
Privacy-Invasive Software

Martin Boldt

Blekinge Institute of Technology
Doctoral Dissertation Series No. 2010:02
ISBN 978-91-7295-177-8
ISSN 1653-2090

2010-03-23

School of Computing
Blekinge Institute of Technology
Sweden

© 2010 Martin Boldt

School of Computing
Publisher: Blekinge Institute of Technology
Printed by Printfabriken, Karlskrona, Sweden 2010
ISBN 978-91-7295-177-8

To Lena

Contact Information
Martin Boldt
School of Computing
Blekinge Institute of Technology
PO Box 520
SE-372 25 Ronneby
SWEDEN

E-mail: martin.boldt@bth.se
Web: http://www.bth.se/tek/mbo/

Abstract

As computers are increasingly more integrated into our daily lives
we become more dependent on software. This situation is exploited
by villainous actors on the Internet that distribute malicious soft-
ware in search for fast financial gains at the expense of deceived
computer users. As a result, computer users need more accurate
and aiding mechanisms to assist them when separating legitimate
software from its unwanted counterparts. However, such separa-
tions are complicated due to a grey zone of software that exists
between legitimate and purely malicious software. The software in
this grey zone is often vaguely labelled spyware. This work intro-
duces both user-aiding mechanisms and an attempt to clarify the
grey zone by introducing the concept of privacy-invasive software
(PIS) as a category of software that ignores the users’ right to be left
alone. Such software is distributed with a specific intent (often of
commercial nature), which negatively affects the users to various
degree. PIS is therefore classified with respect to the degree of
informed consent and the amount of negative consequences for the
users.

To mitigate the effects from PIS, two novel mechanisms for safe-
guarding user consent during software installation are introduced; a
collaborative software reputation system; and automated End User
License Agreement (EULA) classification. In the software reputa-
tion system, users collaborate by sharing experiences of previously
used software programs, allowing new users to rely on the collective
experience when installing software. The EULA classification gen-
eralizes patterns from a set of both legitimate and questionable
software EULAs, so that computer users can automatically classify
previously unknown EULAs as belonging to legitimate software or
not. Both techniques increase user awareness about software pro-
gram behavior, which allow users to make more informed decisions
concerning software installations, which arguably reduces the threat
from PIS.

We present experimental results showing a set of data mining algo-
rithms ability to perform automated EULA classification. In addi-
tion, we also present a prototype implementation of a software
reputation system, together with simulation results of the large-
scale use of the system.
i

ii

Acknowledgements

First of all, I would like to express my gratitude to my supervisor,
Dr. Bengt Carlsson, for both his guidance throughout this work and
for always finding the time. I would also like to thank my examiner,
Professor Paul Davidsson, for helping me form this thesis.

Furthermore, I want to thank my friends and colleagues, especially
Dr. Niklas Lavesson for his assistance and great knowledge in data
mining; Dr. Andreas Jacobsson for many interesting discussions
about spyware and other matters; Anton Borg for continuing some
of the research ideas introduced in this thesis; and last but not least
my assistant supervisor Dr. Stefan Axelsson and DISL members for
valuable feedback and interesting discussions.

I am forever grateful to my parents Ingegärd and Jerker for their
endless and unconditional support and for always being the best of
parents. Special thanks also to my brother Christian and my sister
Elisabeth for many great memories, and for many still to come.
Most importantly, I want to thank Lena for keeping up with me
during this work, including the sometimes odd working hours.
iii

iv

Preface
This thesis consists of the seven publications listed below. My
contributions for each of these publications are as follows. For
publication one and two I was responsible for the experiment
design, setup, execution, and data analysis/filtering. I was main
author of publication two, three, six and seven. I was responsible
for the design of the presented system in publication four, as well
as for writing the paper. In addition to jointly coming up with the
idea of the content in publication five together with Niklas Laves-
son; I also motivated the problem within a security context, and
evaluated the state-of-the-art commercial tool in this work.

Publication 1: A. Jacobsson, M. Boldt and B. Carlsson, “Privacy-Invasive Soft-
ware in File-Sharing Tools”, in proceedings of the 18th IFIP World
Computer Congress (WCC2004), 2004, Toulouse France.

Publication 2: M. Boldt, A. Jacobsson, and B. Carlsson, “Exploring Spyware
Effects”, in proceedings of the 9th Nordic Workshop on Secure IT Systems
(NordSec04), Helsinki Finland, 2004.

Publication 3: M. Boldt and B. Carlsson, “Analysing Countermeasures Against
Privacy-Invasive Software”, in proceedings of the IEEE International
Conference on Software Engineering Advances (ICSEA’06), Papeete
French Polynesia 2006.

Publication 4: M. Boldt, B. Carlsson, T. Larsson and N. Lindén, “Preventing Pri-
vacy-Invasive Software using Online Reputations”, in Lecture
Notes in Computer Science (LNCS), Volume 4721, 2007.

Publication 5: N. Lavesson, M. Boldt, P. Davidsson, A. Jacobsson, “Learning to
Detect Spyware using End User License Agreements”, in print:
Springer International Journal of Knowledge and Information Systems
(KAIS), 2009.

Publication 6: M. Boldt, A. Borg and B.Carlsson, “On the Simulation of a Soft-
ware Reputation System”, in proceedings of the 5th International Con-
ference on Availability, Reliability and Security (ARES’10), Krakow
Poland, 2010.

Publication 7: M. Boldt and B. Carlsson, “Stopping Privacy-Invasive Software Using
Reputation and Data Mining”, journal manuscript, 2010.
v

Throughout this thesis the use of first person plural signifies the
fact that several people in addition to the author of this thesis
have made contributions to this work. All papers have been scru-
tinized by both colleagues and members of our research group,
and they have also been peer-reviewed at the corresponding con-
ferences and journals.

Finally, the following publications are associated with, but not
included in this thesis.

J. Wieslander, M. Boldt and B. Carlsson, “Investigating Spyware
on the Internet”, in the proceedings of the 7th Nordic Workshop on
Secure IT Systems (NordSec03), Gjövik Norway, 2003.

M. Boldt and B. Carlsson, “Privacy-Invasive Software and Pre-
ventive Mechanisms”, in proceedings of the International Conference on
Systems and Networks Communications (ICSNC’06), Papeete French
Polynesia, 2006.

M. Boldt, B. Carlsson, R. Martinsson, “Software Vulnerability
Assessment – Version Extraction and Verification”, in proceeding,
International Conference on Systems and Networks Communications
(ICSEA 2007), Cap Esterel France, 2007.

M. Boldt, P. Davidsson, A. Jacobsson and N. Lavesson, “Auto-
mated Spyware Detection Using End User License Agreements”,
in proceedings of the 2nd International Conference on Information Security
and Assurance, Busan Korea, 2008.

N. Lavesson, P. Davidsson, M. Boldt and A. Jacobsson, “Spyware
Prevention by Classifying End User License Agreements”, in
Studies in Computational Intelligence, Volume 134, Springer, 2008.

J. Olsson and M. Boldt, “Computer Forensic Timeline Visualiza-
tion Tool”, in Journal of Digital Investigation, Elsevier, 2009.
vi

 Table of Contents

List of Figures . xi

List of Tables . xiii

Chapter 1 . 1
Introduction

1.1 Thesis Outline. 3
1.2 Background . 3

Chapter 2 . 9
Main Concepts

2.1 Privacy . 9
2.2 Malware . 10
2.3 Adware . 12
2.4 Spyware . 12
2.5 Informed Consent . 14
2.6 Spyware and Informed Consent . 15
2.7 Spyware Distribution . 17
2.8 Spyware Implications . 18
2.9 Spyware Countermeasures . 20
2.10 Reputation Systems. 22
2.11 Data Mining . 23

Chapter 3 . 27
Research Approach

3.1 Motivation and Research Questions 27
3.2 Research Methods. 28
3.3 Thesis Contribution . 29

3.3.1 Research Question 1 . 29
3.3.2 Research Question 2 . 31
3.3.3 Research Question 3 . 32
3.3.4 Research Question 4 . 34
3.3.5 Research Question 5 . 35

3.4 Discussion and Future Work . 36
3.5 References . 41

Publication 1 . 49
Privacy-Invasive Software in File-Sharing Tools
vii

4.1 Introduction . 50
4.2 Privacy-Invasive Programs and their Implications 51
4.3 Experiment Design . 55

4.3.1 Problem Domain. 55
4.3.2 Instrumentation and Execution 56
4.3.3 Data Analysis. 57

4.4 Experiment Results and Analysis . 59
4.4.1 Ad-/Spyware Programs in File-Sharing Tools 59
4.4.2 The Extent of Network Traffic 60
4.4.3 The Contents of Network Traffic 61

4.5 Discussion . 63
4.6 Conclusions . 65
4.7 References . 66

Publication 2 . 69
Exploring Spyware Effects

5.1 Introduction . 70
5.2 On spyware. 72

5.2.1 The Background of Spyware . 72
5.2.2 The Operations of Spyware . 73
5.2.3 The Types of Spyware . 74
5.2.4 On the Implications of Spyware. 76

5.3 Experiments . 77
5.3.1 Method . 77
5.3.2 Results and Analysis . 79

5.4 Discussion . 82
5.5 Conclusions . 85
5.6 References . 86

Publication 3 . 89
Analysing Countermeasures Against Privacy-Invasive Software

6.1 Introduction . 89
6.2 Countermeasures . 91
6.3 Computer Forensics. 92
6.4 Investigation . 93
6.5 Results. 96
6.6 Discussion . 99
6.7 Conclusions . 102
6.8 References . 103

Publication 4 . 107
Preventing Privacy-Invasive Software using Online Reputations
viii

7.1 Introduction . 108
7.1.1 Background and Related Work 109

7.2 Important Considerations . 111
7.2.1 Addressing Incorrect Information 111
7.2.2 Protecting Users’ Privacy . 114

7.3 System Design. 115
7.3.1 Client Design . 115
7.3.2 Server Design. 117
7.3.3 Database Design . 118

7.4 Discussion. 120
7.4.1 System Impact . 120
7.4.2 Improvement Suggestions. 122
7.4.3 Comparison with Existing Countermeasures 123
7.4.4 Conclusions and Future Work 124

7.5 References . 125

Publication 5. 129
Learning to Detect Spyware using End User License Agreements

8.1 Introduction . 130
8.1.1 Background . 130
8.1.2 Related Work . 133
8.1.3 Scope and Aim. 133
8.1.4 Outline . 134

8.2 EULA Classification. 134
8.2.1 Supervised Learning . 135
8.2.2 Representation . 135

8.3 Data Sets . 137
8.3.1 Data Collection . 138
8.3.2 Data Representation . 139

8.4 Experiments . 140
8.4.1 Algorithm Selection and Configuration 140
8.0.1 Evaluation of Classifier Performance 142

8.1 Experimental Procedure. 145
8.2 Results . 146

8.0.1 Bag-of-words Results. 147
8.0.1 Meta EULA Results. 148
8.0.2 Tested Hypotheses . 149
8.0.3 CEF Results . 149

8.1 Discussion. 150
8.0.1 A Novel Tool for Spyware Prevention. 153
8.0.2 Potential Problems. 154
8.0.3 Comparison to Ad-aware . 155
8.0.4 Conclusions and Future Work 156
ix

8.1 References . 157

Publication 6 . 161
On the Simulation of a Software Reputation System

9.1 Introduction . 162
9.2 Related Work . 163
9.3 Software Reputation System . 164

9.3.1 System Design . 165
9.4 Software Reputation System Simulator 166

9.4.1 Simulator Design. 167
9.4.2 User Models . 168
9.4.3 Simulation Steps . 170

9.5 Simulated Scenarios . 171
9.6 Results. 172

9.6.1 Trust Factors and Limits. 172
9.6.2 Previous Rating Influence. 174
9.6.3 Demography Variations and Bootstrapping 176

9.7 Discussion . 178
9.8 Conclusions . 179
9.9 Future Work . 180
9.10 Acknowledgements . 180
9.11 References . 181

Publication 7 . 183
Stopping Privacy-Invasive Software Using Reputation and Data Mining

10.1 Introduction . 184
10.2 Traditional Countermeasures . 185
10.3 Privacy-Invasive Software . 187
10.4 Automated EULA Classification. 190

10.4.1 Results . 191
10.5 Software Reputation System . 192

10.5.1 Prototype Implementation . 194
10.5.2 Usability Study. 196

10.6 Simulation of Software Reputation System. 198
10.6.1 Results . 200

10.7 Discussion . 202
10.8 Conclusions and Future Work. 206
10.9 References . 207
x

List of Figures

1.1 Thesis outline. 2
3.1 Interaction of different techniques into a combined PIS countermeasure 40
4.1 Amount of programs in the experiment sample . 58
4.2 Network data traffic . 61
6.1 Number of bundled PIS programs. 97
9.1 The voting variance for each of the three simulated user groups 168
9.2 Users voting with a varying trust factor during 48 votes each 172
9.3 Users voting with a 1,25 exponential trust factor during 96 votes each. 173
9.4 Number of votes for each user group with different trust factor limits. 174
9.5 Simulation with previous rating influence (PRI) . 174
9.6 Development of the trust factor (TF) for each user group. 175
9.7 System accuracy for several different user group constellations. 176
9.8 System accuracy per user group constellation with 25% bootstrapped 177
10.1 The Graphical User Interface from our prototype . 195
10.2 Simulation results showing system accuracy at various modification factors. . 200
10.3 Simulation results showing how user demography affect the system accuracy.201
10.4 A directed attack against 1000 pre-selected software . 202
10.5 Example of installation policy in pseudo code. 205
xi

xii

List of Tables

4.1 Identified ad-/spyware programs. . 59
5.1 Identified spyware programs. 79
5.2 Resource utilisation measurements. 81
5.3 Spyware Effects. . 82
6.1 Total number of added components for three P2P-programs 96
6.2 Number of PIS in three different P2P-programs . 97
6.3 Total number of undiscovered PIS programs in three different P2P-programs . 98
6.4 Classification of found PIS programs . 99
7.1 Classification of privacy-invasive software . 110
7.2 Difference between legitimate software and malware . 120
8.1 EULA Analyzer results for the complete data set. . 139
8.2 Learning algorithm configurations. . 141
8.3 Evaluation metrics. . 143
8.4 Results on the bag-of-words data set.. 147
8.5 Results on the meta EULA data set. . 148
8.6 CEF evaluation results. 150
8.7 Rule-based classifiers generated using the complete bag-of-words data set. . . . 152
8.8 Rule-based classifiers generated using the complete meta EULA data set. 153
10.1 Classification of privacy-invasive software . 188
10.2 Results from experiment evaluating 17 learning algorithms 192
10.3 Percent of subjects that allow or deny software installation 198
10.4 Transformation of PIS matrix . 203
xiii

xiv

C H A P T E R

1
Introduction

As computers are being increasingly more integrated into our daily
lives, we entrust them with sensitive information, such as online
banking transactions. If this data was to escape our control, nega-
tive effects to both our privacy and our economic situation could be
impaired. Privacy is a central concept in this work, and it may be
described as the ability for individuals to control how personal data
about themselves are stored and disseminated by other parties [79].
Another important aspect of privacy is the individuals’ right to keep
their lives and personal affairs out of the public space. The amount
of personal data that affect our privacy will continue to grow as
larger parts of our lives are represented in a digital setting, including
for instance e-correspondence and e-commerce transactions.

In parallel with this development, software known as spyware has
emerged. The existence of such software is based on the fact that
information has value. Spyware benefits from the increasing per-
sonal use of computers by stealing privacy-sensitive information,
which then is sold to third parties. Conceptually, these programs
exist in-between legitimate software and malicious software (such as
computer viruses). However, there is no consensus on a precise
definition for spyware since its exact borders have not yet been
revealed. The lack of such a standard definition results in that spy-
ware countermeasures do not offer users an accurate and efficient
protection. Therefore, the users’ computers are infested with spy-
ware, which among many things, deteriorate the performance and
stability of their computers, and ultimately present a threat to their
privacy.
1

Introduction
In this work, we contribute to the understanding of spyware by pro-
viding a classification of various types of privacy-invasive software
(PIS). This classification does not only include spyware, but also
both legitimate and malicious software. As there is no consensus
regarding where to put the separating line between legitimate soft-
ware and spyware, nor between spyware and malicious software, it
is important to address both of these cases in the classification of
PIS. After having classified PIS, we further explore how PIS pro-
grams affect the users’ computer systems and privacy. To help miti-
gate the effects from PIS we propose the use of collaborative
reputation systems for preventing the infections and distribution of
PIS. We have developed a proof-of-concept system that allows
users to share their opinions about software they use. In this sys-
tem, the users are asked to continuously grade software that they
frequently use. In return, the users are presented with the opinion
of all previous users with regard to software that enters into their
computer. In addition to this system we also propose the use of
automated classification of End User License Agreements to notify
users about PIS when installing software.

Figure 1.1 Thesis outline.

“Privacy-Invasive Software in File-

PART I
Setting the Scene

Sharing Tools”Publication 1:

“Exploring Spyware Effects”Publication 2:

“Analysing Countermeasures against
Privacy-Invasive Software”Publication 3:

“Preventing Privacy-Invasive Soft-
ware using Online Reputations”Publication 4:

IntroductionChapter 1:

Main ConceptsChapter 2:

Research Approach and ContributionsChapter 3:

PART II
Contributions

“Learning to Detect Spyware using
End User License AgreementsPublication 5:

“On the Simulation of a Software
Reputation System”Publication 6:

“Stopping Privacy-Invasive Software
Using Reputation and Data Mining”Publication 7:
2

Introduction
1.1 Thesis Outline

As presented in Figure 1.1, this thesis consists of two parts, where
the purpose of part one is to set the scene for the thesis, using the
first three chapters. In the next section we provide a background,
and in Chapter 2 we present the related work and also provide an
extended introduction to main concepts. In Chapter 3 the research
approach, motivation, and questions are presented together with
the thesis contributions.

The second part of the thesis includes six published papers and one
manuscript. The first two papers focus on spyware and its conse-
quences to both the infested computer and the user privacy. In the
third publication we evaluate the accuracy of spyware countermeas-
ures. In the fourth publication we introduce privacy-invasive soft-
ware (PIS) and also describe the idea of using software reputation
systems as countermeasures. Then, in the fifth publication we intro-
duce data mining techniques to classify End User License Agree-
ments (EULA). The sixth publication presents results from
simulations of a software reputation system. Finally, the seventh
publication is a journal manuscript that summarizes our findings
related to PIS and the related countermeasures.

1.2 Background

In the mid-1990s the development of the Internet increased rapidly
due to the interest from the general public. One important factor
behind this accelerating increase was the 1993 release of the first
graphical browser, called Mosaic [1]. This marked the birth of the
graphically visible part of the Internet known as the World Wide
Web (WWW). Commercial interests became well aware of the
potential offered by the WWW in terms of electronic commerce,
and soon companies selling goods over the Internet emerged with
pioneers such as book dealer Amazon.com and CD retailer
CDNOW.com, which were both founded in 1994 [54].

During the following years, personal computers and broadband
connections to the Internet became more commonplace. Also, the
increasing use of the Internet resulted in that e-commerce transac-
tions involved considerable amounts of money [11]. As the compe-
tition over customers intensified, some e-commerce companies
turned to questionable methods in their battle to entice customers
Thesis Outline 3

Introduction
into completing transactions with them [10, 63]. This opened ways
for illegitimate actors to gain revenues by stretching the limits, with
for example, methods for collecting personal information or by
propagating unsolicited commercial advertisements. Soon, the pro-
viding of such services became a business in itself; allowing less
scrupulous marketers to buy such services that allowed them to get
an advantage over their competitors, e.g. by using advertisements
based on unsolicited commercial messages (also known as Spam)
[39].

Originally, such questionable techniques were not as destructive to
the computer system as the more traditional malicious techniques
used in computer viruses or Trojan horses. Compared to these
malicious techniques the new ones differed in two important ways.
First, they were not necessarily illegal, and secondly, their main goal
was gaining revenue instead of creating publicity for the creator by
reaping digital havoc.

Behind this development were advertisers that understood the fact
that Internet was a “merchant’s utopia”, offering a huge potential in
global advertising coverage at a relatively low cost. By using the
Internet as a global bulletin board, e-commerce companies could
market their products through advertising agencies, which delivered
online ads to the masses. In 2004, online advertisements repre-
sented $2 billions which in 2005 increased to $6 billion-a-year [45,
82]. The larger online advertising companies report annual revenues
in excess of $50 million each [14]. In 2008, the online advertisement
revenues had reached $23 billion; outperforming traditional TV
commercials in some countries [37]. In the beginning of this devel-
opment the advertising companies distributed their ads in a broad-
cast-like manner, i.e. they were not streamlined towards individual
user interests. Some of these ads were served directly on Web sites
as banner ads, but dedicated programs, called adware, soon emerged.
Adware were used to display ads through pop-up windows without
depending on any Internet access or Web pages.

In search for more effective advertising strategies, these companies
began using the potential in ads that were targeted towards users’
interests around the millennium shift. Once targeted online ads
started to appear the development took an unfortunate turn. Now,
some advertisers developed software that became known as spyware,
collecting users’ personal interests, e.g. through their browsing hab-
its. Over the coming years spyware would evolve into a significant
new threat to Internet-connected computers, bringing along
4 Background

Introduction
reduced system performance and less security. The information
gathered by spyware was used for constructing user profiles, includ-
ing personal interests, detailing what users could be persuaded to
buy.

The introduction of online advertisements also opened a new way
to fund software development by having the software display adver-
tisements to its users. By doing so, the software developers could
offer their software “free of charge” since they were paid by the
advertising agency. Unfortunately, many users did not understand
the difference between free of charge and a free gift. A free gift is
given without any expectations of future compensation, while
something provided free of charge may expect something in return.
As an example a dental examination that is provided free of charge
at a dentist school is not a free gift. The school expects their stu-
dents to gain training value and as a consequence the customer suf-
fers increased risks. As software were combined with spyware this
became a problem for the computer users. When downloading soft-
ware described as free of charge, the users had no reason to suspect
that it would report on, for example, their Internet usage so that
advertisements could be targeted towards their interests.

Some users probably would have accepted to communicate their
browsing habits because of the feedback, e.g. offers relevant to their
interests. However, the fundamental problem was that users were
not properly informed about neither the occurrence nor the extent
of such monitoring, and hence were not given a chance to decide
on whether to participate or not. As advertisements became tar-
geted, the borders between adware and spyware started to dissolve
due to the combination of both behaviours; resulting in programs
that both monitored users and delivered targeted ads. The fierce
competition soon drove advertisers to further enhance the ways
used for serving their ads, e.g. replacing user-requested content with
sponsored messages before showing it on the screen.

As the quest for faster financial gains intensified, several competing
advertisers turned to use even more illegitimate methods in an
attempt to stay ahead of competition [9]; accelerating the situation
and pushing the grey area of the Internet closer to the dark side
[32]. During this development users experienced infections from
unsolicited software that crashed their computers by accident, unin-
vitedly changed application settings, harvested personal informa-
tion, and deteriorated their computer-experience through Spam and
pop-up ads [49]. Over time these problems lead to the introduction
Background 5

Introduction
of countermeasures in the form of anti-spyware tools. These tools
supported users in cleaning their computers from spyware, adware,
and any other types of shady software located in that same grey
area. As these tools were designed in the same way as anti-malware
tools, such as anti-virus programs, they most often identified spy-
ware that was already known, leaving unknown spyware undetected.
To further aggravate the situation, illegitimate companies distrib-
uted fake anti-spyware tools in their search for a larger piece of the
online advertising market. These fake tools claimed to remove spy-
ware while instead installing their own share of adware and spyware
on unwitting users’ computers; sometimes even accompanied by
the functionality to remove adware and spyware from competing
vendors.

Another area that could be of interest for spyware vendors is the so
called media centers that include the same functionality as conven-
tional televisions, DVD-players, and stereo equipment, but com-
bined with an Internet connected computer. These media centers
are thought to reach vast consumer impact [38, 48]. In this setting,
spyware could monitor and survey for instance which television
channels are being used, when/why users switch channel, and what
movies the users purchase and watch. This is information that is
highly attractive for any advertising or media-oriented corporation
to obtain. This presents us with a probable scenario where spyware
is tailored towards these new platforms; the technology needed is to
a large extent the same as is used in spyware today. Another exam-
ple that most likely will attract spyware developer interest is the
increasing amount of mobile devices that include GPS functionality.
During the writing of the introduction to this thesis Google were
awarded with a patent on using location information in advertise-
ments [43], which is expected to have far-reaching effects on both
Web-based and mobile advertising [73]. Gaining access to geo-
graphical position data allow advertisers to provide for example
GPS-guided ads and coupons [67].

The enhanced mobile platforms that are in use today form an inter-
esting breeding ground for augmented reality1 applications [21]. In
fact there are already free-of-charge products available for cellular
phones and other mobile devices, one such example is Layar [44].

1. While virtual reality tries to replace the real world, augmented reality instead
tries to combine the two; an example is applications that allow the user
to point a phone’s camera at various objects, which the phone automat-
ically identifies and show additional information about.
6 Background

Introduction
Marketing in this setting allow advertising companies get access to
users’ personal geographical data so they can be served geographi-
cally dependant ads and coupons. When such geographic data is
being harvested and correlated with already accumulated personal
information, another privacy barrier is crossed. This raises the stake
for the users, and stresses the need of the mechanisms that allow
users to make informed decisions regarding software.

Today spyware programs are being added to the setting in what
seems to be a never-ending stream, although the increase has lev-
elled out over the last years. However, there still does not exist any
consensus on a common spyware definition or classification, which
negatively affects the accuracy of anti-spyware tools, further render-
ing in that spyware programs are being undetected on users’ com-
puters [31]. Developers of anti-spyware programs officially state
that the fight against spyware is more complicated than the fight
against viruses, Trojan horses, and worms [77]. We believe the first
step for turning this development in favour for both users and anti-
spyware vendors, is to create a standard classification of spyware.
Once such a classification exists, anti-spyware vendors can make a
more clear separation between legitimate and illegitimate software,
which could result in more accurate countermeasures.
Background 7

Introduction
8 Background

C H A P T E R

2
Main Concepts

The concepts that are covered in this section form a basis for the
remainder of the work and discussions in this thesis; and the pur-
pose of this section is to declare our understanding and to motivate
our use of the concepts.

2.1 Privacy

The first definition of privacy was presented by Warren and Bran-
deis in their work “The Right to Privacy” in 1890 [75]. They defined
privacy as “the right to be let alone”. Today, as we are part of com-
plex societies, the privacy debate does not argue for the individual’s
right to physically isolate himself by living alone in the woods as a
recluse, which could have been one motivation over a century ago.
Instead the community presumes that we all must share some per-
sonal information for our society to function properly, e.g. in terms
of health care services and law enforcement. Discussions in the pri-
vacy community therefore focus on how, and to what extent we
should share our personal information in a privacy-respecting man-
ner. Unfortunately, it is not possible to properly define privacy in a
single sentence in this complex situation, or as Simson Garfinkel so
concisely put it [26]:

“The problem with the word privacy is that it falls short of conveying
the really big picture. Privacy isn’t just about hiding things. It’s about
self-possession, autonomy, and integrity. As we move into the computer-
Privacy 9

Main Concepts
ized world of the twenty-first century, privacy will be one of our most
important civil rights.”

However, for the clarity of the remaining part of this work we make
an approach to present our interpretation and usage of privacy in
this thesis. In the end, we share the general understanding of pri-
vacy with the work presented by Simone Fischer-Hübner [36] who
divides the concept of privacy into the following three areas:

• territorial privacy focusing on the protection of the public area
surrounding a person, such as the workplace or the public space

• privacy of the person, which protects the individual from undue
interference (constituting for example, physical searches and
drug tests)

• informational privacy concerning how personal information (infor-
mation related to an identifiable person) is being gathered,
stored, processed, and further disseminated.

Many aspects of these privacy concerns need attention but this the-
sis focuses on the computer science perspective. The problems ana-
lysed and discussed in this work are mostly related to the last two
areas above, i.e. protecting the user from undue interference, and
safeguarding personal information. Thus, our view of privacy does
not only focus on the communication of personal information, but
also include undue interference that affects the users’ computer
experience.

2.2 Malware

Malware is a concatenation of malicious and software. The concept of
malware captures any software that is designed or distributed with
malicious intent towards users. The distribution of malware has
intensified over the last decade as a result of the widespread use of
the Internet. An additional contributing factor is the mix between
data and executable code in commonly used systems today. In these
systems, executable code has found its way into otherwise tradition-
ally pure data forms, e.g. Word documents and Web sites. The risk
of malware infection exists for all situations where executable code
is being incorporated. Throughout this thesis we use the following
definition of malware [66, 71]:
10 Malware

Main Concepts
“Malware is a set of instructions that run on your computer and make
your system do something that an attacker wants it to do.”

Spyware is often regarded as a type of malware, since they (in
accordance with the malware definition) executes actions that are
defined by the developer. However, there are differences between
spyware and malware, which we further explain when defining spy-
ware in the next section. To further enlighten the reader, we include
three definitions of malware types that are often being mixed-up in
for example media coverage. We start with the computer virus which
probably is the most publicly recognized malware type [66]:

“A virus is a self-replicating piece of code that attaches itself to other
programs and usually requires human interaction to propagate.”

The second one is the worm, also publicly known through its global
epidemics [71]. Although it is closely related to, and often mixed-up
with, the computer virus, there exist some differences as shown in
the definition [66]:

“A worm is a self-replicating piece of code that spreads via networks
and usually doesn’t require human interaction to propagate.”

The third malware type is the Trojan horse, which shares some simi-
larities with spyware as it deceives users by promising one thing but
also delivers something different according to their operator’s
desires [66]:

“A trojan horse is a program that appears to have some useful or
benign purpose, but really masks some hidden malicious functionality.”

One common misconception is that viruses or worms must include
a payload that carry out some malicious behaviour. However, this is
not the case since these threats are categorized by their distribution
mechanisms, and not by their actions. An interesting example are
the so called “white” or “ethical” worms that replicate instantly fast
between computers, and patch the hosts against security vulnerabil-
ities, i.e. they are not set to spread destruction on the hosts they
infect but instead help in protecting against future threats. One
could wonder if it is possible to “fight fire with fire without getting
burned” [66]. Most security experts would agree in that these
“white” worms are not ethical but instead illegal, as they affect
computer systems without the owners consent. Such an ethical
worm could harm a system if it was to include a programming bug
Malware 11

Main Concepts
that gave it another behaviour than intended, i.e. similar to what
happened with the Morris worm [20]. Since various malware defini-
tions do not say anything about the purpose of the attacker, they
can not easily be related to spyware as these programs are classified
according to their actions instead of their distribution mechanisms.

2.3 Adware

Adware is a concatenation of advertising and software, i.e. programs set
to deliver ads by advertising agencies and showing them on the
computer users’ screen. Throughout this thesis we use the follow-
ing definition of adware [2, 39].

“Any program that causes advertising content to be displayed.”

2.4 Spyware

In early 2000, Steve Gibson formulated an early description of spy-
ware after realizing that software, which stole his personal informa-
tion had been installed on his computer [27]. His definition reads as
follows:

“Spyware is any software which employs a user’s Internet connection in
the background (the so-called ‘backchannel’) without their knowledge
or explicit permission.”

This definition was valid in the beginning of the spyware evolution.
However, as the spyware concept evolved over the years it attracted
new kinds of behaviours. As these behaviours grew both in number
and in diversity, the term spyware became hollowed out. This evolu-
tion resulted in that a great number of synonyms sprang up, e.g.
thiefware, evilware, scumware, trackware, and badware. We believe
that the lack of a single standard definition of spyware depends on
the diversity in all these different views on what really should be
included, or as Aaron Weiss put it [78]:

“What the old-school intruders have going for them is that they are rel-
atively straightforward to define. Spyware, in its broadest sense, is
harder to pin down. Yet many feel, as the late Supreme Court Justice
Potter Stewart once said, ‘I know it when I see it.’.”
12 Adware

Main Concepts
Despite this vague comprehension of the essence in spyware, all
descriptions include two central aspects. The degree of associated
user consent, and the level of negative impact they impair on the
user and their computer system. These are further discussed in Sec-
tion 2.6 and Section 2.8 respectively. Because of the limited under-
standing in the spyware concept, recent attempts to define it have
been forced into compromises. The Anti-Spyware Coalition (ASC)
which is constituted by public interest groups, trade associations,
and anti-spyware companies, have come to the conclusion that the
term spyware should be used at two different abstraction levels [2].
At the low level they use the following, which is similar to Steve
Gibson’s original definition:

“In its narrow sense, Spyware is a term for tracking software deployed
without adequate notice, consent, or control for the user.”

However, since this definition does not capture all the different
types of spyware available they also provide a wider definition,
which is more abstract in its appearance [2]:

“In its broader sense, spyware is used as a synonym for what the ASC
calls ‘Spyware (and Other Potentially Unwanted Technologies)’. Tech-
nologies deployed without appropriate user consent and/or implemented
in ways that impair user control over:
1) Material changes that affect their user experience, privacy, or system
security;
2) Use of their system resources, including what programs are installed
on their computers; and/or
3) Collection, use, and distribution of their personal or other sensitive
information.”

Difficulties in defining spyware, forced the ASC to define what they
call Spyware (and Other Potentially Unwanted Technologies) instead. In this
term they include any software that does not have the users’ appro-
priate consent for running on their computers. Another group that
has tried to define spyware is StopBadware.org, which consists of
actors such as Harvard Law School, Oxford University, Google,
Lenovo, and Sun Microsystems [68]. Their result is that they do not
use the term spyware at all, but instead introduce the term badware.
Their definition span over seven pages, but the essence looks as fol-
lows [69]:

“An application is badware in one of two cases:
1) If the application acts deceptively or irreversibly.
Spyware 13

Main Concepts
2) If the application engages in potentially objectionable behaviour with-
out: first, prominently disclosing to the user that it will engage in such
behaviour, in clear and non-technical language, and then obtaining the
user's affirmative consent to that aspect of the application.”

Both definitions from ASC and StopBadware.org show the diffi-
culty with defining spyware. Throughout this thesis we regard the
term spyware at two different abstraction levels. On the lower level
it can be defined according to Steve Gibson’s original definition.
However, in its broader and in a more abstract sense the term spy-
ware is hard to properly define, as concluded above. Throughout
the rest of this chapter we presume this more abstract use of the
term spyware, unless otherwise is stated. We also use the terms ille-
gitimate and questionable software as synonyms to spyware.

One of the contributions of this thesis is our classification of vari-
ous types of spyware under the term privacy-invasive software (PIS),
which is introduced in Chapter 3. This classification was developed
as a way to bring structure into the fuzzy spyware concept. How-
ever, as the PIS classification did not exist when we wrote the first
two included publications we therefore use the term ad-/spyware in
Chapter 4 and 5 instead of PIS.

2.5 Informed Consent

The degree of informed consent that is associated with software is an
important and central part of spyware. Informed consent is a legal
term which details that a person has understood and accepted both
the facts and implications that is connected to an action. In this the-
sis we use the term when observing to what degree computer users
comprehend that new software is installed and how it impact their
computer-experience. We start by defining informed consent,
before moving on to describe the relation between spyware and
informed consent.

Throughout this thesis we use the same definition of informed consent
as was originally defined by Friedman et al. [22]. This definition
divides the term into the following two parts:

• Informed, i.e. that the user has been adequately briefed. The term
informed is then further divided into disclosure and comprehension.
Disclosure refers to that accurate information about both posi-
tive and negative feedback should be disclosed, without any
14 Informed Consent

Main Concepts
unnecessary technical details. Comprehension targets that the
disclosed information is accurately interpreted.

• Consent, i.e. that both positive and negative implications are
transparent and approved by the user. The term consent is then
broken down into voluntariness, competence, agreement, and minimal
distraction. Voluntariness refers to that the individual has the pos-
sibility to decline an action if wanted, i.e. no coercion is allowed.
The term competence concerns that the individual possess both
the mental, emotional, and physical capabilities that are needed
to give an informed consent. Agreement means that an individ-
ual should be given a clear and ongoing opportunity to accept
or reject further participation. Finally, minimal distraction
declare that individuals should not be diverted from their pri-
mary task through an overwhelming amount of interruptions
that seek to “inform the user” or to “seek consent”, i.e. to uti-
lize user interaction sparsely [24].

For a user to be able to give an informed consent, e.g. with respect
to allowing software to enter the system, it is important that the
implications of the software is fully transparent towards the user.
Today, the main method used by software vendors to inform users
of their software is not transparent as it was designed to primarily
fulfill legal purposes. End-User License Agreements (EULA) are
widely used today and they form a contract between the producer
and the user of a certain software. Most often users are forced to
affirm that they have read, understood and accepted the EULA
content before being able to install a specific software. Questiona-
ble software vendors use the EULA to escape liability from their
software actions, by including juridical escape routes inside the
EULA content [70].

2.6 Spyware and Informed Consent

As touched upon earlier, installing software that are funded by
included spyware components allow for the vendor to distribute
their software free of charge. However, the inclusion of such com-
ponents may also result in a mismatch between the software behav-
iour that users assume, and the actual behaviour they realize. Such
divergences have formed a skeptical user-base that disapproves of
any software that e.g. monitors user behaviour. As a consequence,
such users also label legitimate software as spyware, even if their
Spyware and Informed Consent 15

Main Concepts
behaviour is clearly stated in the corresponding EULA without the
use of any deceptive techniques.

Many computer users today are not capable of reading through
EULAs, as they are written in a formal and lengthy manner [31, 70].
User license agreements that include well over 6000 words (com-
pared to, e.g. the US Constitution that includes 4616 words) is not
unusual [30]. Prior research shows that users need skills that corre-
spond to a degree in contract law to understand the full EULA con-
tent [8]. This is used by questionable software vendors as a legal
lifeline when they are challenged to explain their practices in court,
using it as an escape route from liability.

Since the majority of users either do not have the prerequisite
knowledge, or the time, to base an opinion on EULA content prior
to installing software, they just accept it without reading it, i.e. the
consent is not based on an informed decision. In the absence of user
informed consent, software that does not comply with the user’s
security preferences (e.g. in terms of behaviour or stability) is
allowed to enter their system. Since users lack the aiding mecha-
nisms inside the operating system to distinguish illegitimate soft-
ware from legitimate, they get their computers infested with
spyware.

Today, legitimate software vendors (that without any deceptive
practices) state in the EULA that their software displays advertise-
ment pop-ups still run the risk of being labelled as spyware by the
users, since they rarely read through the associated EULAs [8].
Hence, the users can not deduce the pop-up ads on the computer
screen with the approval of a software installation some time ago.
So, once users think their computer-experience has been subverted
by spyware, they become overly protective which further adds on
this skepticism. We believe this to be very unfortunate since behav-
ioural monitoring is both useful and an effective info-gathering
measure to base tailored services towards users’ individual needs
[12, 56]. It is not the technology as such that is the main problem,
but rather the uninformed manner in which it is introduced toward
the users. Legitimate software vendors need standardized mecha-
nisms inside the operating system to inform potential users in how
their software impacts the user’s computer system.

If the technology was provided in a true overt manner towards the
users it could equally well provide most beneficial services. Because
of the personalization of these services they would also increase
16 Spyware and Informed Consent

Main Concepts
user benefits compared to non user-tailored services. Therefore, it
is important for both software vendors and for users to safeguard
users’ right to make informed decisions on whether they want soft-
ware to enter their system or not. In the end, we believe that an
acceptable software behaviour is context-dependent, i.e. what one
user regards as acceptable is regarded as unacceptable by others,
and as a result only the user himself can reach such decisions [31].
This is further discussed in Section 3.3 as one of the contributions
in this thesis. In the end we believe that user consent will become
an increasingly more important aspect in computer security as com-
puters are further introduced into people’s daily lives.

2.7 Spyware Distribution

Distribution of spyware differs vastly from the spreading of mal-
ware types such as viruses and worms. As by definition viruses and
worms are distributed using self-propagation mechanisms, which
spyware does not include.

Instead, most spyware distribution is ironically being carried out by
the users themselves. Of course the users are not being aware that
they install spyware because of a number of deceptive measures
used by spyware vendors. One commonly used strategy is to bundle
(piggyback) spyware with other software, which users are enticed to
download and install. When users find useful software being pro-
vided free of charge they download them without questioning or
being aware of the bundled components enclosed. Although the
associated EULA often contains information about the bundled
spyware and its implications, users do not read them because of
their length and formal language. So, spyware vendors basically use
software that attracts users as bait for distributing their own pro-
grams as bundles, e.g. together with file-sharing tools, games, or
screen-saver programs.

Another spyware distribution mechanism relies on the exploitation
of security vulnerabilities in the users’ computer system. Microsoft’s
Web browser, Internet Explorer, has often been used for such pur-
poses because of its unfortunate history of security flaws and its
dominating position. Utilizing such vulnerabilities inside software
on the user’s computer allows attackers to run any programs of
their choice on the user’s system. Such attacks on Web browsers
often start when the user visits, or is fooled to visit, a Web site con-
Spyware Distribution 17

Main Concepts
trolled by the attacker. Next, the Web server sends a small program
that exploits the security vulnerability in the user’s Web browser.
Once the attacker has gained this foothold, it is possible to deploy
and start any software, for instance sponsored spyware programs.
Because the users are kept totally out of this scenario without any
choice for themselves, these installations go under the name drive-by
downloads. For clarity, it should be added that spyware that rely on
software vulnerabilities as a distribution mechanism are closely
related to malware. It might even be the case that these programs
should not be called spyware, but instead malware.

The third method used by spyware vendors is to distribute their
software using tricks that deceive the user into manipulating secu-
rity features that are designed to protect the user’s computer from
undesired installations. Modern Web browsers for example do not
allow software to be directly installed from remote Web sites unless
the user initiates the process by clicking on a link. With the use of
deceptive tricks, spyware vendors manipulate users into unknow-
ingly clicking on such links [47]. One example is that pop-up ads
could mimic the appearance of a standard window dialog box which
includes some attractive message, i.e. “Do you want to remove a
new spyware threat that has been detected on your computer?”.
This dialog box could then include two links that are disguised as
buttons, reading “Yes” and “No”, and despite which button the
user press the drive-by download is started.

2.8 Spyware Implications

As we have seen, many spyware programs are distributed by being
bundled together with attractive programs. When users install such
programs the bundled spyware follows, and with it, system implica-
tions. As mentioned previously, spyware exists in a grey area
between legitimate software and traditional malware. One of the
distinctions between the two software categories relate to their
implications for systems. Spyware does not result in the same direct
destruction as with traditional forms of malware. Instead users
experience a gradual performance, security, and usability degrada-
tion of their computer system. These system effects could be struc-
tured as follows [3, 63, 65]:

• Security implications: As with any software installation, spyware
introduces system vulnerabilities when deployed on computer
systems. However, the fundamental difference between general
18 Spyware Implications

Main Concepts
software installation and spyware, is the undisclosed fashion
used by the latter. This covertness renders it virtually impossible
for system owners to guarantee the software quality of their
computer system. Poor software quality conveys an escalated
risk of system vulnerabilities being exploited by remote mali-
cious actors. If such a vulnerability was found and exploited
inside one of the leading spyware programs, it could result in
millions of computers being controlled by attackers because of
the widespread use of these programs. In 2004, poorly written
adware programs allowed remote actors to replace any files on
users systems because of a poorly designed update function
[57]. Fortunately, this vulnerability was first identified by an
honest individual that made sure that the adware developer cor-
rected the problem before making a public announcement
about the vulnerability.

• Privacy implications: Spyware covertly monitors, communicates,
and refines personal information, which makes it privacy-inva-
sive. In addition, such programs also display ads and commer-
cial offers in an aggressive, invasive, and many times undesirable
manner. Such software behaviour negatively affects both the
privacy and computer-experience of users [78, 82]. These pri-
vacy-invasions will probably result in greater implications for
the users, as computers are being increasingly used in our daily
lives, e.g. when shopping or online banking.

• Computer resource consumption: As spyware is installed on users’
computer systems in an uninformed way, the memory, storage,
and CPU resources are being utilized without the users’ permis-
sion. Combined with the fact that users commonly have several
instances of spyware on their systems makes the cumulative
effect on computer capacity evident. Another threat to the local
computation capacity comes from spyware that “borrow” the
storage and computation resources from users’ computers
which it has infected. This combined storage and computational
power were then combined into a distributed super computer,
which could be rented by the highest bidder. Again, unwitting
users (after some time) found their computers being covertly
used in projects that were not compatible with their opinions
and ethics [15].

• Bandwidth consumption: Along the same line of reasoning as
above, the users’ network capacity is being negatively affected
by the continuous transmission of ads and personal informa-
tion. Some users might even be even more upset, if these highly
irritating and undesired behaviours use resources that instead
Spyware Implications 19

Main Concepts
should be used for really important tasks. Bandwidth over con-
sumption becomes even more significant when ads are being
further enhanced using moving pictures and 3D graphics.

• System usability reduction: The existence of spyware on computer
systems negatively impact a user’s computer-experience [31].
Since spyware is installed in a covert manner users can not
deduce the cause of strange system behaviours they experience.
This makes it hard to identify what is inducing for instance the
flow of pop-up ads, irreversible changes in application settings,
installation of unrequested and unremovable software, or degra-
dation of system performance and stability. In addition to this,
underaged users could be exposed to offending material such as
ads promoting adult material. These implications further result
in that users are interrupted in their daily work, negatively influ-
encing their general computer-experience.

As the aggregated amount of these implications became too over-
whelming for the users to bear, a new group of software labelled
spyware countermeasures emerged. These tools helped users to remove
spyware from their systems.

2.9 Spyware Countermeasures

Today, spyware countermeasures are being implemented using the same
techniques as traditional anti-malware tools use, e.g. anti-virus pro-
grams. However, an important difference between malware and
spyware is that the former is well defined, while there is a lack of
both knowledge and definition of the latter. Without a clear under-
standing of what kinds of programs that should be removed, coun-
termeasure vendors both miss some spyware and wrongly remove
legitimate software. The key problem is that malware include pro-
hibited behaviour, such as virus and worm propagation mecha-
nisms, while spyware does not. Anti-malware tools can therefore in
an easier manner separate malware from legitimate software, by
focusing on malware’s illegal behaviours.

