
A simple correctness proof of the MCS contention-free lockTheodore JohnsonKrishna HarathiComputer and Information Sciences DepartmentUniversity of FloridaAbstractMellor-Crummey and Scott present a spin-lock that avoids network contention by havingprocessors spin on local memory locations. Their algorithm is equivalent to a lock-free queuewith a special access pattern. The authors provide a complex and unintuitive proof of thecorrectness of their algorithm. In this paper, we provide a simple proof that the MCS lock is acorrect critical section solution, which provides insight into why the algorithm is correct.Keywords: mutual exclusion, serializability, parallel processing, spin lock1 IntroductionMellor-Crummey and Scott present a simple spin-lock for mutual exclusion [5], which they call theMCS lock. Their algorithm has several desirable properties: it is is fair, because it is equivalent toa FIFO queue ADT with special access pattern, and it is is contention free, because each processorspins on a local variable. In contrast, test-and-set spin waiting is not fair, and will severely limitperformance [1, 2].The authors of the MCS locks provide a complex proof of the correctness of their algorithm. In[4], they show correctness through a series of algorithm transformations. Since this proof provideslittle insight, they also provide intuitive correctness arguments.In this paper, we present a simple correctness proof for the MCS lock. We show that theunderlying queue is decisive-instruction serializable, and that no operation access a garbage address.We conclude that the MCS lock is a correct solution to the critical section problem.2 MCS-Lock AlgorithmThe code for the MCS lock, which is shown below, relies on two atomic read-modify-write opera-tions. The swap instruction takes two parameters, L, a pointer to a memory location, and I, a value.The execution of swap(L,I) puts I into L and returns the old value of L. The compare and swapinstruction takes a third parameter X, a value. The execution of compare and swap(L,I,X) putsI into L only if L currently contains the value X. In either case, compare and swap returns the oldvalue in L.Each processor that sets a lock �rst allocates a locally-accessible record. If process p insertsrecord r into the queue, then we say that r is p's record, and p is r's process. This record containsa boolean
ag for spin waiting and a link for forming a queue. The tail of the queue is pointedto by L, and the head of the queue is implicitly pointed to by the lock holder. To set a lock, aprocessor executes the acquire lock procedure and adds its record, pointed to by I, to the end1

of the queue. The enqueuing is performed by executing the fetch and store instruction, whichatomically stores I in L and returns L's old value. If the processor has a predecessor in the queue,the processor completes the link; otherwise the processor is the lock holder.To release a lock, the processor must reset the busy-waiting bit of its successor. If the processorhas no successor, it sets L to nil atomically with the compare and swap.type qnode = recordnext : *qnode // ptr to successor in queuelocked : Boolean // busy-waiting necessarytype lock = *qnode // ptr to tail of queue// I points to a queue link record allocated (in an enclosing scope)// in shared memory locally accessible to the invoking processorprocedure acquire lock(L: *lock, I: *qnode)var pred: *qnodeI->next := nil // Initially, no successorpred := swap(L, I) // Queue for lockif pred 6= nil // Lock was not freei->locked := true // Prepare to spinpred->next := I // Link behind predecessorrepeat while I->locked // Busy wait for lockprocedure release lock(L: *lock, I: *qnode)if I->next = nil // No known successorif compare and swap(L, I, nil)return // No successor, lock freerepeat while I->next = nil // Wait for successorI->next->locked := false // Pass lockMCS-Lock Algorithm (from [5]).3 CorrectnessWe show that the MCS lock is correct by showing that it maintains a queue, and the head of thequeue is the process that holds the lock. The MCS lock is decisive-instruction serializable [6]. Eachoperation has a single decisive instruction, and corresponding to a concurrent execution C of thequeue operations, there is an equivalent serial execution Sd such that if operation O1 executes itsdecisive instruction before operation O2 does in C, then O1 < O2 in Sd. The decisive-instructionserializability of the MCS lock greatly simpli�es its correctness proof, because the equivalent queueis in a single state at any instant. In contrast, a concurrent data structure that is linearizable butnot serializable might be in several states simultaneously [3].3.1 The Queue ADTA queue is an Abstract Data Type that consists of �nite set Q and two operations: enqueue anddequeue. The elements of Q are totally ordered. We write the state a queue as Q = (q1; q2; : : : ; qn),where q1 <Q q2 <Q : : : <Q qn.The enqueue operation is speci�ed byenqueue((q1; q2; : : : ; qn); q0)! (q1; q2; : : : ; qn; q0)2

