
ZIlOG INC 61E D .. 9984043 0025215 351 .. ZIl

~ 2.iLCil3 Product Specification

Z280™MPU
Microprocessor Unil

FEATURES

• Designed in CMOS for low power operations.

• Enhanced Z80@ CPU instruction set that maintains
object-code compatibility with Z80 microprocessor.

• Three-stage pipelined, 16-bit CPU architecture with user
and system modes.

• Direct coprocessor and multiprocessor interface
support.

• On-chip paged Memory Management Unit (MMU)
addresses up to 16 Mbytes.

• On-chip 256-byte instruction and data associative cache
memory with burst load.

GENERAL DESCRIPTION

The Z280 microprocessor features a high-performance
microprocessor designed to give the end-user a powerful
and cost effective solution to application requirements.
The l280 microprocessor unit (MPU) incorporates ad
vanced architectural features that allow fast and efficient
throughput and increased memory addressing while main
taining ZOO object-code compatibility. The l280micropro
cessor offers a continuing growth parth for present l80
based designs and serves as a high-performance micro
processor for new, advanced designs.

Central to the Z280 microprocessor is an enhanced version
of the Z80 Central Processing Unit (CPU). To assure system
integrity, the Z280 microprocessor can operate in either
user or system mode. allowing protection of system
resources from user tasks and programs. System mode
operation is supported by the addition of the system Stack
Pointer to the working register set. The IX and IY registers
have been modified so that in addition to their regular
function as index registers, each register can be accessed
as a 16-bitgeneral purpose register or as two byte registers.
The R register, used for refresh by the Z80 CPU, is now
available to the programmer as a data register in the Z280
microprocessor.

• High performance 16-bit Z-BUS@ bus interface or 8-bit
Z80 CPU compatible bus interface.

• Three on-chip 16-bit counter/timers.

• Four on-chip DMA channels.

• On-chip full duplex UART.

• Refresh controller for dynamic RAMs.

• On-chip oscillator or cirect input dock options.

• 25 MHz oscillator clock frequency.

The Z80 CPU instruction set has beim retained, meaning
that the Z280 microprocessor is completely binary·code
compatible with present Z80 code. The basic addressing
modes of the Z80 microprocessor have been augmented
with the addition of Indexed mode with full 16-bit
displacement, Program Counter Relative with 16-bit
displacement, Stack Pointer Relative with 16-bit
displacement, and Base Index modes. The new addressing
modes are incorporated into many of the old Z80 CPU
instructions, resulting in greater flexibility and power. Some
additions to the instruction set include 8-and 16-bit signed
and unsigned multiply and divide, 8-and 16-bit sign
extension, and a test and set instruction to support
multiprocessing. The 16-bit instructions have been
expanded to include 16-bit compare, memory increment,
memory decrement. negate. add, and subtract, in addition
to the previously mentioned multiply and divide.

A requirement of many of today's microprocessor-based
system designs is to increase the memory address space
beyond the 64K byte range of typical8-bit microprocessors.
The Z280 microprocessor has an on-chip Memory
Management Unit (MMU) that enables addressing of up to
16M bytes of memory In addition to enabling the address

483

ZIlOG INC 61E D .. 9984043 0025216 298 ..ZIl
c, ;':-j~: " ,' ..-'.

~.10 be'~~ed, thelvtMUpeflotr;t1s other memory
~an~~'$:JtihCti6~s pr~Vio~~r~ f.land~ .l:?Y dedicated
p[~p"'llemOlY. maOOgem~nt,(le\flces, '. '" ,,; .
, '~>'" '~- '.;: \.'.".'.. ,':' .,f.~" ,,""-'" ~;):~,,':'.i;-, ,_'~'. <~):' \:",", ,:,:.
I/Oaddress'space has been expanded by the addition of an
I/O Page register used to select pages of I/O addresses. The
a-bit I/O Page register can select one of 256 possible pages
of I/O addreS$9S to be actiVe at one time, allowing a,total of
64K I/O addresses to be accessed.

There are 256 bytes of-an-Chip memory preseman the 2280
MPU. This memory can be qonfigured as a high-speed.
cache or as afixed address local memory. When configured
as a cache, the memory can be programmed to be
instruction only, data only, or both data and instruction. The
cache memory allows programs to run significantly faster by
reducing the number of external bus accesses. Operation
and update of the cache is performed automatically and is
completely transparent to the user. When used as a local
memory, the addresses are programmable, which permits
selected storage of time-criticalloop$ in local' memory.

Many features that have traditionally been handled by
external peripheral deviceS have been in~orporated in the
design of the 2280 microprocessor. The "on-chip
peripherals" reduce system chip count and reduce
interconnection on the external bus. The 2280 MPU
contains an on-chip clock oscillator and a refresh controller
that provides 10-bit refresh addresses for dynamic
memories. Also present are additional on-chip peripherals
to provide system design flexibility. To support
high-bandwidth data. transmission, four Direct Memory
Access (DMA) channels are incorporated on-chip. Each
DMA channel operates using full 24-bit source and
destination addresses with a 16-bitcount. The channelscan

. be programmed to operate in single transaction, burst, or
continuous mode. System event counting and timing
requirements are met with the help of the three 16-bit
counter/timers. The counter/timer functions can be
externally controlled with gate andtriggerin~ts, and can
be programmed as retriggerable or nonretriggerable. A full
duplex UART, capable of handling a variety of data and
character formats, .is present' to facilitate asynchronous
serial communication.

Z280CPU

User and System Modes 0.' O~eratlon
The.2280 CPU c,an operate in either user or system mode.
In user mode; some instruction$ ~nnot be executed and

. some registers of the CPU areinaceessible.ln general, this
mode of operation is· intended for use by application
programs. In system mode, all Of t/:le instructions can be
executedand all olthe CPU registerscanbeaccessed.)"his
mode is intended for use with· programs that perform
operating system functions. This separation of CPU
resources promotes the integrity of the system, since
programs operating in user mode cannot access those
aspects of the CPU that deal with system interface events.

484

ThltfZ2ao MPU alsO features programmable bus timing,
a1lowi!igthe user,totaHortiming totheindividu$l systerrt
Up¢rlre.set thEIZ280inicropracessorc8fl be programmed
for sYstem ijmingthat is on~foui1h, OtlEThalf, or:equal tc)'the'
speed ofthe MPU's internal Central.Processing Unit (CPU),
with one-half being the default. In addition to clock scaling,
programmable wait states can be inserted during various
bus transactions. Without the use of external hardware, one
to three wait states can be inserted into memory, I/O, and
interrupt acknowledge transactions. Furthermore, separate
memory wait states can be speCified for upper and lower
memory areas, facilitating the use of different speeds of
ROMs and RAMs in the same system.

An additional feature of the 16-bit bus interface is the ability
to support "nibble-mode" dynamic RAMs. Using this
feature (known as burst mode), the bus bandwidth of
memory read transactions is essentially doubled. Burst
mode transactions have the further benefit of allowing the
cache to operate more efficiently by guaranteeing a high
probability that the contents of the accessed memory will be
present in the cache.

The 2280 MPU supports 2ilog's Extended Processor
Architecture (EPA) in a number of ways. It is capable of
trapping Extended Processor Unit (EPU) instructions in
order to perform softwa.reemulation of the EPU. With its
16-bit external bus interface, the 2280 MPU directly
interfaces with an EPU and operates in a manner that is
completely transparent to the llser and the program.

Multiprocessor system architectures are also supported by
. the 2280 MPU. When operating in multiprocessor mode,

the 2280 MPU's Local Address register is used to
distinguish between local an~ global memory access..
Global accesses are controlled through a global request
and global acknowledge protocOl.

The pin functions and the pin assignments ofthe 2280 MPU
are illustrated in Figures 1 and 2. Figure 3 shows the block
diagram.

To further support the dual'user/system mode, there are two
Stack Pointers-one for the.user stack and'another for the
system stack. These two st~ckS facilitate the task switching
involved when interrupts or traps occur. To ensure that the
user stack is free of s~em information, the information
saved on the occurrence of interrupts or traps is ;;1Iways
pushed onto the system stack before the new program
status is loaded. . .

ZIlOG INC

..DATA

61E D .. 9984043 0025217 124 ..ZIl

• ua COIITIIOL {

~.

CTIOIiillIQ"

