
Appeared in “Advances in Cryptology — AUSCRYPT’92,” Lecture Notes in

Computer Science, Vol.718, pp.83-104, Springer-Verlag, 1993.

HAVAL — A One-Way Hashing Algorithm
with Variable Length of Output

(Extended Abstract)

Yuliang Zheng ?, Josef Pieprzyk ?? and Jennifer Seberry ???

Department of Computer Science
University of Wollongong, Wollongong, NSW 2522, Australia

E-mail: {yuliang, josef, jennie}@cs.uow.edu.au

Abstract. A one-way hashing algorithm is a deterministic algorithm
that compresses an arbitrary long message into a value of specified length.
The output value represents the digest or fingerprint of the message. A
cryptographically useful property of a one-way hashing algorithm is that
it is infeasible to find two distinct messages that have the same digest.
This paper proposes a one-way hashing algorithm called HAVAL. HAVAL
compresses a message of arbitrary length into a digest of 128, 160, 192,
224 or 256 bits. In addition, HAVAL has a parameter that controls the
number of passes a message block (of 1024 bits) is processed. A message
block can be processed in 3, 4 or 5 passes. By combining output length
with pass, we can provide fifteen (15) choices for practical applications
where different levels of security are required. The algorithm is very
efficient and particularly suited for 32-bit computers which predominate
the current workstation market. Experiments show that HAVAL is 60%
faster than MD5 when 3 passes are required, 15% faster than MD5 when
4 passes are required, and as fast as MD5 when full 5 passes are required.
It is conjectured that finding two collision messages requires the order of
2n/2 operations, where n is the number of bits in a digest.

1 Introduction

A one-way hashing algorithm is a deterministic algorithm that compresses an
arbitrarily long message into a value of specified length. The output value rep-
resents the digest or fingerprint of the input message. A very useful prop-
erty of a one-way hashing algorithm is that it is collision intractable, i.e., it
? Supported in part by the Australian Research Council under the reference number

A49232172.
?? Supported in part by the Australian Research Council under the reference number

A49131885.
??? Supported in part by the Australian Research Council under the reference numbers

A49130102, A9030136, A49131885 and A49232172.



is computationally infeasible to find a pair of messages that have the same
digest. One-way hashing algorithms are widely used in information authenti-
cation, in particular, in digital signature, and have received extensive research
since the invention of public key cryptography by Diffie and Hellman [DH76]
and by Merkle [Mer78]. Theoretical results on one-way hashing algorithms were
obtained by Damg̊ard [Dam87, Dam90]. Results on a weaker version of one-
way hashing algorithms, universal one-way hashing algorithms, can be found
in [NY89, ZMI91, Rom90].

Recently much progress has been made in the design of practical one-way
hashing algorithms which are suited for efficient implementation by software.
Notable work includes the MD family which consists of three algorithms MD2,
MD4 and MD5 [Kal92, Riv92a, Riv92b], the federal information processing stan-
dard for secure hash (SHS) proposed by the National Institute of Standards and
Technology (NIST) of the United States [NIS92], and Schnorr’s hashing algo-
rithm FFT-Hash based on fast Fourier transformations [Sch92, Vau92]. All these
algorithms output digests of fixed length. In particular, digests of FFT-Hash and
the algorithms in the MD family are of 128 bits, while digests of SHS are of 160
bits which is designed primarily for NIST’s proposed digital signature standard
DSS [NIS91].

Despite the progress, little work has been done in the design of one-way
hashing algorithms that can output digests of variable length. Such an algo-
rithm would be more flexible and hence more suited for various applications
where variable length digests are required. The aim of this research is to de-
sign a one-way hashing algorithm that can output digests of 128, 160, 192, 224
or 256 bits. These different lengths for digests provide practical applications
with a broad spectrum of choices. The algorithm, which we call HAVAL, uses
some of the principles behind the design of the MD family. In addition, HAVAL
makes an elegant use of Boolean functions recently discovered by Seberry and
Zhang [SZ92]. These functions have nice properties which include

1. they are 0-1 balanced,
2. they are highly non-linear,
3. they satisfy the Strict Avalanche Criterion (SAC),
4. they can not be transformed into one another by applying linear transfor-

mation to the input coordinates and
5. they are not mutually correlated via linear functions or via bias in output.

In addition, the number of passes each 1024-bit block of an input message is
processed can be 3, 4 or 5. This adds one more dimension of flexibility to the
algorithm. Combination of the two variable parameters, pass and output length,
provides practical applications with fifteen different levels of security.

When compared with MD2, MD4, SHS and FFT-Hash, MD5 is considered
much superior in terms of speed and security. In particular, MD5 is about 15%
faster than SHS (See for example the note posted on the sci.crypt news group
by Kevin McCurley, 5 September 1992), although the latter is very likely to
become a standard. Our preliminary experiments show that HAVAL is at least



60% faster than MD5 when 3 passes are required, at least 15% faster than MD5
when 4 passes are required, and about as fast as MD5 when full 5 passes are
required.

Detailed specifications of HAVAL are presented in Section 2. Section 3 dis-
cusses rationale behind the design of HAVAL. This is followed by a discussion
about security issues of HAVAL in Section 4. Extensions of HAVAL in several
directions are discussed in Section 5. Finally, Section 6 presents some concluding
remarks.

2 Specifications of HAVAL

We begin with a general description of the algorithm. Detailed specifications of
all parts of the algorithm follows.

First we introduce a few notations and conventions. We consider, unless oth-
erwise specified, strings (or sequences) on GF (2). Throughout the paper, a single
bit from GF (2) will be denoted by a lower case letter, while a string of bits on
GF (2) will be denoted by a upper case letter. A byte is a string of 8 bits, a word
is a string of 4 bytes (32 bits) and a block is the concatenation of 32 words (1024
bits). We assume that the most significant bit of a byte appears at the left end
of the byte. Similarly we assume that the most significant byte of a word comes
at the left end of the word, and the most significant word of a block appears at
the left end of the block. Note that a binary string X = xn−1xn−2 · · ·x0 can be
viewed as an integer whose value is IX = xn−12n−1+xn−22n−2+· · ·+x020. Con-
versely an integer I can also be viewed as a binary string XI = xn−1xn−2 · · ·x0

with I = xn−12n−1 + xn−22n−2 + · · ·+ x020.
The modulo 2 multiplication and modulo 2 addition of x1, x2 ∈ GF (2) are

denoted by x1x2 and x1⊕x2 respectively. The bit-wise modulo 2 addition opera-
tion of two binary strings S1 and S2 of the same length is denoted by S1⊕S2, and
the bit-wise modulo 2 multiplication of the two strings S1 and S2 is denoted by
S1 •S2. Note that • has precedence over ⊕ in computation. Another notation +

is also used in the specifications. Assume that S1 = W1,n−1W1,n−2 · · ·W1,0 and
S2 = W2,n−1W2,n−2 · · ·W2,0, where each Wi,j is a 32-bit word, the word-wise in-
teger addition modulo 232 of the two strings is denoted by S1 + S2, i.e., S1 + S2 =
(W1,n−1+W2,n−1 mod 232)(W1,n−2+W2,n−2 mod 232) · · · (W1,0+W2,0 mod 232).
Note that in the definition of + we have viewed each Wi,j as an integer in
[0, 232 − 1].

