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Abstract. Infinite trees naturally arise in the formalization and the study of the semantics of
prog-amming languages. This paper investigates somc of their combpinatorial and algebraic
propeities that are especially relevant to semantics.

This paper is concerned in particular with regular and algebraic infinite trees, not with regular
or algebraic sets of infinite trees. For this reason most of the propertics stated in this work
become trivial when restricted either to finite trees or to infinite words.

It presents a synthesis of various aspucts of infinite trees, investigated by ditfferent authors in
different contexts and hopes to be a unilying step towards a theory of infinite trees that could
take place near the theory of formal languages and the combinas =i of the free monoia.
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Introduction

Infinite trees naturally arise in mathematical investigations on the semantics of
programming languages. They arise in essentially two ways: when one unloops or
unfolds a program undefinitely. One obtains then either a tree of execution paths
(infinite in general) in the case of a program written in an imperative language like
FORTRAN or an expression tree in the case of a program written in an applicative
language like LISP. In the latter case, the expression tree is usually infinite although

0304-3975/83/0000-0000/$03.00 © 1983 North-Holland



96 B. Courcelle

its value can be finitely computed in each case; this is possible by the use of
if-then—else as a base function (like the addition of integers) and not as a piece of
control structure. Once again, the infiniteness of the tree corresponds to the
infiniteness of the set of possible computations.

In both cases, the semantics of the program is completely defined by the associated
tree. Hence two programs are equivalent if the associated trees are the same (the
converse being not true). Roughly speaking. this allows to distinguish between the
equivalence of programs which is only due to the control structure (loops, recursive
calls, etc....) from the equivalence which also depends on the properties of the
domains of computation and the given ‘base’ functions on these domains.

It should be noted that these infin.te trees are finitely defined. Hence we are
lead to try to decide whether two infinite trees defined in some finitary way are
cqual,

Two types of infinite trees will be considered: the regular trees which are defined
by unlooping FORTRAN:-like program or flowcharts and the algebraic trees which
are defined by unfolding recursive program schemes more or less derived from
LISP programs.

We shall introduce operations on trees: the first-order substitution which corre-
sponds (roughly) to the sequential composition of flowcharts (by the operator; of
AL.GOL) or to functional application (in the case of an applicative language). We
shall also introduce the second-order substitution which corresponds to the replace-
ment ol a function symbol in an expression tree by some expression tree intended
to denote the corresponding f.anction.

The theory of regular and algebraic trees will be developed for itself. The
relevance to semantics will be shown with examples only in Sections 1.7 and 1.8.

Here is a brief survey of tie content of the paper which is intended to be a
synthesis of several aspects of (nfinite trees usually defined and studied separately
for different pr -poses:

(1) Jopological (i.c. metric) and order-theoretical properties of infinite trees are
investigated in parallel in order to enlighten similarities and differences.

(2) First- and second-order substitutions are investigated in the two above
frameworks.

(3) Regular trees, rational expressions defining them are studied. The concept
of aniterative theory, due to C.CC, Elgot. is one of the possible algebraic frameworks
where to study infinite trees; the set of regular trees forms the free iterative theory.
Regular trees also arise as most general first-order unifiers in a generalized sense.

(4) Algebraic trees play a similar role with respect to second-order substitutions
as regular trees with respect te tirst-order ones. Their combinatorial properties are
sufficiently complicated to yicld an open problem equivaient to the DPDA
cquivalence problem.

The following text gives pre _ise, unifying definitions of all the above topics. Many
proofs are omitted cither if they are too long and complex or if they are mere
verifications from the definittons. Some of the given proofs are simpler than the
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original ones. Some of the stated results are ‘new’ in the sense that they have aever
been published before (to the author’s knowledge) but are not really ditficult to
establish and were probably known from the specialists. (The present paper aims
to be a reference for these technical lemmas and to facilitate future publications.)
Other ones can be really claimed to be new: for instance Proposition 3.5.” concern
ing second-order substitution and Theorem $.9.1 saying that if the mo:ut general
unifier of two algebraic trees exists, then it is algebraic.

This text has been written for the International Summer School on Theoretical
Foundations of Programming Methodology, Marktoberdorf, West-Germany,
August 1981, and a shortened version will appear under the same title in the
proceedings to be published by D. Reidel Publishing Company, Dordrecht, Holland.

1. Basic definitions and examples

In this section we make precise some mathematical notations, we define finite
and infinite irees over a ranked alphabet and we show informally how intinite trees
can be associated with program schemes of various types.

1.1. Mathematical notations

We denote by N the set of non-neaative ntegers and by N, the set of positive
ones. We denote by [n] theinter- (1 {{, 2,2, ..., n}forn =0 (with [0] = ¢

For sets A and B we denote by A - B the set{ae A|aé B}.

The domain of a partial mapping /: A > B will be denoted by Dom(/). The
restriction of f to a subset A’ of A wili be denoted by | A"

If fis a mapping B" - C and g,....., g, are mappings A" = B, we denote by
fo(gi,...,g) the mapping h:A"->C such that fila,....,d.=
flgiay, ... am)y ... guldy, ... an) .

The set « “otal mappings: A » B will be dencied by (A > B)or by B,

1.2. Definitions

In order to define trees, we shall use ranked alphabets. A ranked alphabet is a
pair (F,p) consisting of a set F, not necessarily finite, and a mapping p:F-> N
which defines th: rank of any symbol f in F.

For such a : o1 F, we denote by F, the set {fe F p(f) =i}, tor i 0.

In many ca- s the symbols in F will be considered as function symbols ; the rank
of a function symboil is called its arity and a symbol of arity O is called a constant
symbol (or a constant).

Following [41, 42, 62] we define @ tree over a ranked alphabet F (the rank function
will always be p) as a partial mapping r : N* = F such that its domain is a tree-domain
i e, satisfies the following conditions:
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Dom(1) is prefix-closed (i.e. if &, B e N%, af € Dom(¢) then a € Dom(t))
and not empty, (1.2.1)

if x e N%,i,jeN, 1 <i<jard oj e Dom(t) then ai € Dom(¢). (1.2.2)
Furthermore we require the following coi:dition which concerns the rank function:

if t(a) = f of arity k =0 then, for i eN.,,
ai e Dom(t) if and only if 1 <i<k. (1.2.3)

We shall use the following terminology and notatiors:

- M™(F) for the set of all trees over F.

- M(F) for the set of finite trees over F, i.e. of trees r having a finite set of nodes
Domu),

- First(r) for t(¢), the label of the root of ¢,

- Occetf, 1) for {a € Dem(r)|1(x) = f}, the set of ocrurrences of f in 1,

~ t/a for the subtree of t issued from node a, i.e. the tree t' =AB e N¥ . t(aB),

- Suabtree(r) ={t/a |a € Dom()},

- ] = Card(Domi(r)) (an element of N, U {o0}) is the size of a tree t.

1.3. Fxamples

Let F=de.f,g. h k., a, b, vy, 2 with p(c)=3, p(f)=p(g)=2, plh)=pk)=1,
plary=piby=pley)y =plry) =0,
t1i Lets be defined as follows:

sty =,
sthy=silly =k, sitlly=a,
si2)=h, s(21)=b.

It is depicted in Fig. 1.

f
AN
.v./ “h
|
X b
a
Fig. 1.

12 Let now 1 be defined by
tis ) = f, nl=aq,

127 - g, 112"y =h foralln=1.
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This infinite tree is shown in Fig. 2. The subtree ¢/2 consists of all the g's and b's
of t.

(3) The tree u such that u(1™Y="h for all n =0 consists of one infinite branch.

13 Mia Froals & s

We identify it with the infinite word A “. See Nivat [54] and section 5.10,
(4) Our last example will be the tree w of Fig. 3. It can be defined as follows:

w3 =c, w@3")=u,,
w(3"21") = p,, wi3" 21"y =h foralln =2m =0,

vl h c
v v h c
2 1 / \
h vl h
v2 h

Fig. 3. v,
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If we consider F as a set of function symbols, the finite trees over F can be
identified with well-formed terms over F and written linearly with commas and
parentheses. For instance, the tree s of Fig. 1 can be written

f(k(k(a)}, h(b))

From such a notation, one can infer the arities of the symbols f, k, a, h, b.
We shall also omit the parentheses surrounding the arguments of monadic (i.e.
of arity 1) function symbols; the above tree can also be written

fikka, hb) or f(k’a,hb).

Within a proof or a theorem, we shall only write down well-formed trees and
terms; hence when declaring *‘let ¢ be of the form f(t),1,,...,1.)...” we also
declare that f is of arity n. And this allows n to be O (in this case (y,...,,) is the
emply sequence, i.e. t =f).

1.4. F-magmas, F-algebras

The standard operation defined by a symbol f of Fi, k=0 is the mapping
f:M*“(F)* > M*(F)such that f(ry,..., 1) =1t where

r'ee)y=f,
Cliny=tfa) f1=i<k,
'tay is undefined otherwise.

The mapping f maps M (F)" into M {F). The notation of finite trees with commas
and parentheses allows us to write

fieg ... ) =fy, ..., 6),

i.c. to identify £ with f.

We shall do the same for infinite trees and specify finite or infinite trees by “let
t=fuy ..o for ... 0 in MT(F) ...

The definition of the f's makes M(F) and M “(F) into F-magmas (equivalently
F-algebras [41] but we prefer the former terminology since the terms ‘algebra’,
‘algebraic” are overused in mathematics). We shall not distinguish between the sets
of trees M(F) tor M ™ (F)) and the associated magmas, and we shall frequently do
the same for arpitrary F-magmas.

We shall talk of F-homomorphism to specify that the magma structure under
consideration is relative to F when this is not completely clear from the context.

It is well known that M (F) is an initial F-magma hence the initial F-magma. We
shall denote by eval, the unique morphism of M(F) into an F-magma A (we
vonstder 1 as a syntactic object denoting the element eval4(r) of A).

We shall refer 10 the f's as the F-operations on M(F) (and on M™(F)) to
contrast them with other operations to be introduced below.
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1.5. Basic lemmas

Let us point out some basic facts upon which most proofs and definitions
concerning trees are based.

. Lemma 1.5.1. Ler 1 and t' be trees in M™(F) of the forms t=f(t,...,t), t' =
gty ..., t1). They are equal if and only if f=g (whence k =1) and t; =t for all
i=1,...,k.

The next lemmas hold for M (F) only and follow from its initiality p:operty; they
will be extended to M (F) in the next section by means of topological and
order-theoretical considerations.

Lemma 1.5.2 (Proof by structural induction). In order to prove a property of the
form Vte M(F) . P(t), it suffices to prove:

(1) VteFy.P(1),

(2) Vk >0,VfeF,Vty,...,tce M(F).P(t))and ... and P(t,) D> P(f(ty, ..., ).

Lemma 1.5.3 (Definition by structural induction). There exists one and only one
mapping ¢ : M(F)-> A such that
(1) eif)y=al(f) forall feF,,
(2) e(fltis. st ))=b(fe(t)),...,0t)) forallk >0, allfeF, allt,, ..., in
M (F)
where a and b are given mappings: Fo» A and FyxM(F) w---OF xM(F)u
- - A respectively.

Proofs. Immediate application of the initiality property to the F-magmas {u €
M (F)|P(u) is true} equipped with the standard operations for Lemma 1.5.2 and
A equipped with F-operations obviously constructed from a and b for Lemma
153. O

Notations 1.5.4. For Tc M™(F) and G < F we denote by G(T) the set of trees
of the form f(s,...,1,) for feG and ty,...,1,€T and by M(G, T) the least
sub-G-magma of M *(F) which contains T.

1.6. Representations of trees by languages

The definitions given in Section 1.2 show that a tree ¢ can be represented i.c.
completely defined by an indexed family of languages (Occ(f, #')s.r Which reduces
to a tuple if the number of symbols of F occurring in ¢ is finite, or by the single
language L(t) ={af|a € Occ(f, 1), fe F} < NF.

Another representation has been defined by Rosen [63], and investigated in
depth by Courcelle [15]. One represents a tree ¢ by the ianguage Brch(r) of its
branches which is defined as follows.
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A new alphabet F is associated with F by

F={lf.illfeF 1<si<p(fi}uFo.

Let ¢ be a tree in M (F).
For every a € F,, every a € Occ(a, t), let a be the word

a@=[f,is1fai2)...[fnin]a
where
a=i;iz...i,., fj'-‘-'l(l'liz...iiq) fOl’lSj$n.
Then we define Breh(r) as the set of all such words a.
Note in particular that Brch(r) =0 if ¢ has no occurrence of any symbol in F.

Hence Brch(r) does not r:present all infinite trees, but oniy the locally finite ones.
(in the sense of [15]). The set

M'"“(F)={t e M (F)|for alla in Dom(z), there exists
B such that t(aB) e F,}

is the set of locally finite trees.
Note that M(F) g M'(F).

In certain circumstances, it is useful to be able to describe the infinite branches
of trees.

If te M™(F) and a is an infinite word in N% every finite prefix of which is in
Domir), then we associate with a the infinite word @ of F* such that

a =[fy, 0 f2, 20 f5i3). [ fuin). ..,

a =Qyisy. 0y ..,
f,=tiyiy...i;.y) forallj=1,

We let By (1) denote the set of all such infinite words @ and we let

Brch™ (1) = Breh(t) U Breh” (7).

Proposition 1.6.2 below shows that Breh™(r) uniquely defines ¢ in all cases.
Those who do not like infinite words can use instead of Breh™(¢) the language

PBrchir) consisting of all the finite prefixes of all words in Breh™(s) (so that
Brchiri = PBrchin)).

Example 1.6.1. Let us use the trees of Example 1.3.
tly Ly ={f 1k, 11k, 111a, 2h, 215},
Brehis) = {f\kka, f-hb}

swe use f, for [/, il when pif) =2 and f for (f, 1] when p(f) =1 in our examples for
mere clanityy,

Breh”is) =0,
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(2)  Breh(t) ={fia, f2g286 |n =0}.

Note that ¢ is locally finite. Its language of branches is regular. We shall see that
t is a regular tree.

3) L)={1"h|n=0},
Brch(u) =0,
Brch™(u) =Breh”(u)={hhh .. }={h"}.

This tree is not locally finite. It is also a regular tree.
(4)  Breh(w)={ciciv1, cic2h"v2{n =0}

This tree is locally finite. Its language of branches is cont:xt-free. We shalil see that
w is an algebraic tree.

Proposition 1.6.2. Fort, t' in M™(F):
(1) t=t"ifand only if L(t)=L(t"),
(2) t=1"if and only if Breh™(t) = Breh™(:"),
(3) t=t'"if and only if PBrch(t) = PBrch(t'),
(4) if t € M'°(F), then t =t if and only if Brch(r) = Brch(t').

It follows that each family o7 languages € naturally defines three families of trees:

L(®)={treM™(F)|L(1)€ €},
P(€)={te M™(F)!PBrch(r) e €},
B(%)={t € M'"*“(F)|Breh(r) e €}.

Certain classes of trees can be characterized in this way (see Sections 4.11 and 5.5
and Damm [30]).

1.7. Flowchart schemes and infinite trees

Consider the flowchart scheme S of Fig. 4. Its infinite unlooping yields the tree
of Fig. 2.

An interpretation 1 for S is an object I =(Dy, f1, 21, a, b1) consisting of
- a nonempty set Dy,
~ partial mappings ay, by: Dy-+ Dy,
~ partial mappings fi, g1: Di—21x{1, 2} (the 1 and 2 correspond respectively to
the left and right exits of actions f and g).
There corresponds to S and I a partial mapping Si: Dy~ Dy defined by Sid) = d
if and only if there exists a sequence do, d1, 42, . . ., dn Of elements of Dy withd,=d,
d, =d', which corresponds to a computation of S in L.
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Fig. 4.

We do not formally define a computation but we give a typical example for the
above scheme S':

(do,dy,d3, ds, ds, ds)

-~

where i
%
fl((i()) = (dlv 2), gl(dl) = (d2‘— 2)1
gild>) = (ds, 2), aild) =(d., 1), bi(d,y) =ds.

Note that f; and g are not only “tests since they can modify their data (sce the
interpretation I defined below).

Let P be the following program (with integer variables):

begin v « x +3:

ye2x+7;

if x < y

theny «27x +3;

else begindo x « x —8;

ye10x;
until x = 0
od;
v 82y,
y e«
ernd

end

We do not claim that P computes anything interesting, but we chose it only as
an example.
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It *corresponds’ to the pair (8, I) consisting of flowchart scheme § and interpreta-
tion I defined as follows:

D.=Zz.
ax,y)=(x',y) withy'=27x+3and x'=x,
bil(x, y)=(x",y") withx'=82y andy'=0,

fille, yN=(x",y"), i) ifx'=x+3,y'=2x"+7Tandi=1ifx'<sy’,i=2if
y'<x"
equivalently, if x'=x+3, y'=2x+13 and i =1 if
xr=-10,i=2:fx<-10

g, yh=Wx',v'), i) withx'=x—-8,y'=10x"and i=1if x'<0, i=2
if x'>0,
equivalently if v'=x -8, y'=10x —80 and ;i = 1 if
x<8,i=2if x>8.

By ‘corresponds’ we mean in particular that the function computed by P is Sj.

The tree of Fig. 2, let us call it ¢(S), can also be seen as an ‘infinite’ flowchart
scheme from which a partial function #(S); can be defined as for finite schemes.

The two main facts are the following ones:

(1) $;=1(S) for all interpretations I,

(2) for any two schemes S and S': §,=S; for all interpretations I, i.e. § and S’
are equivalent, if and only if ¢(S) =1(S’).

This model of computation has been introduced by Elgot [32, 33]. Infinite trees
have been used by Cousineau {28, 29], Casteran [13] and Enjalbert [36] in order
to study programs, their proofs and transformations in terms of program schemes.

1.8. Recursive program schemes and infinite trees
Let us consider the following (fancy) recursive definition:
K(xix2)=ifx;=xthenx;+3else 18 - K (xy, x2—1).
It can be considered as an instance of the following recursive program scheme:
elenva)=clvy, ta el hi(e?)

for the interpretation 1=(Dy, cy, hy) consisting of a domain Dy=Z U{l} (L means
‘undefined’) and functions

c1=Ax, v, 2 € Difif x =y then x + 3 else 182],
hy=AxeD,.[x-1]

which give meaning to the function symbols ¢ and h.
A formal computation of ¢ i.e. a infinite unfolding of the recursion leaving ¢
and h unevaluated yields the infinite tree of Fig. 3, let us _denote it by t(¢ (v, v2)).
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We can consider it as an infinite well-formed expression denoting the function
computed by ¢ in every interpretation. As in the case of flowcharts:

(1) K = ¢y, the function computed by ¢ in I and this function can be defined
from t(e (v1, v2)),

(2) for any two recursive program schemes ¢ (vy, v2) and ¢'(vy, v2), the functions
¢1 and ¢ are the same for all interpretations I, i.e. ¢ and ¢' are equivalent, if and
only if t{¢ (v, v2)) =t(e'(vy, v2)).

These facts are investigated in depth in many works by Courcelle, Nivat, Guessarian
[24, 25, 44, 53). .

It is useful to relativize the equivalence of program schemes to classes of

interpretations in order to get closer to the equivalence of programs. Classes of

interpretations for these kinds of program schemes are investigated in [11, 18, 22,
24,25, 39, 44).

2. Topological and order-theoretical properties of trees

We show that the set of infinite trees can be considered as a compact metric
space and also as a complete partial order. In both cases an infinite tree can be
considered as the limit (in some sense) of a sequence of finite trees and this allows
to extend ‘continuous’ mappings from finite trees to infinite ones.

Hence a double theory of infinite trees can be developed either in the framework
of topology or in that of the theory of ordered sets. In particular two universal
characterizations cf the F-magma of infinite trees can be given.