zaeo
IlPU

....
~~~~~~~~,~~~~~#~,

• • , • • , , , , "'7"151413"1'
HiLT ,. to ...

DMASTIlo 11 .. ..,
ft " .. Ilfi,- " .1 ADo- "

.. 1IlI',
iliilQ " os Ilfi,

Cll! 1t .. AD,

iE 11 " -.._. ... "
zaeo

" ouu...IlPU... 1t " -eno, 20 so X1lW
iii 21 .. llllW)

iiMl:i 22 .. ...
cno, " " CIJ(

IIIl .. .. 1>0
e_ .. .. AN

IIITC .. .. ADo

Figure 1a. Z280 Pin Functions, Z80 Bus Configuration
(Input OPT tied to GND)

Figure 1b. Z280 Pin Assignments, Z80 Bus
(Input OPT tied to GND)

au. CONTROL {

'.T__ {

........,P1_............

-~..MlDaTA""

~" ~" ~ ~,< ~" ~,~,,~,"J"~,.~~+r<{l'~'<{1'''

• • 1 • • , , , 1 .. " ...... 13112.1
IIW ,. to .."

ADo DiirniO 11 .. ..,
AD,

RiII1 " .. 1IlI',
.....111, " 51 .."

'1, " 1IlI',
ST, 15 Ilfi,
Cll! 1t ....
iE 17 -..- ... 1t zaeo .........DATA IlPU... 1t -CTlOt Ie X1lW

ST, " llllW)

ST, " ....
cno, " , ....

Di .. .. 1>0

CTINa as .. ...
IIITC .. .. ADo

Figure 2a. Z280 Pin Functions, Z·BUS Configuration
(Inpu.t OPT tied to + 5V or not connected)

Figure 2b. Z280 Pin Assignments, Z·BUS
(Input OPT tied to +5V or not connected)

485



ZIlOG INC 61E D .. 9984043 0025218 060 ..Zll

XTALI

XTALO

.IV

OHD

3-8TAQE ptPEUHEno COMPlI'TIBLE

IiXECUTIOH UNIT INSTAIJCTIDNI r.-W
Ilo\TACM:IE
ORII_ ·····.L.f=~

.......
EXECIlTJON : INTERNALIIIIIOIlV

I-~
lNSI1lIJCl1ON f- • COIlTIlOI.

_!RAt. IlAN_NT -~ AOORESS 210- DECQDER SEQUEHCSI
: SIGNALS-- UNIT ..... BYlES ·I'IEGiSTER ·FLli ·I • ···U8P r:-SSP

uw

diD. II ""r- a

INTERNAL IIUS

tJJ. ~

I- ORAII

~
lNT!RlIIJl'T-,-

FOUR''''''' 11>811
CONTlIOL •CLOCK

DMAatANNB..S ..........OSCILLATOR
ADDRESS- t- THREE GENERATOR zoo BUS

'I-IIT UlIIf (NI1)OR
COUNTali .....S11_ .4-BlTSOUIIC£ ('''Bl1)

24-81T DESTINATION EXTERNAL BUS SCALE- BUS AND11-81TCOUNTER '1NTI!IIfofoCE WAIT""'TE- CONTlIOL
G!N_

• t ·f 1 • t 1 .11' •• 11 t

f r 1 r L. I 1 J.,1 :'l~l40t l-CTIN CTID lIllY l5IIA§Tj ••D ..., IE iiiiiiCK ~ A1rA23

RIll

01'1

Aa-A'5_II
• SIgnal dellnIlIon deperids on OPT.

+EOPA shares with INTA•

+EOP. shares with Iiii'f•.
+~shares with CliNo.
+GREQ shares with CTlOo '

Figure 3. Z280 MPU Block D1aigram.

Address Spaces

The 2280 CPU architecture supports four distinct address
spaces corresponding to the different types of locations that
can be accessed by the CPU. Thes,e four address spaces
are:

• CPU register space

• CPU control and status register space

• Memory address space

• I/O address space

CPU Register Space. The CPU register space (Figure 4)
consists of all of the registers in the CPU register file. The
CPU registers are used for data and address manipulation.
Access to these registers is specified in the instruction. The
CPU registers are labeled A, F, B, C, 0, E, H, L,A', P, B', C',
0', E', H', L', IX, IV, SSp, USp' PC, I, and R.

486

CPU Control and Status Register Space. The CPU
control register space consists of all of the control and status
registers found in the CPU control register file (Figure 5).
These registers govern the oparationof the CPU and are
accessiblp only by the privileged Load Control instruction.
The registers in the CPU control file consist of the Bus
Timing and Control register, Bus Timing and Initialization
register, Local Address register, Cache Control re~ister,

Master Status, register, Interrupt Status register,
InterruptfTrap Vector Table Pointer, I/O Page register, Trap
Control register, and System Stack Limit register.

Memory Add...ss Space. Two memory address spaces
are supported by the Z280 CPU; one for user and one for
system ,mode alf operation. They are selected by the
User/System Mode (UlS) bit in the Master Status register,
which governs the selection of Page, Descriptor registers
during address translation.



ZILOG INC 61E D II 9984043 0025219 TT7 IIZIl

Each address space can be viewed as a string of 64K bytes
numberec! consecutively in ascending order. The 8-bit byte
IS the baSIC addressable element in the memory address
spaces. However, there are other addressable data
elements: bits, 2-byte words, byte strings and multiple-byte
EPU operands.

The address of a multiple-byte entity is the address of the
byte with the lowest address. Multiple-byte entities can be
stored beginning at either even or odd memory addresses.

110 Address Space. I/O addresses are generated only by
the 1/0 instructions (IN, OUT, and the 1/0 block move
instructions). Logical 1/0 addresses are eight bits in length,
augmented by the A register on lines Aa-A15 in Direct
Address addressing mode and by the B register on lines
Aa-A15 in Indirect Register addressing mode and for block
1/0 instructions. The 16-bit logical 1/0 address is always
extended by appending the contents of the 8-bit page
register to the augmented 1/0 address. Thus the complete
address generated to address an 1/0 port consists of an 1/0
page number on A23-A16, the contents of the A or B register
on Aa-A15, and the 8-bit 1/0 address on ArAo.

Unlike memory references, in which a 16-bit word store or
fetch can generate two memory references, an I/O word
store or fetch is always one 1/0 bus transaction, regardless of
bus size or I/O port address, Note, however, that on-chip
peripherals with word registers are accessed via word 1/0
instructions for those 16-bit registers, regardless of the
external bus size (Table 1).

PRIMARY FILE

Data Types

The CPU can operate on bits, binary-coded decimal (BCD)
digitS (4 bits), bytes (8 bits), words (16 bits), byte strings, and
word strings. Bits in registers or memory can be set, cleared,
and tested. BCD digits, packed two to the byte, can be
manipulated with the Decimal Adjust Accumulator
instruction (in conjunction with binary addition and
subtraction) and the Rotate Digit instructions. Bytes are
operated on by 8-bit load, arithmetic, logical, and shift and
rotate instructions. Words are operated on in a similar
manner by the 16-bit load and 16-bit arithmetic instructions.
Block move and search operations can manipulate byte
stnngs up to 64K bytes long. Block 1/0 word instructions can
manipulate word strings up to 32K words long. To support
EPU operations, byte strings up to 16 bytes in length can be
transferred by the CPU.

CPU Registers

The 2280 MPU contains 23 programmable registers
(Figure 4) in the CPU register address space.

Primary and Working Register Set. The working register
set is divided into the two 8-bit register files-the primary file
and alternate (designated by ') file. Each file contains an
8-bit accumulator (A), a Flag register (F), and six
general-purpose registers (B, C, D, E, H, and L). Only one
file can be active at any given time. Upon reset, the primary
register file is active. Exchange instructions allow the
programmer to exchange the active file with the inactive file.

AUXILIARY FlUE

A ACCUMULATOR F FLAG REGISTER A' ACCUMULATOR F' FLAG REGISTER

B GENERAL PURPOSE C GENERAL PURPOSE B' GENERAL PURPOSE C' GENERAL PURPOSE

D GENERAL PURPOSE E GENERAL PURPOSE D' GENERAL PURPOSE E' GENERAL PURPOSE

H GENERAL PURPOSE L GENERAL PURPOSE H' GENERAL PURPOSE L' GENERAL PURPOSE

I' .BITS •

I INTERRUPT VECTOR I R

I

IX INDEX REGISTER

IY INDEX REGISTER

PC PROGRAM COUNTER

SP STACK POINTER

USER(USPI]

I SYSTEM (SSP)

I· 1. BITS •

NOTE: A 18 the 8-bh accumulator.
HL Is the 16-blt accumulator.

Figure 4. CPU Register Configuration

487



ZIlOG INC 61E D .. 9984043 0025220 719 ..ZIl

BUS niliNG AND CONTROL
BUS niliNG AND INITIALIZATION

LOCAL ADDRESS

CACHE CONlROL ' ,

INTEI'IIlIIPT STATUS

INTERRUPTI1lIAP VEClOR TABLE PQlNTE!l

I.....' __IIO- ~I

I...._-~-CONTROL---I
1 S'/STIII ST10CK UIltT I

' -----------
The accumulator is the destination register for 8-bit
arithmetic and logical operations~ The six general-purpose
registers can be paired (BC, DE, and Hl) to form three 16·bit
general-purpose registers. The Hl register pair serves as a
16-bit accumulator for 16-bit arithmetic operations.

CPU Flag Register. The Flag register contains six flags that
are set or reset by various CPU operations. This register is
illustrated in Figure 6.

Figure 6. CPU Flag Register

The flags in this register are:

carry (e). This flag is setwhen an adqinstruction g!'ln~rates

a carry or a subtract instruction,generates a borrow. Certain
logical and rotate and shift instructions affect the Carry flag.

. Iv:JdlSubtract (N). This flag is used by the Decimal Adjust
Accumulator instruction to distinguish between add and
subtract operations. The flag is set for subtract operations
and cleared for add operations. .

ParitylOverffow (PN). During arithmetic operations this flag
is set to indicate atwo's complement overflow. During logical
and rotate operations, this flag is set to indicate even parity of
the result or cleared to indicate odd parity.

HaN carry (H). This flag is set if an 8-bit arithmetic operation
generates a carry or borrow between bits 3 and 4, or if a
16·bit operation generates a carry or borrow between bits
11 and 12. This bit is used to correct the result of a packed
BCD addition or subtract operation.

, 488

Zero (Z). This flag is set if the result of an arithmetic or logical
operation isa zero.

Sign (S). This flag stores the state of the most significant bit of
the accumulator. The Sign flag is also used to indicate the
results of a test and set instruction.

DedIC4ded MPU Re~I.rs

Index RegIsterS. The two Index registers, IX and IY, each
hold a 16-bit base address that is used in the Indexed
addressing mode. The Index registers can also function as
general-purpo&9 registers with the upper and loWer bytes
capable of being accessed individually. The high and low
bytes of the IX register are palled IXH and IXl. The high and
low bytes of the IV register are called IYH and IVl.

Interrupt Register. The, Interrupt register.. (1) is used in
interruptmode2to generate a 16-bit indirectlogical,address
to an interrupt service, routine. The Interrupt register
supplies the upper eight bits of the indireetaddress and the
interrupting peripheral supplies the lower eight bits.

Program Counter. The' Program Counter (PC) is used to
sequence through insiructions in the currently executing
program and to generate relative addresses. The Program
Counter contains the 16·bit logical address of the current
instruction being fetched from memory.

R. Register. The R register can be used as a
general-purpose 8-bit readlwrite register. The R register is
not associated with the refresh address and its contents are
changed only by the user.

NOTE: To 'b9compatlbie with possible future enhance
m8n1s, auser$houldWriteO's into reserved registerbits. A
user should nQt rely on values read from reserved register
bits. In figures and tables. unless otherwise noted, re
served bits p labeled with "X".



61E D .. 9984043 0025221 655 .. ZIl---------------....,---------
ZIlOG INC

Table 1. On-Chip Peripheral 1/0 Port Addresses

Peripheral
Address

(Hexadecimal)

Refresh Rate Register FFxxE8

UART
Configuration
Transmitter Control/Status
Receiver Control/Status
Receiver Data
Transmitter Data

FExx10
FExx12
FExx14
FExx16

FExx18

MMU
Master Control
Page Descriptor Register Pointer
Descriptor Select Port
Block Move Port

Invalidation I/O Port
Page Descriptor Registers

User PDR 0
UserPDR 1

FFxxFO
FFxxF1
FFxxF5
FFxxF4
FFxxF2

00
01

User PDR 14
UserPDR 15
SystemPDRO
System PDR 1

OE
OF
10
11

System PDR 14
System PDR 15

1E
1F

DMA
Master Control

Destination Address
(bits 0-11)

Destination Address
(bits 12-23)

Source Address
(bits 0-11)

Source Address
(bits 12-23)

Count
Transaction Descriptor

CounterlTimer

Configuration
Command/Status
Time Constant
Count-Time

FFxx1F
DMAO DMA1 DMA2 DMA3

FFxxOO FFxx08 FFxx10 FFxx18

FFxx01 FFxx09 FFxx11 FFxx19

FFxx02 FFxxOA FFxx12 FFxx1A

FFxx03 FFxxOB FFxx13 FFxx1 B

FFxx04 FFxxOC FFxx14 FFxx1C
FFxx05 FFxxOD FFxx15 FFxx1D

CITO CIT1 CIT2

FExxEO FExxE8 FExxF8
FExxE1 FExxE9 FExxF9
FExxE2 FExxEA FExxFA
FExxE3 FExxEB FExxFB

-The Page Descriptor register address must be loaded into the Page Descriptor Register Pointer in order to access that Page Descriptor register.

489



ZILO_G__I_N_C b_1_E__D__II~9984043 0025222 591 IIZIl

Stack Pointers. Two hardware Stack Pointers. the User
Stack Pointer (USP) and the System Stack Pointer (SSP),
support the dual mode of operation of the microprocessor.
The SSP is used for saving information when an interrupt or
trap occurs and for supporting subroutine calls and returns
in system mode. The USP is used.for supporting subroutine
calls and returns in user mode.

Status and Control Registers. There are ten status and
control registers available to the programmer in the 2280 1

MPU. Table 2 shows the addresses occupied by the
registers in the status and control register addressing
space.

.-
Table 2. Status and Control Register I/O Port Addre....

Daisy Chain Timing (DC). This 2-bit field determines the
number of additional automatic wait slates the CPU inserts
while the interrupt acknowledge daisy chain is settling (00 =
none, 01 = one. 10 = two, 11 = three). A value of 01 in the
DC field indicates that one additional cycle will be added to
the four cycle!-!hat normal~pse between interrupt
acknowledge, AS and OS (or lORa) assertions.

Bus Timing and Initialization Register. This 8-bit register
(Figure 8) is used to specify the duration of control signals for
the external interface bus when the MMU is disabled or
when the MMU is enabled and there is a 0 in bit 15 of the
selected Page Descriptor register. It also controls the
relationship between internal processor clock rates and bus
timing. It c8f1be programmed by external hardware upon
reset.

Control Register Name
Address

(Hexadecimal)

7 0

~

Figure 7. Bus Timing and Control Register

7 8

~

NOTES:
1. See section on on-ehip memory for register description.

- 2. See section on multiprOcessing mode of operation for register
description. .

Bus Timing and Control Regisfe'. This 8-bit register
(Figure 7) governs the timing of transactions to high
memory addresses and the daisy-chain timing for interrupt
requests, as well as the functionality of requests -on the
various 2280 MPU interrupt request lines.

Figure 8. Bus Timing and Initialization Register

During reset this register is initialized to one of two settings,
depending onthe state ofthe WAIT input line on the rising
edge of Reset: if the WAIT line is not asserted. the register is
set to OOH. Ifthe WAIT line is asserted during reset," then
this register is set to the contents of the AD lines.

The fields in this register are:

Clock Scaling (CS). This 2-bit field specifies the scaling of the
CPU clOCk for all bus transactions (00 = one bus clock cycle
is equal to two internal processor clock cycles, 01 = bus
clock cycle is equal to the internal processor clock cycle, 10
= one bus clock cycle-is equal to four internal processor
clock cycles, 11 = reserved). This field cannot be modified
by software. .

Low Memory Wait Insertion (LM). This 2-bit field specifies the
number of automatic wait states (00 = none, 01 = one. 10
= two. 11 = three) for the CPU to·- insert in memory
transactions when the MMU is disabled or when the MMU is
enabled and there is a 0 in bit 15 of the selected Page
Descriptor register.

Multiprocessor Configuration Enable (MP). This 1-bit field
enables the multiprocessor mode of operation (0 =
disabled, 1 = enabled). (See the Multiprocessor Mode
section.)

Bootstrap Mode Enable (BS). This- 1·bit field enables the
bootstrap mode of operation (0 =disabled. 1 "enabled).
(Seethe UART section for details about bootstrap mode.)

DitrJd tIput Clod< q,oon (DIC). -l1is til M1en s9t (0=dsabIed,
1..enabled) selects the cirect clock source option for the
XTALI input. -In this mode, the crystal oscillator and elvide
by 2 circuits are byp~ and XTALI input is used to
dl9ct1y generalethe MPUlntemaiclocks. The XTALI input
must have TIL levels, sO% duly cycle, and 10MHz maxi
mum -rrec,..ency. When clsabled, the input frequency is
divided by 2 to generate the Internal processor clock. A
maximum crystal or input clock frequency of 20MHz is
supported in this case.

Controloi
Control FF
Control 12

Control 16
Control 06
Control OS
Control 14

Control 00
Control 04

Control 10

Bus TIming and Control
Bus TIming and Initialization
Cache Control1
Interrupt Status .
InterruptlTrap Vector Table
110 Page Register
Local Address Register2

Master Status (MSR)
Stack Limit
Trap Control

The fields in this register are:

110 Wait Insertion (I/O). This 2-bit field specifies the number
of additional wait slates (in addition to the one automatically
inserted for I/O) to be -inserted by the CPU;n both 1/0
transactions and vector response timing (00 = none. 01 =
one. 10 = two, 11 = three). "-

High Memory Wait Insertion (HM). This 2-bit field specifies
the number of automatic wait states (00 = none, 01 ,;, one,
10 ,;. two, 11 = three) for the CPU to insert in memory
transactions when the MMU is enabled and there isa 1 in bit
15 of the selected Page Descriptor register.

490



ZIlOG INC b1E D .. 9984043 0025223 428 .. Zll

Interrupt Status Register. This 16·bit register (Figure 9)
indicates which interrupt mode is in effect and which
interrupt sources have interrupt requests pending. It also
contains the bits that specify whether the interrupt inputs are
to be vectored. Only the interrupt vector enable bits are
writeable; all other bits are read-only.

Figure 9. Interrupt Status Register

The fields in this register are:

Interrupt Request Pending (IP). When bit IPn is set to 1, an
interrupt request from sources at level n is pending. (See the
Interrupt and Trap Structure section.)

Interrupt Mode (1M). A value of n in this 2-bit field indicates
that interrupt mode n is in effect. This field can be changed
by executing the 1M instruction.

Interrupt Vector Enable (/). These four bits indicate whether
each of the four interrupt inputs are to be vectored. When In
is set to 1, interrupts on the Interrupt n line are vectored
when the CPU is in interrupt mode 3; when cleared to 0, all
interrupts on this line use the same entry in the InterruptlTrap
Vector Table. These bits are ignored except in interrupt
mode 3.

InterruptITrap Vector Tabfe Pointer. This 16-bit register
(Figure 10) contains the most significant 12 bits of the
physical address at the beginning of the InterrupVTrap
Vector Table: the lower 12 bits of the physical address are
assumed to be O.

Figure 10. InterruptlTrap Vector Table Pointer

110 Page Register. This 8-bit register (Figure 11) indicates
the bits to be appended to the 16 bits that are output during
the I/O address phase of I/O transactions.

7 0

Figure 11. 110 Page Register

MasterStatus Register. The Master Status register (Figure
12) is a 16-bit register containing status information about
the currently executing program. This register is cleared to 0
during reset.

Figure 12. Master Status Register

The fields in this register are:

Interrupt Request Enable (ErJ. There are seven Interrupt
Enable bits, one for each type of maskable interrupt source
(both external and internal). When bit En is set to 1, interrupt
requests from sources at level n are accepted by the CPU;
when this bit is cleared to 0, interrupt requests at level n are
not accepted.

Single-Step (55). While this bit is set to 1, the CPU is in
single-stepping mode; while this bit is cleared to 0,
automatic single-stepping is disabled. This bit is
automatically cleared when a trap or interrupt is taken.

Single-Step Pending (SSP). While this bit is set to 1, the CPU
generates a trap prior to executing an instruction. The SS bit
is automatically copied into this field at the completion of
each instruction. This bit is automatically cleared to 0 when a
Single-Step, Page Fault, Privileged Instruction, Breakpoint
on-Halt or Division trap is taken so that the SSP bit in the
saved Master Status register is cleared to O.

Breakpoint-on-Halt Enable (BH). While this bit is set to 1, the
CPU generates a Breakpoint trap whenever a HALT
instruction is encountered; while this bit is cleared to 0, the
HALT instruction is executed normally.

UserlSystem Mode (UlS). While this bit is cleared to 0, the
CPU is in the system mode of operation; while it is set to 1 the
CPU is in the user mode of operation.

System Stack Limit Register. This 16-bit register (Figure
13) indicateswhen a System StackOverflow Warning trap
is to be generated. If enabled, by setting a control bit in the
Trap Control register, pushes onto the system stackcause
the 12 most significant bits in this register to be compared
to the upper 12 bits of the system Stack Pointer and a trap
is generated if they match.

Figure 13. System Stack Limit Register

Trap Control Register. This 8·bit register (Figure 14)
enables the maskable traps. Upon reset this register is
initialized to all Os.

7 0

~

Figure 14. Trap Control Register

491



ZILOG INC 61E D .. 9984043 0025224 364 "ZIL

The bits in thisJegister are:

System Stack Overflow Warning (5). Whilethis bit is set to 1,
the CPU generates a Stack Overflow Warning trap when the
system stack enters the specified region of memory.

EPU Enable (E). While this bit is cleared to 0, the CPU
generates a trap whenever an EPA instruction is
encountered.

Inhibit User I/O (I). While this bit is set to 1, the CPU
generates a PriVileged ,Instruction trap when an 110
instruction is encountered in user mode.

cache Control and I.DcaI Address Registers. See the
On-Chip Memory section for information about the Cache
Control register and the Multiprocessor Mode section for
information about the Local Address register.

Interrupt and lhIp Structure

The Z280 MPU provides a very flexible and powerful
interrupt and trap structure. Interrupts are external
asynchronous events requiring CPU attention and are
generally triggered by peripherals needing service. Traps
are synchronous events resulting from the execution of
certain instructions.

Interrupts. Two types of interrupt, nonmaskable and
maskable. are supported by. the Z280 MPU. The
nonmaskable interrupt (NMI) cannot be disabled (masked)
by software and is generally reserved for highest priority
external events that require immediate attention_ Maskable
interrupts, however, can be selectively disabled by software.
Both nonmaskable and maskable interrupts 'can be
programmed'to be vectored or nonvectored. Interrupts are
always accepted between instructions and acknowledged
after execution of the prior instruction is complete. The block
move, search, and I/O instructions can be safely interrupted
after any iteration and restarted after the interrupt is serviced.

Interrupt Sources. The Z280 MPU accepts nonmaskable
interrupts on the NMI pin only. The Z280 MPU accepts
maskable interrupts on the INT pins and from the on-chip
counterltimers, DMA channels, and the UART receiver and
transmitter.

Interrupt Lines A, B, and C can be selectively programmed
to support vectored interrupts by setting the appropriate
bits in the Interrupt Status register. The external interrupts
can be programmed to be vectored or nonvectored in
interrupt mode 3.

i
Interrupt Modes of Operation. The CPU has four modes
of interrupt handling. The first three modes extend the Z80
interrupt modes to accommodate additional interrupt input
lines in a compatible fashion. The fourth' mode provides
more flexibility in handling the interrupts. On-chip
peripherals use the fourth mode regardless of which mode
is selected for externally generated interrupt requests. The
interrupt mode is selected by using the privileged
