
196

ISSN 1392 - 1207. MECHANIKA. 2012 Volume 18(2): 196-202

Security method of embedded software for mechatronic systems

A. Venčkauskas*, N. Jusas**, L. Kižauskienė***, E. Kazanavičius****, V. Kazanavičius*****
*Kaunas University of Technology, Studentų 50, 51368 Kaunas, Lithuania, E-mail: algimantas.venckauskas@ktu.lt

**Kaunas University of Technology, Studentų 50, 51368 Kaunas, Lithuania, E-mail: nerijus.jusas@stud.ktu.lt

***Kaunas University of Technology, Studentų 50, 51368 Kaunas, Lithuania, E-mail: losta@ifko.ktu.lt

****Kaunas University of Technology, Studentų 50, 51368 Kaunas, Lithuania, E-mail: ekaza@ifko.ktu.lt

*****TEO LT, AB, Lvovo g. 25, 09320 Vilnius, Lithuania, E-mail: vkaza@ifko.ktu.lt

 http://dx.doi.org/10.5755/j01.mech.18.2.1572

1. Introduction

Mechatronic systems are widespread in various

areas of life – home, office, manufacturing, and transport.

They are widely used in robots, digitally controlled ma-

chines, “smart machine tool” and so on. The typical view

of mechatronics is as a combination of mechanical and

electrical systems controlled by an embedded control sys-

tem [1] (Fig. 1).

Fig. 1 Mechatronics is a synergy of mechanical and elec-

trical systems controlled by an embedded system

Machining is a process that removes a lager of

material from a workpiece in the form of chips to obtain

the desired product shape, size, accuracy, and surface qual-

ity. Conventional machining operations, which include

turning, milling, grinding, and drilling are among the most

common activities in the manufacturing industry (US in-

dustries spend US $100 billion annually to machine met-

als). Experimental structure of smart machine tool is pre-

sented in Fig. 2.

Fig. 2 Experimental structure of smart machine tool

The complex interaction between machines, tools,

workpieces, fluids, measurement systems, material han-

dling systems, humans and the environment in cutting

operations requires the application of sensors or embedded

systems to ensure efficient production identify the needs

for maintenance, protect workers and the environment [2].

Standard approaches of process monitoring are the mea-

surement or identification of the interaction between the

process and machine structure.

In a “smart machine tool” the objective is to

maintain an optimized cutting performance by using sen-

sors and control systems with knowledge accumulation

capability for use in future production. Vibrational beha-

vior of the tool is of utmost importance since it significant-

ly affects the workpiece [3]. For example, measurement of

vibrations on the tool fixture is one of the indirect methods

to evaluate the effects of the cutting force.

Vibration sensor signals are very sensitive to the

change of workpiece dynamics, which reflects the change

of cutting force due to the tool wear. During machining

operation the sensors collect tool vibration signals in real-

time, which are transmitted to the machine control system

via feedback loop, which adjusts cutting parameters, if

required, in order to reduce excessive unwanted vibrations

in machine-tool-workpiece system thereby ensuring high

machining quality and higher productivity. These cutting

parameters may include feed rate, depth of cut, spindle

speed, etc. As the sensors need to be installed near the

cutting area inside the machining chamber, the wiring is an

obstacle to the application of vibration measuring device in

machining centers, in particular in milling machines, where

the cutter and workpiece are always moving. Therefore,

wireless data transmission is an attractive solution for vi-

bration monitoring in machining operation.

Sensor systems must be able to be interfaced with

open system architecture controllers for machines and

systems must be designed to accommodate needs of so

called “reconfigurable” systems. Activity in both of these

areas is still predominately in the research stage with few

industrial applications. Accordingly, one of the main chal-

lenges in future machining process monitoring systems is

the development of algorithms and paradigms that are truly

autonomous from machine tool operators with signal fea-

ture extraction and decision making performed without

intervention of the operator, who should provide only very

simple (the lesser, the better) input and information.

Integral parts of mechatronic systems, which of-

ten determine the system's functionality and vitality, are

the embedded control systems – digital hardware and soft-

ware subsystem. As an integral part, mechatronic systems

http://dx.doi.org/10.5755/j01.mech.18.2.1572

197

and embedded systems face significant challenges in in-

formation security; these systems usually have very limited

resources and function in an unsafe environment. Embed-

ded systems usually perform critical functions – control

important real time objects, process important information,

therefore its work can be sabotaged.