Since the intrcduction of infinite trees has been motivated by studies in semantics
of programming languages (via program schemes) the order-theoretical approach
has been developed first. It seems better suited for semantics (but this was not the
opinion of Elgot since his theory of monadic computations [32] avoids orderings:
Arnold and Nivat also avoid orderings in [2]).

In the present paper where we investigate svatactical properties of trees, both
of them are useful.

2.1. Contracting magmas

Let (F,d) be a metric space. For f:E = E let us denote by |if]} the least upper
bound of id(f(x), flaN/d(x, x")|x, x' € E, x #1'}. Amapping f: E = E is contracting
if there exists a real number ¢, 0= ¢ < 1 such that, for all x, X" in E,

dUf fien<c-dix, x'),

e if JIf]] < 1.
A contracting mapping is uniformly continuous. For k =2 we shall also denote
by d the distance on E* which is defined by

A, o) i, i)Y = Max{d i, )] T =i = k)
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y, n FLmnnmn — I “A \n- _,\ e romteantinno if
B & CIUGRIIIG {8 By \JA/feF/ O Luracaiang u
(1) A is a complete mcttic space with distance 4

(3) f,\ is contractmg for all f in F and

(4) [|All=Sup{ifalllfe F}<1.

A morphism of contracting F-magmas is a morphism of F-magmas which is
uniformiy continuous.

Fix-point Theorem 2.1.1. Let E be a completz metric space. Every contracting
mapping f : E - E has a urique fix-point.

Proof. We are to show the existence and unicity of x in E such that f(x)=x
Assume we have two such fix-points x and x’. Then d(x, x’) =d(f(x), f(x")) since

x and x’ are fix-points and d{f(x), fix'))<c.dix, x) since f is contracting. Hence

At w'V-2Nand « = ' Fartha avictanca lat . ha orv aloamae I oty 4‘"1. \
W, U~ UaAQHU A ™ A . 1'UL UIC CADRDLWLIILEG, ILL A UL Glly Caviiivig et Ay — A()]e
We have

d(xp. 1o Xa)=c" - dixy, xo)

dXmem X)sce™ '+e™ T+ -+ Dd(xy, xo)

=c"1-¢) . dixq, xa)

hence (x,), -0 is a Cauchy sequence. i has a limit x and x = f{x), by continuity. [

2.:

!9

A
1 \a

4w

_je ift=t',
" | Minfja)|a e Dom(t) nDom(t'), tia) # t'(a)} if =1

0 ifr=r,
d(‘vl) -~ Dt b PRI
A uwi* i,

It is casy to show that d is a distance on M ™ (F) making it into a complete metric
space (3,9, 5]. This distance is even ultrametric. It is essentially the same as the
distance that one puts on the ring of formal power series.

Note that d(¢, t')<1 for all ¢, ¢’ in M (F).

n £#X, H\ . R Y 1 M L ta. ab s ALY el

It can be shown that M () 1s compact it ana oniy it £ 18 nnii€, inat (v j, uic
cat of Ginita tr ; donco cuheot of MMX(E) and that ME(F) ic the tonological
ALt vl v u UdVL UL iV (e 4 1IN wiiQas 4VZ AL/ E0 b VPR R G
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Proposition 2.2.1. Every uniformly continuous mapping: M(F) -»E where E is
complete extends uniquely into a uniformly continuous mapping: M™(F ) >E.

Remark. This also applies to a property P(t) for t in M “(F) such that
(1) VteM(F).P()
(see Lemma 1.5.2) and which is continuous in the sense that

(2) ift=Lim,.ct, where t,fg, ... 0 ..., € MO (F)
and Vun e N . P(¢,) holds then P(¢) holds too.

(i.e. which defines a continuous mapping from M ™(F) into the discrete space
{true, false}).
From (1) and (2) one can conclude that P(¢) holds for all t in M ~(F).

Let us now consider the F-operations on M *(F).
The mappings f:M™(F)“>M™(F) are contracting (with |f|=1} if p(f)=1,
Ifll=0if p(f) = 0) hence

Proposition 2.2.2. M~ (F) is a contiacting F-magma.
Let us answer to the natural question:

Proposition 2.2.3. M *(F) is the initial contracting F-magma.

Proof. See Bloom and Patterson [9] where a very similar result is proved. ™
Remark 2.2.4. The hypothesis that Sup{|falllf€ F}<1 that we made in the
definition of a contracting F-magma is essential to insure Proposition 2.2.3.

This hypothesis is not made in [9]. It follows that M ~(F) is initial (in the
corresponding category) if and only if F —F, is finite and that there is no initial
object if F —F, is infinite.

Proposition 2.2.3 says that a tree 7 in M ™ (F) can be seen as a syntactic object
denoting an element of A, where A is a contracting F-magma. We denote it by
eval\(1). Hence we also denote by eval,, the unique uniformly continuous extension
to M ™ (F) of the mapping eval, : M (F)~ A defined in Section 1.4).

2.3. Complete magmas

An w-complete F-magma A is an F-magma equipped with a partial order = 4
such that

(1) A has a least element,
(2) every countable directed subset B (equivalently every increasing sequerce)
has a least upper bound Sup(B), and
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(3) the functions f1’s are monotone and w-continuous (i.e. preserve the Sup’s
of countable directed subsets).

Hence this concept coincides with that of w-continuous F-algebra introduced in
[41].

We call A complete if the least upper bounds are taken with respect to arbitrary
directed sets in (2) and (3).

All properties we shall state below hold for both completeness concepts. The
w-completeness will be sufficient for dealing with trees.

We refer the reader to [26, 70] for more details about partial orders and other
possible concepts of completeness.

Itis certainly not necessary to give the proof of the following well-known theorem:

Tarski fix-point theorem 2.3.1. Let E be an w-complete partial order with least
element ¢; let f : E - E be w-continuous. The element uy=Sup{f"e)ln =0} of E is
the least fix-point of f in E and also, the leasi solution in E of the inequation f(u) < u.

We shail denote uy by ux. f(x).

This applies to systems of equations since a system §-=
i =filx1,....x.): 1 <si<n)wherex; € E, for 1 <i < n can be considered as a single
equation x =f(x) to be solved in E;xXE;x---XE, with f((dy,...,d,))=
(fl(dl,. . ..d,,), .o .,f,,(d],. . .,d,,)) for all d| in E], . ,d,, in E,,.

Another fundamental lemma is the following one.

Lemma 2.3.2 (Beki¢ [4], Leszcylowski [50]). Let E and E' be two w-complete
partial orders, let f :E XE' > E and g : E X E' > E' be w-continuous.

(1) The mapping h : E' - E defined by h(y)=ux . f(x, y) is w-continuous.

(2) The two systems S=(x=f(x,y), y=gl,v) and S =&=h(y),
y =glh(y), y)) have the same least solution in E XE"'.

In other words the least solution (xo, yo) of § can be defined by vo=puy . glh(y), y)
and xo = li(yo) = px . fix, yo).

Proof. Part (1) follows from the fact that 4 is the lcast upper bound of the sequence
of w-continuous functions h,, n =0 such that

)= fle,y), ..o y)y))

(with n occurrences of f).

Let us sketch the proof of part (2).

Lety, =puy. glhly), v). Itis easy to verify that (1(y,), y:) is a solution of S, hence
(Xos YO) = (h(vy)), y1)-

Since (xa, Yo) is a solution of S, x, = f(x, yo) hence h(yo) < x, by definiticn of /.
Hence glit(yo), vo)=g(xa. vod)=vo. Hence y,=uy.glh(y),y)<y, Since h is
monotone, A(y1) < h(yo) <xo. Henc: {h(y1), v1) < (xo, Yo).

Hence we have shown that (xg, vo) = (A(y1), v1). O
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2.4. M3 (F) as an w-complete partial order

Let F be a ranked alphabet. Let £ be a new symbol of arity 0 that we add to F.
For any complete F-magma A we shall define the value 24 of 2 as the least
element of A.

Since {2 will play a special role, we shall use the notations

a3y n a0,

Mq(F) for M(F u{{?}) and Mg (F) for M (F uii2}).
We define a partial order on Mg (F) denoted by < as follows:
t=<¢ if and only if Dom(t) =< Dom(t') and for all « in Dom(¢), if t(a) # 2
then t'(a) =t(a).

It is fairly easy to show that < is a partial order, that {2 is the least element of
Mg (F) with respect to <,
Every directed subset A of M (F) has a least upper bound, a =Sup(A) in
M g (F) defined by
Dom(a) = {Dom(t)|t € A},

and for all « in Dom(a),

feF ift(a)=fforsomertin A,
Q if t(a) = {2 for all ¢ in A such that a € Dom(t).
The mappings f are monotone and w-continuous hence we can conclude that

Mg (F) is an w-complete F-magma (in fact a complete F~-magma as well).
The following proposition is analogous to Proposition 2.2.3:

a(a)={

Proposition 2.4.1 ([41]). M3 (F) is the initial w-complete F-magma.

Proposition 2.4.2. Let E be an w-complete partial order. Every monotone mapping

h: Mo(F)* > E can be uniquely extended into an -continuous mapping: M o (F ¥ >
E.

Hence, if A is an w-complete F-magma the monotone mapping eval, : Mo(F)-> A
extends uniquely to M5, (F). We also denote by eval, its extension. This means
that a tree ¢ in Mg (F) denotes an element (evala(t)) of A,

Remark 2.4.3. Let us call a property P(t) of trees in Mg (F) w-continuous if P(1)
is true whenever it is true for all element of an increasing sequence ¢, in Mg (F)

with least upper bound ¢ (i.e. if P is monotone and w-continuous as a mapping:
M 7 (F)- {true, false} with false < true).

If P is w-continuous, in order to establish YVt € M, (F) . P(t), it suffices to establish
the validity of

VIEM_Q(F). Pt

for instance by structural induction (Lemma 1.5.2).



Fundamental properties of infinite trees 111

Let us close this section with a convention: the words ‘continuous’ and ‘complete’
will refer to the topological approach whereas ‘w-continuous’ and ‘w-complete’ wiil
refer to the order-theoretical one.

3. Substitutions

By introducing variables we shall make trees denote functions and not only
values as we did up to now.

Then we shall define the first-order substitution, i.e. the substitution of trees for
variables in other trees as a syntactic counterpart of the composition of functions
and we shall state its basic properties.

We shall also introduce the second-order substitution, i.e. the substitution of trees
for function symbols in trees. This corresponds to replacing a function name by its
definition everywhere it occurs in some tree.

When reducing trees to words (if o (f) = 1 for all f in F) the first-order substitution
reduces to the concaienation of words whereas the second-order one reduces to
the homomorphism.

e shall use (possibly infinite) ranked alphabets F and G, not necessarily disjoint
or distinct.

3.1. Trees with variables

Let V be a set of variables i.e. of symbols of arity 0. By using them together
with F we can define the following sets of trees:

M(FuV) alsodenoted by M(F, V),
MT(FuV) alsodenoted by M™(F, V)

and similarly for Mq(F, V) and M a(F, V).
When using the notation M (F U V) we use the elements of V as constants,

wher2as we emphasize their special role (see below) when we use the notation
M>(F, V). '

If we need an enumeration of V we shaii take V ={vy, v2,03,...,0n, ...},
Vk ={Ul, ehey Uk} and V0=0.

Alternative scts of variables will be W, X, Y.

For t in M™(F, V) we define Var(t), the set of variables from V occurring in ¢,

i.e. Var(t) = {v e V|Oce(v, 1) #0}.

3.2, Derived operators

Let A be an F-magma.

It is clear that a tree ¢ in M(F, V;) can be seen as denoting a mapping: A5 A,
Such a mapping is called a derived opeiator (derived from the F-operators) and is
denoted by deropa(t).
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The mapping deropa(t) can be defined ‘point-wise’ as follows:

deropa(t)(ay, ..., ax)=eval (1),
A'=(A, (fadrer (B)ee i), (3.2.1)
vi=a; fori=1,...,k,

or ‘globally’ by structural induction:
deropa(v;) is the ith projection: A* S A,
deropa(f) is the constant function equal to f4 for f € F, 3.2.2)
derepa(f(ty, ..., 1) =fao(deropa(ty), ..., deropalt,)).

Definition :(3.2.1) says that M (F, V,) is the free F-magma generated by V;. It
could easily be extended to the case of an infinite set of variables V instead of V/,
showing the existence of a mapping

deropA(t)ﬂ: AV-A

for all ¢t in M(F, V).

It could also be extended to the case of an w-complete F~-magma A and ¢ in
MG (F, V) since the corresponding F-magma A’ is also w-complete and eval,- is
also defined (see Section 2.4) and in the case of a contracting F-magma A for the
same reasons (see Section 2.2). The notation derop. will be used in these two
extensions. These remarks can be summarized as follows.

Proposition 3.2.3. (1) M(F, V) is the free F-magma generated by V',
(2) M™(F, V) is the free contracting F-magma generated by V.
(3) MG (F, V) is the free w-complete F-magma generated by V.

Definition (3.2.2) uses an (F U Vi )-magma structure on (A" = A), the set of total
mappings: A > A, with v; denoting the ith projection and [ denoting
A1, 82 s B €AY A)  faoigy, ..., g). Hence it is based on the fact that
M(F, V)= M(F U V), the initial (F U V})-magma.

By defining d'(a, a) =Sup{d(a(ay,...,a; ), a'(@i....«N|an....ac€ A} we
make (A¥ > A) into a contracting (F u Vi )-magma if A is contracting,

By defining o <o’ it a(ay, ..., a)=a'lay,...,a) forall a,, ..., <, we make
it into an w-complete F-magma if A is w-complete.

We can now state:

Proposition 3.2.4. (1) If A is an F-magmao, derop. is the unique (F o
Vi)-homomorphism: M(F, V)~ (A¥ > A).

(2) If Ais a contracting F-magma, derop 4 is the unique (F  Vi)-homomorphism
(of contracting magmas): M™(F, Vi)~ (A" > A).

(3) If A is an w-complete F-magma, derop. is the unique w-continuous (F U
Vi-homomorphism: MY (F, Vi) > (A" > A).
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Proof. (2) follows from the fact that deropa:M>(F, V,)->(A* > A) defined by
(3.2.1) is uniformly continuous (d(z, t') = (1/2)" implies d'(deropa(t), derop (1)) <
llAl" and lA]l<1).

(3) follows from the fact that derop : M (F, Vi)~ (A* > A) defined by (3.2.1)
is monotone and w-continuous. [

3.3. First-order substitutions

By a first-order substitution we mean the operation which substitutes simul-
taneously a tree o (v) for each occurrence of a variable v in a tree ¢ yielding a tree
o).

We shall first give a direct definition of this operation in terms of trees defined
as mappings from tree-domains to sets of symbols. Equivalent definitions will be
given later, using the following general pat*-rn:

- definition by structural induction for finite trees
- extension to infinite trees by uniform continuity or by w-continuity.

The following definitions will be given with respect to a ranked alphabet F, a
finite or infinite set V of variables such that V nF =, a ranked alphabet G that
is not necessarily disjoint from F and V.

Definition. Letre M ™(F, V), let o(v) be a tree in M ™ (G) for all ¢ in V.

The result of the simultaneous substitution of o(v) for v € V in t is the tree 1’
defined as follows:

For all a in N, r'(a) is defined if and only if: either « € Dom(t), t{« )€ V and
then r'la)=ta) or a =Ba’ for some B e Oceclv,t), some v in V, some a’ in
Dom(a(v)) and then t{a) =a(v)a’).

It can be checked that ¢’ is a perfectly well-defined tree in M (F UG). We
denote it by o (1); hence we consider o as extended from V to M (F, V).

Such a mapping o is called a first-order substitution. We shall also refer to tie
first-order substitution as the binary function associating o (1) with 1 in M~ (F, V)
and o :V > M™(G), e.g. in Proposition 3.3.3.

We shall also use the notation ([or(v)/v; v € V]for o(1).

In many cases, V will be {v;,...,v,} and we shall use the notation
tluy/vie oo /e, I with w =a(e,) for 1 ‘éjf': k.

We shall also use the notation t{uy, ..., ux Jwhen V ={v,, ..., ti}is known from
the context.

Remark 3.3.1. It is easy to check from the definition that a first-order substitution
a:M*(F, V)-> M*(F U G) satisfies the following properties:

W aN=fiffekF,,

() o(ftty, ... .t =floty),...,ot)if feF,n=1,t, ..., e M (F, V),
i.e. that o is an F-homomorphism.
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Conversely, every F-homomorphism ¢ : M(F, V)-» M *(F u G) satisfies:
) =tle)/vive V]

i.e. is the restriction to M(F, V') of a first-order substitution.

We shall characterize first-order substitutions as continuous or w-continuous
F-homomorphisms.

Note also that (i) and (ii) above give a definition by structural induction of the
extension of a mapping o :V -» M™(G) into a mapping o :M(F, V)> M~ (F uG).
The extension to M *(F, V) will be made ‘by continuity’ (in two ways).

Let us finally remark that if T < M™(F), G c F the set M (G, T) defined above
as the least sub-G-magma of M ™(F) containing T is

{o(t)|teM(G, V)and o (v)e T forall v in V}.

Let us define the distance of two substitutions o, :V->M*(G) as
Sup{d(o(v), o' (v)|ve V]

Proposition 3.3.2. Forallt,t' in M™(F, V), allo,a': V > M™(G) we have:
() dlo(t),a'(t"))<Max{d(, t'), d (o, a")}.
(2) dlo(t), ' tN=<(1/2).do,a")ift& V.

Proof. We shall only prove (1). Just to simplify the notations and without loss of
generality, we shall assume that V ={vy, s, ..., tx}. Hence o) =1t[t\..... 0]
agt)=t[ty, ..., t;] Letu=alt) and u' =a'(t').

Let @ be a minimal element of Dom(iu) n Dom(u’) such that w(w) # 1'(a). Then
cither @ =By, B € Ocelry, t), y e Dom(s), ula)=t,(y) or a € Occi f, t) for some fe F
and u(a)=f.

A similar alternative holds for @ with respecttot’, ty,.... 1. Let us only consider
the case a« =By =B8"y'.

If B#B' or B=B" with BeOcclvyt), B'€Occlr;, 1), i#i' then 1)~
Min{||, |B'l} hence S(u, u)Y=8(r, t'), ie. du, ) =d, . If B =8", B € Ocelr, 1.
B’ € Ocelv;, t') then §(u, u')=|B]+8(t, 1)) hence duu)sdu,t))<sda,o’).

Part (1) shows that the first-order substitution is uniformly continuous in all its
arguments.

Proposition 3.3.3. The first-order substitution as a mapping: My (F. V)x
(VMG > My(FuG)is w-continwous in all its arguments.

The proof is omitted.

Corollary 3.3.4. Let A be a contracting (resp. w-complete) F-magma. For every 1 in
M (F. V) (resp. in MOF. Vi) for every 1y, ..., 0 in MX(F.V,) (resp. in
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Mg (F, V,)),

derop(f[t1, ..., %)) =deropa(r) o (derop,(t)), .. ., deropa(t)).

Proof. For fixed k, t;,..., &, one can prove this for all r in M(F, V,, (resp. in
MQq(F, Vi) and then by continuity, this extends to all r in M *(F, V) by Proposition
3.3.2 (resp. to all ¢t in M3 (F, V,) by Proposition 3.3.3. O

Proposition 3.3.5. The following preperties of a mappingo : M™(F, V)>M*(F UG)
are equivalent:

M a)=tlow)/v;ve V), ic. ais a first-order substitution,

2) 0’“[(1/!.‘1, cees 11/01]) = f[(T(h)/U!, e ﬂ'(f!)/U!l
foralll =0,alltin M™(F, V))and t,, ..., tin M™(F, V),

(3) a is uniformly continuous and is an F-homomorphism,

(4) @ is uniformly continuous and o | M(F, V) is an F-homomorphism.
Furthermore, if {1 € F, they are equivalent to the following ones:

(5) @ is w-continuous and is an F-homomorphism,

(6) o is w-continuous and o | M(F, V) is an F-homomorphism.