The dequeue operation on a non-empty queue is speci�ed bydequeue((q1; q2; : : : ; qn))! (q2; : : : ; qn)where the return value is q1. A dequeue operation on an empty queue is unde�ned.We de�ne two functions on a queue Q: head(Q) and tail(Q). The head function returns theleast element of the queue and the tail function returns the greatest element of the queue.Corresponding to an actual MCS lock M , there is an abstract queue Q. Initially, both M andQ are empty. When process p with record r performs the decisive instruction for an acquire lockoperation, Q changes state to enqueue(Q; r). When a process performs the decisive instruction fora release lock operation, Q changes state to dequeue(Q). We will show that the actual MCS lockcorresponds to the abstract queue.3.2 Execution SequencesThe MCS lock executes correctly because it is presented with a special sequence of concurrentoperations. We assume that each processor uses the acquire lock and release lock operationsto synchronize access to a resource:acquire lock(L,r)critical sectionrelease lock(L)If the MCS lock is correct, then it is a multiple-enqueue/single-dequeue queue. Any number ofacquire lock operations might execute concurrently, but we are guaranteed that1. At most one release lock operation executes at any given time. Let D1 and D2 be twodi�erent release lock executions, executing in the time intervals I1 and I2, respectively. ThenI1 and I2 do not overlap.2. No release lock operation executes between the time that a release lock sets L to Nil andthe time that the �rst subsequent acquire lock operation terminates. LetD be the executionof a release lock operation that sets L to NIL, and let D complete its execution at timetd. Let E be the execution of the acquire lock operation that performs the �rst decisiveinstruction after time td. If E completes its execution at time te, then no release lockoperation executes in the time interval (td; te).3.3 Queue InvariantsThe MCS lock maintains three invariant conditions.Tail Invariant: If the abstract queue is non-empty, then L points to the record at the tail ofthe abstract queue. If the queue is empty, L is Nil.We de�ne the head process to be the process whose record is at the head of the abstract queue.A process that is waiting for I->locked to become false is blocked.Head Invariant: If the head process is blocked, it will be unblocked by the time that thepreceding release lock operation terminates.Blocking Invariant: A non-head process will not exit the acquire lock procedure.3

3.4 Decisive OperationsThe decisive instruction in the acquire lock procedure is the fetch and store instruction. Thedecisive instruction in the release lock procedure is the reading of I->next if the fetch returnsa non-nil value, and is the compare and swap instruction otherwise.Theorem 1 The MCS lock is decisive-instruction serializable.Proof: To show that the MCS lock is decisive-instruction serializable, we �rst show that the threeinvariants are always maintained. To show that the invariants are maintained, we assume that onlythe head process executes a release lock operation. We then show that this assumption holds byinduction.Lemma 1 The tail invariant is always maintained.Proof: When a process performs the decisive instruction for an acquire lock operation, it setsthe tail pointer (L) to its record. Therefore, acquire lock operations maintain the tail invariant.A release lock operation modi�es the tail pointer by the compare and swap instruction only.The compare and swap will succeed only if the queue contains exactly one element. Therefore, therelease lock operation also maintains the queue invariant.2Lemma 2 If only the head process executes a release lock operation, the blocking invariant isalways maintained.Suppose that the record of a process is in the queue but isn't the head record. By the tail invariant,the process must have read a non-nil tail pointer when it performed the decisive instruction for theacquire lock operation. The process will therefore wait until the locked �eld of its record, whichis initialized to true, is set to false. This bit will only be reset when the process of the predecessorrecord executes a release lock operation. But, after the release lock decisive instruction, theprocess becomes the head process. 2Lemma 3 The head invariant is always maintained.Suppose that when a head process P performs its decisive instruction on a release lock operation,dequeue(Q) is non-empty. In this case, the decisive instruction will report that tail pointer is notthe process' record. Then, P will wait until the next �eld of its record, R is non-nil. By the tailinvariant, this �eld will eventually point to R's successor in Q, r (because of the execution of r'sprocess, p, in the acquire lock procedure). After P 's decisive instruction, r is the head record andp is the head process. Process P will reset the locked bit of r, unblocking p before P completes.Suppose that when P performs its decisive instruction, Q becomes empty. If p is the processthat executes the next decisive instruction (which must be for a acquire lock operation), p willbecome the head process and will �nd that L is nil. Since p �nds L is NIL, p never blocks. 2Lemma 4 A process executes a release lock operation only when it is the head process.Proof: We proceed by induction on the ith decisive instruction. For the base case, consider theoperation that executes a decisive instruction. Since the queue is empty, the operation must be anacquire lock and the lemma holds.Suppose that the lemma holds for the ith decisive instruction. If the i+1th decisive instructionis due to an acquire lock, the lemma holds. Suppose that the i+1th decisive instruction is due to4