Spyware, on the other hand, often does not include prohibited
behaviour, but instead, compared with malware, rather innocent
behaviours, e.g. displaying messages on the screen, monitoring of
the Web address field in browsers, or making non-critical configura-
tion changes to programs, such as altering the default Web page.
Unfortunately enough for anti-spyware vendors, spyware share
20 Spyware Countermeasures

Main Concepts
these behaviours with a vast number of legitimate software in gen-
eral. Anti-spyware vendors therefore face a problem when trying to
distinguish spyware from legitimate software based on software
behaviour [76]. The anti-spyware vendors’ removal strategies there-
fore need to be placed on a sliding scale, between two extremes.
Either they prioritize the safeguarding of legitimate software, or
they focus on removing every single spyware in existence. Unfortu-
nately for the users, it is neither possible to remove every single spy-
ware, because this would include many legitimate programs as well,
nor to safeguard all legitimate software since this leaves most spy-
ware untouched. Today, anti-spyware vendors have great difficulties
in choosing where on this sliding scale they want to be, as none of
these alternatives are very effective. Therefore the chosen strategy
needs to be a compromise between these two extremes, rendering
in both missed spyware programs and false labelling of legitimate
software as spyware. In a prolongation, anti-spyware vendors need
to chose to either miss spyware components, resulting in bad repu-
tation, or to include legitimate software which leads to law suits.

This result in that spyware vendors somewhat arbitrarily decides
what software to label as spyware and what not. Further, leading to
a divergence between what software different countermeasure ven-
dors target, i.e. some countermeasures remove one program while
others leave it. These difficulties has further proved to result in legal
disputes as software vendors feel unfairly treated by countermeas-
ure vendors and therefore bring the case to court [31]. Such a situa-
tion is negative for both legitimate software vendors that find their
products falsely labelled as spyware, and anti-spyware vendors that
risk being sued when trying to protect their users’ interests. This
further result in that users’ success rate in countering spyware
depends on the combination of different countermeasure tools being
used, since no single one offers full protection.

Current spyware countermeasures depend on their own classifica-
tions of what software that should be regarded as spyware. We
believe that this model provides a too coarse mechanism to accu-
rately distinguish between the various types of spyware and legiti-
mate software that exist, since this is based on the individual users’
own opinion. Most of the current spyware countermeasures are
reactive and computer-oriented in their design, i.e. they focus on
system changes to identify known spyware once they already have
infected systems. Over the last years, some preventive countermeas-
ures have also started to emerged which focus on hindering spy-
ware before it has any chance to start executing on the computer.
Spyware Countermeasures 21

Main Concepts
However, such countermeasures still suffer from the issues con-
nected to the per vendor governed spyware classifications. Each
vendor has its own list of what software that should be regarded as
spyware and these lists do not correlate.

We argue that there is a need for more user-oriented countermeas-
ures, which should complement the existing computer-oriented
anti-malware tools. Such complementing countermeasures should
focus on informing users when they are forced to reach difficult
trust decisions, e.g. whether to install a certain piece of software or
not. However, the goal for such mechanisms should not be to make
these trust decisions for users. In the end, it is up to the users them-
selves to consider advantages and disadvantages before reaching the
decision.

2.10 Reputation Systems

Reputation systems are in essence an algorithm for calculating and
serving reputation scores for a set of persons or objects [41]. The
reputation scores are calculated dynamically based on incoming rat-
ings from community users. It is the reputation servers that collect,
aggregate and distribute the reputation scores for objects; in an
attempt to facilitate trust by visualising reputation to the commu-
nity users. It is the collective opinion within the community that
determines an object’s reputation score; giving the system both col-
laborative sanctioning and praising effects by praising high quality
while sanctioning low.

As a result reputation systems help community users when making
trust decisions even though most members do not know each other
in real life. Reputation systems could therefore be seen as a way to
take person-to-person gossip and personal experience (that we rely
on in everyday-life) into an Internet setting. An example of a widely
known reputation system is the one incorporated in eBay.com.

One problem with reputation systems is that some users are reluc-
tant to spend the additional time needed for inserting their own
experience into the system, e.g. by rating products [51]. Some users
also feel unpleasant when assigning negative ratings and for that
reason ignore the rating all together.

Another problem is that many online communities rely on pseudo-
nyms instead of real names for identification purposes, which also
means that any user can start another identity simply by setting up a
22 Reputation Systems

Main Concepts
new pseudonym. This limits the effects of a reputation system since
any user that is dissatisfied with the reputation can restart from
scratch. Due to this reputation systems are vulnerable to various
attacks such as the Sybil attack [34], where single users sign up for
more than one pseudonyms each, which result in the power of sev-
eral ratings per user within the system.

Reputation systems are related to both recommender systems [52] and
collaborative filtering [29]. The main difference is that reputation sys-
tems calculate reputation scores based on explicit ratings from the
community; while recommender systems instead rely on events
such as book purchases when generating recommendations to the
users. Collaborative filtering typically involves a two-step process
where other users that have similar tastes are identified first, and
then the ratings from these like-minded users are used for generat-
ing suggestions for the intended user.

2.11 Data Mining

The overarching goal within data mining is to transform data into
information, which most often involves identifying patterns within
large data sets that are impossible for humans to find manually.
Data mining could therefore be defined as “the process of discover-
ing patterns in data” [80]. As the size of databases is ever growing
there is an increasing need for data mining techniques; for instance
in text categorization [61], marketing/buying-habit analysis [4],
fraud detection [33], and junk E-mail filtering [55].

In data mining, problems are often studied by analyzing samples, or
observations of data. For example, if we are interested in develop-
ing a new method for distinguishing between Spam and legitimate
E-mail, we may obtain a data set of E-mails from both categories.
The objective could be to use a data mining algorithm for automat-
ically learning how to classify new E-mails by generalizing from the
studied data set. Obviously, we will never gain access to all existing
E-mails and it would most certainly be computationally infeasible to
sift through such a data set. Thus, we make the assumption that, by
collecting a large enough representative sample – we may address
the complete problem by studying these observations.

On an abstract level the data mining process can be explained using
the following four steps; data selection, pre-processing, mining, and result
validation [35, 80].
Data Mining 23

Main Concepts
Data selection requires an understanding of the application domain
and knowledge about the goal of the data mining procedure. Based
on the goal, the researcher selects a subset of the data to focus fur-
ther efforts on. However, most often it is not possible to chose the
data; instead one has to stick with the data available.

During pre-processing noisy and irrelevant data is removed and it is
decided what attributes that should be used; this is also referred to
as feature selection. Pre-processing also involves organizing the data
into structures that the chosen algorithms can handle, given the
computational power at hand. This step also involves the division
of data into a training and a test set; where the mining algorithms rely
on the training set to find patterns, while the test set is used for ver-
ifying these patterns.

The third step involves the actual mining of patterns based on four
types of techniques [46, 80]:

• Classification, classify the data entries into predefined discrete
classes, e.g. legitimate E-mail or Spam.

• Clustering, arrange data entries together into groups just as classi-
fication, but with the distinction that no predefined groups
exist, i.e. trying to group similar entries together.

• Regression, approximating a real-valued target function.
• Association rule learning, tries to find relationships among

attributes within the data.

In the fourth step the patterns from the mining algorithms is veri-
fied to be valid not only for the training set, but also the test data.
Patterns detected by mining algorithms do not necessarily have to
be valid. It is for instance possible for the algorithms to detect pat-
terns in the training data that does not exist when considering the
wider data set, i.e. when including the test data. This problem is
called overfitting and means that the mining algorithm has opti-
mized too much on the training data, on the expense of generaliza-
bility [46].

This is the reason why another data set is used for validity and eval-
uation purposes, i.e. a data set that the algorithms have not been
trained on. During the validation the identified patterns (from the
training data) are applied on the test data. If the learnt patterns do
not match both data sets the whole data mining process needs to be
re-iterated using a different approach, but it could also be the case
that patterns simply are not available in the data at all. On the other
24 Data Mining

Main Concepts
hand, if the patterns match both data sets the analysis of the results
can proceed.
Data Mining 25

Main Concepts
26 Data Mining

C H A P T E R

3
Research Approach

3.1 Motivation and Research Questions

Even though spyware and countermeasures are interesting to study
from several perspectives, such as technology, law and human-com-
puter interaction, we will keep a technology focus in this thesis.
However we will also occasionally touch upon the other areas.
When we began our research concerning spyware, the existing
knowledge was rather sparse, even parsimonious in relation to the
degree of negative impact these programs had on the users’ compu-
ter experiences [49]. Today, the occurrence of illegitimate software
has become a major security issue for both corporations and home
users on the Internet. As we adopt to an increasingly more compu-
terized life, it will be of great importance to manage the problems
associated with questionable software so that the integrity and con-
trol of users’ computers can be protected.

However, since no accurate definition or classification exists for
such software, the reports and discussions of their effects are often
vague and sometimes inconsistent. Although previous work shows
that illegitimate software invades users’ privacy, disrupt the users’
computer experience, and deteriorates system performance and
security, one could wonder what actually is being measured if there
is no clear definition or encapsulation of the problem [3, 65].

Today, several countermeasures against questionable software exist,
but many of them rely on techniques that work mostly for already
Motivation and Research Questions 27

Research Approach
known threats. Furthermore these countermeasures often do not
detect threats until they have already gained entrance to the system.
Even though there exist preventive tools that lock down a system
so that no software can enter unless the user allows it to, these are
often difficult even for non-technical users to configure and oper-
ate. Such tools result in that users need to reach security related
decisions based on the insufficient information presented to them
through warning and notification messages. Messages that usually
include a technical or juridical language which many users find hard
to interpret and therefore benefit from. These problems have moti-
vated us to investigate the classification and effects of spyware; and
how preventive mechanisms against spyware could be designed. We
therefore put forward the following five research questions (all
assuming the more abstract use of the term spyware described in
Chapter 2):

RQ1 How can a classification of spyware be formulated with respect to
privacy-invasive behaviour?

RQ2 What negative effects are related to spyware, i.e. with regard to infor-
mation theft, system performance, and security?

RQ3 How can a reputation system be constructed to counteract spyware
using computer users’ experience about software?

RQ4 What problems with regard to system accuracy are associated with
the use of a reputation system for counteracting spyware?

RQ5 How can data mining algorithms be used for producing classifiers
that can distinguish between EULAs of spyware-infested software
and EULAs of legitimate software?

3.2 Research Methods

We have used a combination of different research methods includ-
ing experiments, theoretical analysis, and simulation [18, 53]. Differ-
ent research approaches were also used for each one of the five
research questions. Both RQ1 and RQ3 were approached using the-
oretical analysis/modelling, aiming to find and understand already
existing classifications and countermeasures. The outcome was
then compiled and analysed in search of both strengths and weak-
nesses.
28 Research Methods

Research Approach
For RQ2 we relied on an experimental approach and an empirical
method based on experiments to evaluate a set of software bundled
with spyware and their consequences on the host system. These
experiments were conducted in a systematic, repeatable, and logical
way, and was based on data collection, data analysis and data verifi-
cation.

Simulation was used in RQ4 when investigating the problems asso-
ciated with a software reputation system. We implemented a simula-
tor that was used to investigate different scenarios related to the use
and misuse of a software reputation system.

RQ5 rely on an experimental approach together with statistical
analysis and significance tests to evaluate a set of learning algo-
rithms abilities to produce classifiers that separates EULAs associ-
ated with spyware-infested software from EULAs of legitimate
software. Further information about the research methods used is
presented in the included publications.

3.3 Thesis Contribution

The main contributions of this thesis are associated with the five
research questions that are specified above. In addition, we also
regard the extensive description of the spyware concept presented
in Chapter 2 to be one of the contributions of this thesis. Another
contribution is our conclusion that it is impossible to accurately
define a global spyware categorization since many of the parts are
subjective in respect to the users. This further leads to the introduc-
tion of user-oriented countermeasures where the user needs to
define software as legitimate or not, based on new aiding mecha-
nisms. Next we address the five research questions, which are dis-
cussed both in the research question part below and in the
subsequent discussion, i.e. we want to address the questions both
individually and together.

3.3.1 Research Question 1

Previous research has identified a problem with the lack of a stand-
ard spyware definition [30]. A joint conclusion is that it is important
for both software vendors and users that a clear separation between
acceptable and unacceptable software behaviour is established [8,
64]. As we conclude in Chapter 2 the concept of spyware is difficult
Thesis Contribution 29

Research Approach
to capture in a short, but yet commonly agreeable definition. The
reason for this is the subjective nature of many spyware programs
included, which result in inconsistencies between different users’
beliefs, i.e. what one user regards as legitimate software could be
regarded as a spyware by others. As the spyware concept came to
include increasingly more types of programs, the term became
fuzzy and vague.

We therefore choose to introduce the term privacy-invasive software
(PIS) to encapsulate all such software. We believe this term is more
descriptive than other synonyms (e.g. trackware, scareware, evilware
and badware) without having as negative connotation. Even if we
use the word “invasive” to describe such software, we believe that
an invasion of privacy can be both desired and beneficial for the
user as long as it is fully transparent, e.g. when implementing spe-
cially user-tailored services or when including personalization fea-
tures in software.

We used the work by Warkentins et al. as a starting point when
developing a classification of PIS [74]. As a result we classify PIS as
a combination of user consent and direct negative consequences. User con-
sent is specified as either low, medium or high, while the degree of
direct negative consequences span between tolerable, moderate, and
severe. This classification allows us to first make a distinction
between legitimate software and spyware, and secondly between
spyware and malicious software. All software that has low user con-
sent, or which impairs severe direct negative consequences should
be regarded as malware. While, on the other hand, any software that
has high user consent, and which results in tolerable direct negative
consequences should be regarded as legitimate software.

In addition to the direct negative consequences, we also introduce
indirect negative consequences. By doing so our classification distin-
guishes between any negative behaviour a program has been
designed to carry out (direct negative consequences) and security
threats introduced by just having that software executing on the sys-
tem (indirect negative consequences). One example of an indirect
negative consequence is the exploitation risk of software vulnerabil-
ities in programs that execute on users’ systems without their
knowledge [57]. This classification is further described in Publica-
tion 4 and 7.
30 Thesis Contribution

Research Approach
3.3.2 Research Question 2

To explore the effects that PIS have on computer systems we con-
ducted a number of experiments with the goal to investigate PIS
bundled with five, at that time, leading file-sharing tools [7]. The
results showed that all these file-sharing tools included adware, spy-
ware, and downloaders (programs that allow for new software and/
or updates to be downloaded and installed without first asking the
user). All file-sharing tools also included PIS involved in Internet
communication. However, it was not practically possible to further
investigate exactly what information was transmitted over the net-
work since the traffic was encrypted. However, in one case our
empirical results confirmed that one of these tools transmitted pri-
vacy-invasive data such as visited Web sites, zip code, country, lists
of other software installed on the computer, and the exact version
of the operating system. Our results also confirm that many of the
PIS components introduce new security risks since they allow new
software and/or updates to be automatically downloaded and
installed, which can be hijacked by attackers.

We used two different versions of the same file-sharing tool, in this
case KaZaa and KaZaa Lite K++, to investigate the resource utili-
zation of PIS on a local computer. By subtracting the resource utili-
zation of KaZaa Lite K++, which had all PIS components removed
(only leaving the file-sharing functionality) from the original KaZaa
version (which included bundled with PIS), we were able to get a
measurement of the amount of resources that was consumed by
PIS. The results show that both the utilization of system resources,
and network bandwidth were significantly higher for KaZaa com-
pared to the cleaned version. The increased utilization of bandwidth
and number of contacted servers were due to transmission of pop-
up ads, banners, and new software updates for the PIS components
themselves. Although the CPU utilization was rather low at 0.48%,
it is interesting that PIS introduces a 32 time increase compared to
the clean version1. Also, the usage of RAM was significantly higher,
with a 10 time increase, leaving the original version of KaZaa at a
65MB memory usage.

In contrast to PIS supported file-sharing tools, installing a cleaned
software equivalence cause marginal impact to the system and net-

1. The experiments used identical computers which included a Pentium 4
2.8Ghz processor.
Thesis Contribution 31

Research Approach
work resources. However, due to the occurrence of PIS compo-
nents in file-sharing tools, users with several such applications
installed simultaneously will suffer from a continuous system and
network degradation due to the aggregated impact. This includes
increased security and stability risks, unlike today’s focus on infor-
mation gathering. More information regarding how these experi-
ments were designed, executed, and their results are presented in
Publication 1 and 2.

3.3.3 Research Question 3

So far, developers of countermeasure tools have used the same
techniques as in malware countermeasures (such as anti-virus pro-
grams) when fighting spyware. Although there are several similari-
ties between spyware and malware there also exist a few profound
differences. For instance, spyware rather includes functions that
gather information, show messages on the screen, or monitors vis-
ited Web behaviour; instead of more malware-like behaviour such
as rapid self-propagation. When fighting obvious malware it is
instead possible to clearly separate software that is considered mal-
ware from legitimate. Furthermore this could be done without risk-
ing to include any legitimate software, since they are so different
from malware that these two groups do not overlap.

However, when targeting spyware which is closer to legitimate soft-
ware than malware, it is impossible not to (incorrectly) include
innocent programs. This is a problem since vendors of anti-spyware
tools rely on a central classification that differs not only among dif-
ferent anti-spyware vendors, but also for single anti-spyware ven-
dors over time, as is shown in Publication 3. A problem here is that
such static classifications do not respect users’ personal opinion
about software. Two users may disagree on whether a certain soft-
ware should be classified as spyware or not; one might think it is a
free useful tool that show valuable ads and offers, while the other
finds it invasive and highly irritating. This results in that miss-classi-
fications occur as a consequence of this static division, which may
further result in law suits against the vendor, as explained in Publi-
cation 3. In other words, these techniques are not effective against
PIS [70].

Instead of merely relying on the same techniques that anti-malware
tools utilize, we believe that spyware countermeasures should focus
on user consent, when distinguishing spyware from legitimate prod-
32 Thesis Contribution

Research Approach
ucts that are beneficially tailored toward the users’ needs. Any coun-
termeasure not doing so is either forced to label legitimate software
as spyware, or miss true spyware due to the user-centered opinion
of spyware. We believe that this situation has originated from the
lack of a proper understanding of the spyware concept which fur-
ther has made spyware a fuzzy concept; resulting in that spyware
absorbed new program behaviours over time, which further com-
plicated the construction of a definition. User consent constitutes
the essence of our definition of PIS, since we believe it reasonably
should be up to the users themselves to distinguish legitimate soft-
ware from illegitimate. This is impossible for any anti-spyware tool
since they lack the personal and subjective preferences that each
user has regarding software, i.e., some users accept targeted pop-up
ads as something positive while others reject it with almost religious
beliefs. Although this is hard today, we believe it could be possible
in the future with the help from user-oriented countermeasures that
aid users in this process.

Since spyware does not include as disastrous behaviour as malware,
current anti-spyware tools face a more complicated task trying to
pinpoint spyware. Therefore future countermeasures also need to
focus on informing the users so they can distinguish legitimate and
illegitimate software based on their own individual preferences.
Providing users that are about to install a certain software with the
knowledge from previous users of that software, could help them
get a notion of either trust or mistrust. By also providing the user
with additional information, such as an overall rating of the soft-
ware vendor, would allow interested users to further investigate the
software in question. We therefore propose the use of collaborative
reputation systems for providing users with these services [50, 81].
Such systems could handle individual users’ knowledge, and refine
it into a commonly shared knowledge-base. Similar reputation sys-
tems are currently used by for instance Internet Movie Database
(IMDb.com) for rating movies, and by eBay (eBay.com) where users
rate the performance of other parties that they have undertaken
transactions with. The overall intention with a reputation system is
to use user ratings as a trust enabler in the system, which is further
described in Section 3.4.

It should be noted that such a reputation system against PIS is
tightly connected with the PIS classification. The introduction of
this type of user-oriented countermeasures would transform the
classification of PIS. As users are given a tool that allows them to
make informed decisions regarding the behaviour and implications
Thesis Contribution 33

Research Approach
of software, it is possible to apply a sharp boundary based on user
consent between all software in the PIS classification. Using the
added knowledge provided by the reputation system would render
in that all PIS that previously have suffered from a medium user
consent level, now instead would be transformed into either a high
consent level (i.e. legitimate software) or a low consent level (i.e.
malware). In other words, all software with medium user consent,
i.e. spyware, is transformed into either legitimate software or mal-
ware in the classification. Since anti-malware tools address mali-
cious and deceitful software, the information about the rest of the
software could be trusted to be correct, i.e., any software using
deceitful methods is regarded as malware and is treated as such.

This allows users to rely the information when reaching trust deci-
sions regarding their computer system. Another aspect of this type
of countermeasure is that no single organization, company or indi-
vidual is responsible for the software ratings since these are calcu-
lated based on all votes submitted by the users. As a result this
makes it harder for dissatisfied spyware vendors to sue the devel-
oper of the countermeasure for defamation.

3.3.4 Research Question 4
To evaluate the use of a software reputation system we imple-
mented a simulator that allows us to simulate vast numbers of users.
The simulator includes representations of both users and software.
All simulated users (one million) are divided into three groups that
represent novice, average and expert users. These groups determine
the users’ accuracy when rating the simulated software, i.e. experts
are able to rate software most accurately of the three groups. Dur-
ing simulations the users rate software on a discrete scale (1-10)
based on their past experience of each particular software. In our
simulated scenarios we include 100,000 software programs and each
one is randomly assigned a correct rating, which later is used for
evaluating the accuracy of a certain simulated scenario. The correct
rating is also used as a starting point when determining users’ rat-
ings, together with a randomized vote variance that is calculated
based on group-specific distributions.

We have simulated scenarios that investigate how different user
demographics (various proportions of the three groups) affect the
overall accuracy of the reputation system, i.e. how accurately the
reputation system can deliver software ratings to users within the
community. Another scenario involves the simulation of malicious
34 Thesis Contribution

Research Approach
users that try to deteriorate system accuracy or boost/downgrade
certain targeted programs. We also simulate different properties of
the reputation system trying to find suitable configurations. One
such important property is the way users’ trust factors (specifying
the impact each user has within the reputation system) should be
modified. To prevent some users from getting too much impact
within the system we also simulate various max limits that restrict
users’ trust factors from getting too high.

Our results from the simulations indicate that using a factor of 1.25
for increasing and decreasing users’ trust factors provides a reason-
able overall accuracy (step from the correct value). We also
conclude that a maximum trust factor limit of around 1000 results
in a beneficial trade-off between system accuracy and user impact.
If no limit at all is used the experts’ trust factors reach astronomical
proportion; resulting in that even small misratings from them being
amplified within the system, which results in huge impact on the
overall accuracy of the reputation system. The results also show
that even with less than 5% experts it is possible to reach a quite
accurate software reputation system, that provide users with soft-
ware ratings that differ with less than 1 rating unit from the simu-
lated correct rating. A more detailed description of both the
simulator itself and the simulated scenarios and results are available
in Publication 6.

3.3.5 Research Question 5

In contrast to clearly malicious software, spyware programs often
include End User License Agreements (EULAs) that users have to
accept during the software installation process. As a way to avoid
legal repercussions, spyware distributors include information about
the software programs behaviour and effects in the EULAs. How-
ever, this information is written in a way that makes it hard for users
to understand, for instance by formal legal language and writing in a
lengthy manner. Our idea is to investigate whether it is possible to
detect spyware-hosting software by analysing the text within the
EULAs. More precisely we evaluate whether it is possible to use
data mining and machine learning techniques to identify intrinsic
patterns within the EULA texts.

Based on an experiment we evaluate the capability of using data
mining for separating between legitimate software and spyware
based on the EULAs. First we manually gathered EULAs from 96

 1±
Thesis Contribution 35

Research Approach
known spyware and 900 legitimate software programs. Then we
compared the performance of 17 data mining algorithms with that
of a baseline algorithm.

The results show that the majority of learning algorithms signifi-
cantly outperform the baseline. The best performing algorithm in
our experiment was Naive Bayes Multinomial with an Area Under
the ROC Curve (AUC) measure of 0.939. The AUC present the
probability that a randomly chosen instance is correctly classified by
the classifier; where 0.5 is worst case (50% risk of misclassification)
and 1.0 is optimal. Naive Bayes Multinomial further showed false
alarms for 44 good EULAs, and missed 17 of the bad EULAs by
misclassifying them as good. Even though 17 missed bad EULAs is
too high for a practical tool, we have to keep in mind that the
experiment includes a limited number of bad EULAs. Also, none of
the algorithms used were optimized/fine-tuned to suite the prob-
lem at hand, i.e. all algorithms had default configurations.

We therefore conclude that automatic EULA classification can be
used to assist users when making informed decisions during soft-
ware installation, i.e. whether to install an application without hav-
ing read the EULA. In publication 5 we describe the experiment
and results in more detail, and also outline a design for a novel pre-
vention tool and discuss the effects such a tool could have on spy-
ware creators.

3.4 Discussion and Future Work

The research presented in this thesis has resulted in an idea of a pre-
ventive mechanism that uses a collaborative reputation system to
increase user awareness about software behaviour. To evaluate the
impact of such a system we have built a proof-of-concept reputa-
tion system that could be used as a test base for evaluating how to
enable informed decision-making regarding software installation
and execution.

In a way, the proposed reputation system would use the same soft-
ware reputation that users today gain from for instance computer-
magazines and Web sites. However, one important distinction is
that these sources rely on the user to manually retrieve the informa-
tion, i.e. the user needs to pull it, while our proposed countermeas-
ure instead use an automatic push approach.
36 Discussion and Future Work

Research Approach
We argue that the reputation system should constitute an active part
in the installation process of the operating system; allowing it to
notify the user each time a previously unknown software is about to
execute or install on the system. When such an event occurs, the
execution or installation process should pause until the associated
information has been gathered from the knowledge-base, and has
been presented to the user. This would allow the reputation system
to provide users with important information when installing or exe-
cuting new or unknown software. One example could be that the
software they are about to install is developed by a vendor that is
known to rely on incorrect and deceiving information for sneaking
their product into users’ computers.

Although such a reputation system introduces many benefits, it is
also associated with several security issues that need to be consid-
ered. Boosting the reputation of a specific software is definitely
interesting from the perspective of a PIS vendor, e.g. for increasing
its distribution and popularity. Another problem would be compa-
nies or users that form alliances with the goal of smearing specific
software. To address these threats the reputation system could use
the five techniques presented below.

1. A single user should only be allowed to cast a single vote on
each specific software.

2. Secondly, users should only be allowed to vote on software that
has been started on the local computer more times than a cer-
tain threshold value, or which has a total execution time that
exceeds a pre defined value. This would assure that the user has
used the program for some time and therefore has gained at
least some modest opinion before rating it.

3. In addition to the rating of software, the system should use
meta-ratings that allow users to anonymously rate other users’
comments about a specific software. As a consequence any user
that tries to boost the reputation of a specific software by insert-
ing deceptive information would be down-rated by other users,
which further affects his/her own reputation and influence
within the reputation system negatively.

4. Even though all votes should be included there should be a dis-
tinction in the amount of influence they play. The exact factor
should be calculated by the voting accuracy and other users’ rat-
ings on the user’s contributions, i.e. new users would have a low
influence, but if they provide the system with useful informa-
tion they will become more trustworthy and will thereby gain
Discussion and Future Work 37

Research Approach
greater influence. This idea is similar to the PageRank technique
that Google.com utilizes when ranking the importance of Web
sites.

5. Signing up for using the system should include procedures that
aggravate2 automatically signing up a large amount of new
users. In addition to this, there should also exist a restriction in
the rate that the trustworthiness for a user is allowed to increase,
i.e. it should be impossible to boost a user’s influence to the
highest level in a short amount of time. Therefore, a user must
use his account on a frequent occasion over a relatively long
period of time, e.g. 12 months, to be able to earn the highest
vote impact. This measure forces any antagonistic actors to
invest a considerable amount of time to increase the trustwor-
thiness of their accounts, before being able to stage an effective
attack. Do note that the user still needs to receive excellent rat-
ings for his/her participation in the system by other users, to
earn a higher influence.

We believe such a reputation system would mitigate PIS by refining
the individual knowledge of all users in the system into software-
based reputations that are shared collectively. Both users and legiti-
mate software vendors would benefit from such a system. The legit-
imate software vendors could use the system to clarify and promote
what their software have been designed for, and how it would
impact the user’s computer systems. Users, on the other hand,
would automatically receive both suggestions of useful software
that has been well received by previous users, and warnings against
questionable software before allowing them to install.

Hopefully this combined benefit would make the users more willing
to share information about their software installations with the rep-
utation system. The proof-of-concept system relies on users to pro-
vide a valid e-mail address together with continuous information
about their experiences concerning certain software. It is important
that all such information is stored in an unlinkable format that hin-
ders the reputation system to consolidate, for instance, all software
a certain e-mail address has ranked. The privacy issues introduced
with such a system needs to be properly addressed with regard to
the users; so they are willing to trust it with their personal informa-
tion. It is not only necessary to develop a well functioning system,

2. For instance, techniques similar to the character recognition schemes
(Captcha) used at many online services, such as Hotmail.com.
38 Discussion and Future Work

Research Approach
but it is also of great importance that it is designed to handle the
users’ information in a privacy respective way. If not, the very
nature of such a system could be privacy-invasive towards its own
users, e.g. with respect to information leakage.

Offering users mechanisms that enhance informed decisions
regarding the software installation would also increase the liability
of the user. In a way, these mechanisms would transfer some of the
responsibility concerned with the protection against PIS to the
users themselves; confronting them with descriptions about behav-
iours and consequences for PIS, which they need to assimilate and
use in a mature and reasonable way. Based on the reputation system
it would be up to the users themselves to decide on whether or not
to allow certain software to enter their system.

Computer users today face similar difficulties when evaluating soft-
ware as consumers did a hundred years ago when evaluating food
products. In the nineteenth century the distribution of snake-oil
product flourished [72]. These products claimed to do one thing,
for example to grow hair, while they instead made unwitting con-
sumer addicted to habit-forming substances. In 1906 the Pure Food
and Drug Act was passed by the United States Congress, which
forced manufacturers to declare any ingredients in their products
[42]. The result was that consumers could trust the information on
the food container to be correct; allowing them to make informed
decisions on whether they should consume a product or not. As
long as the food does not include poisonous substances or use
deceptive descriptions it is up to the consumer to make the final
decision.

In addition to the reputation system, we also introduce the idea of
using automatic EULA classification based on data mining tech-
niques. By including the data mining classifier into a decision-sup-
port tool it would be possible for users to have software EULAs
automatically detected and classified during installation; providing
users with additional clues to allow the software to install or not.
Such a tool could also work in parallel with the software reputation
system; allowing both subsystems to cover for misjudgments from
the other. It would in fact be fully possible to combine several dif-
Discussion and Future Work 39

Research Approach
ferent techniques into a combined tool that assist the users, as
shown in Figure 3.1.

Figure 3.1 Interaction of different techniques into a combined PIS
countermeasure; where two out of five techniques are being
addressed in this work.

The EULA Transparency Tool could allow software vendors to
extracts the content in the EULA and present it in a short and easily
understood format, e.g. using short text descriptions in combina-
tion with pictograms. So, in addition to a EULA classification it
would also be possible for the users to get one page summaries of
EULA content that easily can be comprehended. Similar techniques
are used for instance within the Creative Commons licenses [17].

Signature Database refers to a database with signatures (unique
descriptions or “fingerprints”) of known malware, which could be
used for detection when other no other means are available. This
particular subsystem would work like traditional anti-malware tools
which need to be served with new signatures from anti-malware
researchers.
40 Discussion and Future Work

Research Approach
Collective Intelligence refers to a novel idea of investigating software
behaviour by analysing the users’ search patterns from Internet
search engines. Recently query data were used for predicting real-
world influenza epidemics by comparing high ranked search queries
with surveillance data [28]. In our setting, undefined programs
show traces of good or bad behaviour depending on the collective
intelligence of users formulating search query data. As the users’
computers get infected with some PIS they might experience nega-
tive symptoms, which they try to learn more about using for exam-
ple Google searches. By using data mining techniques it might be
possible to detect PIS epidemics on the Internet based on such
search queries.

A combined PIS countermeasure could allow a single user to get
enough information for making an informed decision during soft-
ware installations. The various parts within the system could also
backup for each other; so a user get some feedback by the system
even if one or two of the subsystems fail to detect a particular soft-
ware.

For future work we will further investigate the use of collective
intelligence when fighting PIS. We will also continue our research
on EULA analysis in search for increased performance. Ongoing
research (using the same data-set as in Publication 5) show great
promise with an Area Under the Curve (AUC) measure of 0.998 in
combination with 0 missed bad EULAs and a false alarm-rate of
merely 0.017. As the next step we will increase the EULA data-set
by co-operating with a leading anti-spyware corporation. We also
intend to carry out a user study that investigates the impact such a
decision-support system have on users’ behaviour with regard to
software installation.

In addition to this we will also further analyse the workings of a
software reputation system; for instance by simulating more
advanced malicious users, and a meta-reputation system where
users could rate each others’ feedback.
Discussion and Future Work 41

Research Approach
3.5 References

[1] M. Andreessen, “NCSA Mosaic Technical Summary”, National
Center for Supercomputing Applications, 1993.

[2] Anti-Spyware Coalition, “Anti-Spyware Coalition”,
http://www.antispywarecoalition.org,
Last checked: 2010-02-11.

[3] K.P. Arnett and M.B. Schmidt, “Busting the Ghost in the Machine”,
in Communications of the ACM, Volume 48, Issue 8, 2005.

[4] M. J. Berry, and G. Linoff, “Data Mining Techniques: For Marketing,
Sales, and Customer Support”, John Wiley & Sons Inc., New York NY,
1997.

[5] M. Boldt and B. Carlsson, “Analysing Countermeasures Against Pri-
vacy-Invasive Software”, in the proceedings of the IEEE International
Conference on Software Engineering Advances (ICSEA’06), Papeete
French Polynesia 2006.

[6] M. Boldt and B. Carlsson, “Privacy-Invasive Software and Preven-
tive Mechanisms”, in the proceedings of the IEEE International Conference
on Systems and Network Communications (ICSNC’06), Papeete French
Polynesia, 2006.

[7] M. Boldt, A. Jacobsson, and B. Carlsson, “Exploring Spyware
Effects”, in proceedings of the 8th Nordic Workshop on Secure IT Systems
(NordSec04), Helsinki Finland, 2004.

[8] J. Bruce, “Defining Rules for Acceptable Adware”, in the Proceedings
of the 15th Virus Bulletin Conference, Dublin Ireland, 2005.

[9] B. Carlsson, “Conflicts in Information Ecosystems – Modelling Selfish
Agents and Antagonistic Groups”, Doctoral Dissertation Thesis Series
No. 2001:03, School of Engineering, Blekinge Institute of Technol-
ogy, Sweden, 2001.

[10] Center for Democracy & Technology, “Following the Money”,
http://www.cdt.org,
Last checked: 2010-02-11.

[11] C. Abhijit, J.P. Kuilboer, “E-Business & E-Commerce Infrastructure:
Technologies Supporting the E-Business Initiative”, McGraw Hill, 2002.

[12] R.K. Chellappa and R.G. Sin, “Personalization versus Privacy: An
Empirical Examination of the Online Consumer's Dilemma”, in the
ACM Information Technology and Management, Volume 6, Issue 2, 2005.
42 References

Research Approach
[13] E. Chien, “Techniques of Adware and Spyware”, in the Proceedings of
the 15th Virus Bulletin Conference, Dublin Ireland, 2005.

[14] C|NET Anti Spyware Workshop, “The Money Game: How
Adware Works and How it is Changing”, San Francisco CA, 2005.

[15] C|NET News.com, “Stealth P2P Network Hides Inside KaZaa”,
http://news.com.com/2100-1023-873181.html,
Last checked: 2010-02-11.

[16] L.F. Cranor, “Giving Notice: Why Privacy Policies and Security
Breach Notifications aren’t Enough”, in IEEE Communications Mag-
azine, Volume 43, Issue 8, 2005.

[17] Creative Commons, “Licenses”,
http://creativecommons.org/about/licenses/
Last checked: 2010-02-11.

[18] J. W. Creswell, “Research Design”, Sage Publications, Thousand Oaks
CA, 2003.

[19] P.M. Doney and J.P. Cannon, “An Examination of the Nature of
Trust in Buyer-Seller Relationships”, in the Journal of Marketing, Vol-
ume 61, 1997.

[20] M.W. Eichin and J. Rochlis, “With Microscope and Tweezers: An
Analysis of the Internet Virus of November 1988”, in the Proceedings
of the 1989 IEEE Computer Society Symposium on Security and Privacy,
Oakland Ohio, 1989.

[21] S. Feiner, B. Macintyre, and D. Seligmann, “Knowledge-based aug-
mented reality”, in the Communications of the ACM, Volume 36, Issue
7, 1993.

[22] B. Friedman, E. Felten, and L.I. Millett, “Informed Consent Online:
A Conceptual Model and Design Principles”, CSE Technical Report,
University of Washington, 2000.

[23] B. Friedman, P.H. Kahn, and D.C. Howe, “Trust Online”, in the
Communications of the ACM, Volume 43, Issue 12, 2000.

[24] S. Furnell et al., “Considering the Usability of End-User Security
Software”, in the Proceedings of the 21st International Information Security
Conference (Sec2006), Karlstad Sweden, 2006.

[25] S. Ganesan, “Determinants of Long-Term Orientation in Buyer-
Seller Relationships”, in the Journal of Marketing, Volume 58, 1994.

[26] S. Garfinkel, “Database Nation”, O’Reilly & Associates, Sebastopol
CA, 2001.
References 43

Research Approach
[27] Gibson Research Corporation, “OptOut – Internet Spyware Detec-
tion and Removal”,
http://www.grc.com/optout.htm,
Last checked: 2010-02-11.

[28] J. Ginsberg et al., “Detecting influenza epidemics using search
engine query data”, in Nature, Volume 457, Issue 7232, 2009.

[29] D. Goldberg, D. Nichols, B.M. Oki and D. Terry, “Using collabora-
tive filtering to weave an information tapestry”, in Communication of
the ACM, Volume 35, Issue 12, 1992.

[30] N. Good et al., “Stopping Spyware at the Gate: A User Study of Pri-
vacy, Notice and Spyware”, in the proceedings of the Symposium On
Usable Privacy and Security (SOUPS 2005), Pittsburgh USA, 2005.

[31] N. Good et al., “User Choices and Regret: Understanding Users’
Decision Process about Consentually Acquired Spyware”, in I/S: A
Journal of Law and Policy for the Information Society, Volume 2, Issue 2,
2006.

[32] S. Görling, “An Introduction to the Parasite Economy”, in the Pro-
ceedings of EICAR, Luxembourg, 2004.

[33] C.S. Hilas, and P. A. Mastorocostas, “An Application of Supervised
and Unsupervised Learning Approaches to Telecommunications
Fraud Detection”, in Knowledge-Based Systems, Volume 21, Issue 7,
2008.

[34] K. Hoffman, D. Zage and C. Nita-Rotaru, “A survey of attack and
defense techniques for reputation systems”, in ACM Computing Sur-
veys (CSUR), Volume 42, Issue 1, 2009.

[35] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From data mining to
knowledge discovery: an overview”, American Association for Artificial
Intelligence, Menlo Park CA, 1996.

[36] S. Fischer-Hübner, “IT-Security and Privacy: Design and Use of Privacy-
Enhancing Security Mechanisms”, Springer Verlag, Berlin Heidelberg,
2001.

[37] Internet Advertising Bureau (IAB),
http://www.iab.net/insights_research/1357
Last checked: 2010-02-11.

[38] International Consumer Electronics Association,
http://www.cesweb.org,
Last checked: 2010-02-11.
44 References

Research Approach
[39] A. Jacobsson, “Exploring Privacy Risks in Information Networks”,
Licentiate Thesis Series No. 2004:11, School of Engineering, Ble-
kinge Institute of Technology, Sweden, 2004.

[40] A. Jacobsson, M. Boldt and B. Carlsson, “Privacy-Invasive Software
in File-Sharing Tools”, in proceedings of the 18th IFIP World Computer
Congress (WCC2004), Toulouse France, 2004.

[41] A. Jøsang, et al., “A Survey of Trust and Reputation Systems for
Online Service Provision”, in Decision Support Systems, Volume 43,
Issue 2, 2007.

[42] Landmark Document in American History, “Pure Food and Drug
Act of 1906”,
http://coursesa.matrix.msu.edu/~hst203/documents/pure.html,
Last checked: 2010-02-11.

[43] Los Angeles Times, “Google secures patent to use location data in
ads”,
http://latimesblogs.latimes.com/technology/2010/03/google-
location-patent.html,
Last checked: 2010-03-02.

[44] Augumented Reality Browser, “Layer”,
http://www.layar.com,
Last checked: 2010-02-11.

[45] P. McFedries, “The Spyware Nightmare”, in IEEE Spectrum, Vol-
ume 42, Issue 8, 2005.

[46] T. M. Mitchell, “Machine Learning (International Edition)”, McGraw-
Hill Book Co., Columbus USA, 1997.

[47] A. Moshchuk, T. Bragin, S. D. Gribble, and H. M. Levy, “A Crawler-
based Study of Spyware on the Web”, in the Proceedings of the 13th
Annual Network and Distributed System Security Symposium (NDSS
2006), San Diego CA, 2006.

[48] M.W. Newman et. al., “Recipes for Digital Living”, in IEEE Compu-
ter, Vol. 39, Issue 2, 2006.

[49] Pew Internet & American Life Project, “The Threat of Unwanted
Software Programs is Changing the Way People use the Internet”,
http://www.pewinternet.org,
Last checked: 2010-02-11.

[50] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl,
“GroupLens: An Open Architechture for Collaborative Filtering of
Netnews”, in Proceedings of ACM Conference on Computer Supported
Cooperative Work, Chapel Hill NC, 1994.
References 45

Research Approach
[51] P. Resnick, K. Kuwabara, R. Zeckhauser and E. Friedman, “Reputa-
tion systems”, in Communications of the ACM, Volume 43, Issue 12,
2000.

[52] P. Resnick and H.R. Varian, “Recommender systems”, in Communi-
cations of the ACM, Volume 40, Issue 3, 1997.

[53] C. Robson, “Real World Research (2nd Edition)”, Blackwell Publishing,
Ltd., Oxford UK, 2002.

[54] R.S. Rosenberg, “The Social Impact of Computers”, 3rd edition, Elsevier
Academic Press, San Diego CA, 2004.

[55] M. Sahami et al., “A Bayesian Approach to Filtering Junk Email”, in
Proceedings of the AAAI-98 Workshop on Learning for Text Categorization,
Madison USA, 1998.

[56] P.E. Sand, “The Privacy Value”, in I/S: A Journal of Law and Policy for
the Information Society, Volume 2, Issue 2, 2006.

[57] S. Saroiu, S.D. Gribble, and H.M. Levy, “Measurement and Analysis
of Spyware in a University Environment”, in Proceedings of the 1st

Symposium on Networked Systems Design and Implementation (NSDI), San
Francisco USA, 2004.

[58] F.B. Schneider, “The Next Digital Divide”, in the IEEE Security &
Privacy, Vol. 2, Issue 1, 2004.

[59] B. Schneiderman, “Designing Trust into Online Experiences”, in
the Communications of the ACM, Volume 43, Issue 12, 2000.

[60] B. Schneier, “Inside Risks: Semantic Network Attacks”, in Communi-
cations of the ACM, Volume 43, Issue 12, 2000.

[61] F. Sebastiani, “Machine Learning in Automated Test Categoriza-
tion”, in ACM Computing Surveys, Volume 34, Issue 1, 2002.

[62] K.B. Sheehan and M.G. Hoy, “Dimensions of Privacy Concern
among Online Consumers”, in the Journal of Public Policy & Market-
ing, Volume 19, Issue 1, 2000.

[63] S. Shukla and F. F. Nah, “Web Browsing and Spyware Intrusion”, in
Communications of the ACM, Volume 48, Issue 8, 2005.

[64] J.C. Sipior, “A United States Perspective on the Ethical and Legal
Issues of Spyware”, in Proceedings of 7th International Conference on Elec-
tronic Commerce, Xi’an China, 2005.

[65] J.C. Sipior, B.T. Ward, and G.R. Roselli, “A United States Perspec-
tive on the Ethical and Legal Issues of Spyware”, in the proceedings of
46 References

Research Approach
the 7th International Conference on Electronic Commerce (ICEC 2005),
Xi’an China, 2005.

[66] E. Skoudis, “Malware – Fighting Malicious Code”, Prentice Hall PTR,
Upper Saddle River NJ, 2004.

[67] SpotOn GPS,
http://www.spotongps.com
Last checked: 2010-02-10.

[68] StopBadware.org, “StopBadware.org”,
http://www.stopbadware.org,
Last checked: 2010-02-11.

[69] StopBadware.org, “Software Guidelines”,
http://www.stopbadware.org/home/guidelines,
Last checked: 2010-02-11.

[70] Spyware: Research, Testing, Legislation, and Suits,
http://www.benedelman.org/spyware/,
Last checked: 2010-02-11.

[71] P. Szor, “The Art of Computer Virus Research and Defence”, Addison-
Wesley, Upper Saddle River NJ, 2005.

[72] Technology Review, “The Pure Software Act of 2006”,
http://www.simson.net/clips/2004/2004.TR.04.PureSoftware.pdf,
Last checked: 2010-02-11.

[73] United States Patent: 7668832,
http://patft.uspto.gov/netacgi/nph-
Parser?Sect1=PTO2&Sect2=HITOFF&u=/netahtml/PTO/
search-adv.htm&r=6&p=1&f=G&l=50&d=PTXT&S1=google
.ASNM.&OS=an/google&RS=AN/google
Last checked: 2010-03-02.