Proof. (1) = (2) follows from Proposition 3.4.2 given below.
(2) = (3). Propositicn 3.3.2 shows that

dian),ctt'N=d, 1)

forall e, ¢’ in MY(F, V).

It sufices to take ¢t =f(v,, ..., vy) in (2) to see that o is an F-homomorphism.
Note that (2) implies trivially the validity of (1) for all r in M(F, V).

(3)=(4). Trivially.

(4)=>(1). Theidentityo(t)=t[o(v)/v; v € V]can be proved by structural induc-
tion on t. for all ¢+ in M (F, V). Since o is assumed uniformly continuous, it extends
toall tin M™(F, V).

(1h=>(5). By Proposition 3.3.3.

(§) = (6). Trivially.

(6)=>(1). Asfor (4)= (1) by w-continuity. [] ‘

2.d4. Miscellaneous properties of first-order substitutions

In most proofs dealing with first-order substitution of trees, one need not go
back to the definitions but one can just use a few p1nperties.
All preofs will be omitted. They can be done directly from the definitions.

Proposition 3.4.1. Let o, o' be first-crder substitutions: M™(F, V)>M™(F UG).
Letse M™(F, V).

(O Ifve Var(s) and o(s)=a'(s) then o(v)=0'(v).

(2) If v¢Vars: and V' =V —{v} then oo(s)=s[o(t')/v";v'e V']
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(3) Subtree(o(s)) ={o(s')|s' € Subtree(s)} u{u |u € Subtree(o(v)), v € Var(s)}.
We assume here that G n V' =0 and as above that Fn V =§.

Proposition  3.4.2  (Associativity). Let o:M>™(F,V)->M™(G,V') and
0:M*(G, V')>M™(H) be first-order substitutions. Then for all t in M*(F, V),

g(g(!“—(ﬁ nn-\lt\—-r(t\ whore 7 Is the ﬁrcr.nrtlor substitution MOCIF V Vg

SEEBEELIIB «  4VA

(V'AF)) —>M°°(H) such that .

T(U)={0(a'(v)) fueV,
6(v)  ifV'AF.

Proof. Notice that 8(v)=68(c(t)) fve (V' nF)-V. O

Remark that if V'nF =@ (in particular if V = V') then 7 is the su bstltutlon
MmfF V\-—) Mco{”\ such that 7( 1) (g( )) for v in V. Another s

va Ay ¥ A8 ] Uue

the following:

Proposition  3.4.3  (Commutativity). If o:MT(F, V)M (F.V) and
O:M™(F, V')>M>(F, V') are first-order substitutions with VA V'=0 and F
(VuV')=0@ then forall tin M™(F, VU V'),

gl@t)=0(at)=7()
where 7M™ (F, V.U V') > M™(F, VU V') is the first-order substitution such that
o) ifveV,

dv) ifreV’.

The following proposition describes the effect of first-order substitution on branch
languages (c.f. Section 1.6).

Let us first remark that locally finite trees are preserved under first-order substitu-
tion, i.e. that o (¢) is locally finite if 7 and o (¢) for all ¢ in V are so.
Proposition 3.4.4. Lett € M (F, V') and o be a first-order substitution: V- M *(G).
Brehio (1)) = (Breh(t) ~ F*) U {uBreh(a(v) | € F*,
ur € Breh(r), v e Vi,
PBrch(or (1)) = (PBreh()) ~ F*) U U {u PBreh(or (0 ) w e F*,
uv € Brch(r), v € V%

3.5. Second-order substitutions

The second-order substitution consists in substituting trees for function symbols
in trees.
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Every first-order substitution can be viewed as a second-order one, but second-
order substitutions are more difficult to study than first-order ones for the following
reasons:

(1) The result of second-order substitutions cannot be easily defined as in the
case of a first-order one (cf. Section 3.3). Hence we shall not define them ‘directly’
on all trees, but only on finite trees first, and this by structural induction.

(2) The extension to infinite trees does not always work in the metric approach
due to a lack of continuity for certain erasing substitutions.

Let us note that this very problem occurs when one wants to define homomorph-
isms of infinite words [55].

Definitions. Let F and G be two ranked alphabets, not necessarily disjoint and
let V be a set of variables; VN (FUG)=0.

Let re M(F, V), let F' be a subset of F; for each f in F’, let v(f) be an element
of Mw(G, me,).

The result of the (simultaneous) substitution of v(f) for fe F' in t is the tree 6(r)
also denoted by t{v(f)/f; f € F'} and defined as follows by induction on the structure
of t:

- ifr=f,....1,) with fe F' then 8(t)=f(01(t)), ..., &),

- ifr=fin, ..., ) then ) =wv([O(1)),...,0()]

Hence 6 is a mapping: M (F)-> M (G U (F — F")). In order to simplify the notation,
we shall assume that F —F'< G in the sequel. Note that the variables of V which
appear in the »(f)’s do not appear in the images by 6 of the elements of M (F).
Such a mapping is called a second-order substitution. (But as for first-order substitu-
tion, we shall also talk of second-order substitution as a binary mapping M (F) X
(F'>M™ (G, V))»>M™(G).) It extends to M, (F) by means of the rule

) = N

We shall never substitute anvthing for (2, i.e. we shall never put 2 in F'.

A second-order substitution as above is erasing if v(f)e V for some f in F' and
nonerasing otherwise. We sayv that f such that v(f)e V is erased.

It F'={f\,....fi} we shall also use the notation t{v(f\)/f1,...,v(fu)/fc} for
t{eN/fifeF'} and the notation r{r( ")), ..., v(fi)} if the sequence fy,...,fi is
known from the context.

We shall compare two second-order substitutions 8 and @' associated with » and
T
o=<¢'ifandonlyif v(f)sv'(f) forallfin F’,

d(6,8")=Supld(w(f), v'(MN|feF'}.
Lemma 3.58.1. (1) The second-order substitution considered as a mapping: Mg (F) X

(F'->M (G, V))»Mg(G) is monotone; it is w-continuous with respect to its second
argument.
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(2) Let 0, 8' be second-order substitutions: M (F)->M™(G). For all t in M(F),
d(6(t),8'(t))<d(8,0').

(3) If 8 as above is not trivial, i.e. if 6(u)# 0(u') for some u and u' in M(F), the
following conditions are equivalent:
() loll=<1,
(ii) @ is uniformly continuous,
(iii) @ is nonerasing.

Proof. We shall only prove (3). Let # be nonerasing.
Let us show that for all ¢, t' in M(F, V),

8(t,1)=<8(0(t), 6(r')).
We show that for all n, for all ¢, t'e M(F, V),
n<8(,t"y = n<6860(),06()).

We do the proof by induction on n.

There is nothing to prove if n =0.

Otherwise, letn =n'+1<8(t,t"). Thent =f(t\,..., ) and t'=f(t}, ..., tr) with
S, t)=n"fori=1,...,k.

Hence 6(8(t;), 8(t;))=n"foralli=1,..., k. Then

8(0(1), 0" =8w(HLO(t1),...,0)], v(HIOGY), ..., 00)]

=1+Min{s(0(), NV 1<i<k}=1+n'=n

by Proposition 3.3.2.
Hence

daw), o' =di,t')

which shows that 6 is uniformly continuous and ||@]|< 1.
Conversely, let us assume that @ is erasing, i.e. without loss of generality that
vif)=r, for some f of arity =1,
Letusdefine to=u,t; =u"andforalln, 6,01 =l b o oo tudy tiot =Fllae o e v D).
For all n =0,

() =0u), Qi) =0w"), Al ) =(1/2)"

It follows that [|6|| = 20, hence that ||| > 1. Hence @ is not uniformly continuous. [

A second-order substitution 6:Mo(F)=»M,(G) can be extended into
8 :Mo(F, V)> M (G, V) by the extra condition:

f{r)y=v forallvin V.

Lemma 3.5.2. A mapping 6 : Mo (F, V)> My (G, V) is a second-order substitution
if and onlv if it satisfies the following conditions:
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(i) Var@(t))< Var(t) for all tin Mo (F, V),
(ii) 6(ty=tforalltin V L{2},
(iii) O(f(tsy...,t))=0(f(vy,...,0)0(t1),...,0@)]) forallfinF, allt,,...,r1
in Mn(F, V)

Proof. For the necessity, note that (f(¢1, ..., v)))=v(f)for fe F'if 6 is a second-
order substitution associated with » and F'.

For the converse, it suffices to choose F'=F and v(f)=0(f(vi,..., v1), [ =p(f)
forallfinF. O

Notation. From now on the mapping v:F'-» M™(G, V) which defines a second-
order substitution: Mq(F, V)->Mg (G, V) will be extended to F by v(f)=
fleyyooosvpp) forfin F—F'.

Lemma 3.5.1 shows that second-order substitutions can be extended from finite
trees to infinite ones by w-continuity, i.e. by application of Proposition 2.4.2. Its
second part shows that the extension using continuity, i.e. Proposition 2.2.1 can
be made only for nonerasing substitutions.

We shall see that in the case of a nonerasing substitution the two extensions
coincide on M (F, V). In the case of an erasing substitution, the image of a tree
in M *(F, V) can have occurrences of the symbol £. The simplest example is

vifi)=v, wherep(f)=1,
af")=0 foralln=0,
af)=6(Sup(f'2)=Supb(f'2)=Q.

By a second-order substitution: M o (F, V)-> M 4 (G, V) we mean the extension by
w-continuity of a second-order substitution: Mq(F, V)>M5(G, V). A weak
second-order substitution is a mapping: Mg (F, V)> M3 (G, V) (or: M (F,V)>
M, (G, V) which satisfies conditions (i), (ii) and (iii)) of Lemma 3.5.2 for all
Lt ...t in Mo (F, V) (resp. in M™(F, V). It is erasing if 6(f(ry,...,v))eV
for some f and nonerasing otherwise.

The following proposition is the analogous for second-order substitutions of
Proposition 3.3.5.

Proposition 3.5.3. A mapping is a second-crder substitution if and only if ir is an
w-continuous v ik second-order substitution.

Proof. Immediate consequence of Lemma 3.5.2 and the varicus definitions. [

Here is a result showing that second-order substitutions are homomorphisms
with respect to first-order substitution taken as an operation.
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Proposition 3.5.4. Let 6:MQ(F, V)>M53 (G, V) be a second-order substitution.
For every first-order substitution o:V > M 2 (F, V) and every tree tin M 2 (F, V),

O(a(1)=(0a)t)=1(6(t)

where 7 is the first-order substitution such that t(v)=6(co(v)) forall vin V.

In a special case and with another notation:

Otluy, ..., u]) =00[0wy),. .., 0u)]

Proof. This follows from Lemma 3.5.2 (ii) and (iii) for ¢ in Mg (F, V) by induction
on the structure of ¢.
This identity extends to the case of ¢ in Mg, (F, V) by w-continuity. [

Example 3.5.5. Here is a weak second-order substitution 6:My(F, V)~
M3 (G, V) which is not w-continuous.

F={ft, »pH=1, G={a}, pla)=0,
vif)=r1o, a(f"v) =1, of"2) =1, a(f")=a.

[t is not continuous either.

The following proposition extends to weak second-order substitutions some
results of Lemma 3.5.1.

Proposition 3.5.6. Let @ be a weak second-order substitution: M (F, V')-
MG, V) (not M 5 (G, V). The following properties wre equivalent:

(1) 08 is nonerasing,

(2) loll=1,

(3) @ is uniformly continuous,

(4) 6 is continuous,

(5) for every weak second-order substitution 6 :M(F,V)->M(G, V), if
GIMF,V)=8"l M(F, V), then 8 =4’

Proof. (1)=>(2). The proof given for the third part of Lemma 3.5.1 works for ¢, ¢’
in M (F, V),

(2)=>(3) and (3) = (4) are clear.

(4) = (1). Let @ be crasing. Without loss of generality we can assume that et f) = ¢»
and pif)=2.

Let 7 be the infinite tree floey, fle, flen, .., let 1 be A, let ¢, be a variable
such that ¢, # u (hence d(u, ty) = 1) and let (1) be the sequence of trees such that
Looy= fley, ) for e =0,
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It is clear that

t=Lim1,,

0("|)=0(’|))=‘() fOl‘ a" n,
o(t) = u #ty.

Hence 6 is not continuous.

(5)=>(1). Let f and ¢ be as in the preceding proof.

We shall construct iwo weak second-order substitutions #' and 6" such that
0'(¢) # 0"(1) and which coincide with # on M(F, V).

Let us assume that F contains two constants (2’ and 2" such that 8({2) = 2’ and
a(2") = 2" (otherwise we add them to F or take variables instead). Letting them
play the role of £2 in Section 2.4, we obtain two structures of w-complete F magmas
on M (F, V) with respective partial orders <’ and <".

Let 8’ and " denote the canonical extensions of 8 | M(F, V) to M ™(F, v} with
respect to <’ and <". Proposition 5.5.3 shows that 6’ and 6" are weak second-order
substitutions and clearly, 8'it)=’, 8"(t) = 2" # (2'.

(1)=>(5). Let 8 be nonerasing and 6’ be such that 6 | M(F, V)=6'| M(F, V).

The substitution @’ is nonerasing too. Hence both of them satisfy (3) and 6 =6’
by continuity. [J

Corollary 3.5.7. If : M(F, V)>M> (G, V) is a nonerasing second-order substitu -
tion, its extension by w-continuity to M (F, V) and its extension by continuity fo
M™(F, V) coincide on M™F, V).

Proof. The mapping 4 is uniformly continuous by Lemma 3.5.1, hence its extension
by continuity to M *(F, V), let us denote it by 6, is well defined.

Let @ be its extension by w-continuity to M§ (F, V).

It is uniformly continuous by Proposition 3.5.6 hence coincides with 6 on
MYF. Vv). O

Remark 3.5.8. A first-order substitution o: M*(F, V)>M ™ (F UG) can be seen
as the restriction to M (Fu\') of a nonerasing second-order substitution
M (FuV,X)»MT(FuG, X) defined by v such that

rie)y=ctr) forvinV,
vif)y=fiag, ... x,) forfinF,,n=0.
Note that we consider V as a set of constants and we use another set of variables

X to detine o.

The next proposition shows that the second-order substitution corresponds
(semantically) to the replacement of a procedure name by the corresponding
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expression tree (or in terms of abstract data types, to implementing a data type by
means of another one).

Proposition 3.5.9. Let 0 be a second-order substitution: M(F, V)->M(G, V) (resp.
ME(F, V)> M3 (G, V)) (resp. M*(F, V)»>M>™(G, V) and nonerasing). Let A =
(D, (ga)¢cG) be a G-magma (resp. an w-complete G-magma) (resp. a contracting
G-magma), so that fg =deropa(v(f)): D° ‘" D is well-defined in the three cases.
Let B be the F-magma (D, (fg)s<F)-

Then, for all t in M(F, Vi), (resp. in Mg (F, Vi) (resp. in M™ (F, V,)), deropg(t)
is defined and equal to derop(6(t)).

Proof. Note that B is w-complete (resp. contracting) if A is. Hence deropg(t) and
derop 4 (6(t)) are both defined in the three cases.

The equality is easy to prove for finite t's and can be extended to infinite ones
by w-continuity (resp. by continuity). ]

3.6. More on erasing substitutions

Let 6 be an erasing second-order substitution: M(F, V)>M (G, V), let é be
its extension to Mg, (F, V).

Our aim is to characterize the set of trees ¢ in M ™(F, V) such that #(¢) has no
occurrence of 2.

Let us show with an example why this set is not always. empty.
Example 3.6.1. Let us assume that p(f) =1, p(g) =2 and that
vif)=ry, v(g)=h(v,).

Let # be the second-order substitution: M(F, V)-> M(H, V) associated with v,
(F ={f, g}, H=1{h}) and @ be its extension to Mg, (F, V). We have for example

B(f) =0, 8(gley, f*)=h(vy),
Agglgl. . . f LF N N=h", Q@ f N=h.

It is clear that, for t in M™(F, V) an occurtence of {2 in #(r) comes from a subtree
of t of the form f“. And this subtree must not be in the scope of the second
argument of some g (if ¢ has a subtree g(,, t2) then (12) does not contribute to
(1) since v € Var(ir(g)).

Definition 3.6.2. Let F be the alphabet {[f,i]|fe F. 1 <i=p(f)}uF, associated
with F as in Section 1.6.

Let E,={[f.illp(H>0,v(H=v;} (E means ‘erased’) and let N,=
{{f.iYlp(H>0,v(f) & V, v, e Var(»(f))} (N means 'not erased").

We shall use the languages of branches Breh(r) and Brch® (1) defined in Section
1.6.
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Lemma 3.6.3. Let t e Mo(F, V). Then 6(t) =v; (resp. v; € Var(0(t))) if and only if
wu; € Breh(t) for some word w in E's (resp. w in (Eq L Ng)*).

Let us introduc:

Brchg(t) =Brch” (1) N (Eq v Ng)”.

A tree t in M™(F, V) is defined as 6-good if B reh(r) N (Ey U N*ES =0,
We shall prove that a trec . is 8-good if and only if é(t) has no occurrence of 2.
Let us precise this new concept with some remarks and a lemma.
A finite tree is always 6-good.
If an infinite tree lS 6-good its set of branches Brehy(f) U Bre

7 \Rso

ON(Eo U Ng)*(Fou VU R} U(EsUN
efined

,_\
=
@
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=
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Lemma 3.6.4. A 1ree tis 8-good if and only if it can he written t = ulty, ..., 111 where
(i) ueM(F, V)),0(u) =1,
(i1) 11 @s finite or is of the form f(:\, ..., ..) for fin F such that v(f)¢ V and trees

N, ..., 4 such that t; is 8-good for all i in (k] such that v; € Var(v(f)).
We can now state:

Proposition 3.6.5. Let 6 be a (possibly erasing) second-order substitution: M(F, V)
MT(G, V). Let 8 denote its w-continuous extension: M5 (F, V)>M (G, V).

For all trees t in M™(F, V), the following properties are equivalent:

(1) tis 6-good,
(t) has no occurrence of (2,

"= 3
-
"~ rh

=~
:r.

il

D

=

). Let
is finite then 4(¢) )
IIO(I)" =00, We let |jull denote Mm{IaHa € Ocel2, u)}.

Let ¢ be a 6-good tree such [|8(1)]|< o and ||6(1)]| is minimal. We shall derive a
contradiction.
Let t =uft},..., 1] as shown by Lemma 3.6.4. From Proposition 3.5.4 we get

é(t)=0w)[(r}), ..., 0un]

A

=fA(ty) since B(u)=1,.

e M™(G, V). If t is infinite, we shall prove that

= =53 | ol
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If ¢} is finite 6(¢}) has no occurrence of (2, hence [|0(¢)|| =|l0(¢})|| = o0, contradicting
the initial assumption. Otherwise

t=f(t,....t) and 6(t)=v(OHLOW)/vi;iel]

where I ={i|v; € Var(v(f))}. From this and since V(f Ye M™(G, V) -V, if | (") <,
there must exist i € I such that |(r,)|| <o and ||6(t)]| < ||0(t)||

Qian a_annd thic contradicte the mn‘llmnlll’\l nf ||I-Nr\||
Qlll\'C l, is [V Euuu, LIEED CUIIUE GAVSIV LD LIEG, ARXSIRRRAXESRERY

(1)=(3). Let ¢ be 8-good. Let t, be a sequence of trees in M (F, V) which
converges to .
There exists an increasing sequence u, in Mo(F, V) such that

u,<t, and u, <t foralln, t = Sup (u,).
n

It follows that
é(zl.,)gé(tn) and 0(u,)< 4(t) foralin,

(1) = Sup 6(u,),
Lim [|f(x,)]| = since 6 (1) has no occurrence of 0

and (f?(u,, )}, -0 1S increasing.

