A simple correctness proof of the MCS contention-free lock

Theodore Johnson
Krishna Harathi
Computer and Information Sciences Department
University of Florida

Abstract

Mellor-Crummey and Scott present a spin-lock that avoids network contention by having
processors spin on local memory locations. Their algorithm is equivalent to a lock-free queue
with a special access pattern. The authors provide a complex and unintuitive proof of the
correctness of their algorithm. In this paper, we provide a simple proof that the MCS lock 1s a
correct critical section solution, which provides insight into why the algorithm is correct.

Keywords: mutual exclusion, serializability, parallel processing, spin lock

1 Introduction

Mellor-Crummey and Scott present a simple spin-lock for mutual exclusion [5], which they call the
MCS lock. Their algorithm has several desirable properties: it is is fair, because it is equivalent to
a FIFO queue ADT with special access pattern, and it is is contention free, because each processor
spins on a local variable. In contrast, test-and-set spin waiting is not fair, and will severely limit
performance [1, 2].

The authors of the MCS locks provide a complex proof of the correctness of their algorithm. In
[4], they show correctness through a series of algorithm transformations. Since this proof provides
little insight, they also provide intuitive correctness arguments.

In this paper, we present a simple correctness proof for the MCS lock. We show that the
underlying queue is decisive-instruction serializable, and that no operation access a garbage address.
We conclude that the MCS lock is a correct solution to the critical section problem.

2 MCS-Lock Algorithm

The code for the MCS lock, which is shown below, relies on two atomic read-modify-write opera-
tions. The swap instruction takes two parameters, L, a pointer to a memory location, and I, a value.
The execution of swap(L,I) puts I into L and returns the old value of L. The compare_and _swap
instruction takes a third parameter X, a value. The execution of compare_and swap(L,I,X) puts
I into L only if L currently contains the value X. In either case, compare_and_swap returns the old
value in L.

Each processor that sets a lock first allocates a locally-accessible record. If process p inserts
record r into the queue, then we say that r is p’s record, and p is r’s process. This record contains
a boolean flag for spin waiting and a link for forming a queue. The tail of the queue is pointed
to by L, and the head of the queue is implicitly pointed to by the lock holder. To set a lock, a
processor executes the acquire_lock procedure and adds its record, pointed to by I, to the end

of the queue. The enqueuing is performed by executing the fetch and_store instruction, which
atomically stores I in L and returns L’s old value. If the processor has a predecessor in the queue,
the processor completes the link; otherwise the processor is the lock holder.

To release a lock, the processor must reset the busy-waiting bit of its successor. If the processor
has no successor, it sets L to nil atomically with the compare_and swap.

type qnode = record

next : *gnode // ptr to successor in queue
locked : Boolean // busy-waiting necessary
type lock = *qgnode // ptr to tail of queue

// 1 points to a queue link record allocated (in an enclosing scope)
// in shared memory locally accessible to the invoking processor

procedure acquire lock(L: *lock, I: *qnode)
var pred: *gnode

I->next := nil // Initially, no successor

pred := swap(L, I) // Queue for lock

if pred # nil // Lock was not free
i->locked := true // Prepare to spin
pred->next := I // Link behind predecessor
repeat while I->locked // Busy wait for lock

procedure release lock(L: *lock, I: *qnode)
if I->next = nil // Ho known successor
if compare_and_swap(L, I, nil)
return // No successor, lock free
repeat while I->next = nil // Wait for successor
I->next->locked := false // Pass lock

MCS-Lock Algorithm (from [5]).

3 Correctness

We show that the MCS lock is correct by showing that it maintains a queue, and the head of the
queue is the process that holds the lock. The MCS lock is decisive-instruction serializable [6]. Each
operation has a single decisive instruction, and corresponding to a concurrent execution C of the
queue operations, there is an equivalent serial execution Sy such that if operation O executes its
decisive instruction before operation Oy does in C, then O < O in §4. The decisive-instruction
serializability of the MCS lock greatly simplifies its correctness proof, because the equivalent queue
is in a single state at any instant. In contrast, a concurrent data structure that is linearizable but
not serializable might be in several states simultaneously [3].