Given a message M to be compressed, HAVAL pads (extends) M first. The
length of (i.e., the number of bits in) the message after padding is a multiple
of 1024, and padding is always applied even when the length of M is already a
multiple of 1024. The last block of the padded message contains the number of
bits in the unpadded message, the required number of bits in the digest and the
number of passes each message block is processed. It also indicates the version
number of HAVAL. The current version number is 1.

Now suppose that the padded message is Bn−1Bn−2 · · ·B0, where each Bi

is a 1024-bit block. HAVAL starts from the block B0 and a 8-word (256-bit)



constant string D0 = D0,7D0,6 · · ·D0,0, which is taken from the fraction part of
π = 3.1415..., and processes the message Bn−1Bn−2 · · ·B0 in a block-by-block
way. More precisely, it compresses the message by repeatedly calculating

Di+1 = H(Di, Bi)

where i ranges from 0 to n−1 and H is called the updating algorithm of HAVAL.
See Section 2.4 for the actual values of the 8 constant 32-bit words D0,7, D0,6,
· · ·, D0,0.

Finally, HAVAL adjusts, if necessary, the last 256-bit string Dn into a string
of the length specified in the last block Bn−1, and outputs the adjusted string
as the digest of the message M . In summary, HAVAL processes a message M in
the following three steps:

1. Pad the message M so that its length becomes a multiple of 1024. The last
(or the most significant) block of the padded message indicates the length
of the original (unpadded) message M , the required length of the digest of
M , the number of passes each block is processed and the version number of
HAVAL.

2. Calculate repeatedly Di+1 = H(Di, Bi) for i from 0 to n− 1, where D0 is a
8-word (256-bit) constant string and n is the total number of blocks in the
padded message.

3. Adjust the 256-bit value Dn obtained in the above calculation according to
the digest length specified in the last block Bn−1, and output the adjusted
value as the digest of the message M .

These three steps are described in more detail in the following sections.

2.1 Padding

The purpose of padding is two-fold: to make the length of a message be a multiple
of 1024 and to let the message indicate the length of the original message, the
required number of bits in the digest, the number of passes and the version
number of HAVAL. HAVAL uses a 64-bit field MSGLENG to specify the length
of an unpadded message. Thus messages of up to (264 − 1) bits are accepted,
which is long enough for practical applications. HAVAL also uses a 10-bit field
DGSTLENG to specify the required number of bits in a digest. In addition
HAVAL uses a 3-bit field PASS to specify the number of passes each message
block is processed, and another 3-bit field VERSION to indicate the version
number of HAVAL. The number of bits in a digest can be 128, 160, 192, 224 and
256, while the number of passes can be 3, 4 and 5. The current version number
of HAVAL is 1.

HAVAL pads a message by appending a single bit 1 next to the most sig-
nificant bit of the message, followed by zero or more bit 0s until the length
of the (new) message is 944 modulo 1024. Then, HAVAL appends to the mes-
sage the 3-bit field VERSION, followed by the 3-bit field PASS, the 10-bit field
DGSTLENG and the 64-bit field MSGLENG.



2.2 The Updating Algorithm H

The updating algorithm H processes a block in 3, 4 or 5 passes, which is specified
by the 3-bit field PASS in the last block. Denote by H1, H2, H3, H4 and H5 the
five passes. Now suppose that the input to H is (Din, B), here Din is a 8-word
string and B is a 32-word (1024-bit) block. Let Dout denote the 8-word output
of H on input (Din, B). Then processing of H can be described in th following
way.

E0 = Din;
E1 = H1(E0, B);
E2 = H2(E1, B);
E3 = H3(E2, B);
E4 = H4(E3, B); (if PASS=4, 5)
E5 = H5(E4, B); (if PASS=5)

Dout =

E3 + E0 if PASS=3
E4 + E0 if PASS=4
E5 + E0 if PASS=5

Each of the five passes H1, H2, H3, H4 and H5 has 32 rounds of operations
and each round processes a different word from B. The orders in which the
words in B are processed differ from pass to pass. In addition, each pass employs
a different Boolean function to perform bit-wise operations on words. The five
functions employed by H1, H2, H3, H4 and H5 are:

f1(x6, x5, x4, x3, x2, x1, x0) = x1x4 ⊕ x2x5 ⊕ x3x6 ⊕ x0x1 ⊕ x0

f2(x6, x5, x4, x3, x2, x1, x0) = x1x2x3 ⊕ x2x4x5 ⊕ x1x2 ⊕ x1x4 ⊕
x2x6 ⊕ x3x5 ⊕ x4x5 ⊕ x0x2 ⊕ x0

f3(x6, x5, x4, x3, x2, x1, x0) = x1x2x3 ⊕ x1x4 ⊕ x2x5 ⊕ x3x6 ⊕ x0x3 ⊕ x0

f4(x6, x5, x4, x3, x2, x1, x0) = x1x2x3 ⊕ x2x4x5 ⊕ x3x4x6 ⊕
x1x4 ⊕ x2x6 ⊕ x3x4 ⊕ x3x5 ⊕
x3x6 ⊕ x4x5 ⊕ x4x6 ⊕ x0x4 ⊕ x0

f5(x6, x5, x4, x3, x2, x1, x0) = x1x4 ⊕ x2x5 ⊕ x3x6 ⊕ x0x1x2x3 ⊕ x0x5 ⊕ x0

These five Boolean functions have very nice properties when their coordinates
are permuted. This will be stated in Section 3 together with rationale behind
the design of the functions. The five passes H1, H2, H3, H4 and H5 are specified
in more detail in the following sections.