Since H(u,,)\ 6(1,) these trees “are equal on all levels less than l6ue)ll™, ic.
S, 0() =)l Similarly,  8(8(w,). () =|6w.,) and  finally
814(1,), 6(1)) =61 (16, .

It follo\u that d{ 9(1,,) 6({)) converges to 0, i.e. that a(t) = Lim, .. (3((,, ).

Hence 6 is continuous at t.

(2)=>(1). We show that if r is not #-good then €(¢) contains an occurrence of
£2. 1f ¢ is such that Brehy () < E3 (in that case Brehg () is reduced to a single infinite
word) then (3(() =

Otherwise there exists in Brchg'(/) an infinite word of the form bbb, with be
(Foe wNy)™ and b, € E}). This shows that r can be written t =u(ty, ..., ;] for some
i in M(F, V) in such a way that

bryeBrehotu),  Brehiir) ={b\}.
The tree ¢ is as in the special case we first considered, i.c. 8y =10,
From Lemma 3.6.4, v, € Var(6(u)). Hence
By =008y, ..., 0]
=00, A1), . ... o]

and contains occurrences of 2.
(3)=> (1), We show that if ¢ is not #-goaed, € is not continuous at 1.
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Taking the notations of the preceding proof, let (w,),-o be a sequence of finite
trees such that

{(n) {n)
w,=ulty,. .., "] foralln =0,
3
Lim(w,) =1,
n-»x

b\"'v, € Brehy(t1"') foralln =0,

where v, is a variable which does not occur in ¢ and b}"' is the prefix of 5, of
length n.
Remark that
o(t'l’”) = Uky
fiw,) =006, ..., 6]
=00 [ve, 05, ..., U]

Since v, does not occur in ¢, hence does not in a(t) either, 8(5(wn ), 0(1) < la| where
a € Oce(uy, 0(u)), i.e. 8(w.,) does not converges to 6(r). [

3.7. Miscellaneous properties cf second-order substitutior:s

A second-order substitution is nondeleting i Var(v(f)) ={v1, v, ..., v} for all
k=1, all fin F..

Lemma 3.7.1. A second-order substitution is nondeleting if and only if Var(9(t))=
Var(z) for all trees t in M(F, V) (resp. in M §(F, V) (resp. in M™(F, V) when 6 is
non-erasing).

Proof. As usual, by structural induction for finite trees and then, extension by
continuity to infinite trees. [

Propositions 3.4.2 and 3.4.3 that we stated for first-order substitutions extend
naturally to second-8rder ones.

Let us note in particular the following application of commutativity (i.e. the
extension of Proposition 3.4.3):

Corollary 3.7.2. Lot FnG =W lett,, ..., e M (G), letf\,...,fie Fand let u; €
MYF UG, V)=V for all i=1,...,1. Then, for all s in M (F UG, Vy):
S'[I)/l.‘l....,fk/L‘k]{Ill/fh...,ll(/f[}:S{lll/f|....,lll/[(}[ll/L}l,...,[k/ljk].

Part (3) of Proposition 3.4.1 extends us follows:

Proposition 3.7.3. Subtree (8 (1)) = Var(6(t)) u {u[8(t1), . . ., é(t,)]lu € Subtree(v (),
flty, ..., t,) € Subtree(r), fe F,, n =0}.
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Preof. Let us prove that every subtree 8(t)/w of 6(t) is of the form v; or
ul8(t)), . . ., 6(t,)] as required. The proof is an induction on |w| and subsidiarly on
the structure of ¢:

Case |w|=0: either t =v; or t =f(ty,...,t,) and we take u = v(f);

Case |w|>0: then t =f(t,,...,t,). Either w e Dom(v(f)) and we are done with
u=v(f)/w or w=w'w" with w'e Oce(v;, v(f)), w"e Dom(t;) and |w"|<|w]; then
8(1)/w = 8(t;,)/w" and the induction hypothesis applied to w" shows that 8(r)/w has
the desired form if |w"|<|w]; if |w"|=|w]|, i.e. if |w'|=0, the induction on the
structure of ¢t can be used.

The converse inclusion is easier to prove. [

4. Regular trees

This section is devoted to regular trees. Such trees naturally arise in the process
of ‘unlooping’ flowcharts. They also appear as results of first-order unification in
the generalized sense of Huet [48].

We shall characterize regular trees as solutions in M “(F) of certain systems of
equations. Solving such systems equation by equation will allow us to denote regular
trees by some kind of rational expressions (Cousineau [29]). We shall also character-
ize them as forming the free iterative theory generated by F (Ginali [40], Elgot et
al. [34]). Finally we shall characterize them in terms of their language of branches
(Courcelle [15, Section 1.6]) or their languages of occurrences (Ginali [40, Section
1.6]).

All definitions of this section will be given with respect to a fixed ranked alphabet
F. The extension of all definiticns and results to a sorted alphabet does not raise
any difficulty except perhaps for notations. It will not be done.

4.1. Definitions

A tree tis regular if the sct Subtree (1) of all its subtrees is finite. We shall denote
by R(F) the set of regular trees over F, i.c. in M ™ (F).
It is not difficult to establish the following properties:

MF)eR(FISM " (F) EERCH N
tprovided F contains at least two symbols of arity = 1),

R(F) is clos>d under the F-operations. +.1.2)

Any subtree of a regular tree is regular. i4.1.3)

The ser of svinhols occuring in a regular tree is finite. 4.1.4

We shall also use regular trees with variables, As for M(F. V) and M Y(F, V)
we shall use the notation R(F, VY for R(F < V' inorder to specify which svmbols
are vartables e, are subject to substitution. The following fact is a straightforward
consequence of Lemma 3.4.1:
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The family of regular trees is closed under first-order substitution.  (4.1.5)

7y

We mean by this that o (r) is reguiar if t€ R(F, V') and o(v) is a reguiar tree for
all v in V. More generally: ‘

The family of reg.ilar trees is closed under second-order substitution. (4.1.6)

We mean by this that 8(¢) is regular if t is regular and v(f) is regular for all f in
F (with the notations of Sections 3.5—3.7). This follows immediately from Proposi-
tion 3.7.3.

4.2. Systems of regular equations

A system of regular equations (we shall also say a regular system) is a finite
system O
and u,..., u, are elements of F({x,,...,x,}), i.e. are all of the form f for f in F,
or f(x,;....x;, )forfin Fi, k=1,iy, ... 0 in[n].

We associate with § a mapping |S|: M (F)" > M “(F)" defined by |S|(t1, ..., 1) =
(ll]“]/.\'], e I,,/.\',,], ey l(,,ll"/.\'l, e f,,/,\',.}).

A solution of S is an n-tuple (1, . . ., 1,) of trees in M ™ (F) satisfying the equations
(where each f in F has its standard meaning on M ™(F) (see Section 1), i.e. is a

fix-point of the associated mapping |S'.

£ sl £zen v s N ks 1 A
f the form S =&y =iy, ..., X, = iiy) Where x4, ..., x, are the wnknowins

Theorem 4.2.1. A regular system has a unique solution in M (F). All components
oj this solution are regular trees. Every regular tree is a component of the unique
solution of some regular svstem.

Proof. The first two assertions will be proved later for more general systems of
equations (Theorem 4.3.1). :

Let ¢ be a regular tree. For each element u of Subtree(r) lct us mtmduce an
unknown x,. Let X be this set of unknowns. For each x,, in X wec have to define
anequationof the formuy,, = s, forsomes, in F(X). Ifu=f,, ..., w)foru, ..., ux
in Subtree(r) we take s, = f(x,,. .. ., X, ). The system of all these equationsisregular,
the family of trees (1), x is a solution of this system, hence its (unique) solution.

The component of this solution corresponding to x, is clearly r. Ll

Example 4.2.2. Let F ={f, g, a, b} with p(f)=pl(g)=2, pla)=p(b)=0.

The treer = fia, gib, g(b, gib, ... isregularsince Subtree(r) = {1, 11, a, b} where
ty=gtb, glb,g(h....). Itis the hrst component of the unique solution in M™(F)
of the regular system § = (xo=f(x2, X1), X1 = g(x3, X)), X2 =a, X3 = b).

This tree is shown in Fig. 2

4.3. More general systems of regular equations

A generalized system of regular equations (or a generalized regular system) is a
finite system of the form $ =(x,=u\,...,x, =u,) where u,, ..., u, are elements
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oul
b

of M®(F,X,) and X, ={x;,...,x,} is the set of unknowns. A mapping |S| is
associated with S exactly as in Section 4.2.

A solution of S is an n-tuple of trees (t,...,1,) in M™(F) such that t,=
uilty, ..., ), i.e. a fix-point of |S|.

If a system S as above has regular right-hand sides, i.e. if u,, ..., u, belong to
R(F, X)) we say that S is a system of extended regular equations or an extended

reguml .syawm.

F‘mnllv a agng[ahzgd reg Iar system S Gatisﬁes the Greibach condition or is a

Greibach system if none of its right-hand sides i unknown.

Theorem 4.3.1. A generalue gula r Greibach system has a unique solution in
AL AN mocaon oo ooaas - Pnie ol e ssisoza Ao sness Joo £ 03k ende cevcngnzes amn
ivi \[r ). ﬂll Lumpunem.) U] H > SOULiON Ij Wl Exlcrnuea rcguiur Jrcioaln )_)bl o our
regular.

Cinra nana ~nf tha 1'% halanae tn [y v tha manning [Clic rantranting Thic

DHHIVG HHULIV UL LG i O U\.«lUllsD v 1.\], cy A\ I‘ i ""“PP"'E ILJ' 12 LU ublllls- 4 1
follows from Proposition 3.3.2 part (2). Hence, by Theorem 2.1.1, |S| has a unique
fix-point, i.e. § has a unique solution in M *(F).

Let us now assume that the u;’s are regular. Let (t, ..., t,) be the solution of S.
Let A={J{A;|1<j<n} where A,={'[t....,1,]|t'eSubtree(w;)} for j=

C 2l - at s A P o P T a oo e Al s O__Ba_ .\ o A
DINCC e i ‘s are reg,l e Set A IS Nne. LEt uS prove itnat unireel/; } - A

far all 7 in sl and thic will nrove that the ¢.'¢c are reanlar

AV\/1 QailL ¢ 1 Lll J, CRLENE LREFOD YV IAR l.llUV\f LHICIL uilw 4 O AW lvsulul

We show that for all w in N*%, for all 7 in [n] the tree t,/w belongs to A if it is
defined. And we do the proof by induction on |w|.

If weDom(u,) then r;/w = (u;/w)lt1,..., 1] hence belongs to A; since u,/w €
Subtree(u;).

If w=w'w” for some occurrence w’ of ¢, in u; and some node w” of ¢, (recall
tlind 4 4 N Qlinngm :; 4 f FUUN RN FUR FUNN § IR ) WO B N 7] R B T TR
nat i; = u,Lu, . » In ). OINCE GE Xy, . 0, g WE DIAVE W > U and jw | <|wi, hence
t;./w =1t:/w" which belongs to A !“.' the induction ..vpot..csis

Remark 4.3.2. Letusdefine a generalized system as proper if it has a unique.sciution.
T e ts ~lhnrnntasciaa tlhha casrmsmar crctaseen 1ot rio anwr that o P P R T ~f C
I UIUCT (U Lialavitliiasc iy )l\)pﬁ.l DYDICIID T s D(l)‘ Al all QitAifvuwil A, i 9
(as above) is singular if S| (x1, ..., x, ) = (51, ..., 8,) withs; = x, forsome p = 1 (such

a p can be taken less than n if it exists). Otherwise x; is nonsingular.

It has been shown by Bloom et al. [7] that a system is proper if and only if it
has no singular unknown.

Two singular unknowns x, and x, are independent if for all p =1, x, #x, where
as above, [$1" (X1, . L X ) =81, s S

All caluntinne af a nan
STREL OVFIULIVIIES UK

details will be given in Lemma 4.9.8.
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4.4. Solving regular systems equation by equation

LetS ={(x;=u,..., x, = u,)be aproper generalized regular system. Let us single
out its first equation. It can be solved in M™(F, {x,, ..., x,}) by considering the
unknowns x,,...,x, as constants. Let ¢; denote its solution, i.e. the unique tree
such that ¢, = u:[n/xl].

Let now S’ be the system {(x;=wu>,...,x, =u,) where u; =u;lt;/x,] for i =
2,3,...,n. Let(t3,...,1t,) be its solution.

Claim 4.4.1. (1) The system S’ has a unique solution (t3, . .. ,1,).
(2) The solution of S is the n-tuple (¢, . ..,t,) where ty =t,[t3/x2, ..., tn/x,).

Proof. Let us verify that for any solution (£3, ..., ,) the associated (t1, 13, ..., )
is a solution of S':
ty=nta/x2 ..., 1/x,]
=w [t /x2t3/x2, . . 10/ X0a]
= [[t2/x2, oo s /X0 /X0y 2 Xy o X0 ]
= [e1/x1, t3/x2, .., th/x0).
Fori=2,...,n,
ti=uilta/xa, ...y tnfan)
=wlt/x Qt3/x2 ..o th/xa]
=wlty/xi ..o th/xa]

with similar computations as for ).
Hence if S’ had two distinct solutions, so would have S which is not the case by
assumption. Hence S’ has a unique solution and it satisfies part (2) of the claim. O

Arguing by induction on the number of equations, one can show that solving a
system of n equations reduces to solving n single equations and composing appropri-
ately their solutions.

This method is fully siniilar to the one used in language theory to solve regular
systems of equations in terms of rational expressions. This suggests to do the same
for regular trees.

4.5. Rational expressions denoting regular trees

Cousineau has defined in [29] a class of ‘rational expressions’ in order to denote
regular trees obtained as solutions of regular systems. Our presentation of his restlts
differs substantially from his.
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Definition 4.5.1. We introduce on M “(F, Vi) a new operation named Star. For ¢
in M™(F, Vi)—{v.} we define Star(¢) as the unique tree in M *(F, V,._,) such that

Star(¢) = t[Star(t) /vy, v1/v2, . . ., U1/ k)

The existence and unicity of Star(r) follows from Theorem 4.3.1.

If € M™(F, {v\}) then Star(t)e M*(F) (=M™(F, V,)) and t e M*(F) if and only
if Star(t)=1.

Note that Star(v,) is not defined. We could define it as {2, the ‘bottom’ tree (see
Section 3) and this would be useful for expressing least solutions of possibly
nonproper regular system ({2 is clearly the least solution of the equation x, = x,).
We shall discuss this later (see Section 4.10) but we restrict here our attention to
extended regular systems that are proper.

Remark finally that the star operaticn depends on a precise set of variables, here
V={v,,va..., ...} which will be kept fixed in this section.

Lemma 4.5.2. Let ueM™(F, Vi,)—{v:} and t,...,t e MT(F, V}). Then
Star(u)[ty, ..., t]=Star(ult /v, ..., ti/vi ) where t] =t[va/vy, ..o v /ed] for
i=1,...,k.

Proof. We  have  Star(u)=u[Star(u)/v\, v1/ta ..., 0/t 1) Let u'=
Star(u)[ty, ..., 1 ]. Proposition 3.4.2 gives us
u'=ufu'fvy, ti/vs, .o /e ) (D

On the other hand, Star(u[t}/ts, . . ., ti/tx 1]} is the unique tree w in M (F, V)
such that

w=ult\/va ... /o W/t v/ vt a (2)
Since r, ..., t; have no occurrence of vy, (2) can be written

w=ulw/vy, 7/t .tk ok ] \3)
where

) =t/[e\/ea, oo ovnfeag] fori=1,.. k.
By definition of ¢/,

ti=t{vafvin o alvdled/ea .. /vl =t (4)
Since u # v, the equation

x=ulx/vy, 6/ o vk ]

has a unique solution in M “(F, V}). This shows together with (1), (3) and (4) that
u'=w. [}
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Definition 4.5.3. A rational expression is (in this paper) an element e (ore;, e’ - - +)
of M(F u{*}, V). The tree Val(e) it possibly denotes can be inductiveiy defined as
follows:

- if e =v; then Val(e)=v,,

- if e=f(er,...,ex) then Val(e)=f(Val(e,),...,Val(e,)) if each of
Val(ey), ..., Val(e;) is defined and Val(e) is undefined otherwise,

- if e = x(e') then Val(e) = Star(Val(e')) if Val(e') is defined and is not v, and Val(e)
is undefined otherwise.

We say that e is defined (undefined) if Val(e) is.

It is easy to check that e is undefined if and only if it contains a subexpression
of the form *(x( « - - *(vy)) - - * )) with k occurrences of *.

We can already solve some regular systems: for instance let S =
(x1=f(x)1,8), x2=h(xy, x2)). Its solution is (e,,e,), i.e. more precisely the pair
(Val(e,), Val(e,}) where e, = *(f(vy, g)) and e, = *(h (+(f(v1, 8)), v1)).

In order to apply the method of Section 4.4 and solve arbitrary systems we need
a way to form a rational expression Compl(e, ey, . . ., ¢,) having the value Val(e)
[Val(e)),. .., Val(e,)]. It is easy to check that taking e[e,/v1, . . ., e/vi ] would be
incorrect. \

Definition 4.5.4. Let Comple, e, ..., e.) be the rational expression defined as
follows by induction on the structurc of e:

- ife=v;and 1 <i<k then Comp(e e:. ..,ex)=¢,

- if e =v; and i >k then Comple, ey, ..., ex) =1, ,

- if e=flel,...,er) then Comple,ei,...,e)=flel,...,el) where e/ =
Comple e, ...,e ) fori=1,...,1

- if e =x(e') then Comple,e,,..., ) =+(Comple’, vy, e7,...,er)) where e/ =
Comple;, U2, U3, ..., ) foralli=1, ..., k and/ is large enough such that Val(e;) €
M (F,V)foralli=1,...,k.

In the last clause above, we shall put Shift(e;) instead of ¢; where Shift is a
mapping on regular expressions acting as Ae . Comp(e, vy, v, .. ., U+1) but which
can be defined directly.

Actually, we shall define Shift(k. ¢) for kK =1 and we shall take

Shift(e) = Shift(1, ¢),
U if i <k,
Ui if i ?k,

Shift(k, fley, ..., e)) =f(Shift(k, ey), . . ., Shiftik, e)),
Shift(k, x(e)) = *(Shift(k + 1, e)).

Shift(k, v,) = {

Claim 4.5.5. For all defined rational expression e and all integer k =1,
Val(Shift(k, e)) = Val(e)[vk +1/vk, Uk +2/Vk 51y -+ -5 Lisa /1] where | is such that
Vale)e M™(F, V).
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Proof. By induction on the structure of e. We only consider the case e = *(e') where
Val(e') e M*(F, Vi.1). Then
Va'(e)[vk+l/vk’ R ] Ul+l/ul]
= Star(Valie")[ve+1/vk - - - » V1+1/01]

= Star(val(e'))[ula U2y ooy U—1y Dktly oo oy vh—l]

= Star(Val(e')[v2/02, . « « » Ut/ Vks Dk+2/Dks1y « + + 5 U142/ T141]) (1)
= Star(Val(e")[vk+2/Vk+15 -« +» Vts2/V141])

= Val(«(Shift(k +1, ¢"))) (2)
= Val(Shift(k, e)).

We have used Lemma 4.5.2 to obtain (1) and the induction hypothesis to obtain
(2. O

Claim 4.5.6. If e,ei,...,e. are defined rational expressions then
Val(Comple, e, . . ., ex)) = Val(e)[Val(ey), . . ., Val(er)].