3.1 The Queue ADT

A queue is an Abstract Data Type that consists of finite set () and two operations: enqueue and
dequeue. The elements of () are totally ordered. We write the state a queue as Q = (¢1,¢2,--.,n),
where ¢ <g ¢2 <g ... <0 ¢n-

The enqueue operation is specified by

enqueue((ql, 42, .-, (Zn)v (]/) - (q17 925 - -5 qn, q/)

The dequeue operation on a non-empty queue is specified by

dequeue((ql, 42, .-, QTL)) - (f]27 RS Qn)

where the return value is ¢;. A dequeue operation on an empty queue is undefined.

We define two functions on a queue): head()) and tail(Q). The head function returns the
least element of the queue and the tail function returns the greatest element of the queue.

Corresponding to an actual MCS lock M, there is an abstract queue). Initially, both M and
() are empty. When process p with record r performs the decisive instruction for an acquire_lock
operation, () changes state to enqueue(Q,r). When a process performs the decisive instruction for
a release_lock operation,) changes state to dequeue(Q)). We will show that the actual MCS lock
corresponds to the abstract queue.

3.2 Execution Sequences

The MCS lock executes correctly because it is presented with a special sequence of concurrent
operations. We assume that each processor uses the acquire lock and release lock operations
to synchronize access to a resource:

acquire lock(L,r)
critical section
release_lock(L)

If the MCS lock is correct, then it is a multiple-enqueue/single-dequeue queue. Any number of
acquire_lock operations might execute concurrently, but we are guaranteed that

1. At most one release lock operation executes at any given time. Let Dy and Dy be two
different release lock executions, executing in the time intervals I; and I, respectively. Then
Iy and I do not overlap.

2. Norelease_lock operation executes between the time that a release_lock sets L to Nil and
the time that the first subsequent acquire lock operation terminates. Let D be the execution
of a release_lock operation that sets L to NIL, and let D complete its execution at time
ty. Let F be the execution of the acquire lock operation that performs the first decisive
instruction after time t4. If F completes its execution at time t., then no release_lock
operation executes in the time interval (#4,1.).

3.3 Queue Invariants

The MCS lock maintains three invariant conditions.

Tail Invariant: If the abstract queue is non-empty, then L points to the record at the tail of
the abstract queue. If the queue is empty, L is Nil.

We define the head process to be the process whose record is at the head of the abstract queue.
A process that is waiting for I->1ocked to become false is blocked.

Head Invariant: If the head process is blocked, it will be unblocked by the time that the
preceding release lock operation terminates.

Blocking Invariant: A non-head process will not exit the acquire lock procedure.

3.4 Decisive Operations

The decisive instruction in the acquire_lock procedure is the fetch_and_store instruction. The
decisive instruction in the release lock procedure is the reading of I->next if the fetch returns
a non-nil value, and is the compare_and_swap instruction otherwise.

Theorem 1 The MCS lock is decisive-instruction serializable.

Proof: To show that the MCS lock is decisive-instruction serializable, we first show that the three
invariants are always maintained. To show that the invariants are maintained, we assume that only
the head process executes a release _lock operation. We then show that this assumption holds by
induction.

Lemma 1 The tail invariant is always maintained.

Proof: When a process performs the decisive instruction for an acquire_lock operation, it sets
the tail pointer (L) to its record. Therefore, acquire_lock operations maintain the tail invariant.
A release_lock operation modifies the tail pointer by the compare_and_swap instruction only.
The compare_and_swap will succeed only if the queue contains exactly one element. Therefore, the
release_lock operation also maintains the queue invariant.O

Lemma 2 If only the head process evecutes a release_lock operation, the blocking invariant is
always maintained.

Suppose that the record of a process is in the queue but isn’t the head record. By the tail invariant,
the process must have read a non-nil tail pointer when it performed the decisive instruction for the
acquire_lock operation. The process will therefore wait until the locked field of its record, which
is initialized to true, is set to false. This bit will only be reset when the process of the predecessor
record executes a release_lock operation. But, after the release_lock decisive instruction, the
process becomes the head process. O

Lemma 3 The head invariant is always maintained.

Suppose that when a head process P performs its decisive instruction on a release_lock operation,
dequeue(()) is non-empty. In this case, the decisive instruction will report that tail pointer is not
the process’ record. Then, P will wait until the next field of its record, R is non-nil. By the tail
invariant, this field will eventually point to R’s successor in @, 7 (because of the execution of r’s
process, p, in the acquire_lock procedure). After P’s decisive instruction, r is the head record and
p is the head process. Process P will reset the locked bit of r, unblocking p before P completes.
Suppose that when P performs its decisive instruction, ¢} becomes empty. If p is the process
that executes the next decisive instruction (which must be for a acquire_lock operation), p will
become the head process and will find that I is nil. Since p finds L is NIL, p never blocks. O

Lemma 4 A process evecutes a release_lock operation only when it is the head process.