[74] M. Warkentin, X. Luo, and G. F. Templeton, “A Framework for
Spyware Assessment”, in Communications of the ACM, Volume 48,
Issue 8, 2005.

[75] S.D. Warren, L.D. Brandeis, “The Right to Privacy”, in Harvard Law
Review, Volume 4, Issue 5, 1890.

[76] Webroot Software, “State of Spyware – Q1 2006”,
http://www.webroot.com/pdf/2005-q2-sos.pdf,
Last checked: 2010-02-11.

[77] Webroot Software, “Differences between Spyware and Viruses”,
http://research.spysweeper.com/differences.html,
Last checked: 2010-02-11.
References 47

Research Approach
[78] A. Weiss, “Spyware Be Gone”, in the ACM netWorker, Volume 9,
Issue 1, 2005.

[79] A. Westin, “Privacy and Freedom”, Atheneum, New York NY, 1968.

[80] I.H. Witten, and E. Frank, “Data Mining - Practical Machine Learning
Tools and Techniques”, Elsevier, San Francisco CA, 2005.

[81] G. Zacharia, A. Moukas, P. Maes, “Collaborative Reputation Mecha-
nisms in Electronic Marketplaces”, in Proceedings for the 32nd Hawaii
International Conference on System Sciences, Wailea Maui Hawaii, 1999.

[82] X. Zhang, “What Do Consumers Really Know About Spyware?”,
in Communications of the ACM, Volume 48, Issue 8, 2005.
48 References

P U B L I C A T I O N

1
Privacy-Invasive Software in File-

Sharing Tools

18th IFIP World Computer Congress (WCC2004), 2004

Andreas Jacobsson, Martin Boldt and Bengt Carlsson

Personal privacy is affected by the occurrence of adware and spy-
ware in peer-to-peer tools. In an experiment, we investigated five
file-sharing tools and found that they all contained ad-/spyware
programs, and, that these hidden components communicated with
several servers on the Internet. Although there was no exchange of
files by way of the file-sharing tools, they generated a significant
amount of network traffic. Amongst the retrieved ad-/spyware pro-
grams that communicated with the Internet, we discovered that pri-
vacy-invasive information such as, e.g., user data and Internet
browsing history was transmitted. In conclusion, ad-/spyware activ-
ity in file-sharing tools creates serious problems not only to user
privacy and security, but also to network and system performance.
The increasing presence of hidden and bundled ad-/spyware pro-
grams in combination with the absence of proper anti-ad/spyware
tools are therefore not beneficial for the development of a secure
and stable use of the Internet.
49

Privacy-Invasive Software in File-Sharing Tools
4.1 Introduction

As the Internet becomes more and more indispensable to our soci-
ety, the issue of personal information is recognised as decisively
important when building a secure and efficient social system on the
Internet [3, 19]. Also, in an increasingly networked world, where
new technologies and infrastructures, from pervasive computing to
mobile Internet, are being rapidly introduced into the daily lives of
ordinary users, complexity is rising [15]. As a consequence, vulnera-
bilities in systems are more eminent and greater in number than
ever before. At the same time, the business climate on the Internet
is tightening; e-commerce companies are struggling against busi-
ness intelligence techniques, social engineering and frauds. A pow-
erful component in any business strategy is user/customer
information. In general, the company with the most information
about its customers and potential customers is usually the most suc-
cessful one [13, 19]. With respect to personal customer informa-
tion, consumers generally want their privacy to be protected, but
businesses, on the other hand, need reliable personal information in
order to reach consumers with offers [13]. Undoubtedly, these
demands must be satisfied to establish sound e-commerce, and a
secure and well-functioning use of the Internet. However, these
conflicting goals leave the control of user information at great risk,
and a consequence may be that the users feel uneasy about sharing
any personal information with commercial web sites. Human activ-
ity on the Internet will only thrive if the privacy rights of individuals
are balanced with the benefits associated with the flow of personal
information [13].

The problem of assuring user privacy and security in a computer-
ised setting is not new, it has been a discussion for more than 30
years now [9]. However, there are some new aspects, that need to be
highlighted. In this paper, we intend to explore privacy aspects con-
cerning software components that are bundled and installed with
file-sharing tools. Since file-sharing tools are used exclusively when
connected to the Internet, users constitute a good foundation for
online marketing companies to display customised ads and offers
for users. The displayed contents of these offers are sometimes
based on the retrieval of users’ personal information. Usually, this
kind of software operation is considered to be an invasion of per-
sonal privacy [8]. One of the most simple and clear definitions of
privacy was first proposed in 1890 by Warren and Brandeis in their
article “The Right to Privacy” [23], where privacy was defined as
50 Introduction

Privacy-Invasive Software in File-Sharing Tools
“the right to be let alone”. In general, privacy is the right of individuals
to control the collection and use of information about themselves
[3]. In an Internet setting, the extraction of the definition by Warren
and Brandeis has come to mean that users should be able to decide
for themselves, when, how, and to what extent information about
them is communicated to others [7]. Previous work has suggested
that malicious software, or malware, set to collect and transmit user
information and/or to display ads and commercial offers without
the consent of users have been found bundled with file-sharing
tools [11, 22]. There are two kinds of software programs that per-
form such actions: adware displays advertisements, and spyware
goes further and tracks and reports on users’ web browsing, key-
strokes or anything else that the author of the software has some
interest in knowing. In reality, this means that software can be
adware and spyware at the same time. However, not all adware is
spyware and most spyware is not easily detected by displaying ads
[11].

Ad-/spyware has gained a lot of space and attention lately. Accord-
ing to the Emerging Internet Threats Survey 2003 [6], one in three
companies have already detected spyware on their systems, while
60% consider spyware to be a growing and future threat. Also, 70%
of the companies say that peer-to-peer (P2P) file-sharing is creating
an open door into their organisation. When it comes to adware, the
Emerging Internet Threats Survey, states that adware and the use of
file-sharing tools in office hours are devious and offensive threats
that frequently evade both firewalls and anti-virus defences [6]. In
effect, ad-/spyware creates problems, not only to user privacy, but
also to corporate IT-systems and networks.

In this paper, we investigate what kind of privacy-invasive software
that come bundled with five popular file-sharing tools. We also look
into the Internet traffic that is being generated by these hidden pro-
grams. A discussion concerning the occurrence of ad-/spyware and
its effects on privacy and security is undertaken. In the end, we
present conclusions and findings.

4.2 Privacy-Invasive Programs and their
Implications

One of the major carriers of ad-/spyware programs are P2P file-
sharing tools [16, 22]. P2P refers to a technology which enables two
Privacy-Invasive Programs and their Implications 51

Privacy-Invasive Software in File-Sharing Tools
or more peers to collaborate in a network of equals [12, 18]. This
may be done by using information and communication systems that
are not depending on central coordination. Usually, P2P applica-
tions include file sharing, grid computing, web services, groupware,
and instant messaging [12, 18]. In reality, there is little doubt that
P2P networks furnish in spreading ad-/spyware [16]. Besides legal
difficulties in controlling the content of P2P networks, another con-
tributing factor is that the user is forced to accept a license agree-
ment in order to use the software, but the contract terms are often
formulated in such a way that they are hard for the user to interpret
and understand. The effect is that most users do not really know
what they have agreed to, and thus really cannot argue their right to
privacy.

The occurrence of ad-/spyware programs in file-sharing tools pose
a real and growing threat to Internet usage in many aspects, and to
other interested parties than only to end users. Some examples
argued on this topic are [6, 16, 22]:

• Consumption of computing capacity: Ad-/spyware is often
designed to be secretly loaded at system start-up, and to run
partly hidden in the background. Due to that it is not unusual
for users to have many different instances of ad-/spyware run-
ning covertly simultaneously, the cumulative effect on the sys-
tem’s processing capacity can be dramatic. Another threat is the
occurrence of distributed computing clients, bundled with file-
sharing tools, that can sell the users’ hard drive space, CPU
cycles, and bandwidth to third parties.

• Consumption of bandwidth: Just as the cumulative effect of
ad-/spyware running in the background can have serious conse-
quences on system performance, the continual data traffic with
gathering of new pop-ups and banner ads, and delivery of user
information can have an imperative and costly effect on corpo-
rate bandwidth.

• Legal liabilities: With the new directives1 concerning the use
of file-sharing tools in companies, it is the company rather than
a single user who is legally liable for, for instance, the breach of
copyright (e.g., if employees share music files with other peers)

1. Examples on legal directives are the “Directive on Privacy and Elec-
tronic Communications” [5] of the European Union, and the “Spyware
Control and Privacy Protection Act” [2] of the Senate of California,
U.S.
52 Privacy-Invasive Programs and their Implications

Privacy-Invasive Software in File-Sharing Tools
and the spreading of sensitive information (e.g., if spyware pro-
grams transmit corporate intelligence).

• Security issues: Ad-/spyware covertly transmits user informa-
tion back to the advertisement server, implying that since this is
done in a covert manner, there is no way to be certain of exactly
what information is being transmitted. Even though adware, in
its purest form, is a threat to privacy rather than security, some
adware applications have begun to act like Trojan horses allow-
ing installation of further software, which may include malware.
Security experts use the term Trojan horse for software that car-
ries programs, which mask some hidden malicious functionality,
but many web users and privacy experts use it to describe any
program that piggybacks another. It is claimed that most of the
latter are P2P file-sharing software that emerged as ad-sup-
ported alternatives in the wake of Napster’s decline. In effect, if
a computer has been breached by a Trojan horse, it typically
cannot be trusted. Also, there is a type of spyware that has noth-
ing to do with adware, the purpose here is to spy on the user
and transmit keystrokes, passwords, card numbers, e-mail
addresses or anything else of value to the software owner/
author. In reflect, most security experts would agree that the
existence of ad-/spyware is incompatible with the concept of a
secure system.

• Privacy issues: The fact that ad-/spyware operates with gath-
ering and transmitting user information secretly in the back-
ground, and/or displays ads and commercial offers that the user
did not by him-/herself chose to view, makes it highly privacy-
invasive.

Most ad-/spyware applications are typically bundled as hidden
components of freeware or shareware programs that can be down-
loaded from the Internet [22]. Usually, ad-/spyware programs run
secretly in the background of the users’ computers. The reason for
this concealing of processes is commonly argued as that it would
hardly be acceptable if, e.g., free file-sharing software kept stopping
to ask the user if he or she was ready to fetch a new banner or a
pop-up window. Therefore, the client/server routine of ad-/spy-
ware is executed in the background. In practice, there would be
nothing wrong with ad-/spyware running in the background pro-
vided that the users know that it is happening, what data is being
transmitted, and that they have agreed to the process as part of the
conditions for obtaining the freeware. However, most users are
unaware of that they have software on their computers that tracks
Privacy-Invasive Programs and their Implications 53

Privacy-Invasive Software in File-Sharing Tools
and reports on their Internet usage. Even though this may be
included in license agreements, users generally have difficulties to
understand them [22].

Adware is a category of software that displays commercial messages
supported by advertising revenues [20]. The idea is that if a software
developer can get revenue from advertisers, the owner can afford to
make the software available for free. The developer is paid, and the
user gets free, quality software. Usually, the developer provides two
versions of the software, one for which the user has to pay a fee in
order to receive, and one version that is freeware supported by
advertising. In effect, the user can choose between the free software
with the slight inconvenience of either pop-up ads or banners, or to
pay for software free of advertising. So, users pay to use the soft-
ware either with their money or with their time. This was the case
until marketers noted three separate trends that pushed the devel-
opment of adware into a different direction. Standard banner ads
on the Internet were not delivering as well as expected (1% click-
through was considered good) [22]. Targeted Internet advertising
performed much better [21]. While office hours were dead-time for
traditional advertising (radio, TV, etc.), many analyses showed a sur-
prisingly high degree of personal Internet usage during office hours
[21].

The conclusion was that targeted Internet advertising was a whole
new opportunity for the marketing of products and services. All
that was required was a method for monitoring users’ behaviour.
Once the adware was monitoring users’ Internet usage and sending
user details back to the advertiser, banners more suited to the users’
preferences and personality were sent to the users in return. The
addition of monitoring functionality turned adware into ad-/spy-
ware, and the means to target advertising to interested parties accel-
erated. In reality, the data collected by ad-/spyware is often sent
back to the marketing company, resulting in display of specific
advertisements, pop-up ads, and installing toolbars showed when
users visit specific web sites.

Spyware is usually designed with the same commercial intent as
adware [20]. However, while most adware displays advertisements
and commercial offers, spyware is designed with the intent to col-
lect and transmit information about users. The general method is to
distribute the users’ Internet browsing history [22]. The idea behind
this is that if you know what sites someone visits, you begin to get
an idea of what that person wants, and may be persuaded to buy
54 Privacy-Invasive Programs and their Implications

Privacy-Invasive Software in File-Sharing Tools
[21]. Given the fact that more than 350 million users have down-
loaded KaZaa and supposedly also installed it on their computers
[4], this enables for customised and personalised marketing cam-
paigns to millions and millions of end users. Moreover, informa-
tion-gathering processes have been implicated in the rising
occurrence of unsolicited commercial e-mail messages (so called
spam) on the Internet [6].

Besides the monitoring of Internet usage, there is an even greater
danger, namely when spyware is set to collect additional and more
sensitive personal information such as passwords, account details,
private documents, e-mail addresses, credit card numbers, etc.

4.3 Experiment Design

4.3.1 Problem Domain

Programs designed with the purpose of locating and defeating ad-/
spyware components are available throughout the Internet. Even
so, these programs are not very refined. For instance, there is usu-
ally no linking between the identified ad-/spyware processes inside
the computers and the corresponding servers outside, on the Inter-
net. Also, there is no anti-ad-/spyware program that analyses what
data content is being transmitted to other third parties on the Inter-
net. So, even when using existing software, it is difficult do keep
track of what is going on inside the computer, and what nodes out-
side it that obtain user-oriented information. As a consequence,
Internet browsing records and/or credit card numbers could easily
be distributed without the user’s consent or knowledge.

In this light, the overall research problem for this paper was to
explore the nature and occurrence of privacy-invasive software
included in file-sharing tools used over P2P networks. On an exper-
iment level, the research problem was divided into the following
subquestions:

• What ad-/spyware programs can be found in file-sharing tools?
• What is the content and format of network data generated as a

result of ad-/spyware programs involved in Internet communi-
cation?

• What is the extent of network traffic generated by such pro-
grams?
Experiment Design 55

Privacy-Invasive Software in File-Sharing Tools
Even though there may be numerous components bundled with the
installation of file-sharing tools, it is primarily the programs
engaged in Internet communication that are of interest to us. There
are two reasons for this. First, without this delimitation, the experi-
ment data would be too comprehensive to grasp. Second, for ad-/
spyware programs to leak personal information, they must be
involved in communication over the Internet. This is of course par-
ticularly interesting from a privacy perspective.

Throughout this paper, we use the word ad-/spyware as a synonym
for both adware and spyware. In general, both adware and spyware
are namely considered to be privacy-invasive software. Also, since
they typically are closely intervened with each other, and more or
less perform similar actions it is problematic to separate adware
from spyware [22].

4.3.2 Instrumentation and Execution

The experiment sample consists of the five most downloaded file-
sharing tools [4]. The tools are, in order, the standard, freeware ver-
sions of KaZaa, iMesh, Morpheus, LimeWire and BearShare. Also,
to be sure that the experiment results were derived from the
installed file-sharing tools, we set up a reference computer, which
was identical to the other work stations, i.e., the same configuration,
but with no file-sharing tool installed. The experiment was executed
in January 2004 as one consecutive session that lasted three days.
This time range was chosen, because we wanted to avoid getting
excessive data quantities, but at the same time be able to capture
reliable results.

The experiment was carried out in a lab environment on PC work
stations equally connected to the Internet through a NAT gateway.
We used OpenBSD’s packet filter to deny any inbound network
requests, which allowed us to protect the work stations from exter-
nal threats. The packet filter also helped in reducing the network
traffic and in doing so, resulting in less data to analyse. By not
downloading or sharing any content in the file-sharing tools we fur-
ther reduced the amount of network data generated. All incoming
and outgoing network traffic of the local computer’s network inter-
face were dumped into a file using Winpcap.

Hardware were equivalent for all work stations, which also con-
tained byte identical installations of both the operating system
56 Experiment Design

Privacy-Invasive Software in File-Sharing Tools
Microsoft Windows 2000 and program applications2. In order to
reflect work stations in use, they were all set to browse the Internet
according to a predefined schedule containing the 100 most visited
web sites in the world [1]. This was done through an automatic surf
program. Also, ten identical searches (e.g., “lord of the ring”, “star
wars”, and “britney”) were carried out in each of the file-sharing
tools, but no files were downloaded. In the end of the experiment,
several anti-ad-/spyware programs3 were used to locate any known
ad-/spyware programs previously installed.

Binding network communication to programs is a key feature in the
experiment. For allowing continuous monitoring and logging of
processes and their use of sockets, we developed a program in
C++, which was based on Openport. We chose not to use any
Win32 firewalls claiming to support outbound filtering on applica-
tion level for two reasons. First, they fail in allowing real outbound
filtering per application, and there are a number of programs capa-
ble of penetrating these fake protections [14, 17]. Second, we have
no detailed knowledge in the internal workings of such firewalls and
therefore cannot foresee what to expect from them. Finally, it
should be emphasised that there exist ways for a malicious program
to send network data undetected by the monitoring application, due
to the architecture of Windows.

4.3.3 Data Analysis

After having performed the experiment, we compiled the data
results and set to identify all programs that were bundled with each
file-sharing tool. This data was provided by our own process-to-
network mapping program in cooperation with the selected anti-ad-
/spyware programs. We then isolated the operating system related
programs found on the reference work station, since they were
established as harmless. Next, we reduced all benign programs han-
dling file-exchange tasks. Remaining were a set of programs that
were not related to either the operating system or file-exchange
tasks. Further, by using the results from the anti-ad-/spyware tools,
we divided the set of programs into two subsets, namely known ad-
/spyware programs and unknown programs. The nature of these
unknown programs was analysed based on their corresponding net-

2. These configuration properties were enabled through a self-developed
disc cloning system based on standard FreeBSD components.

3. For a detailed list of the programs used, see Appendix of this thesis.
Experiment Design 57

Privacy-Invasive Software in File-Sharing Tools
work traffic. Also, in some cases we needed additional information
and thus turned to Internet resources. Based on this analysis, the
remaining ad-/spyware programs were located. In the final step, we
divided the retrieved set of ad-/spyware programs into two subsets,
namely those involved in Internet communication and those that
were not. This analysis was founded on the data from our process-
to-network mapping program. In effect, the results from the pro-
gram analysis lead to a classification of programs as either ad-/spy-
ware programs, system programs or unknown programs.

All data analysis was done in a Unix environment. The data was
analysed and filtered using standard Unix programs such as sed,
awk, sort, uniq and grep. Much of the analysis was automated using
shell scripts and where this could not be done small programs in C
were created. To analyse and filter network data, the program Ethe-
real was used.

Figure 4.1 Amount of programs in the experiment sample.

In addition, we wanted to see if the corresponding servers were
known ad-/spyware servers. Therefore, an effort to map the server
names that were involved in Internet communication with a black-
list specifying known ad-/spyware servers [10] was also undertaken.
58 Experiment Design

Privacy-Invasive Software in File-Sharing Tools
4.4 Experiment Results and Analysis

4.4.1 Ad-/Spyware Programs in File-Sharing Tools

According to the results, several programs were located for each
file-sharing tool (see Figure 4.1). Of these programs, we identified
10 ad-/spyware programs for iMesh, and eight for KaZaa. Interest-
ingly, these two file-sharing tools were among the two most popular
ones [4]. The rates for the other file-sharing tools were five for
Morpheus, four for LimeWire and two for BearShare. Also, iMesh,
Morpheus and LimeWire contained programs that we were unable
to define. However, these programs were all involved in Internet
communication.

Table 4.1 Identified ad-/spyware programs.

We discovered that all of the file-sharing tools contained ad-/spy-
ware programs that communicated with the Internet. KaZaa and
iMesh included a relatively high amount of such programs. Even so,
the anti-ad-/spyware tools defined several other ad-/spyware pro-
grams also installed on the computers. Although this was the case,
these programs did not communicate with servers on the Internet
during the experiment session.
Experiment Results and Analysis 59

Privacy-Invasive Software in File-Sharing Tools
In Table 4.1, a detailed list of the retrieved ad-/spyware compo-
nents can be found. As can be seen, the ad-/spyware components
were divided into “Adware” respectively “Spyware” based on their
actions. Also, we included a category entitled “Download” because
some of the ad-/spyware programs included functionality that
allowed further software and/or updates to be downloaded and
installed on the computers. In addition, programs involved in Inter-
net communication are specified in the category called “Internet”.
In the column entitled “Host”, the five file-sharing tools utilised as
carriers of ad-/spyware are listed4. In the cases where the empirical
results could confirm the recognised view shared by anti-ad-/spy-
ware tools and Internet resources, the x-markers in the table are
declared with bolded capital letters.

One reason to why we could not confirm that every ad-/spyware
program was involved in Internet communication was that so called
Browser Helper Objects (BHO) were installed in Internet Explorer.
Malicious BHOs infiltrate the web browser with the intent to access
all data generated by Internet Explorer in order to spy on the user
and transmit user behaviour to third parties [20]. Such BHOs typi-
cally gain the same privileges as its host (i.e., Internet Explorer),
which endorse them to penetrate personal firewalls. This means
that any possible ad-/spyware traffic distributed via BHOs is highly
problematic to detect since it may very well be ordinary browser
traffic. In Table 4.1, we also included two programs, New.Net and
FavoriteMan, even though they were not classified as neither
adware nor spyware. However, they allowed for installation of fur-
ther software, which may be malicious.

4.4.2 The Extent of Network Traffic

The results showed that a significant amount of network traffic was
generated, although there was no exchange of files between the file-
sharing tools and other peers on the Internet (see Figure 4.2). In
that light, the amount of network traffic generated in this experi-
ment can be seen as a minimum rate to be expected when running
file-sharing tools. Notably, installing Morpheus and LimeWire
resulted in a relatively high traffic quote, both when it came to
incoming as well as outgoing traffic. On the contrary, iMesh, who

4. In the category entitled “Host”, K is for KaZaa, I for iMesh, M for
Morpheus, L for LimeWire and B is for BearShare.
60 Experiment Results and Analysis

Privacy-Invasive Software in File-Sharing Tools
also had the largest quantity of bundled programs, represented the
least amount of network traffic.

Figure 4.2 Network data traffic.

In Figure 4.2, we included compilations of network traffic for both
the installation process and the runtime part per file-sharing tool. In
the cases of Morpheus, LimeWire and BearShare, a considerable
amount of network activity was generated after the installation. For
KaZaa, a significant quantity of network traffic was caused during
the installation. In comparison, iMesh produced a notably limited
size of network traffic, both during and after installation.

Furthermore, the results suggested a diversity in Internet communi-
cation. This is shown in that programs in the file-sharing tools com-
municated with several different servers on the Internet. Although
Morpheus did not contain a particularly great number of bundled
programs, it generated notably much network traffic. In reflection,
Morpheus communicated with the largest amount of Internet serv-
ers, whereas the rates for the other file-sharing tools were in a rela-
tively low accordance with each other. In addition, the results
substantiated that most of the invoked servers had domain names.
Overall, each of the file-sharing tools contained programs that
communicated with known ad-/spyware servers from the specified
blacklist [10].

4.4.3 The Contents of Network Traffic

The outgoing network data was overall problematic to analyse and
understand. In most cases the data was not readable, meaning that it
was either encrypted or in a format not graspable. This is also an
explanation to why we could confirm only two spyware programs
Experiment Results and Analysis 61

Privacy-Invasive Software in File-Sharing Tools
(see Table 4.1). Although most traffic data was not in clear text, we
were able to extract and interpret some of the contents. We discov-
ered that sensitive data such as information about the user (e.g.,
user name), geographical details (e.g., zip code, region and country)
and Internet browsing history records were sent from identified ad-
/spyware components to several servers on the Internet. Also,
there were other types of information that were transmitted, for
example, machine ID, details about program versions, operating
system, etc.

According to the results, one spyware program (ShopAtHomeSe-
lect) was found in the iMesh file-sharing tool. In the experiment,
that program transmitted traffic measurement reports and Internet
browsing history records to invoked servers on the Internet. Also,
in BearShare, one spyware program (SaveNow) transmitted data
such as Internet history scores and user-specific information.

The experiment results also reveal one of the methods for ad-/spy-
ware programs to transmit user and/or work station data. In the
BearShare tool, the information that was fed into the file-sharing
software by the user was re-distributed within the tool to one or
numerous ad-/spyware programs (SaveNow and WeatherCast) that
transmitted the information to servers called upon. This method
makes it difficult to map various program components to the actual
file-sharing activity. Also, it undermines the ability to control what
software objects are useful and legitimate in relation to the redun-
dant or privacy-invasive programs that clog down the computers,
systems and networks.

The analysis of the contents of the incoming network traffic was
more problematic to conduct than in the case of outgoing traffic.
Foremost, because the data quantity was both comprehensive and
widespread. Since our focus was on privacy-invasive software, the
outgoing traffic content was the most interesting so the efforts
were mainly put into that. This, in combination, with vast quantities
of incoming network data made it difficult to confirm adware rec-
ognised by the anti-ad-/spyware tools and Internet resources. Also,
the same discussion concerning the occurrence of BHOs would
apply for the unconfirmed adware. However, in the retrieved
incoming data, a few interesting results were found.

The retrieved adware programs performed activities such as dis-
playing commercial ads, causing browser banners and pop-ups. In
particular, Morpheus and LimeWire proved to contain adware pro-
62 Experiment Results and Analysis

Privacy-Invasive Software in File-Sharing Tools
grams that generated much incoming data traffic. In LimeWire,
results showed that lists of Internet sites and new programs were
retrieved from the Internet by the adware MoneyMaker. In Mor-
pheus, the P2P program itself downloaded and displayed ads and
banners.

4.5 Discussion

With the occurrence of ad-/spyware technology in file-sharing
tools, the monitoring of Internet usage has become a common fea-
ture. Today, most ad-/spyware programs gather and transmit data
such as Internet browsing history records to third parties. That type
of information can be correlated to a user and thus employed for
marketing purposes.

The experiment has shown that all of the investigated file-sharing
tools contained ad-/spyware programs. The ad-/spyware programs
that operated inside the computers had an open connection to sev-
eral Internet servers during the entire experimental session. We
know that content-sensitive information was sent, but we may only
guess the full extent of information harvesting, because most pack-
ets were not sent in clear text. Even though we saw no example of
highly sensitive personal information, such as passwords and key-
strokes, were transmitted by the ad/spyware programs in the exper-
iment, we cannot be sure that these activities were not happening.
Spyware may collect and transmit genuinely sensitive information
about users such as, e.g., account details, private documents, e-mail
addresses, and credit card numbers. The information is secretly sent
back to numerous servers owned by companies that make a profit
on these activities. Although it is problematic to elaborate on the
business ethics of these companies, the occurrence of ad-/spyware
programs are reasons enough to question this behaviour. In addi-
tion, ad-/spyware programs are responsible for all kinds of
unwanted actions. Besides invasion of privacy, they can make the
system unstable, degrade system performance, create scores of cop-
ies of itself to make removal difficult, and act as security holes in the
system.

The actions performed by ad-/spyware programs are approaching
the operations of a virus. Since users install them on voluntary
basis, the distribution part is taken care of by the file-sharing tools.
This makes ad-/spyware programs function like a slowly moving
Discussion 63

Privacy-Invasive Software in File-Sharing Tools
virus without the distribution mechanisms usually otherwise
included. The general method for a virus is to infect as many nodes
as possible on the network in the shortest amount of time, so it can
cause as much damage as conceivable before it gets caught by the
anti-virus companies. Ad-/spyware, on the other hand, may operate
in the background in such a relatively low speed that it is difficult to
detect. Therefore, the consequences may be just as dire as with a
regular virus. In addition, the purpose of ad-/spyware may not be
to destroy or delete data on the work stations, but to gather and
transmit veritably sensitive user information. An additional compli-
cating factor is that anti-virus software companies do not usually
define ad-/spyware as virus, since it is not designed to cause
destruction. Overall, the nature of ad-/spyware substantiates the
notion that malicious actions launched on computers and networks
get more and more available, diversified and intelligent, rendering in
that security is extensively problematic to uphold.

Ad-/spyware enables for the spreading of e-mail addresses that may
result in the receiving of spam. Due to the construction of ad-/spy-
ware, it may collect information that concerns other parties than
only the work station user. For example, information such as tele-
phone numbers and e-mail addresses to business contacts and
friends stored on the desktop can be gathered and distributed by
ad-/spyware. In the context that ad-/spyware usually is designed
with the purpose of conveying commercial information to as many
users as possible, not only the local user may be exposed to negative
consequences of ad-/spyware. In other words, the business con-
tacts and friends may be the subjects of ad-/spyware effects such as,
e.g., receiving unsolicited commercial e-mail messages. This means
that even though my computer may be secure, a breached computer
owned by a network neighbour can cause me harm. So, the security
of a neighbour very much becomes my own concern.

Besides security issues, ad-/spyware creates intrusion to privacy. An
inconvenience commonly argued is that ad-/spyware programs dis-
play commercial messages based on the retrieval of personal infor-
mation fetched without the explicit consent of the users. Even
though the offers of these advertising campaigns may be in the
interest of some users, there is a fine line between what users in
general regard as useful information and what is an intrusion to
personal privacy. One thought is that the more personalised the
offers get, the more likely users are to regard them as privacy invad-
ers. If so, what happens when users are presented with advertise-
ments in such an extent that they hardly are able to distinguish the
64 Discussion

Privacy-Invasive Software in File-Sharing Tools
possibly serious offers from all the offers. If users ignore marketing
messages, there is evidently a great risk for the success of con-
sumer-based e-commerce.

A second privacy concern is the spreading of content that the ad-/
spyware distributor did not intend for. One example of this would
be a malicious actor that gained control of ad-/spyware servers, and
broadcasted offensive unsolicited messages (e.g., adult material,
political messages and/or smearing campaigns, etc.) to a great
number of users. Although users may consider regular commercial
ads to be harmless, most people react negatively upon frequently
receiving repulsive pictures and texts. This suffices for that the ad-/
spyware providers need to take their own security with great seri-
ousness. If they lose control of their servers, the damage may be
devastating. This could be even more devastating if the ad-/spyware
program updates on the company servers were replaced with mali-
cious software. In effect, real and destructive malware (e.g., viruses,
Trojans, and worms) could be spread to vast groups of ad-/spyware
hosts.

4.6 Conclusions

The experiment has shown that all of the investigated file-sharing
tools contained ad-/spyware programs. The ad-/spyware programs
operating inside the computers had an open connection where the
information was secretly sent back to numerous servers owned by
companies that make a profit on these activities. Measurements sug-
gested that the carriers of ad-/spyware, file-sharing tools, generated
a significant amount of network traffic, even when not exchanging
files. The presence of ad-/spyware programs and the network traf-
fic that they generate contribute in over-consumption of system
and network capacity.

Ad-/spyware is acting like a slowly moving virus, installed on a vol-
untary basis, with hidden properties problematic to detect and
remove. The payload of ad-/spyware may not be to destroy or
delete data on the work stations, but to gather and transmit verita-
bly sensitive user information. The distribution part is taken care of
by the file-sharing tools with an additional complicating factor; anti-
virus software companies do not usually define ad-/spyware as
virus, since it is not designed to cause destruction.
Conclusions 65

Privacy-Invasive Software in File-Sharing Tools
The nature of ad-/spyware may lead to that not only host users are
affected. Ad-/spyware may gather and distribute the details of busi-
ness contacts and friends resulting in negative consequences to
other parties than the infected desktop owner. This means that even
though my computer may be secure, a breached computer owned
by a network neighbour can cause me harm. So, the security of a
neighbour very much becomes my own concern.

Furthermore, the occurrence of ad-/spyware can render in that pri-
vacy-invasive messages may be distributed and displayed to large
amounts of users. Exposure to messages not chosen by the user, or
collection and transmission of user information are two key privacy
concerns. In this way, users’ right to control what, how and when
information about themselves is communicated to other parties is
almost non-existing. In conclusion, the nature of ad-/spyware pro-
grams ignore users’ right to be let alone. The increasing presence of
hidden and bundled ad-/spyware programs in combination with
the absence of proper anti-ad/spyware tools are therefore not ben-
eficial for the development of a secure and stable use of the Inter-
net.

4.7 References

[1] Alexa Web Search, http://www.alexa.com, 2010-03-11.

[2] California Senate Assembly Bill 1386, United States of America,
2003., http://info.sen.ca.gov/pub/01-02/bill/sen/sb_1351-1400/
sb_1386_bill_20020926_chaptered.html, 2010-03-11.

[3] M. Caloyannides, “Privacy vs. Information Technology”, in IEEE
Security & Privacy, Volume 1, Issue 1, pp. 100-103, 2003.

[4] C|Net Download.com., http://www.download.com/, 2010-03-11.

[5] “Directive on Privacy and Electronic Communications”, Directive
2002/58/EC of the European Parliament and of the Council of 12
July 2002 concerning the processing of personal data and the pro-
tection of privacy in the electronic communications sector, 2002.

[6] “Emerging Internet Threats Survey 2003”, commissioned by Web-
sense International, Ltd., February, 2003., http://www.web-
sense.com/company/news/research/Emerging
Threats2003EMEA-de.pdf, 2004-04-27.

[7] S. Fischer-Hübner, “Privacy in the Global Information Society”, in
IT-Security and Privacy – Design and Use of Privacy-Enhancing Security
66 References

Privacy-Invasive Software in File-Sharing Tools
Mechanisms, Lecture Notes in Computer Science LNCS 1958,
Springer-Verlag, Berlin Germany, 2000.

[8] S. Garfinkel, “Database Nation: The Death of Privacy in the 21st Cen-
tury”, O’Reilly & Associates, Inc., Sebastopol CA, 2001.

[9] E. Grenier, “Computers and Privacy: A Proposal for Self-Regula-
tion”, in Proceedings of the First ACM Symposium on Problems in the Opti-
mization of Data Communications Systems, ACM Press, New York NY,
1969.

[10] Gorilla Design Studio: The Hosts Files, http://www.accs-net.com/
hosts/, 2010-03-11.

[11] M. McCardle, “How Spyware Fits into Defence in Depth”, SANS
Reading Room, SANS Institute, 2003., http://www.sans.org/rr/
papers/index.php?id=905, 2010-03-11.

[12] A. Oram, “Peer-To-Peer: Harnessing the benefits of a Disruptive Technol-
ogy”, O’Reilly & Associates, Inc., Sebastopol CA, 2001.

[13] T. Otsuka, and A. Onozawa, “Personal Information Market:
Toward a Secure and Efficient Trade of Privacy”, in Proceedings of the
First International Conference on Human Society and the Internet, Lecture
Notes in Computer Science LNCS 2105, Springer-Verlag, Berlin
Germany, 2001.

[14] Outbound, http://www.hackbusters.net/ob.html, 2004-04-27.

[15] L. Palen, and P. Dourish, “Unpacking Privacy for a Networked
World”, in Proceedings of the ACM Conference on Human Factors in Com-
puting Systems, ACM Press, New York NY, 2003.

[16] B. Robertsson, “Five Major Categories of Spyware”, in Consumer
WebWatch, October 21, USA, 2002., http://www.consumerweb-
watch.org/dynamic/privacy-investigations-categories-spy.cfm,
2010-03-11.

[17] Robin Keir’s FireHole, http://keir.net/firehole.html, 2010-03-11.

[18] D. Schoder, and K. Fischbach, “Peer-to-Peer (P2P) Computing”, in
Proceedings of the 36th IEEE Hawaii International Conference on System
Sciences, IEEE Computer Society Press, Los Alamitos CA, 2003.

[19] C. Shapiro, and H. Varian, “Information Rules: A Strategic Guide to the
Networked Economy”, Harvard Business School Press, Boston MA,
1999.

[20] E. Skoudis, “Malware – Fighting Malicious Code”, Prentice Hall PTR,
Upper Saddle River NJ, 2004.
References 67

Privacy-Invasive Software in File-Sharing Tools
[21] J. Sterne, and A. Priore, “E-Mail Marketing – Using E-Mail to Reach
Your Target Audience and Build Customer Relationships”, John Wiley &
Sons Inc., New York NY, 2000.

[22] K. Townsend, “Spyware, Adware, and Peer-to-Peer Networks: The
Hidden Threat to Corporate Security” (technical white paper), Pest-
Patrol, 2003, http://www.pestpatrol.com, 2010-03-11.

[23] S.D. Warren, and L.D. Brandeis, “The Right to Privacy”, in Harvard
Law Review, No. 5, pp. 193-220, 1890-91.
68 References

P U B L I C A T I O N

2
Exploring Spyware Effects

9th Nordic Workshop on Secure IT Systems (NordSec04), 2004

Martin Boldt, Andreas Jacobsson and Bengt Carlsson

In this paper, we discuss various types of spyware programs, their
behaviour, how they typically infect computers, and the propaga-
tion of new varieties of spyware programs. In two experiments, we
investigate the occurrence and impact of spyware programs found
in popular P2P applications. Based on the findings from the empir-
ical investigations, we try to lift the perspective to a more general
view on spyware deriving from the theory of (virtual) network
effects. In a model, we categorize in what ways spyware might
decrease the utility of belonging to a large virtual network. Here, the
baseline is that spyware programs intrude systems and networks,
but since they profit from user data they also intrude user privacy.
In the model, the intrusions are classified as moderate, severe or
disastrous. We found that spyware has the potential to overthrow
the positive aspects of belonging to a large network, and network
owners should therefore be very careful about permitting such pro-
grams in applications and on networks.
69

Exploring Spyware Effects
5.1 Introduction

During recent years, the world has seen the introduction of peer-to-
peer (P2P) systems. P2P technology provides several beneficial
solutions like, e.g., file-sharing, grid computing, web services,
groupware and instant messaging (IM) [7]. P2P refers to a technol-
ogy which enables two peers or more to collaborate in a network of
equals [7 , 10]. This may be done by using information and commu-
nication systems that are not depending on central coordination.
P2P technology was first widely deployed and popularized by file-
sharing applications such as KaZaa and IM tools like ICQ.

Even though there are several benefits with belonging to a large vir-
tual network such as a P2P file-sharing network, the rising occur-
rence of malicious software (malware) may seriously impact the
positive utility of using P2P applications. Usually, only the positive
effects that increase utility are emphasized when discussing partici-
pation in large networks [5]. One example is the theory of virtual
network1 effects. Network effects are usually described as when the
value of a product to one user depends on how many other users
there are [11]. Often, utility of the system is proportional to the
aggregate amount of resources that the participants are willing to
put together. On information technologies, users generally benefit
from utilising a popular format, system or application [11]. Typi-
cally, technologies subject to strong network effects tend to exhibit
long lead times until a critical mass of users is obtained [5]. Then,
explosive growth is followed. From the perspective of a network
owner, a large network may help to create a strategic advantage use-
ful for competition and growth purposes [1]. From the perspective
of a network user, the larger the network is, the more valuable it will
be to participants and users [1].

There are two kinds of feedback from network effects: positive and
negative [11]. Positive feedback can be explained in that when a per-
son joins a network, the network gets bigger and better, to every-
one’s benefit. However, large networks may also be exposed to
negative feedback, which bring about significant risks and severe
consequences for all of the network nodes. Therefore, negative
feedback may decrease the utility of belonging to that network. To

1. A virtual network describes a network of users bound together by a
certain standard or technology, and where the exchange of information
is the foundation for any information transaction. One example is the
Internet.
70 Introduction

Exploring Spyware Effects
large networks, such as P2P file-sharing networks, there could be
numerous examples of applications (e.g., malware), which contrib-
ute in creating negative effects that impact network utility. However,
in this paper, we focus on one of these applications, namely spy-
ware.

There are many different kinds of spyware, and hundreds of such
programs exist throughout the Internet today [9]. Spyware pro-
gramming is a relatively new computing phenomenon. Although
there is no precise definition, the term “spyware” is typically used
to refer to a category of software that, from a user’s perspective,
covertly gathers information about a computer’s use and relays that
information back to a third party. In this paper, we use the term
spyware in conformity with this common usage. However, in 5.2,
we look into and discuss some of the current views on the concept
of spyware.

Even though most people are aware of spyware, it seems that the
research community has spent limited effort on understanding the
nature and extent of the spyware problem. However, so far there
have been some initial research attempts (see for example [4 , 9 ,
17]) of which this paper is an additional effort. On the other hand,
most network practitioners and experts agree that spyware is a real
problem with increasingly negative effects. One example of this
view is derived from the Emerging Internet Threats Survey 2003
[3], which states that one in three companies have detected spyware
on their systems, while 60% consider spyware to be a growing and
future threat. Also, 70% of the companies consider that file-sharing
over P2P networks is creating an open door into their organisation.
Another example is an investigation made by Earthlink (one of the
major American ISPs) [13]. Earthlink set to measure the occurrence
of spyware on more than 2 million computers connected to their
network. A total number of 12.1 million different spyware types
were detected. Out of these, Trojan horses and system monitors
approached 700 000 instances, and the remaining 11.4 million
instances were classified as adware. Also, experts suggest that spy-
ware infect up to 90% of all Internet-connected computers [13].

In summary, spyware is a problem that should be taken seriously,
because it may have the potential to threaten the utility of belonging
to a large virtual network. In this paper, we focus on exploring the
effects of spyware programs that are bundled with several P2P
applications. The aim is to investigate the implications on system
capacity, network bandwidth, security and privacy. Besides introduc-
Introduction 71

Exploring Spyware Effects
ing results from empirical investigations, we also discuss the net-
work effects of spyware.

The paper is organised as follows. First, we give an introduction to
spyware, in which we discuss the various kinds of spyware pro-
grams, their behaviour, how they typically infect computers, and the
proliferation of new varieties of spyware. Next, we investigate the
occurrence and impact of spyware programs found in popular P2P
applications. In 5.4, we discuss the findings from the experiments
and also try to lift the perspective to a more general view on spy-
ware deriving from the theory of virtual network effects. In the end,
conclusions are presented.

5.2 On spyware

5.2.1 The Background of Spyware

As stated by [9], spyware exists because information has value. The
idea with spyware is simply to fetch information. If a software
developer can get revenue from advertisers, the owner can afford to
make the software available for free. The developer is paid, and the
user gets free, quality software. Usually, the developer provides two
versions of the software, one for which the user has to pay a fee in
order to receive, and one version that is freeware supported by
advertising. In these cases, free software typically includes programs
set to display advertisements and offers to the users (that is;
adware). Therefore, the user can choose between the free software
with the slight inconvenience of either pop-up ads or banners, or to
pay for software free of advertising. So, users pay to use the soft-
ware either with their money or with their time.

This method of including rather benign adware when developing
and distributing free software was common until marketers noted
three separate trends that pushed the development of adware into a
different direction. The background was that:

• standard banner ads on the Internet were not delivering as well
as expected (1% click-trough was considered good) [15],

• targeted Internet advertising typically performed much better
[14], and
72 On spyware

Exploring Spyware Effects
• while office hours were dead-time for traditional advertising
(radio, TV, etc.), many analyses showed a surprisingly high
degree of personal Internet usage during office hours [14].

The conclusion was that targeted Internet advertising was a whole
new opportunity for the marketing of products and services. All
that was required was a method for monitoring users’ behaviour.
So, once the adware was monitoring users’ Internet usage and send-
ing user details back to the advertiser, banners more suited to the
users’ preferences and personality was sent to the users in return.
The addition of monitoring functionality turned adware into spy-
ware, and the means to target advertising to interested parties accel-
erated [15]. In reality, the data collected by spyware is often sent
back to the marketing company, resulting in display of specific
advertisements, pop-up ads, and installing toolbars showed when
users visit specific web sites. In this sense, spyware programs
became technologies used to fetch valuable customer information.

5.2.2 The Operations of Spyware

The usual method for a spyware is to run secretly in the back-
ground of the users’ computers [6]. The reason for this concealing
of processes is commonly argued as that it would hardly be accepta-
ble if, e.g., free file-sharing software kept stopping to ask the user if
he or she was ready to fetch a new banner or a pop-up window [15].
Therefore, the client/server routine of spyware is normally exe-
cuted in the background. In practice, there would be nothing wrong
with spyware running in the background provided that the users
know that it is happening, what data is being transmitted, and that
they have agreed to the process as part of the conditions for obtain-
ing the freeware. However, most users are unaware of that they
have software on their computers that tracks and reports on their
Internet usage. Typically, a spyware program covertly gathers user
information and spreads it without the user’s knowledge of it. Once
installed, the spyware monitors, e.g., user activity on the Internet
and transmits that information in the background to third parties,
such as advertising companies. In reality, spyware run constantly,
even when their carrier program, e.g., a file-sharing tool, has been
terminated.

A more or less legal grey area is exploited by the spyware actors,
since they in most program licenses specify that information may
be gathered for corporate purposes. However, the usual model is to
On spyware 73

Exploring Spyware Effects
collect more information than have been asked for [15]. Besides
this, most license agreements are formulated in such a way that they
are extensively hard for users to understand.

5.2.3 The Types of Spyware

There are many different kinds of spyware. For instance, one of the
leading anti-spyware tools, PestPatrol, has a record of over 1400
instances of spyware published on their web site [8]. In order to
make the spyware domain more graspable, we present the following
classes of spyware. This classification is in conformity with a
recently published study on measurement and analysis of spyware
[9], although when presented here, the order of spyware types
ranges from minimum to maximum user impact:

• Cookies and web bugs: Cookies are small pieces of state stored
on individual clients’ on behalf of web servers. Cookies can only
be retrieved by the web site that initially stored them. However,
because many sites use the same advertisement provider, these
providers can potentially track the behaviour of users across
many Internet sites. Web bugs are usually described as invisible
images embedded on Internet pages used for locating a connec-
tion between an end user and a specific web site. They are
related to cookies in that advertisement networks often make
contracts with web sites to place such bugs on their pages.
Cookies and web bugs are purely passive forms of spyware, they
contain no code of their own. Instead they rely on existing web
browser functions.