Security requirements of an embedded system’s

depend on specific areas of application [4]. The following

requirements are related to the general requirements for

information security: integrity, availability and confidenti-

ality. However, the specificity of mechatronic systems,

their mobility and work in real time, typically have certain

limitations such as processing gap, energy gap, flexibility,

tamper resistance, assurance gap and cost, largely due to

limited resources, performance and security requirements.

An important component of embedded systems,

which often determines the system's performance and vi-

tality is software. Software security has two aspects: secure

program and program protection. We will explore the pro-

tection aspect of the program security. The main program

protection vulnerabilities are [5]: violation of intellectual

property – illegal copying and distribution, improper use of

licenses, and reverse engineering – disclosure of software

code, theft of algorithms and falsification of software

codes.

According to a study by the Business Software

Alliance (BSA) [6], software creators lost 51.4 billion

dollars and pirated software accounted for 43% of all soft-

ware, observing approximately 2% annual growth trend of

piracy.

No matter from what threats software is protected,

for example copying or stealing algorithms, attackers at-

tempt to crack the protection by several methods including

reverse engineering, including disassembly and decompila-

tion, debuggers, disassemblers, decompilers, emulators,

simulators and spoofing attacks [7].

There are many software protection methods,

which are divided into software-based and hardware-based.

Software-based protection mechanisms are in-

stalled into software or algorithms that are protected and

can be added to software code - code and date obfuscation

[8], anti-debugging method [9], code encryption technolo-

gy, self-modifying code and self-extracting code [10].

Hardware-based methods can significantly in-

crease the level of security, because it is external device in

which the level of security is controlled by the software

provider and not by the end-user [11, 12]. By using addi-

tional hardware (commonly Dongle or USB keys), part of

the program code or data (encryption keys) required to run

the program, can be stored. However, this protection

mechanism is relatively expensive and is generally only

used for those programs that are of great commercial val-

ue.

Intermediate software/hardware methods are also

used – tethering a program to a computer or devices signa-

tures (CPU, RAM, ROM, BIOS, OS and etc. serial num-

bers, model ID and so on) [13-15]. Firewalls are used for

the protection of internet programs [16]. These methods

are usually used for anti-piracy in personal computers.

In assessing the limitations of embedded systems

[17], one of the most acceptable software protection meth-

ods is encryption of a code. However, one needs to take

into account the key’s management issues; external storage

medium, network – transfer must be secure, using SSL

protocol and the encryption key entered manually.

Software development is one of the most chal-

lenging tasks during the design of a mechatronic system.

Mechatronic system software is related to and dependent

on the other system components; mechanics, electronics,

controllers, etc. Therefore, ranges of techniques are used

for the development of mechatronic system software.

Model driven architecture is an approach to in-

crease the quality of complex software systems based on

creating high level system models that represent systems at

different abstract levels and automatically generating sys-

tem architectures from the models. In the papers [18, 19] is

proposed a model-driven (model-based) approach to de-

sign the software part of a mechatronic system, which

consists of two major parts; systematic modeling and cor-

rectness-preserving synthesis. In the paper [20] is presen-

ted an agent-based embedded control system design meth-

odology for mechatronic systems. The paper [21] puts

forward a component-based development method for in-

creasingly complex embedded systems. Most methods

used the UML (Unified Modeling Language) for the de-

scription of mechatronic systems.

Protection of programs is not directly related to

mechatronic system functionality. In order for the develop-

er to concentrate on the functionality, he should be free

from issues related to program protection. Protection of

programs must be automatically included in the system

during the realization. For this it is necessary to describe

the program protection requirements at a high level of

mechatronic system design (UML).

Model-based approach is also widely used to cre-

ate secure software. In the paper [22] are described pro-

cessed data security and an access control requirement in

the UML and OCL (Object Constraint Language), each

vulnerability defined by its own stereotype. In the paper

[23] is proposed an approach to the security model as a

separate concern by augmenting UML with separate and

new diagrams for role-based, discretionary and mandatory

access controls; collectively, these diagrams provide visual

access-control aspects. In the paper [24] is proposed secu-

rity primitives (Authentication, data Integrity, data Confi-

dentiality …) for UML; [25] defines User rights as UML

and OCL context. The Secure UML meta-model [26] in-

troduces the concepts of User, Role, and Permission to

annotate UML diagrams with information pertaining to

access control. In the paper [27] are described security

criteria, such as confidentiality and integrity. He also de-

fines in UMLSec a UML profile extension using stereo-

types, tagged values and constraints.

As we can see, the UML is extended in various

ways and is mainly used for creating secure software.