Pass 1 Assume that the input to H1 is (E0, B), where E0 consists of 8 words
E0,7, E0,6, · · · , E0,0 and B of 32 words W31,W30, · · · ,W0. H1 processes the block
B in a word-by-word way and transforms the input into a 8-word output E1 =



Original 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
(H1) 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ord2 5 14 26 18 11 28 7 16 0 23 20 22 1 10 4 8
(H2) 30 3 21 9 17 24 29 6 19 12 15 13 2 25 31 27

ord3 19 9 4 20 28 17 8 22 29 14 25 12 24 30 16 26
(H3) 31 15 7 3 1 0 18 27 13 6 21 10 23 11 5 2

ord4 24 4 0 14 2 7 28 23 26 6 30 20 18 25 19 3
(H4) 22 11 31 21 8 27 12 9 1 29 5 15 17 10 16 13

ord5 27 3 21 26 17 11 20 29 19 0 12 7 13 8 31 10
(H5) 5 9 14 30 18 6 28 24 2 23 16 22 4 1 25 15

Table 1. Word Processing Orders

permutations x6 x5 x4 x3 x2 x1 x0

↓ ↓ ↓ ↓ ↓ ↓ ↓
φ3,1 x1 x0 x3 x5 x6 x2 x4

φ3,2 x4 x2 x1 x0 x5 x3 x6

φ3,3 x6 x1 x2 x3 x4 x5 x0

φ4,1 x2 x6 x1 x4 x5 x3 x0

φ4,2 x3 x5 x2 x0 x1 x6 x4

φ4,3 x1 x4 x3 x6 x0 x2 x5

φ4,4 x6 x4 x0 x5 x2 x1 x3

φ5,1 x3 x4 x1 x0 x5 x2 x6

φ5,2 x6 x2 x1 x0 x3 x4 x5

φ5,3 x2 x6 x0 x4 x3 x1 x5

φ5,4 x1 x5 x3 x2 x0 x4 x6

φ5,5 x2 x5 x0 x6 x4 x3 x1

Table 2. Permutations on Coordinates

E1,7E1,6 · · ·E1,0. Denote by
→

ROT(X, s) the s position rotate right operation on
a word X and by f ◦ g the composition of two functions f and g (g is evaluated
first). Then H1 can be described in the following way.

1. Let T0,i = E0,i, 0 <= i <= 7.
2. Repeat the following steps for i from 0 to 31:

P =

F1 ◦ φ3,1(Ti,6, Ti,5, Ti,4, Ti,3, Ti,2, Ti,1, Ti,0) if PASS=3
F1 ◦ φ4,1(Ti,6, Ti,5, Ti,4, Ti,3, Ti,2, Ti,1, Ti,0) if PASS=4
F1 ◦ φ5,1(Ti,6, Ti,5, Ti,4, Ti,3, Ti,2, Ti,1, Ti,0) if PASS=5

R =
→

ROT(P, 7) +

→
ROT(Ti,7, 11) + Wi;

Ti+1,7 = Ti,6; Ti+1,6 = Ti,5; Ti+1,5 = Ti,4; Ti+1,4 = Ti,3;
Ti+1,3 = Ti,2; Ti+1,2 = Ti,1; Ti+1,1 = Ti,0; Ti+1,0 = R.



3. Let E1,i = T32,i, 0 <= i <= 7, and output E1 = E1,7E1,6 · · ·E1,0.

Note that the input to the i-th round (Ti,6, Ti,5, Ti,4, Ti,3, Ti,2, Ti,1, Ti,0) is
permuted according to φ3,1 (when PASS=3), φ4,1 (when PASS=4) or φ5,1 (when
PASS=5) before being passed to F1. Here φ3,1, φ4,1 and φ5,1 are permutations
on coordinates specified in Table 2, where permutations employed by the other
four passes are also specified. F1 performs bit-wise operations on its input words
according to the Boolean function f1 specified in Section 2.2.

F1(X6, X5, X4, X3, X2, X1, X0) =
X1 •X4 ⊕X2 •X5 ⊕X3 •X6 ⊕X0 •X1 ⊕X0

The result of F1 is rotated and added (modulo 232) to the rotated version of
Ti,7. The i-th word Wi in B is also added to the rotated version of Ti,7. The
sum is used to substitute (the old) Ti,7. After the substitution, the 8 words
Ti,7, Ti,6, · · · , Ti,0 are shifted with Ti,7 being replaced by Ti,6, Ti,6 by Ti,5, . . .,
Ti,1 by Ti,0, and Ti,0 by Ti,7. These words are then used as input to the (i+1)-th
round. Finally, T32 is output as a result.

Pass 2 Assume that the input to H2 is (E1, B). H2 processes the words in B
according to the word processing order ord2 specified in Table 1. It employs in
its computation 32 constant words K2,31,K2,30, · · · ,K2,0, all of which are taken
from the fraction part of π. The actual values of these constant words are defined
in Section 2.4. H2 processes the words as follows:

1. Let T0,i = E1,i, 0 <= i <= 7.
2. Repeat the following steps for i from 0 to 31:

P =

F2 ◦ φ3,2(Ti,6, Ti,5, Ti,4, Ti,3, Ti,2, Ti,1, Ti,0) if PASS=3
F2 ◦ φ4,2(Ti,6, Ti,5, Ti,4, Ti,3, Ti,2, Ti,1, Ti,0) if PASS=4
F2 ◦ φ5,2(Ti,6, Ti,5, Ti,4, Ti,3, Ti,2, Ti,1, Ti,0) if PASS=5

R =
→

ROT(P, 7) +

→
ROT(Ti,7, 11) + Word2(i)

+ K2,i;
Ti+1,7 = Ti,6; Ti+1,6 = Ti,5; Ti+1,5 = Ti,4; Ti+1,4 = Ti,3;
Ti+1,3 = Ti,2; Ti+1,2 = Ti,1; Ti+1,1 = Ti,0; Ti+1,0 = R.

3. Let E2,i = T32,i, 0 <= i <= 7, and output E2 = E2,7E2,6 · · ·E2,0.

Similar to H1, (Ti,6, Ti,5, Ti,4, Ti,3, Ti,2, Ti,1, Ti,0) is permuted according to
φ3,2, φ4,2 or φ5,2 before being passed to F2, where φ3,2, φ4,2 and φ5,2 are specified
in Table 2. F2 performs bit-wise operations on its 7 input words according to
the Boolean function f2:

F2(X6, X5, X4, X3, X2, X1, X0) =
X1 •X2 •X3 ⊕X2 •X4 •X5 ⊕
X1 •X2 ⊕X1 •X4 ⊕X2 •X6 ⊕X3 •X5 ⊕X4 •X5 ⊕X0 •X2 ⊕X0

The output value of F2 is rotated and added to the rotated version of Ti,7. The
i-th word Word2(i)

is also added to the rotated version of Ti,7. In addition, a



constant K2,i which is unique to i is added to the rotated version of Ti,7. As in
H1, the 8 words are shifted before proceeding to the next round of operations.
The output of H2 is the result of the last round.

Pass 3 The input to H3 is (E2, B). H3 processes the words in the block B
according to the word processing order for ord3 specified in Table 1. H3 also
employs 32 constant words K3,31,K3,30, · · · ,K3,0, all of which are taken from
the fraction part of π.