• Adware: Adware is a more benign form of spybot (see below).
Adware is a category of software that displays advertisements
tuned to the user’s current activity. Although most “genuine”
adware programs only display commercial content, some
hybrids are involved in reporting the aggregate or anonymized
user behaviour to a third party, as described in 5.2.1.

• Tracks: A “track” is a generic name for information recorded by
an operating system or application about actions that the user
has performed. Examples of tracks include lists of recently vis-
ited web sites, web searches, web form input, lists of recently
opened files, and programs maintained by operating systems.
Although a track is typically not harmful on its own, tracks can
be mined by malicious programs, and in the wrong context it
can tell a great deal about a user.
74 On spyware

Exploring Spyware Effects
• Browser hijackers: Hijackers attempt to change a user’s Internet
browser settings to modify their start page, search functionality,
or other browser settings. Hijackers, which predominantly affect
Windows operating systems, may use one of several mecha-
nisms to achieve their goal: install a browser extension (called a
“browser helper object”), modify Windows registry entries, or
directly manipulate and/or replace browser preference files.
Browser hijackers are also known to replace content on web
sites with such promoted by the spyware authors [12].

• Spybots: Spybots are the prototypes of spyware. A spybot mon-
itors a user’s behaviour, collects logs of activity and transmits
them to third parties. Examples of collected information
include fields typed in web forms, lists of e-mail addresses to be
harvested as spam targets, and lists of visited URLs. A spybot
may be installed as a browser helper object, it may exist as a
DLL on the host computer, or it may run as a separate program
launched whenever the host operating system boots.

• System monitors: System monitors record various actions on
computer systems. This ability makes them powerful adminis-
tration tools for compiling system diagnostics. However, if mis-
used system monitors become serious threats to user privacy.
Keyloggers are a group of system monitors commonly involved
in spyware activities. Keyloggers were originally designed to
record all keystrokes of users in order to find passwords, credit
card numbers, and other sensitive information.

• Malware: Malware is a set of instructions that run on a compu-
ter and make the system do something that an attacker wants it
to do [12]. Malware refers to a variety of malicious software that
includes viruses, worms, and Trojan horses. Spyware is one
form of malware, but as will be discussed later on, spyware may
also include instructions for downloading and installing, e.g., a
virus.

Spyware succeeds because some of today’s desktop operating sys-
tems make spyware simple to build and install [9]. Many instances
of spyware have the ability to self-update, or automatically down-
load new versions of themselves to the local host. Self-updating
allows spyware authors to introduce new functions over time, but it
may also be used to evade anti-spyware tools by avoiding specific
signatures contained within the tools’ signature databases using pol-
ymorphic techniques.
On spyware 75

Exploring Spyware Effects
5.2.4 On the Implications of Spyware

Spyware may occupy resources of the computer that it infects or
alter the functions of existing applications on the affected computer
to the benefit of a third party. In that sense, spyware poses several
risks. One commonly argued is that spyware compromises a user’s
privacy by transmitting information about that user’s behaviour [4].
Even so, a spyware can also detract from the usability and stability
of the computing environment of the user [9]. In addition, a spy-
ware has the ability to introduce new security vulnerabilities to the
infected host by downloading software updates [6]. Due to that spy-
ware is widespread, such vulnerabilities put numerous amounts of
computers at risk.

To summarize, the occurrence of spyware programs raise a real and
growing threat to Internet usage in many aspects, and to other
interested parties than only to end users. Four categories frequently
argued on this topic are [3 , 6 , 15]:

• Consumption of system capacity: Spyware is often designed to
be secretly loaded at system startup, and to partly run hidden in
the background. Due to that it is not unusual for users to have
many different instances of spyware running covertly simultane-
ously, the cumulative effect on the system’s processing capacity
can be dramatic.

• Consumption of bandwidth: The continual data traffic with
gathering of new pop-ups and banner ads, and delivery of user
data can have an imperative and costly effect on both private
and corporate bandwidth.

• Security issues: Spyware covertly transmits user information
back to the advertisement server, implying that since this is
done in a covert manner, there is no way to be certain of exactly
what data is being transmitted. Even though spyware, in its pur-
est form, is a threat to privacy rather than security, some spy-
ware programs have begun to act like Trojan horses. Most
security experts would agree that the existence of spyware is
incompatible with the concept of a secure system.

• Privacy issues: The fact that spyware operates with gathering
and transmitting user information secretly in the background,
and/or displays ads and commercial offers that the user did not
by him-/herself chose to view, makes it highly privacy-invasive.
Also, spyware enables for the spreading of e-mail addresses that
76 On spyware

Exploring Spyware Effects
may result in the receiving of unsolicited commercial e-mail (so
called spam).

5.3 Experiments

We have developed a method for identifying and analysing spyware
components and their behaviour on their host systems. This
method has been used in several experiments (see, e.g., [4 , 17]). In
this section, we present the method applied in two experiments.
Thereafter, a compilation of the experiment results is given.

5.3.1 Method

The method is tightly coupled with our security laboratory. Mainly
because our experiment method is based on state preservation of
computer systems, which can be provided due to the computer
architecture of the security laboratory2. By storing the initial base-
line state of a system it is later possible to conclude what changes
occurred with regards to this baseline. In practice, this means that
we store the state of a base system before installing any application
carrying spyware components. Afterwards, it is possible to conclude
any changes between the two. By also capturing all network data
sent and binding that traffic to the corresponding program, we can
correlate network data to specific programs. It is also possible to
include measurements of, e.g., CPU and network utilization during
the experiments.

By using this method, all systems that are measured consist of iden-
tical hardware and network setups. Therefore, operating systems
and their applications are bitwise identical for all subjects in the
experiment sample. This suffices for the generation of reliable
results. In order to be sure that the results are derived from a certain
spyware, we included a “clean” reference computer in the experi-
ment.

Since file-sharing tools are notoriously known for bundling spy-
ware, we used such applications in both of the experiments. In this
context, it should be pointed out that no file-sharing activity took

2. Throughout the experiments, we used 2.8Ghz Pentium 4 computers
with 512MB primary memory.
Experiments 77

Exploring Spyware Effects
place in terms of sharing or downloading any content on the P2P
networks. Our examination was limited to software versions
released between January and May 2004, and as such, our observa-
tions and results might not hold for other versions. Also, we used
an Internet surfing program that automatically simulated a user vis-
iting 100 preconfigured Internet sites. This was an attempt to trig-
ger any spyware to either leak this information to third parties or to
hijack the web sessions. In order to identify and locate the spyware
programs, several anti-spyware tools were used.

5.3.1.1 Experiment 1

In the first experiment, we investigated the occurrence and opera-
tions of five popular file-sharing tools3. More specifically, we exam-
ined spyware programs that were bundled with the file-sharing
tools, the content and format of network data caused by spyware
involved in Internet communication, and the extent of network
traffic generated by such programs. Even though there may be
numerous components bundled with the installation of file-sharing
tools, it was primarily the programs engaged in Internet communi-
cation that were of interest to us. There are two reasons for this.
First, without this delimitation, the experiment data would be too
comprehensive to grasp. Second, for spyware programs to leak user
data, they must be involved in communication over the Internet.

5.3.1.2 Experiment 2

In the second experiment, we set to explore the effects in terms of
resource usage that spyware bring about on a local system. A major
problem introduced when setting up such an investigation involve
how to choose the experiment sample. What we wanted was a pro-
gram instance that was free of spyware and another instance (of the
same program) that included spyware. Unfortunately it is almost
impossible to remove only the spyware components and still have a
working version of the original program since such components are
very tightly coupled with the original program. We came to an
acceptable solution by selecting KaZaa and KaZaa Lite K++ as the
two subjects in the experiment sample. KaZaa Lite K++ is an
instance of KaZaa where all spyware components have been
removed by an independent group that reverse-engineered the orig-
inal KaZaa program, carefully excluding or disabling all bundled

3. The file-sharing tools were the standard (free) versions of BearShare,
iMesh, KaZaa, LimeWire, and Morpheus.
78 Experiments

Exploring Spyware Effects
components not solely used for file-sharing purposes. By using
these two KaZaa versions, it was possible to subtract the resource
utilization of KaZaa Lite K++ from the utilization of the original
KaZaa and thereby receive a measurement of resources used by the
spyware programs.

5.3.2 Results and Analysis

5.3.2.3 Experiment 1

A detailed list of the identified spyware programs is presented in
Table 5.1 After having analysed the captured data, we concluded
that all file-sharing tools contained spyware.

The two main carriers of spyware were iMesh and KaZaa (they
included ten respectively eight programs each). The rates for the
remaining file-sharing tools were five for Morpheus, four for
LimeWire, and two for BearShare. In addition to these findings, we
also discovered that all file-sharing tools contained spyware that
were involved in Internet communication.

 Table 5.1 Identified spyware programs.

As can be seen in Table 5.1, the retrieved spyware components were
divided into “Adware” and “Spybot” based on their operations. We
Experiments 79

Exploring Spyware Effects
also included a category called “Download” because some of the
components allowed for further software and/or updates to be
downloaded and installed. In this category, examples such as hijack-
ers and malware potentially could be included by the spyware dis-
tributors. In addition, all programs involved in any form of Internet
communication were specified in a category called “Internet”.
Finally, the category entitled “Host” specifies which file-sharing
tool that carried what spyware4. In the cases where our empirical
results could confirm the view shared by anti-spyware tools, the
markers in the Table 5.1 are declared with bolded capital letters.

When analysing the outgoing network communication from the
spyware components, we discovered that most of this traffic was
not sent in clear text. This means that the transactions between the
spyware components and their corresponding servers were either
obfuscated or encrypted. This is also an explanation to why we
were able to only identify two genuine spybot components. Since
most traffic was sent in non-clear text, we could not really measure
the extent to which such traffic was broadcasted. However, we did
manage to identify some network traffic sent to spyware servers on
the Internet that included, e.g., web sites visited, zip codes, country,
and information about programs and operating system versions on
the local host. In example, one of the spybot programs (Sho-
pAtHomeSelect) that was found bundled with the iMesh file-shar-
ing tool transmitted Internet browsing history records to several
invoked servers on the Internet. The Internet records that were
transmitted could be correlated to the web sites included in our pre-
configured web surfing program.

5.3.2.4 Experiment 2

A compilation of the results from the resource utilization measure-
ment can be seen in Table 5.2. The measurements indicate that if
KaZaa was installed, the rates for consumption of both system
capacity (categories 1-4) and network bandwidth (categories 5-7)
were significantly higher. This can be explained in that the spyware
programs included in KaZaa affected both consumption of system
capacity and network bandwidth. The high amount of network traf-
fic was due to that the spyware components invoked numerous spy-
ware servers on the Internet for the gathering of ads, pop-ups and
banners. The accumulated local storage of collected commercial

4. B is for BearShare, I for iMesh, K is for KaZaa, L for LimeWire, and M
for Morpheus.
80 Experiments

Exploring Spyware Effects
messages can have noticeable consequences on hard drive size,
which also was the case for KaZaa.

 Table 5.2 Resource utilisation measurements.

In Table 5.2, the measurements for the reference subject is sub-
tracted from the file-sharing tools. The column entitled “Alteration”
is represented by the difference between KaZaa and KaZaa Lite
K++, that is; the spyware resource usage. Interestingly, three com-
puter resources were significantly affected by the installation of spy-
ware. In the first category of Table 5.2, the occurrence of spyware
had a measurable effect on CPU usage, KaZaa used 32 times more
CPU capacity than KaZaa Lite K++. In category two, a significant
difference was measured where the installation of KaZaa resulted in
a ten times, or 65MB, increase of RAM usage. Finally, spyware pro-
grams had an imperative effect on the amount of network traffic
generated by the file-sharing tools. More specifically, there was a 48
times augmentation of network traffic due to the spyware programs
bundled with KaZaa. So, in contrast to KaZaa, installing a clean
file-sharing tool (i.e., KaZaa Lite K++) caused marginal impact to
system consumption and network bandwidth. However, due to the
occurrence of spyware in file-sharing tools (see Table 5.1), users
with several such applications installed will, as a result of aggregate
spyware activity, suffer from a continuous system and network
degrading.

5.4 Discussion

Based on the findings in 5.3, we can conclude that spyware pro-
grams exist, that they engage themselves in Internet communica-
Discussion 81

Exploring Spyware Effects
tion, that they transmit user data, and that their existence have a
negative impact on system and network capacity. Since we also can
conclude that spyware programs are bundled with highly popular
file-sharing tools5, we can make out that spyware in accumulation
may have a negative impact on networks and systems. In fact, the
occurrence of spyware might decrease the overall utility of belong-
ing to a large network such as a P2P file-sharing network. Thus, it
might be relevant to elaborate on the theory of negative network
effects to see whether spyware programs can threaten a large net-
work.

In a model (Table 5.3), we specify in what ways spyware might
decrease the utility of belonging to a large virtual network. The
baseline is that spyware programs intrude systems and networks,
but since they profit from user data they also intrude user privacy.
In the model, the intrusions are classified as moderate, severe and
disastrous.

 Table 5.3 Spyware Effects.

On user effects, some P2P providers include spyware in order to
maximise profitability. Spyware may collect user data (such as e-mail
addresses for spam distribution, surf records for personalised
advertisement exposure, etc.) for commercial purposes. At present,
spyware programs as such are rather benign, but cause problems to
user privacy. In general, privacy is the right of individuals to control
the collection and use of information about themselves [16]. This
means that users should be able to decide for themselves, when,
how, and to what extent information about them is communicated
to others. Even though the user data exemplified in this category
may not be that sensitive, spyware programs ignore user rights, and
must therefore be considered privacy-invasive.

A more troublesome concern is the distribution of personal data,
such as personal details (name, gender, hobby, etc.), e-mail conver-

5. As an example, there are more than 350 million downloaded instances
of KaZaa [2].
82 Discussion

Exploring Spyware Effects
sation, and chat records. This may be the result of spyware tech-
niques intended not only for commercial purposes, but also
motivated by malicious intentions. Although, such spyware pro-
grams may not be that wide-spread today, a technological platform
for these kinds of operations is available. This mean that although
the probability of being infected by such a spyware is very low, the
consequences may be devastating.

A third view would be if the spyware program updates on the serv-
ers were replaced with, e.g., keyloggers. In effect, harmful software
could be distributed to vast groups of P2P tool users with the pur-
pose of transmitting personally critical information such as financial
data, private encryption keys, digital certificates or passwords. In
reflection, financial threats from spyware programs may signify dis-
astrous outcomes to vast groups of users.

In the experiments, we established a correlation between the pres-
ence of spyware programs and the consumption of computer
capacity. Typically, spyware components utilised significant amounts
of system resources, rendering in that computer resources were
exploited in a larger extent than would otherwise be necessary. In
accumulation, spyware operations degrade system capacity.

Also, it is problematic to comment on the quality of the code in the
spyware programs, since the software requirements that have been
used during the development process are left out in obscurity. The
result can be that possibly inferior code is executed locally, which
may have a negative influence on the entire system (i.e., not only to
security). For example, as an effect of executing insufficient code, a
system may lack performance or crash with, e.g., loss of important
data as a result. In addition to this, software vulnerabilities may be
exploited by malicious persons when breaking into a system, or
when infecting it with destructive software (e.g., viruses).

As an utmost consequence, spyware programs deprive control over
the system from the system owner. In effect, the installation of spy-
ware programs may render in further installations of malware such
as viruses and/or Trojans. Local services that are based on defect
code and executed without the knowledge of the system owner are
vulnerable to exploits, which may allow malicious actors to gain
access over the computer. This is a disastrous situation because a
takeover of system control affects both the local system and the
surrounding network. A conquered system can be used as a plat-
form for further distribution of malware.
Discussion 83

Exploring Spyware Effects
At the network level, spyware operations in accumulation may con-
tribute in network congestion. On one hand, the effects are unnec-
essary costs for network maintenance and expansion. On the other
hand, network performance may be degraded. In either case, it is
the network users that in the long run bear the costs.

The operations performed by spyware programs are approaching
the operations of a virus with both a distribution and a payload
part. Since users install, e.g., file-sharing tools that contain spyware
programs on a voluntary basis, the distribution part is taken care of
by the users themselves. This makes spyware programs function
like a slowly moving virus without the typical distribution mecha-
nisms usually otherwise included. The general method for a virus is
to infect as many nodes as possible on the network in the shortest
amount of time, so it can cause as much damage as conceivable
before it gets caught by the anti-virus companies. Spyware, on the
other hand, may operate in such a relatively low speed that it is dif-
ficult to detect. Therefore, the consequences may be just as dire as
with a regular virus. The payload of a spyware is usually not to
destroy or delete data, but to gather and transmit user information,
which could be veritably sensitive. An additional complicating fac-
tor is that anti-virus companies do not generally define spyware as
virus, since it does not typically include the ability to autonomously
replicate itself. Overall, the nature of spyware substantiates the
notion that malicious actions launched on computers and networks
get more and more available, diversified and “intelligent”, rendering
in that security is extensively problematic to uphold.

In theory, even a large network such as a P2P network may suffer
an ultimate breakdown if it is continuously flooded with data.
Should spyware programs continue to increase in number and to be
more and more technologically refined, a network breakdown
might be a final step. Although, in reality, this is not a plausible out-
come. Nonetheless, if security and privacy risks are increasing as a
result of being part of a P2P network, the positive value of using an
application and thus belonging to that network will likely decrease.
If users should experience that a threshold value (where the nega-
tive effects overthrow the positive aspects of using the application)
is overstepped, then they will restrain from utilising that network.
However, the experiment results indicate that even though spyware
programs operate over P2P file-sharing networks, their effects are
thus far rather modest. At least when it comes to system and net-
work consumption. On the other hand, spyware programs that
invade user privacy must be looked upon seriously. Spyware tech-
84 Discussion

Exploring Spyware Effects
nologies mainly involved in gathering user data have a true value
potential for marketers and advertisers. If these privacy-invasive
activities should continue to evolve, there might be a great risk that
spyware will be engaged in more malicious activities than simply
fetching anonymized user/work station data. If so, that can lead to
negative network effects and thereby cause a network to become
less useful.

Hidden spyware components permit distribution of privacy-inva-
sive information and security breaches within the network. Due to
the construction of spyware, it may collect information that con-
cerns other parties than only the work station user, e.g., telephone
numbers and e-mail addresses to business contacts and friends
stored on the desktop. In the context that spyware usually is
designed with the purpose of conveying commercial information to
as many users as possible, not only the local user may be exposed to
negative feedback of spyware. As well, the business contacts and
friends may be the subjects of network contamination, e.g., receiv-
ing vast amounts of spam or other unsolicited content.

With the continuous escalation of spyware programs and the refine-
ment of spyware technologies, network availability may be degraded
to such an extent that ordinary transactions are overthrown by
obscure malware traffic. A disastrous situation may occur where a
network is seriously overloaded by malware distributed by compu-
terised systems that are controlled by malicious actors. In conclu-
sion, spyware activity may persuade users to abandon networks.

5.5 Conclusions

Based on the discussions of spyware and on the findings from the
two experiments, we can conclude that spyware have a negative
effect on computer security and user privacy. We have also found
that a subsequent development of spyware technologies in combi-
nation with a continuous increase in spyware distribution will affect
system and network capacity. A disastrous situation may occur if a
network is seriously overloaded by different types of spyware dis-
tributed by computerised systems that are controlled by malicious
actors. Then, the risk is a network breakdown. However, a more
plausible outcome may be that users will abandon the network
before that happens. In effect, spyware has the potential to over-
throw the positive aspects of belonging to a large network, and net-
Conclusions 85

Exploring Spyware Effects
work owners should therefore be very careful about permitting
such programs in applications and on networks.

5.6 References

[1] S.-Y. Choi, D.O. Stahl, and A.B. Winston, “The Economics of Electronic
Commerce”, Macmillan Technical Publishing, Indianapolis IN, 1997.

[2] C|Net Download.com., http://www.download.com/, 2010-03-11.

[3] “Emerging Internet Threats Survey 2003”, commissioned by Web-
sense International Ltd., February, 2003. http://www.web-
sense.com/company/news/research/
Emerging_Threats_2003_EMEA-de.pdf, 2010-03-11.

[4] A. Jacobsson, M. Boldt, and B. Carlsson, “Privacy-Invasive Soft-
ware in File-Sharing Tools”, in Proceedings of the 18th IFIP World Com-
puter Congress, Toulouse France, 2004.

[5] M.L. Katz, and C. Shapiro, “Systems Competition and Network
Effects”, in Journal of Economic Perspectives 8:93-115, 1994.

[6] M. McCardle, “How Spyware Fits into Defence in Depth”, SANS
Reading Room, SANS Institute, 2003. http://www.sans.org/rr/
papers/index.php?id=905, 2010-03-11.

[7] A. Oram, “Peer-To-Peer: Harnessing the Benefits of a Disruptive Technol-
ogy”, United States of America: O’Reilly & Associates Inc., 2001.

[8] PestPatrol, http://research.pestpatrol.com/Lists/NewPests(Pest
Counts).asp, 2010-03-11.

[9] S. Sariou, S.D. Gribble, and H.M. Levy, “Measurement and Analysis
of Spyware in a University Environment”, in Proceedings of the ACM/
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), San Francisco CA, 2004.

[10] D. Schoder, and K. Fischbach, “Peer-to-Peer (P2P) Computing”, in
Proceedings of the 36th IEEE Hawaii International Conference on System
Sciences (HICSS’03), IEEE Computer Society Press, Los Alamitos
CA, 2003.

[11] C. Shapiro, and H. Varian, “Information Rules”, HBS Press, Boston
MA, 1999.

[12] E. Skoudis,“Malware – Fighting Malicious Code”, Prentice Hall PTR,
Upper Saddle River NJ, 2004.

[13] “Spyaudit”, commissioned by Earthlink Inc., http://www. earth-
link.net/spyaudit/press/, 2010-03-11.
86 References

Exploring Spyware Effects
[14] J. Sterne, and A. Priore, “E-Mail Marketing – Using E-Mail to Reach
Your Target Audience and Build Customer Relationships”, John Wiley &
Sons Inc., New York NY, 2000.

[15] K. Townsend, “Spyware, Adware, and Peer-to-Peer Networks: The
Hidden Threat to Corporate Security” (technical white paper), Pest-
Patrol, 2003., http://www.pestpatrol.com/Whitepapers/PDFs/
SpywareAdware P2P.pdf, 2010-03-11.

[16] A. Westin, “Privacy and Freedom”, Atheneum, New York NY, 1968.

[17] J. Wieslander, M. Boldt, and B. Carlsson, “Investigating Spyware on
the Internet”, in Proceedings of the Seventh Nordic Workshop on Secure IT
Systems, Gjövik Norway, 2003.
References 87

Exploring Spyware Effects
88 References

P U B L I C A T I O N

3
Analysing Countermeasures Against

Privacy-Invasive Software

International Conference on Software Engineering Advances, 2006

Martin Boldt and Bengt Carlsson

User privacy is widely affected by the occurrence of privacy-invasive
software (PIS) on the Internet. Various forms of countermeasures
try to mitigate the negative effects caused by PIS. We use a compu-
ter forensic tool to evaluate an anti-spyware tool, with respect to
found PIS over a four years period. Within the anti-spyware tool
PIS was slowly identified, caused classification problems, and for-
merly classified PIS were sometimes excluded. Background infor-
mation on both PIS and countermeasure techniques are also
presented, followed by discussions on legal disputes between devel-
opers of PIS and vendors of countermeasures.

6.1 Introduction

Technology has revolutionized the way we collect, store and proc-
ess information. With the help of information technology it is pos-
sible to accumulate huge data quantities for instant or later use. The
fact that information (such as user interests) creates value to adver-
tisers has given rise to a parasitic market, focusing on information
Introduction 89

Analysing Countermeasures Against Privacy-Invasive Software
theft [21]. Software vendors take advantage of these achievements
based on questionable commercial incentives when creating and
distributing questionable software. Throughout this paper we group
such software together under the term privacy-invasive software (PIS).
Adware and spyware are the two most dominating types of PIS that
are not adequately addressed by anti-virus programs [4]. Adware
displays advertisements and commercial offers on users’ systems
while spyware covertly collect and then transmit privacy-invasive
information to third parties [2]. However, the term spyware is also
used at a higher abstraction level to include any software that users
dislike [3, 13]. Unfortunately there does not exist any proper defini-
tion of this notion of the term. All this software are to various
degree encapsulated inside the term PIS [6]. Our use of the concept
of privacy lies within Warren and Brandies original definition, “the
right to be let alone.” [42]. Since this paper target user privacy in the
context of software programs, we focus on the following three
parts:

• software that covertly sneaks into systems, or
• deceives users about their business, or
• exists without any control from users.

Users’ privacy are trespassed by PIS that covertly collect privacy-
invasive information, present unsolicited contents, or secretly
exchange requested contents with sponsored information. Such
software covertly sneaks into systems and hide deep inside the core,
out of reach from user control. By also excluding normal program
removal routines, usually provided by the operating system, such
software assure future prosperity. Locating and removing PIS are
therefore associated with great cost, which is further increased since
widely deployed protection mechanisms, such as anti-virus tools, do
not adequately address these threats [4]. Earlier work has analysed
the behaviour and impact that PIS have on users’ computers, with
regard to performance, privacy and security [4, 7, 25].

Privacy-invasive software could integrate themselves into systems
either by utilizing available software vulnerabilities, or by deceiving
the user into installing them, i.e. to target and deceive users to
install, what they think is a useful piece of software [22, 33]. So,
even in a context where software vulnerabilities are being extermi-
nated and where accurate and sophisticated protection mechanisms
exist, systems would still be susceptible to PIS. Techniques that
allow for users to make informed decisions in advance on whether
to install a certain software or not could mitigate this problem. One
90 Introduction

Analysing Countermeasures Against Privacy-Invasive Software
such approach, based on certification of “privacy friendly soft-
ware”, has been developed by TRUSTe [41]. However, until such
certifications are being commonly used we will have to adopt to the
fact that only visiting the wrong site on the Internet could be equiv-
alent with PIS infection [4, 31]. Once a single PIS component has
gained access to a system this piece of software could be used as a
gateway for additional PIS to be installed [25]. Which leaves the
user with trespassed systems containing unsolicited harmful soft-
ware, that result in a reduction of performance, stability, privacy and
ultimately the security [7].

In this paper however, we use computer forensic tools and methods to
evaluate the accuracy of PIS countermeasures. This paper also
touch upon the evolution of PIS countermeasures and the legal dis-
putes between developers of PIS and related countermeasures.

6.2 Countermeasures

In an attempt to stop, or at least mitigate, the PIS hazard a whole
new group of software, called anti-spyware, or spyware removal tools,
has emerged [23]. In an ongoing struggle between anti-virus com-
panies and virus distributors, refined detection mechanisms have to
fight more and more sophisticated viruses searching for competi-
tive advantages over each other. Anti-spyware vendors face three
major problems to solve.

1. The need to identify new and previously unknown types of PIS.
This should be done in an environment of highly dynamic and
evolving variety of PIS.

2. After successfully identifying a PIS component, any proper anti-
spyware tool should remove the component and thereby bring
the system closer to a previously uninfected state.

3. The anti-spyware tools’ ability to safeguard user data and system
components during the removal phase, i.e. to keep and protect
legitimate files.

The most common technique used when countering PIS is the sig-
nature based identification which relies on a database holding signa-
tures of known PIS. A signature captures unique properties of PIS,
and could be thought of as the associated fingerprint. By comparing
items in a system with the signatures in the database it is possible to
identify already known PIS. However, as soon as a new PIS emerge,
Countermeasures 91

Analysing Countermeasures Against Privacy-Invasive Software
anti-spyware vendors need to find it, produce a signature associated
with the new threat, and finally distribute the new signature to the
users. This method is widely used, despite the delay in protection;
since it is possible to create software that automate the detection
process.

An emerging trend is that PIS developers sue anti-spyware vendors
for defamation and ruined business strategy, by classifying and
treating their product as PIS. Some of these cases have escaped cap-
tivity to public attention and several ended up in court [39]. The
most recent case involves the online marketing company
“180Solutions” that sued firewall company “Zone Labs” for classi-
fying their advertising client as spyware [48]. We believe that ven-
dors of countermeasure tools need to be more accurate in their
classification of PIS in the future, and that their decisions need to
be based on solid evidence that hold for use in court. We also
believe that those anti-virus vendors not addressing PIS are at less
risk, since developers of malicious software, such as viruses or
worms, will not sue the company because their actions are without
a doubt illicit.

To separate vendors of legal marketing tools from developers of
PIS a general agreement on what should be considered to be fair
business practices, need to be established between developers of
PIS and countermeasures [8, 32]. At least until such an agreement is
reached, any cautious anti-spyware vendor should keep trustworthy
evidence to back up their PIS classification decisions. Using a
method designed to deliver such solid evidence will be of para-
mount importance for every company that classifies and treats soft-
ware as privacy-invasive.

6.3 Computer Forensics

Individuals and companies rely on computers in their daily work
and for doing personal duties such as online banking errands. Crim-
inals take advantage of this fact by using computers when commit-
ting crimes. To investigate such crimes, law enforcement agencies
rely on computer forensics [11]. Main steps in computer forensic inves-
tigations involve, identification and collection of evidence, data har-
vesting, data reduction, reorganizing and search of data, analysis of
data and finally reporting. These steps constitute a formalized proc-
ess that help investigators reach conclusions that are repeatable,
92 Computer Forensics

Analysing Countermeasures Against Privacy-Invasive Software
based on evidence, and as free as possible from errors. Anti-spy-
ware vendors could benefit from this if PIS developers sue the ven-
dor for ruining their business strategy when removing their tool
[39]. If clear and stringent evidence together with proper handling
of the evidence, could be presented to a court, it would assist the
anti-spyware vendor in reaching a favourable outcome in the case.

One important principle in forensic science is Locard’s exchange princi-
ple [27] which determines that anyone or anything, entering a crime
scene takes something of the scene with them, and leaves some-
thing of them behind as they leave. This principle could also be
applied in most computer settings; involving for instance PIS infec-
tions since these types of software leave tracks in both file-system
and network communication. In Section 5 we discuss this in more
detail.

To aid computer forensic investigators in the investigation process
there exist both public domain and commercial tools. These tools
allow investigators to analyse copies of whole systems, i.e. the inves-
tigator can see everything stored in a file-system. In our investiga-
tion we used a commercial tool called Forensic Tool Kit (FTK) which
is developed by AccessData [1]. FTK has been thoroughly tested
not to alter the evidence that is being investigated.

6.4 Investigation

In previous investigations of PIS we used a manual investigation
method that is based on system state preservation [7, 25, 46]. By
preserving the state of a system, together with complementing
information (such as network traffic), it is later possible to retrieve a
specific system state for analysis. During both the planning and exe-
cution of our experiment we had two main goals concerning the
laboratory environment:

1. Preserve identical hardware and software configurations during
all investigation steps.

2. Use default software configurations and all available security
updates.

To preserve bit-wise identical system states we rely on the standard
BSD Unix component dd. This allow us to serialize a whole system
into a bit-wise identical clone file. Such a clone file is a snapshot of a
system at a specific time. From such a clone file it is later possible to
Investigation 93

Analysing Countermeasures Against Privacy-Invasive Software
restore a system and its state for analysis. Initially a snapshot of a
“clean” system is created, this is regarded as the baseline. Such a
baseline only includes the operating system and the tools used for
experiment measurements. Next, an action of some kind is exe-
cuted which result in infection of PIS. Such actions could be for
instance, surfing to certain Web sites or installing a program bun-
dled with PIS. Immediately after this action is performed another
snapshot is taken. Depending on the experiment, additional snap-
shots could be created at certain intervals. Using snapshots allow
investigators to track system-changes between the points in time
when the snapshots were taken. For instance, to identify any sys-
tem-changes that were introduced during the installation of soft-
ware A, we need to conceal all system parts in the post-installation
snapshot that are identical with the baseline. In some sense we
remove the baseline from the post-install snapshot. Now, only sys-
tem changes that occurred during installation of software A
remains.

Our method detects any system deviation that has occurred
between two points in time. Simultaneous data collection and analy-
sis is avoided since the method has a clear separation between col-
lection and analysis of data. The method force investigators to
collect data only once, and later take the time needed to analyse this
data. The level of detail in the data captured is very high which
results in extensive data quantities that need to be handled. We
address this problem by automating much of the structuring and
refinement steps through custom-made software. However, this
method cannot be fully automated since steps involving for
instance data recognition and reduction rely on the skills of the
investigator. Since the method cannot be fully automated it is con-
siderably more resource demanding than automated signature based
anti-spyware tools. But we believe that computer forensic tools
could reduce this problem to an acceptable level.

In an experiment we used this method to analyse the accuracy of an
anti-spyware tool in identifying PIS, bundled with three peer-to-peer
(P2P) file-sharing tools over a four year period [20, 29].

In earlier experiments we have investigated 10 different anti-spy-
ware tools but in this work we choose to instead evaluate a single
tool over four years development instead. We choose to investigate
an anti-spyware tool that is developed by Lavasoft which is called
Ad-Aware. This specific tool was selected since it is the most down-
loaded anti-spyware tool from Download.com (October 2005) and
94 Investigation

Analysing Countermeasures Against Privacy-Invasive Software
since we could locate versions of this tool for the years 2002-2005.
The experiment used 13 identical physical computers holding four
versions of the three most downloaded P2P file-sharing tools;
iMesh, LimeWire, and Kazaa, together with one reference machine
without any file-sharing tool installed. The versions of the three file-
sharing tools were all from 2002 until 2005, and claimed to be free
from any forms of spyware. Since all of the investigated file sharing
tools were developed for the Windows platform our experiment
were executed in a Windows 2000 environment. Windows XP
could not be used since it was incompatible with earlier versions of
LimeWire. Even though file-sharing is not restricted to the Micro-
soft Windows platform most problems concerning PIS are [35].

In the beginning of the experiment each of the 13 computers were
identical and the system state was stored with a baseline snapshot.
However, system deviations began as soon as the various file-shar-
ing tools were installed. Directly after the installation process was
completed a new system snapshot was created for each system.
After this the systems were left to execute continuously for 72
hours. During this time all computers were left uninterrupted,
except for an automated Web surfing program that was set to simu-
late a user visiting a number of company Web sites, such as Amazon
and Apple. This was done in an attempt to trigger any dormant PIS
lurking in the system. In the end of the 72 hour execution new
snapshots were taken for each system. As a final step we installed
and executed six versions (from 2000 until 2005) of Ad-Aware on
each of the 13 computers. The result of these Ad-Aware executions
was stored for later analysis.

To analyse the data gathered from the experiment we mainly used
FTK, which offers efficient techniques that are highly useful for an
investigator. Such techniques are for instance pre-indexation of
data, and a known-file-filter. Pre-indexation means that indexes all
data once, when the evidence is loaded. Later, during data harvest-
ing, this result in instant search results from all data in the investi-
gated system. The known file filter is a technique based on
cryptographic hash values that allows FTK to recognize and label
files as, e.g. non tampered system files which could be concealed to
the investigator. FTK also includes ways to inspect and label files
based on various properties, e.g. encryption, text, binary, or image.
This allows for an investigator to highlight all encrypted files
through one button.
Investigation 95

Analysing Countermeasures Against Privacy-Invasive Software
 Any PIS components identified by Ad-Aware were checked against
the actual system which allowed us to identify numerous false-posi-
tives, reported by Ad-Aware. On some occasions different versions
of Ad-Aware reported a single PIS by several names. We choose to
report all such PIS with the latest used name. Further, we investi-
gated all added or modified programs and components, except for
the file-sharing executables. To identify if any of the files missed by
Ad-Aware should be considered PIS we used static analysis based
on file properties such as filename, hash value, identification tags,
and strings located inside the binary program [19]. This information
was then checked against two resources for classification [16, 36].

6.5 Results

In Table 6.1 the total number of PIS, cookies, registry keys and
other components is measured as the difference between the clean
system and a system “infected” by different versions of Kazaa,
iMesh and LimeWire. Different versions including their release date
of Ad-Aware, an anti-spyware programme, are used for the exami-
nation1. The shadowed part shows the added components found by
a present or future version of Ad-Aware, i.e. the actual protection
against certain version of the P2P programs.

Table 6.1 Total number of added components for three P2P-programs
(iMesh, LimeWire and KaZaa) measured by six different versions
(3.5 to SE1.06) of Ad-Aware between 2002 and 2005.

In general, present versions of Ad-Aware find more components
than older. 2002, 2003 and 2004 versions of the P2P-programs
show a many times increase of added components. Ad-Aware 2005
reported fewer components on average than the 2004 version of
the program.

Figure 6.1 presents the amount of PIS programs, registry keys, and
other traces that are being injected into a system when a P2P-pro-
gram is installed and been running for 72 hours. Registry keys are

1. We used one instance of each version of Ad-Aware. In Table 6.1 the
release month of this instance is given.

Ad-Aware 3.5 aug-00 5.5 jun-01 5.7 mar-02 6.0 mar-03 1.05 sep-04 1.06 nov-05
2002 8 59 183 278 912 638
2003 6 24 15 18 222 232
2004 11 34 38 34 218 221
2005 0 2 5 4 142 128
96 Results

Analysing Countermeasures Against Privacy-Invasive Software
not complete programs but are used by PIS during execution. The
most dominating group of traces consist of registry keys followed
by not specified traces, e.g. suspicious files and folders. The actual
number of executable PIS is much lower compared to other traces.
Kazaa 2002-2005 shows a large number of added components each
year. iMesh shows a peak 2002 with progressive decreasing the
years before and after, whereas LimeWire had very few added com-
ponents outside the years 2002 and 2003.

Figure 6.1 Number of bundled PIS programs, registry keys, and suspicious
files/ folders for iMesh, LimeWire and Kazaa reported by Ad-Aware
over a four year period.

In Table 6.2 all exclusive PIS programs found in Kazaa, iMesh and
LimeWire are counted for different versions of Ad-Aware. Ad-
Aware misleadingly reported some traces such as registry keys as
fully functioning PIS. These false positives are presented as the
numbers inside brackets in Table 6.2. The second column from the
right presents the number of PIS found by either the manual foren-
sic method or at least one version of Ad-Aware. PIS components
detected by the manual method but missed by Ad-Aware are pre-
sented in the last column.

Table 6.2 Number of PIS in three different P2P-programs (iMesh, LimeWire
and Kazaa) measured by six different versions of Ad-Aware and
our manual forensic method (FTK). Numbers in brackets indicate
traces of PIS that misleadingly was reported by Ad-Aware as fully
functioning PIS.

0

50

100

150

200

250

300

iM
es

h-
02

Li
m

ew
ire

-0
2

KaZ
aA

-0
2

iM
es

h-
03

Li
m

ew
ire

-0
3

KaZ
aA

-0
3

iM
es

h-
04

Li
m

ew
ire

-0
4

KaZ
aA

-0
4

iM
es

h-
05

Li
m

ew
ire

-0
5

KaZ
aA

-0
5

Id
en

ti
fie

d
 P

IS
 a

n
d
 T

ra
ce

s

Other T rac es

Register Keys

PIS
Results 97

Analysing Countermeasures Against Privacy-Invasive Software
Most PIS programs were found in the 2002 version of the P2P pro-
grams with a total of 15 different programs. 11 of these programs
were reported by Ad-Aware, but different versions reported a varia-
ble number. Ad-Aware prior to 2002 reported less PIS and later ver-
sions reported more, however not all of them. Besides not
reporting all PIS, Ad-Aware contrarily also reported, in all three dif-
ferent, PIS which instead were only traces thereof, and therefore
wrongly classified as functioning PIS. Our manual method found
four additional PIS never reported by any version of Ad-Aware.

For the forthcoming years a similar interpretation of Table 6.2
shows that the number of PIS declines, especially for iMesh and
LimeWire, but the number of unreported PIS programs are still
about the same as for 2002.

Table 6.3 Total number of undiscovered PIS programs in three different P2P-
programs (iMesh, LimeWire and Kazaa) measured by six different
versions (3.5 to SE1.06) of Ad-Aware.

In Table 6.3 the earlier results of PIS found by Ad-Aware and the
manual forensic method are presented as the failure numbers of
Ad-Aware. This is the best possible result using all known versions
of Ad-Aware, some PIS may in later versions be reclassified as
harmless files. More recent versions of Ad-Aware (grey shadowed
in Table 6.3) found a larger number of PIS than older versions.
Sometimes, as for the P2P-tools from 2002, a delay exists in finding
new PIS, i.e. later versions of Ad-Aware reported more PIS pro-
grams and traces. This delay lasted for the forthcoming two years.

Table 6.4 shows the 25 different PIS present in Kazaa, LimeWire
and iMesh. In all 19 behaved as adware, 14 as spyware, 13 as hijack-
ers that alter Web content, and two were able to independently
download new programs.

Ad-Aware was able to find 18 out of 25 programs, or about 70%
covering of PIS, but did not exclusively detect a certain PIS behav-
iour. Approximately 80% of all adware, 70% of all hijackers, 60% of
all spyware, and 50% of the downloaders were detected by Ad-
Aware.

Ad-Aware 3.5 aug-00 5.5 jun-01 5.7 mar-02 6.0 mar-03 1.05 sep-04 1.06 nov-05
2002 14 12 11 7 4 4
2003 8 7 7 7 3 3
2004 6 5 5 5 3 3
2005 6 6 6 4 3 3
98 Results

Analysing Countermeasures Against Privacy-Invasive Software
Table 6.4 Classification (adware, spyware, hijacker or downloader) of found
PIS programs. In the host column K refer to Kazaa, L to LimeWire
and I to iMesh. An X in the Ad-Aware column indicates that at least
one of the investigated Ad-Aware versions found the PIS program.

6.6 Discussion

Unlike viruses, PIS programs exist in a grey area between being
legal (business facilitators) and being illegal, i.e. behave and/or
being regarded as malicious software. Normally, a virus is rapidly
identified, does not cause any classification problem, and once
included in the anti-virus database it remains there. Ad-Aware, the
investigated anti-spyware tool, was unsuccessful with respect to all
three anti-virus qualities above, i.e. PIS was slowly identified, caused
classification problems, and was sometimes excluded.

The first quality, speed of identification, compromises PIS that is
not reported by Ad-Aware for certain version of the file sharing
program. This could be due to that some PIS is not yet classified as
PIS, i.e. they are detected but is not included into the signature data-
base, or that PIS successfully conceal themselves from anti-spyware
Discussion 99

Analysing Countermeasures Against Privacy-Invasive Software
tools. As was shown in Table 6.3 the failure numbers of Ad-Aware
decreased over the time showing a gradual incorporation of new
PIS into its database. It took one to two years for Ad-Aware to
incorporate missing PIS in the database and there were still unde-
tected programs. Compared to anti-virus programs this is too long
time and with a remaining unacceptable failure number.

The second quality, classification consistency, suffers from the pres-
ence of false negatives and positives. Reclassification, unreported
and undetected files may all be false negatives, i.e. PIS found during
the forensic analysis but not reported or ignored by the anti-spy-
ware tool. Ad-Aware found about 70% of all PIS and did not show
any trend to exclusively favouring the detection of certain behav-
iour. Also, a lack of a deepened context analysis may influence the
amount of false positives, i.e. warnings, generated by the anti-spy-
ware tool that does not pose any risk at all. Ad-Aware did not dis-
tinguish between traces of PIS and executable programs.

The third quality, stability, was violated because executable program
files, formerly by Ad-Aware classified as PIS, was later excluded.
Three such programs, behaving as adware, spyware or hijackers
were found. There was no obvious reason for reclassifying these
programs because of more harmless actions. Instead there are dif-
ferent business considerations for anti-spyware tools compared to
anti-virus tools, such as legal aspects of excluding third-part mate-
rial.

In all, the 2005 version of Ad-Aware found 15 PIS out of 25 for the
2002-2005 versions of the three P2P tools. Also, later versions of
P2P tools contained fewer PIS than older versions. So, the decrease
in the number of PIS is probably not the result of more efficient
countermeasures, but refined business strategies. Either a company
tries to exclude its marketing program from the anti-spyware data-
bases or choose another kind of marketing. Both strategies are
found in the 2005 versions where iMesh and LimeWire excluded all
PIS and Kazaa contained a bigger rate of undetected files.

We believe the failure from anti-spyware tools to deal with the three
qualities above rely on both obsolete identification techniques, but
also on the lack of a general agreement on what should be consid-
ered as privacy-invasive behaviour of software2. Without such an
agreement it is a more arbitrary task to distinguish PIS from legiti-
mate software than separating malicious software, such as virus and
worms, from legitimate software. Since the inner workings of PIS
100 Discussion

Analysing Countermeasures Against Privacy-Invasive Software
does not necessarily include any malicious behaviours, they rather
include normal behaviour such as showing content on the screen
(advertisements), it is not possible for countermeasures to only tar-
get PIS behaviour when distinguishing PIS from legitimate soft-
ware. Instead they need to incorporate user consent when
distinguishing between legitimate and illegitimate software. Without
proper techniques that safeguard true informed user consent during
installation, it is extremely hard (if not impossible) for any spyware
countermeasure to accurately decide on what software to target
since there exists no common guidelines to follow.

This fact combined with that the software that anti-spyware ven-
dors classify as PIS are developed by companies that are ready to
take legal actions if needed, pose a great risk for these vendors. This
is a scenario most anti-virus vendors do not have to worry about
when classifying and treating for instance a worm as malicious soft-
ware. Both vendors of anti-spyware tools and marketing companies
need to commonly establish where to draw the border between PIS
and legitimate business facilitators. If such an agreement could be
reached, both legitimate marketing companies and vendors of anti-
spyware tools will benefit. Legitimate marketing vendors no longer
need to be affected by decreased revenues since their advertising
clients were wrongly classified as PIS, and anti-spyware companies
face a lower risk of being sued by indignant marketing vendors.
Additionally, every deceitful software developer creating PIS would
be treated, rightfully, by the anti-spyware vendors.