Our goal is to extend the model-driven embedded

system development methodology measures to describe the

requirements for the program protection to create a mecha-

tronic system embedded software protection method. This

method should implement a sufficient level of protection

and not require additional hardware and security infrastruc-

ture.

In the following sections we describe the pro-

posed security method of embedded software for mecha-

tronic systems and investigate its characteristics and the

possibilities of using for protection of embedded software.

198

2. Embedded software protection method

Protection method for mechatronic systems em-

bedded software core is:

 protection requirements of the program modules are

described in the UML diagram by using OCL con-

straints;

 installation procedure of mechatronic systems em-

bedded software automatically integrates program

protection;

 program data and code modules are stored separate-

ly;

 critical program modules are encrypted by symmet-

ric algorithms independently of each other;

 encryption keys are not stored; they are generated

from the system component’s signature on demand

before encryption or decryption;

 code modules are decrypted just before the execu-

tion (runtime decryption). After execution they are

destroyed.

To describe the program module requirements for

the protection, we extended the UML diagrams by special

OCL constraints. These requirements, we describe in the

UML class and components level, use these types of OCL

constraints:

<< protectionRequirements >>

context programModule : ProgramModule:

 self.ProtectionLayer = {1…3}

 self.TimeRestrictions = real

 self.SignaturesNumber = {1…7}

 self.KDFfunction = {MD, SHA, SHA-2}

 self.encryption = {DES, AES, Blowfish}

In the constraints there may be specified a neces-

sary level of protection, time limitations, encryption key,

the number of signatures and the generation function and

the encryption algorithm. If the protections settings are not

specified, then the default level of the program protection

is applied.

A representation of program protection require-

ments in UML diagram format is shown in Fig. 3.

Fig. 3 Representation of program protection requirements

in UML diagram

By installing embedded software of a mechatronic

system, according to a description of the UML, a special

install program automatically adds the security measures,

created by protection templates.

Secret keys are generated in our proposed method

[28]. Secret key generation process is shown in Fig. 4.

Protection key of software module is generated

according to the protecting software headers and mecha-

tronic system hardware and software components (control-

ler, CPU, RAM, ROM, BIOS, OS, and etc.) signatures,

using the fastest and simplest logical commands (XOR,

OR).

Fig. 4 Secret key generation process

The encryption key must be a fixed length and

must have sufficient value of entropy. The strings of an

embedded system signature are variable in length. Key

Derivation Functions [29] and hash functions MD5, SHA,

SHA-2 [30] are used to format fixed-length and high en-

tropy secret keys from the variable-length strings.

The structure of the protected program is present-

ed in Fig. 5. To increase effectiveness of the program, only

critical code modules are encrypted and other modules –

the program header, the data segments and noncritical

modules are not encrypted.

Fig. 5 The structure of the protected program

Program ModuleA

<< protectionRequirements >>
context programModuleA : ProgramModule:

self.ProtectionLayer = 2

Creation of the set of component of embedded

system signature

Computation of the protected program header

hash

Generation of the program protection key

Computation of the embedded system signa-

ture

Creation of the component signature subset,

from which will be formed embedded system

signature

Program header

Modules decryption routine, modde-

cryp()

Modules destroy routine, moddestr()

Data

Open code

Encrypted code

Key generation routine, keygen()

199

Encrypted code modules are decrypted in execu-

tion time automatically. Therefore, each module includes

calls to key generation and decryption routines (Fig. 6).

Fig. 6 The structure of the protected module

The program is protected (the required modules

are encrypted) during installation in mechatronic systems

by using a special software installer, whose functioning is

shown schematically in Fig. 7.

Fig. 7 The software installer operation scheme

The main steps of the installation process:

 generation of program protections profile from

UML and OCL constraints;

 decomposition of program object’s modules under

program protections profile;

 generation of the modules encryption key. Editing

links between modules, encrypting and saving

modules in system memory.

The next section will investigate the created

method of the program protection characteristics.

3. Evaluation of embedded software protection method

For evaluation of the proposed method, we crea-

ted a prototype of mechatronic system software installer

that realizes the described options. We investigated the

secret encryption key entropy and its dependence on the

signature creation and the hash function, and the formation

time. We also estimated the impact of various encryption

algorithms to operation speed of protection mechanisms;

this is vital to mechatronic systems operating in real time.

The experiments were performed on the PDA

(Personal Digital Assistant) of the model ASUS P750

(Pocket PC platform, Intel PXA270 520 MHz CPU, 256

MB RAM, Windows Mobile © 6 Professional CE OS 5.2).