instructions 1M 0, 1M 1, 1M 2, or 1M 3. On reset, the Z280
MPU is automatically set to interrupt mode O. The current
interrupt mode in effect can be read from the Interrupt
Status register.

492

Mode O. This mode is identical to the 8060 interrupt
response mode. With this mode, the interrupting device on
any of the maskable interrupt lines can place a call or restart
instruction on the data bus and the CPU will execute it. As a
result, the interrupting device, instead of the memory,
provides the next instruction to be executed.

Mode 1. When this mode is selected, the CPU responds to a
maskable external interrupt by executing' a restart to the
10Qicai address 0038H in the system program address
space.

Mode 2. This mode is a vectored interrupt response mode.
With a single 8-bit byte from the interrupting device, an
indirect call can be made to any memory location. With this
mode the system maintains a table of 16·bit starting
addresses for every interrupt service routine. Thistable can
be located anywhere in the system mode logical data
address space on a 256-byte boundary. When an interrupt
is accepted, a 16-bit pointer is formed to obtain the desired
interrupt service routine starting address from the table. The
upper eight bits of this pointer are formed from the contents
of the I register. The lower eight bits of the pointer must be
supplied by the interrupting device. The 16-bitpointer so
formed is treated as a logical address in the system data
address space, which can be translated by the MMU to a
physical address.

Mode 3. This is the intended mode of operation for
systems that take advantage of the enhancements of the
Z280 microprocessor (such as single-step and
user/system mode) since the Master Status register is
automatically sav~ and another loaded fOr the interrupts.
Also, vector tables can be ~sed for the external interrupt
sources to provide more interrupt vectors for the
Z800Q'l family, Z80 family, and Z8500 Universal
Peripherals. When an interrupt request (either maskable
or nonmaskable) is accepted. the Master Status register,
the address of the next instruction to be executed. and a
16-bit '~reason code," are pushed onto the system stack. A
new Master Status register and Program Counter are then
fetched from the InterruptlTrap Vector TablE!. The "reason
code" for externallygenerated interrupts is the contents of
the bus during the interrupt acknowledge sequence; for'
8-bit d. buses, the least significant byte of the reason
code is aU 1's. For lnt~tITlJptsgenemtedby on-ehip periph
erals. the reason code identifies which periphemlgener
ated the interrJJPt and is identical to the vector address in
the IntemJPfITmp Vector Table. The InterrupVTmp Table
Pointer is used to reference the~e.

Traps. The Z280 CPU supports eight traps that are
generated internall}( The follOWing traps can be disabled:
the EPA trap, which allows software to emulate an EPU; the
Stack Warning trap, which is taken at the end of an
instruction causing the trap; the Breakpoint-an-Halt trap,
which is taken when a HALT instruction is encountered; and
the Single-Step trap, which is taken for each instruction. In
addition, 1/0 instructions can be specified as privileged
instructions. Traps cause the instruction to be terminated
without altering CPU registers (except for the System Stack



ZIlOG INC 61E D II 9984043 0025225 2TO IIZIl

Pointer, which is modified when the program status is
pushed onto the system stack).

The saving of the program status on the system stack and
the fetching of a new program status from the InterruptlTrap
Vector Table is the same in any interrupt mode of operation.

Traps can only occur if the trap generating features of the
l280 CPU (such as System Stack Overflow warning) have
been explicitly enabled. Traps cannot occur on instructions
of the l80 instruction set unless explicitly enabled by the
operating system using l280 CPU extensions.

Extended Instruction. This trap occurs when the CPU
encounters an extended instruction while the Extended
Processing Architecture (EPA) bit in the Trap Control register
is O. Four trap vectors are used by the EPA trap-one for
each type of EPA instruction. This greatly simplifies trap
handlers that use 1/0 instructions to access an EPU or
software to emulate an EPU.

Privileged Instruction. This trap occurs whenever an attempt
is made to execute a privileged instruction while the CPU is
in user mode (User/System Mode control bit in the Master
Status register is 1).

System Call. This trap occurs whenever a System Call (SC)
instruction is executed.

Access Violation. This trap occurs whenever the MMU's
translation mode is enabled and an address to be translated
is invalid or (for writes) is write-protected.

System Stack Overflow Warning. This trap occurs only while
the Stack Overflow Warning bit in the Trap Control register is
set to 1. For each system stack push operation, the most
significant bits in the Stack Pointer register are compared
with the contents of the Stack Limit register and a trap is
signaled if they match. The Stack Overflow Warning bit is
then automatically cleared in order to prevent repeated
traps.

Division Exception. This trap occurs whenever the divisor is
zero (divide-by-zero case) or the true quotient cannot be
represented in the destination precision (overflow); the CPU
flags are set to distinguish these two cases.

Single-Step. This trap occurs before executing an
instruction if the Single-Step Pending control bit in the
Master Status register is set to 1. Two control bits in the
Master Status register are used for the Single-Step trap. The
Single-Step bit (bit 8), on being set when previously clear,
pauses a trap to occur after the execution of the next
instruction. While this bit is set to 1, if an instruction execution
causes a trap, the Single-Step trap occurs after the
execution of the trap-handling routine. The Single-Step

Pending bit (bit 9), is used by the processor to ensure that
only one Single-Step trap occurs for each instruction
executed while the Single-Step bit is set to 1.

Breakpoint-on-Halt. This trap occurs whenever the
Breakpoint-on-Halt control bit in the Master Status register is
1 and a HALT instruction is encountered.

Interrupt and Trap Disabling. Maskable interrupts can be
enabled or disabled independently via software by setting
or clearing the appropriate control bits in the Master Status
register.

A 7-bit mask field in the Master Status register inaicates
which of the requested interrupts will be accepted. Interrupt
requests are grouped as follows, with each group controlled
by a separate Interrupt Enable control bit. The list is
presented in order of decreasing priority, with sources within
a group listed in order of descending priority.

• Maskable Interrupt A line (bit 0)

• CounterlTimer 0, DMAO (bit 1)

• Maskable Interrupt B line (bit 2)

• CounterlTimer 1, UART receiver, DMA1 (bit 3)

• Maskable Interrupt C line (bit 4)

• UART Transmitter, DMA2 (bit 5)

• CounterlTimer 2, DMA3 (bit 6)

When a source of interrupts has been disabled, the CPU
ignores any interrupt request from that source.

The System Stack Overflow Warning trap, Privileged
Instruction trap (I/O instructions in user mode), or Extended
Instruction trap can be enabled by setting control bits in
the Trap Control register, and the Single-Step and
Breakpoint-on-Halt trap can be enabled by setting control
bits in the Master Status register; these are the only traps that
can be disabled.

InterruptlTrap vector Table. The format of the Interrupti
Trap Vector Table consists of pairs of Master Status register
and Program Counter words, one pair for each separate
on-chip interrupt or trap source. For each external interrupt,
there is a separate Master Status register word and Program
Counter word (for use if the input is not vectored). If the
external interrupt is vectored, a vector table consisting of
one Program Counter word for each of the 128 possible
vectors that can be returned for each input line is used
instead of the dedicated Program Counter word; thus for
vectored interrupts, there is only one Master Status register
for each interrupt type.

493



The format of the InterruptlTrap Vector Table is shown in
Table 3.

Contents

Aeserve(l
NMIVector
Interrupt Line A Vector
Interrupt Line B Vector
Interrupt Line C Vector

Counterrrlfner 0 V~or,

CounterrrlfT!9f' 1 Vector
Reserved
Countermmer 2 Vector
DMAOVector
DMA1 Vector
DMA2Vector
DMA3Vector
UART Receiver Vector
UARTTransmitter Vector
Single-Step Trap Vector
Breakpoint-on-Halt Trap Vector
Division Exception Trap Vector
Stack Overflow Warning Trap Vector
Page Fault Trap Vector
System Call Trap Vector
Privileged Instruction Trap Vector
EPU +- Memory Trap Vector
Memory +- EPU Trap Vector
A +- EPU Trap Vector
EPU Internal Operation Trap Vector
Reserved
128 PrograJri COunter Values for

NMI and Interrupt LIne AVl!C\Onl
(MSR~m 04 and 08, respectIVely)

128 Program C9....r VlIIues for

fnlern4Jt LIne B Vec:tonI(MSR from OC)

128 Program Counler Values for

~ LIne C Vec:tonI(MSR from 10)

'DIble 3. Interruptfftap vector~Ie

00
04
08
DC
10
14

18
1C
20
24

28
2C
30
34
38

3C
40
44

48
4C

50
54

58

5C
60
64

68-6C
70-16E

270-36E

170-26E

Add....
(Hexadecimal) .

ZI L_O_G_IN_C b_1 E____.D 9_9_8_40_4_3_0_025 22b 137 • ZI L

Addressing Modes :-\J
Addressing modes (Figure 15) are used by the CPU to
calculate the effective address of an operand needed for
execution of. an instruction. Nine addressing modes are
supported by the l280 CPU. Of these nine, four are
additions to the l80 addressing modes (Indexed with 16-bit
displacement, Stack Pointer Relative, Program Counter
Relative, and Base Index) and the remaining f.ive modes are
either existing or extensions to the existing l80 addressing
modes.

Register. The operand is one of the 8·bit registers (A, B, C,
0, E, H, L, IXH, IXL, IYH orIYL); or one ofthe 16-bitregisters
(BC, DE, HL, IX, IY, or SP), or one of the special byte
registers (lor R).

Immediate. The operand is in the instruction itself and has
no effective addr~s.

Indirect Register. The contents of a register specify the
effective address of an operand. The HL register is the
register used for memory acCesses. {For the Load To or
Load From Accumulator instruction, BC andDE can also be
used for indirection; for the JP instruction, IX and IY can also
be used for indirection.) The C register is used for I/O and
control registerspace accesses.

Direct Address. The effective address of the operand is the
location whose address is contained in the instruction.
Depending on the instruction, the specified operand is
either in the 1/0 or data memory address space.

Indexed. The effective address of the operand is the
location specified by adding the 16·bitaddress contained in
the instruction to a two's complement "index" contained in
the HL, IX, or IY register.

Short Index. The effective address of the operand is the
location computed by adding the 8-bit two's cOl'TlplemElOt
signed displacement· contained in the instruction to the
contents of the IX or IY register. This addressing mode is
eqUivalent to the l80 CPU indexed mode.

Program Counter Relative. An 8- or 16-bit displacement
contained in the instruction is~dded to the Program COL!nter
to generate the effective address of the operand.

Stack Pointer Relative. The effective address of the
operand is the location computed by adding a 16-bi(two's
complement displacement contained in the instruction to
the contents of the Stack Pointer. '

Base Index. The effective address of the operand is thG
Ideation whose address iscomputed by adding,the contents
of HL, IX, or IY to the contents of another of these three
registers.

494



ZIlOG INC 61E D .. 9984043 0025227 073 "ZIl

EXTENDED PROCESSING ARCHITECTURE

Features

The Zilog Extended Processing Architecture (EPA)
provides an extremely flexible and modular approach to
expanding both the hardware and software capabilities of
the Z280 CPU. Features of the EPA include:

• Allows Z280 CPU instruction set to be extended by
external devices.

• Increases throughput of the system by using up to four
specialized external processors in parallel with the CPU.

• Permits modular design of Z280 CPU·based systems.

• Provides easy management of multiple microprocessor
configurations via "single instruction stream"
communication.

• Direct interconnection between EPUs and Z280 MPU
requires no additional external supporting logic.

• EPUs can be added as the system grows and as EPUs
with specialized functions are developed.

General Description

The processing power of the Zilog Z-BUS Z280
microprocessor can be boosted beyond its intrinsic
capability by the Extended Processing Architecture (EPA).
The EPA allows the Z280 CPU to accommodate up to four
Extended Processing Units (EPUs), which perform
specialized functions in parallel with the CPU's main
instruction execution stream.

The EPUs connect directly to the Z-BUS and continuously
monitor the CPU instruction stream for an instruction
intended for the EPU (template). When a template is
detected, the appropriate EPU responds, obtaining or
placing data or status information on the Z-BUS by using the
Z280 CPU-generated control signals and performing its
function as directed.

The CPU is responsible for instructing the EPU and
delivering operands and data to it. The EPU recognizes
templates intended for it and executes them, using data
supplied with the template and/or data within its internal
registers. There are three classes of EPU instructions:

• Data transfers between main memory and EPU registers

• Data transfers between CPU registers and EPU
status registers

• EPU internal operations

Six addressing modes can be utilized with transfers
between EPU registers and the MPU and main memory:

• Indirect Register

• Direct Address

• Indexed

• Program Counter Relative

• Stack Pointer Relative

• Base Index

In addition to the hardware-implemented capabilities of the
EPA, there is an extended instruction trap mechanism to
permit software simulation of EPU functions. An EPU
present bit in the Z280 MPU Trap Control register indicates
whether actual EPUs are present or not. " not, the CPU
generates a trap when an extended instruction is detected,
and asoftware "trap handler" can emulate the desiredEPU
function. Thus, the EPA software trap routine supports
systems not containing an EPU.

EPA and CPU instruction execution are shown in Figure
16. " an instruction has been fetched and decoded, the
CPU determines whether or not it is an EPU instruction. "
the instruction is an EPU instruction, the state of the EPU
Enable bit in the Trap Control register is examined. "the
EPU Enable bit is reset (E = 0), the CPU generates a trap
and the EPU instruction can be simulated by an EPU
instruction trap software routine. However, if the EPU
Enable bit is set (E = 1), indicating that an EPU is present
in the system, then the 4-byte EPU template is fetchedfrom
memory. The fetching of the EPU template is indicated by
the status Hnes STo-ST3. Each EPU continuously monitors
the Z-BUS and the status lines for its own templates. After
fetching the EPU template, the CPU, if necessary, trans
fers appropriate data between the EPU and memory or
between the CPU and the EPU. These transactions are
indicated by unique encodngs of the status lines. If the
EPU is free when the template and the data appear, the
EPU template is executed. "the EPU is still processing a
previous instruction, the PAUSE line can be activated to
halt further execution of CPU instructions until EPU execu
tion iscomplete. After theexecution of the template is com
plete, the EPU deactivates the PAUSE line and CPU
instruction execution continues.

495



ZIlOG INC b1E D .. 9984043 0025228 TOT ..ZIl

• DI/8 to plpeBnlng, InslructIon fellJt*lg can be Independent to
Ins\I1JI:lIOt1 execullon

SETPAuii
LINE AT CPU
UNTIL EPU

FREE

Figure 16. EPA and Z280 MPU Instruction Execution.

MEMORY MANAGEMENT

Features

• On-chip dynamic address tra,nslation

• Permits addressing of 16M bytes of physical memory

• Separate translation facilities for user and system modes

• Permits instructions and data to reside in separate
memory areas.

• Write protection for individual pages of memory

• Aborts CPU on access violation· to supportvittual
memory

General De.crlptlon

The Z280 ~icropr~essor contains an. on:c;hip Memory
Management Unit (MMU), which translates logical
addresses into physical addresses. 'This allows abCess to
more than 64K bytes of·physical m'emory and provides
memory protection features typical of those found on large
systems. With the MMU, the CPU can access up to 16M
bytes of physical memory. The MMU features a
sophisticated trapping mechanism that generates page
faults on error conditions. Instructions that are aborted by a

496

page fault can be restarted in a manner compatible with
virtual memory system requirements. On reset. the MMU
features are not enabled, thus permitting logical addresses
to pass to the physical memory untranslated.

The physical address space is expanded by dividing the
64K byte logical address space (the space manipulated by
the program) into pages. The pages are then mapped
(translated) into the larger physical address space of the
Z280 microprocessor. The mapping process makes the
user software addresses indepl3ndent of the physical
memory, so the user, is'. freed ftom specifying where
information is ac;:tually stored in physical memory. The actual
size of the page depends on whether the program/data
separation mode is enabled.,-ifit is enabled, each page is
8K bytes in length, and if it is not enabled, the page length is
4K bytes. With the page mapping technique, 16·bit logical
addresSes c;anbe transllited into 24-bit physiqal'addresses.
Address translation can occur both in system and in user
mode, with separate translation facilities available to each
mode. The MMU further allows instruction references to be
separated' from data references, which enables programs
of up to 64K bytes in length to manipulate up to 64K bytes of
data without operating system intervention.



61E D .. 9984043 0025229 946 .. ZIl--------------------------
ZIlOG INC

MMU Architecture

The 2280 MMU consists of two sets of sixteen Page
Descriptor registers (Figure 17) that are used to translate
addresses, a 16-bit control register that governs the
translation facilities, a Page Descriptor Register Pointer, an
I/O write-only port that can be used to invalidate sets of page
descriptors, and two 1/0 ports for accesses to the Page
Descriptor registers. One set of Page Descriptor registlilrs is
dedicated to the system mode of operation and the other set
is dedicated to the user mode of operation.

While an address is being translated, attributes associated
with the logical page containing that location are checked.
The correct logical page is determined by the CPU mode
(user or system), address space (program/data), and the
four most significant bits of the logical address. Pages can
be write-protected to prevent them from being modified by
the executing task and can also be marked as
non·cacheable to prevent information from being copied
into the cache for later reference. The latter capability is
useful in multiprocessor systems, to ensure that the
processor always accesses the most current version of
information being shared among multiple devices. The
MMU also maintains a bit for each page that indicates if the
page has been modified.

Each Page Descriptor register contains a Valid bit, which
indicates that the descriptor contains valid information. Any
attempt by the MMU to translate an address using an invalid
descriptor generates a page fault. Valid bits for groups of
Page Descriptor registers can be reset by writing to an MMU
control port.

~ 0

11-..........l......I._P....~G_E..~_RA..,j'I_E_Aq...D_RESS....~ .....I.:-..I.......--'~

Figure 17. Page Descriptor Register

For each mode of CPU operation, the MMU can be
configured to separate instruction fetches from data fetches,
and thus separate the program address space from the data
address space. When the programldata separation mode is
in effect, the sixteen Page Descriptor registers for the current
CPU mode of operation (user or system) are partitioned into
two sets, one for instruction fetches and one for data fetches.
An instruction fetch or data access using the Program
Counter Relative addressing mode is translated by the
MM U registers associated with the program address space;
data accesses using other addressing modes and accesses
to the Interrupt Vector Table in interrupt mode 2 use the
MMU registers associated with the data address space. In
this mode of MMU operation, the page size is 8192 bytes.
There are two control bits in the MMU Master Control
register that independently specify whether the user and
system modes of MPU operation have separate program
and data address spaces,

Each 16-bit Page Descriptor register consists of a 4-bit
attribute field and a 12-bit page frame address field. The
attribute field consists of the least significant bits of the
descriptor and contains four control and status bits, listed
below.

Modified (M). This bit is automatically set whenever a write is
successfully performed to a logical address in this page; it
can be cleared to°only by a software routine that loads the
Page Descriptor register. If the Valid bit is 0, the contents of
this bit are undefined.

Cacheable (C). While this bit is set to 1, information fetched
from this page can be placed in the cache. While this bit is
cleared to 0, the cache control mechanism is inhibited from
retaining a copy of the information.

Write-Protect (WP). While this bit is set to 1, CPU writes to
logical addresses in this page cause a page fault to be
generated and prevent a write operation from occurring.
While this bit is cleared to 0, all valid accesses are permitted.

Valid (V). While this bit is set to 1, the descriptor contains valid
information. While this bit is cleared to 0, all CPU accesses to
logical addresses in this page cause a page fault to be
generated.

MMU Control Registers and 1/0 Ports

MMU operation is controlled by one control register and four
dedicated 1/0 ports. The MMU Master Control register
(Figure 18) determines the programldata address space
separation in effect in both user and system modes and
whether logical addresses generated in user and system
mode will be translated by the MMU. Page Descriptor
registers are accessed indirectly through the register
address contained in the Page Descriptor Register Pointer.
The Descriptor Select Port is used to access the Page
Descriptor register that is pointed to by the Page Descriptor
Register Pointer. After this access the Page Descriptor
Register Pointer is left unchanged. The Block Move I/O Port
is used to move blocks of words between the Page
Descriptor registers and memory; reads or writes to this I/O
port access data pointed to by the Page Descriptor Register
Pointer, then increment the pointer by one. The Invalidation
110 Port is used to invalidate blocks of Page Descriptor
registers; writes to this port cause the Valid bits in selected
blocks of Page Descriptor registers to be cleared to 0, which
indicates that the descriptors no longer contain valid
information.

Figure 18. MMU Master Control Register

497



ZIlOG INC blE D II 9984043 0025230 bb8 IIZIl

Block Move 110 Port. Block moves of data into and out Of
the Page Descriptor registers are accomplished by writing