If a general separation between privacy-invasive and legitimate soft-
ware could be established it would be possible to certify software as
“privacy friendly”. Complementing such a certification with a short
description on e.g. software behaviour, transmitted data, and
removal routines it would be possible for users to make informed
decisions on whether or not to install certain software. Such a serv-
ice would provide users with an important tool that allow them to
increase the amount of control they have over their systems and
their digital security and privacy, on both home computers and
mobile devices. TRUSTe has started one such promising approach
called “Trusted Download Program” in which they will provide a
guideline on how to distinguish legitimate software [41]. Based on
this guideline they will publish a white-list of approved applications.

2. Despite we only used one anti spyware-tool, a lot of different versions
during several years were investigated.
Discussion 101

Analysing Countermeasures Against Privacy-Invasive Software
Any software vendor submit their software for certification must
also enter into a contract with TRUSTe in which their software
functionality is specified. Using these guidelines TRUSTe continu-
ously evaluate the correctness and ongoing compliance of all certi-
fied software.

6.7 Conclusions

Identifying and removing PIS and keeping/protecting legitimate
files are major problems to solve for anti-spyware vendors. The
identification task is further complicated by the necessity to con-
sider legal aspects which is a major distinction between anti-spy-
ware and anti-virus tools. This paper evaluated the accuracy of a
leading anti-spyware tool called Ad-Aware which uses signatures to
counteract PIS. The effectiveness of comparable versions of Ad-
Aware was correlated against a manual method using a forensic tool
comparing a “clean” system with the system infected by added
components from the file sharing tools.

The investigated anti-spyware program failed to report all PIS pro-
grams, marked earlier discovered PIS as ordinary programs, or
wrongly classified traces of PIS as functioning PIS. There was also a
palpably reduction of PIS programs included in later versions of
two out of three file sharing programs. The manual forensic
method managed to find all added executable files and to sort out
traces of PIS.

Unlike viruses, PIS programs exist in a grey area between being
business facilitators and being regarded as malicious software.
Compared to the more established anti-virus approach, the investi-
gated anti-spyware tool suffered from three quality attributes; rapid
identification, classification consistency and conformity violations.
This imply that the signature-based approaches, which is de facto
standard in anti-virus tools, is not ideal when targeting PIS. We
believe the failure from anti-spyware tools to deal with the three
qualities above not only rely on obsolete identification techniques,
but also on the lack of a general agreement on what should be con-
sidered as privacy-invasive behaviour of software.

It is of most importance to develop routines that allow users to
make informed decisions during the software installation process,
on whether to install a certain software or not. Until such routines
102 Conclusions

Analysing Countermeasures Against Privacy-Invasive Software
and mechanisms are being widely deployed, computer users risk
being victims of systematic privacy invasions in their digital envi-
ronment from questionable actors.

6.8 References

[1] AccessData Corporation, http://www.accessdata.com, 2010-03-11.

[2] W. Ames, “Understanding Spyware: Risk and Response”, in IEEE Compu-
ter Society – IT Professional, Vol. 6, Issue 5, 2004.

[3] Anti-Spyware Coalitions, http://www.antispywarecoalition.org,
2010-03-11.

[4] K. P. Arnett and M. B. Schmidt, “Busting the Ghost in the
Machine”, in Communications of the ACM, Vol. 48, Issue 8, 2005.

[5] Blue Coat Systems – Spyware Interceptor, http://www.blue-
coat.com/products/interceptor/, 2010-03-11.

[6] M. Boldt, and B. Carlsson, “Privacy-Invasive Software and Preven-
tive Mechanisms”, in Proceedings of the International Conference on Sys-
tems and Network Communications, Papeete Tahiti, 2006.

[7] M. Boldt, B. Carlsson, and A. Jacobsson, “Exploring Spyware
Effects”, in Proceedings of the Eighth Nordic Workshop on Secure IT Sys-
tems, Helsinki Finland, 2004.

[8] J. Bruce, “Defining Rules for Acceptable Adware”, in the Fifteenth Virus
Bulletin International Conference (VB2005), Dublin Ireland, 2005.

[9] B. Carrier, “File System Forensic Analysis”, Addison-Wesley Profes-
sional, Upper Saddle River, NJ, 2005.

[10] H. Carvey, “Windows Forensics and Incident Recovery”, Addison-Wesley,
Upper Saddle River, NJ, 2005.

[11] E. Casey, “Digital Evidence and Computer Crime: Forensic Science and the
Internet”, Academic Press, London UK, 2004.

[12] D. M. Chess and S. R. White, “An Undetectable Computer Virus”,
in Virus Bulletin Conference, Orlando FL, 2000.

[13] E. Chien, “Techniques of Adware and Spyware”, in Fifteenth Virus
Bulletin International Conference (VB2005), Ireland, 2005.

[14] F. Cohen, “Computational Aspects of Computer Viruses”, in Com-
puters & Security, Vol. 8, Issue 4, San-Fransisco CA,1989.

[15] F. Cohen, “Computer Viruses – Theory and Experiments'', in IFIP-
Sec 84, Toronto Canada, 1984.
References 103

Analysing Countermeasures Against Privacy-Invasive Software
[16] Computer Associates Spyware Information Center, http://
www3.ca.com/securityadvisor/pest/, 2010-03-11.

[17] Download.com, http://www.download.com, 2010-03-11.

[18] “Emerging Internet Threats Survey 2003”, commissioned by Web-
sense International Ltd., February, 2003. http://netpartners.com/
company/news/research/Emerging_Threats_2003_EMEA.pdf,
2010-03-11.

[19] D. Farmer, and W. Venema, “Forensic Discovery”, Addison-Wesley,
Upper Saddle River NJ, 2004.

[20] A. Froemmel, “Dangers And Containment Of P2P Utilities On A
Corporate Network”, SANS Reading Room, SANS Institute, 2003.
http://www.giac.org/certified_professionals/practicals/gsec/
2828.php, 2010-03-11.

[21] S. Görling, “An Introduction to the Parasite Economy”, in EICAR
2004, Luxemburg, 2004.

[22] G. Hoglund, and G. McGraw, “Exploiting Software – How To Break
Code”, Addison-Wesley, Boston MA, 2004.

[23] L. Hunter, “Stopping Spyware”, Addison-Wesley, Upper Saddle River,
NJ, 2005.

[24] A. Jacobsson, “Exploring Privacy Risks in Information Networks”,
in Blekinge Institute of Technology Licentiate Thesis Series No. 2004:11,
Sweden, 2004.

[25] A. Jacobsson, M. Boldt, and B. Carlsson, “Privacy-Invasive Soft-
ware in File-Sharing Tools”, in Proceedings of the 18th IFIP World Com-
puter Congress, Toulouse France, 2004.

[26] Lavasoft, http://www.lavasoft.com, 2010-03-11.

[27] E. Locard, “L'enquête criminelle et les méthodes scientifiques”, Flammar-
ion, Paris France, 1920.

[28] R. Martin, “Spy vs. spy”, in Fortune Small Business, Vol. 14, No. 4,
2004.

[29] A. Oram, “Peer-To-Peer: Harnessing the Benefits of a Disruptive Technol-
ogy”, United States of America: O’Reilly & Associates Inc., 2001.

[30] S. Sariou, S.D. Gribble, and H.M. Levy, “Measurement and Analysis
of Spyware in a University Environment”, in Proceedings of the ACM/
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), San Francisco CA, 2004.
104 References

Analysing Countermeasures Against Privacy-Invasive Software
[31] S. Shukla and F. Fui-Hoon Nah, “Web Browsing and Spyware
Intrusion”, in Communications of the ACM, Vol. 48, Issue 8, 2005.

[32] J. Sipior, B.T. Ward, and G.R. Roselli, “A United States Perspective on the
Ethical and Legal Issues of Spyware”, in The Seventh International Confer-
ence on Electronic Commerce (ICEC2005), Xian China, 2005.

[33] E. Skoudis,“Malware – Fighting Malicious Code”, Prentice Hall PTR,
Upper Saddle River NJ, 2004.

[34] Spyaudit, commissioned by Earthlink Inc., http://www.earth-
link.net/spyaudit/press/, 2010-03-11.

[35] Spyware is Windows-only, http://www.securityfocus.com/news/
9696/, 2010-03-11.

[36] SpywareGuide.com, http://www.spywareguide.com, 2010-03-11.

[37] Stay Safe Online, “AOL/NCSA Online Safety Study – December 2005”,
http://www.staysafeonline.org/pdf/safety_study_2005.pdf, 2010-
03-11.

[38] J. Sterne and A. Priore, “E-Mail Marketing – Using E-Mail to Reach
Your Target Audience and Build Customer Relationships”, John Wiley &
Sons Inc., New York NY, 2000.

[39] Threats Against Spyware Detectors, Removers, and Critics, http://
www.benedelman.org/spyware/threats/, 2010-03-11.

[40] K. Townsend, “Spyware, Adware, and Peer-to-Peer Networks: The
Hidden Threat to Corporate Security” (technical white paper), Pest-
Patrol, 2003., http://www.moorecomputing.net/
SpywareAdwareP2P.pdf, 2010-03-11.

[41] TRUSTe – Make Privacy Your Choice, http://www.truste.com,
2010-03-11.

[42] S.D. Warren and L.D. Drandeis, “The Right to Privacy”, in Harward
Law Review, Vol. 4, Issue 5, 1890.

[43] Webroot Software, “State of Spyware – Q3 2005”, http://www.web-
root.com/resources/, 2010-03-11.

[44] Webroot Software – Phileas, http://www.webroot.com/resources/
phileas/, 2010-03-11.

[45] A. Westin, “Privacy and Freedom”, Atheneum, New York NY, 1968.

[46] J. Wieslander, M. Boldt, and B. Carlsson, “Investigating Spyware on
the Internet”, in Proceedings of the Seventh Nordic Workshop on Secure IT
Systems, Gjövik Norway, 2003.
References 105

Analysing Countermeasures Against Privacy-Invasive Software
[47] X. Zhang, “What Do Consumers Really Know About Spyware?”, in Com-
munications of the ACM, Vol. 48, Issue 8, 2005.

[48] Zone Labs Sued Over Spyware Classification, http://www.security-
focus.com/brief/68, 2010-03-11.
106 References

P U B L I C A T I O N

4
Preventing Privacy-Invasive Software

using Online Reputations

Lecture Notes in Computer Science (LNCS), Volume 4721, 2007

Martin Boldt, Bengt Carlsson, Tobias Larsson and Niklas Lindén

Privacy-invasive software, loosely labelled spyware, is an increas-
ingly common problem for today’s computer users, one to which
there is no absolute cure. Most privacy-invasive software is posi-
tioned in a legal greyzone, as the user accepts the malicious behav-
iour when agreeing to the End User License Agreement. This paper
proposes the use of a specialized reputation system to gather and
share information regarding software behaviour between commu-
nity users. A client application helps guide the user at the point of
executing software on the local computer, displaying other users’
feedback about the expected behaviour of the software. We discuss
important aspects to consider when constructing such a system,
and propose possible solutions. Based on the observations made,
we implemented a client/server based proof-of-concept tool, which
allowed us to demonstrate how such a system would work. We also
compare this solution to other, more conventional, protection
methods such as anti-virus and anti-spyware software.
107

Preventing Privacy-Invasive Software using Online Reputations
7.1 Introduction

Our society is continuously moving in an increasingly more compu-
terized direction where software has a central role [15, 28]. Because
of this development computer users are in need of more aiding
mechanisms to help them distinguishing legitimate software from
its questionable counterparts. Without such mechanisms we will
experience a gradual increase in the negative consequences resulted
by such software, affecting more and more of our daily lives by
involving for instance mobile devices and media centres. Sources
indicate that well over 80% of all home PCs and more than 30% of
all corporate PCs connected to the Internet are infected by ques-
tionable software, often labelled spyware [32, 37]. Affected computer
owners are not aware of the fact that their computer is infected with
spyware since they rely entirely on anti-virus software and firewalls
to protect them. However, anti-virus software does not focus on
spyware, but rather on more malicious software types, such as
viruses, worms and Trojan horses [2].

Although some spyware programs might be malicious, many are
considered to be legitimate software distributed by highly profitable
companies that are gathering information about its users, showing
targeted ads, sending user behaviour patterns, visited websites and
similar, storing them for an unknown period of time as user profiles
in central databases. Spyware are often in a legal greyzone since they
normally inform the users of their actions, but often in such a for-
mat that it is unrealistic to believe that normal computer users will
read and understand the provided information. The End User
License Agreement (EULA) that the user has to agree on before using
or installing the software are often written in a legal format, some-
times spanning well over 5000 words, and most users choose to
proceed without actually studying it, giving his or her consent to
whatever might be stated in the EULA, i.e. anything the software
developer wants[7, 14, 31].

There are numerous ongoing projects and attempts to produce
effective countermeasures for removing spyware [22, 25, 33]. How-
ever, this requires a classification of some software as “harmful to
the user” which is legally problematic. The main reason for this is
because the information regarding system behaviour is stated in the
license agreement that the user already has accepted, which could
lead to law suits [14, 34]. Such legal disputes have already proved to
be costly for anti-spyware software companies [29]. As a result of
108 Introduction

Preventing Privacy-Invasive Software using Online Reputations
this, they may be forced to remove certain software from their list
of targeted spyware to avoid future legal actions, and hence deliver
an incomplete product to their customers, being unable to correctly
classify some software as privacy-invasive.

As the problem of spyware is widely spread, and no complete pro-
tection is available, there is a need for ways to better inform the user
about the software he or she uses, while still not classifying it as
“harmful to the user” and hence risking law suits. There are numer-
ous well-known and popular websites based on the concept of let-
ting users grade different services, applications, shops, and similar
e.g., Flixster, IMDb.com, and Pricerunner [12, 18, 26]. The main
concept is to help guide other consumers to, for example, find the
best store to shop at and to avoid pitfalls and unethical sellers [38].
We have combined this concept with a client software that helps
guide the user whenever a program is about to execute on his com-
puter, by showing other users rating and comments of the particular
software. Larsson and Lindén implemented this idea into a proof-
of-concept tool during their masters thesis work1 [21]. In this sys-
tem the users are asked to rate their most frequently used software,
by grading it between 1 and 10. In return they are given access to
aggregated ratings for all software in the reputation system. By
using the knowledge from previous users it is possible for new
users to reach more informed decisions when installing a specific
software, i.e. allowing them to stop questionable software before it
enters their computer. The proof-of-concept tool has found a
group of continuous users, which has rendered in well over 2000
rated software programs in the reputation database.

7.1.1 Background and Related Work

The usage of the term spyware has become increasingly popular,
both by users, media and software vendors [1, 30]. It has been
defined as software that “track users’ activities online and offline,
provide targeted advertising, and/or engage in other types of activi-
ties that users describe as invasive or undesirable [8, 13]. This means
that it has come to include all kinds of malicious software, ranging
from software that displays advertisements based on user behaviour
(adware) to Trojan key loggers, as well as actual spying software
(spyware) [31]. A better term to use instead of spyware, would be

1. More information about the tools is available at http://www.soft-
wareputation.com
Introduction 109

Preventing Privacy-Invasive Software using Online Reputations
privacy-invasive software (PIS). In an attempt to clarify the usage of
this term, Boldt and Carlsson based their classification of privacy-
invasive software on user’s informed consent and negative user con-
sequence, as shown in Table 7.1 [4, 5].

Table 7.1 Classification of privacy-invasive software with respect to user’s
informed consent (high, medium and low) and negative user.

User consent is specified as either low, medium or high, while the
degree of negative consequences span between tolerable, moderate,
and severe. This classification allows us to first make a distinction
between legitimate software and spyware, and secondly between
spyware and malicious software (malware). All software that has
low user consent, or which impairs severe negative consequences
should be regarded as malicious software. While, on the other hand,
any software that has high user consent, and which results in tolera-
ble negative consequences should be regarded as legitimate soft-
ware. By this follows that spyware constitutes the remaining group
of software, i.e. those that have medium user consent or which
impair moderate negative consequences.

We base our work on Simone Fischer-Hübner’s definition of privacy,
in which she divides the concept into the following three areas [11]:

• territorial privacy focusing on the protection of the public area
surrounding a person, such as the workplace or the public space

• privacy of the person which protect the individual from undue
interference that constitute for instance physical searches and
drug tests

• informational privacy protecting if and how personal information
(information related to an identifiable person) is being gathered,
stored, processed, and further disseminated.

Since our work has its origin in a computer setting we interpret the
above three areas into a computer context. We argue that this is
110 Introduction

Preventing Privacy-Invasive Software using Online Reputations
motivated since computers are being increasingly more weaved
together with our daily lives, affecting individuals’ privacy. Our clas-
sification of privacy-invasive software is related to the last two areas
listed above, i.e. protecting the user from undue interference, and
safeguarding users’ personal information, while using computers.
Therefore our view of privacy does not only focus on the commu-
nication of personal information, but it also includes undue inter-
ference that negatively affects the users’ computer experience.

In an attempt to mitigate the negative effects from PIS we propose
the use of a reputation system where computer users collaborate
with the goal to distinguish legitimate software from PIS. As
described by Resnick et al. a reputation system “collects, distributes,
and aggregates feedback about participants’ past behaviour” [27].
This can either be part of a larger system, to give the users incen-
tives to behave well in the future knowing that other users will be
able to review past transactions e.g. on an auction site, or as a sys-
tem itself used for rating e.g. resellers of home appliances, Holly-
wood blockbusters, or basically any kind of product or service. This
helps new users to establish a trust relationship towards a particular
reseller or company based on other users’ past opinions about the
other party, without any personal contact with the reseller or com-
pany in question. This is increasingly important considering the
present development rate for e-commerce and online services
where customers seldom, if ever, meet the business representatives
they are dealing with.

7.2 Important Considerations

There are two main issues that need to be addressed when consid-
ering the design and implementation of the proposed system. How
to protect users’ privacy and at the same time address incorrect
information in the system. We will address these two considerations
individually; explaining the problem at hand, as well as proposing
one or more possible solutions that may help prevent the problem,
or at least reduce the impact of it [9].

7.2.1 Addressing Incorrect Information

There are a number of aspects to take into consideration when
building a system that is to gather, store and present information
from multiple, unknown users. Although the system has been set up
Important Considerations 111

Preventing Privacy-Invasive Software using Online Reputations
for a clear purpose, individual users, or groups of users, may find it
more interesting to – for instance – intentionally enter misleading
information to discredit a software vendor they dislike, use multiple
computers in a distributed attack against the system to fill the data-
base with bogus votes, enter irrelevant or indecent comments, and
so on. When it comes to inventing new ways of disturbing peace,
the stream of ideas seems to be never-ending.

Even though it may be done without malice, even in good faith,
ignorant users voting and leaving feedback on programs they know
nothing or little about may be a rather big problem for a software
reputation system, especially at a budding phase. If the number of
users is low, compared to the number of software to be rated, there
is a big risk that many software will be without any, or with just a
few, votes. Even worse, if these few votes and comments have been
given by users with little actual knowledge about the software they
are rating, they may – for example – give the installer of a program
bundled with many different PIS a high rating, commenting that it
is a great free and highly recommended program. In a normal envi-
ronment, this would not be a problem, as a number of more experi-
enced users would already have added negative feedback, warning
other users of the potential dangers with installing this software
package. However, in the cases where there are few users and votes
available at any point of time, this may be a big problem.

We have identified three different approaches to mitigate the prob-
lem with unintentionally incorrect information. The first one
involves allowing the users to rate not only the software but also the
feedback of other users in terms of helpfulness, trustworthiness and
correctness, creating a reliability profile for each user. This profile
could be thought of as a trust factor that is used to weight the rat-
ings of different users, making the votes and comments of well-
known, reliable users more visible and influential than those of new
users. It does not directly handle the problem of inexperienced
users giving incorrect information and ratings, if they are the only
ones commenting and voting, but as soon as more experienced
users give contradicting votes, their opinions will carry a higher
weight, tipping the balance in a – hopefully – more correct direc-
tion.

The second approach is to use bootstrapping of the program data-
base at an early stage, preferably before the system is put to use,
copying the information from an existing, more or less reliable,
software rating database of programs and their individual ratings
112 Important Considerations

Preventing Privacy-Invasive Software using Online Reputations
into the database of the reputation system. That way, it would be
possible to ensure that no common program has few or zero votes,
and in the event of novice users giving the software unfair positive
or negative ratings and comments, the number of existing votes
would make their votes one out of many, rather than the one and
only.

The third approach would be to have one or more administrators
keeping track of all ratings and comments going into the system,
verifying the validity and quality of the comments prior to allowing
other users to view them, as well as working on keeping the pro-
gram database updated, giving expert advice on certain programs,
such as well-known white listed applications, etc. However, once
the number of users has reached a certain level, this would require a
lot of manual work, which could become expensive for maintaining
a free program, as well as seriously decrease the frequency of vote
updates.

In addition to the problem with users that unintentionally provide
the reputation system with incorrect information is the more com-
plex threat by individuals, or groups of people, that decide to pur-
posely abuse the systems. In the preventive anti-PIS reputation
system, one such attack would be to intentionally try to enter a mas-
sive amount of incorrect data into the database. Either to slow the
system down, or even crash it, or to target specific applications, try-
ing to subject them to positive or negative discrimination. The main
question when it comes to vote flooding is how to allow normal
users to be able to vote smoothly and yet be able to address abusive
users that attack the system.

An important aspect to take into consideration is that the server
must ensure that each user only votes for a software program
exactly once. A common solution to this kind of problem would be
to let the user register a user account at the server before being able
to activate the client software. For each user account, only one vote
and comment can be registered for a specific software. Using some
non-automatable process, such as image verification, and requiring
a valid e-mail address during the registration of a new user account
would help prevent the system for users trying to automatically cre-
ate a number of new accounts to avoid the limit imposed on the
number of votes each user can give to each software [10].
Important Considerations 113

Preventing Privacy-Invasive Software using Online Reputations
7.2.2 Protecting Users’ Privacy

As the system is built for protecting peoples’ privacy, we need to
make sure the system itself does not intrude on it more than abso-
lutely necessary. If the system would store sensitive information
about its users, such as IP addresses, e-mail address, and linking
these to all software the user has ever cast a vote on, the system
owner would control this sensitive information. Any leakage of
such information e.g., through an attack on the reputation system
database, could have serious consequences for all users. An attacker
getting access to this information would find a list of hosts and
software running on each host, where some of them could be vul-
nerable to remote exploits. However, not storing any data about
which users have cast votes on a particular software could lead to
vote flooding and similar, as the system would have no way of
ensuring that a user only votes once.

As we need to make sure no users can vote more than once on each
particular software, we cannot get rid of the concept of users and
user accounts. However, one approach would be to ensure that all
kinds of sensitive information that can be of use for an attacker,
such as IP address, e-mail address, name, address, city, or similar, are
excluded from the user information stored in the database of the
reputation system server. The only thing necessary to store is some
kind of unique identifier for each user, such as a user name.

As mentioned in the previous section, we need to prevent users
from signing up several times in an automatic way, and one way of
doing this would be to use their e-mail address as an identification
item. However, this requires us to store the e-mail address in the
database which might not be something that people would like to
store in a database that keeps track of which software they are run-
ning and their opinions on it. A solution to this would be to only
keep a hash value of the e-mail address, as this can be used to dis-
cover that two e-mail addresses are equal, while it is impossible to
recreate the e-mail address from the hash value. However, it would
still be possible to guess the correct e-mail address if relying on a
brute force approach. This problem could be further solved by con-
catenating the e-mail address with a secret string before calculating
the hash, rendering brute force attack to be computationally impos-
sible as long as the secret string is kept secret. Protection of users’
anonymity could be established by utilizing distributed anonymity
services, such as Tor, for all communication between the client and
114 Important Considerations

Preventing Privacy-Invasive Software using Online Reputations
the server [36]. This would further increase user’s privacy by their
IP address from the reputation system owner.

7.3 System Design

As we have illustrated in the previous section, there are numerous
aspects to take into consideration when designing a reputation sys-
tem such as this. Information has to be gathered from the reputa-
tion system users in a way that address different ways of abuse,
without interfering with normal usage and / or the protection of
the users’ privacy. When considering votes and comments, the sys-
tem has to be able to handle possible abuse, as well as to properly
balance the weight of different users’ ratings and allow users to
grade each others, thus improving the credibility of the more expert
users and degrading users not taking voting and commenting in the
system seriously.

The system will be comprised of three major parts, a client with a
graphical user interface (GUI) running on each users’ workstation,
a server running on one or more machines handling all requests and
commits from the clients, as well as a database storing all data. The
system will also offer a web based interface, which gives the users
more possibilities in searching the information stored in the data-
base. This will be used as an extension to the GUI client, where
users e.g. can read more information about some particular soft-
ware program or vendor along with all the comments that have
been submitted.

7.3.1 Client Design

The most important functionality of the client is the ability to allow
its users to decide exactly what software is allowed to run on the
computer, i.e. blocking all software which the user have not explic-
itly given his/her permission to. This filtering capability is imple-
mented using a hooking device that captures the execution calls
from the Windows API, in order to allow the user to choose
whether or not he or she really wants to proceed with the execution
of that particular software. Whenever software is trying to execute,
the hooking device informs the client about the pending execution,
which in turn asks the user for confirmation before actually running
the software requesting to execute. The API hooking is used to cap-
ture the execution call that goes to the Windows kernel when the
System Design 115

Preventing Privacy-Invasive Software using Online Reputations
operating system tries to allocate memory for the program. We used
Anton Bassov’s Soviet Protector code when implementing the API
hooking functionality, with slight modifications added [16]. It con-
sists of a system driver that replaces the API call to NtCreatePro-
cess() with its own version, and a software component that
communicates with the driver through a shared section of the mem-
ory2.

The client uses different lists to keep track of which software have
been marked as safe (the white list) and which have been marked as
unsafe (the black list). These two lists are then used for automati-
cally allowing or denying software to run, without asking for the
user’s permission every time, and thereby reducing the need for
user interaction. When the driver discovers an execution and
informs the client about it, the client traverses the white list and
blacklist for an occurrence of the pending software based on a
checksum calculated from the EXE-file content, using an algorithm
such as for instance SHA-1. If the software is found in either of the
two lists, the appropriate response is automatically sent to the driver
without the need for user interaction, otherwise the client queries
the server and fetches the information about the executing software
to show the user and take action based on the user’s decision.

The proof-of-concept tool also allows the user to submit ratings
and comments, as described in the previous sections, as well as to
view compiled information from other users and run statistics
about the software about to execute. The user is only asked to rate
software which he has executed more than a predefined number of
times, currently 50 times. This ensures that the user has been using
the software for some time and therefore has developed some sort
of opinion about it. To minimize the user interruption there is also
a threshold on the number of software the user is asked to rate each
week, currently two ratings per week. So, when the user has exe-
cuted a specific software 50 times she will be asked to rate it the
next time it is started, unless two software already has been rated
that week.

2. It might at first seem more reasonable to focus on API calls such as
NtCreateProcess() [16].
116 System Design

Preventing Privacy-Invasive Software using Online Reputations
7.3.2 Server Design

In addition to the processing of software ratings the server also
handles the database containing registered user information, ratings
and comments for different software that users have previously
voted on. The clients communicates with the server through a web-
server that handles the requests sent by the client software, as well
as displaying web pages for showing more detailed information
about the software and comments in the database. XML is used as
the communication protocol between the client and the server.

The only data stored in the database about the user is a username,
hashed password and a hashed e-mail address, as well as timestamps
of when the user signed up, and was last logged in. The e-mail
address is only there to make it more difficult for a person to create
several different accounts, as it is possible to sign up only once per
e-mail address. Each e-mail address used to sign up must be valid,
since it is used for the confirmation and activation of the newly cre-
ated account.

From this data it is not possible for us, or anyone else getting in
hold of the database, to identify a specific user, as long as the user-
name (over the contents of which we have little control) does not
reveal too much detailed information. And as our implementation
does not store any IP addresses associated with the users, it is also
impossible to determine which hosts are running which software,
and from there try to launch an attack against a specific host. What
can be traced however, is every user’s submitted rating, comment
and answers for each software he or she has ever rated, as well as
each user’s submitted remark (positive for a good, clear and useful
comment or negative for a coloured, non-sense or meaningless
comment) for every comment he or she has ever rated. But as men-
tioned previously, it is impossible to directly or indirectly associate
this data with a particular host, but only to a username, hashed
password, hashed e-mail address and two timestamps, which does
not put the user at any actual risk from using this software.

Software ratings are calculated at fixed points in time (currently
once in every 24-hour period). During this work users’ trust factors
are taken into consideration when calculating the final score for a
particular software. In addition to these software ratings the proof-
of-concept tool also calculates specific software vendor ratings.
System Design 117

Preventing Privacy-Invasive Software using Online Reputations
This is done by simply calculating the average score of all software
belonging to the particular vendor.

As a protection mechanism, the reputation system has implemented
a growth limitation on users’ trust factors, by setting the maximum
growth per week to 5 units. Hence, you can reach a maximum trust
factor of 5 the first week you are a member, 10 the second week,
and so on. Thereby preventing any user from gaining a high trust
factor and a high influence without proving themselves worthy of it
over a relatively long period of time. The second limitation of the
trust factor is a minimum level of 1 (which is also the rating for new
users), and a maximum of 100.

7.3.3 Database Design

Each software represented in the database will hold a set of infor-
mation that is linked directly to the executable file. The most impor-
tant information is the unique software ID number which is
generated by utilizing a hash algorithm over the file content. Since
this ID is a calculated out of the file data (its program instructions)
it is also directly connected to the software behaviour. This means
that it is impossible to change the software behaviour without also
changing the software ID. In other words, it is impossible to alter
the programs behaviour and still keep the ratings associated with
the software in the database, which is an important property for a
software reputation system. Since the software ID is generated
through by a hash algorithm (e.g. SHA-1) the risk of two different
files having identical fingerprints is virtually non-existent. In addi-
tion to user ratings and comments the following information is
stored for each software in the database:

• ID of software executable e.g., a generated SHA-256 digest.
• File name of the software executable.
• File size of the software executable.
• Company name of the software company that produced the

software executable.
• Software version number.

Information about both the company name and file version is
dependant on the software developer to put these values into the
program file, which unfortunately is not always true. The rest of the
118 System Design

Preventing Privacy-Invasive Software using Online Reputations
data is meta-data that always can be retrieved once the complete file
is in ones possession.

Since hash functions are used, the software ID will be different
even between files with small modifications, in effect, two different
versions of the same program will end up having different finger-
prints. This also means they will be considered as separate software
executables by the reputation system server, and as such their votes
and ratings will be separated from each other. Although a drawback
with this approach is that there will be many different database
entries for slightly different versions of the same program, this may
in fact be beneficial to the user. For example, one version of an
application may be well known to cause degraded performance, dis-
play banners, and so on, while in the next version, the developers
have fixed the performance issues and decided to use other means
to finance their work, and thus the contents of the reputation sys-
tem will correctly present this to the user.

However, questionable software vendors that want to try to circum-
vent the reputation system could try to make each instance of their
software applications differ slightly between each other so that each
one has its own distinct hash value. The countermeasure against
such behaviour would be to instead map all ratings to the software
vendor instead of mapping it to a specific software version from
that vendor. To fight that countermeasure some vendors might try
to remove their company name from the binary files. If this should
happen it could be used as a signal for PIS since legitimate software
vendors label their products with their company information [6].

Furthermore, it would be possible for the system to provide users
with valuable information about the vendor of a specific software
by calculating the mean value over all software ratings the company
in question has received. Giving the user an indication of how well
the software developed by this company has previously fared in the
reputation system. That way, the user may choose to base his deci-
sion on ratings and comments given not only on the current soft-
ware executable, but also on the derived total rating of the software
developing company.
System Design 119

Preventing Privacy-Invasive Software using Online Reputations
7.4 Discussion

In this section we will discuss what impact the introduction of a
software reputation system would have on privacy-invasive soft-
ware. We will also bring up some issues with the proof-of-concept
implementation together with improvement suggestions. In the end
we make a comparison between existing countermeasures against
PIS and the software reputation system.

7.4.1 System Impact

Offering users mechanisms that enhance informed decisions
regarding software installation increase the liability of the user. In a
way, these mechanisms transfer some of the responsibility con-
cerned with the protection against PIS to the users themselves. We
believe this is a necessary consequence for new protection mecha-
nisms that respect users’ own personal needs and preferences. As
users are being confronted with descriptions about behaviours and
consequences for PIS, they are also assumed to assimilate and use
this information in a mature and reasonable way. Based on the rep-
utation system, it would be up to the users themselves to decide on
whether or not to allow certain software to enter their system.

Table 7.2 Difference between legitimate software and malware with respect
to user’s informed consent and negative user consequences.

Computer users today face similar difficulties when evaluating soft-
ware as consumers did a hundred years ago when evaluating food
products. In the nineteenth century food industry, distribution of
snake-oil product flourished [35]. These products claimed to do
one thing, for example to grow hair, while they instead made unwit-
ting consumer addicted to habit-forming substances like cocaine
and alcohol. In 1906 the Pure Food and Drug Act was passed by
the United States Congress, allowing any manufacturer not comply-
ing with the rules to be punished according to the law [20]. As a
consequence the manufacturers followed these rules, allowing con-
sumers to trust the information on the food container to be cor-
120 Discussion

Preventing Privacy-Invasive Software using Online Reputations
rect. Further allowing them to make informed decisions on whether
they should consume a product or not, based on individual prefer-
ences such as nutritiousness, degree of fat or sugar, price, or aller-
gies. As long as the food does not include poisonous substances or
use deceptive descriptions it is up to the consumer to make the final
decision. Although the distribution of physical snake-oil products
was mitigated in 1906, its digital counterpart continues to thrive
under the buoyant concept of spyware. An important distinction
between food products and software is that the former one relies
on physical factories and companies with employed personnel,
which software does not. It is possible for anyone with the pro-
gramming skills to produce software which then is spread globally
over the Internet. Since users do not always have the option to
relate the software to a physical manufacturer we believe it is impor-
tant for them to instead be able to use other users’ previous knowl-
edge about the product in question, offered to them by a software
reputation system.

It should be noted that a reputation system against PIS tightly affect
the PIS classification in Table 7.1. The introduction of this type of
user-oriented countermeasure would transform the classification of
PIS as shown in Table 7.2. As computer users are given a tool to
make informed decisions regarding the behaviour and implications
of software, it is possible to apply a sharp boundary based on user
consent between all software in the PIS classification. Using the
added knowledge provided by the reputation system would render
in that all PIS that previously have suffered from a medium user
consent level, now instead would be transformed into either a high
consent level (i.e. legitimate software) or a low consent level (i.e.
malware). In other words, all software with medium user consent,
i.e. spyware, is transformed into either legitimate software or mal-
ware in the classification. Since anti-malware tools handle all mali-
cious and deceitful software, the information about the rest of the
software could be trusted to be correct, i.e. any software using
deceitful methods is regarded as malware and are treated as such.
This allows users to rely on the information when reaching trust
decisions regarding software installation on their system. Another
aspect of this type of countermeasure is that no single organization,
company or individual is responsible for the software ratings, since
these are calculated based on all votes submitted by the users. Mak-
ing it hard for dissatisfied spyware vendors to sue the reputation
system owners for defamation.
Discussion 121

Preventing Privacy-Invasive Software using Online Reputations
7.4.2 Improvement Suggestions

One issue that we soon discovered during tests of the proof-of-
concept tool was the question of system stability. As we give the
users the ability to deny the execution of important system compo-
nents, we also handed them the ability to crash the entire system in
a single mouse click. This further enhances the need for a white list
system to ensure proper operating system functionality in order to
avoid inadvertently bringing the operating system down when run-
ning the software client. However, given that the user has the free
choice to block any program, there is no way to guarantee that the
operating system will not be crashed, especially at an initial phase
where the user is learning how to use the software client.

The proposed solution to this problem would be an enhanced white
listing system that could examine the file about to execute, to deter-
mine if it has been digitally signed by a trusted vendor e.g., Micro-
soft or Adobe. In case the certificate is present and valid, the file is
automatically allowed to proceed with the execution. It would also
be possible to implement a signature handling interface in the repu-
tation system client that allows the user to white list and blacklist
different companies through their digital signatures, which – in turn
– could considerably lower the need for user interaction. In that
regard the proposed functionality would be somewhat similar to the
capabilities of Microsoft’s Restricted Software Policies [23].

The introduction of an enhanced white listing system with signature
verification capabilities would provide an important building block
for a software policy manager. By using the information available in
the reputation system it would be possible for corporations or indi-
vidual users to set up policies for what software is allowed to exe-
cute on their computers. Such policies could for instance take into
account whether the software has been signed by a trusted vendor,
the software and vendor rating, or any specific behaviour reported
for the software e.g., if it show pop-up advertisements or include an
incomplete removal routine. This would allow system owners to
define policies for what software is allowed to install and run on
their computers e.g., by specifying that any software from trusted
vendors should be allowed, while other software only is allowed if it
has a rating over 7.5/10 and does not show any advertisements. A
solution like this implies that the reputation system also includes a
preference module that holds the users’ software preferences that
should be enforced.
122 Discussion

Preventing Privacy-Invasive Software using Online Reputations
Another improvement suggestion involves allowing for instance
organisations or groups of technically skilled individuals to publish
their software ratings and other feedback within the reputation sys-
tem. This information is then available for any other users of the
reputation system. Allowing computer users to subscribe to infor-
mation from organisations or groups that they find trustworthy, i.e.
not having to worry about unskilled users that might negatively
influence the information. The subscribed information could of
course also be used in parallel with the other software feedback
which is based on all reputation system members’ votes.

7.4.3 Comparison with Existing Countermeasures

One major difference between traditional anti-spyware software
and the reputation system based solution we propose is that in the
latter we are able to gather more complete and useful information
regarding the behaviour of software. Instead of a black and white
world where an executable is branded as either a virus or not, we
are able to touch the previously mentioned greyzone in between.
We gather and present information about software that is important
and useful to the users, and hard to find. For instance, although an
application may not be classified as a virus or spyware, users may
think twice about running it if they are informed that it displays
pop-up ads, registers itself as a start-up program and does not pro-
vide a functioning uninstall option. This kind of discouraging infor-
mation will not be provided by the vendor of the application and
can only be received from users who have experienced it first-hand
and are willing to share their experiences to help others.

Currently available countermeasures against PIS, such as anti-spy-
ware and anti-virus applications, have the benefit of specialized, up
to date and reliable information databases that are updated on a
regular basis. The drawback is a vendor database that must be
updated locally on the client, as well as traversed whenever a file is
analysed. Furthermore, the organization behind the countermeas-
ure must investigate every software before being able to offer a pro-
tection against it. The relevance and reliability of the information
provided by the anti-spyware and anti-virus software may be more
reliable than that of users of a reputation system. However, the rep-
utation system is able to cover more details that may be useful to
the user, such as if the software displays ads, alter system settings,
and so on, and with a sufficiently large user base, the sheer amount
of data gathered helps compensate for the afore mentioned reliabil-
Discussion 123

Preventing Privacy-Invasive Software using Online Reputations
ity issue. Also, by using a more flexible classification, where the user
is provided the information about the software and is allowed to
make an informed decision about allowing it to run or not, one is
able to avoid the high contrast environment of anti-virus software
and similar, where an executable is either strictly malicious or it is
totally safe.

Different protection systems (e.g., anti-virus or anti-spyware tools)
are built on different approaches, and the technology as well as
pricing varies. In truth, it would be foolish to believe that either one
approach would be a perfect solution to the problem at hand, and
the view of the problem itself may differ. However, when looking at
the development of the computer world, the Internet, and the on-
going arms race in virus and spyware development, it is obvious
that more than just one kind of protection is needed, and that there
is no silver bullet. At the same time, we firmly believe that a special-
ized reputation system such as the one we propose would be a use-
ful way to be able to penetrate the gray zone of half-legitimate
software and to better inform users of what to expect from the
software they are about to execute. It can be seen as trying to share
and transfer knowledge between users, improving their level of
expertise, instead of creating an expert system that handles all the
decisions for the users, being ultimately responsible for the failure
when the protection fails.

7.4.4 Conclusions and Future Work

This paper explores how to construct a specialized reputation sys-
tem to be used for blocking privacy-invasive software. The funda-
mental idea is that computer users could be strong together if they
collaborate to mitigate the effects from privacy-invasive software.
The co-operation is based on that each users rate the software that
they use most frequently. These aggregated ratings from the users
are then transformed into software reputations that are available for
all participants in the system upon installation of new software. Var-
ious methods to address incorrect information in the system, be it
intentional or unintentional, are proposed without deteriorating
users’ privacy.

To further explore the possibilities, we designed and implemented a
client and server-based proof-of-concept tool, which currently
include well over 2000 rated software programs. Each time a user is
about to execute a program, the client pauses the execution, down-
124 Discussion

Preventing Privacy-Invasive Software using Online Reputations
loads information and rating about the particular software from the
server, and asks the user whether he or she would like to allow or
deny the software to run. We further propose how this system
could be enhanced by adding functionality that allows users to pro-
duce software policies that are automatically enforced by the client
program. Such policies could take into account whether the soft-
ware in question has received a rating above a certain value, if it is
digitally signed by a trusted vendor, or if it is free from a set of pre-
defined unwanted behaviours.

As future work we will investigate how and to what extent this
proof-of-concept tool affects computer users’ decisions when
installing software. In addition to this we will also examine the pos-
sibility of using runtime software analysis to automatically collect
information about whether software has some unwanted behaviour,
for instance if it shows advertisements or includes an incomplete
uninstallation function [24]. The results from such investigations
could then be inserted into the reputation system as hard evidence
on the behaviour for that specific software. Furthermore, it would
be interesting to investigate the use of alternative, and more reliable,
security tokens than e-mail addresses when creating new accounts.
Maybe also relying on the IP address and computational penalties
through variable hash guessing [3]. Finally, it would be interesting to
investigate how pseudonyms could be used as a way to protect user
privacy and anonymity, e.g. through the use of idemix [17].

7.5 References

[1] Ames, W.: Understanding spyware: risk and response. IEEE IT
Professional 6(5) (2004)

[2] Arnett, K.P.: Busting the Ghost in the Machine. Communications
of the ACM 48(8) (2005)

[3] Aura, T.: DOS-Resistant Authentication with Client Puzzles. LNCS,
vol. 2133. Springer, Heidelberg (2000)

[4] Boldt, M.: Privacy-Invasive Software – Exploring Effects and
Countermeasures, Licentiate Thesis Series No. 2007:01, School of
Engineering, Blekinge Institute of Technology, Sweden (2007)

[5] Boldt, M., Carlsson, B.: Privacy-Invasive Software and Preventive
Mechanisms. In: The proceedings of the IEEE International Con-
ference on Systems and Networks Communications (ICSNC06),
Papeete Tahiti, IEEE Computer Society Press, Los Alamitos (2006)
References 125

Preventing Privacy-Invasive Software using Online Reputations
[6] Boldt, M., Carlsson, B., Martinsson, R.: Software Vulnerability
Assessment – Version Extraction and Verification. In: The pro-
ceedings of the Second International Conference on Software Engi-
neering Advances (ICSEA’07), Cap Esterel France (2007)

[7] Bruce, J.: Defining Rules for Acceptable Adware. In: The Proceed-
ings of the 15th Virus Bulletin Conference. Dublin Ireland (2005)

[8] Christodorescu, M., Jha, S.: Testing Malware Detectors. In: The
proceedings of the ACM International Symposium on Software
Testing and Analysis (2004)

[9] Dellarocas, C.: Immunizing Online Reputation Reporting Systems
Against Unfair Ratings and Discriminatory Behaviour. In: The pro-
ceedings of the 2nd ACM Conference on Electronic Commerce
(2000)

[10] Douceur, J.: The Sybil Attack. In: The proceedings for the 1st Inter-
national Workshop on Peer-to-Peer Systems (2002)

[11] Fischer-Hübner, S.: IT-Security and Privacy: Design and Use of Pri-
vacy-Enhancing Security Mechanisms. Springer, Heidelberg (2001)

[12] Flixster, http://www.flixster.com, 2010-03-11

[13] Good, N., et al.: Stopping Spyware at the Gate: A User Study of Pri-
vacy, Notice and Spyware. In: The proceedings of the Symposium
on Usable Privacy and Security, Pittsburgh, USA (2005)

[14] Good, N., et al.: User Choices and Regret: Understanding Users’
Decision Process about Consentually Acquired Spyware. I/S: A
Journal of Law and Policy for the Information Society 2(2) (2006)

[15] Greenfield, A.: Everyware – The Dawning Age of Ubiquitous
Computing. New Riders, Berkeley CA (2006)

[16] Hooking the native API and controlling process creation on a sys-
tem-wide basis, http://www.codeproject.com/system/soviet
_protector.asp, 2010-03-11

[17] Idemix: pseudonymity for e-transactions, http://
www.zurich.ibm.com/security/idemix/, 2010-03-11

[18] Internet Movie Database, http://www.imdb.com, 2010-03-11

[19] Kirda, E., Kruegel, C., Banks, G., Vigna, G., Kemmerer, R.A.:
Behavior-Based Spyware Detection. In: The proceedings of the
15th USENIX Security Symposium (2006)

[20] Landmark Document in American History, Pure Food and Drug
Act of 1906, http://coursesa.matrix.msu.edu/~hst203/docu-
ments/pure.html, 2010-03-11
126 References

Preventing Privacy-Invasive Software using Online Reputations
[21] Larsson, T., Lindén, N.: Blocking Privacy-Invasive Software Using a
Specialized Reputation System, Masters Thesis No. 2006:14, School
of Engineering, Blekinge Institute of Technology, Sweden (2006)

[22] LavaSoft Ad-Aware, http://www.lavasoftusa.com/software/ada-
ware, 2010-03-11

[23] Microsoft Technet, Using Software Restriction Policies to Protect
Against Unauthorized Software (May 13, 2007)

[24] Moshchuk, T., Bragin, S.D., Gribble, H.M.: A Crawler-based Study
of Spyware on the Web. In: The proceedings of the Network and
Distributed System Security Symposium Conference Proceedings,
Virginia USA (2006)

[25] Norton Internet Security, http://www.symantec.se/region/se/
product/nis index.html, 2010-03-11

[26] Pricerunner, http://www.pricerunner.com, 2010-03-11

[27] Resnick, P., Kuwabara, K., Zeckhauser, R., Friedman, E.: Reputa-
tion Systems. Communications of the ACM 42(12) (2000)

[28] Rosenberg, R.S.: The Social Impact of Computers, 3rd Ed., San
Diego CA. Elsevier Academic Press, Amsterdam (2004)

[29] See you later anti-Gators, CNET News.com, http://
news.com.com/2100-1032 3-5095051.html, 2010-03-11

[30] Schultz, K.: Sticking It to Spyware. InfoWorld 27(38) (2005)

[31] Sipior, J.C.: A United States Perspective on the Ethical and Legal
Issues of Spyware. In: Proceedings of 7th International Conference
on Electronic Commerce, Xi’an China (2005)

[32] Spyaudit, http://www.earthlink.net/spyaudit/press/, 2010-03-11

[33] Spybot -Search & Destroy, http://www.safer networking.org, 2010-
03-11

[34] “Spyware”: Research, Testing, Legislation, and Suits, http://
www.benedelman.org/spyware/, 2010-03-11

[35] Technology Review, The Pure Software Act of 2006, http://
www.simson.net/clips/2004/2004.TR.04.PureSoftware.pdf, 2010-
03-11

[36] Tor: anonymity online, http://tor.eff.org, 2010-03-11

[37] Webroot Software, —.: Internet Spyware and statistics about infec-
tion rate, http://www.webroot.com/resources/stateofspyware/
excerpt.html, 2010-03-11
References 127

Preventing Privacy-Invasive Software using Online Reputations
[38] Zacharia, G., Moukas, A., Maes, P.: Collaborative Reputation Mech-
anisms in Electronic Marketplaces. In: the proceedings of the 32nd
Hawaii International Conference on System Sciences (1999)
128 References

P U B L I C A T I O N

5
Learning to Detect Spyware using

End User License Agreements

International Journal on Knowledge and Information Systems (KAIS), 2010

Niklas Lavesson, Martin Boldt, Paul Davidsson and Andreas Jacobsson

The amount of software that hosts spyware has increased dramati-
cally. To avoid legal repercussions the vendors need to inform users
about inclusion of spyware via End User License Agreements
(EULAs) during the installation of an application. However, this
information is intentionally written in a way that is hard for users to
comprehend. We investigate how to automatically discriminate
between legitimate software and spyware associated software by
mining EULAs. For this purpose, we compile a data set consisting
of 996 EULAs out of which 9.6% are associated to spyware. We
compare the performance of 17 learning algorithms with that of a
baseline algorithm on two data sets based on a bag-of-words and a
meta data model. The majority of learning algorithms significantly
outperform the baseline regardless of which data representation is
used. However, a non-parametric test indicates that bag-of-words is
more suitable than the meta model. Our conclusion is that auto-
matic EULA classification can be applied to assist users in making
informed decisions about whether to install an application without
having read the EULA. We therefore outline the design of a spy-
ware prevention tool and suggest how to select suitable learning
129

Learning to Detect Spyware using End User License Agreements
algorithms for the tool by using a multi-criteria evaluation
approach.