We simulated the software of a mechatronic system by

programming discrete mathematical methods. The experi-

ment’s initial data – header of the program to be protected,

mechatronic system hardware and software components

signatures elements (Vendor ID, Type ID, Model ID and

Serial Number), their lengths and numbers generated with

programmable random strings and numbers generators. 20

sets of signatures (from 2 to 7 elements) were generated.

Secret encryption keys are generated from the

embedded system signature using Key Derivation Func-

tion. These functions use hash functions, such as MD5,

SHA, SHA-2 etc. Furthermore, we investigated the influ-

ence of the hash function algorithm for the value of entro-

py. Since the embedded system signature, which was for-

matted using sign 4 function, based on OR and XOR oper-

ations [28], has the best entropy, we investigated the key

generated by this function. Fig. 8 displays the entropy of

keys, which was formatted from 7 component signatures,

using sign 4 function and MD5, SHA and SHA-2 hash

functions.

Fig. 8 Keys entropy depend on the hash functions

Entropy estimates – average, standard deviation

moddestr()

Encrypted code

keygen()

moddecryp()

Generation of program protec-

tions profile from UML and

OCL constraints

Read next object module

Generation of the modules

encryption key

Decomposition of program

object’s modules under program

protections profile

End of file?

Editing links between mod-

ules

Encrypting?

Encrypting module

Saving module in system

memory

Yes

No

No

Yes

200

and prediction interval depending on the hash function are

shown in Table 1.

Table 1

Secret keys entropy depend on the function

Function Average Standard

deviation

Prediction interval

min max

MD5 0.994 0.008 0.985 1.000

SHA 0.995 0.007 0.988 1.000

SHA-2 0.998 0.003 0.994 1.000

All hash functions generate high-entropy crypto-

graphic keys, however the least standard deviation (0.003)

and the lower limit of prediction interval (0.994) contain

keys generated using function SHA-2.

The computing time (ms) of the keys, which was

formatted from 7 component signatures, using sign 4 and

MD5, SHA and SHA-2 hash functions is shown in Fig. 9.

Fig. 9 Keys generation time (ms) dependence on the hash

functions

Key computing time estimates – average, standard

deviation and prediction interval, depending on the hash

function are shown in Table 2.

Table 2

Keys computing time (ms) dependence on the function

Function Average Standard

deviation

Prediction interval

min max

MD5 23.515 0.802 22.713 24.317

SHA 28.209 0.791 27.418 29.000

SHA-2 38.805 0.867 37.938 39.672

As can be seen from Table 2, the best time char-

acteristics were obtained by using the MD5 hash function,

65% faster than SHA-2. In the assessment of the generated

key entropy (Table 1) and the generation time (Table 2), it

is clear that for key generation it is better to use MD5, as

the entropy is high enough, only 0.4% lower than the

SHA-2, but with a much shorter generation time.

To investigate the impact of encryption algo-

rithms to characteristics of program protection method, the

simulated module solved the system of differential equa-

tions by using the Runge-Kutta method. The experiment

was repeated 20 times and different algorithms were used

to encrypt the module. Program execution times average

and encryption module size (kB) are presented in Table 3.

As can be seen from Table 5, the best time char-

acteristics were obtained by using the Blowfish, DES and

IDEA algorithms. Blowfish are known to have better en-

cryption (i.e. stronger against data attacks) than the other

two. The Blowfish algorithm is the smallest size at 7.2 kB.

It is therefore proposed to use the Blowfish algorithm to

protect programs.

Table 3

Module execution time (ms) dependence on the encryption

algorithm

 Unprotected Encryption algorithm

DES TR-

DES

AES

CBC

AES

CFB

IDEA Blow-

fish

Average 26.5 37.9 80.0 48.1 49.3 38.6 37.6

Increase 11.4 53.5 21.6 22.8 12.1 11.1

Size kB 15 12.9 11.9 12.2 12.1 7.2

4. Conclusions

In this paper we have presented security method

of embedded software for mechatronic systems. This

method is based on encryption and decryption code of

critical program modules during execution.

We proposed to describe protection requirements

of the program modules in the UML diagram by using

OCL constraints.

The proposed method effectively generates high

entropy keys using the embedded system signature.

The Blowfish algorithm is the fastest and has bet-

ter encryption: it is therefore proposed to use the Blowfish

algorithm to protect programs.

References

1. Lennon, L.; Mass, N. 2008. Model-based design for

mechatronics systems, Machine Design, Embedded

Systems Industry Focus – Electronics World, 23-26.