and reading words to or from this dedicated 110 port at
location FFxxF4.Any word 1/0 instruction can be used to
access Page Descriptor registers via this port, provided that
the Page Descriptor Register Pointer is properly initialized.

Invalidation 110 Port. Valid bits can be cleared (Le., the
Page Descriptor registers invalidated) by writing to this
dedicated 8-bit port (Table 4), which is at 110 address
location FFxxF2. Individual Valid bits can subsequently be
set by software writing to the Page Descriptor registers.
Reading this 110 port returns unpredictable data.

Translation Mechanism

Address Translation: Address translation is illustrated in
Figure 19; While the ProgramlData Space Separation bit is
cleared to 0, the 16-bit logical address is divided into two
fields, a 4-bit index field used to select one of 16 Page
Descriptor registers and a 12-bit offset field that forms the
lower 12 bits of the physical address. The physical address '
is compoSed of the 12-bit page frame address (bits 4-15)
supplied by the selected Page Descriptor register and the
12-bit offset supplied by the logical address.

While the ProgramlData Space Separation bit is set to 1, the
logical address is divided, into a3-bilindexfield and a 13-bit
offset field. The Page Descriptor register conSists of an
11·bit Page Frame Address field (bits 5-15, with bit 4= 0).
The Physical address is a resullof concatenating the page
frame address and the logical offset. The Page Descriptor
register is chosen by a 4·bit index field, which conSists of a
ProgramlDataAddressbitfrom the CPU and the three Index
bits from the logical address.

MMU Master C()ntrol Register. The MMU Master Control
register (1/0 address location FFxxFO) controls the operation
of the MMU, This register contains four control bits; all other
bits in this register must be cleared toO. The four control bits
of the MMU Master Control register are described below.

Page Fault Identifier (PFI). This 5-bit field latches information
that indicates which Page Descriptor register was being
accessed when the access violation was detected.

System Mode Program/Data Separation Enable (SPD).
While this bit is set to 1, instruction fetches and data
accesses via the PC Relative addressing mode use the
system mode Page Descriptor registers 8-15, and data
references that do not use the PC Relative addressing mode
use the system mode Page Descriptor registers 0-7. While
this bit is cleared to 0, system mode Page Oescriptor
registers 0-15 are used to translate instruction and data
references.

System Mode Translate Enable (STE). While this bit is set to 1,
logical addresses generated in the system mode of
operation are translated. While this bit is cleared to 0,
addresses are passed through the MMU extended with
zeros in the most significant bits and no attribute checking or
modified bit setting is performed.

User MOde ProgramlData Space Separation Enable (UPD).
While this bit is set to 1, instruction fetches and data
accesses via the PC Relative addressing mode use the user
mode Page Descriptor registers 8-15, and data references
that do not use the PC Relative addressing mode use the
user mode Page Descriptor registers 0-7. While this bit is
cleared to 0, user mode Page Descriptor registers 0-15 are
used to translate instruction and data references.

User MDde Translated Enable (UTE). While this bit is set to 1,
logical addresses generated in the user mode of operation
are translated. While this bit is cleared to 0, addresses are
passed through the MMU extended with zeros in the most
significant bits and no attribute checking or moclified bit
setting is performed.

Page DescriptorRegisterPointer. Moves Df data into and
out of the MMU Page DescriptDr registers use the Page
Descriptor Register Pointer, which is at 1/0 address locatiDn
FFxxF1. This 8-bit register cDntains the.address of one ofthe
Page· Descriptor registers. When a word 110 instruction
accesses 110 address FFxxF5 (Descriptor Select Port), this
register is used to access aPage Descriptor register. When a
word 110 instruction accesses 110 address FFxxF4' (Block
Move 110 Port), this register is also used to access a Page
DescriptDr register, but after the access, this register is
automatically incremented by one. .

DescriptorSelectPort. Moves of one word Df data intD and
Dut of a Page Descriptor register. are accomplished by
writing and reading words to or from thill dedicated 1/0 port
at location FFxxF5. Any word 110 instruction can be used to
access aPage Descriptor register via this port, provided that
the Page Descriptor Register Pointer is properly initialized.

498

Encoding

Table 4. Invalidation Port Table

Registers Invalid

System Page Descriptor Registers 0-7
System Page Descriptor Registers 8-15
System Page Descriptor Registers 0-15
User Page Descriptor Registers 0-7
User Page Descriptor Registers 8-15
User Page Descriptor Registers 0-15



ZIlOG INC 61E D .. 9984043 0025231 514 ..ZIl

PAGE DESCRIPTOR
REGISTERS

}
LOGICAL
ADDRESS

15

I} PHYSICAL
L-_.....:.;PA::.:G:.:E~F.:.::RA;:::M:::E~A::::DD::.;R:.:ES:.:S:...._..J.... ....;O~F.;.;FS;,;;ET~ ....I. ADDRESS

I INDEX I OFFSET I
IL: 15

4 3 0

15 0-

PAGE FRAME
ATTRIBUTEADDRESS

~/

V USER

VSYSTEM,

0

01 I I

23 I 0

Figure 19. Address lhmslation

ON-CHIP MEMORY

Features

• 256-byte local memory

• Configurable as high-speed associative cache

• Programmable to cache instructions, data, or both

• Permits faster execution by minimizing external bus
accesses

• Operation is transparent to user

• Configurable as local RAM with user-definable
addresses

The Z280 MPU has 256 bytes of on-chip memory, which
can be dedicated to memory locations programmed by the

system or used as a cache for instructions or data. Its mode
of use (dedicated memory or cache) is programmable; on
reset it is automatically enabled for use as a cache for
instructions only.

On-Chip Memory Architecture

The on-chip memory is organized as 16 lines of 16 bytes
each. Each line can hold a copy of 16 consecutive bytes in
physical memory locations whose 20 most significant bits of
physical address are identical. Each byte in the cache has
an associated Valid bit that indicates whether the cache
holds a valid copy of the memory contents at the associated
physical memQry location. Figure 20 illustrates the cache
organization.

20 BITS 16 BITS 16 xl BITS

LINE 0

LINE 1

LINE 2

•
•

LINE 15

~---"r
A.

"
TAG 0 VALID CACHE DATA

BITS

TAG 1 VALID CACHE DATABITS

TAG 2 VALID CACHE DATABITS

• • •
• • •
• • •

TAG 15 VALID CACHE DATABITS

Tag n = the 20 Address bits associated wIIh line n
Valid bils = 16 bils that Indlcate which bytes In the cache line contain vald data
Cache data = 16 bytes

Figure 20. Cache Organization

499



ZIlOG INC b1E D .. 9984043 0025232 430 ..ZIl

The on-Chip memory has two modes of operation. If the
Memory/Cache bit in the Cache Controllegister is set to 1,
then the 256 bytes of on-ehip'memory are treated as
physical memory locations. Memory accessesto addresses

, covered by the on-chip memory do not generate bus
transactions on the external bus and hence the accesses
'are faster. In this mode, the Valid bits are ignored,

lfthe Memory/Cache bit is cleared to 0, then the 256 bytes of
on-ehip memory are treated as acache memory. The lines
are allocated using a least-recently used (LRU) algorithm.
When acache "miss" ona read occurs (and the MMU does
not assert cache inhibit), the line in the cache that has been
least recently accessed is selected to hold the newly read
data. All ~es in the selected line are'marked invalid except
fOr the bytes containing the newly accessed data. On a
cache miss, one or two bytes, depending on the bus size,
are fetched from main memory. Except fOr burst mode
instruction fetches, the cache doesnot pre-fetch beyond the
currently-reque~ed address. A cache miss on a data w~ite

does not cause aline to beallocated to the memory location
accessed.

The cache can hold both instructions and data. Two control
bits in the Cache Control register can be separately set to
enable the cache to hold instructions and to hold data. If the
cache contains data, writes to data at locations contained in
the cache also cause external bus transactions to update
the appropriate memory location.

Both the CPU and the on-Chip DMAs access the cache. For
the CPU, if the MMU is enabled, the access can be either
cacheable or non-eacheable, depending on the value of the
Cacheable bit in the Page Descriptor register used to
translate the logical address. If the MMU is not enabled, all
memory transactions are considered to be cacheable. Two
bits in the Cache Control register, the Cache Instructions.
Disable bit and the Cache Data Disable bit, further
determine the operation of the cache for various situations.
These bits enable the cache for inlStructions and,fOr data.

When the on-chip memory is used as fixed memory
locations, neither the Cache r'nstructiolJ DiSable or Cac~e
Data Disable bits are used, and no distinction is made as to
whether the CPU is accessing data or instructions.

In general, when devices sU,ch as on-chip DMAs transfer
,data to the memory, the cache data is modified if the write is
to a valid location in the cache buUhe LRU mechanism is

CLOCK OSCILLATOR

The Z280 MPU has an on-chip clock oscillatorlgenerator
that can be connected to a fundamental, parallel-resonant
crystal or any suitable clock source. The bus timing clock
generated from the on-chip oscillator is output for use by the
rest of the system.

unaffected. Also, fOr the EPU to memory transfer, ift~e'

cache contains valid locations that are updated by an EPU
transaction, the on-chip cache is also ,updated,

CachfJCOtttrol ReglsffH'. The operation of the. on-Chip
memory is controlled by an S-bit Cache Control register

- (Figure 21) that is accessed using a load control instruction.
This register contains five control bits.

Figure 21. Cache .Control Register

Thebits in this register are:

High Memory Burst Capability (HMB). This 1-bit field
specifieswhether a memory burst transaction occurs when
the MMUis enabled and there is a 1 in bit 15of the selected
Page DeScriptor register (0 = burst mode not supported,
1 = burst mode supported).

Low Memory Burst Capability (LflAB). This 1-bit field
specifies whether amemory burst transaction occurs when
the MMU is disablegp.'. rwhen the MMUisenabled and there
is a 0 in bit 15 ot""e selected Page Descriptor register
(0 = burst mod~ not supported, 1 = burst mode
supported). '

Cache Data Disable (D). While this bit is cleared to 0, data
fetches are copied into the cache jf the M/C bit = 0 (cache
mode). If M/C = 1, the state of this bitis ignored.,. .. .
Cache Instructions Disable (Q. While this bit is cleared to O.
instruction fetches are copied into the cache when the M/C
bit = O(cachemode).WhenM/C = 1,thestateofthisbitis
ignored.

MemorylCaChe (MIG). While this bit is set to 1, the on-ehip
memory is to be accessed as physical memory; while it is
cleared to 0, the memory is accessed associatively as a
cache.

if the on-Chip memory is to be used as fixed memory
locations, the user can programmably select the ranges Of,
memory addresses for which the on-chip memory
responds.,



ZILOG INC

REFRESH

61E D .. 9984043 0025233 377 "Zll

The 2280 MPU has an internal mechanism for refreshing
dynamic memory. This mechanism can be activated by
setting the Refresh Enable bit in the Refresh Rate register to
1. Memory refresh is performed periodically at a rate
specified by the Refresh Rate register. Refresh transactions
are identical to memory transactions except that different
status signals are used and no data is transferred. They can
be inserted immediately after the last clock cycle of any bus
transaction, including an internal operation.

The refresh transaction is generated as soon as possible
after the refresh period has elapsed (generally after the last
clock cycle of the current bus transaction). If the MPU
receives an interrupt request, the refresh operation is
performed first. When the 2280 MPU does not have control
of the bus or is in the Wait state, internal circuitry records the
number of refresh periods that have elapsed and refresh
cycles cannot be generated. When the MPU regains control
of the bus or the WAIT input signal is deactivated and the
bus transaction completes, the refresh mechanism
immediately issues the skipped refresh cycles. The internal
circuitry can record up to 256 such skipped refresh
operations.

A 10-bit refresh address is generated for each refresh
operation with the refresh address being incremented by
two between refreshes for 16-bit data bus and by one for
8-bit data bus.

UART

The 2280 UART transmits and receives serial data using any
common asynchronous data-communication protocol.

Transmission and reception can be performed
independently 'with five, six, seven, or eight bits per
character, plus optional even or odd parity. The transmitter
can supply one or two stop bits and can provide a break
output at any time. Reception is protected from spikes by a
"transient spike-rejection" mechanism that checks the
signal one-half a bit time after a Low level is detected on the
receiver data input; if the Low does not persist-as in the
case of a transient-the character assembly process is not
started. Framing errors and overruns are detected and
buffered with the partial character on which they occur.
Furthermore, a built-in checking process avoids interpreting
a framing error as a new start bit: a framing error results in
the addition of one-half a bit time to the point at which the
search for the next start bit is begun.

The UART uses the same clock frequency for both the
transmitter and the receiver. The input for the UART clocking
circuitry is derived from counter/timer 1, either from its
external input line for an external clock or from the
counter/timer output for a bit rate generated from the internal
processor clock. The UART input clock is further scaled by
1, 16, 32, or 64 for clocking the transmitter and receiver.

On reset, the Refresh Rate register contains 88H, refresh is
enabled, the rate is 32 processor clock cycles, and the
refresh address is not affected.

The Refresh mechanism is controlled by an 8-bit control
register, described below.

Refresh Rate Register

This 8-bit register (Figure 22) enables the refresh
mechanism and specifies the frequency of refresh
transactions.

7 0

r;TX1 : ..ATE : IL.:..L.:.J...."'---I.......:................

Figure 22. Refresh Rate Register

The fields in this register are:

Refresh (Rate). This field indicates in processor clock cycles
the rate at which refresh transactions are to be generated; a
value of n in this field indicates a refresh period of 4n, with
Rate = 0 indicating 256 clock cycles.

Refresh Enable (E). When this 1-bit field is set to 1, the
refresh mechanism is enabled.

Two of the DMA channels can be used independently to
move characters between memory and the transmitter or
receiver without CPU intervention. Both the transmitter and
receiver can interrupt the CPU for processor assistance.

The UART uses two external pins, li'ansmit and Receive.
Data that is to be transmitted is placed serially on the
Transmit pin and data that isto be received is read in from the
Receive pin.

Asynchronous Transmission

The Transmitter Data Output line is held High (marking)
when the transmitter has no data to send. Under program
control, the Send Break command can be issued to hold the
Data Output line Low (spacing) until the command is
cleared.

The UART automatically adds the start bit, the programmed
parity bit (odd, even, or no parity), and the programmed
number of stop bits to the data character to be transmitted.
When the character is five, six, or seven bits, the unused
most significant bits in the Transmitter Data register are
automatically ignored by the UART.

Serial data is shifted from the transmitter at a rate equal to 1,
1/16th, 1/32nd or 1/64th of the clock rate supplied to the
transmitter clock input. Serial data is shifted out on the falling
edge of the clock input.

501



ZIlOG INC 61E D II 9984043 0025234 203 IIZll

Asynchronous Reception

An asynchronous receive operation begins when, the
ReceiVe Enable bit in the Receiver GontrollStatus register is
set to1. A Low (spacing) conditiQn onthe Receive input line
indicates a start bit. If this Low persists for at least one-half of
a bit time, the start bit is assumed to be valid arid the data'
input is then sampled at mid-bit timet until the entire
character is assembled. This method of detecting a start bit
improves error rejection when noise spikes exist on an
otherwise marking Hne. If the x 1clock mode is selected, bit
synchronization must be accomplished externally; received
data is sampled on the rising edge of the clock.

Received characters are read from the Receive Data
register. If parity is enabled, the parity bit is assembled as
part of the character and is not removed from the assembled
character for character lengths other than' 8 bits. If the
r~sulting character is still less than abits, 1sare appended in

, the unused high-orderbit positions. .

Since the receiver is bUffered by one 8-bit register in addition
to the receiver shift register. the CPU has adequate time to
service an interrupt and to accept the data character
assembled by the UART. The receiver also has a butter that
stores error flags for each data character in the receive
buffer. These error flags are loaded at the same time as the
data character.

After a character is received, it is checked for the following
error conditions:

• Parity Error: when the parity bit of the character does not
match the programmed parity.

• Framing Error: if the character is assembled without any
stop bits (Le., a Low level is detected for a stop bit).

• Receiver Overrun Error: if the CPU fails to read a' data
character when more than one character has been '
received.

Since the Parity Error and Receiver Overrun Error flags are
latched, the error status that is read reflects an error in the
current character in the Receiver Data register plus any
Parity or Overrun Errors detected since the last write to the
Receiver Control/Status register. To keep correspondence
between the state of the error buffers and the contents ofthe
receiver data buffers, the Receiver' Control/Status register
must be read before the data.

Polled Operation

In a polled environn1ent, the Receive Character Available bit
in the Receiver Control/Status regiSter must be monitored so
the CPU can know when to read a oharacter. This bit is
automatically cleared when the Receiver Data register is
read. TO prevent o~rwriting data inpolled operations, the
transmitter buffer status must be checked before-writing into
the transmitter. The Transmit Buffer Empty bit in the
li'ansmitter Control/Status register is setto 1 whenever the
transmit buffer is empty. '

502

UART Control and Status Registers

The UART operation is controlled by three control and statu~

registers. The UART configuration register ,specifies the
charactersize, parity, clock source, scaling, and loop-bac~

enable. Both the transmitter and the receiver have their own
contrOl/status .register.

UART Conflguratiofl Register. This 8-bit register (Figure
23) contains control information for both the transmitter and
receiver.

7 0

~

Figure 23. UART Configuration Register

The control fields for this ~egister are:

Loopback Enable (LB). The UART is capable of local
loopback. In this mode the internal transmit dataline is tied
to the internal receiver line and the external receiver input is
ignored. If this bit is set t01 , loop back mode is enabled.

Clock Rate (CA). These two bits specify the multiplier
between the clock and data rates (00 =data rate x 1, 01 =
data rate x 16,10'= data rate x 32,11 = data rate x 64).
The same rate is used for both the receiver and transmitter. If
the x 1 clock rate is selected, bit synchronizationrriust be
accomplished externally. '

Clock Select (CS). This bit specifies theclook input for the
UARI If the bit is set to 1, the counterltimer 1output pulse is
used for bit-rate generation; if the bit is cleared to 0; the input
line to counterltimer 1 provides the clock from an external
source.

Parity Even/Odd (ElO). If parity is spElcified, this bit
determines Whether it is sent and checked as even or odd
(1 = even).

Parity (P).lf this bit is setto 1,an additional bit position(in
addition to thosespecified in the bits/character controlfi~d) ,
is added to transmitted data and is expected in received
data. In the Receiver, the parity bit received is transferred to
the CPU as a part of' the character, unless eight bits/
character is selected,

Bits/Character (BlC). Together, these two bits determine the
number of bits to form a character. If these bits. are changed
during the time that a character is being assembled, the
results are unpredictable (00 .. 5 bits/character, 01· = 6
bits/character, 10 = 7 bits/character. 11 = 8bits/charactet). -

7i'ansmltter Conf1Ol/$tdIs. Register. This 8-bit regi$ter .
(Figure 24) specifies the.operation of the transmitter.

7 . • 0

~

Figure 24. 1I'ansmltter Control/Status Register



ZIlOG INC b1E D .. 9984043 0025235 14T ..Zll

The control bits for this register are:

Transmitter Buffer Empty (BE). This bit is automatically set to
1 whenever the transmitter buffer becomes empty and
cleared to 0 when a character is loaded into the transmit
buffer. This bit is in the set condition after a reset. This bit is
controlled by the UART control circuitry; it can be read by an
110 read but cannot be set to 1 or cleared to 0 by an 110 write.

Value (VAL). This bit determines the value of the bits
transmitted while the FRC bit is 1 and dummy characters are
loaded into the transmitter buffer. When this bit is 1, a mark
character (all 1s) is sent; when this bit is 0, a break character
(all Os) is sent.

Force Character (FRC). When this bit is set to 1, any
character loaded into the transmitter buffer causes the
transmitter output to be held High or Low (as indicated by
the VAL bit) for the length of time required to transmit a
character. This allows a program to generate a marking
signal or a break of multiple-character duration simply by
setting this bit to 1, setting the VAL bit to 1 or 0, and loading
the appropriate number of dummy characters into the
transmitter buffer.

Send Break (BRK). When set to 1, this bit immediately forces
the transmitter outputto the spacing condition, regardless of
any data being transmitted. When this bit is cleared to 0, the
transmitter returns to marking.

Stop Bits (SB). This bit determines the number of stop bits
added to each asynchronous character sent. The receiver
always checks for one stop bit. If this bit is set to 1, two stop
bits are automatically appended to the character sent; if this
bit is cleared to 0, only one stop bit is appended.

Transmitter Interrupt Enable (IE). When this bit is set to 1,
interrupt requests are generated whenever the transmitter
buffer becomes empty; when this bit is cleared to 0, no
requests are made.

Transmitter Enable (EN). While this bit is cleared to 0, data is
not transmitted and the transmitter output is held marking.
Data characters in the process of being transmitted are
completely sent if this bit is cleared to 0 after transmission
has started.

Receiver ControilStatllS Register. This 8·bit register