1. Let T0,i = E2,i, 0 <= i <= 7.
2. Repeat the following steps for i from 0 to 31:

P =

F3 ◦ φ3,3(Ti,6, Ti,5, Ti,4, Ti,3, Ti,2, Ti,1, Ti,0) if PASS=3
F3 ◦ φ4,3(Ti,6, Ti,5, Ti,4, Ti,3, Ti,2, Ti,1, Ti,0) if PASS=4
F3 ◦ φ5,3(Ti,6, Ti,5, Ti,4, Ti,3, Ti,2, Ti,1, Ti,0) if PASS=5

R =
→

ROT(P, 7) +

→
ROT(Ti,7, 11) + Word3(i)

+ K3,i;
Ti+1,7 = Ti,6; Ti+1,6 = Ti,5; Ti+1,5 = Ti,4; Ti+1,4 = Ti,3;
Ti+1,3 = Ti,2; Ti+1,2 = Ti,1; Ti+1,1 = Ti,0; Ti+1,0 = R.

3. Let E3,i = T32,i, 0 <= i <= 7, and output E3 = E3,7E3,6 · · ·E3,0.

F3 performs bit-wise operations according to the Boolean function f3 :

F3(X6, X5, X4, X3, X2, X1, X0) =
X1 •X2 •X3 ⊕X1 •X4 ⊕X2 •X5 ⊕X3 •X6 ⊕X0 •X3 ⊕X0

Pass 4 This pass is executed only when four or five passes are required. The in-
put to H4 is (E3, B). The order in which the words in the block B are processed is
specified by ord4 in Table 1. 32 constant words, denoted by K4,31,K4,30, · · · ,K4,0,
are employed by H4. These constants are unique to H4 and all taken from the
fraction part of π.

1. Let T0,i = E3,i, 0 <= i <= 7.
2. Repeat the following steps for i from 0 to 31:

P =
{

F4 ◦ φ4,4(Ti,6, Ti,5, Ti,4, Ti,3, Ti,2, Ti,1, Ti,0) if PASS=4
F4 ◦ φ5,4(Ti,6, Ti,5, Ti,4, Ti,3, Ti,2, Ti,1, Ti,0) if PASS=5

R =
→

ROT(P, 7) +

→
ROT(Ti,7, 11) + Word4(i)

+ K4,i;
Ti+1,7 = Ti,6; Ti+1,6 = Ti,5; Ti+1,5 = Ti,4; Ti+1,4 = Ti,3;
Ti+1,3 = Ti,2; Ti+1,2 = Ti,1; Ti+1,1 = Ti,0; Ti+1,0 = R.

3. Let E4,i = T32,i, 0 <= i <= 7, and output E4 = E4,7E4,6 · · ·E4,0.

F4 performs bit-wise operations on its input words according to the Boolean
function f4:

F4(X6, X5, X4, X3, X2, X1, X0) =
X1 •X2 •X3 ⊕X2 •X4 •X5 ⊕X3 •X4 •X6 ⊕
X1 •X4 ⊕X2 •X6 ⊕X3 •X4 ⊕X3 •X5 ⊕
X3 •X6 ⊕X4 •X5 ⊕X4 •X6 ⊕X0 •X4 ⊕X0



Pass 5 This pass is executed only when five passes are required. The input
to H5 is (E4, B). The order in which the words in the block B are processed is
specified by ord5 in Table 1. The 32 constant words employed by H5 are denoted
by K5,31,K5,30, · · · ,K5,0.

1. Let T0,i = E4,i, 0 <= i <= 7.
2. Repeat the following steps for i from 0 to 31:

P = F5 ◦ φ5,5(Ti,6, Ti,5, Ti,4, Ti,3, Ti,2, Ti,1, Ti,0);

R =
→

ROT(P, 7) +

→
ROT(Ti,7, 11) + Word5(i)

+ K5,i;
Ti+1,7 = Ti,6; Ti+1,6 = Ti,5; Ti+1,5 = Ti,4; Ti+1,4 = Ti,3;
Ti+1,3 = Ti,2; Ti+1,2 = Ti,1; Ti+1,1 = Ti,0; Ti+1,0 = R.

3. Let E5,i = T32,i, 0 <= i <= 7, and output E5 = E5,7E5,6 · · ·E5,0.

F5 performs bit-wise operations on its input words according to the Boolean
function f5:

F5(X6, X5, X4, X3, X2, X1, X0) =
X1 •X4 ⊕X2 •X5 ⊕X3 •X6 ⊕X0 •X1 •X2 •X3 ⊕X0 •X5 ⊕X0

2.3 Tailoring the Last Output of H

Recall that the last string Dn = Dn,7Dn,6 · · ·Dn,0 output by H is of 256 bits.
Dn is used directly as the digest of M if a 256-bit digest is required. Otherwise,
Dn is tailored into a string of specified length. We discuss the four cases that
need adjustment to Dn. These four cases are (1) Case-1 when 128-bit digests are
required, (2) Case-2 when 160-bit digests are required, (3) Case-3 when 192-bit
digests are required and (4) Case-4 when 224-bit digests are required. In the
following discussions, we will use a superscript to indicate the length of a string.
For instance, if X is a t-bit string, we use X [t] to indicate explicitly the length
of X.

Case-1 (128-bit digest): We divide Dn,7, Dn,6, Dn,5 and Dn,4 in the following
way

Dn,7 = X
[8]
7,3X

[8]
7,2X

[8]
7,1X

[8]
7,0,

Dn,6 = X
[8]
6,3X

[8]
6,2X

[8]
6,1X

[8]
6,0,

Dn,5 = X
[8]
5,3X

[8]
5,2X

[8]
5,1X

[8]
5,0,

Dn,4 = X
[8]
4,3X

[8]
4,2X

[8]
4,1X

[8]
4,0.

The 128-bit digest is Y3Y2Y1Y0, where

Y3 = Dn,3 + (X [8]
7,3X

[8]
6,2X

[8]
5,1X

[8]
4,0),

Y2 = Dn,2 + (X [8]
7,2X

[8]
6,1X

[8]
5,0X

[8]
4,3),

Y1 = Dn,1 + (X [8]
7,1X

[8]
6,0X

[8]
5,3X

[8]
4,2),

Y0 = Dn,0 + (X [8]
7,0X

[8]
6,3X

[8]
5,2X

[8]
4,1).



Case-2 (160-bit digest): We divide Dn,7, Dn,6 and Dn,5 in the following way

Dn,7 = X
[7]
7,4X

[6]
7,3X

[7]
7,2X

[6]
7,1X

[6]
7,0,

Dn,6 = X
[7]
6,4X

[6]
6,3X

[7]
6,2X

[6]
6,1X

[6]
6,0,

Dn,5 = X
[7]
5,4X

[6]
5,3X

[7]
5,2X

[6]
5,1X

[6]
5,0.