an release lock operation. By the execution sequence assumption, the process that executes thisoperation must have previously executed a acquire lock operation. By the blocking invariant, theprocess must be the head process, so the lemma holds. 2Since the head invariant is always maintained, locks are granted in the order requested, wherethe order of requests is the order of the decisive instructions 23.5 GarbageWe next show that the queue does not access garbage locations. We assume when a process executesthe acquire lock procedure, it �rst allocates a record. When a process exits the release lockprocedure, it discards the record that was at the head of the queue (pointed to by I). For simplicity,we assume that a record is never reused. A record is valid during the time between its creation andits deletion.Theorem 2 No process accesses an invalid queue record.Proof: By the blocking invariant, only the head process performs a release lock operation,and the process dequeues its own record. Therefore, whenever a process access its record, it accessesa valid record.When a process executes the acquire lock operation, the process inserts a pointer to itsrecord's predecessor in Q (if one exists). The process of the predecessor record does not exitthe release lock procedure until the next �eld of its record is modi�ed. Therefore, no processaccesses an invalid record when executing the acquire lock operation.When a process executes the release lock operation, it modi�es its record's successor in Q.By the execution sequence assumption, this record remains in the queue until the process completesthe operation. Therefore, no process access an invalid record when executing the release lockoperation. 24 Critical Section SolutionA critical section solution is correct if it satis�es the following three criteria [7]:1. At most one process executes in the critical section at any given time.2. If no process is executing in the critical section, and at least one process wishes to enter thecritical section, then a process enters the critical section in a �nite amount of time.3. If a process wishes to enter the critical section, then a �nite number of processes enter �rst.We can see that the MCS lock is a correct solution to the critical section problem. We de�nethe set of processes that are in or wish to enter the critical section as the set of processes whoserecords are in Q. By the blocking invariant, criteria 1 holds. By the head invariant, criteria 2 holds.The MCS lock is a decisive-instruction serializable FIFO queue, so criteria 3 holds.5 ConclusionThe MCS lock is method of implementing mutual exclusion that avoids network contention. Fur-ther, the MCS lock is fair, unlike the simple test-and-set solution. We present a simple correctness5

proof for the MCS lock. We show that the MCS lock is equivalent to a decisive-instruction serial-izable queue, and show that several queue invariants always hold. Whereas the correctness proofprovided by Mellor-Crummey and Scott is indirect and provides little insight, our correctness proofis direct and provides insight into the algorithm's execution.References[1] T. E. Anderson. The performance of spin lock alternatives for shared memory multiprocessors.IEEE Transactions on Parallel and Distributed Systems, 1(1):6{16, 1990.[2] R.R. Glenn, D.V. Pryor, J.M. Conroy, and T. Johnson. Characterizing memory hotspots in ashared memory mimd machine. In Supercomputing '91. IEEE and ACM SIGARCH, 1991.[3] M. Herlihy and J. Wing. Linearizability: A correctness condition for concurrent objects. ACMTransactions on Programming Languages and Systems, 12(3):463{492, 1990.[4] J. Mellor-Crummey and M. Scott. Algorithms for scalable synchronization on shared-memorymultiprocessors. Technical Report TR90-114, Rice University Dept. of CS, 1990.[5] J.M. Mellor-Crummey and M.L. Scott. Algorithms for scalable synchronization on shared-memory multiprocessors. ACM Trans. Computer Systems, 9(1):21{65, 1991.[6] D. Shasha and N. Goodman. Concurrent search structure algorithms. ACM Transactions onDatabase Systems, 13(1):53{90, 1988.[7] A. Silberschatz, J. Peterson, and P. Galvin. Operating System Concepts. Addison Wesley, 1991.

6