(Figure 25) specifies the operation of the receiver. The
control bits are described below.

7 0

EEl!EEEB3
Figure 25. Receiver Control/Status Register

Receiver Error (ERR). This bit is the logical OR of the PE,
OVE, and FE bits.

Framing Error (FE). This bit is automatically set to 1 for the
received character in which the framing error occurred.
Detection of a framing error adds an additional one-half of a
bit time to the character time so the framing error is not
interpreted as a new start bit.

Parity Error (PE). When parity is enabled, this bit is
automatically set to 1 for those characters whose parity does
not match the programmed sense (even/odd). This bit is
latched, so once an error occurs, it remains set until it is
cleared by software.

Receiver Overrun Error (OVE). This bit is automatically set to
1 to indicate that more than two characters have been
received without a read from the CPU (or DMA). Only the
most recently received character is flagged with this error,
but when this character is read, the error condition is latched
until cleared by software.

Receiver Character Available (CA). This bit is automatically
set to 1 when at least one character is available in the receive
buffer; it is automatically cleared to 0 when the Receiver
Data register is read. This bit is controlled by the UART
control circuitry; it can be read by an 110 read but cannot be
set or cleared by an I/O write.

Receiver Interrupt Enable (IE). While this bit is set to 1,
interrupt requests are generated whenever the receiver
detects an error or the receiver has a character available.

Receiver Enable (EN). When this bit is set to 1, receiver
operations begin. This bit should be set only after the
parameters in the UART Configuration register are set.

UART Bootstrapping Option

The 2280 CPU supports an automatic initialization of
memory via the UART after a reset operation. This system
bootstrapping capability permits ROMless system
configurations: the memory can be initialized by a serial link
before the 2280 CPU fetches information from memory
after the reset.

On the rising edge of Reset, the AD lines are sensed if WAIT
is asserted; if AD6 is being driven High, the 2280 CPU
automatically enters a Halt state. The UART is also
automatically initialized to receive 8-bit character data with
odd parity at a x 16 clock rate. An external clock source is
assumed. A minimum of 15 processor clock cycles must
elapse before the transmission can begin.

During the bootstrapping operation, DMA Channel 0 is
used to transfer received characters into the memory. This
channel is initialized as follows:

Transaction Descriptorregister--IE, EPS, andTe cleared,
ST- byte transfer, SRP-continuous, TYPE-flowthrough,
DAD-Alita-increment memory address

DMA Master Control register-DOR and EOP set

Count register-01 00 (256 bytes to be transferred)

Destination Address register-OOOOOO (starting memory
address = 0)

Source Address register-undefined (not used when
DMAO is linked to UART

503



ZILOG INC 61E D .. 9984043 0025236 086 "ZIL

Characters 'receiveo are placed in memory starting at
,,physical memory location zero, If an error occurs, the Z280
CPU ,qrives the Transmitter' Output line Low, External
circuitry monitoring this line can'use this signal to cause the
,transmitting device to begin the initialization procedure
again, starting with a reset and AD6 asserted on the rising
edge ?f Reset '

, DMA CHANNELS

The 2280 MPU has four on-chip Direct Memory Access
(DMA)., channels to provide high bandwidth data
transmission capabilities. There are two types of DMA
channels; two support flyby transactions and the other two
do not The two types of DMA channels otherwise have
identical capabilities, although they have different priorities
with respect to interrupt requests and bus requests.

Each DMA channel is a powerful and versatile device·for
controlling and processing transfers of data. Its basic
function of managing CPU-independent transfers between
two ports is augmented by an array of features requiring little
or no external logic in systems using an 8- or 16-bit data bus.

Transfers can be performed between any two ports (source
and destination), including memory-to-I/O, I/O-to-memory,
memory-to-memory, and l/0-to-I/O. Except for flyby, two
port a~dresses are automatically generated for each
transaction and can be either fixed or incrementingl
decrementing.

During a transfer, a DMA channel assumes control of the
system address and data bus. Data is read from one
addressable port and written to the other addressable port,
byte-by-byte or word-by-word. The ports can be
programmed to be either system main memory or
peripheral 1/0 devices.

For both flyby and f1owthrough DMA transactions, if the
destination is a memory location that corresponds to an
entry in the on-chip memory (either cache or ,fixed memory
location). the on-Chip memory is updated to reflect the new
contents of the memory location.

Except in flyby mode. two 24-bit addresses are generated
by the DMA for every transfer operation, one address for the
source port and another for the destination port. Two
readaole address counters (three bytes each) keep the
currentaddress oleach port.

The DMA devices use the same memory and I/O timing as
the CPU ,for bus transactions, as indicated by the
appropriate bus timing register.

Modes of lhlnsfer Operation

Each DMA can be programmed to operate in one of three
transfer modes:

• Single Transaction. Data operations are perlormed one
byte or word at a time.

• Burst. Data operations continue until a port's Ready line
to the DMA goes inactive.

504

After 256 bytes of data have been transferred, the'Z280
CPU automatically begins, execution by fetching the first
instruction from memory location 0,

• Continuous. Data operations continue until either the
andot the programmed block of data is reached or an
end of process has been signaled before the system bus
is released:

In all modes, once a byte or word of data is read by the DMA
ctiannel, the operation is completed in an orderly fashion,
regardless of the state olother signals (including a port's
Ready line).

Pin Descriptions

Each DMA channel has a Ready input line. In addition, two
DMA channels have a flyby output line to support high
speed data transfers between 1/0 devices and memory.

The flyby output is asserted by the DMA channel to signal a
peripheral device associaied with the DMA channel that it ,
should participate in the data transmission during the
current flyby bus transaction.

nReady is active, the DMA channel requests control of the
external system bus topei'formlhe DMA ,transaction.
When the extemaJ system bus Is available for DMA trans
fers, the DMA channel with a, request pending and the
highest prioritY assumes bus mastership. The priority of
DMA chltnnels from highestt~ lowest is: DMAO, QMA1, .
DMA2, and DMAS. A DMA channel In burst'l'YIOde relin
quishes bus mastership to a higher priority DMA channel
only when its ~adyline Is deasserted (orEOP is signaled
ortermlnaJcount is reached). A DMAchannel incontinuous
mode 'relinquishes bus mastership only when EOP is
signaled or terminal count Is reached.

Priority of On-Chip DMA. Channels ,and External Bus
Requesters

The on-chip DMA channels are arranged in a daisy chain
wit,h the external Bus Request input line being the "next
lower' bus reque~er.'" on. ,tIJiIl~ 'crain. The' on-Chip DMAs
behave as if they were external bus requestors with respect
to acquiring the bus, relinquishing the bus, and priority
access to the bus. '

End-of·Process

If theen&of-process (EOP) capability Isenabled, transfers
by DMA channels can be prematurely terminated by aLow
on Interrupt A line orlnterruptB line during the transfer.
This capability'ls programmed by oontrot bits in the DMA
Master Control register. EOP occurs regardless of the



ZIlOG INC b1E D .. 9984043 0025237 T12 ..ZIl

setting of the Interrupt A Enable bit in the Master Status
register. When an EOP is signaled, the EOP Signaled
(EPS) bit in the Transaction Descriptor register of the active
DMA channel is set to 1 and the Enable bit is cleared to O.
If interrupt requests are enabled (IE =1 in the Transaction
Descriptor register), an interrupt request is generated by
the channel that was active when the EOP was signaled.
After an EOP has been signaled. the DMA relinquishes the
bus within 16 cycles of the last DMA bus transaction.

If the End-Of-Process signal on Interrupt A or B line is still
asserted when the CPU is bus master, the signal is
interpreted as an interrupt request; thus, both the DMA
channel and the external EOP generating device can
request interrupts simultaneously. Separate mask bits in
the Master Status register enable the CPU to accept
interrupts from these two sources.

On a flowthrough transaction, if the EOP signal is received
while the information is being read into the Z280 MPU, the
transfer is aborted and the data is not written out from the
Z280 MPU.

DMALinking

The DMA devices can be linked together to achieve DMA
transfers to non-contiguous memory locations (linked
operation). Bits in the DMA Master Control register allow
DMA3 to be linked to DMA1 and DMA2 to be linked to
DMAO. If the appropriate bit is set to 1 in the DMA Master
Control register, the master DMA (0 or 1) signals its linked
DMA each time its transfer is complete (count = 0). This acts
as an internal ready input to the linked DMA that reloads the
master DMA control registers.

Words are loaded into the master DMA control registers in
the following order: Destination Address register (two
words), Source Address register (two words), Count (one
word), Transfer Descriptor register (one word). After six
words have been transferred, the master DMA deasserts its
internal ready line and begins the transfer of the next block
of data. The master DMA can be programmed to interrupt
the CPU on ·count equals O· when the last block transfer is
completed by the master DMA (to notify software that the
entire sequence of transters is completed).

When programming linked DMAs, the last word to be
programmed must be the master DMA's Transaction
Descriptor register. Also, the linked DMA must be
programmed before the master DMA's status register is
programmed.

DMA Master Control Register. This 16-bit register (Figure
26) specifies the general configuration of the four on-chip
DMA channels: the linking of the DMA channels, the
software ready enables, and EOP enable.

Figure 26. DMA Master Control Register

The fields in this register are:

DMAO to Receiver Link (DOR). When this bit is set to 1, DMA
channel 0 is linked to the UART receiver.

DMA1 to Transmitter Link (01 T). When this bit is set to 1,
DMA channel 1 is linked to the UART transmitter.

OMA2 Link (D2L). When this bit is set to 1, DMA channel 2 is
linked to DMA channel O.

DMA3 Link (D3L). When this bit is set to 1, DMA channel 3 is
linked to DMA channel 1.

End-of-Process (EOPA). When this bit is set to 1, the INTA

line is used as an end-of-process signal for the DMA
channel defined by the EOPCSA field.

End-of-Process (EOP,J. When this bit is set to 1, the INTB

input acts as an EOP input for the DMA channel defined by
the EOPCSB field.

Software Ready for DMAO (SRO). When this bit is set to 1,
DMA channel 0 requests service if enabled.

Software Ready for DMA 1 (SR 1). When this bit is set to 1,
DMA channel 1 requests service if enabled.

End-of-Process Channel Select A (EOPCSA). This field
defines the DMA channel that has INTA as its EOP input.
This field has no effect if EOPAbit (bit 4) is cleared to zero

00 DMA Channel 0
01 DMA Channel 1
02 DMA Channel 2
03 DMA Channel 3

End-of-Process Channel Select B (EOPCSB). This field
defines the DMA channel that has INTB as its EOP input.
This field has no effect if EOPB bit (bit 7) is cleared to zero.

00 DMA Channel 0
01 DMA Channel 1
02 DMA Channel 2
03 DMA Channel 3

Note that while the EOPA and EOPB bits are active, fIilTA

and INTB can still serve as interrupt inputs.

DMA Channel Control Registers

Transaction Descriptor Registers. These four 16-bit
registers, one for each channel (Figure 27), describe the
type of DMA transfer to be performed and contain control
and status information.

U 0

B SAD DAD 13
Figure 27. Tra,:,saction Descriptor Register

The fields in this register are:
End-of-Process Signaled (EPS). This bit is set to 1 auto
maticallywhen the channel is active andan end-of-process
is signaled for this channel as programmed on the Interrupt
A or Interrupt B input lines, thus prematurely terminating
the transfer.

505



ZIlOG INC blE D .. 9984043 0025238 959 "ZIl
Table? SIze of ll'anuctlon (ST)Destination Address Descriptor (DAD), The.setting of this

3-bit field indicates the type of location (memory or 1/0) and
how the address is to·· be manipulated (incremented,
decremented or left unchanged), as shown i~ Table 5:

Encoding
STf STO

Sluof
111mafer

. Number to Increment!
Dechtment By

Table 5. SAD and DAD Encodlngs

Encoding Address Modlflcatlori Operation

.0 0
o 1
1 0
1 . 1

Byte
16-bit word

32-pit longword

Reserved

1
2
4

000 Auto-increment memory location

001 Auto-decrement memory location
, 010 Memory address unmodified by .

transaction

011 Reserved

100 AlIta-increment (by 1) I/Q location

101 At!to-decrement (by 1) I/O location

110 I/O address unmodified by transaction

111 Reserved

ffansfer Complete (TC), Thlsb;t Is set to 1 automatically
when the count register has reached zero.

ffansaction 'TYpe (Typ~). This 2-bit field specifies flyby or
f1owthrough type of operation (oq=f1owthrough, 01 '"
reserved, 10 "': flyby write, 11 = flybyread). In f1owihrough
mode of operation, two bus transactions occur for each
DMA operation-a read from the source followedby a write
to the destination. In. a .flyby operation, only one bus
transaction occurs for each DMA operation. In flyby write to
memory, the flyby· output pin is pulsed instead of an I/O
transaction being performed and the contents of the
Destination Address. register are output· to specify the
memory location. In flyby 'readfrom memory, the flyby
output pin ispul8ed instead of an 1/0 transaction being
performed and the contents of the Source Address register
are output to specify the memory locati6n. Only two DMAs
have flyby capability.

Bus Request Protoc()/(BRP). The setting of these two bits'
indicates the mode of DMA operation (Table 6).

Table 6. Bus RequeSt Protocol (BRP)

Interrupt Enable (IE). When this bit is set to 1, the DMA
generates an interrupt request at end of count or end of
process. When. this bit· is 0, no interrupt request is
generated.

SOL/ree Address Descriptor (SAD). The satting of this 3-bit
field indicates the type of location (memory or I/O) and how.
the address is to be manipulated (incremented,
decremented or left unchanged), as shown in Table 5.

DMA Enable (EN). While this bit is 1, the OMA transfer is
enabled.

Count Reg/stel:. This 16-bit register is progra:mmed to
contain the number of DMA transfers to be performed.
When the contents of the count register reach zero, further
requests on the ROY input line are ignored. The OMA
channel can be programmed to generate an interrupt when
the count re~ister reaches zero.

Source Address Reg/ster and Pest/nation Address
Reg.'stel:. These 24·bit registers containthe 24-bit-physical
addresses to be used during the DMA transaction. They are
not translated by the MMU. In flyby mode, only one of these
registers· is used to supply the address. for the bus
transaction as indicated in the Mode field in the Transfer
Descriptor register. The format for these registers is shown in
Figure 28.

~ 0

IXX X xl",,··. • • •• • • • • Aol
)

',;;"5..;,,.. ...;._.__..... ..... 0

IAoo· • • • • • • • • • A"I x X X X r

Size of ffansfer (ST). This 2-bit' field specifies the size of the
entity to be transferred bytheDMA .channel (Table 7). For
word transfers to or from memory locations, the memory
address must be even (least significant bit is 0). Long word
(32-bit) transfers are supported only in flyby mode, with the
cache disabled. . .

Encoding

o 0
o 1

1 0
1 1

DMA

Slnglelransaction
Burst .

Continuous

Reserved

Figura 28. Soureeand Destination Address Registers Format

Flyby lhtnsactton Timing

The Transaction Type field in the Transaction Descriptor
register indicates whether the transaction is a read or awrite.
For flyby read transactions, the Source Address Descriptor
indicates the transaction is a read from. memory: for write
flyby transactions the Destination Address Descriptor
indicates the transaction is awrite to memory. Additional wait

.states can be automatically inserted if programmed in the
appropriate timing register. See Figures 29 and 30 for timing
diagrams.

506



ZIlOG INC b1E D .. 9984043 0025239 895 ..Zll

-_-+---T,---I~--T.-_-+---

eLK

WAIT
-r----..,-------r-...1

Figure 29a. On-Chip DMA Channel Flyby Memory Read Transaction, ZOO Bus

507



ZILOG INC blE D .. 9984043 0025240 507 ..Zll

CLK

ADo-AD7

,
Ae-Au

Ai

MIiIii

WR

WAIT

OE

if HIGH

DiWiTi

Figure 29b. On-Chip DMA Channel Flyby Memory Write Transaction, zao Bus

508



ZIlOG INC 61E D .. 9984043 0025241 443 ..ZIl

r--T,--.,144--T·--·1144--T·----.j·I~·--T,~

eLK

ADo-AD1S

S!o-ST3
RIW =1

B/W

I I I I

- K ADDRESS "- DATA VALID "-
I I

-~ ADDRESS
-r-I

- 1\
-
-

/ l-

I \....J \...-
--\

/ -

Figure 30a. On-Chip DMA Channel Flyby Memory Read Transaction, Z-BUS

509



ZIlOG INC blE D .. 9984043 0025242 381 ..ZIl

!--T.--..-Ilfoo.......,--T.-~..-II""·I---T,.--·-IIf4·>---T.---I

D

ii

I I I I
~

- ,.(','

'.'

- K ~ DATAVAUD
,
I

-
"DDIlE8S-

- ,
-"')(--

/ \...../ \..~

\

-
r ~

Figure 3Ob. On-Chip DMA Channel Flyby Memory Write Tra!1saction, Z-BUS

COUNTERITIMERS

The 2280 MPU's three counter/timers can be programmed
by system software for a broad range of counting and
timing applications. The three independently
programmable channels satisfy common microcomputer
system requirements for event counting, interrupt and
interval timing, and general clock generation.

Programming the counter/timers is straightforward: each
channel is programmed with four bytes. Once started, the'
channel counts down, and optionally reloads its iime
constant automatically and resumes counting. Software
timing loops are completely eliminated. Interrupt
processing is simplified because each channel uses a
unique vector from the InterruptlTrap Vector Table.

Each channel is individually programmed with three
registers: a configuration byte, a control' byte, and a

510

time-constant word. The configuration byte selects the
operating mode (counter or timer), enables or disables the
channel interrupt, and selects certain other operating
parameters. In the timing mode, the CPU processor clock is
divided by four' for input" to the counter/timers. The
time-constant word contains a value from 0 to 65,535.

During operation, the individual counter channel' counts
down from the present time-constant value. In counter
mode operation, the counter decrements on each of the
input pulses until the counUtimaoutput condition IS met.
Each decrement is synchronized by the scaled internal
processor clock. For counts greater than 65,536, two of the
counters can be programmably cascaded. When the
counUtime output condition is reached, the downcounter is
automatically reset with the time constant value, if so
programmed.



ZIlOG INC b1E D
"'~

.. 9984043 0025243 21b "ZIl

The timer mode determines time intervals without additional
logic or software timing loops. Time intervals are generated
by dividing the internal processor clock by four and
decrementing a presettable downcounter. Thus. the time
interval is an integral multiple of the processor clock period,
the prescaler value four, and the time constant that is preset
in the downcounter. A timer is triggered by setting the
software trigger control bit in the Control/Status register or
by an external input.

All three channels can generate an external output when the
count/time output condition is met. The output is high when
the internal presettable downcounter contains all zeros.

Each channel can be programmed to generate an Interrupt
Request, which occurs only if the channel has its Interrupt
Enable control bit set to 1 by software progr~mming. When
the Z280 CPU accepts the interrupt request it automatically
vectors through the Interrupt Vector Table.

The three channels of the Z280 MPU are fully prioritized and
fit into three different slots in the Z280 internal peripheral
daisy-chain interrupt structure. Channel 0 has the highest
priority and Channel 2 has the lowest. The channels have
separate interrupt enables and the CPU's Master Status
register has individual control bits that selectively inhibit
interrupts from each channel.

Modes of Operation

The counter/timer channels have two basic modes of
operation: as counters or as timers. As counters they
monitor external input lines and record Low to High
transitions on these lines. In the timer mode, the processor
clock, scaled by four, is used instead of the external input
line. The duration of this counting or timing can be either
continuous from initial enabling (trigger operation) or only
during intervals specified by signals on an input line (gate
and gate/trigger operation). The count can be automatically

GATS
INPUT ...,;,_

restarted by programming the Retrigger Enable control bit
in the counter/timer's Configuration register.

Each of the three counter/timers has a software gate and
trigger facility that extends the hardware capabilities of the
counterltimers.

Counting Operation. While the appropriate enabling
conditions are met, the counter/timer monitors its input line
for Low-to-High transitions. When such a transition occurs,
the CountlTime register is decremented by 1.

Timing Operation. While the appropriate enabling
conditions are met, the counterltimer monitors the internal
processor clock scaled by four for Low-to-High transitions.
When such a transition occurs the CountlTime register is
decremented by 1.

Gate Operation. A counterltimer can be programmed to
count or time only when a gating condition is met. While the
counter/timer is enabled and the external gate capability is
selected, an external input line is monitored; only while this
line is High are the counting or timing operations performed.
The software gate facility filters the state of the input line;
while the software gate bit in the Command and Status
register is cleared to O. the gating condition is not met
regardless of the signals on the gating line. The gate facility
is illustrated in Figure 31.

Trigger Operation. A counter/timer can be programmed to
count or time only after a triggering condition occurs. While
the counter/timer is enabled and the external trigger
capability is programmed, an external input line is
monitored; only after this line makes a Low-te-High transition
is a counting or timing operation performed. The software
trigger facility causes the triggering condition to be met
regardless of the activity of this line. The trigger operation is
illustrated in Figure 32.

COUNTER
ORTIMER __.....J

CLOCK
COUNTnl••

RDI.T.R
DRR.....T.D

Lfl.....__rLIl....._

Figure 31. Gate Facility

TRIQG.R
INPUT ..1

COUNTER n
OR TIMER .....J, , ...1

CLOCK
COUNTnl••

R.GI.T.R
D.C.....TID

Figure 32. Trigger Operation

'''----.....In__

511



•

ZILOG INC b1E D
GATE

eAftIT"::. r:
-------,(TRIGGEJII

COUNTER
OR TIMER

CLOCK
COUIITIT••