Proof. By induction on the structure of e. Once again the only interesting case is
e =*(e'). Then

Val(Comple, e, . . . , €x))
= Val(*(Comp(e', vy, Shift(e,), ..., Shiftie: )
=Star(Val(e)[t1/v2, ..., tk/Vk 1))

by induction and Claim 4.5.5, with r; = Valie;)[va/v1, . - ., U1/}, Hence, by
Lemma 4.5.2,

Val(Comple, e, . .., e;)) = Star(Val(e'))[ Val(e)), . . .. Valiei)]
= Val(e)[Valle)), ..., Val(ex)]. O

Theorem 4.5.7. A tree is regular if and onlv if it is the value of a rational expression.

For any proper extended regular system of equations, one can find rational expressions
defining its solution.

Proof. The value of a rational expression is a regular tree: this is an easy con-
sequence of Theorem 4.3.1 and the definition of Star.

Conversely, let § ={(x; =uy, ..., X, = u,) be a regular system. We shall construct
an n-tuple of rational expressions denoting its solution.

Actually, we shall do the construction in a more general case, where S is a proper
extended regular system where u; = Val(e;)[x;/vi,...,x,/v,] for some rational
expressions ¢y, . . ., e,. (It is useful not to identify x; and v; as it will appear soon).

If n =1 then the solution of S is ¢, = Val(*(e})).
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Otherwise, we start solving S by following the method of Section 4.4 (and using
the same notations). It is clear that

t1 = Val(x(e))[x2/v1, ..., X/ Vn-1).

In both cases *(e,) is defined since otherwise Val(e,) would be v, and § would
not be proper.

We let ¢; = Comple;, *(ey), U1,...,0,-1) fori=2, ..., n so that the system S’ of
Section 4.5 is exactly (xo=wu3,...,x, =u,) with u; =Val(e!)[x2/v1, ..., Xn/Un-1]
fori=2,...,n.

By induction, we can assume that we know rational expressions e3,...,e,
defining the solution of S’ and we need only compute ¢V = Comp(e;,e3,..., e,
to obtain an n-tuple (ef,e3,...,e,) defining the solution of §. That ¢, = Val(e])
follows from Claim 4.4.1 and the induction hypothesis for i =2,...,n and from
Claims 4.4.1and4.5.6fori=i. I

Example 4.5.8. Let S be the system

x =f(x), y=g(x,y,2), z =iily, 2).
Solving the first equation gives us

x =x*(f(ry)

(“or simplicitv, we identify a rational expression with its value). Then the system
S reduces to the following two e\uations:

v=2x(fle ), v, valy/vy, 2/es),
2 =li(vy, v2ly/vy, 2/0s).
By defining ¢ as g(*(f(v1)), vy, v-), we get
y =x(e)z/vi]
and we are reduced to solve
z =h(x(e), vz/t1]
We now obtain the final expressions for z and y:
z=*(h(=(g(x(f(r1), vy, v2), 01)),
y = Comp(x(e), e’)

where ¢’ is the rational expression defining z. After evaluation of Comp(:(e®, e’)
one gets

y =*(g(x(flr1)), v1, #(A(x(g(*(f(v1)), v1, 12)), V1))
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4.5.9. Applications to program transformations

It is known that arbitrary flowcharts cannot be transformed into equivalent
while-programs without introducing auxiliary variables (see for instance Elgot [33]).
But such a transformation can be done if one allows (like in EXEL [56]) do-repeat
loops with exit statements of the form exit i for i =1 (causing a jump out of the
ith surrounding do-repeat ioop). This can be established as a corollary of Theorem
4.5.7 in the following way.

From a rational expression denoting the execution tree of a flowchart, one can
obtain a ‘structured program scheme’ by translating =( . . . ) into do(. . .) repeat, v;.,
into exit i for i =1, v, into the null statement (since v, corresponds to a return to
the beginning of the surrounding do . .. repeat loop or to the end of the whole
program). By replacing the action symbols by their meanings, written as sequences
of ground statements, one obtains a program equivalent to the initial ‘unstructured’
program. This proof method is due to Cousineau [28].

4.6. Iterative theories of trees

We shall present a nice algebraic structure that one can put on M™(F, V)
the basic operations of which are the composition (i.e. the first-order substitu-
tion) and the iteration (i.e. taking the solution of generalized regular system).
It has been invented by Elgot [32] and developed in a series of papers [6, 7, 8, 10,
34, 40].

The basic objects will not be irees but n-tuples of trees also called n-trees. The
reader will have noted that our substitution t{u,,...,u,] is a binary operation
concerning a tree ¢ and an n-tree u = (u,, . . ., i, ). Hence, the introduction of n-trees
is natural in a theory emphasizing the properties of substitution whereas trees are
natural in a theory emphasizing the F-operations.

Rather than starting with the general definition of an iterative theory, we describe
the iterative theory T ‘of’ infinite trees over the ranked alphabet F. The iterative
theory R -of regular trees over F can be characterized as the free iterative theory
generated by F as we shall see later.

The set of variables V ={vy...., t, ...} is tixed and will play a similar role as
in Section 4.5,

For all integers n, p =0 let us denote by T, the set of n-tuples of trees in
M *(F, V,), hercafter called n-trees. If n =0 then T,, is reduced to the empty
sequence, here denoted by 0,. If p =0 then T, consists of sequences of trees in
M™(F) (unless n = 0).

The substitution extends in an obvious way into an operation associating with
s=Ast, s T and r=(n, ..., 8,) in Ty then-tree sof = = (U, ..oy W) i
T, suchthatuw, =s[t /vy, ..., /] fori=1,... n.

Scequences can be formed by means of rupling which associates with 7y, ..., 1, in

Ty, the element (¢y,...,1,) of T,, equal to (u,,.... u,) where ¢, = ;) and u, €
AMYF, Vofori=1,...,p.
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For all p=1, we denote by I, the element (v,...,v,) of T,, and by =;, the
element (v;) of T, (for 1 <i=<p). These notations as justified by properties (4.6.2)
and (4.6.3) below. The index p will be frequently omitted.

The operations introduced above satisfy the following properties:

(set)eu=s.(t.u), (4.6.1)
s =s, (4.6.2)
Tio(tiy s ) =1 (4.6.3)
t=(mielymaely...sTyol) (4.6.4)

for all objects s, ¢, u of appropriate type.

Finally, for t in T,, and « in T,, we shall use (t,u) as a shorthand for
(Trolymaaly .. ynelyTiolly. ..y mp.u). Hence (t,u)isin T, .

Up to now, we have only defined an algebruic theory T = (T, ;) -0, and we
already know two subtheories of T':

R = (Rn,p)n,p:z(), where R"'p = R(F', vp)n
and
M= (Ml-l’).-l,p =0, Where Mn.p =M|F, Vp ,)"-

We denote them by Tr, Rr and ME if we want to indicate the alphabet.

We can reformulate Theorem 4.3.1 in the framework of the above algebraic
theories.

LetS =(vi=wu,,...,t, =u,)be ageneralized regular system in Greibach normal
form. Solving it amounts to finding (t1,...,1,) in M™(F)" =T, such that t; =
wilti/vy, ..., t/vs] e, to finding some ¢ in T, such that

t=u.t (4.6.5)

where u is the element (u,, ..., u,) of T,,,.

Our Theorem 4.3.1 asserts the existence and unicity of such a . It will be denoted
by«

More generally all equations of the form

t=u.(t, 1) (4.6.6)

where weT, ., m.u#m for all i,je[n) have a unique solution in T, ,, also
denoted by « and which is the solution in M™(F, V,)" of the generalized regular
system:

S=(x1=uty ..., xp=uy)
where
ui =ulx1/t1, ..oy Xn/Vny 01/ Oty o s UpfUnsp] fOri=1,..., 1.

We express this by saying that T is closed under conditional iteration or is iterative.
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Note that (4.6.5) is the special case of (4.6.6) where p =0.

Note also that for u in T, identified with M™(F, V,,)), u = Star(u).

Theorem 4.3.1 also shows that R is iterative whereas M is not since the equation
x = f(x) has no solution in M(F).

Remark 4.6.7. A similar structure has been proposed by Arnold and Dauchet [1]
under the name of magmoid. The basic operations are the composition and the
tensor product which associates with « in T,, and «' in T, , the element =
(t1y ooy burn) Of Thiprpep, denoted by £ = u ® 1, such that

t=u; iflsi=sn,
7 . o ’
ion =ui[vpcr/C1y oy bpap /U] f1i=n'

There is no special notation for Star or .

4.7. General iterative theories

An algebraic theory J consists of non-empty sets J,,,, for n, p =0 together with
an operation named composition denoted by ., a multi-adic operation named
source-tupling and denoted by (,...,), objects O, in Jy, for p=0, I, in J,, and
m, in Jy, for 1=:i<p (also denoted by I and ;). The objects &, are said
distinguished. All these objects and operations must satisfy conditions (4.6.1) to
(4.6.4) (for all m,n,p,q =0, all s in J,,, all t inJ,,, all w in J,,, all i in [n}: O,
is another notation for ( ) so that (4.6.4) says that J,, is reduced to O,,).

One assumes that 7, # m;, if { #.

The theory is ideal if for all « in J, , if « is not distinguished (i.e. « # 7, , for all
ie[p]) then for all ¢ in J,,, « .1 is not distinguished. An object « in J,, is ideal if
for alli €[n], m . u is not distinguished.

The theories "of trees” T, R and M are ideal and an n-tree (i, ..., u,) is ideal
if and only if none of u,, ..., u, is a variable.

An ideal theory J is scalar iterati»e if for every ideal « in Jy ., the equation
(4.6.6) has a unique solution in Jy, (it will be denoted by ). Itis (vector) iterative
if the same holds for every ideal « in J,,,., (n =1, p =0). The solution w is then
nJ, .

Remarks 4.7.1. (1) In the case of trees, the condition “uw is ideal ™ is stronger than

the condition “m, - « # m; for all i, j in [n]" that was used in Theorem 4.3.1 and in
(4.6.6) since the latter allows w; in{t, . vty oot ph

(2) The results we mentioned in Remark 4.3.2 are actually proved in [7] for
arbitrary ideal theories.

The method we used in Section 4.4 to solve systems equation by equation is
applicable in any scalar iterative theory. The unicity of the solution of (4.6.6) can
also be proved from the unicity in the scalar case. Hence
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Proposition 4.7.2 ([8]). A theory is iterative if and only if it is scalar iterative.

4.7.3. Iterative theory expressions

Let J be an iterative theory, F a ranked alphabet, v a mapping: F - J such that
v(f) is an ideal element of J; « for all f in F;,. We shall say that f denotes v(f).

We shall now define iterative theory expressions ovcr F, each of them having a
type (n, p), in such a way that e of type (n, p) denotes an element ¢, of J,, (which
may be undefined, see below). :

The set Er(n, p) of (iteradive theory) expressions over F of type (n, p) is defined
as follows:

- O, beiongs to E(0, p),

., belongs to Eg(1, p),

(e1y...,€,) belongs to Er(n,p)ife,,...,e, belong to Ex(1, p),

e .e' belongs to Er(n, q) if e belongs to Ex(n, p) and ¢’ belongs to Er(p, q),
- ¢ belongs to Er(n, p) if e belongs to Ex(n, n +p),

- f belongs to Er(1, k) if f € F;.

The formal definition of ¢;, can be given by induction on the structure of ¢ in
an obvious way, with the requirement that (e¢')., is defined only if ;, is defined
and ideal.

Let us detail a few rules:

- (e.e');, =ey. ey, if e;, and e}, are both defined and undefined otherwise,
- (e Vs, = ey, is defined and is ideal and undefined otherwise.

One could also declare that (e’) 1. is defined if and only if e, is defined and the
equation u =ey, * (4, I;) has a unique soluticn in J, but we shall not use this
alternative definition.

Note also that we do not distinguish corstant and operation symbols (i.e.
Op Tipn (5...5:), »+) from what they denote in J.

Let us finally mention that iterative theory expressions have been used by Bloom
ana Flgot [6] to define and construct free iterative theories.

4.8. The free iterative theory generated by F

The definition of a homomorphism W :J - J' of algebraic theories is obvious: ¥
must map J,,, into J ,,, and must preserve operations, distinguished elements etc. . . .
We say that ¥ is ideal if J and J' are ideal and ¥ maps an ideal object onto an
ideal one.

Let » be a family of mappings: F > J as in Section 4.7.3. It is easy to see that
r extends uniquely into a family of mappings ¥, , : M(F, V)= J; . such that

l[,l.p(vi) = Wi_p»
Vot ot ) =v() o (Fipts)y ..oy Yrpte))

and by tupling into mappings ¥, ,:M(F, V,)" »J,, defining a unique homo-
morphism: Mg - J.



138 B. Courcelle

This shows that MF is the free algebraic theory generated by F.
If J is iterative and since v(f) is ideal for all f in F, it can be shown that ¥
extends uniquely into a homomorphism: Rg - J. Hence

Theorem 4.8.1 ([34, 40]). Rk is the free iterative theory generated by F.

Since an ideal homomorphism of iterative theories ¥ maps u' onto () we
must define ¥, ,(u") as (¥, .., (u))' for u in M, . .,. And this (together with tupling)
defines ¥, , for all element of R, ,. But we must show that ¥, , is well defined, i.e.
thatif u' =w’' then (¥, pU)) = (Fnspw)).

This is the crux of the proof of Theorem 4.8.1 (see [34, 40]).

We shall denote by er the value of an expression e in Rr if f denotes f for all
finF.

Corollary 4.8.2. For every iterative theory J, every ideal mapping v:F > J, every
expression e

(1) ey, is defined if and only if er is defined,

(2) if eris defined then e;,, = ¥ (er) where ¥: Rg - J is the unique homomorphism
extending v.

Proocf. (1) and (2) can be proved simultaneously by induction on the structure of
e. Note in particular that

(e')y., is defined if and only if
¢;.. is.defined and ideal if and only if

er 1s defined and ideal (since e;, = ¥(er) by induction and ¥ is ideal) if
and only if

(e Vr is defined. [

Two expressions are equivalent if in all iteratitive theory, either they denote the
same thing or they are both undefined.

Corollary 4.8.3. Two expressions e and ¢’ of same type are equivalent if and only
!

if ep =)

Let us also remark that Cousineau’s rational expressions can be detined as the
subset RSEg of restricted scalar expressions over F, inductively defined as follows:
- 7. belongs to RSEg(p),
~ ¢ belongs to RSEg(p) if ¢ belongs to RSEg(p + 1),
~ f.ley ..., ex) belongs to RSEg(p)if fe Fyand ey, .. ., e belong to RSE£(p) (for
k =0 we have .0, in RSEr(p)).
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Theorem 4.8.4. For every expression e over F of type (n,p), one can find restricted
scalar expressions e, . . . , e, over F and of type p, such that (e, . . ., e.) is equivalent
to e.

Proof. If er is undefined there is nothing to do. Otherwise ex = (¢4, . . . , f,). Theorem
4.5.7 shows that one can find rational expressions e, ..., e, such that Val(e/) =
for all i. The translation of e/ into ¢; in RSEx(p) such that e = Val(e}) is obvious
so that er =(ely...s€0)F

Corollary 4.8.3 shows that e and (e}, . . .,e,) are equivalent. [J

The above connection between Cousineau’s theorem and iterative theories is a
new result.

Elgot proves in [32, part 2 of the main theorem] and {33, Theorem 4.1] a similar
result with a slightly larger class of scalar expressions.

This class, let us denote it by R'SE, is defined by the same rules as RSE( together
with:

e .e' belongs to R'SE£(p) if e belongs to R'SEf(1)
and e’ belongs to R'SEr(p).

This corresponds to the composition of program schemes denoted by ¢ and ¢’,
whereas f. (e1, . . . , ex) corresponds to alternation [33].

Introducing the coraposition is meaningful if one wants to write program schemes
in a structured way but not necessary as siwuwn by Theorem 4.8.4.

Remark 4.8.5. A homomorphism of free iterative theories: Rr - R is nothing else
than the extension by tupling of a second-order substitution which is nonerasing
and regular, i.e. such that v(f) € R(G, Vi) — V for all f in F, all kK =0.

4.9. First-order unification of infinite trees

Let ¢, ¢’ be two trees in M(F, V). A (first-order) unifier of t and ¢’ is a (first-order)
cubstitution o : M(F, Vi)— M (G) for some G 2F such that o(t) =o(t'). We shall
denote by Unif; (1, 1') the set of all such substitutions.

Determining Unif, (1, t') corresponds to finding all solutions in M(G) of the
equation r = t' the unknowns of which are vy, va, ..., Uk

Proposition 3.4.2 shows that if o : V), » M (F, X)) is a unifier of ¢ and ¢’ and 7 is
any substitution: X;»>M(G) then 7 - o (also denoted by 7o) is also a unifier of ¢
and t'. We shall say that ra is deduced from o or that o is more general than to.

Theorem 4.9.1. If tand t' in M(F, V) are unifiable they have a most general unifier
o:Vie-+M(F, X;). One can find one with | <k.

This means that, for every ranked alphabet G o F,

Ullifk_(;(l‘, t')= {TO’/TIX[ -')!V!(G)}
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Let us consider two most general unifiers o:Vi>M (G, X)) and o': Vi~
M®(G, Yr) (where X;={xy,...,x} and Yr={y),...,yr}). There exists 6:X;~>
M(G, Yy) and 6': Y,y -» M (G, X)) such that o' =60 and o =0'c’ hence o =0'6c
and 0'6 is the identity on the set Var(o) =\ {Var(a(v;))|1<i <k} by Proposition
3.4.1 part (1). Similarly 66’ is the identity on Var(c').

This shows that if o and ¢’ are such that Var(e') = X; and Var(c') = Y, i.e. such
that all variables in X; and Y are useful, then X; and Y/ are in bijection by 6 and,
in particular / = {'. We shall say that @ is an X-renaming,.

The integer Card(Var(c)) is the minimal / such that there exists a most general
unifier of ¢ and t' of the form: V, -»M(G, X;). Note that this integer does not
depend only on ¢ and ¢’ but also on k. We call it the rank of (t,t') when V, =
Var(t) u Var(t'). Clearly,

Rank(/, 1') = Card(_J{Var(c(v))| v € Var(t) U Var(t')})

where o is any most general unifier of ¢ and ¢'. This is the number of independent
parameters upon which the general solution in finite trees of the equation ¢ =t
depends. By Theorem 4.9.1, Rank(t, ') < Card(Var(r) L Var(r')).

The proof of Theorem 4.9.1 also shows that the function symbols occurring in
o | (Var(r)u Var(t")) are all in F so that the chosen alphabet G is irrelevant provided
FcG.

Theorem 4.9.1 has a special interest in mechanical theorem proving (Robinson
[61)). A linear algorithm has been given by Paterson and Wegman [60] to construct
the most general unifier of two terms or show that it does not exist.

Our intention is to extend this theorem to infinite trees. The results we shall
present are essentially due to Huet [48].

Let 1,1'e M™(F, V). A unifier of t and t' is a substitution & : Vi, > M *(G) such
that o (r) = o(t'). We shall denote by Unif} (#, 1') the set of such unifiers. (We shall
often omit the mention of k and GG.)

Such a substitution o is finite (resp. regular) if o(v) is finite (resp. regular) for
all v in V.

As in the finite case we say that a unifier ¢ is more general than a unifier o and
we define most general unifiers in an obvious way.

Theorem 4.9.2. Let 1 and t' belong to M ™ (F, V).
(1) If t and ' are unifiable, they have a most general unifier 7: Vi » M ™ (F. X)),
and | = k. It is unique up to an Xrrenaming when l is minimal.

(2) If t and t' are regular and unifiable then their most general unifier is regular.
It can be effectively computed.

The proof of Theorem 4.9.2 requires a number of technical definitions.

We shall consider sets € of pairs of trees in M (7, Vi) and define Unifz G €)
as the set of substitutions: V, » M ™ (C?) which unify all pairs (7, ") in €, and we
define most general unifiers in an obvious way.
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Let 7 be the set of all subtrees of the components of all pairs in €. An equivalence
relation ~ on J is simplifiable if, for all ¢, t' in 7 such that

‘=f('1s ceay rk)’
U=f(th ..., t),
t~t,

we have t, ~¢; foralli=1,...,k.