Then the 160-bit digest Y4Y3Y2Y1Y0 is obtained by computing

Y4 = Dn,4 + (X [7]
7,4X

[6]
6,3X

[7]
5,2),

Y3 = Dn,3 + (X [6]
7,3X

[7]
6,2X

[6]
5,1),

Y2 = Dn,2 + (X [7]
7,2X

[6]
6,1X

[6]
5,0),

Y1 = Dn,1 + (X [6]
7,1X

[6]
6,0X

[7]
5,4),

Y0 = Dn,0 + (X [6]
7,0X

[7]
6,4X

[6]
5,3).

Case-3 (192-bit digest): Divide Dn,7 and Dn,6 into

Dn,7 = X
[6]
7,5X

[5]
7,4X

[5]
7,3X

[6]
7,2X

[5]
7,1X

[5]
7,0,

Dn,6 = X
[6]
6,5X

[5]
6,4X

[5]
6,3X

[6]
6,2X

[5]
6,1X

[5]
6,0.

Let

Y5 = Dn,5 + (X [6]
7,5X

[5]
6,4),

Y4 = Dn,4 + (X [5]
7,4X

[5]
6,3),

Y3 = Dn,3 + (X [5]
7,3X

[6]
6,2),

Y2 = Dn,2 + (X [6]
7,2X

[5]
6,1),

Y1 = Dn,1 + (X [5]
7,1X

[5]
6,0),

Y0 = Dn,0 + (X [5]
7,0X

[6]
6,5).

Output Y5Y4Y3Y2Y1Y0 as the digest.
Case-4 (224-bit digest): We divide Dn,7 into

Dn,7 = X
[5]
7,6X

[5]
7,5X

[4]
7,4X

[5]
7,3X

[4]
7,2X

[5]
7,1X

[4]
7,0.

The 224-bit digest is Y6Y5Y4Y3Y2Y1Y0, where

Y6 = Dn,6 + X
[4]
7,0,

Y5 = Dn,5 + X
[5]
7,1,

Y4 = Dn,4 + X
[4]
7,2,

Y3 = Dn,3 + X
[5]
7,3,



Y2 = Dn,2 + X
[4]
7,4,

Y1 = Dn,1 + X
[5]
7,5,

Y0 = Dn,0 + X
[5]
7,6.

2.4 The Constants from π

HAVAL uses totally 136 constant 32-bit words. Among them, 8 words are used
as initial values D0,7, D0,6, · · ·, D0,0, 32 words are employed by Pass 2 as K2,31,
K2,30, · · ·, and K2,0, 32 words by Pass 3 as K3,31, K3,30, · · ·, and K3,0, 32 words
by Pass 4 as K4,31, K4,30, · · ·, and K4,0, and the remaining 32 words by Pass 5
as K5,31, K5,30, · · ·, and K5,0. The first 8 constant words correspond to the
first 256 bits of the fraction part of π. The 32 constant words used in Pass 2
correspond to the next 1024 bits of the fraction part of π, which is followed by
the 32 constant words used by Pass 3, the 32 constant words used by Pass 4 and
the 32 constant words used by Pass 5. The 136 constant words are listed in the
following in hexadecimal form. They appear in the following order:

1. D0,7, D0,6, · · ·, D0,0,
2. K2,31, K2,30, · · ·, K2,0,
3. K3,31, K3,30, · · ·, K3,0,
4. K4,31, K4,30, · · ·, K4,0,
5. K5,31, K5,30, · · ·, K5,0.

243F6A88 85A308D3 13198A2E 03707344 A4093822 299F31D0 082EFA98 EC4E6C89

452821E6 38D01377 BE5466CF 34E90C6C C0AC29B7 C97C50DD 3F84D5B5 B5470917

9216D5D9 8979FB1B D1310BA6 98DFB5AC 2FFD72DB D01ADFB7 B8E1AFED 6A267E96

BA7C9045 F12C7F99 24A19947 B3916CF7 0801F2E2 858EFC16 636920D8 71574E69

A458FEA3 F4933D7E 0D95748F 728EB658 718BCD58 82154AEE 7B54A41D C25A59B5

9C30D539 2AF26013 C5D1B023 286085F0 CA417918 B8DB38EF 8E79DCB0 603A180E

6C9E0E8B B01E8A3E D71577C1 BD314B27 78AF2FDA 55605C60 E65525F3 AA55AB94

57489862 63E81440 55CA396A 2AAB10B6 B4CC5C34 1141E8CE A15486AF 7C72E993

B3EE1411 636FBC2A 2BA9C55D 741831F6 CE5C3E16 9B87931E AFD6BA33 6C24CF5C

7A325381 28958677 3B8F4898 6B4BB9AF C4BFE81B 66282193 61D809CC FB21A991

487CAC60 5DEC8032 EF845D5D E98575B1 DC262302 EB651B88 23893E81 D396ACC5

0F6D6FF3 83F44239 2E0B4482 A4842004 69C8F04A 9E1F9B5E 21C66842 F6E96C9A

670C9C61 ABD388F0 6A51A0D2 D8542F68 960FA728 AB5133A3 6EEF0B6C 137A3BE4

BA3BF050 7EFB2A98 A1F1651D 39AF0176 66CA593E 82430E88 8CEE8619 456F9FB4

7D84A5C3 3B8B5EBE E06F75D8 85C12073 401A449F 56C16AA6 4ED3AA62 363F7706

1BFEDF72 429B023D 37D0D724 D00A1248 DB0FEAD3 49F1C09B 075372C9 80991B7B

25D479D8 F6E8DEF7 E3FE501A B6794C3B 976CE0BD 04C006BA C1A94FB6 409F60C4



We generated these constant words by Maple (Version 5 on a SPARCstation)
with the following program:

printlevel := -1;
Digits := 2000;
pifrac := evalf(Pi) - 3;
K := 2 ^ 32;
for i from 1 by 1 while i <= 136 do

nextword := trunc(pifrac * K);
lprint(convert(nextword,hex));
pifrac:= frac(pifrac * K);

od;

3 The Design Rationale

3.1 Designing the Boolean Functions

The five boolean functions f1, f2, f3, f4 and f5 used by H1, H2, H3, H4 and
H5 are of central importance to the hashing algorithm. We first introduce a few
definitions before going into their design details.