....I.T...
DIICMMIIIITIID

.. 9984043 0025244 152 "ZIL
GATE

L.J

•
FIgure 33. Gatel1l1gger Operetlon

Gateffilgger Operation. One input line can be used for
both the gating and the triggering functions. A Low·to-High
transition on this line acts as a trigger and subsequent High
signals on this line function as gate signals. If non
retriggerable mode is programmed, subsequent Low·to
High transactions do not cause a trigger. GatelTrigger
Operation is shown in Figure 33. .'

The software gate and trigger mechanism can also be used
in this mode of operation. A software gate before a trigger
(hardware or software) has no effect on the counterltimer.
After a hardware or software trigger, the software gate must
be set to 1 for the CounUTime register to be decremented. A
software trigger after a hardware or software trigger has no
effect unless the Retrigger Enable control bit is set to 1.

CounterlTlmer Control and Status Registers

Each counter/timer has two 8-bit control registers,alid two
16-bit count registers. The Configuration register and
Command/Status register determine the coufll:erltimers'
operation, the CourlterlTimer Command/Status register
provides information about the current operation, the Time
Constant register contains the initialization value for the
counter/timer, and the. CounUTime register contains the
current value of the count in progress.

7

~ I'"
• Only lhe CTC .... In Counlermmer 0Is used.

Figure 3f. CounterlTlmer Configuration Register

CounterlTlmerConfiguration Reglater. This 8-bit register
(Figure 34) specifies the counter/timer's mode of operation:
the pin configuration, whether an interrupt request is
generated, and whether the countdown sequence is
automatically restal'ted when the count reaches zero or
when a trigger occurs.

The fields in this regiSter are:

Input Pin Assignments (/PA). This 4-bit field specifies the
functionality - of the input lines associated with the
counter/timer and whether the counterltimer monitors an
external input (counting operation) or uses the scaled
internal processor clock (timing operation). The four bits in
this field can be associated with enabling output generation
(EO), selecting the external signal or internal clock (CfT),
enabling the gating facility (G), and enabling the triggering
facility (1). The selected options determine the functions
associated with each input line associated with the
counter/timer, as illustrated in Table 8.

Thble 8. Input Pin Functionality

IPAFleld Pin Functionality
EO CIT G T . eoUnterlTlmer I/O CounterlTll1l8l'.lnput Notes

0 0 0 0 Unused Unused Timer
0 0 0 1 Unused Trigger Timer
0 0 1 0 Gate Unused Timer
0 0 1 1 Gate Trigger Timer
0 1 0 0 Unused Input Counter
0 1 0 1 Trigger Input Counter
0 1 1 0 Gate Input Counter
0 1 1 1 GatelTrigger Input Counter
1 0 0 0 Output Unused Timer
1 0 0 1 Output Trigger .Timer
1 0 1 0 Output GatE! Timer
1 0 1 1 Output GatelTrigger Timer
1 1 0 .0 Output Input Counter
1 1 0 1 Unused Unused Reserved
1 1 1 0 Unused Unused Reserved
1 1 1 1 Unused Unused Reserved

512



ZIlOG INC 61E D .. 9984043 0025245 099 .. ZIl

CounterfTimer Cascade (CTC). When this bit is set to 1,
counterltimers°and 1 form a 32·bit counter. When used as
a 32-bit counter/timer, the fields in the Configuration register
and Command/Status register for Counter/Timer °are
ignored with the exception of the IE, CTC, EO, Clp, CC, and
COR fields. The CTC bits in the CounterlTimer Configuration
registers of counter/timers 1 and 2 are never used.

Interrupt Enable (IE). While this bit is set to 1, the
counter/timer generates an interrupt request when the
count/time output condition is met. While this bit is 0, no
interrupt request is generated.

Retrigger Enable (RE). While this bit is set to 1, the time
constant value is automatically loaded into the CountlTime
register when a trigger input is received while the
counterltimer is counting down. While this bit is 0, no
reloading occurs.

Continuous/Single Cycle (CIS). While this bit is set to 1, the
countdown sequence is automatically restarted when the
count reaches zero by loading the time constant value into
the CountlTime register. While this bit is 0, no reloading
occurs.

CounterlTimer Command/Status Register. This 8-bit
register (Figure 35) provides software control over the
operation of the counter/timer and reflects the current status
of the counterltimer's operation. Control bits .in this register
enable the counter/timer's operation and provide software
gate and trigger capabilities. Status bits indicate whether a
count is in progress, the count/time output condition has
been reached, or the condition has been reached a second
time.

7 0

~

Figure 35. CounterlTlmer Command/Status Register

The fields of this register are:

Count Overrun (COR). When this bit is set to 1, the
count/time output condition has been reached and the CC
bit is set to 1, thus indicating a count overrun condition.
While this bit is cleared to 0, the count/time output condition
has not been reached with the CC bit set since the time the
CC bit was cleared by software. This bit can be read or
written (set or cleared) by software 110 instructions.

CountlTime Output Condition has been Met (CC). When this
bit is set to 1, the Count/Time register has been
decremented to zero by the counter/timer control circuitry in
single cycle mode or the CountlTime register has been
reloaded in continuous mode. When this bit is cleared to 0,
the count has not reached the count/time output condition
since the bit was cleared by software. This bit can be read or
written (set or cleared) by software I/O instructions.

Count In Progress (CIP). While this bit is set to 1, the
counterltimer is operating and the CountlTime register is
non·zero; while this bit is cleared to 0, the counterltimer is

not operating. This bit is controlled by the counterltimer
control circuitry; it can be read by an 110 read but cannot be
set or cleared by an 110 write instruction.

Software Trigger (TG). When this bit is set to 1 (and the trigger
operation of the counter/timer is enabled), if the Enable bit is
also set to 1, the trigger operation is enabled on the rising
edge of the first processor clock period following the setting
of this bit from a previously cleared value. That is, if a
hardware trigger has not already occurred, the contents of
the Time Constant register are loaded into the CountlTime
register and the countdown sequence begins. If a hardware
trigger has already occurred, then if Retrigger Enable is set
to 1, the counterltimer is retriggered; otherwise, setting this
bit has no effect. Writing a 1 in this field when the previous
value was 1 has no effect on the operation of the
counter/timer. When this bit is cleared to 0, this bit has no
effect on the operation of the counter/timer.

Software Gate (GT). When this bit is set to 1 (and the gate
operation of the counterltimer is enabled), if the Enable bit is
also set to 1, operation begins on the rising edge of the first
processor clock period following the setting of this bit from a
previously cleared value. Writing a 1 in this field when the
previous value was 1 has no effect on the operation of the
counter/timer. When this bit is cleared to 0, the countdown
sequence is halted.

Enable (EN). While this bit is set to 1, the counterltimer is
enabled; operation begins on the rising edge of the first
processor clock period following the setting of this bit from a
previously cleared value. Reset clears this bit. While this bit
is cleared to 0, the value in the Time Constant register is
constantly transferred to the CountlTime register. If the Time
Constant register is all zeros, the output of the counterltimer
is one. Thus, when the counter/timer is not enabled, the
counterltimer output in conjunction with the Time Constant
register can be used as an I/O port. Writing a 1 in this field
when the previous value was 1 has no effect on the
operation of the counter/timer. While this bit is 0, the
counter/timer performs no operation during the next (and
subsequent) processor clock periods.

Time Constant Register. This 16-bit register holds the
value that is automatically loaded into the Count/Time
register when the counter/timer is enabled or in the
continuous or retrigger mode wHen the count reaches zero
or the trigger is asserted, respectively. This register can be
read or written by I/O instructions.

CountITlme Register. This 16·bit register holds the current
value of the count or timing in progress. It is automatically
loaded from the Time Constant register, and can be read by
software using the 110 read instructions.

Pin Descriptions

The counter/timers have two external input lines associated
with them. The I/O lines transfer signals between the
counterltimers and external devices. The input lines receive
signals from external devices for the counter/timers. The
interpretations of the signals on these lines is determined by
the Input Pin Assignment field in the Configuration register.

•
513



ZIlOG INC 61E D .. 9984043 0025246 T25 ..ZIl

MULTIPROCESSOR MODE OF OPERATION

Features

• Allows global memory areas for shared resources

• Global memory addresses are user-specified

• Separate requests for local and global buses

• Requesting mechanism is transparent to user

• Easily interfaces to external arbiters

The1280 supports various muftiproceSsorconfigurations,
wherein it is the default b!JS master of the local bus, and it
goes through a defined protocol to access the global bus.
To invoke the multiprocessor mode, the Local Address
R~gister contents should be defined, and the MP bit of the
Bus Timing and IniliaHzation Register sel

Pin Functionality When the1280is in the multiprocessor
mode, CounterlTimer O's 10 pin is used as the Global
Request (Gm:Q) output, and CounterlTimer O's Input pin
is used as the Global Acknowledge (GACK) input

Local Address Register. Before an external memory bus
transaction Is to proceed" the Z280 distinguishes
whether a bus transaction uses the local or global bus
by comparing the four most significant bit of the
physical address (address bits 20 through 23) with a
4-bit Base field in the LOcal Address register (Figure
36). A mask field In th~ register specifies which bits
are to be compared. ·If all corresponding address bits
match the Base field bits (for 1hose bit posltiops
specified by the mask field), then bus transaction can
proceed on the local bus without· requesting Ahe glo~1 '
bus; if there is a mismatch In at least one 'Specifies bit
position, then the global bus Is requested and the bus
transaction d,oes not proceed until the global bus
acknowledge signal is asserted.

7 0

Figure 36. Local Address Register

The bitS in the Local Address register are:

Base (BrJ. WhenBnis 1. address bit An must be 1for a local
bus transaction to be performed (unless Match Enable bit
MEn is 0); when bit Bn is 0, address bit An must be 0 for a
local bus transaction to be performed.

514

Match Enable (MErJ. When MEn is 1, address bit An is
compared to base bit Bnto determine ifthe address,requires
the use ofthe global bus. When MEn is 0, then any values for
An and Bn will produce a match. If each MEn isO. then all
bus transactiorisare performed onthe local !?Us.,

CPU Accesses on the Global Bus

The Z280 is Ihedefauft IocaIl>usmaster,whetherit is in the
multi:processormodeornot. ft relinquishesIhelocalbus by
following a protocol controlled by the BUSREQ input and'
BuSAcRoutputpins.When BUSREaisasserted. it is syn
chronized internally by the CPU. Whenthe CPU is ready to
relinquish the local bus, It places all Its bus control outputs,
including GREO, in 3-state,and then drives BUSACK
active. Afterreset. the CPU acknowledgesarequestforthe
local bus before performing any transactions:

In mufti-processor mode, the CPU determines if the next
external memory transaction shouldaocesstheglobalbus.
If such is the case, and if the CPU currently is the local bus
master, it puts the global address on the address outputs,
and the status signalsarea1~made valid, at the beginning
of a bus clock cycle. GREQ is asserted in the second half
of the same bus clock cycle.. The CPU then samples
BUSREQ and GACR continuously. Both inputs are syn
chronized intemallybythe CPU.The CPUwill proceedwith
the glol:lal transaction after it samples that·~ is as
serted, with the absence of BUSREQ. Once the CPU
controls the9tobal' bus, It can perform multiple global
transactions. It relinquishes the global bus when the
next transaction should not tt,8ral,' when BUSREQ
becomes active, or when is de-asserted. A
global test and set instruction Is atomic (global read is.
followed by global write), and a global memory burst
transaction completes Its entire sequence of data
transfers.
DMA Accesses on the Global Bus

Each on-chip DMA channel can access the global bus to
perform data transfers. The, address generated during
each DMA-initiated memory transfer is compared with the
contents of the·LocaI Address register to detemine whether
the global bus should be requested. The protocol is Identl
cal lo theglobal memory transactions initiatedby the CPU.



. . . . .
ZIlOG INC 61E D .. 9984043 0025247 961 .. Zll

f-----Tl-1
rL-J

ADDRESSI
DATA

STO-ST3
RlW
a/.

I I I
GLOBAL ADDRESS-

HIGH

-
-

\

Figure 37. MUltiprocessor Mode Timing, Z-Bus Example

EXTERNAL INTERFACE

The two different external interfaces for the l280 MPU are
the 8-bit l80 Bus and the 16-bit loBUS.

zaG Bus Extemallnterface

Features

• 8·bit data bus

• Multiplexed address/data lines

• Supports l80 Family peripherals

Pin Descriptions

As-A23. Address (output. active High, 3-state). These
address lines carry I/O addresses and memory addresses
during bus transactions.

ADo-AD7. Address/Data (bidirectional, active High, 3-state).
These eight multiplexed Data and Address lines carry I/O
addresses, memory addresses, and data during bus
transactions.

AS. Address Strobe (output, active Low, 3-state). The rising
edge of AS indicates the beginning of a transaction and
shows that the address is valid.

BUSACK. Bus kknowledge (output, active Low). A Low on
this line indicates that the CPU has relinquished control of
the bus in response to a bus request.

BUSREQ. Bus Request (input, active Low). A Low on this
line indicates that an external bus requester has obtained or
is trying to obtain control of the bus.

elK. Clock Output (output). The frequency of the proces
sor timing clock is derived from the oscillator input (external
oscillator) or crystal frequency (internal oscillator). The
processor clock is further divided by one, two, or four (as
programmed) and then output on this line.

CTIN. CounterfTimer Input (input, active High). These lines
receive signals from external devices for the counter/timers.

CTIO. Counter/Timer I/O (bidirectional, active High,
3-state). These I/O lines transfer signals between the
counter/timers and external devices.

DMASTB. DMA Flyby Strobe (output, active Low). These
lines select peripheral devices for flyby transfers.

EOP'" EOPa. End of Process (input, active low). An
external sourcecan tenninate a DMAoperation in progress
by driving EOPA or EOPBLow. EOP always applies to the
corresponding programmed channel; if no channel is ac
tive, EOP is ignored.

GACK. Global kknow/edge (input, active Low). A Low on
this line indicates the CPU has been granted control of a
global bus.

515



PAUSE. MPU Pause (input, active Low). While this line is
Low the MPU refrains from transferring data to or ·from an
Extended Processing Unit in the system or from beginning
the execution of an instruction. •

RD. Read (output, active Low, 3-state). This signal indicates
that the CPU ,or DMA peripheral is reading dat.a from
memory or an 110 device.

'FiOV. DMA Ready (input, active Low)., These lines are
monitored by the DMAs to determine when a peripheral
device associated with a DMA port is ready for a read or
write operation. When a DMA port is enabled to operate, its
Ready line indirectly controls DMA activity; the manner in
which DMA activity is controlled by the line varies with the
operating mode (single-transaction, burst, or continuous).

GREQ. Global Request (output, active Low, 3-state). A Low
on this line indicates the CPU has obtained or is trying to
obtain control of a global bus.

GND. Ground. Ground reference.

HALT. Halt (output, active Low, 3-state). This signal indicates
that the CPU is in the Halt state and is awaiting an interrupt
before operation can resume.

iE. Input Enable (output, active Low, 3-state). A Low on this
line indicates that the direction of transfer on the
Address/Data lines is toward the MPU.

INT. Maskable Interrupts (input, active Low). A Low on these
lines requests an interrupt.

IORQ. Input/Output Request (output, active Low, 3-state).
This signal indicates, that ADo-AD7 and A16-A23 of the
address bus hold a valid 110 address for an 110 read or write
operation. An IORQ signal is also generated with an
M1 signal when an interrupt is being acknowledged, to
indicate that an interrupt response vector can be placed on
the data bus.

M1. Machine Cycle One '(output, active Low, 3-state). This
signal indicates that the current transaction is the opcode
fetch cycle of a RETI instruction execution. M1 also occurs
with 10RQ to indicate an interrupt acknowledge cycle.

MREQ. Memory Request (output, active Low, 3-state). This
signal indicates that the address bus holds a valid address
for a memory read or write operation.

NMI. Nonmaskable Interrupt (input, falling-edge activated).
A High-to-Low transition on this line requests a nonmaskable
interrupt. '

CE. Output Enable (output, active Low, 3-state).A Low on
this line indica.tes that the direction of transfer on the
AddresslDatalines is away from the MPU.

OPT. Bus Option (input). This signal establishes the bus
option during reset.

ZIlOG INC

OPT

o
1

Bus Interface

Z80 Bus, 8-bit
Z-BUS, 16-bit

b1E D .. 9984043 0025248 8T8 ..Zll

RESET. Reset'(input, active Low). A Low on this line resets
the CPU and on-chip peripherals.

RFSH. Refresh (output, active Low, 3-state). This signal
indicates that the lower ten bits of the Address bus contain a
refresh address for dynamic memories and the current
MREQ signal should be used to perform a (efresh to all
dynamic memories.

'RxD. UART Receive (input, active High). This line receives
serial data at standard TTL levels.

nco. UART 7i'ansmit (output, active High). This line transmits
serial data at standard TTL levels.

WAIT. Wait (input, active Low). A Low on this line indicates
that the responding device needs more time to complete a
transaction.

WR. Write (output, active Low, 3.:State). This signal indicates
that the bus holds valid data to be stored at the addressed
memory or 110 location.

XTALI. Clock/Crystal Input (time-base input). Connects a
parallel-resonant crystal or an external single-phase clock to
the on-chip oscillator.

XTALO. Crystal Output (time-base output). Connects a
parallel-resonant crystal to the on-chip oscillator.

+5V; Power Supply Voltage. (+5 nominal).

Bus Operations

Two kinds of operations can occur on the system bus:
transactions and requests. Atany given. time, one device
(eith'er the CPU or a bus requester) has control of the bus
and is known as the bus master. A transaction i,s initiated by
the bus master and is responded to by some other device on
the bus. Only one transaction can proceed at a time; seven
kinds of transactions can occur:

DMA Flyby. This transaction is used by the DMA peripheral
to transfer data between an external peripheral anc;1
memory.

Halt. This transaction is used to indicate that the CPU is
entering the Halt state.

Interrupt kknow/edge. This transaction is used by the CPU
to acknowledge an interrupt and to transfer additional
information from the interrupting device.

110. This transaction is used by the CPU or DMA peripheral
to transfer data to or from an external peripheral.

Memory. This transaction is used by the CPU or DMA
peripheral to transfer data to or from a memory location.

Refresh. This type of transaction performed by the refresh
peripheral does not transfer data; it refreshes dynamic
memory.

RETI. This transaction is generated only by the CPU and is
used in conjunction with the Z8400 peripheral's interrupt
logic. .

516



ZIlOG INC 61E D .. 9984043 0025249 734 .. Zll

Only the bus master can initiate transactions. A request,
however, can be initiated by a component that does not have
control of the bus. Two types of these requests can occur:

Bus. This request is used by external devices to request
control of the system bus to initiate transactions.

Interrupt. This request is used to request the attention of the
CPU.

When an interrupt or bus request is made, it is answered by
the CPU according to its type. For an interrupt request, the
CPU initiates an interrupt acknowledge transaction and for
bus requests, the CPU enters bus disconnect state,
relinquishes the bus, and activates an Acknowledge signal.

Finally, the Z280 MPU itself may not be the system bus
master. See the Multiprocessor Mode section for a
discussion of this capability.

Transactions

Information transfers (both instructions and data) to and
from the Z280 MPU are accomplished through the use of
transactions. All transactions start when AS is driven low
and then raised High. This signal can be used to latch Z280
MPU addresses to de-multiplex the Z280 Address/Data
lines required by Z80 Family peripherals. Coincident with AS
assertion, the Output Enable line is also asserted.

If the transaction requires an address, it is valid on the rising
edge of AS. No address is required for Interrupt
Acknowledge transactions.

The Read and Write lines are used to time the actual data
transfer. (Refresh transactions do not transfer any data and
thus do not activate RD.) For write operations, a low on
WR indicates that valid data from the bus master is on the
AD lines. The Output Enable line is also activated with WR.
For read operations, the bus master makes the AD lines
3-state before driving RD low so that the addressed device
can put its data on the bus. The bus master samples this data
on the falling clock edge just before raising Rri High.
The Input Enable line is also activated with RD.

Walt Cycle. The WAIT line is sampled on the falling clock
edge when data is to be sampled (Le., when RD or WR rises).

If the WAIT line is low, another cycle is added to the trans
action before data is sampled (RD or WR rises). In this added
cycle and all subsequent cycles added due to WAIT being
low, the WAIT line is sampled on the falling edge and, if it
is low, another cycle is added to the transaction. In this way,
the transaction can be extended by external devices to an
arbitrary length to accommodate (for example) slow
memories or 110 devices that are not yet ready for data
transfer.

The WAIT input is synchronous and thus must meet the
specified setup and hold times in order for theZ280 MPU to
function correctly. This requires asynchronously generated
WAIT signals to be synchronized to the ClK output before
they are input into the Z280 MPU. Automatic wait states can
also be generated by programming the Bus Timing and
Control register and the Bus Timing and Initialization
register; these are inserted in the transaction before the
external WAIT signal is sampled.

Memory Transactions. Memory transactions move
instructions or data to or from memory when the Z280 MPU