1t is coherent if we do not have f(t1,...,4)~g(t1, ..., 1), f,geF and f # g for
any ty, ..., liy 1y ..oyt

We shall denote by ~« the least simplifiable equivalence relation on 7 which
contains €. It does exist and standard arguments vield the following lemma:

Lemma 4.9.3. Unif™ (%) = Unif™(~¢).

Let us assume that ~¢ is coherent and let § bte the generalized regular system
of equations defined as follows (we shall denote ~¢ by ~).

We let X be the set of variables v in V such that.

(i) v~1 for some t such that First(t) e F,

(ii) (i) does not hold and v = v;, v; ~ v, for some j >i.

We let W be V, —X and $ be the system of equations (v = u; v € X) such that .
if v satisfies (i) then u =1 and if v satisfies (ii) then u = v; where j is the largest
index such that v ~v,.

Lemma 4.9.4. S is a generalized regular Greibach system over F o W with set of
unknowns X.

Proof. We have to show that any v; occurring in an equation v =v; of § belongs
to W. If this was not true, then either v; ~¢ for some ¢ such that First(¢)e F and
v ~1, and v would have to satisfy (i) which is not the case, or v; ~ v for some j'>j
and then, v ~v;- and j would not be maximal as required in the definition of §. [

Without loss of generality we can assume that X ={vy,v,,...,0,} and W=
{tri1eo .o te}l. Welet (1, . . ., 1) denote the unique solution of § in M ™(F, W) and
7: X uW->M*(F, W) the substitution such that r(v,) =1 for v;e X and 7(¢;) = v;
for v;e W,

Proposition 4.9.5. (1) Unif*(€) # 0 if and onlv if ~ is coherent.
(2) If Unif*(€) # @ then 7 is the most general unifier of 6.

Proof. If ~ ¢ is not coherent then Unif“(~«) = # and Unif™(€) = by Lemma 4.9.3.
Otherwise, let S be defined as above. By considering § as a set of pairsin M" (F, V),
we can consider Unif™(S). Let us show that it coincides with Unif*(¥%).
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Since S < ~« we have Unif*(S) 2 Unif*(€) (with help of Lemma 4.9.3).

Let now o : Vi » M (G) be a unifier of S. Let us show that o € Unif“(~) and
Lemma 4.9.3 will give us the desired result.

We show that 8(o (1), o(t')) = o for all ¢, t’ such that 1 ~ ' (we denote ~¢ by ~).
We do this by contradiction, letting n be the minimal n <00 (if any) such that
8(a(t),a(t'))=n for some t, t' such that t ~¢'.

Case 1: First(t) and First(t') e F. We necessarily have First(t) = First(t') (since
otherwise ~ is not coherent), hence ¢ =f(t1,...,tn), t'=f(t},...,tn) and there
exists i in [m]such that 8 (o (t;), o(t{)) =n — 1. Hence t; ~t; and this contradicts the
minimality of n.

Case 2: First(t) € F and t' = v;. By definition of S, v; is in X and the corresponding
equation of S is of the form v; = u for some u in M ™ (F, V) with First(«) € F. Since
t ~v; and v; ~u we have t ~ u. Since o unifies S, o(v;) = o(u) hence é(o (1), (") =
S(a(t), o(u)). We are back to the first case, which cannot happen as we have just
seen.

Case 3: t=v,, t'=v; and we can assume that i <j. By definition of S, we cannot
have ¢; and v; both in W. Hence v; € X. Let v; = u be the corresponding equation
of S. Note that u ~uv;.

If First(u) € F then v; must be in X; let v; = u' be the corresponding equation of
S ; we have First(u') in F and u ~ u'. Since o unifies S, a(v;) =a(u) and o (v;) = o lu')
hence 8(a (1), o(t')) =8(o(u), o(u’)) and we are back to the Case 1. Contradiction.

*ience u € W and necessarily, u = v;. Since o unifies S, o (¢;) = (v;) hence o (t) =
ott’) and we cannot have 8(a(t), o (1) =n <0,

Hence we have shown that

Unif“(S) = Unif “ (€).

It is clear that Unif™ (S) is not empty: it contains at least 7.
In order to achieve the proof of (2) we need only show that

Unif 6(S) ={or/a: W->M™(G)}

for all ranked alphabet G including F.
For every equation v;=u; of S (i = 1,..., ) we have

or(vi) =a(r(v,))
=a(r(;))  (by definition of 1)
=crr(i,).
Conversely, let o' X U W > M™(C) such that ¢'(v))=c'() forall i = 1,. .., L.

Let o be the restriction of o' to W. Just to simplify the proof and without loss of
generality we can assume that G N X =2{). We have

t

. oo , .
agw)=cw)a' )/t ... a'(e)/v] u=1,....D.
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We also have
o) =alti/v,...,0/vi)
=ow)lot)/vy,...,o) /vl
Since the system (v; = o(¥;); 1 <i <) clearly has a unique solution:

o'(v)=ot)=or(v;) fori=1,...,1
Also

o'w)=a)=0or(v;) fori=1+1,...,k

anw

Hence o' = ot for some substitution o : W - M *(G) as wanted. [

since 7 is the identityon W,

Proof of Theorem 4.9.2. (1) is consequence of Proposition 4.9.5 with € ={(s, t')}.
All the remarks we made 1n the finite case on the minimality of / also apply
since they were only depending on Proposition 3.4.1 part (1) which holds for infinite
trees.
The rank of a pair (1,1) can be defined as well and Rank(s,t')<
Card(Var(r) U Var(r')).
-(2) If € is a set of pairs of regular trees, then J is a set of regular trees and S
is an extended regular system. Its solution consists of regular trees hence 7 is regular.
Furthermore if ¢ and ¢’ are two given regular trees, the set J associated with
€ ={(t, t")} is finite (J = Subtree(t) U Subtree(:')) and can be effectively constructed.
The equivalence ~« can be computed and tested for coherence. If it is coherent
then $ and 7 can be effectively determined. More details concerning this algorithm
can be found in Huet [48]. [J

The above technique will be extended to the problem of determining whether
Unif(t, t') =@ for +, t' in M(F, V) and more generally in R(F, V).

It is clear that Unif(s, ') =0 if Unif™ (¢, ¢') =0. If Unif™(s, t') # 0, deciding whether
Unif(r, t') =0 amounts to deciding whether the most general unifier 7 of ¢ and t' is
finite.

To do so, we shall use the equivalence ~ ¢ constructed in the proof of Proposition
4.9.5.

We define a binary relation = on V by letting v; > v; if and only if v; ~«t for
some ¢ in M™(F, V) such that First(r) € F and uv; has at least one occurrence in .

We say that ~¢ is acyclic [48)if v > v fornov in V.

Proposition 4.9.6. Let € be a finite set of pairs of regular trees. Unif(€) # 0 if and
only if ~¢ is coherent and acyclic. This property is decidable.

Proof. If ~¢ is not acyclic then Unif(€) =0 (if v ;> v and o € Unif(€), o (v) satisfies
an equation of the form x =t where 7 # x and x has an occurrence in f; this is
impossible if o (¢) is finite).
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If Unif(€)# 0 then Unif™(€) # ? hence ~¢ is coherent (by Proposition 4.9.5).
Note also that Unif(‘€) = Unif(~¢), hence ~¢ is acyclic by the above remark.

Conversely, if ~« is coherent and acyclic the system § is such that its unique
solution is finite. Hence the most general unifier of € is finite and Unif(€) # 0.

This property is decidable in nearly linear time. See Huet [48] for algorithms. O

Example 4.9.7. Let us consider the equation f(vi.f(vs, v2))=f(h(va2, v1), flva,
g(vs, va4))). The construction of ~ gives us
vy~ h(va, vy), U3~ Uas va~glvs, v4)
whence X ={vy, v, v3} and W ={v4} and S is the following system:
(ty=hivs, vy), va=glvs, va), L3=1y).
Its solution is the triple (¢, 2, t3) of trees in R (F U {v,}) such that
ty=h(gvs, ), h(g(vg, ta), h(g(ra, ta). .. N
ty= gLy, La),
3= Ua.

Hence the most general unifier of the given pair of trees, i.c. the general solution
of the given equation is the substitution 7: V,- R(F, {v.}) such that r(v;) =1, for
i=1,2,3and r(vy) = vy Itsrank is 1.

We shall apply this technique to prove the characterization of all solutions of a
nonproper regular system that we gave in Remark 4.3.2.

Let € =(v; =u;; 1 =i <n) be a generalized regular system where w, € M™(F, V,)
for all i. Let 7 =V, u{Subtree(r;)|1 <i=<n}. Let us associate with € a binary
relation -, on M “(F, V,) defined as follows:

t-t' if and only if there exists some w in M (F, V,.)) with exactly one
occurrence of the auxiliary variable ¢, ., and such that, for some i in [n ],

t=wle/e, "=wlu/enal

Lemma 4.9.8. For all .t in .7, if t~t' then 12, u and ' >, w for some uw in
MF, V).

Proof. The binary relation = on M “(F, V) such that:
s=s"if and only if s > u, s' = 1 for some u in M (F, V,))

is reflexive, symmetric and simplifiable {(casy to show). Although it is defined on
infinite trees, the methods of Rosen [62], O'Donnell [57] or Huet [49] allow to
show that =, is confluent (i.e. has the Church-Rosser property) hence that the
relation == is transitive.

Since = contains €, it also contains ~. ]
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4.3.2 (Bloom et al. [7)).

Example 4.9.9. Let € be the following system:

vy =hies, vy), ra=glra, ty), Ui= Uy, Uy = U3,
The singular unknowns are v; and v, The system §’ is exactly the system § of
Example 4.9.7.

Remark 4.9.10. For regular trees t and ' in M ™(F), Unif(s, ') # @ if and only if
t=1t". A corollary of Proposition 4.9.6 is the decidability of the equality problem
for regular trees.

Least solutions nfr- dar svstems in ,’\/f (F)
Least syulio aar svs (F)
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>
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regular trees. We shall denote them by Ro(F) and Ro(F, V
special role of (2.

LetS =(x;=u,,...,x,=u,)be ageneralized regular system with u, € M>(F, X,)
fori=1,...,n We do not require that First(u;) e F.
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Proof. The mapping|S|: M7 (F)" > Mg (F)" ismonotone and w-continuous. Hence
IS| has a least fix-point, i.e. $ has a least solution. Furthermore, this least solution
can be defined as the least upper bound of [S|"(£2, ..., Q) for n =0.

Since R (F) is not w-complete, the second assertion does not follow immediately.

LetS ={(x,=uy,...,x, = u,) be an extended regular, possibly nonproper system
and let (t1,...,,) be its least solution in Mg (F). Let S’ be the proper system
(xy=ut,...,xo=uy)suchthatu; =02 if ; =0 and u; =u; if t; #0.

It can be checked that § and §' have the same least solution (for all /i =0,
ISI2, ..., 2)=|S"'(12, . . ., 2); this can be shown by induction on ).

It can be shown that S’ is proper: if x; is singular in § then t; = hence x; is no
more singular in §'. In fact $’' has no singular unknown hence it has a unique
solution. Hence Theorem 4.3.1 is applicable and shows that (¢}, ..., ), the least
and unique solution of S' belongs to R (F u{2})". (Note that in our application of
Theorem 4.3.1, {2 is used as an ordinary constant). [J

By solving a system of equations we shall mean here determining its least solution
in Mg (F).

Generalized regular systems can be solved equation by equation, exactly as in
Section 4.4, with Mg (F, {xa,...,x,}) in place of M™(F, {x,...,x.}) and least
solutions in place of unique ones. The validity of the method, i.e. the analog of
Claim 4.4.1, is a direct consequence of Lemma 2.3.2.

Cousineau’s rational expressions can also be used (actually they are defined in
[29]s0 as to define trees in Ry, (F) and not only in R (F)) with the following changes.

One defines Star(r) as the least tree in M (F, Vi ) (see Definition 4:5.1) such
that Star(t) = t[Star(t) /vy, v1/va, ..o, U 1/Uc ], SO that Star(r)) = (2. Lemma 4.5.2
still holds but the proof is a bit more technical. (Having lost the unicity property
defining Star(r), one uses the characterization of Star(r) as the least upper bound
of the sequence of iterates of 1, i.e. Star(r)=Sup,(u,) where wp=42, u, .\ =
tltt U1, ..., Uk 1) See [29] for a detailed proof.)

Rational expressions are now clements of M(F U {*, 2}, V'), and each of them
has a value in Ro(F, V). Note that if ¢ has a value in the sense of Definition 4.5.3,
it has the same value in the new sense. The mappings Comp and Shift extend
immediately (we consider 2 as a constant) and the analogs of Claims 4.5.5 and
4.5.6 also hold (the proofs are the same). Hence, Theorem 4.5.7 also extends to
R (F. V) and applies to possibly nonproper extended regular systems and to rational
expressions with 2.

Finally all what we said concerning iterative theories has a counterpart in rational
theories.

A rational theory (defined in ADJ [69)) is an algebraic theory A where cach set
A, Is partially ordered and has a least element. The requirement of existence and
unicity of a solution of (4.6.6) is replaced by the requirement of existence of a least
solution, without ary limitation to ideal equations. The reader is referred to [69]
for more details on rational theorices.
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Tiuryn has defined similar objects named regular algebras [65] and investigated
their relations with iterative and rational theories in [66, 67].

4.11. Branch languages and occurrence languages of regular trees

The relation between regular trees and regular languages is very natural as shown
by the following theorem:

Theorem 4.11.1. (1) A tree t in M™(F') is regular if and only if Oce(f, t) is regular
for all f in F and empty for all but fini:ely many of them, if and only if PBrch{:) is
regular.

(2) A tree t in M'(F) is regular if and only if Breh(t) is regular.

Proof. Itis casy to construct a deterministic finite automaton recognizing Ocelf, 1),

PBrch(r) or Brch(r) from a regular system of equations having (¢, t2,...,1,) as
unique solution, and vice-versa. [J

A consequence of this fact is the decidability of the equality of two regular trees
defined by regular systems or rational expressions.

An alternative proof has been given in Courcelle et ai. [23] and another one can
be extracted from Theorem 4.9.2 (see Remark 4.9.10).

§. Algebraic trees

This section investigates algebraic trees. Such trees are interesting for at least
two reasons. They naturally arise in the study of recursive program schemes
tmodelled after system of mutually recursive functional (i.e. applicative) pro-
cedures), when one ‘unfolds’ the recursion ad infinitum in order to characterize
by means of a unique infinite tree what in the function defined by a recursive
program scheme depends on the interpretation. Another reason is their deep
connection with deterministic languages through their branch languages. Whereas
‘all properties' of regular trees are decidable, many problems on algebraic trees
are undecidable and others are open (in particular the equality problem which is
interreducible with the equivalence problem for DPDA’s).

As in Section 4, F will denote a fixed ranked alphabet. The extension to a
many-sorted alphabet is immediate and need not be done formally.

S.1. Systems of algebraic equations

In order to define systems of algebraic equations, we shall use the operations of
composition and tupling introduced in Section 4.6. Moreover, since we shall only
use l-trees we shall use the notations T for T, =M (F, V) and Tqox for
Mg (F, V). The symbol @ will always denote a finite ranked alphabet the clements
of which will be used as unknowns in algebraic systems
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The set of scalar monomials of type p over a ranked alphabet G is the set SM,(G)
of expressions inductively defined as follows (p =0):

e € SM,(G) if and only if
either e = 7, for some i in [p]
or e=f.(eq,...,e)for some f in G, and
some ey, €3, . . ., € in SM,(G).

Hence, for every algebraic theory A, if for all k =0, every f in G, denotes an
element v(f) of A, then for all p =0, every scalar monomial e in SM,(G) denotes
an element ¢4, of A, inductively defined in an obvious way.

Let @ be the ranked alphabet {¢, ..., ¢.} (@ will be so in all this section). A
system of algebraic equations (or an algebraic system) over F in the set of unknowns
@ is a system of the form X =(¢;=ey,..., ¢, =e,) Where ¢; € SM,(F L ®) and
ki=plg)foralli=1,...,n

A solution of X is an n-tuple (£, 12, ..., £,)in Ty, X Ty, X+ + - X T} suchthats, = e,y
where v(f)=f(t1,..., typ) forall fin F and v(g;) =t foralljin[n].

Such a system is in Greibach normal form if the left-most symbol of each ¢, is
in F. _

An alternative way of writing a system X as above (used for instance in many
works on recursive program schemes [15, 18, 22, 24, 25, 27, 37, 44, 53] is

(@it oo k) = U e @l U ) =100

where w; is the element of M(F u @, V) denoted by ¢, in the algebraic theory
Mg 4. In that case, a solution of X is defined as an n-tuple (fi,....1,) in
M (F, V)% XxM™(F, V, )such that t; =u{ti/¢1v .. ., tafgn

Example 5.1.1. Here are two notations for the same algebrai equation:
¢e=C Ty mne. (il em)),

elen ) =cley va eler ke,
The solution ¢ (it is actually unique) is depicted in Fig. 3.

Theorem 5.1.2. An algebraic svstem X ={¢ 1 =¢1, .. ¢u =) ¢, € SM (F w®) has
a least solution in Tq ., %+ + X Ty, If X is in Greibach normal form, it has a unique

solution which belongs to T, <+« X T, and is also its least solution ir. Ty XX
T,

Proof. Let E(, be the w-complete partial order Toy, X+« - X Ty, (its least element
is (2,0, ..., and |[¥]:E, > E be the mapping such that [S{(wy, ..., w,)=
(wi,...,wn) with w;=udw /e, ..., wo/e.) for i=1,...,n. This mapping is
monotone and w-continuous by Lemima 3.5.1 hence has a least fix-point (..., 4)
in F£, which is the least solution of X.
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Let now E be the complete metric space Ty, X - - X Ti,. The restriction of ||
to E is a contracting mapping: E > F by Lemma 3.5.1 and since Y has been
assumed in Greibach normal form. This mapping has a unique fix-point (1, ..., ;)
in E which is the unique solution of X (this proof technique is used in Bloom [5]
and in a more general situation in Arnold and Nivat [2]).

Remark now that if we consider (! as an ordinary constant then E, is also a
complete metric space and |X| has @ unique solution in E,. Since E < E, the
solutions of |¥| in E and Eq are the same and (y,...,0,)=(t},...,t,). O

Remarks 5.1.3. (1) An algebraic system such that p(¢)=0forall i=1,...,n is
regular.

A regular system is in Greibach normal form it and only if it is when considered
as an algebraic system. The same will hold for properness defined below.

(2) Bloom [5] characterizes all solutions of systems X which are not in Greibach

= can £ Y PO J'Y ST PR RS PR e
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5.2. The iterative theory of uly + ic trees

An algebraic tree is a tree in M ™ (F, V) which is either v, or a component of the
unique solution of an algebraic system in Greibach normal form.

Let X be asystem in Greibach normal form; we shall always denote by (¢4, ..., 1,)
its unique solution and by @ (or by A if necessary) the second order substitution
of t, for ¢y, ..., 1, for ¢,.

It is casy to show that a tree t in M ™(F, V) is algebraic if and only if 1 = 6 (11)
for some algebraic system Y and some « in M(F u @, V), where @ is the set of
unknowns of X.

We denote by A(F. V}) the set of algebraic trees belonging to M “(F, V,), by
A(F, V) the set U, ., A(F, Vi) and by A(F) the set of algebraic trees which are
in M (F).

It can be shown that A(F, V)= A(F u V) (in the latter notation we consider '/
as a set of constants).

It can also be shown that Ay (F, V)=, ., A(Fu{Q}, Vi) is the set of com-
ponents of least solutions of arbitrary algebraic sysiems (the proof is similar to the
one of Theorem 4.10.1 for regular systems).