Proof: We proceed by induction on the i** decisive instruction. For the base case, consider the
operation that executes a decisive instruction. Since the queue is empty, the operation must be an
acquire_lock and the lemma holds.

Suppose that the lemma holds for the i** decisive instruction. If the i+ 1** decisive instruction
is due to an acquire_lock, the lemma holds. Suppose that the i + 1% decisive instruction is due to

an release_lock operation. By the execution sequence assumption, the process that executes this
operation must have previously executed a acquire lock operation. By the blocking invariant, the
process must be the head process, so the lemma holds. O

Since the head invariant is always maintained, locks are granted in the order requested, where
the order of requests is the order of the decisive instructions O

3.5 Garbage

We next show that the queue does not access garbage locations. We assume when a process executes
the acquire lock procedure, it first allocates a record. When a process exits the release_lock
procedure, it discards the record that was at the head of the queue (pointed to by I). For simplicity,
we assume that a record is never reused. A record is valid during the time between its creation and
its deletion.

Theorem 2 No process accesses an invalid queue record.

Proof: By the blocking invariant, only the head process performs a release_lock operation,
and the process dequeues its own record. Therefore, whenever a process access its record, it accesses
a valid record.

When a process executes the acquire lock operation, the process inserts a pointer to its
record’s predecessor in @ (if one exists). The process of the predecessor record does not exit
the release_lock procedure until the next field of its record is modified. Therefore, no process
accesses an invalid record when executing the acquire lock operation.

When a process executes the release lock operation, it modifies its record’s successor in).
By the execution sequence assumption, this record remains in the queue until the process completes
the operation. Therefore, no process access an invalid record when executing the release lock
operation. O

4 Critical Section Solution

A critical section solution is correct if it satisfies the following three criteria [7]:
1. At most one process executes in the critical section at any given time.

2. If no process is executing in the critical section, and at least one process wishes to enter the
critical section, then a process enters the critical section in a finite amount of time.

3. If a process wishes to enter the critical section, then a finite number of processes enter first.

We can see that the MCS lock is a correct solution to the critical section problem. We define
the set of processes that are in or wish to enter the critical section as the set of processes whose
records are in). By the blocking invariant, criteria 1 holds. By the head invariant, criteria 2 holds.
The MCS lock is a decisive-instruction serializable FIFO queue, so criteria 3 holds.

5 Conclusion

The MCS lock is method of implementing mutual exclusion that avoids network contention. Fur-
ther, the MCS lock is fair, unlike the simple test-and-set solution. We present a simple correctness

proof for the MCS lock. We show that the MCS lock is equivalent to a decisive-instruction serial-
izable queue, and show that several queue invariants always hold. Whereas the correctness proof
provided by Mellor-Crummey and Scott is indirect and provides little insight, our correctness proof
is direct and provides insight into the algorithm’s execution.

References

[1] T. E. Anderson. The performance of spin lock alternatives for shared memory multiprocessors.
IFEFE Transactions on Parallel and Distributed Systems, 1(1):6-16, 1990.

[2] R.R. Glenn, D.V. Pryor, J.M. Conroy, and T. Johnson. Characterizing memory hotspots in a
shared memory mimd machine. In Supercomputing °91. IEEE and ACM SIGARCH, 1991.

[3] M. Herlihy and J. Wing. Linearizability: A correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems, 12(3):463-492, 1990.

[4] J. Mellor-Crummey and M. Scott. Algorithms for scalable synchronization on shared-memory
multiprocessors. Technical Report TR90-114, Rice University Dept. of CS, 1990.

[5] J.M. Mellor-Crummey and M.L. Scott. Algorithms for scalable synchronization on shared-
memory multiprocessors. ACM Trans. Computer Systems, 9(1):21-65, 1991.

[6] D. Shasha and N. Goodman. Concurrent search structure algorithms. ACM Transactions on
Database Systems, 13(1):53-90, 1988.

[7] A. Silberschatz, J. Peterson, and P. Galvin. Operating System Concepts. Addison Wesley, 1991.