2. Bargelis, A.; Mankute, R. 2010. Impact of manufac-

turing engineering efficiency to the industry advance-

ment, Mechanika 4(84): 38-44.

3. Ubartas, M.; Ostasevicius, V.; Samper, S.; Jurenas,

V.; Dauksevicius, R. 2011. Experimental investigation

of vibrational drilling, Mechanika 17(4): 368-373.

http://dx.doi.org/10.5755/j01.mech.17.4.563.

4. Kocher, P.; Lee, R.; McGraw, G.; Raghunathan, A.
2004. Security as a new dimension in embedded system

design, In Proceedings of the 41st annual Design Au-

tomation Conference (DAC '04). ACM, New York,

NY, USA, 753-760.

5. NIST. National Vulnerability Database Version 2.2,

http://nvd.nist.gov/home.cfm.

6. BSA. 2010. Seventh Annual BSA and IDC Global

Software Piracy Study, 18 p.

7. Main, A.; van Oorschot, P.C. 2003. Software protec-

tion and application security: Understanding the battle-

ground, International Course on State of the Art and

Evolution of Computer Security and Industrial Cryp-

tography, Heverlee, Belgium, 19 p.

8. Collberg, C.; Thomborson, C.; Low, D. 1997. A

taxonomy of obfuscating transformations, Technical

Report 148, Department of Computer Sciences, the

C
o

m
p

u
ti

n
g
 t

im
e

(m
s)

Set number

MD5 SHA SHA-2

http://dx.doi.org/10.5755/j01.mech.17.4.563

201

University of Auckland, 36 p.

9. Gagnon, M.N.; Taylor, S.; Ghosh, A.K. 2007. Soft-

ware protection through anti-debugging, IEEE Security

and Privacy, 5(3): 82-84.

 http://dx.doi.org/10.1109/MSP.2007.71.

10. Kanzaki, Y.; Monden, A.; Nakamura, M.; Matsu-

moto, K. 2003. Exploiting self-modification mecha-

nism for program protection, Proc. the 27th Annual In-

ternational Computer Software and Applications Con-

ference, Washington: IEEE Computer Society, 170-

179.

11. Jozwiak, I.J.; Liber, A.; Marczak, K. 2007. A hard-

ware-based software protection systems-analysis of se-

curity dongles with memory, Proc. the International

Multi-Conference on Computing in the Global Infor-

mation Technology (ICCGI'07), Washington: IEEE

Computer Society, 28-38.

12. MeiHong, L.; JiQiang, L. 2010. USB key-based ap-

proach for software protection, International Confer-

ence on Industrial Mechatronics and Automation: 151-

153.

13. Mumtaz, S.; Iqbal, S.; Hameed, I. 2005. Develop-

ment of a methodology for piracy protection of soft-

ware installations, 9th International Multitopic Confer-

ence, IEEE INMIC, 1-7.

14. Liutkevičius, A.; Vrubliauskas, A.; Kazanavičius, E.
2011. Assessment of dongle-based software copy pro-

tection combined with additional protection methods,

Electronics and Electrical Engineering, 6(112): 111-

116.

15. PC GUARD. Professional software protection and

licensing system, http://www.sofpro.com.

16. Kazanavičius, E.; Paškevičius, R.; Venčkauskas, A.;

Kazanavičius, V. 2012. Securing web application by

embedded firewall, Electronics and Electrical Engi-

neering, 3(119): 65-68.

17. Babar, S.; Stango, A.; Prasad, N.; Sen, J.; Prasad,

R. 2011. Proposed embedded security framework for

Internet of Things (IoT), Wireless Communication,

Vehicular Technology, Information Theory and Aero-

space & Electronic Systems Technology (Wireless VI-

TAE), 2011 2nd International Conference: 1-5.

18. Barner, S.; Geisinger, M.; Buckl, C.; Knoll, A. 2008.

EasyLab: Model-Based development of software for

mechatronic systems, Mechtronic and Embedded Sys-

tems and Applications, MESA 2008. IEEE/ASME In-

ternational Conference, 540-545.

19. Huang, Jinfeng; Voeten, J.; Groothuis, M.; Broe-

nink, J.; Corporaal, H. 2007. A model-driven design

approach for mechatronic systems, Application of Con-

currency to System Design, ACSD 2007, Seventh In-

ternational Conference, 127-136.

