6u0aPGRapA
http://www.google.com/url?q=http%3A%2F%2Fblockexplorer.com%2Frawtx%2F00144cd602ef6ed674f64ec0f229d9fb2a195e35c7dc05a49ce7d74903aef93e&sa=D&sntz=1&usg=AFQjCNH_ErI3gw_7wUywWdOpIlojLtZcSw

"n":0 The index of the output
by

"scriptSig":"304502..." whatwe have called scripta, a proof of ownership
}
i
"out": [Outgoing transactions
{ First transaction output

"value":"12.99990000", The value of bitcoins going out. (1,299,990,000 Satoshis)
"scriptPubKey":"OP DUP OP HASH160 703b... OP EQUALVERIFY OP CHECKSIG"

What we called scriptB, a verification of ownership

{ Second transaction output
"value":"2.00000000", Bitcoin value of the second output (200,000,000 Satoshis)

"scriptPubKey":"OP_DUP OP_HASH160 5853... OP_EQUALVERIFY OP CHECKSIG"

Stripping of some boilerplate code: hashcode, version, size and number of incoming and
outcoming transaction are not really interesting.

Lock Time

"lock time":0, Block height or timestamp when transaction is final

The lock time denotes the absolute time or block number when a transaction can enter the
blockchain. For example, if the current block has the sequence number (block height) null,
i.e. the Genesis Block?, and lock time:10, then the transaction can enter the blockchain
only from block ten* on. Because we know that each block is mined roughly every 10
minutes, this results in a 100 minutes quarantine before the 1ock time-ed transaction can
be verified. Worse: currently (Dec 2013) the transaction can’t be relayed in the p2p network
at all.

The application for 1ock time is to sign a transaction and give it to another party off-line, so
that they can issue it after Llock time expires. For example: if | don’t return from my zombie
hunt at block height 30,000, you can have my bitcoin wealth. We will discuss more serious
applications in the Writing Contracts chapter.

3 The first block of the blockchain,
https://blockchain.info/block/000000000019d6689c085ae165831e934ff763ae46a2a6¢172b3f1b60a8ce26f

?currency=MBC
4 See block ten at:

https://blockchain.info/block/000000002c05cc2e78923¢34df87fd108b22221ac6076¢18f3ade378a4d915e9
7

https://www.google.com/url?q=https%3A%2F%2Fblockchain.info%2Fblock%2F000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f%3Fcurrency%3DMBC&sa=D&sntz=1&usg=AFQjCNHt_DpgULevhA9h56sipdm0dNUA7w
https://www.google.com/url?q=https%3A%2F%2Fblockchain.info%2Fblock%2F000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f%3Fcurrency%3DMBC&sa=D&sntz=1&usg=AFQjCNHt_DpgULevhA9h56sipdm0dNUA7w
https://www.google.com/url?q=https%3A%2F%2Fblockchain.info%2Fblock%2F000000002c05cc2e78923c34df87fd108b22221ac6076c18f3ade378a4d915e9&sa=D&sntz=1&usg=AFQjCNG8gLMR2f3iOuO15aN-z4O_7MdICQ

Transaction Inputs

1. "in": [Incoming transactions

2. { First transaction is included in {...}

3. "prev_out":{ First incoming transactions output

4. "hash":"26be31...", The “hash” value of the previous transaction

5. "n":0 The index of the output

6. Y

7. "scriptSig":"304502..." Whatwe have called scripta, a proof of ownership
8. } End of first transaction

9. 1, End of input section

It is not enough though to refer the previous output transaction by the “hash” value. Since this
transaction can have multiple outputs, we also need to tell what outputs we want to spend.
This is done by the index n, that starts from O for the first output of the previous transaction
refered by the hash.

Figure: how the previous output is referred. The hash of the previous transaction identifies it,
and the exact output is found by the index n.

Transaction Outputs

Transaction Outputs summed values must be smaller or equal the sum of the values
found in inputs prev out. Only then the transaction can be valid and spent. What happens
with the difference if the output sum is smaller than the input? Its the miner fee, that
incentivise the miners for verifying the transaction quicker than others.

1. "out": [Outgoing transactions

2. { First transaction output

3. "value":"12.99990000", The value of bitcoins going out.

4. "scriptPubKey":"OP DUP OP HASH160 ..OP EQUALVERIFY OP CHECKSIG"
S. }o

6. { Second transaction output

7. "value":"2.00000000", Bitcoin value of the second output

8. "scriptPubKey":"OP DUP OP HASH160 ..OP EQUALVERIFY OP CHECKSIG"
9. }

10.]

Build your First Transaction

Appendix | - Useful Resources

Technical Introduction to Bitcoin youtube.com/watch?v=Lx9zgZCMgXE
How the bitcoin procol actually works
michaelnielsen.org/ddi/how-the-bitcoin-protocol-actually-works

A m-of-n transaction in the wild

http://blockexplorer.com/rawtx/60a20bd93aa49ab4b28d514ec10b06e1829ce6818ec06cd3aa
bd013ebcdc4bb1

https://www.youtube.com/watch?v=Lx9zgZCMqXE
http://www.google.com/url?q=http%3A%2F%2Fwww.michaelnielsen.org%2Fddi%2Fhow-the-bitcoin-protocol-actually-works%2F&sa=D&sntz=1&usg=AFQjCNGZGC_kA91EkZ9erttdfuwosvtGIQ
http://www.google.com/url?q=http%3A%2F%2Fblockexplorer.com%2Frawtx%2F60a20bd93aa49ab4b28d514ec10b06e1829ce6818ec06cd3aabd013ebcdc4bb1&sa=D&sntz=1&usg=AFQjCNFTZ2O9vd2yWTAVSMpe3Em8Rr2rxg
http://www.google.com/url?q=http%3A%2F%2Fblockexplorer.com%2Frawtx%2F60a20bd93aa49ab4b28d514ec10b06e1829ce6818ec06cd3aabd013ebcdc4bb1&sa=D&sntz=1&usg=AFQjCNFTZ2O9vd2yWTAVSMpe3Em8Rr2rxg