Let A = (A, )up -osuchthat A, , = A(F, V,)". Weshall prove that A is aniterative
theory. We shall dencte it by A if it is necessary to specify the ranked alphabet F.

Proposition 5.2.1. Let sg, sy, ..., sc be algebraic trees, s, in AUF, Vi), s1,...,8; in
AF. V). The trees solsy, ..., s ) and Star(sy) (if s, # vy) are algebraic.

Proof. The proof being trivial if s, € V), we can exclude this case. Let us also assume
that s, ..., Sk € ‘/P' ;
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Without loss of generality, we can assume that so, §,,. .., sc are the first k +1
components of the unique solution of a system X ={(¢i(v1,...,0¢)=u;;0<i<n)
in Greibach normal form (with ko=k and k;=p fori=1,...,k).

Let us define X' by adding to 3 the new equation

d/(vl’ LN | vp) = uO[‘Pl(Ub sy Up); LRI (Pk(vh seey Up)]- (1)

Hence X' is an algebraic system in Greibach normal form having the solution

(SU[slv' .. ,Sk],S(),Sl,- ey Sky e -,sn)

where so[s, . . ., sk ] corresponds to ¢ and s; to ¢, fori =0, . . . n. Hence so[si, . . . , Sk ]
is algebraic. 64063
If some of the s;’s are in V), the corresponding ¢;'s are missing in 3 and we

define 3’ sxmnlarly with help of s, instead of ei(vy, ..
In nrder t

13 Ui l

CD
3.
:"
->
N
.
115}
2
0
—
ﬂ
2
-l
1
>
3
2.
g]
3
[¢]
Q.
(4]
=r]
3
o -
t4
>
-
>
e
e
3

equation
H(l‘l, ey Uk 1)2110[0(01, ey Uk 1), Uty oo oy Uk - 1].
Hence

(Star(so), So, Sty « -+ 5 Sn)

is clearly the solution of X" (also in Greibach normal form) hence Star(s,)e
AF, V). O

Corollary 5.2.2. A is an iterative theory.

Proof. The first part of Proposition 5.2.1 shows that A is a subtheory of T (as an
algebraic theory). The second part shows that A is closed under scalar iteration,
hence A is iterative by Proposition 4.7.2. [

The iterative theory A is also investigated by Gallier [38].

Let us mention that in Ginali [40] “algebraic tree’ is just another terminology
for ‘regular tree".

The proper inclusion

R(F. Vyc A(F, V')

follows from Example S.1.1: it is clear that the tree ¢ defined there has infinitely
many different subtrees: it is algebraic but not regular.

Proposition 5.2.3. The familv of algebraic trees is closed under second-order substitu -
tion. More precisely, if @ is the second-order substitution associated with a mapping
viF > A(G, V), then for all t in A(F, V), 0(t) is an algebraic tree in Ap(G, V) (in
ALG, V) if 8 is non erasing).
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Proof. The case t € V is trivial and we exclude it.

The general »ase easily reduces to the special case F G = . So we assume this.

Let X =(gi(v1,...,ts,)=u;; 1 <i<n) be an algebraic system with least solution
(fiy....t,)suchthatr=¢;; welet @ ={p,,..., 0.}

Let 2'=(ilv1, ..., Un)=w;; 1 <i<m+p) be another system such that its least
solution is (s1,...,Sm+p) With s;=v(f;) for i=1,...,m. (We assume that F =
{f1,...,fm} and that f; and ¢, are the same symbol.)

Let 3"=3uUlX'. Its set of unknowns is @ UF U{¥ms1,...,¥m+p}. Let
(P1y <« s tus S1y .+« -, Sm+p) be its least solution. We want to show that r; = 6(t,). We
shall prove in fact that this solution coincides with (8(¢,),...,0(t,), s1,..., Sm+p).

Let us first consider the special case where # is nonerasing and where we can
assume that 3 and X' are in Greibach normal form. One can show that 3" has a
unique solution although it is not in Greibach normal form.

Hence it suffices to verify that the latter (n +m +p)-tuple is a solution of 2", i.e.
in fact that its equations from X are verified (ihis holds by definition for those from
.

From t, = u{t\ /¢, ..., t./¢.} we get
) =tdv(f/fre. s vfo)/fin}
=win/er .. e/ v )/ fnd
=uf0) /e .., 0 €us v/ 1y v Ufu)/ fin} (1)

by th> analogous for second-order substitutinne of Proposition 3.4.2, and this is
exactly what was to be proved since ¥,,.;, 1 =j < p does not occur in the u;’s.

In c¢rder to deal with least solutions, we apply Lemma 2.3.2 to X" by solving
globally the equations giving (sy,. .., Sym.p) =(S1, ..., Sm.p) and taking the solution
into the remaining ones, namely those from X. Solving these new equations (they
form an algebraic system with infinite handsides but we have not introduced them
formally) can be done by taking the least upper bound of the sequence S'(£2, ..., Q)
where § is a mapping: Mo (G, Vi) x- - x Mg (G, Vi) into itsélf which is derived
from !X" as follows:

S(z1.....2,) consists in the first n components of |7z, ... 20 S1he oy S-p)
for 2, in MG, Vi), 1=i=n,

Note thatfor by, ..., b, in MHF. Vi), ....Ma(F, V, ):

SO, . b=, B S Sep)
restricted to its first n components

=(Zihye . bus/fi T =i=m +p)

=a(Zby, ..., b))
since the calculation step (1) above holds for
arbitrary by, ..., b, inplace of 11,..., 1.
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By using an obvious vector notation,
S(@(b)) =6(X](d))
whence
8(Z]'(02))=S'(8(02)) = S'(£2)
since

6(02)=492.

Since @ is w-continuous,

’

=(th ...y tn).

Hence we have obtained t) = #(1,) as desired.

5.3. Algebraic trees and schematic tree languages

We state that the components of the least solution (fy,....¢,) of an algebraic
system X can be defined as the least upper bounds of directed sets of trees L, . ... L,,
generated from a context-free tree grammar X, associated with X,

LetX ={(dity,...,t) =ty .. hnlly, ..., k) =ty Let 3y be the set of pairs
(v, ..., v ), 1) and (@ilvy, ..., vr), £2) and let 2>, be the semi-Thue relation
on M, (F u@, V) associated with X,,.

The triple (F, &, X is in fact a context-free tree-grammar (see Engelfriet and
Schmidt [35] for a detailed study) of a special form: we call it a schematic tree-
grammar as in Courcelie [15] (since it comes from a recursive program scheme).

For every u in M(Fu®, V), the schematic grammar X generates a tree-
language L, 3g)={weM(F, Vi)|u =>y, w}. Such a tree-language is called a
schematic tree-language.

Lemma 5.3.1 (Nivat [S3]). L, X)) is directed with respect to = .

Hence L, X)) has a least upper bound that we shall denote by 7).

Let us denote by 6 the sccond order substitution of ¢, for @, . . . . ¢, for &, where
. ... t,)is here the least solution of X in Ty, X+ X Ty

The following result is often referred to as Schutzenberger's theoreni (by reference
to a similar result of [64]):

Theorem 5.3.2. (1) The n-tuple of trees (v(d (. . ... (VORI N (5 Y S TR ri, M)
is the least solution of X,
(20 Forall win MF O, V), 7 = 0w,
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Proof. (1) Weonlysketchthe proof.LetL; = L(¢i(vy, ..., vk,), n)and7; = Sup(L;)
fori=1,...,n.Let us show that

wlri/éy, ..., t/da}<7 foralii. (*)

Since the second-order substitution is w-continuous in all its arguments, it suffices
to show that u;{w,/d, ..., w,/d.}<71 for all w,eL,,...,w,eL, and ie[n]. It
can be shown thatforal ue M(Fu®, V), all wyeL,,...,w,€L,, uiwi/d1,...,
wa/dn} € L(u, Xq) (by induction on the structure of u). Hence (*) is established and
one can conclude from Theorem 2.3.1 that ¢, < 7; for all /.

The other direction is more technical. One can establish that 7; <t; by showing
that for all w; in L, there exists j such that w;<t;" whkere (t\,...,t))=
3", 0,...,0) (see the proof of Theorem 5.1.2). One can take j equal to the
length of a derivation ¢;(vy, ..., vx,) =5, w; (see Nivat [53]).

Hence one can conclude that (¢y,...,8:)=(71,..., 7).

(2) For u in M(F n @, V,) the equality 8(u) = r(u) follows from the above result
applied to a system made of one new equation ¢(vy,...,v)=u and all the
equationsof 3. [

5.4. No:mal forms and reductions

It is not very difficult to prove that a system can be put in Greibach normal form
provided its least solution has no occurrence of the symbol (2.

We shall also prove that the number of variables occurring in the left-hand sides
of equations can be reduced in a way which eliminates useless variables.

Let X and (1y,...,,) be as in Section 5.3. The system X is proper if t; # (2 for
ali=1,...,n. Since u,,...,u, have no occurrence of {2, we have the following:

Proposition 5.4.1. The following properties of an algebraic system X as above are
equivalent:
(i) X is proper,
(i) teM™(F,V)forall:=1,...,n,
(itd) X has a unique solution in Ty, <+ XTp, ,
tiv) X has a unique solution in T, X+ - xT,.
These conditions are decidable.

Proof. (ii) = (iii): any other solution (7,...,1,) satisfies t,<¢t; for i=1,...,n.
Since 1y, ..., 1, have no occurrence of 2, they are maximal hence ¢, =t/ for all /.
(1) = (v) is obvious.
(iv) = (i). £ is not proper if and only if the set J = {i e[n ]|, = 2} is not empty.
It can be shown that J is the set of indices / such that

dilry, .. -aUk,)‘:’QS,‘Wh- ey W),

M ’ r
d;lvy, . ..,L‘kl)—:(b,(wh cea W)
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forsome jin[n], wy, ..., wi, wi, ..., wi in M(F U@, Vi ). This characterization
allows us to construct J and to de-ide whether X is proper.

Let s be any element of M “(F). It can be shown that there exists a unique
solution (sy,...,s,) of X in T}, X+ - - x T, such thats; =s for all / in J.

Any other choice of s gives another solution of £ in Ty, X+ - - X T . Hence if X
satisfies (iv), it must be proper.

(i) = (ii). For any tree t in M (F, V) let us define |lt|| as Min{ja||a € Oce(£2, 1)}
so that te M™(F, V) if and only if ||t]| = co.

Let X be proper; let w be a tree in M (F u @, V) such that ||¢(w)]| is minimal.

If there exist several trees satisfying this, let us select one of minimal size.

Case 1: ||@(w)||=0. This is possibly only if w =@;(w1, ..., w,). Since , # £, this
implies t; = v; and 6(w;) = 2, i.e. |8 (w,)|| = 0 but this contradicts the minimality of |w].

Case 2: ||6(w)]|=n>0.If w=f(w,,..., ws) then [|@(w,)]|=n —1 for some j and
this contradicts the minimality of ||#(w)||. Hence w =@, (w1, ..., wi,) and as above
;¢ V. Hence 1, = f(t1, ..., ti). This shows that ¢;(vy, ..., vx) = flui, ... ui) for
some uy,...,u; in M(Fud®, V,). And we have

B(w)=fB(wi), ..., 0(wi)),
wi=u[wy,..., wy, .
But ||#(w;)|=n —1 for some i and this contradicts the choice of w.

Hence ||f(w)]| = o0, i.e. 8(w)e M™(F, V;) for all w in M (F u a, V). This holds
in particular for w =¢@;(t,, ..., vy,) (for which 8(w)=1r,). And this proves (i),

Definition 5.4.2. Lct us recall that X is in Greibach normal form if its right-hand
sides (the u,’s) belong to FIM (& U F, V)). Note that by introducing extra unknowns
(corresponding to the function symbols of F), one can put I in such a form that
u, € F(M(®, V)). This more stringent form corresponds closer to the usual Greibach
normal form for context-free grammars.

The algebraic system I is V-reduced if for all i in [n], all § in [k,]. the variable
t; has an occurrence in #. This means that all variables occurring in X are “useful’.

An algebraic system is trim if it is V-reduced and in Greibach normal form. Our
purpose is to show that any proper system can be “trimmed'.

We need a precise definition. Let X' =ty .oy 00 S 0o ool (Crs e o
Ch,) =) be another algebraic system and ¥ ={#,, ..., ¢n). We say that X is

X'-definable if there exist w, in M(F U ¥, Vi oooowy, in MUF G W, V) such that

L=0xtw;) fori=1,.,.,n.

In that case Ay (F, V)< A (F, V), where Ay (F. V) denotes the set of S-definable
treex, e, the set{es ) ju e M(F o d, V),

Conversely, if Ay &, V)< Av(F, V) then X is Y'-definable.

We shall also say that X is equivalent to (X', wy, ... w,)or that (3w .. ..wy)
is a translation of X,
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If (2, wy,...,w,) is a translation of £ and (X, wi,...,w,) is a translation of
3’ then we say that 3 and I’ are intertranslatable (and this implies As(F, V)=
Agx(F, V). In the special case where @ =¥, w, =w| =d;(vy, .. ., vr, ) we shall say
that X and I’ are equivalent.

Proposition 5.4.3. Any proper algebraic system is intertranslatable with a trim
algebraic system.

Proof. Let 3 =(di(vr, ... 0 )=u;; 1<i<n) be proper and (ty,...,t,) be its
nmmne solution,

One can determine the set I of indices 7 such that 1,2 V. Without loss of generality
(and just to simplify the notations), we can assume that I ={1,2,...,/} with
Osisn =0 (=0 let t,=0h,, for i=Il+1,....n, for some mapping
h-{l+1,....n}>[n]

One can also determine (see Courcelle {15]), for cach ie [ ihe set H{i) of
variables occurring in #,. Let us write it H (i) ={tni11 - -« Uhiiim }-

Let us define ¥ ={, 1 <i <[} and p(¢;) =m, for all i. We shall translate X into
(&', wi, ..., w,) for some system I’ having ¥ as set of unknowns.

Let us define immediately:

o

w, :l[l,(l'[,.,.lh-.-.l‘h._m,\) fOl‘ ]Sigl, (1)

W, = U, for!+1=si=n. (2)

Wedefine X' =(¥,(ry, ..., tm)=u,: 1 <<1=1[)oyletting 1, be tiie unique element
of M(F u ¥, V,,) such that

“:[l‘hu.lu v en l‘hu.m,n]= l‘:’{|"]/(bl- seey “'n/(bn} (3)

where u«! is some clement of M(Fud, V,) such that First(u/)eF and
L A VT L S TR

We have to show that the right-hand side of (3) belongs to M(F U @, H(i)) in
order 1o ensure the existence of ;.

It is casy to see that every variable v, occurring in u/{w/d, ..., w,/¢,} also
occurs in w1, {ty/d1, . ... /b

Remark now that 1, = u; {t,/d,, ... 1./d,.}since @;(ty, ..., v ) <>y ui andfor all
W' u sy’ implies By (1) =0y (1)

Hence v, belongs to Varlt,) = H ).

We shall now prove that (X', w, ..., w,) is a translation of &

We do this by means of another system in Greibach normal form:

I =Ailry, ... )= U] 1<i< )
where

W =ui{vhe /b tiw/ay=ullta /b, bal
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One hasforalli=1,...,[,

ui{ty/di, ..., h/(f’l}:u."'{‘x/d?h coes tnfdal.

Hence (t1, . . ., t;) is the solution of ™. Let us show that (8s(w)), ..., 8s(w))) is
also a solution of 2™; let (¢}, ..., t}) be the solution of X'; for all i e [{],

O (W) =t{[Oniitr -+ Vhiimo ]
=ui{t /b, i/ nans s Vi, ]
=uilonins s Vnamp {0 /G100 11/ )
=ui{wi/d1, ..., wi/dHO /W1, - i}
=ui{w{ti/¥, ... i/t b3 1<j<n}
=u{ {Onae/Biets o s Lo/ G HOs (W) /D1y Ox(wi)/ i}
=ui {0 (w))/d1, ..., Os(w))/di}.

Hence (65(w;))1- ;-1 is a solution of X" and ¢, = @x(w;) for all { in [I].

Since OsAw;)=vn;, forallie{l+1,..., n}, we have'shown that (X', wy, ..., w,)
is a translation of 3.

On the other hand

ti =0s(w{) fori=1,....1
where

‘t’; = (bi(uls CEEEEIRY Uk‘)[l-‘l/l‘hu,l)a LECEC ) l‘uu,/vllu\nl“]

{this follows from (1), (2) and the fact that Varit,)= H (i) hence ¥ and X' are
intertranslatable. ]

We shall use this construction to decide whether an algebraic tree is locally finite,
by means of another proposition.

Proposition 5.4.4. Let F have no constant. Let S be a trim algebraic svstem over
F. & its set of unknowns and (1, . .., t,) its unique solution. The following properties
are equivalent:

(1) ptd) #0 for all ¢ in &,

Q) eM™F. V) foralli=1,... . n,

(3) ALF, Vi MY (F, V).

Proof. (3)=(2)is trivial sirce ;€ A<(F, V).
(2) = (Disclearsince r, e M ™ (F, V):if t; is locally finite Var(r,) # Ohence p(d,) # 0.
(D =(3). Letue M(Fud, VYand r = 8x(1). By Proposition 5.6.1 to be proved
later, for all « in Dom(z), there exists ' in M(F o @, V) such that r/a = é«v(u').
Note that Vartu') # 0,
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Since I is trim, Var(6s(«')) = Var(u'). Hence Var(t/a) # @ and this shows that ¢
is locally finite. O

Corollary 5.4.5. It is possible to decide whether a given algebraic tree is locally finite.

Proof. Let 3 be an algebraic system over F and ¢ = 6<(u) for u in M(Fu @, V).

One can translate Y into (X', wy,..., w,) where X' is an algebraic system over
F without constants. It suffices to define a new variable v, for each a in F, and
add v, to the variable list of ¢; if a occurs in 1, We omit the details.

Hence ¢t =6s(u') forsome u'e M(F u @', V).

Let us translate X' into a trim system X" by using Proposition 5.4.4 and let us
restrict X" to the equations that are really useful ror the definition of .

This means that t = #.-(1") for some trim algebraic system X" with set of unknowns
¢" and such that for all ¢ in @", there exists a in Dom(r) and w” in M(F u ®", V)
such that

t/a = Bs-(w"), First(w”) = ¢.

From this one can deduce that ¢ is locally finite if and only if X" satisfies condition
(2) of Proposition 5.4.4, i.e. if and only if p(¢)#0 for all ¢ in @". This is
decidable. U]

3.5, Algebraic trees and deterministic langudige s

The tollowing theorem draws a bridge between algebraic trees and deterministic
context-free languages. Let us recall that these languages can be defined by deter-
ministic pushdown automata (DPDA’s) or equivalently, by LR(k) or strict deter-
ministic grammars (sece Harrison [45]).

The equivalence problem for DPDA's, i.e. the problem of deciding whether two
DPDA's A, and A, define the same language is open. Many decidable subcases
have been discovered (Valiant [68], Oyamaguchi et al. [58, 59] in particular).

By using the notations of Section 1.6

Theorem 5.5.1. (1) A tree in M'"(F) is algebraic if and only if Breh(t) is a
deterministic laaguage.

(2) A tree tin M (F) is algebraic if and only if PBrch(r) (or L(1)) is a deterministic
language.

(3) If a tree t in M (F) is algebraic then Gceelf, 1) is a deterministic language for
all fin F.

Part (1) is proved in Courcelle [15], part (2) follows easily and part (3) is proved
in Gallier [37]. The proofs are much too technical to be even sketched here.

This result is fully similar to Theorem 4.11.1 concerning regular trees, except
that the converse to (3) yields an open problem.
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Open problem 5.5.2. Is it true that a tree t in M™(F) such that F is finite and
Occ(f, t) is a deterministic language for all f in F is algebraic?