makes a memory access. Thus, they are generated during
program execution to fetch instructions from memory and to
fetch and store memory data. They are also generated to
store old program status and fetch new program status
during interrupt and trap handling, and are used by DMA
peripherals to transfer information. A memory transaction is
three bus cycles long unless extended with wait states
(Figures 38 and 39).

RET! Transactions. These transactions (Figure 40) are
similar to two memory read transactions except that M1 is
asserted throughout each read transaction, falling early in
the first bus cycle, and that MREQ, M1, RD and IE are
deasserted on the rising edge of the clock following the third
cycle. Each of the read transactions is followed by a
minimum ofthree bus cycles of inactivity. These transactions
are invoked when an RETI instruction is encountered in the
instruction stream; they are used during the re-fetching of
the instruction from memory so that interrupt logic within
Z80 peripherals that monitor the bus for this instruction will
function correctly.

Note: Refresh cycles and DMA transfers may occur
between RETI bus cycles.

517



ZllOG INC b1E D .. 9984043 0025250 45b ..Zll

T
,:

1
..
i CJIc c:

T i E
m j::
a: :I: !I..

i,: ~ !!!
:I:

1 i•
T

::I
Gi
t')

l!
0= :I

1 l

; .. J 1:1 II I; i I!
=& I

~
C

518
\



ZIlOG INC b1E D .. 9984043 0025251 392 "ZIl

I!!..
10

-(-f---
IiI~Ii..

'e

,--

><T - ~ 1-+-+----+---1-----1

~

!
T
1..... --+--1

t
;!

! -><
1- c- t-t---1f----+---t-t

T i~ 1..-
!!:.:E """""

j ., I t-t---1f----+---t-t" r-t--f"'---+-

j ._~' ...-.-_1--1--+-(""--1

0=

tJ
11
TL....,J--t--1
jL....,I--t--I

~~li ·- l~>-)<I-+-_.......-+-_.......-+---t-;

.. ~li l.-'"
fa~t .-':~ I f'.t-+-_/-+-

1 ~
T ,- 0~
1 !x)-- r'

I I I I I I

519



ZIlOG INC b1E D .. 9984043 0025252 229 ..Zll

Halt 'ft'ansaetlons. The Halt bus transaction does not
transfer data (Figure 41 ).It looks like a memory transaction,
exceptthat RD andWR remain High and no data is'
transferred. The WAIT line is not sampled during the Halt
transaction.

Halt transactions are identical to memory read trapsactions
except that HALT is· asserted throughout the transaction,
falling during the second half of the first bus cYcle, and.
remains asserted until an interrupt is acknowtedged. This·
transaction is invoked when a ; Halt instruction is
encountered in the instruction stream or a fatal sequence of
traps occurs. Although the Halt transaction is three cycles,
the HALT line remains asserted until an Interrupt request is
acknowledged or aReset is received. Refresh (to maintain a

minimum frequency of bus transactions) or. DMA transfers
may occur while HALT is asserted; also, the bus can be

. granted. The address put out during the address phase of
this cycle is the address,of the Halt instruction.

110It'ansaetlons. 110 transactions move data to (Figure 42)
or from (Figure 43) peripherals and are generated during
the execution of I/O instructions.

110 transactions are four clock cycles long at a minimum,
~nd Imay be lengthened by the addition of wait cycles. The
ext~ clock cycle allows for slower peripheral operation.

The lORa .line indicates that an 110 transaction is taking
place. The 110 address is found on ADo-AD7 and Ag-A23

.when AS rises. .

HIGH

lUi , WI( HIGH

R'

..
• Add.... 01 HALT InotJucI!on.

Figure 41. ,Halt Timing

520



ZIlOG INC 61E D II 9984043 0025253 165 IIZIl

!--T,-!--TZ !--TW-!--T3 1

I I I I
i--

-
- K ADDRESS DATA VALID

- XADDRESS-
- I\.....J

/ \

~
HIGH

CLK

ADO-AD7

Figure 42. 110 Write Timing

r-T'--J--T.--r-Tw-r-T3-1
I I 1 I

..-

-
- -< ADDRESS " ~,
-

ADDRESS-
- rLI

/ ~.-

~

CLK

Figure 43. 1/0 Read Timing

521



ZIlOG INC b1E D II 9984043 0025254 OT1 IIZll

Interrupt Acknowledge Transactions. These trans
actions (Figure 44) acknowledge an interrupt and read
information from the device that generated the interrupt. The
transactions are generated automatically by the hardware
when an external interrupt request is detected.

The Interrupt Acknowledge transactions are five cycles long
at a minimum and have two automatic Wait cycles. The Wait
cycles are used to give the interrupt priority daisy chain (or
other priority resolution device) time to settle before the
identifier is read. Additional automatic Wait states can be
generated by programming the Bus Timing and Control
register.

. The Interrupt Acknowledge transaction is indicated by an
M1 assertion without MREO during the first cycle. During
this transaction the IORO signal becomes active during the
third cycle to indicate that the interrupting device can place

an 8-bit vector on the bus. It is captured from the AD lines on
the falling clock edge just before IORO is raised High.

There are two places where the WAIT line is sampled and,
thus, where a Wait cycle can be inserted by external
circuitry. The first serves to delay the falling edge of IORO
to allow the daisy chain a longer time to settle, and the
second serves to delay the point at which the vector is read.

Refresh Transactions. A memory refresh transaction
(Figure 45) is generated by the 2280 refresh mechanism
and can occur immediately after the final clock cycle of any
other transaction. The memory refresh counter's 10·bit
address is output on ADo·AD? and Ae·Ag during the normal
time for addresses. The RFSH line is activated with
MREO. This transaction can be used to generate refreshes
for dynamic RAMs.

I I I I I
i--

-
/

/

-- K UNDEFINED' " " DATA I7 I -
3 ::x UNDEFINED

-"-- r\1

HIGH

T / \ / \

HIGH

-,I

•
-

eLK

ADO-AD

• AD1 and AD2 indicates type of interrupt being acknowledged. if interrupt mode 3 is in effect.

Figure 44. Maskable Interrupt Acknowledge Sequence

522



ZIlOG INC 61E D .. 9984043 0025255 138 ..Zll

I I- I
r--

- K ADDRESS· ",
-

ADDRESS·-
- V

-,

eLK

!-Tl_!_T,_I_T,-j

As-An

RD,WR

ADO-AD,

·'0 leaat significant bits are Refreah add...... the rest are undefined.

Figure 45. Refresh Timing

Requests

There are three kinds of request signals that the Z280 MPU
supports. These are:

• Interrupt requests, which another device initiates and the
CPU accepts and acknowledges.

• Bus requests, which an external potential bus master
initiates and the Z280 MPU accepts and acknowledges.

• Global bus requests, which the CPU or on-chip DMA
initiates to acquire a global System bus.

When a request is made, it is answered according to its type:
for interrupt requests, an Interrupt Acknowledge transaction
is initiated; for bus requests, an Acknowledge signal is sent;
for global bus requests, an Acknowledge signal is received.

Interrupt Requests. The Z280 CPU supports two types of
interrupt, maskable and nonmaskable (NMI). The Interrupt
Request line of a device that is capable of generating an
interrupt can be tied to the NMI or maskable interrupt
request lines. Several devices can be connected to one pin
with the devices arranged in a priority daisy chain. However,
all Z80 family peripherals should be on the same line (or no
nesting of interrupts among different lines). The CPU uses
different protocols for handling requests on the NMI pin

than the protocol used for maskable interrupt pins. The
sequence of events shown below should be followed:

Any High-to-Low transition on the NMI input is asynch
ronously edge-detected, and the internal NMI latch is set.
At the beginning of the last clock cycle in the last internal
machine cycle of any instruction, the interrupt inputs are
sampled along with the state of the internal NMllatch.

If a maskable interrupt is requested and the Master Status
register indicates that requests on that line are to be
accepted, the next possible bus transaction is the Interrupt
Acknowledge transaction, which results in information from
the highest-priority interrupting device being read off the AD
lines. This data is used to initiate the interrupt service routine.
For a nonmaskable interrupt request, the hexadecimal
constant 0066 is used to initiate the interrupt service routine,
except in mode 3.

Bus Requests. To generate transactions on the bus, a
potential bus master (such as the DMA Controller) must gain
control of the bus by making a bus request. A bus request is
initiated by pulling BUSREQ Low. Several bus requesters
may be wired-OR to the BUSREQ pin; priorities are
resolved externally to the CPU, usually by a priority daisy
chain.

523



ZIlOG INC 61E D .. 9984043 0025256 974 .. Zll

The asynchronous BUSREQ signal generates an internal
BUSREQ, whioh is synchronous. If the external BUSREQ is
Low at the beginning of any machine cycle, the internal
BUSREQ causes the Bus Acknowledge line (BUSACK) to
be asserted after the current machine cycle is completed.
(Exceptions are the TSET instruction where the
read-modify-write cycle is atomic and DMA transfer in burst
or continuous mode.) The CPU then enters Bus Disconnect
state and gives up control of the bus. All MPU Output pins,
except BUSACK, are 3-stated.

The CPU regains control of the bus after BUSREQ rises.
Any device desiring control of the bus must wait at least two
bus cycles after BUSREQ has risen before pulling it down
again.

The on-chip DMA channels have higher priority than
external devices requesting the bus via BUSREQ.

loBUS External Interface

Features

• 16·bit data bus

• MUltiplexed address/data lines

• Supports high-speed burst mode transfers

• Provides EPA interface

Pin Descriptions

A16-A23' Address (output, active High, 3-state). These
address lines carry I/O addresses and memory addresses
during bus transactions.

ADo-AD15' Address/Data (bidirectional, active High,
3-state). These 16 multiplexed address and data lines carry
I/O addresses, memory addresses, and data during bus
transactions.

AS. Address Strobe (output, active Low, 3-state). The rising
edge of Address Strobe indicates the beginninSL of a
transaction and shows that the address, status, RIW, and
Bm signals are valid.

BUSACK. Bus Acknowledge (output, active Low). A Low on
this line indicates that the CPU has relinquished control of
the bus in response to a bus request.

BUSREQ. Bus Request (input, active Low). A Low on this
line indicates that an external bus requester has obtained or
is trying to obtain control of the bus.

BIW. ByteIWord (output, Low = Word, 3-state). This signal
indicates whether a byte or a word of data is to be
transmitted during a transaction.

ClK. Clock Output (output). The frequency ofthe processor
timing clock is derived from the oscmator input (external
oscillator) or crystal frequency (internal oscillator) by
dividing the crystal or external oscillator input by two. The
processor clock is further divided by one, two, or four (as
programmed), and then output on this line.

524

CTIN.. CounterfTimer Input (input, active High). These lines
receive signals from external devices for the counter/timers.

CTIO. CounterlTimer I/O (bidirectional, active High,
3-state). These I/O lines transfer signals between the
counterltimers and external devices.

DMASTB. DMA Flyby Strobe (output, active Low). These
lines select peripheral devices for DMA flyby transfers.

OS. Data Strobe (output, active Low, 3-state). This signal
provides timing for data movement to or from the bus
master.

EOP. End ofProcess (input, active Low). An external source
can terminate a DMA operation in progress by driving EOP
Low. EOP always applies to the active channel; if no channel
is active, EOP is ignored.

GACK. Global Acknowledge (input, active Low). A Low on
this line indicates the CPU has been granted control of a
global bus.

GREQ. Global Request (output, active Low, 3-state). A Low
on this line indicates the CPU has obtained or is trying to
obtain control of a global bus.

iE. Input Enable (output, active Low, 3-state). A Low on this
line indicates that the direction of transfer on the
Address/Data lines is toward the Cpu.

INT. Maskable Interrupts (input, active Low). A Low on these
lines requests an interrupt.

NMI. Nonmaskable Interrupt (input, falling-edge activated).
A High-to Low transition on this line requests a nonmaskable
interrupt.

OE. Output Enable (output, active Low, 3-state). A Low on
this line indicates that the direction of transfer on the
Address/Data lines is away from the MPU.

OPT. Bus Option (input). This signal establishes the bus
option during reset as follows:

Bus Interface

o ZBO-Bus, B-bit
1 Z-BUS, 16-bit

J5AUSE. CPU Pause (input, active Low). While this line is Low
the CPU refrains from transferring data to or from an
Extended Processing Unit in the system or from beginning
the execution of an instruction.

ROY. DMA Ready (input, active Low). These lines are
monitored by the DMA channels to determine when a
peripheral device associated with a DMA channel is ready
for a read or write operation. When a DMA channel is
enabled to operate, its Ready line indirectly controls DMA
activity; the manner in which DMA activity is controlled by
the line varies with the operating mode (single-transaction,
burst, or continuous).

RESET. Reset (input, active Low). A Low on this line resets
the CPU and on-Chip peripherals.



ZIlOG INC 61E D .. 9984043 0025257 800 .. ZIl

RIW. ReadlWrite (output, Low = Write, 3-state). This signal
determines the direction of data transfer for memory, I/O, or
EPU transfer transactions.

RxD. UART Receive (input, active High). This line receives
serial data at standard TIL levels.

STo·ST3' Status (output, active High, 3-state). These four
lines indicate the type of transaction occurring on the bus
and give additional information about the transaction.

lieD. UART Transmit (output, active High). This line transmits
serial data at standard TIL levels.

WAIT. Wait (input, active Low). A Low on this line indicates
that the responding device needs more time to complete a
transaction.

XTALI. Clock/Crystal Input (time-base input). Connects a
parallel-resonant crystal or an external single-phase clock to
the on-chip clock oscillator.

XTALO. Crystal Output (time-base output). Connects a
parallel-resonant crystal to the on-chip clock oscillator.

+ 5V. Power Supply Voltage. (+5 nominal).

GND. Ground. Ground reference.

Bus Operations

Two kinds of operations can occur on the system bus:
transactions and requests. At any given time, one device
(either the CPU or a bus requester) has control of the bus
and is known as the bus master. A transaction is initiated by
the bus master and is responded to by some other device on
the bus. Only one transaction can proceed at a time; eight
kinds of transactions can occur:

Burst Memory. These transactions are used to transfer four
words of instructions from the memory to the CPU.

DMA Flyby. This transaction is used by the DMA peripheral
to transfer data between an external peripheral and
memory.

EPU Transfer. This transaction is used to transfer data
between the CPU and an EPU.

Halt. This transaction is used to indicate that the CPU is
entering the Halt state.

Interrupt kknowledge. This transaction is used by the CPU
to acknowledge an external interrupt request and to transfer
additional information from the interrupting device.

I/O. This transaction is used by the bus master to transfer
data to or from an external peripheral.

Memory. This transaction is used by the bus master to
transfer data to or from a memory location.

Refresh. These transactions by the refresh mechanism do
not transfer data; they refresh dynamic memory.

Only the bus master can initiate transactions. A request,
however, can be initiated by a device that does not have
control of the bus. Two types of requests can occur:

Bus. This request is used to request control of the bus to
initiate transactions.

Interrupt. This request is used to request servicing by the
CPU.

When an interrupt or bus request is made, it is answered
according to its type: for an externally generated interrupt
request, an Interrupt Acknowledge transaction is initiated by
the CPU; for bus requests, the MPU enters Bus Disconnect
state, relinquishes the bus, and activates an acknowledge
signal.

Transactions

Data transfers to and from the 2280 MPU are accomplished
through the use of transactions.

All transactions start with Address Strobe (AS) being driven
Low and then raised High by the 2280 MPU. On the rising
edge of AS, the Status lines STo-ST3 are valid; these lines
indicate the type of transaction being initiated (Table 9);
seven types of transactions are discussed in the sections
that follow. Associated with the status lines are two other lines
that become valid at this time: RiW, and BiW.

Table 9. Status Code Table

Status Lines
3--0 1\'pe of'D'ansactlon

0000 Reserved
0001 Refresh
0010 110 transaction
0011 Halt
0100 Interrupt acknowledge line A

0101 NMI acknowledge
0110 Interrupt acknowledge line B
0111 Interrupt acknowledge line C
1000 Transfer between CPU and memory, cacheable

1001 Transfer between CPU and memory,

non-eacheable
1010 Data transfer between EPU and memory

lOt 1 Reserved
1100 EPU Instruction fetch, template, subsequent

words
1101 EPU Instruction fetch, template, first word
1110 Data transfer between EPU and CPU

1111 Test and Set (data transfers)

If the transaction requires an address, it is valid on the rising
edge of AS. No address is required for EPU-CPU transfer
transactions; the contents of the A and AD lines while AS is
asserted are undefined. If an address is generated, the
OE signal is also activated.

525



ZllOG INC b1E D .. 9984043 0025258 747 .. Zll

The Z-BUS MPUs use Data Strobe (DS) to time the actual
data transfer. (Note that Refresh and Halttra~ctionsdo ~ot

transfer any data and thus do not activate DS.) For wnte
operations (Rm = low), a Low on DS indicates that valid
data from the bus master is on the AD lines. The Output
Enable continues to be asserted until DS is deasserted. For
read operations (Rm = High), the bus ma~r makes AD
lines 3-state, deasserts DE, and asserts IE after driving
DS Low so that the addressed device can put its data on
the bus. The bus master samples this data on the falling
clock edge just before raising DS and iE High.

Wait Cycle. The WAIT line is sampled on the falling clock
edge when data is sampled by the Z280 MPU (Read) or the
falling clock edge before DS rises (Read or Write). If WAIT is
Low, another cycle is added to the transaction before data is
sampled or DS rises. In this added cycle, ~nq ~II

subsequent cycles added when WAIT is Low, WAIT IS again
sampled on the falling clock edge and, if it is Low, another
cycle is added to the transaction. In this way, the transaction
can be extended to an arbitrary length by external circuitry
to accommodate (for example) slow memories or I/O
devices that are not yet ready for data transfer. Automatic
insertions of wait states by the CPU or on-chip DMA
channels can be programmed by setting fields in the Bus
Timing and Control register and BusTiming and Initialization
register to indicate the number to be inserted.

Memory Transactions. Memory transactions move data to
or from memory when a bus master makes a memory

access. Thus, they are generated during program execution
to fetch instructions from memory and to fetch and store
memory data. They are also generated to store old program
status and fetch new program status during interrupt and
trap handling and after reset.

A memory transaction is three bus cycles long unless
extended when WAIT is asserted.

Bytes transferred to or from odd memory locations (address
bit 0 = 1) are always transmitted on lines ADo-AD7 (bit 0 on
ADo). Bytes transferred to or from even memory locations
(address bit 0 = 0) are always transmitted.2n li.nes
A'2l!-AD1s (bit 0 on ADa). For byte reads (BIW High,
RIW High), the CPU or on-chip DMA channel uses only the
byte whose address it put out on the bus. For byte writes
(Bm High, Rm Low), the memory should store only the
byte whose address was output. During byte memory
writes, the CPU (or on-chip DMA channel in non-Flyby
transactions) places the same byte on both halves of the
bus, and the proper byte must be selected by testing Ao. For
word transfers (Bm = Low), all 16 bits are captured by the
CPU or DMA channel (Read: Rm = High) or stored by
the memory (Write: Rm = Low). For these transactions
(either memory or I/O) the bytes of data appear swapped on
the bus with the most significant byte on ADrADo and the
least significant byte on AD1s-ADa. A word is aligned if the
address is even; otherwise it is unaligned.

Memory transaction timings are shown in Figures 46-50.

DATA

A18-A23 - .....f'-----T"'"---.........,----_...,....,

CLK

ADo-AD1S

iii
.....,~----t'

ii

Figure 46. Memory Read Timing

526



b1E D .. 9984043 0025259 b83 "ZIl---------------------
ZIlOG INC

CLK

ADo-ADlI

AS

STATUS
IIIW

RIii • 0

HIGH

Figure 47. Memory Write Timing

CLK

ADo-AD'5

AS

STATUS
BiW

Alii = 1

DS

I I
r--

I I

K '\ I DATA '\- ADDRESS
f

-
ADDRESS-

-
~

-
STATUS VALID-

\ / / \

~

Figure 48. Memory Read Timing with External Wait Cycle

527



ZIlOG INC 61E D II 9984043 0025260 3T5 IIZIl

528

CLK

ADo-AD,.

Ate·A23

STATUS
IIIW

Alii = 0

CLK

Ate-A23

STATUS
8IW

RIW = t

ii

I I I I
~

-
- -< ADDRESS DATA VALID

-
ADDRESS-

- rLJ
- STATUS VALID-

\ / / \

~
HIGH

I
Figure 49. Memory Write Timing with External Walt Cycle

I I I I
r--

-
- -< ADDRESS " I

DATA "I " I

- XADDRESS- ..

- V
-

STATUS VALID-

/ \

~

Figure 50. Memory Read Timing with Internal Wait Cycle



ZllOG INC 61E D .. 9984043 0025261 231 .. Zll

CLK

ADo-AD"

AS

STATUS
BIW=o
RJW= 1

ADDRESS

STATUS VALID

Figure 51. Burst Memory Read Timing

Burst Memory Transactions. Burst memory transactions
use multiple Data Strobes associated with a single Address
Strobe. The CPU uses burst transactions to read four
consecutive words in four data transactions. The address of
the first word read during a burst transaction has zeros in the
three least significant bits. Control bits in the Cache Control
register indicate whether or not portions of the memory
system can support burst transactions.

The CPU uses burst mode reads only for fetching
instructions. If an instruction is to be fetched from a location
within a half of physical memory that supports burst
transactions, the CPU reads the eight bytes that contain the
first byte of the instruction. (EPA template fetches do not use
the burst transaction.)

Timing for the first data transfer during a burst transaction is
identical to that for a single memory read, including the
automatic insertion of wait states, except there are four T3
states. Subsequent data transfers do not include automatic
wait states. On the first data transfer, if WAIT is sampled
active then it is sampled again every bus clock cycle until it is
inactive, at which time the data is read from the bus. Burst
memory read timing is shown in Figure 51.

Note: Burst Transactions can occur only in Z·BUS mode.

Halt Transactions. Halt transactions do not transfer data.
They look like a memory transaction, except that OS re
mains High and no data is transferred.

A Halt transaction (Figure 52) is generated when the CPU
executes a HALT instruction or when a fatal sequence of
traps and bus errors occu rs. The address placed on the AD
lines is the location of the Halt instruction or the instruction
that initiated the fatal sequence of traps and errors. The
Status lines indicate a Halt transaction (0011).

WAIT is not sampled during the Halt transaction.

1/0 'D'ansactlons. 1/0 transactions (Figures 53 and 54)
move data to or from peripherals and are generated during