Denote by Vn the the vector space of n-tuples of elements from GF (2),
where n is a positive integer. A Boolean function is a function from Vn to
GF (2). Note that a Boolean function f from Vn to GF (n) can be “reduced”
to a unique polynomial in n coordinate variables xn, xn−1, . . . , x1. In the fol-
lowing discussions, we will identify the function f with its unique polynomial
f(xn, xn−1, . . . , x1). The sequence of the function f is defined as the concate-
nation of the 2n output bits of f(xn, xn−1, . . . , x1) when xn, xn−1, . . . , x1 vary
from 0, 0, · · · , 0 to 1, 1, · · · , 1. The function f is called a linear function if f has
the form of f(xn, xn−1, . . . , x1) = anxn ⊕ an−1xn−1 ⊕ · · · ⊕ a1x1 ⊕ a0, where
ai ∈ GF (2).

We say that a function f from Vn to GF (2) is 0-1 balanced if the number of 1
bits and the number of 0 bits in the sequence of f are the same, both being 2n−1.
Let g be another function from Vn to GF (2). The distance between f and g is the
number of positions in the sequences of f and g at which the two functions have
different values. The non-linearity of the function f is defined as the minimum
distance between f and all linear functions from Vn to GF (2). When n = 2k
for some k > 1, the maximum non-linearity a function from Vn to GF (2) can
attain is 22k−1−2k−1. Such a functions is called a bent function [Rot76]. We say
that f satisfies the Strict Avalanche Criterion (SAC) if for every 1 <= i <= n,
complementing xi results in the output of f being complemented 50% of the
time over all possible input vectors.

Two functions f and g are linearly equivalent (in structure) if f can be
transformed into g via linear transformation of coordinates and complementation
of functions, i.e., there is a non-singular n × n matrix A on GF (2) as well as a
vector B ∈ Vn such that f(xA ⊕ B) = g(x) or f(xA ⊕ B) ⊕ 1 = g(x), where
x = (xn, xn−1, . . . , x1). Otherwise we say that f and g are linearly inequivalent .



A set of functions is said linearly inequivalent if all pairs of functions from the
set are linearly inequivalent.

f and g are mutually output-uncorrelated if f , g and f⊕g are all 0-1 balanced
non-linear functions. A set of functions is mutually output-uncorrelated if all
pairs of functions in the set are mutually output-uncorrelated. The set is said
perfectly output-uncorrelated if any non-zero linear combination of the functions
in the set results in a 0-1 balanced non-linear function.

Linear equivalence and output-correlation can be used to examine from two
different angles the structural similarity among functions. Our goal is to design
five Boolean functions in seven variables so that each of the functions has the
following properties P1, P2 and P3.

P1 Being 0-1 balanced.
P2 Having a high non-linearity.
P3 Satisfying the Strict Avalanche Criterion (SAC).

In addition, as a set of functions, they have the following properties P4 and P5.

P4 Being linearly inequivalent in structure.
P5 Being mutually output-uncorrelated.

These properties are considered as desirable ones for a cryptographic prim-
itive such as a one-way hashing algorithm. P1 ensures that a function outputs
a 0 bit and a 1 bit with the same probability 0.5 when the input to the func-
tion is picked randomly and uniformly over all possible vectors. P2 is desirable
since a linear function would render a cryptographic algorithm easily breakable.
P3 brings good avalanche effect to a cryptographic algorithm. P4 ensures that
functions employed by a cryptographic algorithm bears no resemblance in struc-
ture (with respect to linear transformation of coordinates and complementation
of functions.) Finally, P5 ensures that the sequences of the functions are not
mutually correlated either via linear functions or via the bias in output bits.

In [SZ92], Seberry and Zhang presented a novel method for constructing
Boolean functions that have the properties P1, P2 and P3. In particular, they
showed that given a bent function from V2k to GF (2), where k >= 1, one can
obtain a Boolean function from V2k+1 to GF (2) that has the properties P1,
P2 and P3 and a non-linearity of 22k − 2k. Here is their construction method.
Let g(x2k, x2k−1, . . . , x1) be a bent function, and let `(x2k, x2k−1, . . . , x1) be an
arbitrary non-constant linear function. Let

h(x2k, x2k−1, . . . , x1) = g(x2k, x2k−1, . . . , x1)⊕ `(x2k, x2k−1, . . . , x1).

Note that h(x2k, x2k−1, . . . , x1) is also a bent function. Also note that a bent
function is not 0-1 balanced. Now assume that both the function sequence of
g(x2k, x2k−1, . . . , x1) and that of h(x2k, x2k−1, . . . , x1) have more 1s (or 0s) than
0s (or 1s). Then the following function from V2k+1 to GF (2)

f(x2k, x2k−1, . . . , x1, x0)
= (x0 ⊕ 1)g(x2k, x2k−1, . . . , x1)⊕ x0(h(x2k, x2k−1, . . . , x1)⊕ 1)
= g(x2k, x2k−1, . . . , x1)⊕ x0`(x2k, x2k−1, . . . , x1)⊕ x0



has properties P1, P2 and P3.
The five Boolean functions f1, f2, f3, f4 and f5 employed by H1, H2, H3,

H4 and H5 are constructed from the following bent functions g1, g2, g3 and g4.

g1(x6, x5, x4, x3, x2, x1) = x1x4 ⊕ x2x5 ⊕ x3x6

g2(x6, x5, x4, x3, x2, x1) = x1x2x3 ⊕ x2x4x5 ⊕ x1x2 ⊕ x1x4 ⊕ x2x6 ⊕ x3x5 ⊕ x4x5

g3(x6, x5, x4, x3, x2, x1) = x1x2x3 ⊕ x1x4 ⊕ x2x5 ⊕ x3x6

g4(x6, x5, x4, x3, x2, x1) = x1x2x3 ⊕ x2x4x5 ⊕ x3x4x6 ⊕
x1x4 ⊕ x2x6 ⊕ x3x4 ⊕ x3x5 ⊕ x3x6 ⊕ x4x5 ⊕ x4x6

These four bent functions were discovered by Rothaus in his pioneering
work [Rot76]. In the same paper, Rothaus also proved that these are the only
bent functions from V6 to GF (2) which are linearly inequivalent in structure.
Let

`1(x6, x5, x4, x3, x2, x1) = x1,

`2(x6, x5, x4, x3, x2, x1) = x2,

`3(x6, x5, x4, x3, x2, x1) = x3,

`4(x6, x5, x4, x3, x2, x1) = x4.

By applying Seberry and Zhang’s method, we obtain the first four functions f1,
f2, f3 and f4 as follows:

fi(x6, x5, x4, x3, x2, x1, x0) = gi(x6, x5, x4, x3, x2, x1)⊕ x0`i(x6, x5, x4, x3, x2, x1)⊕ x0

= gi(x6, x5, x4, x3, x2, x1)⊕ x0xi ⊕ x0

where i = 1, 2, 3, 4. The fifth function, which also has the properties P1, P2 and
P3, is obtained in the following way. Let

h5(x6, x5, x4, x3, x2, x1) = g1(x6, x5, x4, x3, x2, x1)⊕ x1x2x3 ⊕ x6.