The answer is yes if F consists of two symbols of the same arity. This is due to
the fact that the complement of a deterministic language L can be recognized by
the same automaton as L except for accepting modes.

We do not make any conjecture concerning the general case but we give an
equivalent formulation:

Is it true that if (Ly, L., ..., L,) is a partition of X* into n deterministic languages
then the language L\1 U L,2 U -~ wL,n over X u[n] is deterministic?

Theorem 5.5.3. The equivalence problem for DPDA’s a:: the equality problem for
algebraic trees are interreducible.

The reduction from algebraic trees to DPDA’s follows from the remark that
t =t if and only if Oce(f, 1) = Occ(f, t') for all f in F and part (2) of Theorem §5.5.1.
It can also be established by means of PBrch(¢) or Breh(r) (Courcelle [15]).

The other reductions are much more technic , they are proved in Courcelle
[15] and Gallier [37].

Consequences 5.5.4. The above cited constructions yieid the following facts:

(1) Every decidable case of the equivalence problem for DPDA''s yields decidable
cases of the equality problem for algebraic trees. (Not just one case because there
exist several reductions of the equality problem for algebraic trees to the equivalence
problem for DPDA’s: two by Courcelle and one by Gallier [14, 15, 37]. Actually
it is not at all easy to have handy characterizations of the corresponding classes of
algebraic systems. But this is a direction for future research.

(2} Every decidable case of the equality problem for algebraic trees yields
decidable cases of the equivalence problem for DPDAs. This is also a largely open
research direction.

Remark 5.5.5. Since Brehit) can be detined by a grammar, Var(r) can be computed.
One can decide whether a given system is trim.

5.6. Finding one’s wav in an algebraic tree

We shall describe an automaton the states of which are trees which describes
the paths from the root to any node in an algebraic tree.

It will allow us to determine the subtree issued from any node of an algebraic tree.

LetX =(db(vy, ..., v4)=u;; 1 =i <n)be an algebraic system in Greibach normal
form. We associate with X a partial mapping:

Yy CNLXAF b, ‘A)—’AI(F b, Vi)
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and its canonical extension ¥} to N¥, by the following definitions (£ being fixed
we use y and y* instead of y= and ¥%):
- y(i, t) =5 if and only if
(1) eithert=f(s.,....s5x), 1<i<k and s =5,
(2) or t=¢;(s1,...,5,), u; is of the form f(ui, ..., ui) and s=uils,, ..., s,]
with 1 i<k,
- y*@,t)=tforalltin M(Fu®, Vi),
- y*(ia, t) = y*(a, y(i, ) for i eN,, a e N* provided y(i, t) and y*(a, y(i, 1)) are
defined; otherwise, y*(ia, t) is undefined.

Proposition 5.6.1. Let ue M(Fu @, V,) and a € N*. Then o e Dom(0s (1)) if and
only if y¥(a, u) is defined. If it is then 0s(u)/a = 0s(y% (a, u)).

Proof. An casy induction on |a|. O

t ¥3:N;
of 1
- ¥¥a, 1) =First(y*(a, ) if y*(a, 1) is defined and belongs to F(M(Fu @, V))u
Vi,
- ¥, ) =fif yMa, 1) =i(wy, ..., w) and f = First(u;)
- ¥*(a, 1) is undefined if y*(a, 1) is.
Hence, for all & in M(F u @, V'), all @ in Dom(fs (1)) we have

x M(F o d, V;)»F UV, be defined as follows (we use y* instead

p—
o
123
- i
1]

[]
A%

Ouva)=y*a,u). T

Corvollary §.6.2. Foru,u' in M(F O ®, V), 0x(u) = 0x(u') if and only if the mappings
Aa e NY  $¥ 1. 1) and Aa e N¥ . $¥(a, u') are equal.

5.7. Two congruences associated with an algebraic system

Let X, 1y, ....1.), 8 be as in Section 5.6. Let us also assume that X is V-reduced.
Hence X s trim.

Since X is in Greibach normal form, the second-order substitution é is continuous
and extends uniquely to M (F L @, V) by Proposition 3.5.6.

There corresponds to X a congruence €, on M(F U@, V) generatec by X con-
sidered as a set of pairs of terms, and a congruence on M “(F u @, V) defined by

t=yt'ifandonlyif (Y= 06(1").

In the following theorem, we compare <>, with the restrictionof =y toM(Fu @, V),
also denoted by =,

A congruence ~ on M(G, V) is stable if o(t)~ol(t') for all finite first-order
substitution and all ¢, ¢’ such that r ~¢'.

Theorem 5.7.1. (1) <, and = are stable congruences on M(F u®, V) and

S, O =,
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) =y is simplifiable.
) &5 is semi-decidable and =g is semi-refutable.
) t =5t"if and only if

Inf{d(u, u')|t Sut Sul,u, WeMFoud, V)i=0.

Before starting the proof, let us make some remarks:

e 1ve
¢ equivalenc e
(2) Here is an example of

I ={(d(r))=flvy, pdvy), ¥(vy) = fldry, vdry)),
ddr, =y vy,

B . sk
ddu <7f> vy U e, <, then u has occurrences of ).

-3
s
-
2
<
=4
[¢]
2
v
-
[
w
z
w
P d
3
tes
w
o
=
—-
-
]
-

having the same solution) such that €., =, (and =y) are the same.

(4) Whether <>+ is decidable in general is an open question raised by R. Milner.
A similar congruence on free monoids has been shown undecidable in general by
Book [12]. But this does not prove that € is.

Proof of Theorem §8.7.1. (1) That <, and =, arc congruences is obvious. Since
Y considered a binary relation on M(F @, V) is included in =4, so is <, the
least congruence containing X,

(2) Letw=a(wy,...,w ) =vaWi, ... .w)=wn'",
tf a=feF then f(BOw .., 80 ) = OO, ... 800 ), hence B(w,) = H#iw,),
e, wo=yw; for i=1,....k. I a=¢,ed then 0w ... .dlnp)]=
nletwi), oo, 8wi)] Since X has been assumed V-reduced each v = 1,.... k&
occurs in 1, hence 8(w) = 6(w;) foralli =1, ..., k by Proposition 3.4.1.

(3) As any finitely generated congruence for which one knows a finite set of
generators, <y is semi-decidable. :

Since y* is computable, Cerollary 5.6.2 shows that =, is scmi-refutable, i.e. that
its negation is semi-decidable.

(4) Let r==y (", Let us consider the mapping (M F > F where F=MF o &,
Vi X MUUF O d, V) which was used in Theorem 5.1.2: we recall its definition:

' !
L TR (UM e S IO T (R N

Wi Sdhe o owSd, foralliin [l
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Since X is assumed in Greibach normal form, this mapping is contracting and
1™ (D 1(V1s e ey Ok))y e ey Py .., ) =(wT, ..., wh') converges (but not in E)
to (ty, ..., ), the unique solution of 3.

In particular,

Sit,wy=m foralli=1,...,nandmeN. (#)
It can be shown that ¢;(vy,..., 0, ) =>xw;" and that t S5t™ =t{w}' /1, ...,
wi /¢, } for all m. Since () =1{t,/b, ..., 1./b.} we have by Lemma 3.5.1 and (%)

above,

s, t"y=m.

mm

One defines similarly t'" and one has

s, " =m.
Since 4(t) = @ut') one has
6(1"“ ,:nl ) = m.

Hence, we havefoundu =t" and u' =1"" suchthatr & u, t' <y u’and d(u. u') = m.

Let us now prove the converse.

Let r and ¢', «™ and '™ be such that r &y u™, ' s u
all m.

We can restrict F and V' to the finite number of symbols appearing in 3, ¢ and
t' so that M “(F u &, V) is compact: hence one can find u and u' in M “(F U@, V)
and an increasing sequence m; <m><---<my; <-- - such that

o rn 144

, o™, u'"y=m for

Lim(u "=u, Lime™) =’
Since Y is in Greibach normal form, ¢ is continuous and since 6(7) =8u"™),
0(,1) - 0(“11" )‘
A= !,iu) ™) =6, Alu')= !Jim "™ )y=0(".
Since 4 is contracting,
did™), eud™ n<d™ "= (1/2)™,
hengce
dibta, ' =0, 000 =8
and finally

B =00, et =10

5.8. The equality problem for algebraic trees: decidable subcases

We prove a metathecorem on decidable cases and state (without proof) several
applications.
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Theorem 5.8.1. If 3 is an algebraic system in Greibach normal form such that =5
is finitely generated then =y is decidable, even if one does not know the finite relation
generating =y.

The proof will use a technical definition. A binary relation R < M(Fud, V)  is
self-proving if for all (s, s') in R:

(1) ¥*(e, s) =¥*(e, s') e F, for some { >0,

(2) y(i,s)ry(, s foralli=1,...,1,
where y and ¥* are the mappings associated with X, defined in Section 5.6.

Let us denote by 60 the mapping

M(Fu®, V) >N u{o}

-

defined by
S6(s,s") =8(8(s), O(s").

Lemma 5.8.2. If R is such that §6(s,s’) = m for all (s,s") in R then the same holds
for all (s,s') such that s ¢ s’

Proof. By an induction the basic cases arc as follows: if SA(s.s/)=m for all
i=1,...,k then

S01(s,s')=m if
cithers =f(s\,..., sl s'=fsh, ..., s, feFi.
OF  S=B(S1, st 8 =h(S1y . Si) b Edy

or  s=uls, oo on s =uls oo s b w e R
Lemma 5.8.3. If R is self-proving then R is true, i.e. R < =,.

Proof. Let us assume that R is not contained in =y, Let (1, ¢') be a pair such that
[<pt’, 86(1t') <200 and 861, t') =8, is minimal.

Lemma 5.8.2 shows that there exists (s, s") in R such that 86is, s+ 8,. If o =0
then y¥(e, s)# 7*(¢, s") which contradicts the hypothesis that R is sclf-proving.
Henee 8070, We have 8(s) =£(0(s)),...,0(s)), fe F, with 5, = y(i, s) for all § =
1..... L and similarly for s". Hence 86(y(i,s), yt, s =8,~ 1 for some i in [/].
Since y(, $) g y(i, ") (R being self-proving), this contradicts the choice of 8.
Henee 864, t') = o0 for all 1, ¢" such that t <, 1" and in particalar tor all (¢, ') in R.
This shows that R< =,, [}

Proof of Theorem 5.8.1. Let us first remark that for a finite relation R <
M(F wd, V)", the property "R is self-proving™ is semi-decidable. This follows
immediately from the definition.
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Lemma 5.8.3 shows that 1t =31' if t &, 1t’ for some finite self-proving relation
R c M(F u®, V) . This sufficient condition is clearly semi-decidable.

Hence we only need to prove its necessity to achieve the proof.

To do so, we shall use (for the first time) the hypothesis that =3 is finitely
generated.

Let R, be such that =
say v then the other
for all ¢ in &@. We can clearly assume that R, does not contain any trivial pair such
that (v,, ©)).

More generally we also exclude all pairs of the form (1, 1).

It follows that Ro< (M(F u®, V)= (F,u V)’

Let us now verify that R, is self-proving.

"

e If any component of any (s, s') in R, is a variable

is
1 lan n ha
ains oC U since we have assumed that & Gloy, ..., 0L FE Y

’

s N ng

Foraii(s,s)in Ry, #is)=8(s"1eM (F,Vi—-{Fou Vihe ‘Cc‘:'}? (e,5)=7%e,s")=
fforsomc.fmF}.wnhl>l we have 8(s) = f(O(y(1,5)),.... @(y(l s))) andsimilarly
for s'. Hence y(i,s)=syli.sYforalli=1,..., ., and v(l s)(-ap v(i, s') since R,

generates =,. This establishes (2) and proves that R,, is self-proving.
Hence if t =4 t' then 1 ¢ t' for some finite self-proving R.
hience =, is semi-decidable: it is decidable by Theorem 5.7.1(3). O

In the following extension of Theorem 5.8.1 we shall be interested in deciding
whether t =4 ¢’ for (1. 1') in a recursive subset € of M(F U &, V).

Such a subset will be said stable by Ol-derivations if for all (s, s') in €, y*(¢, 5) =
yHe.sVissome fin Fandforalli=1,...,p(/), (yl,s), yli,s'VeE.

Theorem 5.8.4. Let X be in Greibach normal form, let € < M(F o @, V')’ be recursive
and stable by Ol-derivations. Let us assume that there exists a finite subset R, of €
such that for all (1. t") in €, 1 =xt' if and only if t Sg, 1. Then t =xt' is decidable
for (r, t')in €.

Proof. One can show that for (t,1') in €, t =y 1’ if and only if there exists a finite
self-proving relation R € € such that 1 «»p 1,

The if part is exactly as in Theorem 5.8.1. The stability of € implies that R,
minus the trivial pairs of the form (z, 1) is self-proving. Hence the only if part holds

!

aswell, T
Applications can be given to special classes of algebraic systems.

S5.8.5. Non-nested systems

An algebraic system Y is non-nested if all the right-hand sides of its equations
are non-nested, i.e. have no subterm of the form (s, ..., s:) where some s; has
an occurrence of asymbol in @. One can put £ insuchaform(é;(vs, . . ., tg,) = 13 1=
i =~ n) that

(1) ,ieN=M(F, VuU®PMF,V))foralli=1,...,n
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(2) the components of the unique solution of X are not finite,

(3) X is trim.

Let now € be N” where N is as above (i.e. is the set of trees having no more
than one occurrence of a symbol in @ on each branch). It can be shown that
‘Theorem 5.8.4 is applicable with help of R, defined as follows:

(s,s") € Ry if and only if
s=ulry, ..., 7l
s'=ultcery oo Tl
u=do(vy,vs...,uv: for some i, and kK =k;,
w'eMF,@V')uV')where V' ={vic1,..., 01}

and u' has exactly one occurrence of each variable in V', the substitution
7: V> M(F, W) such that 7(v;) = 7; is the most general unifier of tue
pair (#(u). #(u')) (note that #(u) and 6(u’') are infinite trees).

A similar technique has been used in Courcelle and Franchi [21]. We conjecture
that Theorem 5.8.1 is applicable to non-nested systems, giving the decidability of

=y. This latter result is known to hold as a consequence of Valiant's result concerning
f:nite turn DPDA’'s [68, 15].

5.8.6. Monadic systems

Let X be a system in Greibach normal form, which is monadic, i.e. such that
pld)=1forall ¢ in .

It can be shown that =, is finitely generated {Courcelle [20]) hence decidable
by Theorem 5.8.1.

This decidability result answers an open question of Courcelle and Vuillemin
[27]. It can also be obtained as a corollary of the decidability of the equivalence

problem for stateless DPDA’s [58] via Gallier's construction {([37] and Theorem
5.5.1).

5.8.7. Yet another case

Let X be a trim algebraic system such that p(#) = | for all & in @. Let € be the
set of pairs (1, 1) where reM@,, V) and t'e &M, V) (where @) =
{bedipld)=1}.

[t can be shown that the conditions of Theorem §.8.4 are satistied. The decidability
result thus obtained is equivalent to the one of Harrison et al. [46] via Courcelle’s
construction ([15] and Theorem 5.5.1). The set Ry of Theorem 5.8.4 is deduced
via this construction of the set & of [19, (4.6)].

5.9, First order unification of algebraic trees

A natural object to investigate is Unif ™ (7, 1) for algebraic trees ¢ and 1", Such an
investigation has already proved useful in Section 5.8.5,
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A substitution 7: V, > M (F, W) is algebraic if r(v;) is algebraic for all i e[k].
The following theorem is fully similar to Theorem 4.15 except for the decidability,
but this is not surprising.

Theorem 8.9.1. Let t and t' be algebraic trees.

(1) If t and t' are unifiable, their most general unifier is algebraic.

(2) The equaiity problem for algebraic trces reduces to deciding whether
Unif™ (¢, t') = 0 or to deciding whether Unif(t, t') = @ for algebraic trees t and t'.

Proof. (1) Let and ¢’ be unifiable. The proof of Theorem 4.15 gives a generalized
regular system S the right-hand side of cach equation of which is a subtree of one
of t or t’, hence is algebraic. Hence Corollary 5.2.2 shows that the unique solution
of § is a tuple of algebraic trees.

Hence the most general unifier of ¢ and ¢’ is algebraic.
(2) Itfollowsfrom the remark that A(F, V)= A(F U V) that the equality problem

for algebraic trees reduces to deciding whether « =z «’ for u, u' in M (Fu®d). And
1 =y u'is equivalent to Unif “(8(u), #(1")) # @ or to Unif(0(u), (') #0. O

S5.10. Infinite trees and infinite words

If all the symbols of F are of arity 0 >r 1 an element of M ™ (F) reduces to a
finite or infinite word. More precisely, M ™ (F )=T"YF,UFY.

L.et us define a word w in FY (our notations concerning infinite words are
borrowed from Nivat [54)) as ultimatelv periodic if w =w, w5 for some w, in F}
and some w>in F{. Let Ult(F)) be the set of such words. Then we have the following
result.

Propaosition 5.10.1. R(F) = A(F)=F{F,0 UNF)).

Proof. It is casy to prove that R(F) = F{F..oUI(F,). Since R(F)< A(F), we only
have to prove that A(F) € FYF,o UNF .

Let X be an algebraic system over F. It may be assumed trim. As usual, we take
intof theformY =y, ..., )=y, .., by, ... o) =w,)andlet(ny, .., 0,)
be its solution.

Forcachi=1,...,1,

(1. cither t,e M (F) and then k, =0,

(23 or ,e M UF, Vi)~ M (F) and, since F =F, U F,, 1; has exactly one occur-
rence of a variable, hence k, = 1 and 1, € M\Fy, {¢1}) = Ffuv,.

We can assume that case (1) holds for 1 <=/ </ and case (2) for [+1<i=n.

One can translate 3 into (3. é.,....ént.1,...,1,) where X' =(b,=uy,...,
d=upand u =wit.\/¢di1n. .. t)datfori=1+1,...,n Since all unknowns of
X' are of arity 0, X' is regular. It follows that ¢, ..., t, are in F¥F,u UIF,; hence
AP = AxlF) gF?’FnU UNM(F,). ]
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Remark 5.10.2. This proposition shows that the concept of algebraic tree has no
counterpart in infinite words, whereas regular infinite trees correspond to ultimately
periodic infinite words.

6. Conclusion

The present work has studied several aspects of finite and infinite trees which
are especially reievant to the theory of computing. To summarize:

(1) A double theory of infinite trees, by topological or order-theoretical methods
has been developed.

(2) First-order and second-order substitutions are two important concepts; some
of their basic combinatorial properties have been stated; their continuity properties
have been investigated in detail.

(3) Regular trees and their relations with first-order unification have
been studied; rational expressions denoting regular trees have been intro-
duced and related with iterative theory expressions.

t4) Algebraic trees have been studied; their combinatorial properties are complex
enough to yield an open problem which is interreducible with the equivalence
problem for DPDA's; decidable special cases have been stated.

Many other interesting aspects (raising open problems) could have been treated
as well (except for the author’s time availability):

(5) Higher-order algebraic trees corresponding to higher-order recursive pro-
gram schemes (Damm et al. [30, 31], Gallier [39]), algebraic trees as images under
vield operators of regular trees,

(6) Frontiers of infinite trees as generalized infinite words (Courcelle [16], Heil-
brunner [47}) and even more important:

(7) Extensions of congruences from finite trees to infinite ones: whereas the
theory is rather neat in the approach with partial orders, (Courcelle [18]), it is
much more difficult in the topological approach (Courcelle [17].

And finally, the theory of tree languages which constitutes a theory by dself but
is of course grounded on the present the theory of infinite trees.
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Note added in proof

L.. Boasson has shown that the answer to problem 5.5.2 is negative.