20. Kižauskienė, L.; Kazanavičius, E.; Gaidys, R. 2011.

Agent-based methodology for developing mechatronic

systems software, Mechanika 17(5): 551-556.

 http://dx.doi.org/10.5755/j01.mech.17.5.735.

21. Torngren, M.; DeJiu, Chen; Crnkovic, I. 2005.

Component-based vs. model-based development: a

comparison in the context of vehicular embedded sys-

tems, Software Engineering and Advanced Applica-

tions, 31st EUROMICRO, 432- 440.

22. Peralta, K.P.; Orozco, A.M.; Zorzom A.F. 2008.

Specifying security aspects in UML models, In

ACM/IEEE 11th International Conference on Model

Driven Engineering Languages and System, Toulouse,

França, Proceedings of the Workshop on Modeling Se-

curity (MODSEC08 1: 1-10.

23. Pavlich-Mariscal, J.; Michel, L.; Demurjian, S.
2007. Enhancing UML to model custom security as-

pects, Proceedings of the 11th International Workshop

on Aspect-Oriented Modeling (AOM@AOSD’07).

24. Nakamura, Y.; Tatsubori, M.; Imamura, T.; Ono,

K. 2005. Model-driven security based on Web services

security architecture, Services Computing, 2005 IEEE

International Conference 1: 7-15.

25. Alam, M.M.; Breu, R.; Breu, M. 2004. Model driven

security for Web services (MDS4WS), Multitopic Con-

ference, Proceedings of INMIC 2004, 8th International

498-505.

26. Basin, D.; Doser, J.; Lodderstedt, T. 2006. Model

driven security: from UML models to access control in-

frastructure, ACM Transactions on Software Engineer-

ing and Methodology (TOSEM) 15(1): 39-91.

 http://dx.doi.org/10.1145/1125808.1125810.

27. Jürjens J. 2002. Using UMLsec and goal trees for

secure systems development, Proceedings of the 2002

ACM symposium on applied computing, 1026-1030.

28. Venčkauskas, A.; Jusas, N.; Mikuckienė, I.; Butler-

is, R. 2012. Secret encryption key generation using

signature of embedded systems, Information Technolo-

gy and Control. 41(xx) (Submitted).

29. International Organization for Standardization. 2004.

ISO/IEC FCD 18033–2, IT Security techniques — En-

cryption Algorithms — Part 2: Asymmetric Ciphers.

30. Henke, Ch.; Schmoll, C.; Zseby, T. 2008. Empirical

evaluation of hash functions for multipoint measure-

ments, SIGCOMM Comput. Commun. Rev. 38, 3: 39-

50. http://dx.doi.org/10.1145/1384609.1384614.

http://dx.doi.org/10.1109/MSP.2007.71
http://dx.doi.org/10.5755/j01.mech.17.5.735
http://dx.doi.org/10.1145/1125808.1125810
http://dx.doi.org/10.1145/1384609.1384614

202

A. Venčkauskas, N. Jusas, L. Kižauskienė,

E. Kazanavičius, V. Kazanavičius

MECHATRONINIŲ SISTEMŲ ĮTERPTOSIOS

PROGRAMINĖS ĮRANGOS SAUGOS METODAS

R e z i u m ė

Straipsnyje pateiktas mechatroninių sistemų įterp-

tosios programinės įrangos saugos modelis, paremtas kriti-

nių programos modulių šifravimu ir dešifravimu kodo

vykdymo metu. Slaptieji šifravimo raktai nesaugomi, o

generuojami pagal mechatroninės sistemos komponentų

signatūras. Darbe eksperimentiškai ištirta šifravimo raktų

entropija, įvairių simetrinių kriptografinių algoritmų tai-

kymo galimybės ir apsaugos priemonių įtaka įterptosios

programinės įrangos charakteristikoms – greitaveikai ir

papildomos atminties sąnaudoms.

A. Venčkauskas, N. Jusas, L. Kižauskienė,

E. Kazanavičius, V. Kazanavičius

SECURITY METHOD OF EMBEDDED SOFTWARE

FOR MECHATRONIC SYSTEMS

S u m m a r y

This paper proposes embedded software of mech-

atronic system protection method based on encryption and

decryption code of critical program modules during

runtime. Secret keys are not stored, but generated by the

signature of mechatronic system components. This paper

experimentally researches the application of symmetric

cryptographic algorithms and the influence of security

mechanisms on characteristics (value entropy of secret

key, operating speed, and amount of memory) of embed-

ded software.

Keywords: mechatronic system, embedded software, secu-

rity, secret key generation.

Received May 05, 2011

Accepted April 12, 2012