Then

f5(x6, x5, x4, x3, x2, x1, x0)
= (1⊕ x0)g1(x6, x5, x4, x3, x2, x1)⊕ x0(1⊕ h5(x6, x5, x4, x3, x2, x1))
= g1(x6, x5, x4, x3, x2, x1)⊕ x0x1x2x3 ⊕ x0x5 ⊕ x0

These functions have a non-linearity of 26 − 23 = 56, which is in fact the
maximum non-linearity of functions from V7 to GF (2) [SZ92].

Now we show that these functions are linearly inequivalent in structure. We
call the product of several coordinate variables a term. The degree of a term is
the number of coordinate variables in it. The degree of a Boolean function is
the maximum degree among all terms of the function. Thus f1 has five terms
x1x4, x2x5, x3x6, x0x1 and x0. The first four terms are of degree 2, the last
term is of degree 1, and hence the degree of f1 is 2. Consider the case when a



linear transformation of coordinates is applied to a Boolean function f and a
new Boolean function g is obtained. Each term of f generates one or more new
terms. However no terms that have higher degrees than that of the original one
can be created. Therefore, all the terms in g which have the highest degree are
derived from terms in f which have the same degree. This implies that linear
transformation of coordinates does not change the degree of a function.

The degrees of the five functions f1, f2, f3, f4 and f5 are 2, 3, 3, 3 and 4
respectively. From the above discussions, we know that f1 and f5 are linearly
inequivalent. In addition, neither f1 nor f5 can be transformed into any of the
other three functions f2, f3 and f4 by linear transformation of coordinates. The
other direction is also true. Now consider f2, f3 and f4. Note that f2 has two
degree-3 terms x1x2x3 and x2x4x5, f3 has one degree-3 term x1x2x3, and f4

has three degree-3 terms x1x2x3, x2x4x5 and x3x4x6. It was shown in [Rot76]
that the above three sets of degree-3 terms can not be transformed into one
another by linear transformation of coordinates. From this it follows that the
three functions f2, f3 and f4 are linearly inequivalent. In summary f1, f2, f3, f4

and f5 are linearly inequivalent, and hence they have the property P4.
By now we have seen that the five functions f1, f2, f3, f4 and f5 satisfy

properties P1, P2, P3 and P4. Verification shows that these five functions do not
have the property P5. By permuting the coordinates of the functions f1, f2 and
f3 according to φ3,1, φ3,2 and φ3,3 shown in Table 2, we obtain three functions
f1 ◦ φ3,1, f2 ◦ φ3,2 and f3 ◦ φ3,3 that are mutually output-uncorrelated (i.e.,
satisfying the property P5). In fact these three functions are perfectly output-
uncorrelated. As permuting coordinates does not affect the functions with respect
to properties P1, P2, P3 and P4, we know that the three permuted functions
f1 ◦ φ3,1, f2 ◦ φ3,2 and f3 ◦ φ3,3 which are used in the 3-pass case satisfy all the
five properties P1, P2, P3, P4 and P5. All non-zero linear combinations of the
three functions have the maximum non-linearity of 56.

Similarly, by permuting the coordinates of the functions f1, f2, f3 and f4

according to φ4,1, φ4,2, φ4,3 and φ4,4 shown in Table 2, we obtain four functions
f1 ◦ φ4,1, f2 ◦ φ4,2, f3 ◦ φ4,3 and f3 ◦ φ4,3 that are perfectly output-uncorrelated
and hence satisfy the property P5. Among the non-zero linear combinations of
f1 ◦φ4,1, f2 ◦φ4,2, f3 ◦φ4,3 and f4 ◦φ4,4, ten achieve the maximum non-linearity
of 56 and the remaining 5 achieve 48.

Permuting the coordinates of the functions f1, f2, f3, f4 and f5 according
to φ5,1, φ5,2, φ5,4, φ5,3 and φ5,5 shown in Table 2 yields five functions f1 ◦ φ5,1,
f2 ◦ φ5,2, f3 ◦ φ5,3, f3 ◦ φ5,4 and f3 ◦ φ5,5 that are mutually output-uncorrelated
and hence satisfy the property P5. Although the permutations do not yield
perfectly output-uncorrelated functions, all the non-zero combinations are either
0-1 balanced or very close to 0-1 balanced. Eight of the combinations have the
maximum non-linearity of 56, four have 52, fifteen have 48, three have 44 and
one has 32.

The permutations shown in Table 2 are obtained by random sampling. We
have also found many other alternative permutations. The permutations shown
in Table 2 are chosen since they bring the highest average non-linearity to the



linear combinations of the functions.
To compare with MD4, MD5 and SHS, we have listed the Boolean functions

used by these algorithms in Table 3. The main design criterion for these functions
is as follows [Riv92a, Riv92b]: if the input to a function is the result of flipping
independent unbiased coins, then the output of the function should behave in the
same way as the result of flipping an independent unbiased coin as well. This
is equivalent to say that the functions are all 0-1 balanced, i.e., they satisfy
the property P1, one of our five design criteria. Note that one of the functions,
x ⊕ y ⊕ z, is linear. The other degree-2 functions can be transformed into one
another by linear transformation on coordinates. In particular, xy ⊕ xz ⊕ yz,
xz ⊕ yz ⊕ y, and y ⊕ z ⊕ xz ⊕ 1 can all be transformed into xy ⊕ xz ⊕ z by
(x → x ⊕ y ⊕ 1, y → y, z → z), (x → y, y → z, z → x) and (x → y ⊕ z, y →
x⊕ z ⊕ 1, z → x), respectively. In addition, it is easy to check that correlations
among the output sequences of the function are very poor.

MD4 MD5 SHS

1 xy ⊕ xz ⊕ z xy ⊕ xz ⊕ z xy ⊕ xz ⊕ z

2 xy ⊕ xz ⊕ yz xz ⊕ yz ⊕ y x⊕ y ⊕ z

3 x⊕ y ⊕ z x⊕ y ⊕ z xy ⊕ xz ⊕ yz

4 y ⊕ z ⊕ xz ⊕ 1 x⊕ y ⊕ z

Table 3. Boolean Functions Used by MD4, MD5 and SHS

3.2 Other Design Issues

At the i-th round of Pass 1, Ti,7 is updated essentially by adding to it the output
of F1 and the i-th word Wi. This can be viewed as the folding technique used
in ordinary hashing (see Page 512, [Knu73]). Rotation is employed to destroy
the symmetry of addition modulo 232 operation. This technique is also used in
the processing of Passes 2, 3, 4 and 5. Inversion of the updating algorithm H is
made computationally infeasible by the addition of its 8-word input to the last
pass’ output.