8.1 Introduction

The amount of spyware has increased dramatically due to the high
value for marketing companies of the information that is collected.
Spyware is designed to collect user information for marketing cam-
paigns without the informed consent of the user. This type of soft-
ware is commonly spread by bundling it with popular applications
available for free download. A spyware application is typically diffi-
cult to remove once it has been installed on a computer system and
it can seriously degrade system performance and compromise the
privacy of the user [2, 5, 30]. This paper presents a novel approach
based on data mining, aimed at stopping spyware at the door.

From now on we are going to use the terms bad and good to signify
applications that host spyware and legitimate applications, respec-
tively. Distributors of bad software usually try to disguise it as good
in an attempt to reach as many users as possible. However, to avoid
legal repercussions these distributors are required to mention in the
End User License Agreement (EULA) that spyware will indeed be
installed. Yet, this information is given in a way most users find dif-
ficult to understand. Even EULAs for legitimate software can be
hard to comprehend due to their length and their extensive use of
legal terminology [18].

Consequently, we recognize the need for an efficient method for
helping users to distinguish between good and bad software during
the installation process. If spyware is detected through such a
method, it could assist users in keeping their computers clean from
bad software by warning them about the application they are about
to install.

8.1.1 Background

Definitions of spyware exist on two different abstraction levels,
were the low level definition focuses on the concept of information
theft while the high level definition also includes other negative
consequences associated with spyware. At the low level, spyware
can be defined by using Steve Gibson’s original definition from
early 20001:
130 Introduction

Learning to Detect Spyware using End User License Agreements
“Spyware is any software which employs a user’s Internet connection in the
background (the so called backchannel) without their knowledge or explicit
permission.”

This definition was valid in the beginning of the spyware evolution,
but as the spyware concept evolved it attracted new kinds of behav-
iors. From originally just gathering private information spyware
programs now also began to modify network traffic, such as com-
petitors’ advertisements, and degrading user experience by altering
system configurations, such as browser start pages. As these behav-
iours grew both in number and in diversity, the term spyware
became hollowed out, which in turn resulted in that a great number
of synonyms were employed, e.g., thiefware, trackware, evilware,
scumware, and badware.

Due to this development, the Anti-Spyware Coalition, which con-
sists of leading parties from both academia and industry, defined
spyware using a wider approach that incorporated all negative con-
sequences associated with such software2. Our view of spyware also
coincides with this definition:

“Technologies deployed without appropriate user consent and/or implemented in
ways that impair user control over:
– Material changes that affect their user experience, privacy, or system security;
– Use of their system resources, including what programs are installed on their
computers; and/or
– Collection, use, and distribution of their personal or other sensitive informa-
tion.”

To further clarify the concept of spyware, Boldt [3] defined a cate-
gorization of various types of spyware programs that relied on a
three-by-three matrix where the two axis represent the level of user
consent and the amount of negative consequences associated with
each software type. Given these two dimensions Boldt provides a
more structured view of spyware under the term privacy-invasive
software. The increase of spyware has resulted in vast numbers of
users experiencing loss of control over personal information and
decreased computer performance [34]. Anti-virus techniques are
used for removing malicious software (such as: computer viruses
and worms). Malicious software is undoubtedly illegal in most

1. Gibson Research Corporation, www.grc.com/optout.htm
2. Anti-Spyware Coalition, http://www.antispywarecoalition.org
Introduction 131

Learning to Detect Spyware using End User License Agreements
countries but this is not necessarily true for spyware since it resides
in a gray zone between what is considered to be legal and illegal.

Thus, the techniques used by spyware can be interpreted as either
legal or illegal depending on who is asked; what one individual
regards as spyware could be considered a legitimate business appli-
cation by another.

McFedries [24] explores the purposes behind spyware as well as its
commercial impact. The main conclusion is that spyware is a very
good means to gain revenue for online marketing companies, since
it provides them with personal user information that can be
exploited in order to deliver targeted advertisements.

Zhang [36] makes visible the urgent need for user education to raise
awareness about the spyware threats and the methods available for
addressing these threats. This is important, Zhang argues, since
most computer users cannot keep up with the rapid development
of new spyware that affect their computer systems, personal data,
and ultimately their privacy.

Moshchuk et al. [26] introduce methods for measuring spyware
activity on the Internet. In 2005, they performed an automatic anal-
ysis of 18 million Internet addresses (URLs) for executable files.
Out of the 21,200 applications an astonishing 13.4% were identified
as spyware.

Fox presents a report on how user behaviour is affected by the
occurrence of spyware in home and work computers3 based on per-
forming a telephone interview survey, which featured a nationally
representative sample of 2,001 adults living in continental United
States telephone households. The report states that “only about one in
ten internet users say the current practice of clicking through a user agreement or
disclaimer is adequate consent to install adware on a person’s computer”.
Townsend elaborates on how spyware infected applications may
violate corporate security policies and procedures4, explaining that
spyware could circumvent existing security mechanisms used by the

3. Fox, S.: Spyware – the threat of unwanted software programs is chang-
ing the way people use the Internet, http://www.pewinternet.org/
pdfs/PIP_Spyware_Report_July_05.pdf (2005)

4. Townsend, K: Spyware, Adware, and Peer-to-Peer Networks – The
Hidden Threat to Corporate Security, Technical White Paper, Pest
Patrol (2003)
132 Introduction

Learning to Detect Spyware using End User License Agreements
corporations, thus enabling the extraction of sensitive and/or clas-
sified information. Moreover, Good et al. [18] point out the fact
that users agree to accept spyware as part of a software bundle as a
cost associated with gaining the functionality they desire and dem-
onstrate that interface design can be a significant factor in eliciting
informed consent to software installation.

8.1.2 Related Work

In a pilot study [23], we investigated whether it was possible to take
advantage of the fact that the installation of bad software is men-
tioned in the EULA. We addressed this problem by applying super-
vised learning algorithms to classify EULAs of both good and bad
applications in order to detect if the associated software hosts spy-
ware. The results indicate that the approach is feasible, however the
amount of data was scarce (the data set featured 100 EULAs in
total). EULA classification, as a problem, is quite analogous to that
of spam classification, i.e., to distinguish between unsolicited com-
mercial e-mails (spam) and legitimate e-mails. Much work has been
done in the area of spam classification, e.g., using different learning
algorithms, such as: rule learners, support vector machines,
instance-based learners, decision trees, and stacking [1, 7, 9, 13, 28].
More recently, Koprinska et al. [21] investigate the performance of
the random forest algorithm for the same type of problem, claiming
that it outperforms some of the earlier mentioned algorithms on
several problems. Kang et al. [19] also study the spam classification
problem and applies an unsupervised feature selection algorithm
and clustering to classify unlabelled documents. The results from
the analysis can be interpreted as follows: the absence of a certain
term is a characteristic shared across the e-mails of a given category;
whereas the presence of certain keywords shows a larger variability
across e-mails of a given category.

8.1.3 Scope and Aim

The aim of this paper is to further investigate EULA classification
as a means for categorizing software as good (legitimate) or bad
(associated with spyware). For this purpose, we have collected a set
of 996 EULAs (out of which 9.6% are associated with software that
includes spyware). We will investigate different ways to represent
these documents in order to be able to use supervised learning as an
approach to solve the EULA classification problem.
Introduction 133

Learning to Detect Spyware using End User License Agreements
8.1.4 Outline

The remainder of this paper is organized as follows: we begin by
presenting the EULA classification problem in Section 2. Next, we
describe the data collection process and the representation of data
in Section 3. We then describe the experiments in Section 4. This is
followed by a presentation of the results in Section 5. In Section 6,
we analyse the results and outline the design of a spyware preven-
tion tool based on EULA classification. Finally, we draw conclu-
sions and give some pointers to future work in the last section.

8.2 EULA Classification

We want to investigate whether or not it is possible to classify soft-
ware applications as legitimate (good) or associated with spyware
(bad) based on their EULA. Intuitively, we can look upon this prob-
lem as a text classification (TC) task, for which there are two main
approaches; knowledge engineering and machine learning.

Knowledge engineering systems have been known to often outper-
form machine learning systems on the TC task, although according
to Feldman and Sanger [16] the gap in performance steadily shrinks.
The main drawback of the former approach is the amount of skilled
labour and expert knowledge required to generate and maintain the
knowledge-encoding rules.

In contrast, the latter approach requires only a set of labelled (classi-
fied) training instances, which are less costly to produce. As a con-
sequence, most of the recent work on categorization is
concentrated on the machine learning approach and our study is no
exception. We will now present the TC task more formally with
regard to EULA classification.

Suppose that we have a collection, I, of EULAs, each labelled as
either good or bad, depending on whether or not it is associated with
legitimate software or spyware. The set of all possible classes can
thus be defined as C = {good, bad}. We would like to approximate
the unknown target function, F : I × C = {1,0}. The value of f(i,c) is
equal to one if the EULA, i, belongs to the class c or zero otherwise.

It is now possible to define a classifier as an approximation func-
tion, M : I × C = {1, 0}. The objective of the learning task is to gen-
134 EULA Classification

Learning to Detect Spyware using End User License Agreements
erate a classifier that produces results as close to that of F as
possible.

8.2.1 Supervised Learning

The machine learning approach to automatically build a classifier by
learning the properties of the classes from a set of pre-classified
training instances is known as supervised learning.

Most supervised learning algorithms cannot process text docu-
ments in their original form [16], hence they will not be able to
process the EULAs. Consequently, we need to preprocess the
EULAs by converting them to a manageable representation.

8.2.2 Representation

The choice of representation depends on what one regards as
meaningful units of text and the meaningful natural language rules
for combining these units, i.e., the problem of lexical and composi-
tional semantics, respectively. The problem of compositional
semantics has often been disregarded in TC [29], however, excep-
tions exist, see for example Denoyer et al. [12]. One approach that
addresses the problem of lexical semantics is to represent each
EULA as a feature vector. We now describe two quite different fea-
ture vector representations of EULAs.

8.2.2.1 The Bag-of-Words Model

The bag-of-words model is a common approach to represent docu-
ments as feature vectors [16]. In fact, it has been found in several
experiments that more sophisticated representations do not yield
any significant effectiveness [29], although there are some recent
approaches that have shown promising results. For example, Wang
et al. [32] automatically constructed a thesaurus of concepts from
Wikipedia and introduced a unified framework to expand the bag-
of-words representation with semantic relations. More research is
needed in order to establish whether this type of expansion really
increases performance significantly over the traditional model.

In the bag-of-words model, each word in a document is used as a
feature. Thus, a complete document is represented by a vector with
one feature for each word that occurs in the document. A collection
EULA Classification 135

Learning to Detect Spyware using End User License Agreements
of documents is then represented by a set of feature vectors and the
dimension of the feature space is equal to the number of different
words in all of the documents. Some studies have used phrases,
rather than individual words, as terms. However, their experimental
results have not been as encouraging as those of studies that use
words as terms [29]. More recently, Metzler and Croft [25] review
several attempts to go beyond the bag-of-words representation but
few show consistent improvements in retrieval effectiveness.

There are basically two methods for associating weights to features.
The simplest is the binary method, which either assigns a value of
one if the word is present in the document or a value of zero other-
wise. The binary method can be used if the chosen learning algo-
rithm can only handle nominal attributes. However, what appears to
be a more common method is to take the frequency of the word
into account. We adopt this method and calculate frequencies using
the standard Term Frequency Inverse Document Frequency (TF
IDF) scheme [16]. The TF IDF function embodies the intuitions
that: the more often a term occurs in a document, the more it is
representative of its content, and the more documents a term
occurs in, the less discriminating it is [29]. There exist several ver-
sions of TF IDF that differ from each other in terms of logarithms,
normalization or other factors.

We use Weka’s implemented version of TF IDF. Thus, given a word,
w, in a EULA, d, the TF IDF weight is calculated as follows:

where N is the total number of EULAs, DocFreq is the number of
EULAs containing the word and TermFreq represents the frequency
of the word in the particular EULA.

8.2.2.2 The Meta EULA Model

FaceTime Security Labs5 has created the EULA Analyzer6, which is
a web-based tool, for assisting people in better understanding the
EULAs of software downloadable on the Internet. This tool

5. http://www.facetime.com
6. http://www.spywareguide.com/analyze

weight w d(,) TermFreq w d(,) N
DocFreq w()
--------------------------------- 1()log⋅=
136 EULA Classification

Learning to Detect Spyware using End User License Agreements
requires a user to copy the EULA from the pop-up window that
appears when a software application is to be installed on a compu-
ter. The EULA is analyzed and the results are given as scores
according to 10 different metrics. The user is then able to consider
the metric scores to make a decision about whether or not to pro-
ceed with the software installation. However, EULA Analyzer does
not provide a classification of the analyzed EULAs, instead this task
is left to the user. Since EULA Analyzer is a proprietary service, its
design and inner workings are not publicly available.

Since the objective of EULA Analyzer is to assist people in better
understanding EULAs by supplying meta models of the EULAs,
we hypothesize that this meta EULA model can be used as an alter-
native means for representing the EULAs as feature vectors.

EULA Analyzer calculates the number of flagged, or suspicious,
sentences. In addition, it calculates some basic statistics, such as: the
number of characters, words, sentences and the average number of
words per sentence. EULA Analyzer also performs more advanced
calculations of readability metrics. For example, Flesch score and
Gunning-Fog index use word and sentence lengths to indicate how
difficult it is to comprehend a certain text, where low scores repre-
sent difficult texts [17]. The Flesch grade is calculated based on the
same measures but instead gives the number of years of education
that is needed to understand the text [17]. Automated readability
and Coleman-Liau are two other readability tests that indicate the
required level of education needed to comprehend a text [10, 31].
Both of these tests differ from the earlier mentioned metrics by
relying on a factor of characters per word instead of syllabus per
word.

Our approach is to use the aforementioned EULA Analyzer met-
rics as attributes for a meta EULA data set. Thus, each EULA is
described as a vector of 10 values and it has the same class label as
the corresponding bag-of-words instance.

8.3 Data Sets

We now describe the data collection and the representation of the
data. The collection, and labelling, of EULAs can be carried out in
several ways. Our primary objective was to collect a large set of
Data Sets 137

Learning to Detect Spyware using End User License Agreements
EULAs and at the same time allow for an automatic or semi-auto-
matic labelling of EULA instances.

8.3.1 Data Collection

One of the contributions of this study is the collection of a large
data set of labelled EULAs. The raw data set and different repre-
sentations are available on the web7. We strived to collect approxi-
mately 1,000 EULAs (compared to 100 as featured in the
aforementioned pilot study). The prerequisite was that each applica-
tion should be easily downloaded from the Internet and present the
user with a EULA that can be copied and pasted as ASCII text. We
collected the good instances from Download.com8 and the bad
instances from links obtained from SpywareGuide.com9. The soft-
ware programs in the SpywareGuide.com database are divided into
nine categories; adware, data-miners, dialers, loyaltyware, miscella-
neous security, password crackers, trojans, viruses, and worms.
None of the virus or worm programs include EULAs, hence the
programs from these categories were omitted. We chose to label all
programs from the remaining seven categories as spyware since we
target the general concept of spyware. Additionally, we wanted to
avoid multiple spyware classes (since the total number of available
spyware programs was small) in order to maximize the amount of
training data for each category. Thus, our collection consists of
EULAs from two categories; legitimate (good) and spyware (bad).
Based on the number of applications downloadable from both of
these locations we hypothesized that a ratio of 1:10 would serve as a
sufficient model of the real world, i.e., that spyware accounts for
approximately 10% of all freely available applications. This is not
too far from the figure reported by Moshchuk et al. [26] (13.4%).
Thus, we aimed to collect 900 good and 100 bad EULAs). The col-
lection was systematically performed:

–for the good EULAs, the first 900 applications were downloaded,
–for the bad EULAs, every working web link was followed.

In both cases, we omitted applications that did not have a EULA.
Additionally, we also omitted applications for which the EULA
could not be extracted, e.g., the text could not be copied as ASCII

7. http://www.bth.se/com/nla.nsf/sidor/resources
8. http://www.download.com
9. http://www.spywareguide.com
138 Data Sets

Learning to Detect Spyware using End User License Agreements
text. Even though this only applies to 0.5% of the downloaded soft-
ware we note that this (dys)function could possibly be used by the
spyware vendors to prevent EULA analysis. For each software
application, we collected the associated EULA together with basic
information such as: software title, version, and vendor. The result
is a collection featuring 900 good and 96 bad instances of real-
world EULAs.

8.3.2 Data Representation

The raw data set, which consists of 996 text documents, must be
converted to a manageable format. We perform the conversion into
two different feature vector representations, as described in Section
2.2. We now describe how the two data sets are generated from the
raw data set and highlight some characteristics for each of the gen-
erated sets of data.

8.3.2.3 Bag-of-Words Data Set

The total number of words, contained in all of the EULAs, is close
to 10,000 but experimental evidence suggests that this number can
be reduced to around 10% without reducing classifier performance
[16]. In order to reduce the number of features we convert all char-
acters to lower case and consider only alphabetic tokens. Further-
more, we remove stop words and words that occur only once
(hapax legomena), and store a maximum of 1,000 words per class.
Finally, we apply Weka’s iterated Lovins stemmer to be able to store
only the stems of the remaining words. The result is a data set with
1,269 numeric features and a nominal target feature that indicates if
the EULA is bad or good.

Table 8.1 EULA Analyzer results for the complete data set.
Data Sets 139

Learning to Detect Spyware using End User License Agreements
8.3.2.4 Meta EULA Data Set

The processing of EULAs through EULA Analyzer is carried out
by custom-made Unix shell scripts and Apple Automator programs.
This setup allows us to automatically fetch the text from each of the
996 EULAs, paste it into the text field on the EULA Analyzer web-
site, send the text for analysis, and finally retrieve the scores of the
10 metrics that represent the results of the analysis. Using the
results according to these metrics, for each EULA, we generate a
meta EULA data set and convert it to the Weka ARFF format.
Table 8.1 shows the minimum, maximum, and mean value for each
EULA Analyzer metric. As can be seen in the, the Flesch score can
be negative. Unfortunately, some algorithms cannot handle negative
numeric attributes. For example, Naive Bayes Multinomial, which
outperformed all other algorithms in the pilot study of EULA clas-
sification, is one such algorithm. Consequently, we opt to remove
the Flesch score attribute from the meta EULA data set to resolve
this issue. For our data set of 996 instances, the number of flagged sen-
tences attribute values range from 0 to 84 but most EULAs are
assigned a value close to zero. In analyzing the distribution of good
and bad EULAs across the range of the flagged sentences attribute,
we observe that this attribute can be used to achieve a linear separa-
tion between a cluster of 25 bad instances and the rest of the
EULAs. Approximately 30 additional bad instances can be isolated
together with a small number of good instances. In total, this
amounts to a separation of approximately 55 bad instances from
the rest of the instances. In this case, there are still 41 bad instances
classified as good. In analyzing the distributions for the remaining
attributes, we do not observe any trivial ways to separate good and
bad instances.

8.4 Experiments

In this section, we discuss the choice of algorithms and algorithm
configurations. In addition, we discuss the metrics we use to evalu-
ate classifier performance and present our experimental approach.

8.4.1 Algorithm Selection and Configuration

We want to determine if it is feasible to apply supervised learning
algorithms to solve the EULA classification problem. In order to
investigate the usefulness of different learning techniques we
140 Experiments

Learning to Detect Spyware using End User License Agreements
include a diverse population of 17 algorithms from different para-
digms, for example: perceptron and kernel functions, instance-
based learners, Bayesian learners, decision tree inducers, meta-learn-
ers, rule inducers, and so forth. We use original Weka 3.5.7 algo-
rithm implementations and, for most algorithms, we use the default
configuration.

Table 8.2 Learning algorithm configurations.

The main emphasis in this study is not to find the optimal configu-
ration for each algorithm, that is, the configuration for which the
algorithm generates the best performing classifiers. Such an objec-
tive would most certainly require extensive parameter tuning.
Instead, this study focuses on investigating if it is possible, in gen-
eral, to distinguish between good and bad EULAs. Consequently,
we do not perform any systematic parameter tuning at all.

We alter the configuration for the following algorithms: the number
of neighbours (k) for IBk is changed in order to distinguish the
algorithm from the 1-nearest neighbour (IB1) algorithm. We use k
= 10 based on standard practice but point out that it is arbitrary.
The k parameter can be optimized for a particular problem by sys-
tematically performing repeated training and testing runs with dif-
ferent k values. We use SMO as a meta classifier for the Stacking
algorithm and include the following algorithms in the ensemble:
Naive Bayes Multinomial, SMO, and VotedPerceptron. These three
algorithms are selected based on their high performance, as
reported in the pilot study. The specification of the key algorithm
Experiments 141

Learning to Detect Spyware using End User License Agreements
configurations is provided in Table 8.2. The Weka default configu-
rations [35] are provided for the sake of reproducibility, hence they
will not be further described.

8.0.1 Evaluation of Classifier Performance

8.0.1.1 Classification Accuracy

We need to select relevant evaluation metrics in order to measure
classifier performance. Traditionally, the accuracy metric (the
number of correct classifications divided by the total number of
classifications) has been widely used. However, several issues have
been raised against the use of this particular metric as the only
means to measure performance [27]. However, when used in con-
junction with other metrics, we believe that accuracy is still a useful
metric to consider.

8.0.1.2 The Areas Under the ROC Curve

In addition to accuracy, we therefore need to select metrics that are
suitable for our particular application. For the purpose of EULA
classification, we argue that the cost of misclassification is different
for the two classes (good and bad). For example, classifying a bad
EULA as good is sometimes far worse than the opposite and this is
particularly true if the classification should be the basis for a deci-
sion support system that should aid the user in making the decision
to install an application or to abort the installation.

If a good EULA is classified as bad, the user might think twice
before installing the associated application and instead will try to
find alternative applications. If, on the other hand, a bad EULA is
classified as good, the user might install an application that contains
spyware, believing that the application is legitimate. This is actually
worse than not using any EULA classification at all, since the user is
under the (false) impression of being informed about the legitimacy
of the application. Consequently, EULA classification represents a
problem in which different types of misclassification errors have
asymmetric costs. This is important to keep in mind if one intends
to develop a EULA-based anti-spyware application. Zhao [37]
reviews this problem in detail and compares two cost-sensitive
learning approaches, instance weighting and post hoc threshold
adjusting. The results indicate that both approaches are suitable, but
for different types of learners. Additionally, the author concludes
142 Experiments

Learning to Detect Spyware using End User License Agreements
that symbolic learners are affected by cost-ratio changes to a larger
extent than methods that produce continuous probability estimates.

In order to address the misclassification cost issue in this study, we
consider four important metrics; true/false positives and true/false
negatives, as documented in Table 8.3. In particular, we will use the
Area under the ROC curve (AUC), which is based on the true posi-
tives rate (TPR) and the false positives rate (FPR) since it does not
depend on equal class distribution or misclassification costs [35].
The calculation of, and motivation for, AUC is described in detail
by Fawcett [15].

Table 8.3 Evaluation metrics.

8.0.0.1 Multi-criteria Evaluation

In addition to the ACC and AUC metrics we will evaluate each algo-
rithm using the Candidate Evaluation Function (CEF) [22]. The
purpose of CEF is to capture application-specific trade-offs by
combining multiple relevant metrics. We shall now demonstrate
how multi-criteria metrics can be used as an approach to trade-off
some of the important aspects of EULA classification. CEF nor-
malizes the metrics in order to get a uniform output domain and it
is also possible to specify explicit weights for each metric to ensure
that application-specific trade-offs can be properly represented.
CEF itself does not dictate which metrics to use, it merely dictates
how metrics are combined. Finally, CEF makes it possible to spec-
ify the acceptable range for each metric, pertaining to a particular
application.

We define mj as a metric with index j from an index set, J, over the
selected set of metrics. Each metric is associated with a weight, wj ,
and an acceptable range, . The lower bound, ,
denotes the least desired acceptable score. Similarly, the upper
bound, , denotes the desired score. Note that, in the original
CEF definition a metric was normalized according to the best and
worst score of that particular metric obtained from the studied set
of classifiers. The current normalization uses the lower and upper

r bj
l bj

u
,= bj

l

bj
u

Experiments 143

Learning to Detect Spyware using End User License Agreements
bound to generate a smooth distribution from 0 (least desired) to 1.
CEF is now defined as specified in Equation 2.

To address the fact that a low FPR is more important than a high
TPR for our particular application, we define an example CEF met-
ric that combines m1 =TPR with r1 = [0.9,1.0] and m2 =FPR with r2

= [0.4, 0.0]. Furthermore, we let w1 = 0.2 and w2 = 0.8 to make m2

four times more important than m1. The weights and ranges are
provided as examples to illustrate how CEF can be used to custom-
ize the evaluation for our application. However, these properties
should be selected by domain experts after careful consideration,
preferably using some reliable systematic approach.

8.0.0.2 Baseline Classifier

We have reviewed two possible data representations that can be
used when applying supervised learning to EULA classification.
Besides the comparison between these two representations, we
need to quantify the utility of the EULA classification approach
compared to the behaviour of an average user. In addition, we need
to find out if it is even possible to discriminate between bad and
good EULAs using the machine learning approach.

Consequently, we argue that it is necessary to compare the perform-
ance of the classifiers (generated from both data sets) to that of a
baseline classifier. We choose to include Weka’s ZeroR classifier for
this purpose. ZeroR classifies instances based on the majority of the
class distribution. For our particular case, this means that ZeroR
will classify all instances as good. Our model of an average user
assumes that the user does not read the EULA but instead contin-
ues with the installation. Thus, the behaviour of this model is equiv-

CEF c D,()
0 : j mj c D(,) 0<()∃

j J
wjmj c D(,)

∈∑ otherwise
⎩
⎪
⎨
⎪
⎧

=

where j J
wj∈∑ 1 and= 2()

mj c D(,)

1 :
mj b–

l
j

b
u
j b–
l
j

-------------- 1>

mj b– l
j

buj b–
l
j

-------------- otherwise

⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

=

144 Experiments

Learning to Detect Spyware using End User License Agreements
alent to that of ZeroR. We use AUC for all statistical comparisons.
There are several rationales for this decision:

• the class distribution is skewed, which suggests that AUC is
more appropriate than accuracy [27],

• the weights and ranges of the CEF metric are provided as exam-
ples and thus there is little sense in using the CEF results for
statistical tests of significance, and

• no learned classifier should have an AUC less than 0.5 [14] and
ZeroR always achieves an AUC score of 0.5, which makes
ZeroR a simple and meaningful baseline if AUC is used.

ZeroR, which has no predictive power, can thus be used as a base-
line to determine if a particular classifier has predictive power, i.e., if
it can discriminate between good and bad EULAs. If, for a certain
data set, at least one classifier is shown to have predictive power we
can also assume more generally that it is possible to discriminate
between bad and good EULAs using that data set.

8.1 Experimental Procedure

Since we have a limited amount of data for training and testing (996
instances), we choose to estimate performance using the average of
ten stratified 10-fold cross-validation tests. We use Weka for all
experiments and train the 17 learning algorithms on our two data
sets. Moreover, we let X represent the set of performance results
obtained from the bag-of-words set. Similarly, Y represents the set
of performance results obtained from the meta EULA set. We for-
mulate the following null hypotheses:

–

–

is tested for each and is tested for each Both
of the main hypotheses are tested using the corrected resampled t-
test as recommended by Witten and Frank [35] for comparisons of
two algorithms on the data set and using ten 10-fold cross-valida-
tion tests. Thus, we use 99 degrees of freedom and two-sided prob-
ability values. We are aware of the issues related to multiple
hypothesis testing, cf. Demzar [11]. Thus, since we test 17 hypothe-
ses for each data set, the family-wise error can be elevated. The

hx0 : x 0.5=

hy0 : y 0.5=

hx0 x X∈ hy0 y Y∈
Experimental Procedure 145

Learning to Detect Spyware using End User License Agreements
Bonferroni correction can be applied to maintain the family-wise
error but, as Demzar notes, it is overly radical. We will therefore
present results using both the regular probability value (p < 0.05)
and the Bonferroni corrected value (p < 0.001), which is calculated
by dividing the regular p-value by the number of tested hypothesis
for each data set.

The third null hypothesis, , is that there is no difference in per-
formance between the bag-of-words and the meta EULA generated
classifiers. This null hypothesis is tested using the two-sided Wil-
coxon signed rank test. In this test, we compare the AUC result for
each classifier on the bag-of-words data set to that of the corre-
sponding classifier on the meta EULA data set. We reject if the
results for one data set are significantly better than those obtained
from the other. The rationale for using a non-parametric test
instead of, e.g., the paired t-test is that the latter assumes normality,
which might be violated in our test [11]. In testing this hypothesis
we are aware that the results can only apply for the selected algo-
rithms and configurations.

8.2 Results

We first present the performance results for each data representa-
tion approach separately and then review the tested hypotheses.
This is followed by an analysis and discussion about both
approaches.

hz0

hz0
146 Results

Learning to Detect Spyware using End User License Agreements
Table 8.4 Results on the bag-of-words data set.

8.0.1 Bag-of-words Results

The evaluation results for the bag-of-words data set are presented
in Table 8.4. The features evaluation scores for the 17 learning algo-
rithms, the average learning algorithm score, and score of the base-
line classifier. Each algorithm evaluation result is shown using four
metrics: classification accuracy (ACC), true positives rate (TPR),
false positives rate (FPR), and the Area Under the ROC Curve
(AUC).

SMO, Voted Perceptron, and Stacking yield the highest ACC. How-
ever, the difference between the best and worst performing super-
vised algorithm is rather small (0.076). The accuracy of Naive Bayes
Multinomial is mediocre and the regular Naive Bayes algorithm
actually performs worse than the baseline.

With regard to AUC, the performance of the top ACC algorithms is
mediocre while Naive Bayes Multinomial is the best performing
algorithm. The difference in AUC between the best and worst per-
forming algorithm is quite large (0.350). This difference is much
due to the low performance of the KStar algorithm.

The TPR (the rate of correctly classified bad EULAs) is quite high
for all algorithms, except the regular Naive Bayes algorithm. Unfor-
Results 147

Learning to Detect Spyware using End User License Agreements
tunately the FPR (the rate of bad EULAs classified as good) is also
relatively high, even for the best performing algorithms. Among the
worst performing algorithms (according to FPR) are the two
instance-based learners: KStar and IBk.

Table 8.5 Results on the meta EULA data set.

8.0.1 Meta EULA Results

The evaluation results for the meta EULA data set are presented in
Table 8.5 using the same setup as the Table 8.4.

The best performing algorithms are tree and rule learners, as well as
meta learners that use tree learners in their ensemble. For ACC, the
best performing algorithms are: Bagging, JRip, PART, and J48. The
difference between the best and worst performing algorithm,
according to ACC, is large (0.128). The accuracy of Voted Percep-
tron is identical to that of ZeroR. Meanwhile, Naive Bayes, Naive
Bayes Multinomial, and KStar all perform worse than ZeroR.

In terms of AUC, the top ACC algorithm (Bagging) is the best per-
forming algorithm. The difference in AUC between the best and
worst performing algorithm is very large (0.369). The worst per-
forming algorithms, according to AUC, are: Stacking, SMO, and
Voted Perceptron. However, these three algorithms all share perfect
TPR scores. The low AUC score is due to their high FPR scores.
Similarly to the bag-of-words data set, the lowest FPR scores are
achieved by the Bayesian algorithms.
148 Results

Learning to Detect Spyware using End User License Agreements
8.0.2 Tested Hypotheses

The results from the two first main hypotheses are indicated in
Table 8.5, respectively. At p < 0.05, 15 out 17 algorithms perform
significantly better than the baseline on the bag-of-words set. For
the meta EULA set, 14 out 17 algorithms perform significantly bet-
ter than the baseline for the same confidence level. More generally,
we can therefore conclude that both data sets can be used for train-
ing classifiers that can discriminate between good and bad EULAs.

The two-sided p-value of obtaining our results if holds is
0.01675, which means that we can reject this null hypothesis. We
therefore conclude that the bag-of-words model is statistically sig-
nificantly better than the meta EULA model, at least for the
included algorithms.

8.0.3 CEF Results

We now review the results from the CEF evaluation. Table 8.6
shows the CEF score for each algorithm and data set. The scores
for the TPR metric (m1) and the FPR metric (m2) have been calcu-
lated using the TPR and FPR scores from Table 8.4 and Table 8.5,
respectively. As can be observed, several algorithms fail completely,
since they do achieve an acceptable score for at least one of the
metrics. Eight algorithms manage to achieve a valid CEF score on
the bag-of-words data set. However, most decision tree and rule
learners fail since they cannot achieve an acceptable FPR. The
Bayesian learners are exceptionally strong with regard to FPR but
the Naive Bayes algorithm fails to achieve an acceptable TPR. For
the meta EULA data set, all algorithms fail. The only algorithm that
achieves a good enough FPR is Naive Bayes Multinomial, however
it fails because of the unacceptable TPR score.

hz0
Results 149

Learning to Detect Spyware using End User License Agreements
Table 8.6 CEF evaluation results.

8.1 Discussion

The experiment raises several interesting issues which will now be
discussed. We first review some technical aspects related to the fea-
tured algorithms and their performance on EULA classification.

The best performing algorithms for the bag-of-words data set,
according to ACC, are predominantly kernel function based. SMO,
especially, is known to perform well according to ACC on large text
classification data sets [20]. However, in terms of AUC, both Voted
Perceptron and SMO are outperformed by Naive Bayes Multino-
mial and Bagging.

Caruana and Niculescu-Mizil [8] note that support vector machines
are not designed to predict probabilities and explain that their pre-
dictions can be calibrated with, e.g.: Platt Scaling or Isotonic
Regression. We perform no such calibration and thus this could be
related to the poor SMO performance according to AUC.

Several studies have reported on the poor performance of Naive
Bayes Multinomial compared to that of, e.g., SMO on text classifi-
150 Discussion

Learning to Detect Spyware using End User License Agreements
cation tasks. However, Kibriya et al. [20] argued that the perform-
ance, especially in terms of AUC, of Naive Bayes Multinomial can
be dramatically improved by applying TF IDF during preprocess-
ing. Our results on the bag-of-words data set indicate that this claim
is valid. Consequently, the obtained results seem to be aligned with
related studies of these algorithms for similar domains.

The case is different for the meta EULA data set, which has a small
number of attributes compared to the bag-of-words set. Few algo-
rithms seem to perform well on this data set with a no exception in
Bagging.

Bagging seems to be quite suitable for our problem. It is the supe-
rior algorithm for both ACC and AUC on the meta EULA data set.
In addition, it is the second best algorithm, according to AUC, on
the bag-of-words data set and it is positioned in the upper echelon
of algorithms for the ACC metric on this data set as well. However,
compared to the Bayesian learners it performs poorly with respect
to FPR, which is an important metric for this application.

The default configuration of Bagging uses REP trees as base classi-
fiers. In analyzing the REP trees generated from the complete meta
EULA set we observe that they seem to be very diverse in structure
but most are rather complex in terms of tree size (most of them use
more than 30 nodes). The aggregated Bagging classifier can thus be
described as a quite complex model. This seems to be aligned with
the essential property of Bagging as Breiman [6] concludes: if per-
turbing the learning set can cause significant changes in the con-
structed classifier, then Bagging can improve performance.
Consequently, the REP trees learned from the different bootstrap
generated sub sets of data are diverse and this may contribute to the
overall good performance.

As stated earlier, most algorithms perform poorly on the meta
EULA set and this is especially true for Voted Perceptron and
SMO. The former performs identically to that of ZeroR and SMO
is only slightly better. Moreover, all algorithms perform poorly
according to FPR on the meta EULA set, which suggests that it is
difficult to find structural patterns in data compiled from the
EULA Analyzer metrics.

It is not always trivial to determine what triggers a certain classifica-
tion, mainly due to the opaque nature of most of the well-perform-
Discussion 151

Learning to Detect Spyware using End User License Agreements
ing classifiers. However, the rule based classifiers share a substantial
number of words used for classification, as can be seen in Table 8.7.

Table 8.7 Rule-based classifiers generated using the complete bag-of-words
data set.

Table 8.8 shows the corresponding rules generated from the meta
EULA set. The classifier representations for the latter data set are
more simple than those obtained from the bag-of-words data set,
mainly for two reasons: (i) the bag-of-words data set is more com-
plex in terms of the number of attributes and (ii) the information
gain of the meta EULA attributes seem to be low in general except
for flagged sentences. The consequence of the second point is that
most tree and rule learners build very simple classifiers, based solely
on the flagged sentence attribute.

We analyze the rules and trees generated from the bag-of-words
data set in terms of which word stems are associated with a classifi-
cation of EULAs as bad. Not surprisingly, some frequently used
stems are: search, upgrad, web, uninst, opportun, and adver. These words
stems can easily be associated with typical concepts that would be
mentioned by spyware vendors. In summary, the bag-of-words
model seems to be more suitable as a basis for EULA classification.
However, even for this data set, many supervised learners achieve
152 Discussion

Learning to Detect Spyware using End User License Agreements
FPR scores too high to be acceptable in a real-world decision sup-
port system. We hypothesize that a larger collection of bad
instances along with careful parameter tuning of the algorithms
might contribute to decrease this rate. Additionally, several
approaches have been presented to increase the performance on
imbalanced data sets. For example, Wang and Japkowicz [33] use
ensembles of SVMs to increase the classification performance for
both the majority and minority class. Since EULA-based spyware
detection is typically based on imbalanced data, it may be important
to investigate such approaches further in future work.

Table 8.8 Rule-based classifiers generated using the complete meta EULA
data set.

8.0.1 A Novel Tool for Spyware Prevention

Assuming that the EULA classification approach can make distinc-
tions between good and bad software, we would like to use the
approach to help users make informed decisions about the software
they download. We therefore suggest that the EULA classification
method outlined in this paper can be incorporated in a spyware pre-
vention tool.

This tool could presumably be designed as a middleware that oper-
ates between the operating system and the application installer soft-
ware. Furthermore, we suggest that it could be executed as a
background process that identifies and analyzes EULAs as they
appear on the screen during an installation. To accomplish this
automatic identification, the tool can plant a hook into the operat-
ing system function for displaying dialogues.

Based on the classification of the EULA, the tool can provide the
user with a recommendation about whether to install the applica-
tion or not. This allows the tool to assist users in making informed
decisions about the installation of software without forcing them to
Discussion 153

Learning to Detect Spyware using End User License Agreements
read (and understand) the lengthy and intricate EULAs. For exam-
ple, if the tool classifies the EULA as bad, the user can take appro-
priate actions against it, e.g., by disagreeing with the EULA and
exiting the installation process.

It should be noted that any tool based on our method should not
be used in isolation, but rather as a complement to other
approaches, e.g., anti-spyware software.

In addition, tree and rule learners generate classifiers that can be
used for visualizing the decision process. Despite the fact that this
category of learners does not seem to be the most appropriate at
solving the classification task, their visualization could increase the
number of correct classifications since they may allow the user to
make a decision based on more information than what is provided
by the opaque learners.

We outline basic requirements for the imagined prevention tool as
follows: first, we need to make sure that the tool is accurate in its
classifications since this is the main functionality. The tool should
essentially be able to detect all, or a very high quantity of, bad soft-
ware but it is also desirable that it manages to classify good software
correctly.

Furthermore, we need the tool to respond rather quickly when an
application presents a EULA.

However, the actual training phase could be performed on a central
server and the generated classifier(s) could then be downloaded by
the tool periodically. Thus, there are no specific requirements
related to classifier training time. Finally, it is desirable that the tool
can visualize what element(s) in the EULA triggered a certain clas-
sification.

8.0.2 Potential Problems

It could be argued that, if the prevention tool is made available, the
spyware authors would tailor their EULA around it. We believe that
this argument does not hold since, in order to avoid legal repercus-
sions, the spyware authors are in most countries required to men-
tion in the EULA that spyware will be installed. We exploit this fact
and use it against the spyware distributors.
154 Discussion

Learning to Detect Spyware using End User License Agreements
Another argument against the tool is that there are already quite
sophisticated tools for prevention and removal of spyware (e.g.: Ad-
Aware10). However, the idea is not to create a replacement for such
products. Essentially, the spyware prevention tool should work as a
complement that could be used to detect spyware that has not yet
been classified by anti-spyware software.

8.0.3 Comparison to Ad-aware

In an earlier experiment Boldt and Carlsson [4] analyzed the accu-
racy of Ad-Aware over a four year period. By manually analyzing
spyware infested systems using a leading commercial computer
forensic tool Boldt and Carlsson tracked down every change in the
infected system. By comparing these changes with the detected spy-
ware components found by Ad-Aware it was possible to quantify
the accuracy development of the tool between 2002 and 2005.

The results show that Ad-Aware failed to report 30 per cent of the
spyware programs. New versions would mark earlier discovered
spyware programs as legitimate programs, or wrongly classified
traces of spyware as fully functioning spyware programs. However,
the manual forensic method managed to find all added executable
files and also to differentiate traces of spyware from executable
files. The conclusion is that the problem of identifying and remov-
ing spyware programs while at the same time keeping/protecting
legitimate files, is difficult to solve for anti-spyware vendors. Not
only do these vendors have to cope with technical problems, but
they also need to consider legal aspects, which is a major distinction
between anti-spyware and anti-virus tools.

When it comes to comparing the accuracy of our novel technique
with existing anti-spyware tools some complicating factors emerge.
We have used already known spyware programs included in Spy-
wareGuide.com. To enable a fair comparison between our pro-
posed tool and already available anti-spyware tools we need to
obtain data from the shared repositories of the leading anti-virus
companies. It is presently unclear whether the data available in these
repositories would be made available to researchers for the purpose
of conducting these experimental comparisons.

10. http://www.lavasoft.com
Discussion 155

Learning to Detect Spyware using End User License Agreements
8.0.4 Conclusions and Future Work

We have investigated the relationship between the contents of End
User License Agreements (EULAs) and the legitimacy of the asso-
ciated software applications. For this purpose, we collected a data
set that features 996 EULA instances of legitimate (good) and spy-
ware associated (bad) software. This is a text classification task and
we argue that supervised learning is a suitable approach to the
problem. Since most supervised learning algorithms cannot handle
unstructured text input, we had to convert the data set to a manage-
able format. We therefore opted to use the bag-of-words model, in
which text documents are converted to feature vectors. We com-
pared this model to a meta EULA model that describes each EULA
using several text analysis metrics.

We applied 17 supervised learning algorithms from several algo-
rithm categories, such as: kernel functions, instance-based learners,
tree and rule inducers, and Bayesian learners. The main objective
was to investigate the possibility to classify software as good or bad
by training classifiers on the associated EULAs.

For both data models, the experimental results show that a majority
of the featured algorithms significantly outperformed a baseline
classifier based on majority class decision. However, the results
indicate that the bag-of-words model was more suitable than the
meta EULA model, at least for the studied algorithms.