Processing of the five passes is made more distinct by allowing them to per-
form re-ordering operations upon the words. The word processing orders are
selected in such a way that no word is processed by the same round at different
passes and that the orders are as un-related as possible. In addition, constant
words unique to each round are used in the later four passes. These constant
words have been defined as consecutive bits in the fraction part of π to avoid
possible allegation that a trap-door would have been planted in them.

In addition, different permutations on coordinates of f1, f2, f3, f4 and f5 are
employed according to the number of passes required. This makes the hashing
algorithm behave more differently when the number of passes changes.



4 Security of HAVAL

Two messages are said to collide with each other with respect to a one-way hash-
ing algorithm if they are compressed to the same digest. For HAVAL, there are
two possibilities for a pair of messages to collide: the number of passes the mes-
sages are processed can be the same or differ. Ideally, given a one-way hashing
algorithm, we would like to prove formally that it is computationally infeasible
to find a collision pair for the hashing algorithm. Like many other hashing al-
gorithms such as the MD family, SHS and FFT-hash, however, HAVAL could
not be formally proved to be secure. Recently, Berson has proposed an attack
to a single pass of MD5 [Ber92]. His method applies to a single pass of HAVAL
as well. However, it seems that the attack can not be extended to two or more
passes.

It is conjectured that the best way to find a collision pair is by using the
birthday attack. In such an attack, an attacker prepares two sets of 2n/2 distinct
messages, and calculates their digests. Here n denotes the number of bits in
a digest, and it can be 128, 160, 192, 224, 256. Also note that the number of
passes the two sets of messages are compressed may differ. The attacker can
check (by, for instance, sorting) if there is any collision pair of messages, one is
from the first set and the other from the second set. The attacker will succeed
with a probability about 0.5. However, such an attack requires the order of 2n/2

operations, which is impractical even for n = 128. It is also conjectured that
given a digest, it requires the order of 2n operations to obtain a message that is
mapped to the digest.

5 Extensions and Future Work

The algorithm can be extended in several directions. Firstly, we note that the
number of passes can be increased by adding more functions into the function
set {f1, f2, f3, f4, f5}.

It is well known that for any k >= 4, there are at least k linearly inequivalent
bent functions from V2k to GF (2). Thus by using the same approach as described
in Section 3.1, we can design, at least in theory, four or more functions from V2k+1

to GF (2) that have the properties P1, P2, P3, P4 and P5. In this way, we can
design one-way hashing algorithms that compress an arbitrarily long message
into a digest of 32(2k + 2) or less bits, where k >= 4.

We also note that although HAVAL is designed primarily for 32-bit machines,
hashing algorithms suited to more advanced platforms such as 64-bit machines
can be obtained by modifying the definition of a word.

The efficiency of the algorithm can be improved if we can find simpler replace-
ments for the five functions. It is a future research subject to search for other
approaches that might lead to simpler functions having the five properties.



6 Conclusions

We have proposed a new one-way hashing algorithm HAVAL that can compress
an arbitrarily long message into a digest of 128, 160, 192, 224 or 256 bits. To
meet the needs of various practical applications, HAVAL also has provides the
flexibility to change the number of passes message blocks are processed. A great
deal of attention has been paid to the design of the five Boolean functions used
by the algorithm. We expect that it requires the order of 2n/2 operations to find
a pair of collision messages, where n is the length of a digest. We also expect
that the algorithm would be widely used in practical applications where digests
of variable length are required.

7 Acknowledgments

The authors are grateful to Xian-Mo Zhang for his invaluable contribution to this
project. This work would be impossible without his insight in the construction
of cryptographically useful Boolean functions. We also would like to thank Tor
Nordhagen for his help in testing and programming.

References

[Ber92] Thomas A. Berson. Differential cryptanalysis mod 232 with applications to
MD5. In Advances in Cryptology - Proceedings of EuroCrypt’92, Lecture
Notes in Computer Science. Springer-Verlag, 1992. (to appear).

[Dam87] I. Damg̊ard. Collision free hash functions and public key signature schemes.
In Advances in Cryptology - Proceedings of EuroCrypt’87, Lecture Notes in
Computer Science. Springer-Verlag, 1987.

[Dam90] I. Damg̊ard. A design principle for hash functions. In G. Brassard, editor,
Advances in Cryptology - Proceedings of Crypto’89, Lecture Notes in Com-
puter Science, Vol.435, pages 416–427. Springer-Verlag, 1990.

[DH76] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transac-
tions on Information Theory, IT-22(6):472–492, 1976.

[Kal92] B. Kaliski. The MD2 message digest algorithm, April 1992. Request for
Comments (RFC) 1319.

[Knu73] Donald E. Knuth. The Art of Computer Programming, Sorting and Searching,
volume 3. Addison-Wesley, 1973.

[Mer78] R. Merkle. Secure communication over insecure channels. Communications
of the ACM, 21:294–299, 1978.

[NIS91] NIST. A proposed federal information processing standard for digital signa-
ture standard (DSS), August 1991.

[NIS92] NIST. A proposed federal information processing standard for secure hash
(SHS), January 1992.

[NY89] M. Naor and M. Yung. Universal one-way hash functions and their crypto-
graphic applications. In Proceedings of the 21-st ACM Symposium on Theory
of Computing, pages 33–43, 1989.

[Riv92a] R. Rivest. The MD4 message digest algorithm, April 1992. Request for
Comments (RFC) 1320. (Also presented at Crypto’90, 1990).



[Riv92b] R. Rivest. The MD5 message digest algorithm, April 1992. Request for
Comments (RFC) 1321.

[Rom90] J. Rompel. One-way functions are necessary and sufficient for secure signa-
tures. In Proceedings of the 22-nd ACM Symposium on Theory of Computing,
pages 387–394, 1990.

[Rot76] O. S. Rothaus. On “bent” functions. Journal of Combinatorial Theory (A),
20:300–305, 1976.

[Sch92] C. P. Schnorr. FFT-Hash II, efficient cryptographic hashing, April 1992. Pre-
sented at EuroCrypt’92.

[SZ92] Jennifer Seberry and Xian-Mo Zhang. Highly nonlinear 0-1 balanced boolean
functions satisfying strict avalanche criterion, 1992. AusCrypt’92, Gold Coast.

[Vau92] Serge Vaudenay. FFT-Hash-II is not yet collision-free. In Rump Session,
Crypto’92, 1992.

[ZMI91] Y. Zheng, T. Matsumoto, and H. Imai. Structural properties of one-way hash
functions. In A. J. Menezes and S. A. Vanstone, editors, Advances in Cryptol-
ogy - Proceedings of Crypto’90, Lecture Notes in Computer Science, Vol.537,
pages 303–311. Springer-Verlag, 1991.

This article was processed using the LATEX macro package with LLNCS style