The results support our hypothesis that EULAs can indeed be used
as a basis for classifying the corresponding software as good or bad.
Based on this, we conclude that it would be quite possible to use the
EULA classification method in a spyware prevention tool that clas-
sifies the EULA when it is shown to the user during an application
installation. The result from such an analysis gives the user a recom-
mendation about the legitimacy of the application before the instal-
lation continues. There are several directions for future work. For
example, we intend to:

– gather a data set that includes both the EULAs and binaries of
spyware and legitimate software in order to perform a fair com-
parison between our spyware detection approach and the detec-
tion approaches provided by the leading commercial anti-virus
and anti-spyware tools,
– extend the EULA classification problem from two classes into
156 Discussion

Learning to Detect Spyware using End User License Agreements
a more fine-grained multi-class approach, thus enabling not only
the distinction between spyware and legitimate software but also
the detection of specific types of spyware,
– select metrics, weights, and ranges for CEF in a more informed
manner, e.g., by interviewing experts and potential users,
– develop a spyware prevention tool, based on EULA classifica-
tion, that can help users to make informed decisions about the
software they install,
– investigate metric-based algorithms and other approaches to
optimize the CEF metric, including to minimize the false posi-
tives rate,
– select a subset of the best performing learning algorithms in
order to perform parameter tuning for the purpose of improving
classification performance even further,
– merge the meta EULA and the bag-of-words data sets to find
out if the classification performance can be improved by having
access to both the term frequencies and the meta information,
– compare the contents of the flagged sentences with the words
discovered for EULAs classified as bad in the bag-of-words.

Acknowledgements. We thank the anonymous reviewers for their
useful comments and suggestions. This work was funded by Ble-
kinge Institute of Technology.

8.1 References

[1] Androutsopoulos I, Paliouras G, Karkaletsis V, Sakkis G, Spyropou-
los CD, Stamatopoulos P (2000) Learning to filter spam E-mail: A
comparison of a naive bayesian and a memory-based approach. In:
4th European Conference on Principles and Practice of Knowledge
Discovery in Databases: Workshop on Machine Learning and Tex-
tual Information Access, Springer, Berlin / Heidelberg, Germany,
pp 1–13

[2] Arnett KP, Schmidt MB (2005) Busting the ghost in the machine.
Communications of the ACM, 48(8)

[3] Boldt M (2007) Privacy-invasive Software – Exploring Effects and
Countermeasures, Licentiate Thesis Series, No 2007:01, Blekinge
Institute of Technology, Sweden.

[4] Boldt M, Carlsson B (2006) Analysing Countermeasures Against
Privacy-Invasive Software. In: 1st IEEE International Conference
on Systems and Networks Communications
References 157

Learning to Detect Spyware using End User License Agreements
[5] Boldt M, Carlsson B, Jacobsson A (2004) Exploring spyware
effects. In: Eight Nordic Workshop on Secure IT Systems, Helsinki
University of Technology, Espoo, Finland, no. TML-A10 in Publi-
cations in Telecommunication and Software Multimedia, pp 23–30

[6] Breiman L (1996) Bagging predictors. Machine Learning 24(2):123–
140

[7] Carreras X, Márquez L (2001) Boosting trees for anti-spam email
filtering. In: Mitkov R, Angelova G, Bontcheva K, Nicolov N,
Nikolov N (eds) European Conference on Recent Advances in Nat-
ural Language Processing, Tzigov Chark, Bulgaria, pp 58–64

[8] Caruana R, Niculescu-Mizil A (2006) An empirical comparison of
supervised learning algorithms. In: 23rd International Conference
on Machine Learning, ACM Press, New York City, NY, USA, pp
161–168

[9] Cohen W (1996) Advances in Inductive Logic Programming, IOS
Press, Amsterdam, the Netherlands, chap Learning Rules that Clas-
sify E-Mail

[10] Coleman M, Liau TL (1975) A computer readability formula
designed for machine scoring. Journal of Applied Psychology
60:283–284

[11] Demzar J (2006) Statistical comparisons of classifiers over multiple
data sets. Machine Learning Research 7:1–30

[12] Denoyer L, Zaragoza H, Gallinari P (2001) HMM-based passage
models for document classification and ranking. In: 23rd European
Colloquium on Information Retrieval Research

[13] Drucker H, Wu D, Vapnik V (1999) Support vector machines for
spam categorization. IEEE Transactions on Neural Networks
10(5):1048–1054

[14] Fawcett T (2001) Using rule sets to maximize ROC performance.
In: IEEE International Conference on Data Mining, IEEE Press,
New York City, NY, USA, pp 131–138

[15] Fawcett T (2003) ROC graphs – notes and practical considerations
for data mining researchers. Tech. Rep. HPL-2003-4, Intelligent
Enterprise Technologies Laboratories, Palo Alto, CA, USA

[16] Feldman R, Sanger J (2007) The Text Mining Handbook. Cam-
bridge University Press, Cambridge, MA, USA

[17] Flesch R (1948) A new readability yardstick. Journal of Applied Psy-
chology 32:221–233
158 References

Learning to Detect Spyware using End User License Agreements
[18] Good N, Grossklags J, Thaw D, Perzanowski A, Mulligan DK,
Konstan J (2006) User choices and regret: Understanding users’
decision process about consensually acquired spyware. I/S Law and
Policy for the Information Society 2(2):283–344

[19] Kang N, Domeniconi C, Barbara D (2005) Categorization and key-
word identification of unlabeled documents. In: Fifth IEEE Inter-
national Conference on Data Mining, IEEE Press, New York City,
NY, USA, pp 677–680

[20] Kibriya AM, Frank E, Pfahringer B, Holmes G (2004) Multinomial
naive bayes for text categorization revisited. In: Seventh Australian
Joint Conference on Artificial Intelligence, Springer, Berlin / Hei-
delberg, Germany, pp 488–499

[21] Koprinska I, Poon J, Clark J, Chan J (2007) Learning to classify E-
mail. Information Sciences 177:2167–2187

[22] Lavesson N, Davidsson P (2008) Generic methods for multi-criteria
evaluation. In: Eighth SIAM International Conference on Data
Mining, SIAM Press, Philadelphia, PA, USA, pp 541–546

[23] Lavesson N, Davidsson P, Boldt M, Jacobsson A (2008) New Chal-
lenges in Applied Intelligence Technologies, Studies in Computa-
tional Intelligence, vol 134, Springer, Berlin / Heidelberg, Germany,
chap Spyware Prevention by Classifying End User License Agree-
ments

[24] McFedries P (2005) The spyware nightmare. IEEE Spectrum
42(8):72–72

[25] Metzler D, Croft WB (2005) A markov random field model for
term dependencies. In: 28th ACM SIGIR Conference on Research
and Development in Information Retrieval, pp 472–479

[26] Moshchuk A, Bragin T, Gribble SD, Levy HM (2006) A crawler-
based study of spyware on the web. In: 13th Annual Symposium on
Network and Distributed Systems Security, Internet Society, Res-
ton, VA, USA

[27] Provost F, Fawcett T, Kohavi R (1998) The case against accuracy
estimation for comparing induction algorithms. In: 15th Interna-
tional Conference on Machine Learning, Morgan Kaufmann Pub-
lishers, San Francisco, CA, USA, pp 445–453

[28] Sakkis G, Androutsopoulos I, Paliouras G, Karkaletsis V, Spyropou-
los CD, Stamatopoulos P (2001) Stacking classifiers for anti-spam
filtering of E-mail. In: Sixth Conference on Empirical Methods in
References 159

Learning to Detect Spyware using End User License Agreements
Natural Language Processing, Carnegie Mellon University, Pitts-
burgh, PA, USA

[29] Sebastiani F (2002) Machine learning in automated text categoriza-
tion. ACM Computing Surveys 34(1):1–47

[30] Shukla S, Nah F (2005) Web browsing and spyware intrusion. Com-
munications of the ACM 48(8)

[31] Smith EA, Kincaid P (1970) Derivation and validation of the auto-
mated readability index for use with technical materials. Human
Factors 12:457–464

[32] Wang P, Hu J, Zeng H-J, Chen Z (2009) Using Wikipedia knowl-
edge to improve text classification. Knowledge and Information
Systems 19: 265–281

[33] Wang BX, Japkowicz N (2009) Boosting support vector machines
for imbalanced data Sets. Knowledge and Information Systems,
Online First

[34] Weiss A (2005) Spyware be gone. ACM Networker 9(1):18–25

[35] Witten IH, Frank E (2005) Data Mining: Practical Machine Learn-
ing Tools and Techniques. Morgan Kaufmann Publishers, San Fran-
cisco, CA, USA

[36] Zhang X (2005) What do consumers really know about spyware?
Communications of the ACM 48(8):44–48

[37] Zhao H (2008) Instance weighting versus threshold adjusting for
cost-sensitive classification. Knowledge and Information Systems
15: 321–334
160 References

P U B L I C A T I O N

6
On the Simulation of a Software

Reputation System

5th International Workshop on Frontiers in Availability, Reliability and Security,
2010

Martin Boldt, Anton Borg and Bengt Carlsson

Today, there are difficulties finding all malicious programs due to
juridical restrictions and deficits concerning the anti-malicious pro-
grams. Also, a “grey-zone” of questionable programs exists, hard
for different protection programs to handle and almost impossible
for a single user to judge. A software reputation system consisting
of expert, average and novice users are proposed as a complement
to let anti-malware programs or dedicated human experts decide
about questionable programs. A simulation of the factors involved
is accomplished by varying the user groups involved, modifying
each user’s individual trust factor, specifying an upper trust factor
limit and accounting for previous rating influence. As a proposed
result, a balanced, well-informed rating of judged programs
appears, i.e. a balance between quickly reaching a well-informed
decision and not giving a single voter too much power.
161

On the Simulation of a Software Reputation System
9.1 Introduction

Today several hundred thousands of software programs exist, mak-
ing it almost impossible for a single user to by herself decide what is
good and what is bad. Of course tools to prevent and remove
viruses and spyware have existed for a long time, but not all mali-
cious programs are found due to juridical restrictions, i.e. the legal
status of these applications are questioned, placing them in an grey-
zone between good and bad software. This results in a large amount
of applications that anti-malware developers are being cautious
about removing, due to the potential for legal retribution. So, a
“grey-zone” of questionable programs exists, hard for different
protection program to handle and almost impossible for a single
user to judge. Also, the availability of preventive software has been
limited, already installed malicious software are found and removed
but then the damage might already be done.

The inability of traditional anti-malware applications to handle, due
to restrictions put upon them, the programs that exist in the previ-
ously mentioned grey-zone, leaves users unprotected. A comple-
ment, to using anti-malware software for deciding about unwanted
programs, is to use a reputation system, i.e. ranking of new and pre-
vious unfamiliar software as a method for investigating the “true”
appearance of a program. Using professional experts for doing this
is both expensive and unrealistic due to the huge amount of non-
investigated programs. Instead we propose a pool of ordinary users
with different skills making necessary decisions about the quality of
different software. However, there is still a need for more tradi-
tional anti-malware tools for targeting the clear-cut malware types
that by no means could be placed inside the “grey-zone” between
good and bad software, such as viruses and worms.

The purpose of this work is to investigate how many and what
impact expert users need to have on a reputation system making it
reliable, i.e. if it is possible to get a stable system by having few
experts compensating for a vast majority of users with limited abil-
ity to rate an application. We simulate a reputation system with
input from different skilled users and investigate a way of mitigating
bad user ratings by using trust factors rewarding good users’ good
actions and punishing bad actions. The goal of the simulation is to
find critical parameters for correctly classifying large number of dif-
ferent programs with a realistic base of different skilled users.
162 Introduction

On the Simulation of a Software Reputation System
The remaining part of this paper is organized as follows. First we
discuss the related work in Section II and introduce the software
reputation system in Section III. We continue in section IV by
introducing the simulator software and in Section V we present the
scenarios. In Section VI we present our results, which then are dis-
cussed in Section VII. We conclude by stating our conclusions and
suggestions for future work in Section VIII and IX respectively.

9.2 Related Work

Recommender systems are used to provide the user with an idea of
other users’ thoughts about products, i.e. whether they are good or
bad. These kinds of systems are mostly used in commercial web-
sites suggesting additional products, which the user might consider
buying, exemplified in Amazon [2]. Recommender systems are not
limited to commercial services, but also exist in other recommenda-
tion services such as Internet Movie Database (IMDb) [6]. IMDb
uses recommender systems to suggest movies to users based on the
opinions of other users that have shown similar tastes. Adomavicius
and Tuzhilin provide, in their survey on the subject, a deep intro-
duction of recommender systems, as well as some of the limitations
[1].

eBay [5] makes use of a reputation system that allows users to rate
buyers and sellers within the system, as a way to establish reputation
among users. This reputation system makes it easier for users to dis-
tinguish dishonest users from trustworthy users. Experiments con-
ducted by Resnick et al. also show that users with a higher
reputation have a higher likelihood to sell items [10]. So, while rec-
ommender systems deals with the items involved, reputation sys-
tems instead deals with the involved users. In this paper we refer to
our system as a reputation system due to the importance of the
trust factors associated with the users.

Since reputation systems rely on the input of the users to calculate
the ratings, it has to be able to establish trust between users and
towards the system [7][11]. This is especially important when one
considers the fact that the users of a software reputation system will
have varying degrees of computer knowledge, and their ability to
rate an application will thus be of different quality. There also exists
the possibility of a user acting as several agents and actively report-
ing an erroneous rating in order to give a competitor a bad reputa-
Related Work 163

On the Simulation of a Software Reputation System
tion or increase rating of a chosen object, i.e. a Sybil attack [4]. Even
though this can be a potential problem to our proposed system, it is
not within the scope of this paper to further analyze such scenarios.
Furthermore there exist proposed solutions to this problem, for
instance SybilGuard by Yu et al. [15].

The problem of erroneous ratings will, in a system such as IMDb,
correct itself over time, but in a system such as the one proposed by
Boldt et al. [3], where the intent is to advice on malicious software
to users who might not be able to tell the difference, this presents a
greater problem. Whitby et al. has put forth an idea of how to solve
this problem [14] by filtering the unfair ratings, and their simula-
tions show that the idea has merit. Traupman and Wilensky [13] try
to mitigate the effects of false feedback in peer-to-peer applications
by using algorithms to determine a user’s true reputation. However,
these ideas might not be ideal under all circumstances, as they add
another layer of complexity to the system, as well as another step of
work to be done.

Jøsang et al. [7] summarize, among other things, different ways of
computing the rating of an object and one of the conclusions is that
reputation systems originating from academia have a tendency to be
complex compared to industrial implementations. We have opted
for a simpler system, where the rating is weighted by trustworthi-
ness of the user.

Among simulations done on the area of reputations systems, Jøsang
et al. has conducted a simulation on an e-market, concluding that
reputation systems are necessary in order for the e-market to
become healthy [8]. They also come to the conclusion that reputa-
tion systems should be configured to forget old ratings in order for
new ratings to have impact, i.e. the system should be able to change
opinion concerning an object.

9.3 Software Reputation System

As presented in the previous section, ranking of new and previous
unfamiliar software is a common method for investigating the
“true” appearance of a program before installing it. Using profes-
sional experts for doing this is both expensive and unrealistic due to
the huge amount of software programs that are developed every
year. Instead the opinions are gathered from a pool of ordinary vol-
164 Software Reputation System

On the Simulation of a Software Reputation System
untary users that agree to benefit from the common knowledge by
providing ratings for the software they are most familiar with. In
this way each participant is asked to rate software on a discrete scale
(1 to 10) after they have used that software during a certain time-
frame, i.e. the user have had time to form an opinion about that
particular software program. The ratings given by the system users
should be all-embracing, i.e. including different parts such as (but
not limited to) the software’s features, behaviour, usability, stability,
performance and privacy aspects.

9.3.1 System Design

We propose a client-server based system where each user has a
small client software installed through which it is possible for the
user to both send and retrieve information from the central server
that handles all software reputation calculations. The client identi-
fies software by calculating hash digests on the actual program file
data, e.g. SHA-256. This means that a software reputation is associ-
ated with each new version of a program, but the reputation of sev-
eral subversions can be propagated up to one major version that is
then presented to the user. It is also possible to calculate for
instance the average rating of a certain software vendor based on
the individual reputations of all programs that a particular vendor
has developed.

In an attempt to get as accurate ratings as possible from the user,
the client software asks the user to rate the software he/she uses
most frequently, i.e. the user is familiar with the software and has an
opinion about it to base the rating on. Each rating includes one
mandatory field that represent an overall rating on some grading
scale, in this case [1,10] inclusive. It is also possible for the user to
provide additional information, but this is optional. We believe it is
of great significance not to ask the users to provide too much infor-
mation since many users would find this most annoying, and there-
fore provide random or no feedback at all. However, we believe
computer users would accept to rate a few software per month if
they in return get access to all previous users’ ratings for software
programs that the user is considering installing.

To address the ever-existing problem with participants that provide
false information to a collaborative system we incorporate user-
individual trust factors (TF). This means that each user is assigned a
TF that states the amount of influence each user have in the system.
Software Reputation System 165

On the Simulation of a Software Reputation System
New users are always given the lowest possible TF, but as they use
the system and prove to be trustworthy this value increases. Each
time a user uses the client program to submit a rating it is for-
warded to the reputation server for further processing. On the
server-side the rating is compared to the average of all previous rat-
ings on that particular software and if it is close then the user’s TF is
increased, otherwise it is decreased. That way the TF of users that
provide accurate ratings increases which give them more influence
in the system, while it decreases for the rest of the users. Although
the effect of this implementation is that the input from some users
is amplified to dominate a large portion of the overall system, we
believe it is important to include all users’ votes when calculating
the resulting software ratings in the system. This way, even non-
expert users such as novice and new users can rest assured that their
voice is listened to.

It is of significant importance to make sure the users’ privacy is suf-
ficiently protected in a software reputation system, since it handles
sensitive information about what software each user have installed
on their computer and their associated ratings. A situation where it
would be possible to combine IP addresses with the information
about what software these computers include could for instance
reveal which computers that are vulnerable to certain remotely
exploitable vulnerabilities. In addition to this it is also important to
protect users’ privacy since one of the main goals of a software rep-
utation system itself is to assist users in protecting against poten-
tially malicious programs that invade privacy. It is therefore
important to make sure that the system does not intrude on users’
privacy more than absolutely necessary. However, we still need to
store some minimal amount of information about the user to
address the problem with vote flooding, i.e. we need to distinguish
between unique users’ votes for each software to guarantee that
duplicate votes do not occur. A thorough description of the tech-
niques and design choices used for this software reputation system
is available in [3].

9.4 Software Reputation System Simulator

In this section we start by describing the design and workings of the
simulator and then move on to explain how we modelled the users
in our experiments.
166 Software Reputation System Simulator

On the Simulation of a Software Reputation System
9.4.1 Simulator Design

The simulator itself was implemented in Java and all configuration
of the simulator is carried out through configuration files that allow
the operator to fine-tune every aspect of the scenario that should be
simulated. The simulator is deterministic, meaning that it is possible
to rerun a scenario several times and always get the same results, or
more interestingly to change a certain variable in the scenario setup
and be sure that the changes in the end-result are due to the altera-
tion of that particular variable.

Individual objects represent users and software that are simulated,
i.e. one Java object per simulated user and software. These objects
are stored in two different linked lists that keep track of all user and
software objects. A simulation basically consists of iterating through
the linked list of all user objects in sequence, allowing each user to
rate a randomly selected software object, until the correct number
of votes has been simulated. An important addition to this process
is that the linked list of all user objects is shuffled before each itera-
tion proceeds. At certain intervals, for instance every 10% progress,
the simulator outputs various degrees of statistics depending on the
particular configuration.

Each software object includes variables that store information
about its “correct” rating, the number of votes it has received and
the sum of all weighted votes, which makes it possible to calculate
the software’s weighted average rating as explained in Equation 2 in
the next subsection. The “correct” rating mentioned above is used
for two purposes in our simulator. First, it is used for evaluating the
accuracy of the simulated reputation system. Even though such a
correct rating might not exist in the real world due to users’ subjec-
tive beliefs, we use them as a way to evaluate the accuracy of the
simulated reputation system. Secondly it is also used when con-
structing the user’s vote as described in the next subsection.

The evaluation of a simulation consists of summarizing the absolute
distance between software’s correct rating and weighted average rat-
ing, and finally dividing it with the number of software included in
the simulation. The resulting value is the evaluation score (ES), i.e. the
average distance from all software programs’ correct ratings. This
score represent how accurate the simulated software reputation sys-
tem is when providing software ratings to its users. One should
always strive to reach an as low ES as possible, since an ES of 0.0
Software Reputation System Simulator 167

On the Simulation of a Software Reputation System
represent that the software reputation system on average provides
its users with ratings that are 0.0 votes from its correct value. In
other words bang on target. In the next subsection we present how
the users in the simulations are modelled.

9.4.2 User Models
We have divided the simulated users into three groups based on
their technical knowledge and accuracy in rating software. Each
user simulated belongs to exactly one of these groups, which deter-
mines the users voting variance. Figure 9.1 shows each groups’ vot-
ing variance (or error rate), which lies within the interval [+5, -5]
inclusive.

Figure 9.1 The voting variance for each of the three simulated user groups,
which lies between +5 and -5 grades away from the software’s
correct rating. The modelled voting variances are shown as bars,
and the actual ones as lines.

The expert users in Figure 9.1 rate software correctly 50% of the
times, and in the remaining part rate the software either one step
below or above its correct rating, i.e. the expert users always man-
age to rate a software within a 1 step wide window around its cor-
rect rating. The second group is the average users that tries to rate
software correctly, but with lesser accuracy than the experts, i.e.
they rate up to 3 steps above or below the correct rating due to lack
of skills. Still an average user is better than a novice user that has an
error margin of 5 steps above or below the correct rating. Figure 9.1
also shows, as lines, the actual outcome of the distribution during
our simulation. The discrepancy of these values are due to prob-
lems of giving the worst rated grades for certain types of programs
that already are close to one of the rating scale borders. In such
cases a new vote variance is randomized based on the user’s voting
168 Software Reputation System Simulator

On the Simulation of a Software Reputation System
distribution in Figure 9.1, hence the greater probability for a voting
variance close to 0.

In addition to the users’ own ability in rating software it is also pos-
sible for the simulator to simulate that they are influenced by previ-
ous user’s ratings. This would for instance occur when a user is
unsure what rating to assign a certain software and therefore use
that software’s current average rating as guidance when making up
his/her mind. In our simulations we refer to this as the previous rating
influence (PRI), which is represented as a number on the continuous
scale [0-1] inclusive. We argue that the PRI effect increases as users
become less confident about how to rate software. Experts are not
very influenced by the already existing rating and thus have a rela-
tively low PRI, in this case 6.25%. The group of average users is
more likely to be influenced, thus earning them a PRI of 12.5%.
The novice group on the other hand will most likely be very influ-
enced by the already existing rating, and be more inclined to give a
rating that is similar to the existing. To simulate this we give the
novice group a PRI of 25%. As shown in Equation 1. below users’
votes are generated by adding the user’s vote variance to the soft-
ware’s correct rating, which results in that users from the different
groups rate software differently.

When no PRI is used a user’s vote is calculated by simply adding the
software’s correct rating with the user’s randomized vote variance.
However, when PRI is used the vote is instead pushed towards the
software’s average rating to various degrees, based on the amount
of PRI that is simulated. An important aspect in the simulations is
how to adjust the users’ trust factors. The simulator allows its oper-
ator to tune four different variables that directly control how the TF
is being calculated. First of all the operator has to decide if the TF
should increase or decrease in an exponential or linear fashion. Sec-
ondly, decide what the change-rate should be, e.g. if a linear value of
2.0 is used then TF would increase or decrease by 2.0 based on
whether the user manages to pinpoint the software’s correct rating
or not. If, on the other hand, an exponential value of 1.25 is used
the user’s TF will either increase or decrease with a factor 1.25
based on the current value. The third variable that is available to the
operator is the potential to include a maximum level, or ceiling,
which the TF cannot exceed. Finally it is also possible to decrease
the TF faster than it increases by enabling the decrease factor (DF), i.e.

1 PRI–() C(orrectRating VoteVariance) + + +

PRI AverageRating×()
1()
Software Reputation System Simulator 169

On the Simulation of a Software Reputation System
a DF of 1.5 will result in that a user’s TF decreases with a factor 1.5
more than it increases. The DF could be used as a sanction method
against misbehaving or cheating users. However, it has not been
further investigated in the experiments presented in this paper.

9.4.3 Simulation Steps

During the initialization of the simulator each program is randomly
assigned its “correct” rating which is used for evaluation purposes.
Next, the users are assigned to the simulated groups according the
proportions defined in the configuration files. Then the simulation
starts and executes according to the following steps:

1. Shuffle the list of users
2. Sequentially select each user from the list
3. Randomly select a software
4. Randomize new vote variance for user
5. Create vote (Equation 1.)
6. Increase vote counter by 1
7. Update software’s weighted average (Equation 2.)
8. Update user’s trust factor
9. Repeat for each user in list
10. Repeat until specified number of votes are reached

The software’s weighted average score is calculated based on both
the user’s vote and trust factor, as explained in Equation 2. This
renders in that users’ votes are being weighted differently based on
their individual trust factors, i.e. amplifying the votes from trust-
worthy users.

After each vote the user’s TF is updated based on how far ¤away
from the software’s current weighted average the vote is. If the vote
is exactly the same as the weighted average the TF is increased,
while it is kept as is if the vote is 1 step above or below. However, if
the distance is further than 1 step the TF is decreased.

AverageRating
votei TrustFactor× i()

i 1=

n

∑

TrustFactori
i 1=

n

∑

---= 2()
170 Software Reputation System Simulator

On the Simulation of a Software Reputation System
9.5 Simulated Scenarios

As seen in the background section, ranking of new and previously
unfamiliar software is a common method for investigating the
“true” appearance of a program before installing it. Using profes-
sional experts for doing this is both expensive and unrealistic due to
the huge amount of non-investigated programs. Instead a pool of
ordinary users with different skills is proposed where each partici-
pant repeatedly votes between 1 and 10 before new programs are
installed. The voting is based on the user’s skill, but also on the pre-
vious rating of the program. A skilled user may improve his own
reputation by repeatedly giving votes close to the “true” value, i.e.
similar to the professional expert. By doing so it is possible to
increase the value of the vote either by a linear or an exponential
increase.

In a recommendation system different actors may appear. We used
the previous described groups of experts, average and novice users
in the simulation of our reputation system. All users have one equal
valued vote to start with and are supposed to repeatedly rate new
software. All simulations in this work include a fixed population of
different skilled users with 9.4% experts, 27.1% average users and
63.5% novice users. We decided to use these estimates based on the
PEW Internet & American Life Project’s statistics of user demogra-
phy of information technology users [9].

Within this population all groups give a vote based on actual skills,
and in some cases also based on the influences from previous vot-
ers, i.e. the weighted average for that particular software. Some of
the simulations also measures what effects scaling up or down the
proportion of different users have on the system, e.g. how system
accuracy is affected when scaling down the number of expert users
by half.

The above-mentioned groups were simulated for one million users
voting for 100000 different programs, i.e. it is unlikely that one user
will vote more than once for a single program. We chose to include
100000 programs based on the number of software application
included in Web-based reputation systems, e.g. Softonic [12]. One
million users are argued to be a realistic number due to the fact that
such a system is globally accessible and therefore benefiting from
network effects. The scenarios that we simulate in this paper
include 48 and 96 million votes, which represent a two or four years
Simulated Scenarios 171

On the Simulation of a Software Reputation System
use of a system with one million users, and an average voting fre-
quency of two votes/month.

9.6 Results

First we investigate how big an impact we may give a single voter
without looking at the result other voters have given for the popula-
tion of voters described above. Next, we look at the impact of pre-
vious rating influence where the different groups of voters are more
or less influenced by the judgment already done. Then the propor-
tions of experts, average and novice users are varied. Finally we
investigate how system accuracy is when the correct rating for 25%
of all simulated software programs are known before the simulation
is started, i.e. that they are bootstrapped with the correct rating.

9.6.1 Trust Factors and Limits

Different trust factors varying in range from 1.05 to 2.0 were inves-
tigated with either linear or exponential increase. Each group of
users starts with a TF set to 1.0 with an increase of the chosen trust
value for each vote that is placed within one step above or below
the software’s current average rating. If the vote is up to one step
away from the correct value the TF is left unchanged. Otherwise,
i.e. two steps or more, the TF is decreased by the same trust factor.
A user can never have a TF lower than 1.0. Each participant voted
48 times each and in all 1 million users voted for 100000 programs
in this simulation. Figure 9.2 shows the outcome for the chosen
number of different users and various maximum TF limits.

Figure 9.2 9,4% expert, 27,1% average and 63,5% novice users voting with a
varying trust factor during 48 votes each.
172 Results

On the Simulation of a Software Reputation System
The linear outcome for different TFs shows a very limited improve-
ment with increasing TFs and thus is not further investigated. The
lowest average distance was reached for an exponential TF or 1.25
where both lower and higher TF showed worse performance. For
this reason we decided to use a 1.25 exponential TF during the rest
of the simulations.

Next we investigated the need for a maximum limit of the user’s TF.
Figure 9.3 shows what happens when the following limits are speci-
fied for the TF; 1, 10, 100 and 1000 and unlimited.

Figure 9.3 9,4% expert, 27,1% average and 63,5% novice users voting with a
1,25 exponential trust factor during 96 votes each.

An unlimited TF settles around 0.5 from the correct value but may
give a single voter an un-proportional big impact on the voting sys-
tem. Limiting the TF to 1000 is a reasonable compromise where the
first 25 votes will behave as unlimited and settles around 0.7 with a
slightly increase during prolonged voting time. This has to do with a
relative TF increase of less skilled average users due to the expert
reaching the 1000 TF limit as shown in the next figure. Figure 9.4
shows the outcome for each category on a logarithmic scale. The
novice user hardly reaches above 1 where the average user has a
small but constant increase. However, the TF of the expert users
reaches 10, 100 and 1000 respectively when these limits are speci-
fied, and reaches 1 million after 48 votes when no limit at all is used.
So, in all cases the expert voter has a dominant position, but not a
100% voting accuracy. As even expert users commit errors when
voting they should not be given unrealistically high TF. In our set-
ting an expert is predicting the correct value 50% of the time, i.e.
the impact from an expert with huge TF giving a wrong value dis-
tort the result from the correct decision. The “knee” on the curve
Results 173

On the Simulation of a Software Reputation System
associated with the experts in Figure 9.4 is due to the lack of meas-
urements for TF limits between 10000 and unlimited.

Figure 9.4 Number of votes for each user group with different trust factor
limits during 48 votes per user.

9.6.2 Previous Rating Influence

Some commercial recommendation systems make previously given
votes available to the users when they decide on their vote, i.e. the
previous rating influence (PRI). This can give both positive and
negative consequences that should be considered. The different
user groups have different levels of knowledge, and thus are guided
by the already existing rating to different degrees. To measure the
effects that PRI have on a software reputation system we simulated
a scenario where each user-group were influenced by 6.25%, 12.5%
and 25% for expert, average and novice users respectively.

Figure 9.5 Simulation with a previous rating influence (PRI) of 6.25%, 12.5%,
25% for experts, average and novice users. With an exponential
trust factor (TF) of 1.25 and 96 votes per user, which corresponds
to four years of system usage if each user votes on average twice a
month.
174 Results

On the Simulation of a Software Reputation System
When for instance a novice user rate a software his vote is to 75%
decided based on his level of knowledge and to 25% based on that
program’s current average rating. Figure 9.5 shows the results of
this simulation.

As seen in Figure 9.5, there is a slight improvement in the beginning
of the simulation when PRI is used. However, performance then
stabilizes around the same levels as when no PRI is used. There is
for instance no noticeable improvement in the case with a TF limit
of 1000 compared to the results in Figure 9.3. When activating PRI
in the simulation both novice and average users will improve their
marking ability, which in turn result in that their TF increases. In
Figure 9.6 the trust factor of both the novice and average users are
plotted on a logarithmic scale, which show that both has increased
several times compared to the results in Figure 9.4.

Figure 9.6 Development of the trust factor (TF) for each user group when
previous rating influence (PRI) is enabled. These results are based
on an exponential trust factor of 1.25 without any TF limit.

The results in Figure 9.6 show that the TF of all user groups has
increased when PRI is enabled. This can be attributed to the fact
that for instance the novice group has a higher tendency to follow
the already set ratings, i.e. the results from the average and expert
users. Due to this, they will rate an application more accurately,
which will increase their trust in the system. As already stated, this
results in a higher TF for the novice group. Based on the size of the
novice group they will have a higher impact on the system. Even
though the novice group has a higher tendency to follow the aver-
age ratings, they will still introduce votes that are distanced from the
correct rating of software, which deteriorates the overall system
accuracy. We have also simulated scenarios with higher PRI values
for all user groups, but without any significant improvement of the
system accuracy. These results therefore show that the system accu-
Results 175

On the Simulation of a Software Reputation System
racy is not significantly improved when PRI is enabled and that the
reputation system is more stable without it.

9.6.3 Demography Variations and Bootstrapping

Figure 9.7 shows how the user demography of the simulated users
affects the system accuracy. We varied the size of the different user
groups around the survey results presented by PEW Internet &
American Life Project. We can see that the size of the expert and
average groups clearly make a difference in the beginning of the
simulation, i.e. higher number of expert and average users increases
system accuracy. However, as the simulation progresses and the TF
of each simulated user is fine-tuned the system accuracy increases
for all user constellations. An increased number of experts perform
better than increasing the number of average users in relation to
novice users.

Figure 9.7 System accuracy for several different user group constellations with
varying number of expert and average users. In this experiment the
previous rating influence was turned off and an exponential factor
of 1.25 was used together with a trust factor limit of 1000.

To improve the system accuracy further we also simulated a sce-
nario where already available software reputations were collected
from third parties and used to initialize the software reputation
database before it was put into use. Figure 9.8 shows how the accu-
racy of the system is affected when 25% of the software inside the
reputation database is bootstrapped with trusted data with a total
value of 5000, i.e. equal to five votes from full-fledged experts.
When compared with Figure 9.7 it is clear that the system accuracy
is positively affected in the beginning of the simulation, but as the
176 Results

On the Simulation of a Software Reputation System
simulation continues the difference between whether bootstrapping
is used or not decreases.

Figure 9.8 System accuracy per user group constellation with 25% of the
reputation data bootstrapped from trusted sources.

We also ran a set of experiments without any expert users at all just
to investigate whether or not the software reputation system would
still function properly in such a scenario. When omitting all expert
users, leaving 27% average and 73% novice users, the system shows
an accuracy score of approximately 1.8. in the beginning of the sim-
ulation which then improves towards 1.2. Finally we also simulated
the use of a software reputation system during an extended period
of time, in this case 1200 votes per user, without seeing any ten-
dency of degraded system accuracy. Even though the scenario is
questionable, since none of the software programs are updated, it
doesn’t show any evidence of decreased performance, i.e. the repu-
tation system seams to be stable. In fact the accuracy is continu-
ously improving through out the simulation during this extended
simulation, and the overall system accuracy stops at 0.95. During
the whole simulation the TF of the novice users are quite low, with
an average of 2.8. At the same time the TF of the average users sta-
bilize around 890 while the experts quickly reach the TF limit of
1000.s the difference between whether bootstrapping is used or not
decreases.
Results 177

On the Simulation of a Software Reputation System
9.7 Discussion

The idea behind the simulated reputation system is to reward users
that provide accurate ratings and punish faulty or not properly
thought through decisions, which will improve the software reputa-
tions within the system. The experiments assume that there exists a
“correct” rating of each software for initial settings and evaluation
purposes. However, whether such a correct rating exists in a real
world setting is not necessarily true. It is therefore hard for a single
person to define exactly what the correct rating for the particular
software should be, but based on several users’ ratings it is possible
to come to a common compromise, which then is used as a baseline
when deciding whether or not to increase or decrease users’ TFs.

In this work we have used simulation as the means to identify how
the users’ TF should be adjusted within a software reputation sys-
tem to reach an accurate, stable and sustainable system to mimic the
view of a professional expert. In this investigation we primarily look
at the behaviour of the voter. From a single program’s point of view
different skilled voters may end up voting close to the “correct
value”, i.e. on average votes below and above this value are com-
pensated. So, the average value for a single program is better than
the user’s performed absolute distance value. By introducing a trust
factor and/or previous rating influence the overall performance for
various groups of users was increased, i.e. the absolute distance
value coming closer to the average value. This was true even in
groups dominated by unskilled novice and average users making the
outcome of the voting procedure more robust.

Unlike professional experts the simulated population consists of
different skilled users voting twice a month during two or four
years. In the beginning of the simulations each voter has given a
very limited amount of votes, i.e. only a small fraction of all availa-
ble programs are being rated by a single voter. The simulation
results show an exponential increase of the TF to be better than a
linear increasing, and that a factor of 1.25 was most promising for
an accurate system. Through the simulations we also found that an
upper TF limitation of 1000 is preferable. If this limitation is being
omitted the TF of the expert users quickly increases to levels that
make the whole system unstable because of these users’ small, but
still existing, rating fluctuations. Therefore the upper TF limit cre-
ates a balance between fast reaching and well-informed ratings,
without giving a single user too much influence. In a real situation
178 Discussion

On the Simulation of a Software Reputation System
other factors, such as malicious behaviour, makes this argument
even more important within the system. If a single user can get
extremely high TF values it is possible for malicious actors to use
this to manipulate the rating of the particular software for their own
personal gain.

Intuitively it might seem interesting to allow users to see all previ-
ous ratings (PRI) when they make up their mind about how to rate
a certain software, since this at first could be thought to improve
the decisions of the less skilled users. However, if the system makes
use of TFs this is not the case since novice and average users will
improve their TFs, i.e. their normal voting variance will exceedingly
negative influence the program evaluation. Through the simulations
we also investigated how the proportion of experts, average and
novice users affects the system accuracy and stability. By increasing
and decreasing the number of experts and average users we were
able to draw the conclusions that the system accuracy improves as
expert users sign up to the system. For all investigated populations
the system accuracy improves from initial not-to-well judgments in
the beginning of the simulation to closer to the correct ratings, for
instance when 85% novice users and less than 5% experts are being
simulated.

In our simulations we have also showed that it is possible to
improve the initial system accuracy before the system is made pub-
licly available by bootstrapping the database with trusted reputation
data. Such bootstrapping data could for instance be gathered from
web-based services available on the Internet. Furthermore we also
show that the system is stable and accurate when users submit rat-
ings with a higher frequency. In this case when each user submits
on average 1200 votes over a four years period, i.e. about one vote
per day.

When summarizing all simulated scenarios we come to the conclu-
sion that it is possible for computer users to rely on a stable soft-
ware reputation system that assist them when identifying well-
reputed software, as well as when avoiding questionable programs.

9.8 Conclusions

A software reputation system consisting of expert, average and nov-
ice users was simulated as an alternative to let anti-malware pro-
Conclusions 179

On the Simulation of a Software Reputation System
grams or dedicated human experts decide about questionable
programs. Within the simulated population, the different skilled
users voted twice a month during at most four years. Each voter
starts with a single vote and by varying the increase of the trust fac-
tor (TF), the upper TF limit and previous rating influence (PRI),
with a resulting balanced, well-informed rating of judged programs
as the proposed outcome.

An exponentially increased TF was better than a linear, and a sys-
tem that allowed voters to see previous users’ votes performed bet-
ter, i.e. with PRI. More precisely an exponential increase of 1.25 for
the TF with a TF limit of 1000 within an experimental setting of
less than 5% experts in a population exceeding 80% novices still
performed well. Such a setup allowed a balance between quickly
reaching a well-informed decision and not giving a single voter too
much power.

In our opinion the reputation systems will become a more com-
monplace advisory tool in the future with the possibility to provide
an advice to the user that most likely will be helpful, i.e. being able
to handle erroneous, good and bad ratings, and without losing the
integrity of the system.

9.9 Future Work

Our simulated environment lacks some real world parameters that
will be further investigated as the work progresses. First, we will
simulate various attack schemes that are used by malicious actors to
gain control over the reputation system. Secondly, we will investi-
gate how system accuracy is affected when users are handled more
dynamically, e.g. when new users join up during the simulation and
that established users’ leaves. Finally, this should also include sce-
narios where new and unknown programs are being added on the
fly or when old programs are being overridden.

9.10 Acknowledgements

We would like to thank Martin Hylerstedt at Blekinge Institute of
Technology in Sweden for his assistance in proof-reading this work.
180 Future Work

On the Simulation of a Software Reputation System
9.11 References

[1] G. Adomavicius and E. Tuzhilin, Toward the next generation of
recommender systems: a survey of the state-of-the-art and possible
extensions. Knowledge and Data Engineering, IEEE Transactions
on Knowledge and Data Engineering (2005) vol. 17 (6) pp. 734-
749.

[2] Amazon, http://www.amazon.co.uk/, 2010-03-11.

[3] M. Boldt, B. Carlsson, T. Larsson and N. Lindén, Preventing Pri-
vacy-Invasive Software Using Collaborative Reputation Systems,
Vol. 4721 of Lecture Notes in Computer Science, 2007.

[4] J. Douceur, The sybil attack, In the Proceedings of the 1st Interna-
tional Workshop on Peer-to-Peer Systems (IPTPS), 2002.

[5] eBay, http://www.ebay.com, 2010-03-11.

[6] Internet Movie Database, http://www.imdb.com, 2010-03-11.

[7] A. Jøsang, R. Ismail and C. Boyd, A Survey of Trust and Reputation
Systems for Online Service Provision, Decision Support Systems, Vol.
43(2), pp. 618-644, 2007.

[8] A. Jøsang, S. Hird, and E. Faccer, Simulating the Effect of Reputation
Systems on E-Markets, Volume 2692 of Lecture Notes in Computer
Science, 2003.

[9] PEW Internet & American Life Project: A Typology of Informa-
tion andCommunicationTechnologyUsers, http://www.pewinter-
net.org/Reports/2007/A-Typology-of-Information-and-Commu-
nication-Technology-Users.aspx, 2010-03-11.

[10] P. Resnick et al., The value of reputation on eBay: A controlled
experiment, Springer Journal on Experimental Economics, Vol. 9(2), pp.
79-101, 2006.

[11] S. Ruohomaa, L. Kutvonen and E. Koutrouli, Reputation management
survey, In the Proceedings of the 2nd Second International Confer-
ence on Availability, Reliability and Security (ARES), 2007.

[12] Softonic, http://softonic.com, 2010-03-11.

[13] J. Traupman and R. Wilensky, Robust Reputations for Peer-to-Peer
Marketplaces, Vol. 3986 of Lecture Notes in Computer Science,
2006.

[14] A. Whitby, A. Jøsang and J. Indulska, Filtering out Unfair Ratings in
Bayesian Reputation Systems, In the Proceedings of the 3rd Interna-
References 181

On the Simulation of a Software Reputation System
tional Conference on Autonomous Agents and Multiagent Systems
AAMAS, 2004.

[15] H. Yu et al., Sybilguard: Defending against Sybil Attacks via Social
Networks. ACM Proceedings of the 12th SIGCOMM, 2006.
182 References

P U B L I C A T I O N

7
Stopping Privacy-Invasive Software
Using Reputation and Data Mining

Journal manuscript, submitted 2010

Martin Boldt and Bengt Carlsson

Privacy-invasive software (PIS) is described as a category of soft-
ware that ignores users’ right to be left alone and that is distributed
with a specific intent, often of a commercial nature that negatively
affect its users, i.e. most malware, spyware and legitimate commer-
cial driven applications. From a single user’s perspective all software
are acceptable or deniable, i.e. white or black listed, if s/he has an
informed consent, i.e. all greyzone programs can be eliminated. PIS
is classified with respect to user’s informed consent and amount of
user’s negative consequences with the purpose of adding mecha-
nisms that safeguard users’ consent during software installation.
Two techniques based on a software reputation system and auto-
mated End User License Agreements (EULAs) classification is sug-
gested for counteracting PIS. Both the reputation system and the
automated EULA classification increase user awareness about the
software behaviour, which allow users to make more informed deci-
sions concerning software installation, i.e. reducing but not elimi-
nating the threat from grey-zone programs. Results from the
automated EULA classification is presented together with a proto-
type implementation and a usability study of a software reputation
183

Stopping Privacy-Invasive Software Using Reputation and Data Mining
system. The main conclusion is that both automatic EULA classifi-
cation and a software reputation system can be combined into a
decision-support system for computer users.

10.1 Introduction

A powerful component in any business strategy is to gather infor-
mation about present or future customers. The company with the
most information about its customers and potential customers is
usually the most successful one [25]. This situation has given raise
to a parasitic market, where questionable actors focus on short time
benefits when stealing personal information for faster financial gain
by distributing spyware [7, 10, 20]. However, this group of software
differs from traditionally malicious software (malware) in that it is
not necessarily illegal, and that they can be linked to a certain com-
pany. To further complicate matters, the borders on both sides of
this grey-zone are vague and context dependent, and there is no
clear definition that accurately captures this problem. Spyware defi-
nitions either focus solely on stealing information, and therefore
miss additional functionality [20], or are too broad so that they
include unrelated software as well [3]. Due to this some have simply
abandoned the term spyware all together and replaced it with
another term, such as badware [43].

Without a clear definition of a threat it is hard to accurately address
it by implementing countermeasures. As a result users need to rely
on several countermeasure tools in parallel since none of them
stand on their own. In an attempt to mitigate this situation we
introduce the novel concept of privacy-invasive software (PIS), which
could be described as a category of software that ignores users’
right to be left alone and that is distributed with a specific intent,
often of a commercial nature that negatively affect its users [7]. This
categorization includes both legitimate and malicious software, as
well as the grey-zone in between. The goal with this classification is
to transform software in the intermediate grey-zone into either
legitimate or malicious software for each individual user. We intend
to do this by providing users with condensed information about a
software program’s behaviour using both automated EULA analysis
and a software reputation system. Based on this information, the
users can decide on whether or not they want to allow installation
of certain software on their computer.
184 Introduction

Stopping Privacy-Invasive Software Using Reputation and Data Mining
Today, the most commonly used method for users to give their con-
sent to software installations is by accepting the terms stated in the
End User License Agreement (EULA), which is shown during soft-
ware installation. However, users are not capable of comprehending
the content of these EULAs, since they are disclosed in a very legal,
formal, and lengthy manner [29]. Most users simply accept the
license agreements without reading through them first, and with the
risk of unknowingly allow illegitimate software to enter [27]. The
underlying problem is that software vendors don’t have any stand-
ardized and usable method for disclosing information to their cus-
tomers about their product’s implications on the user’s computer
system. So, what we want for any computer-user is to know what
they install and, with the help of aiding mechanisms, learn to distin-
guish between what they believe is acceptable and unacceptable
software, prior to any actual software is installed on their system.

The outline of this paper is as follows. First we start by shortly
describing traditional countermeasures in Section 10.2, and defining
privacy-invasive software in Section 10.3. Then we present the idea
of using automatic EULA classification in Section 10.4, and soft-
ware reputation systems to address the problem with PIS in Section
10.5. Next, in Section 10.6 we present the results from a number of
simulated scenarios of a software reputation system. In Section 10.7
we discuss our results and in Section 10.8 we make our conclusions
and state our future work.

10.2 Traditional Countermeasures

Traditionally the problem with harmful software came from a
rather small group of software with the primary goal to destroy
computer systems, often in the shape of computer viruses [40]. As a
counter reaction companies that created anti-virus tools to protect
computer-users from such threats emerged. Fortunate enough for
these anti-virus vendors their targets were clearly illegal and there-
fore separated from legitimate software in terms of legal aspects. So
removing malware was a question of technical acrobatics using the
resources and techniques available at the time [45]. However, this
situation changed during the late 1990s as a new group of software,
often referred to as spyware, emerged. One important reason for
this was that Internet began to reach the big masses, which resulted
in a new market for unscrupulous companies that began stealing
personal information for distributing targeted online advertise-
Traditional Countermeasures 185

Stopping Privacy-Invasive Software Using Reputation and Data Mining
ments. The consequence was that a grey-zone of software appeared
in between legitimate software and malware.

A complicating factor compared to the black and white situation
that existed before was that this grey-zone overlapped with the
group of legitimate software. In fact, what one user regards as a
useful product others could see as a spyware program. Due to this
subjective nature a static division between spyware and legitimate
software was not possible [7, 30], which resulted in problems for
the anti-virus companies. Their most commonly used technique for
combating malware was blacklisting through signatures, i.e. stati-
cally dividing between legitimate and malicious software. This
requires a copy of the malware to first be captured in the wild so a
unique signature can be created, and then being distributed to all
customers [45]. An obvious drawback with this approach was the
fact that the anti-virus tools were irreparably one step behind the
creators of malware, since they first had to find a copy of a malware
in the wild before any signature could be created. Another draw-
back was related to the vast amount of malware that spread on the
Internet, which made the signature databases grew rapidly resulting
in impractical scan-times on the customers’ side.

Anti-virus companies therefore began creating alternative tech-
niques for solving the problem. They for instance used agent-based
approaches [33, 37], and techniques from the area of artificial intel-
ligence, e.g. artificial neural networks [2, 30]. Another technique was
heuristic analysis that kept a suspicious program inside a sandbox,
such as a virtual machine, while monitoring its execution as a way to
discover any deviant behaviour [27, 48]. Even though this could be
done for computer viruses, e.g. by detecting the self-replication rou-
tines, it was much harder to distinguish spyware or adware pro-
grams from their legitimate counterparts. In the end, adware and
spyware programs simply show information on the screen or trans-
mit rather small quantities of data over the network interface, i.e.
behaviour that is shared by most legitimate programs as well.

As the amount of malware continued to increase on the Internet it
was proposed that white-listing could be a potential solution, since
the set of malicious software began to reach similar size as the set of
legitimate software. The basic principle is to pinpointing all legiti-
mate software so that everything else could be treated as malicious
[31]. Obviously, the problem here was exactly how to pinpoint all
legitimate software, and at the same time have safeguards that pre-
vent any malware or spyware program from sneaking in. One
186 Traditional Countermeasures

Stopping Privacy-Invasive Software Using Reputation and Data Mining
approach is for a trustworthy organization to scrutinize software
programs according to a list of predefined requirements, and then
add all software that fulfilled these requirements to a list of
approved software, e.g. TRUSTe’s Trusted Download Program [47].
However, the problem is that such scrutinizing is highly time-con-
suming and therefore costly, and as a result software vendors have
to pay for having their software analyzed and approved, which is
something that spyware vendors for obvious reasons are reluctant
to do. Another problem is the huge amount of new software that is
being released, which is more than a single group of experts can
manage on their own. It simply does not scale very well.

The bottom line here is that the above-mentioned techniques try to
statically divide software as either legitimate or not. However, for
the programs in the grey-zone this is impossible due to its subjec-
tive nature, i.e. any anti-virus company that removes or labels these
programs as spyware (or any of its synonyms) will still have unsatis-
fied customers (since some disagree) and they also risk legal retribu-
tions from the creators [41]. Especially since many of these spyware
companies make significant revenues, which they have no plan on
abandoning. This problem, in combination with the increasing
amount of malware on the Internet, renders techniques that focus
on static division unrealistic.

We therefore present automated EULA classification and a collabo-
rative software reputation system as a potential way forward. These
techniques do not try to make any trust-decisions for the users, but
instead create mechanisms that support the users when making
such decisions [23]. In the end it is up to the users to make the final
decision.

10.3 Privacy-Invasive Software

Our classification of privacy-invasive software (PIS) is a further
development of the work by Warkentin et al. [48]. The classification
consists of a matrix based on the combination of negative consequences
and the level of informed consent from the user. Our use of the term
informed consent is based on the work by Friedman et al. [16], and
in our classification the consent level is represented as a continua
spanning between full, medium and none. The negative conse-
quences are also represented as a continua spanning between tolera-
ble, moderate and severe. This results in a three-by-three matrix as
Privacy-Invasive Software 187

Stopping Privacy-Invasive Software Using Reputation and Data Mining
shown in Table 10.1, which represent the amount of negative con-
sequences on one axis and the amount of user consent on the other.
The shades of grey in Table 10.1 signify the difference in software
behaviour where darker tones represent increased levels of
unwanted behaviour.

Table 10.1 Classification of privacy-invasive software with respect to user’s
informed consent (full, medium and none) and amount of user’s
negative consequences (tolerable, moderate and severe).

Our classification of PIS in Table 10.1 presents three different
groups of software; the first has high user consent to provide its
service (top row); the second group include software that has some
kind of user consent but it does not correspond to the software’s
full behaviour (middle row); the last group include software that
does not have any consent from the user at all (bottom row). By
inspecting these three groups as software with PIS behaviour, we
can narrow down what types of software that should be regarded as
spyware, and which ones that should not.

The top row includes software that has received full permission
from the user, and where the behaviour is fully transparent towards
the user, i.e. they should be regarded as legitimate. Adverse software
does not include any covert behaviour, and the negative effects of
the double agents are fully transparent to the user, but the positive
effects of the software outweighs the negative effects so the users
chose to install it anyway [23].

The middle row includes software that has gained some sort of
consent from the user, but it was not based on an informed deci-
sion and should therefore be regarded as spyware. Requested semi-
transparent software includes components that the user is unaware
of, which then could introduce vulnerabilities to the user’s system.
Unsolicited software is requested software that covertly installs fur-
ther software components, i.e. users are unaware of the existence
and behaviour of these bundled components. Trojan horses include
188 Privacy-Invasive Software

Stopping Privacy-Invasive Software Using Reputation and Data Mining
covert functionality that causes major negative consequences for
the user, e.g. installation of a backdoor.

The bottom row includes any software that installs and executes
without any user consent at all, and should therefore be regarded as
malware. Covert software is software that secretly installs them-
selves on systems without causing any direct negative conse-
quences, but they might still include for instance vulnerabilities.
Semi-parasites are pushed on users when, for instance visiting Web
pages, e.g. by deceiving users into thinking these components are
needed to access the Web page. Parasites are a group of software
with severe negative consequences that gains entrance to the user’s
system without any consent at all from the user.

In our view spyware is located in the middle row in Table 10.1, i.e.
the grey-zone between legitimate software and malware. However,
this does not automatically define spyware as a lesser problem than
malware programs. Some of the most common problems associ-
ated with spyware include [1, 10, 18, 23, 34]:

• Displaying of unsolicited advertising content at varying fre-
quency and substance

• Personally identifiable information being covertly transmitted to
third parties

• Poor or non existing removal mechanisms
• Resources invested in recovering systems from such unsolicited

programs
• Settings and properties of other software being modified
• Third party software installation without user consent
• Unauthorized resource-utilization causing deteriorate system

stability

The main difference between spyware and malware is that spyware
present users with some kind of choice during the entrance into
their system [17]. This means that any software that installs itself
without asking for the user’s permission should no longer be
treated as spyware, but instead as malware. The difference between
legitimate software and spyware is based on the degree of user con-
sent associated with certain software, i.e. informed consent means
legitimate software and otherwise spyware. Hence, the problem
really boils down to the fact that computer users only have inaccu-
rate mechanisms to evaluate software’s degree of appropriateness to
enter their system.
Privacy-Invasive Software 189

Stopping Privacy-Invasive Software Using Reputation and Data Mining
In the following sections we present a number of mechanisms that
could aid users in their evaluation of software before allowing the
actual installation to proceed.

10.4 Automated EULA Classification

Spyware distributors usually disguise their software as legitimate to
reach as many users as possible. However, to avoid legal repercus-
sions they often mention in the End User License Agreement
(EULA) that spyware will indeed be installed. However, this infor-
mation is given in a way most users find hard to understand. Even
legitimate EULAs can be hard to fully comprehend due to their
length and the juridical terminology used. There exist a number of
tools that try to support the users in separating EULAs as either
legitimate or not. The state-of-the-art tools concerning EULA anal-
ysis rely on blacklists that are used for highlighting interesting sen-
tences in EULAs. Each user then has to read these sentences and
make up their mind about whether or not the program is legitimate
or not, i.e. the actual classification is left to the individual user.

We therefore propose the use of a fully automated EULA analyzer
should make use of text classification techniques and supervised
algorithms used in machine learning and data-mining. By compar-
ing a set of general accepted legal EULAs with another set of ques-
tionable EULAs, such text classifiers could find general patterns
outside the scope of black-listed words. The resulting text classifier
could then automatically classify previously unseen EULAs as
either “good” or “bad”, without having to depend on the user’s
own classification skill as is the case with today’s state-of-the-art
tools. In an experiment we evaluated 17 learning algorithms’ ability
to classify the 996 EULAs in our data set as either good or bad [29].
The EULA set that we collected included 900 legitimate and 96
spyware EULAs.

Within the data mining area the most widely used metric has tradi-
tionally been accuracy (ACC), which is defined as the number of cor-
rect classifications divided by the total number of classifications.
However, ACC gives erroneous results when used on unbalanced
data sets, i.e. classifying all 996 EULAs in our data set as legitimate
would render in an accuracy of just above 90%. As a result we
therefore need more suitable metrics. Two such examples are the
true positive rate (TPR) which also is called the hit rate, and the false
190 Automated EULA Classification

Stopping Privacy-Invasive Software Using Reputation and Data Mining
positive rate (FPR) which is the miss rate. Both TPR and FPR are
combined within the ROC curve, which plot the TPR on the Y-axis
and the FPR on the X-axis, i.e. a graph that specifies the amount of
correct hits versus false alarms [19]. In many experiments the inte-
gral of the ROC curve, also called the Area under the ROC Curve
(AUC), is used as the main metric since it is independent of both
class distribution and misclassification costs [50]. When evaluating
the algorithms, we relied on 10 times 10-fold cross validation for
dividing the data set into 10 pairs of training and testing data. The
algorithms were trained using the 10 training data sets respectively,
while each time being tested using the data in the remaining fold
[50]. This whole process was then repeated 10 times with different
selection of instances between training and testing data in each iter-
ation.

Finally it is also important to point out that the cost of misclassifi-
cation is different for the two classes (good and bad), since classify-
ing a bad EULA as good is worse than classifying a good EULA as
bad. In a decision support system the first case would mean that the
user installs software with questionable behaviour, while in the sec-
ond case the user would think twice before installing the legitimate
software, and maybe even try to find an alternative to that particular
software.

10.4.1 Results

Table 10.2 includes the results from the experiment together with
the different metrics. These results reveal that Naive Bayes Multino-
mial was the best performing algorithm with an ACC of 0.939 and
an AUC of 0.926. The FPR translated into absolute numbers mean
that the Naive Bayes Multinomial algorithm classified 17 out of 96
bad EULAs as good, while the TPR mean that 856 out of the 900
good EULAs were really classified as good. These results could be
compared with the worst behaving algorithm for this particular
task, i.e. KStar with a TPR of 1.00 (no good EULAs classified as
bad), and a FPR of 0.926 which means that 89 of the 96 bad
EULAs were classified as good. Even though the results in Table
10.2 are limited due to the high levels of FPR most of the evaluated
algorithms still perform significantly better than the state-of-the-art
tool available on the Internet. In fact 10 out of the 17 investigated
algorithms in Table 10.2 showed significantly better results than the
state-of-the-art tool based on a two-tailed t-test with a significance
interval of 0.05.
Automated EULA Classification 191

Stopping Privacy-Invasive Software Using Reputation and Data Mining
Table 10.2 Results from experiment evaluating 17 [32] learning algorithms
ability to classify EULAs as either belonging to legitimate or
spyware-infested programs.

10.5 Software Reputation System

Reputation systems include an algorithm that allows members of a
community, such as eBay.com, to estimate other members’ behav-
iour before committing in any interaction [29]. A collaborative rep-
utation system presents an interesting method to address PIS by
collecting the experience from previous users’ knowledge regarding
software. While techniques such as third party certification or soft-
ware deeds aim at increasing user awareness, reputation systems
instead collect and refine user experiences. Such experiences are
then used in a collaborate manner to inform users about the general
opinion that exist for a specific software prior to the installation.
The fundamental idea is that users make more accurate trust deci-
sion when incorporating such information.

Users’ experiences are collected in the form of ratings and com-
ments for the software that they frequently use, but the system
could also allow the users to include additional information in their
software reviews, e.g. whether they decide to install the software or
not which then can be compiled into statistics that is presented to
future users. All collected information from the users are then proc-
essed and transformed by the reputation system into software repu-
192 Software Reputation System

Stopping Privacy-Invasive Software Using Reputation and Data Mining
tations. These reputations are shown to subsequent users that wish
to install software; providing them with a collective view of the
software, e.g. what previous users’ has thought about the software
and whether or not they decided to install it.

There are a number of aspects that we took into consideration
when designing our prototype that was to gather, store and present
information from multiple, unknown users. Although the system
was set up for a clear purpose; individual users, or groups of users,
may find it more interesting to – for instance – intentionally enter
misleading information to discredit a software vendor they dislike;
use multiple computers in a distributed attack against the system to
fill the database with bogus votes; enter irrelevant or indecent com-
ments; and so on. The problem with poor input to the system is not
only posed by users with a malicious intent, but also come from
users voting and leaving feedback on programs they know nothing
or little about. Even though this is a rather big problem for a soft-
ware reputation system we mitigate the problem by incorporating
individual trust factors that express each user’s trustworthiness
within the reputation system.

Furthermore we incorporate a meta-reputation system that allow
users to rate the feedback of other users in terms of helpfulness,
trustworthiness and correctness, which then is used for creating a
reliability profile for each user. This profile could be thought of as a
trust factor (TF) that is used to weight the ratings of different users,
making the votes and comments of well-known, reliable users more
influential than those of new users, i.e. amplifying the input from
experienced users. Another important parameter within the reputa-
tion system is the TF-limit, which defines the maximum TF that can
be reached. High TF-limits allow one expert user to compensate for
a larger number of normal users, but on the other hand this gives
single users considerable power within the system leading to insta-
bility and a threat from malicious actors. This is further investigated
in the next section about simulation of a software reputation sys-
tem.

A very important consideration for a software reputation system is
the concept of the system users’ privacy [45]. Since such a reputa-
tion system utilize sensitive information, e.g. what software users
install, makes it crucial that privacy concerns are seriously
addressed. Therefore the protection of peoples’ privacy has been
highly prioritized during both system design and implementation so
that the system itself does not intrude on users’ privacy more than
Software Reputation System 193

Stopping Privacy-Invasive Software Using Reputation and Data Mining
absolutely necessary. Unfortunately there must be some degree of
privacy-invasion since the system needs to make sure that no user
votes more than once for a particular software. So we cannot get rid
of the concept of users and user accounts. However, the reputation
system can be designed to ensure that all kinds of interesting infor-
mation for an attacker (e.g. IP addresses, e-mail addresses, names,
addresses, etc.) are excluded from the user information stored in the
database on the reputation system servers. The only thing necessary
to store is some kind of unique identifier such as an e-mail address.

Due to privacy concerns we don’t want to store the users’ e-mail
addresses in the central database since it creates a link back to the
individual user. We therefore only use the e-mail address for verifi-
cation purposes when a new account has been created, and from
thereon the system instead keeps a hash value while the e-mail
address itself is removed. The hash digests are then used for pro-
hibiting the same e-mail address being used for more than a single
user account. Concerned users’ could also safeguard their anonym-
ity by utilizing distributed anonymity services, such as Tor, for all
communication between the client and the server [36]. This would
further increase user’s privacy by hiding their IP address from the
reputation system owner.

10.5.1 Prototype Implementation

Our prototype reputation system was implemented using a client
server architecture where the client is responsible for gathering user
input and for detecting new software on the users’ computer, while
the server handles reputation calculations and distributing them to
the clients. The client software integrates tightly with the Windows
XP operating system by hooking the API call that is invoked when
the Windows kernel tries to allocate memory for a starting pro-
gram. This way the client software starts every time the user exe-
cutes a software program, even if it is previously unknown by the
client. When this happens the client generates that particular pro-
194 Software Reputation System

Stopping Privacy-Invasive Software Using Reputation and Data Mining
grams identifier (e.g. a SHA-512 hash digest) and then requests the
reputation for that particular identifier.

Figure 10.1 The Graphical User Interface from our prototype that presents the
software reputations to users.

When the server receives a reputation request it looks up that par-
ticular software in the database and returns a reputation summary.
The client then displays the reputation information using the GUI
as shown in Figure 10.1. The reputation includes a rating for that
particular software program together with a collective rating for the
software vendor, which is based on all software programs being
developed by that particular vendor. The GUI also includes text
comments as well as statistics of suggested malicious behaviour that
have been shared by previous users, e.g. if the program display pop-
up ads or degrades performance. There are also two diagrams
showing how many of the previous users that either allowed or
denied the program to execute, one diagram for the previous week
and another with statistics over the previous month. There is also a
possibility to add software to either a black- or a white-list to avoid
interrupting the user with further questions, i.e. it will be automati-
cally blocked or accepted in the future.

Users’ input is gathered using a similar GUI that allows them to rate
the software on the discrete scale (1-10 inclusive). This rating is
mandatory, but there are also optional fields that allow the users to
write comments and answer questions about predefined types of
malicious software behaviour. Hence, the quickest rating of pro-
Software Reputation System 195

Stopping Privacy-Invasive Software Using Reputation and Data Mining
gram requires the user to just decide on a rating and then submit,
which shouldn’t take more than a couple of seconds of the users
time. For users that want to submit extended information about a
particular program there are such optional possibilities as well.

10.5.2 Usability Study

In an experiment we allowed 51 users to install five different soft-
ware programs both with and without the assistance of our soft-
ware reputation system. The goal of the experiment was to measure
to what degree a reputation system impact computer users’ deci-
sions during software installation. Each user therefore first installed
all five software with the reputation system disabled, i.e. they did
not receive any feedback on the software being installed. For each
software that was installed, the subjects were asked a number of
survey questions. When all five software programs were installed
the software reputation system was enabled and the users were
asked to install the five software programs again, but this time they
should take each software’s reputation into account, as presented in
Figure 10.1.

The experiment was designed in a “one factor and two treatments”
fashion [35], where the factor was users’ decisions concerning soft-
ware installation, and the treatments were how and to what extent
these decisions were affected by either having access or not having
access to the reputation of these programs. When the reputation
system was disabled the users had to decide whether or not to
install the software based on their gut feeling and possible clues that
might be available in the programs’ installation routines, but when
the reputation system was enabled they could instead base their
decision on this information.

Two of the five software programs were legitimate, while the other
three were bundled with spyware. Also, one of the spyware-bundled
and one of the legitimate programs were well known, while the
remaining three were not. It was therefore expected that some of
the subjects should have a clear opinion about these two programs
based on first hand experience, but not about the remaining three.

The experiment was conducted in a closed environment in the
Security Lab at Blekinge Institute of Technology and all subjects
worked individually during the experiment. We chose subjects with
firm understanding in both computer security and spyware by using
196 Software Reputation System

Stopping Privacy-Invasive Software Using Reputation and Data Mining
a convenience sampling strategy. Out of the 51 subjects, 43 were
selected from the Bachelor program in Security Engineering. The
remaining 8 subjects were selected from various Masters programs
within Computer Science and Software Engineering. Since we
deliberately selected subjects with firm computer security under-
standing we argue that average computer users would show even
worse results in detecting spyware programs without the assistance
from any aiding mechanisms, i.e. average computer users would
benefit from a software reputation system to greater extent than the
subjects in our experiment.

As briefly mentioned the experiment included a Web-based survey
as a way of gathering data from the subjects. We chose to use a
Web-based tool since it provides simple graphical user interface that
is easily understandable by the subjects. For each software the users
installed they had to answer survey questions about whether or not
they:

• were familiar with the software
• thought the software were legitimate
• suspect that the software conveys negative consequences
• would allow the software to be installed on their own computer.

By measuring the difference in the subjects answers when the repu-
tation system was disabled compared to when it was enabled, we
could identify to what extent the reputation system affect the users’
decision-making during software installation. In the next section we
present the results from the experiment.

In the first stage of the experiment we asked the subjects regarding
their knowledge about spyware and whether or not they had had
any first hand negative experience from such software. It turned out
that 63% of the subjects had good or very good knowledge about
spyware programs, while 27% were neutral and 10% thought they
weren’t that educated about spyware. Also, 52% of the subjects had
had first-hand experience from the negative effects associated with
spyware, while 24% were neutral and 24% had no such experience.
Finally, 88% of the subjects were either concerned or very con-
cerned about the consequences from spyware, while the remaining
12% were neutral in this regard.

After trying the prototype of the software reputation system 92%
of the subjects thought the information the system provided was
Software Reputation System 197

Stopping Privacy-Invasive Software Using Reputation and Data Mining
either helpful or very helpful during software installation, while 4%
were neutral and the remaining 4% did not find the information
useful.

Table 10.3 show the percentage of subjects that allowed and denied
software installation, both with and without the software reputation
system (SRS) enabled. Without any software reputation system on
average 28% of the subjects allowed spyware programs to install,
which was lowered to just over 5% when the subjects were pro-
vided with feedback from the reputation system. At the same time
44% on average allowed all legitimate programs to install when not
presented with the software’ reputations, which increased to 79%
when assisted by the software reputation.

Table 10.3 Percent of subjects that allow or deny software installation both
with and without the software reputation system (SRS) enabled.

The subjects’ influence by the software reputation system was more
extensive for the first three programs in Table 10.3, while it
decreases for Italian Soccer and WinZip. This can be described by
the fact that WinZip is a widely known utility program with around
200 Million downloads from Download.com, which explains why
92% of the subjects were already familiar with the program. There-
fore 82% of the subjects decided to install WinZip without any
assistance from the reputation system. Italian Soccer was only
known by 2% of the subjects. However, the installation process of
the program includes some quite obvious clues that this program is
questionable that explains why only 2% agreed to install the pro-
gram.

10.6 Simulation of Software Reputation System

We have implemented a simulator in Java to investigate scenarios
concerned with the usage of a software reputation system [6]. The
simulator is deterministic which means that it is possible to rerun
scenarios several times and always reach the same results, or more
interestingly to change a certain variable in the scenario setup and
be sure that the changes in the end-result are due to the alteration
198 Simulation of Software Reputation System

Stopping Privacy-Invasive Software Using Reputation and Data Mining
of that particular variable. The scenarios simulated are mainly con-
cerned with the effects that user demography has on system accu-
racy, i.e. whether a few experts can compensate for a larger group
of normal users with limited expertise. The simulator can simulate
groups of malicious users that are engaged in attacks on the system
accuracy, e.g. through Sybil attacks [16]. Simulating such scenarios
allows us to identify what system configurations that provides a well
behaving system for different user demographics, and what level of
malicious users the system can withstand.

Each software being simulated is associated with a “correct” rating
that is used for evaluating the accuracy of a simulated scenario. The
evaluation consists of summarizing the absolute distance between
each software’s correct rating and its weighted average rating, and
finally dividing the sum with the total number of software being
simulated. We refer to the resulting value as the evaluation score (ES)
that represent the average distance between all programs correct
rating and actual rating. An ES of 0.0 therefore mean that the soft-
ware reputation system on average provides its users with ratings
that are right on target.

In the simulations we divide all users into three groups based on
their accuracy in rating software, and to some extent their technical
knowledge. Each user simulated belongs to exactly one of these
groups, which determines the users voting variance (or error rate),
i.e. the probability of rating software at some distance away from its
correct rating. Each group’s voting variance lies within the interval
[+5, -5] inclusive. Expert users rate software correctly 50% of the
occasions, and in the remaining part rate the software either one
step below or above its correct rating, i.e. the expert users always
manage to rate a software within a 3 step wide window around its
correct rating. The second group is the average users that tries to
rate software correctly, but with lesser accuracy than the experts, i.e.
they rate up to 3 steps above or below the correct rating due to lack
of skills to an increasing extent. Still an average user is better than a
novice user that has an error margin of 5 steps above or below the
correct rating.

Even worse than the novice users are the malicious users that have
a list of targeted software to attack, and their goal is to either boost
or zero-out the reputation of targeted software. Malicious users
begin by first building up their trust within the system, i.e. increas-
ing their trust factor (TF), by legitimately rating other software
within the system before starting to attack the targets. After the
Simulation of Software Reputation System 199

Stopping Privacy-Invasive Software Using Reputation and Data Mining
malicious users have increased their TF they begin mixing malicious
votes on the targeted software with legitimate votes for any other
software.

10.6.1 Results

To find suitable configuration settings for the SRS we simulated dif-
ferent configurations while measuring the accuracy within the sys-
tem. One important configuration setting that we simulated was the
factor that modifies the users’ TF either up or down depending on
how accurate the vote is, e.g. 1.25 which means a user’s TF would
either increase or decrease with a factor of 1.25 based on that user’s
vote accuracy. Another configuration setting that we simulated was
the TF-limit that specifies the maximum TF allowed within the
SRS. Generally we want to have an as high TF-limit as possible to
amplify the impact from a few experts so they compensate for a
larger group of less skilled users. However, at the same time we
don’t want a small group of users to have a too high TF; since this
would give them too much control over the total outcome within
the SRS, and it can be exploited by malicious actors. Figure 10.2
shed some light on this trade-off by plotting different TF-limits in
combination with different modification factors for the TF.

Figure 10.2 Simulation results showing system accuracy at various modification
factors of the TF and different TF-limits.

Figure 10.2 show that the optimal setting of the TF-limit (within the
simulated scenario) is when an unlimited TF is used, i.e. when no
limit exists. Unfortunately such a setting would not work in practice
since the TF of the expert users quickly reach astronomical propor-
tions, giving a small number of users huge impact within the sys-
tem, which can be misused. Based on the results in Figure 10.2 we
therefore recommend that a TF-limit of 1000 is used in combina-
tion with a TF modification factor of 1.25. In another scenario we
simulated how different proportions within the three user groups
200 Simulation of Software Reputation System

Stopping Privacy-Invasive Software Using Reputation and Data Mining
would affect the system accuracy, e.g. what impact halving the
number of experts would have on the system accuracy. We there-
fore simulated the baseline of 9.4% experts, 27.0% average, and
63.6% expert users, in combination with doubling and halving the
number of expert and average users. The result of these simulations
can be seen in Figure 10.3 below.

Figure 10.3 Simulation results showing how user demography affects the
system accuracy.

Figure 10.3 show that all three scenarios end up with approximately
the same accuracy when each user has voted 48 times. When a
larger proportion of experts is included the accuracy increases more
rapidly. Even if the proportion of experts within the system is
below 5% it is still possible to reach acceptable system accuracy
within the SRS.

We also simulated groups of malicious actors with the goal of either
increasing or decreasing the reputation of certain targeted software
within the SRS. These simulations included 0.1%, 1.0%, 5.0% and
10% malicious users out of the total population of one million
users. The goal of the malicious users was to stage a collaborative
Sybil attack against the same 1000 targeted software by decreasing
their reputation. The malicious users were modelled so they
wouldn’t start voting maliciously until they had increased their TF
by first voting legitimately on other software within the SRS (this
threshold was 50% of the TF-limit of 1000), i.e. they would act as
normal users with only brief exceptions where malicious votes are
casted on the targeted software.

The results in Figure 10.4 show that a TF-limit of 1000 quickly
deviates the reliable software rating with increasing number of mali-
cious users present. While larger TF-limits would show a delayed
deviation of the rating, i.e. after one to two years when each user is
simulated to vote twice a month. This means that we either need to
limit the growth rate of the users TF or restrict the number of votes
Simulation of Software Reputation System 201

Stopping Privacy-Invasive Software Using Reputation and Data Mining
available for each user. However, we do not need to discriminate
the voting behaviour of malicious users since reputation systems
with large TF-limits will withstand severe Sybil attacks from a fairly
high proportion of malicious users (in this scenario between 0.1-
1.0%).

Figure 10.4 A directed attack against 1000 pre-selected software where a
population of 0.1, 1.0, 5.0 and 10% malicious users first establish a
reputation in the system and then start a Sybil attack.

10.7 Discussion

In major operating systems today, e.g. Microsoft Windows, software
installations is carried out in an ad-hoc manner, which expects the
user to know what she is doing. A common scenario is when the
user retrieves a software package from an unknown Web site, and
then executes it on the system. The disadvantage with this installa-
tion process is the lack of control over what software that enters the
system. Also, the instrumentation that allows users to evaluate the
software prior to the actual installation is inaccurate or non-existing.
Without such instrumentation it is troublesome, if not impossible,
for the users to give an informed consent for the software to enter
their system. However, if countermeasures based on a software rep-
utation system and automatic EULA classification was used they
would increase users’ awareness about software. This would trans-
form the PIS classification so that any software that presents com-
plete and correct information to the user during the installation is
represented as one of the three legitimate software types on the top
row in Table 10.4. Exactly which one depends on their behaviour
and consequences for the system, and its user. All types of software
that currently is targeted by traditional anti-spyware mechanisms are
either removed by the introduction of the preventive mechanisms,
or are fully covered by anti-virus tools. As a result both anti-spy-
ware and anti-virus tools will join up in combined tools that address
the software represented on the bottom line in Table 10.4.
202 Discussion

Stopping Privacy-Invasive Software Using Reputation and Data Mining
Table 10.4 Transformation of PIS matrix as a consequence of users having
access to automatic EULA classifications and a software reputation
system.

By using the information about software given by the countermeas-
ures it is possible for users to decide on which software they regard
as acceptable and which they don’t. In other words, there exist a
possibility of individual adjustment based on personal preferences,
i.e. each user can decide which of the software types on the full
informed consent row that they allow to be installed. The pros and
cons for a single software are entirely up to the user to decide
about. However, any software not playing by the rules, in terms of
properly announcing their intent prior to the installation should
rightfully be targeted and handled by anti-virus tools. This imply
that anti-virus tools should not only target software that use
exploitable system vulnerabilities to gain entrance to systems, but
also software that deceive users about their business by using infe-
rior user disclosure. From this follows that anti-virus mechanisms
should handle any software not subordinate to the rules of com-
plete prior disclosure and consent from the users. Any dishonest
software slipping through the anti-virus tools’ detection would
impact a few initial systems. Then affected users would downgrade
the responsible software via the reputation system so that subse-
quent users are more restrictive. Over time the reputation will catch
up on these questionable software vendors, forming a future deter-
rent effect.

As an analogy it is interesting to discuss how the food industry
looked like in the end of the 19th century, when customers had
great problems evaluating food products due to the flourishing dis-
tribution of “snake-oil” product [46]. Such products claimed to do
one thing, for example to grow hair, while they instead made unwit-
ting consumer addicted to habit-forming substances like cocaine
and alcohol. In 1906 the Pure Food and Drug Act was introduced
in the United States, which made it possible to punish any food
manufacturer according to the law if not complying with the rules.
As a consequence the manufacturers followed these rules, allowing
Discussion 203

Stopping Privacy-Invasive Software Using Reputation and Data Mining
consumers to trust the information on the food container to be
correct.

This further allowed customers to make informed decisions on
whether they should consume a product or not, based on their indi-
vidual preferences and by taking for instance nutrition, allergies,
degree of fat and sugar into account. As long as the food does not
include dangerous substances or use deceptive descriptions it is up
to the consumer to make the final decision.

By creating a distributed control system based on software reputa-
tions it is possible to provide information about software to the
users. Based on this information users can decide exactly what soft-
ware they regard as legitimate according to their own preferences,
and allow only that software to enter their computer. However, it
would also be possible for the users to create their own installation
policies that automatically evaluate every software being installed.
Such policies could for instance take into account:

• the software’s overall rating;
• if any negative effects that are unacceptable for the user have

been reported;
• if the software is cryptographically signed by a legitimate soft-

ware vendor;
• the outcome from the EULA classification.

Using these constructs makes it possible to create a policy that
trusts any software from certain vendors using digital signatures
[44]. However, since far from all software vendors sign their soft-
ware it would also be interesting for the users to include the overall
rating in the policy. By specifying a certain threshold, users could
signal that they only trust software that has an overall rating above
that particular threshold. This could also be extended by taking into
account whether a majority of the users has reported any unaccept-
able behaviour for the software, e.g. that it lacks a functioning unin-
stall routine. It would furthermore be possible to include the
outcome from the automatic EULA classification in the installation
policy. That way, only software with a legitimate EULA is allowed
to be installed on the computer. In any borderline case it would of
course also be possible to ask the user for his opinion, but such user
interaction should be kept to a minimum since many users find it
204 Discussion

Stopping Privacy-Invasive Software Using Reputation and Data Mining
annoying. In Figure 10.5 below we present a pseudo policy as an
example of this technique.

Figure 10.5 Example of installation policy in pseudo code.

The example policy in Figure 10.5 denies any program from being
installed if it has been marked with one or more behaviours that the
user has specified as unacceptable in the local policy, e.g. showing
pop-ups. For any other software it is allowed to install if it is signed
by one of the vendors trusted by the user, or if the software has
both a rating that is 7.5 or higher and includes a EULA that has
been found to be legitimate. If the software has a lower rating or
does not includes a legitimate EULA, the user is asked to manually
allow or deny the software to be installed. At this point the user
could also be given a summary of the software’s reputation and
results from the EULA classification. However, in many cases the
installation policy would verify the software without any interaction
from the user at all.

If this kind of decision support system for software installation
based on software reputations and automatic EULA classification
was used the users would experience the following three benefits:

• a customizable lowest level with regard to software behaviour
that is accepted for software on their computer;

• a basis on which software behaviour and consequence can be
evaluated prior to any software installation and system modifi-
cation;

• possibilities for users to define individual software preferences,
which allow for transparent decision making that decrease the
need for user interaction.

Today most users are incapable of protecting themselves from grey-
zone programs and therefore have to either trust inaccurate anti-
spyware tools, or try to carry out time-consuming online investiga-
Discussion 205

Stopping Privacy-Invasive Software Using Reputation and Data Mining
tions to determine if a software is legitimate or not. Compared to
this situation we believe many computer users would be greatly
benefited by the techniques we propose.

10.8 Conclusions and Future Work

Users need to know what software they install, and learn how to
distinguish between acceptable and intolerable software, a priori to
any software installation. Everyone should be presented with accu-
rate and condensed information about the software’s function
before the installation process begins. We argue that additional
mechanisms that safeguard user’s informed consent are required.

The concept of privacy-invasive software, PIS, together with two
countermeasure techniques is introduced. We classify PIS using a
matrix, where tolerable, moderate and severe negative conse-
quences where matched against full, medium and none informed
consent. A decision support system for software installation based
on software reputations and automatic EULA classification is pro-
posed. Our simulation indicates that software reputation systems
would be helpful even in the presence of malicious users, conduct-
ing a Sybil attack, if they are kept low (below 1% of the population)
or their number of votes is restricted. Automated EULA classifica-
tion use data mining and text classification techniques that are capa-
ble of classifying previously unseen EULAs as either good or bad.

In the future, software behaviour may be investigated by analyzing
users search patterns on e.g. Google. Recently query data were used
for detecting influenza epidemics by comparing high ranked search
queries with surveillance data [21]. In our setting undefined pro-
grams show traces of good or bad behaviour depending on the
“collective intelligence” of users formulating search query data. For
this to take place, a future investigation including a participating
search engine is necessary. So it could be possible for computer
users to combine an automatic EULA analysis, a semi-automatic
reputation system, and a “query analyzer” when making informed
decisions regarding PIS.
206 Conclusions and Future Work

Stopping Privacy-Invasive Software Using Reputation and Data Mining
10.9 References

[1] W. Ames, “Understanding Spyware: Risk and Response”, in the
IEEE Computer Society, Volume 6, Issue 5, 2004.

[2] W. Arnold and G. Tesauro, “Automatically generated Win32 heuris-
tic virus detection”, in the Proceedings of the 10th International Virus
Bulletin Conference, Orlando USA, 2000.

[3] Anti-Spyware Coalition, http://www.antispywarecoalition.org, Last
checked: 2010-03-11.

[4] AOL/NCSA Online Safety Study, http://www.staysafeonline.org,
2010-03-11.

[5] K. P. Arnett and M. B. Schmidt, “Busting the Ghost in the
Machine”, in Communications of the ACM, Volume 48, Issue 8, 2005.

[6] M. Boldt, A. Borg, and B. Carlsson, “On the Simulation of a Soft-
ware Reputation System”, in the Proceedings of the International Confer-
ence on Availability, Reliability and Security (ARES), Krakow Poland,
2010.

[7] M. Boldt and B. Carlsson, “Analysing Privacy-Invasive Software
using Computer Forensic Methods”, ICSEA, Papeetee, 2006.

[8] M. Boldt, B. Carlsson, T. Larsson, N. Lindén, “Preventing Privacy-
Invasive Software using Online Reputations”, in Lecture Notes in
Computer Science, Volume 4721, Springer Verlag, Berlin Germany,
2007.

[9] J. Bruce, “Defining Rules for Acceptable Adware”, in the Proceedings
of the Fifteenth Virus Bulletin Conference, Dublin Ireland, 2005.

[10] S. Byers, L.F. Cranor, and D. Kormann, “Automated Analysis of
P3P-Enabled Web Sites”, in the Proceedings of the Fifth International
Conference on Electronic Commerce (ICEC2003), Pittsburgh USA, 2003.

[11] Center for Democracy &Technology, “Following the Money”,
http://www.cdt.org, 2010-03-11.

[12] E. Chien, “Techniques of Adware and Spyware”, in the Proceedings of
the Fifteenth Virus Bulletin Conference, Dublin Ireland, 2005.

[13] Clearware.org, http://www.clearware.org, 2010-03-11.

[14] L. F. Cranor, “Giving notice: why privacy policies and security
breach notifications aren't enough”, in IEEE Communications Maga-
zine, Vol. 43, Issue 8, 2005.

[15] L. F. Cranor, “P3P: Making Privacy Policies More Useful”, in the
IEEE Security & Privacy, Volume 1, Issue 6, 2003.
References 207

Stopping Privacy-Invasive Software Using Reputation and Data Mining
[16] L. F. Cranor, “Security and Usability”, O’Reilly, Sebastopol, 2005.

[17] J. Douceur, “The sybil attack”, in the Proceedings of the 1st International
Workshop on Peer-to-Peer Systems (IPTPS), 2002.

[18] Earthlink Spy Audit, http://www.earthlink.net/spyaudit/press/,
2010-03-11.

[19] Fawcett T (2003) ROC graphs – notes and practical considerations
for data mining researchers. Tech. Rep. HPL-2003-4, Intelligent
Enterprise Technologies Laboratories, Palo Alto, CA, USA.

[20] FreeBSD Ports, http://www.freebsd.org/ports/, 2010-03-11.

[21] B. Friedman, et. al., “Informed Consent Online: A Conceptual
Model and Design Principles”, CSE Technical Report, University of
Washington, 2000.

[22] Gibson Research Corporation, “OptOut – Internet Spyware Detec-
tion and Removal”, 2010-03-11.

[23] J. Ginsberg et al., “Detecting influenza epidemics using search
engine query data”, in Nature, Volume 457, Issue 7232, 2009.

[24] N. Good, et. al., “Stopping Spyware at the Gate: A User Study of
Privacy, Notice and Spyware”, in the Proceedings of the Symposium on
Usable Privacy and Security, Pittsburgh USA, 2005.

[25] N. Good et al., “User Choices and Regret: Understanding Users’
Decision Process about Consentually Acquired Spyware”, in S/A
Journal of Law and Policy for the Information Society, Volume 2, Issue 2,
2006.

[26] S. Görling, “An Introduction to the Parasite Economy”, in EICAR
2004, Luxemburg, 2004.

[27] G. Jacob, H. Debar, E. Filiol, “Behavioral Detection of Malware:
from a Survey Towards an Established Taxonomy”, in Journal in
Computer Virology, Volume 4, Issue 3, 2007.

[28] A. Jacobsson, M. Boldt, and B. Carlsson, “Privacy-Invasive Soft-
ware in File-Sharing Tools”, in Proceedings of the 18th IFIP World Com-
puter Congress, Toulouse France, 2004.

[29] A. Jøsang, et al., “A Survey of Trust and Reputation System for
Online Service Provision”, in Decision Support Systems, Volume 43,
Issue 2, 2007.

[30] J. O. Kephart, “Biologically inspired defenses against computer
viruses”, in the Proceedings of the 14th International Joint Conference on
Artificial Intelligence (IJCAI’95), Montreal Canada, 1995.
208 References

Stopping Privacy-Invasive Software Using Reputation and Data Mining
[31] Lavasoft, http://www.lavasoftusa.com, 2010-03-11.

[32] N. Lavesson, M. Boldt, P. Davidsson and A. Jacobsson, “Learning
to Detect Spyware Using End User License Agreements”, in Knowl-
edge and Information Systems, Springer, to appear.

[33] J.S. Lee, J. Hsiang and P.H. Tsang, “A Generic Virus Detection
Agent on the Internet”, in Proceedings of the Thirtieth Hawaii Interna-
tional Conference on System Sciences, Wailca HI, 1997.

[34] S. Mansfield-Devine, “The Promise of Whitelisting”, in Network
Security, Volume 2009, Issue 7, 2009.

[35] D. M. Martin Jr, et. al., “The privacy practices of Web browser
extensions”, in Communications of the ACM, Volume 44, Issue 2,
2001.

[36] Moshchuk, et. al., “A Crawler-based Study of Spyware on the Web”,
in the Proceedings of the 13th Annual Network and Distributed System
Security Symposium (NDSS 2006), San Diego CA, 2006.

[37] T. Okamoto and Y. Ishida, “A Distributed Approach to Computer
Virus Detection and Neutralization by Autonomous Heterogene-
ous Agents”, in the Proceedings of the 4th International Symposium on
Autonomous Decentralized Systems (ISADS'99), Tokyo Japan, 1999.

[38] C. Robson, “Real World Research, 2nd Edition”, Blackwell Publishing,
Malden MA, 2008.

[39] Schneier, “Inside risks: semantic network attacks”, in Communications
of the ACM, Volume 43, Issue 12, 2000.

[40] Shapiro and H. R. Varian, “Information Rules – A Strategic Guide to the
Network Economy”, Harvard Business School Press, Boston Massa-
chusetts, 1999.

[41] S. Shukla and F. F. Nah, “Web Browsing and Spyware Intrusion”, in
Communications of the ACM, Volume 48, Issue 8, 2005.

[42] J. C. Sipior, “A United States Perspective on the Ethical and Legal
Issues of Spyware”, in Proceedings of Seventh International Conference on
Electronic Commerce, Xi’an China, 2005.

[43] E. Skoudis,“Malware – Fighting Malicious Code”, Prentice Hall PTR,
Upper Saddle River NJ, 2004.

[44] “Spyware”: Research, Testing, Legislation, and Suits, http://
www.benedelman.org/spyware/, 2010-03-11.

[45] S. Steinbrecher, “Design Options for Privacy-Respecting Reputa-
tion Systems within Centralised Internet Communities”, in Proceed-
ings of the 21st IFIP SEC 2006, Karlstad Sweden, 2006.
References 209

Stopping Privacy-Invasive Software Using Reputation and Data Mining
[46] StopBadware.org, http://www.stopbadware.org, 2010-03-11.

[47] W. Sun et al., “Expanding Malware Defense by Securing Software
Installations”, in Lecture Notes In Computer Science, Volume 5137,
Springer Verlag, Berlin Germany, 2008.

[48] P. Szor, “The Art of Computer Virus Research and Defence”, Pearson
Education, Upper Saddle River NJ, 2005.

[49] Technology Review – The Pure Software Act of 2006, http://
www.simson.net/clips/2004/2004.TR.04.PureSoftware.pdf, 2010-
03-11.

[50] TRUSTe – The Trusted Download Program (Beta), http://
www.truste.org/trusteddownload.php, 2010-03-11.

[51] M. Warkentin, et al., “A Framework For Spyware Assessment”, in
Communications of the ACM, Volume 48, Issue 8, 2005.

[52] Webroot Software, “State of Spyware – Q3 2005”, http://www.web-
root.com/resources/, 2010-03-11.

[53] I. H. Witten, and E. Frank, “Data Mining – Practical Machine Learning
Tools and Techniques”, Elsevier, San Francisco CA, 2005.
210 References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