the execution of 1/0 instructions. 1/0 transactions to on-chip
peripheral devices (1/0 pages FEH and FFH) do not
generate external bus transactions.

I/O transactions are four bus cycles long at a minimum, and
they can be lengthened by the addition of wait cycles either
automatically generated as indicated in the Bus Timing and
Control register or generated by an external device. The
extra clock cycles allow for slower peripheral operation.

The status lines indicate that the access is an 1/0 transaction
(0010). The 1/0 address is found on ADo-AD15 and A16-A23.

Byte data (BiW = High) is transmitted on ADo-AD? This
allows peripheral devices to attach to only eight of the AD
lines. Word data (BiW = Low) is transmitted with the most
significant byte on ADo-AD? and the least significant byte on
ADs-AD15·

529



ZIlOG INC b1E D .. 9984043 00252b2 178 "ZIl

I-T.-I--TO_I---T.---1
CLK

ADo-AD18

STATUS
BlW = 1
AlW = 1

•AdcInloI 01 Haillnsbuctlon.

ADDRESS •

STATUS VALID

HIGH

Figure 52. Halt Timing

CLK

ADo-AD18

AUI-A23

STATUS
IIIW

Alii = 0

530

WAiT-.__---..,....---...,..---......,,...1

OE_.....~ _I_----+-----+_----f_-
HIGH

I
Figure 53. 1/0 Write Timing



ZIlOG INC 61E D .. 9984043 0025263 004 .. ZIl

CLK

ADO-AD..

AS

STATUS
BlW

RIW = t

Ii

J.--T1----.J.--T2------I~TW----I..~I·..--·T3____j

- I I I I

- -< ADDRESS " I
DATA "I " I

-
ADDRESS

-
- ""\J
-

STATUS VALID

-

/ \

~

Figure 54. I/O Read Timing

Interrupt Acknowledge Transactions. These transac
tions (Figure 55) acknowledge an interrupt and read an
identifier from the device that generated the interrupt.
Interrupt Acknowledge transactions are generated
automatically by the hardware when an external interrupt is
detected.

These transactions are five cycles long at a minimum, with at
least two automatic Wait cycles, although others can be
added by programming the Bus Timing and Control
register. The Wait cycles are used to give the interrupt priority
daisy chain (or other priority resolution device) time to settle
before the identifier is read.

The only item of data transferred is the identifier that is
captured from the AD lines on the falling clock edge just
before OS is raised High. The length of time that OS is
asserted is identical with 110 timing programmed in the Bus
Timing and Control register.

There are two places where WAIT is sampled and thus a
Wait cycle can be inserted by external devices. The first
place serves to delay the falling edge of OS to allow the
daisy chain a longer time to settle, and the second place
serves to delay the point at which data is read.

Refresh Transactions. A memory Refresh transaction
(Figure 56) is generated by the refresh mechanism and can
come immediately after the final clock cycle of any other
transaction. The memory refresh counter's 10·bit address is
output on the low order 10 bits of the bus during the first
cycle of the transaction. The contents of the rest of the bus
are undefined. The Status lines indicate Refresh (0001). This
transaction can be used to generate refreshes for dynamic
RAMs. Refreshes may occur while the CPU is in the Halt or
Fatal state.

CPU-Extended Processing Unit Interaction

The Z280 CPU with a Z·BUS interface and PAUSE input
line and one or more Extended Processing Units (EPUs)
work together like a single CPU component, with the CPU
providing address, status, and timing signals and the EPU
supplying and capturing data. The EPU monitors the status
and timing signals output by the CPU so that it knows when
to participate in a memory transaction; for EPU to memory
transfers, the CPU puts its AD lines in 3-state while OS is
Low, so that the EPU can use them.

531



ZIlOG INC 61E D .. 9984043 0025264 T40 "ZIl

I I I I I
r--

-
/

-K UNDERNED "
I

DATA }--"- UNDEFINED

I-

-, ,

-
-

STATUS VALID-

/ \' / \

~ /

eLK

DS

STATUS
IIIW =0
IUW = 1

ADo-AD18

Figure 55. Interrupt Acknowledge Timing

532



ZIlOG INC 61E D .. 9984043 0025265 987 ..ZIl

eLK

ADo-AD, 5

STATUS
B/ii = 0
Alii = 1

UNDEFINED

STATUS VALID

HIGH

'"'10 ,"st·signittclnt bill Ire Refresh address.

Figure 56. Memory Refresh Timing

In order to know which transaction it is to participate in, the
EPU must track the following sequence of events:

• When the CPU fetches the first word of al'l EPA
instruction template from memory (ST3-STO = 1101), the
EPU must also capture the instruction returned by the
memory. Within the template is an 10 field that indicates
whether or not the EPU is to execute the instruction.

• The next non-refresh transaction by the CPU is the fetch
of the second word of the instruction (ST3-STo = 1100).
The EPU must also capture this word. If the template is
not aligned, a third fetch is made (ST3·STo = 1100).

• If the instruction involves a read or write to memory, then
transfers of data between memory and the EPU (ST3-STo
= 1010) are the next non-refresh transactions performed
by the CPU. The EPU must supply the data (Write:
RtW = Low) or capture the data (Read: RtW = High) for
each transaction, just as if it were part of the CPU. In both
cases, the CPU 3-states its AO lines while data is being
transferred (OS Low).

• If the instruction involves a transfer from the EPU to the
Z280 MPU, the next non-refresh transaction is the CPU
transferring data between the EPU and CPU (ST3-STo =
1110).

In order to follow this sequence, an EPU has to monitor the
status lines to verify that the transaction it is monitoring on the
bus was generated by the CPU. In a multiple EPU system,
there is no indication on the bus as to which EPU is
cooperating with the CPU at any given time. This must be
determined by the EPUs from the templates they capture.

When an EPU begins to execute an extended instruction,
the CPU can continue fetching and executing instructions. If
the EPU wishes to halt the CPU from executing another
instruction or bus transaction, the EPU must activate the
PAUSE line to stop the CPU until the EPU is ready for
subsequent MPU activity. This mechanism is used to
synchronize MPU·EPU activity.

533



ZIlOG INC 61E D .. 9984043 0025266 813 ..Zll

EPU Transfer Transactions. These transactions (Figures
57-59) allow the CPU to transfer data to or from an EPU or to
read or write an EPU's status registers. They are generated
during the execution of the EPU instructions.

EPU-to-Memory transfers are five cycles unless extended by
WAIT. Memory-to-EPU transfers are three cycles unless
extended by WAIT.

EPU-CPU transfer transactions have the Same form as I/O
transactions and thus are four clock cycles long, unless
extended by WAIT. Although AS is asserted, no address is
generated and the contents of the bus are undefined; only
one status code is used (1110).

In a multiple EPU system, the EPU that is to participate in a
transaction is selected implicitly by the 10 code in the EPU
template, rather than by an address. The ReadlWrite line
(Rm = High) indicates the direction of the data transfer
into the CPU.

Requests

The Z280 MPU supports three types of request signals.
These are:

• Interrupt requests, which another device initiates and the
CPU accepts and acknowledges.

• Bus requests, which an external potential bus master
initiates and the CPU accepts and acknowledges.

• Global bus requests, which the CPU or on-chip OMA
,initiates to acquire a global system bus.

When a request is made, it is answered according to its type:
for interrupt requests, an Interrupt Acknowledge transaction
is initiated by the CPU; for bus requests, an acknowledge
signal is sent; for global bus request, an acknowledge signal
is received.

Interrupt Requests. The Z280 MPU supports two types of
external interrupts, maskable and nonmaskable (NMI). The
Interrupt Request line of a device that is capable of
generating an interrupt may be tied to any of the interrupt
pins. Several devices can be connected to one pin, with the
devices arranged in a priority daisy chain. The CPU uses the
same protocol for handling requests on these pins. The
sequence of events is given below:

Any High-to-Low transition on the NMI input is asynch
ronously edge-detected, and the internal NMI latGh is set.
At the beginning of the last processor clock cycle of any
instruction, the interrupt inputs are sampled along with the
state of the internal NMllatch.

eLK

ADo-AD18

STATUS
BiW=o
RiW=l

I I I I
r--

-
K UNDEFINED

~ I
DATA ~~- I '\.

-
UNDEFINED-

- r'LJ
- )(STATUS VALID = 1110-

/ \

--\
ii

Figure 57. EPU to CPU Timing

534



ZIlOG INC 61E D .. 9984043 0025267 75T ..Zll

CLK

STATUS•riaO

ii

I--T'-_·~I··--Tw-_·+I"·--TW-_·+I"·--T'-_·~I··__T>-1

I I I I
I

- r< ADDRESS I EPU DATA VALID

--_.A ADDRESS

- \......../
- STATUS VALlO II 101'-

\.~

~
HIGH

I
Figure 58. EPU Write to Memory

CLK

ADo-AD15

STATUS
BIW

RlW = 1

ADDRESS

STATUS VALID

DATA

Figure 59. Memory to EPU Timing

535



ZllOG INC 61E D .. 9984043 0025268 696 ..Zll

If a maskable interrupt is requested and the Master Status
register indicates that requests on that line are to be
accepted, or ifthe NMI latch is set, the next possible bus
transaction is an interrupt acknowledge transaction that
results in an identifier from the highest-priority interrupting
device being read off the AD lines. This data is used as
specified by the current interrupt mode.

Bus Requests. To generate transactions on the bus, a
potential external bus master (such as a DMA Controller)
must gain control of the bus by making a bus request. A bus

. request is initiated by pulling BUSREQ Low. Several bus
requesters can be wired-OR to the BUSREQ pin; prior
ities are resolved externally to the CPU, usually by a priority
daisy chain.

RESET

A hardware reset puts the Z280 MPU into a known state and
optionally initializes the Bus Timing and Initialization control
register of the Z280 MPU to a system specifiable value. A
reset begins at the end of any processor clock cycle if the
RESET line is low. However, if a bus transaction is in
progress it is allowed to be completed. A system reset
overrides all other operations of the chip, including
interrupts, traps and bus requests. A reset should be usedto
initialize a system as part of the power-up sequence.

The RESET input must be asserted for a minimum of 128
processor clock cycles. Within this time the' Z280 lines
assume their reset values. For either bus, the AD lines are
3-stated, and all control outputs are forced High. While
RESET is asserted, the ClK output is the processor clock
frequency scaled by four.

The RESET line is sampled on the rising ed~ of an
Internal clock (derivative of XTAU). When the RESET
line Is sampled High (de-asserted), the state of the
WAIT line is also noted: If WAif Is asserted, then the
contents of the AD lines are used to program the Bus
Timing and Initialization register, otherwise the

536

The asynchronous BUSREQ signal generates an internal
BUSREQ, which is synchronous. If the external BUSREQ is
low at the beginning of any processor clock cycle, the
internal BUSREQ will cause the bus acknowledge line
(BUSACK) to be asserted after the current bus transaction
is completed or after the write transaction of a TSET
instruction. The CPU then enters Bus Disconnect state and
gives up control of the bus. All 2280 Output pins except
BUSACK are 3-stated.

The on-chip DMA channels have higher priority than the
off-chip devices requesting the external bus via BUSREQ.

constant 00 hexadecimal is used. If the hardware
programming initialization option is used, AD4 must be
o when the bus Is sampled and the AD6 line
determines whether the UART bootstrap option is
selected.

After reset, the Z280 MPU is initialized as shown in Tables 10
and 11.

The following registerS are unaffected:'

• CPU register file, including user Stack Pointer

• Page Descriptor registers

• InterruptlTrap Vector Table Pointer register

On the rising edge of RESET, if Bus Request is asserted
the Z280 MPU will grant the bus before fetching the first
instruction from location O.

After ·RESET has returned to High, the CPU begins to
operate unless the Bootstrap UART feature is utilized.



61E DZIlOG INC .. 9984043 0025269 522 ..ZIl----------------------------
Table 10. Ellect 01 a Reset on Z280 CPU and MMU Registers

Register
Value Loaded on Reset

(Hexadecimal) Comments

Program Counter
System Stack Pointer
I

R
Master Status

Bus Timing and Control

Bus Timing and Initialization

I/O Page
Cache Control

Trap Control

System Stack Limit
Local Address
Interrupt Status

InterruptlTrap Vector Table Pointer
CPU Registers AF, BC, DE, Hl, IX, IY, AF',

BC', DE', DE', Hl
User Stack Pointer
MMU Master Control
MMU Page Descriptor Register, Page

Descriptor Register Pointer

0000
0000

00
00

0000

00"

00

00
20

00

0000"
00

OOxx

0000"

System mode, Single-Step disabled, Breakpoint-on-Halt
disabled

All maskable interrupts disabled
No automatic wait states for I/O, upper 8M bytes of

memory, or interrupt acknowledges
ClK output 2x processor clock period, no automatic

wait states for lower 8 Mbytes of memory, bootstrap

mode disabled, direct dock option disabled,
muftlprooessor configuration disabled

I/O Page 0 in use
Cache enabled for instructions
All valid bits cleared to 0
Burst mode disabled
EPA trap enabled, 110 not p!lVIeged, System

Slack Ovelftow Wan*lg trap cIsabIed

All memory transactions are made to local bus
Interrupt mode 0, nonvectored interrupts, current state

of interrupt requests (indicated by xx)
Unaffected
Unaffected

Unaffected
MMU disabled
Unaffected

Table 11. Ellect ola Reset on Z280 On·Chip Peripheral Registers

Register

Value Loaded on Reset

(Hexadecimal) Comments

Refresh 88 Refresh enabled, rate = 32

CounterlTimers:
Configuration
Command/Status

00
00

Tlmer mode, s1ngle-eyde, non-retrlgger
Timer disabled

DMA Channels:
Master Control
DMAO Transaction Descriptor
DMA1/2/3 Transaction Descriptor
DMAO Destination Address
DMAOCount

0000····
0100'

000000
0100

No DMA linking, EOP disabled, Software Ready disabled
DMAO disabled, continuous mode
EN, IE, TC, and EPS fields cleared, other fields unaffected

UART:
Configuration

Transmitter Control/Status
Receiver Control/Status

00'

01
00'

5 bits/character, parity disabled, external clock, x1 clock rate,
loop back disabled

Transmitter disabled, transmit buffer empty
Receiver disabled

• Unless bootstrap mode is selected. -ReseMld bits are undefined on reads.

537



ZIlOG INC b1E D .. 9984043 0025270 244 ..ZIl

Allacparametersassumealoadcapacitanceof100pf. Add
10ns delay foreach 50pf increase in loadup toamaXimum
of 200 pf for the data bus.

ABSOWTE MAXIMUM RATINGS

Voltage on Vee with respect to Vss ..... -O.3V to + 7V
Vohages on aD pins with respect to Vss ...... -O.3V to

(Vee + O.3V)
Operating Ambient

Temperature See Ordering Information
Storage Temperature - 65°C to + 150°C

Stresses greater than those listed under Absolute Maximum Ratings may
cause permanent damage to the device. This is a stress rating only;
operation of the device at any condition above those indicated in the
operational sectiOns of these specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect
device reliability.

STANDARD TEST CONDITIONS

The DC Characteristics and Capacitance sections below.
apply for the following standard test conditions, unless
otherwise noted. All voltages are referenced to GND (OV).
Positive current flows into the referenced pin.

Available operating temperature ranges are:

• S = O°Cto + lO°C

DC CHARACTERISTICS

FROM OUTPUT

UNDER TEST

100pf

I

Vee

O.g1K

Symbol Parameter Min Max Unit

VL Input Low Votage -0.3 0.8 V

V" Input High Voltage 2.0 Vce + 0.3 V

Va. Output Low Voltage 0.4 V
VOH Output High Voltage 2.4 V
Vcc Operating Power Supply Voltage 4.5 5.5 V

Icc Power Supply Current 200 rna

538

Test Condition

Ia. -4.0ma

IOH - -400JJa

Vcc -5.5 V

XTAll _ 20 MHz

V,,- 2.0 V

VL -0.8 V

Outputs Unloaded



ZIlOG INC 61E D -9984043 0025271 180 _ZIl

Z280 AC CHARACTERISTICS
Z-Bus Timing (Refer to Figures 60 and 61)

10 MHz 12.5 MHz Unit Notes
No Symbol Parameter Min Max Min Max

1 TdCr{ST) Clock rise to Status Delay 20 15 nS
2 TdCr{A) Clock rise to Address VaHd Delay 20 15 nS
3 TdCr{ASn Clock rise to lAS fall Delay 20 15 nS
4 TdCf{ASr) Clock fall 10 lAS rise Delay 20 15 nS
5 TwAS lAS Low Width nTeXT-20 nTCXT-20 nS

6 TdCr{AZ) Clock rise to Address Float Delay 25 25 nS
7 TdCr{DSl) Clock rise toJDS fall Delay 20 15 nS
8 TdCf{DSr) Clock Fall to IDS rise Delay 35 25 nS
9 TsD{Cn Data to Clock fall setup 30 30 nS

10 ThD(Cn Data from Clock fall Hold 10 10 nS
11 TdCI(DSQ Clock fall to IDS fall Delay 20 15 nS
12 TdCr{D) Clock rise to Data Valid Delay 20 15 nS
13 TdDSr{Dx) IDS rise Data nol Valid Delay nTeXT-40 nTCXT-30 nS
14 TsW(Cn /Wail to Clock fall setup 50 40 nS

15 ThW(Cn /Wait from Clock fall Hold 0 0 nS
16 TdCr{OEn Clock rise to IDE fall Delay 20 15 nS
17 TdCr{OEr) Clock rise to IDE rise Delay 20 15 nS
18 TdCf(IEn Clock fall /IE fall Delay 20 15 nS
19 TdCf(IEr) Clock fall to /IE rise Delay 35 25 nS

20 TdA(ASr) Address Valid to lAS rise Delay nTeXT-25 nTOO-20 nS
21 TdDSr(ASn IDS rise to lAS fall Delay nTeXT-40 nTCXT-25 nS
22 TdASr{Ax) lAS rise to Address nol Valid Delay nTCXT-30 nTcXT-25 nS
24 TdDSr(A) IDS rise to Address Active Delay nTOO-40 nTCXT-30 nS

25 TdAz{DSf) Address Float to IDS fall Delay 0 0
26 TdD(DSn Data Valid to IDS fall Delay nTOO-20 nTcXT-20 nS
27 TwDSBh IDS High Widlh(Burst Mode) nTcXT-40 nTeXT-30 nS
28 TwDSbl IDS Low Widlh(Burst Mode) ntCXT-3O nTcXT-20 nS

Noles:
1. TeXT = XTALi Cycle lime t Units in nanoseconds unless otherwise specified.

Clk = 1x(1x bus clock): n=1 VH = 2.0V, VL = O.8V, V", =2.OV, Vo. =0.8V
2x(2x bus clock): n=2
4x(4x bus clock): n=4

539



ZIlOG INC b1E D .. 9984043 0025272 017 ..ZIl

Z280 AC CHARACTERISTICS
ZBO-Bus Timing (Refer to Figures 62 and 63)

10 MHz 12.5 MHz Unit Notes
No Symbol Parameter Min Max Min Max

1 TdCr(OEQ Clock rise to IDE fall delay 20 15 oS
2 TdC~A) Clock rise to Address Valid Delay 20 15 oS
3 TdC~ASQ Clock rise to lAS fall Delay 20 15 oS
4 TdCf(ASr) Clock fall 10 lAS rise Delay 20 15 oS
5 TwAS lAS Low Width . nTcXT-20 oTeXT-20 oS

-_.__._-
6 TdCr(AZ) Clock rise to Address Float Delay 25 25 oS
7 TsW(CQ /Wait 10 Clock fall setup 50 40 oS
8 ThW(Cf) /Wail from Clock fall hold 0 0
9 TdA(ASr) Address Valid 10 lAS rise delay nTcXT-25 nTeXT-20 oS
10 TdASr(Ax) lAS rise 10 Address not Valid Delay nTeXT-30 nTeXT-25 oS
-----
11 TdC~RDf) Clock rise to /RD fall delay 20 15 oS
12 TdCf(RDr) Clock fall 10 tllD rise Delay 35 25 oS
14 TsD(CQ Data to Clock fall setup 30 30 oS
15 ThD(CQ Data from Clock fall Hold 10 10 oS
16 TdAz(RDf) Address Float 10 fRD fall Delay 0 0 oS

19 TdCr(OEr) Clock rise to JOE rise Delay 20 15 oS
20 TdCf(IEf) Clock fall to /IE fall Delay 20 15 oS
21 TdCf(IEr) Clock fall \0 /IE rise Delay 35 25 nS
22 TdCr(IEr) Clock rise to liE rise Delay 20 15 nS 2
23 TdCr(RDr) Clock rise to tllD rise Delay 20 15 oS 2

24 TdCf(WRQ Clock fall 10 /WR tall Delay 20 15 oS
25 TdCf(WRr) Clock fall 10 /WR rise Delay 35 25 oS
26 TdWRr(ASQ /WR rise 10 lAS fall Delay nTeXT-40 nTeXT-30 oS
27 TdWRr(A) /WR rise 10 Address adive Delay nTeXT-40 nTeXT-30 oS
28 TdCr(D) Clock rise 10 Data Valid Delay 20 15 oS
-.-¥._--_._..... --_._-.- ._---------"- ._.__._--_._.._-
29 TdWRr(Dx) /WR rise 10 Data not Valid Delay nTcXHO nTeXT-30 oS
30 TdD(WRQ Data Valid10 /WR fall Delay nTeXT-20 nTeXT-20 oS
31 TdCf(MREOf) Clock fall 10 jMREQ fall Delay 20 15 nS
32 TdCf(MREQr) Clock fall 10 jMREQ rise Delay 35 25 oS
33 TdC~MREQr) Clock rise to JMREO rise Delay 20 15 oS 2

34 TdCr(IORQQ Clock rise to /I0RQ fall Delay 20 15 oS
35 TdCf(IORQr) Clock fall 10 /lORa rise Delay 35 25 oS
36 TdCf(IORQQ Clock fall 10 /lORa fall Delay 20 15 oS 3
37 TdCf(M1r) Clockfalllo/M1 rise Delay 35 25 nS 3
38 TdCr(M1r) Clock rise to /M1 rise Delay 20 15 oS

, _._---------_._---_.
39 TdCr(M1Q Clock rise to /M1 fall Delay 20 15 oS 2
40 TdCf(RFSHr) Clock Ialilo tllFSH rise Delay 35 25 nS 2,3
41 TdCl(RFSHI) Clock Ialilo tllFSH fall Delay 20 15 nS
42 TdCI(HALTQ Clock Ialilo /HALT fall Delay 20 15 oS

Noles:
1. TeXT _ XTAli Cycle 11me t Units in nanoseoords unless otherwise specified.

Clk _ lx(lx bus clock) : n_l V,,=2.0V. V.=O.8V. V",,=2.0V. V...=0.8V
2x(2x bus clock) : n-2
4x(4x bus clock) : n=4

2. This parameler is used for RETI (Relurn From Inlerrupl).
3. This parameter is used for Interrupt Acknowledge.

540



ZllOG INC 61E D .. 9984043 0025273 T53 "Zll

Z280 AC CHARACTERISTICS
Z-Bus, zao Bus Common Signals and Peripherals Timing
(Refer to Figures 64 through 71)

10 MHz 12.5 MHz Unit Notes
No Symbol Parameter Min Max Min Max

1 TeXT XTAli Cycle time 50 tbd 40 tbd oS
2 TwX1h XTALi High Width 15 15 oS
3 TwXTI XTALi lowWidlh 15 15 oS
4 TrXT XTALi Rise Time 10 10 oS
5 TlXT XTALi Fall Time 10 10 nS
6 TdXTf(C) XTAl fall to Clock Delay 40 40 nS

7 TrC Glock rise lime . 12 10 oS
8 TIC Glock fall time 12 10 oS
9 TdCr(CSf) Glock rise 10 IDS, {RD, or {WR fall Delay 20 15 nS
10 TdCr(CSr) Clock rise 10 IDS, or!WR rise Delay 20 15 nS
11 TdCr(STBf) Glock rise 10 IDMASTB fall delay 20 15 nS
12 TdCf(Smr) Glock fall to IDMASTB rise Delay 35 25 nS

13 TdCr(STBr) Clock rise to IDMASTB rise Delay 20 15 nS
14 TdCf(CSr) Glock fall to IDS or/RO Rise Delay 35 25 nS
15 TdCf(GREQQ Glock fall to /GREQ Fall Delay 35 25 nS
16 TdCf(GREQr) Glock fall to /GREQ rise Delay 35 25 nS
17 TdCr(BUSACKij Glock rise fa IBUSAGK fall Delay 20 15 nS
18 TdCr(BUSACKr) Glock rise to IBUSACK rise Delay 20 15 oS

19 TeCTIN GTIN CytJe Time 10TOO 10TCXT oS
20 TwCTlNh CTIN High Width 4TeXT 4TcXT oS
21 TwGTlNI ClIN low Width 4TeXT 4TcXT oS
22 TwCTIOh GlIO High Width 4TeXT 4TcXT oS
23 TwGTIOI GlIO low Width 4TeXT 4TcXT nS
24 TdCTIN(GTIO) GTIN to cm Delay 20TOO 28TcXT 20TcXT 28TcXT nS

._-_.._ .._-----------_._---_._----.
25 TdCf(TD) Baud Clock fall to Transmit Data Delay 70 70 nS
26 TsRD(Gr) Receive D~a to Baud Clock rise Setup 10 10 nS
27 ThRD(Cr) Receive D~a 1rom Baud Clock rise Hold 50 50 nS
28 TrRESET IReset Rise Time 10 10 nS
29 TfRESET IReset Fall Time 10 10 nS
30 TsWAIT1(RESETr) /WAlT fall to !RESET rise Setup 4TcXT 4TeXT nS
------
31 ThWAlTr(RESETr) /WAIT rise 10 /RESET rise Hold 6TeXT 6TcXT nS 4
32 TsD(RESETr) Data to IRESET rise Setup 0 0 nS 4
33 ThD(RESETr) Data from /RESET rise Hold 6TeXT 6TcXT nS 4
34 TrlN Input Rise Time 20 20 nS 5
35 TlIN Inpul Fall Time 20 20 nS 5
36 TwNMI INMllow Width 4TeXT 4TeXT nS

NOles:
1. CTIO as Gale or Trigger Input.

t Un~s in nanoseconds unless otherwise specified.2. CTIO as OuIpUI,when CTiN causes lerminal count
3. CTINI asXl Baud Clock Input ReIer 10 specs V,,=2.0V. VL =O.8V, V",,=2.DV, Va.=O.8V

20 and 21 for pulse widlhs.
4. To program Bus Timing and Initialization Register at reset.
5. Inputs AD. IBUSREQ, CTlN, CTIO. {INT, fNMI, /ROY,

RxD, {PAUSE and /WAIT

541



b1E D .. 9984043 0025274 991 ..ZIl

eLK _/-<~~TJ- :.-
--01

.It--+---+---+----#--~ITo-ITa

IlIW, BlW _-+-"" llo-+--+-_-+-----4-I....._......J~__

ZIlOG INC

til (MAD)

--CDr-
Ai8.AU_-Dr-+--I--+----*--'"""\Jo--

r-~-+_-+_----++_-...J)(~-
-I', \....

- CD !+-(ii'_ '
-f-\. I \!V l.lr

l
---.,f----+----+4--~

D IX ~

~ WL, ~
LJI kD--Ilr-+-+-__

No

,~l--'-

I~-

-0

-®F-
~+------+------~

l'----.J

ADO-= --+-f
lI--+--+~

-0-- ® ~ I

-~_+____+____+_t~ ~-~til (WAITE) I""'N'~
-@. I~__++---,j Lw.-I

-- CD I- --®~ ..I®~
ADO;;'':: -1"1~~-_..:_'-_~~1...;.J\Xj._-_1r--...;-'--~-~-------~4-~~---~--.:..-,;;;;~~(I ~:-:.-:.-:.-=

-+----+---+-""""""\I~ ~I_---
WAif )

!'---+-""""

figure 60. Z·Bus All Transactions

TS T,

'----9 )

T, T, T, T.

CLJ<

DI

ADO·&Dt. ( ) ( }{

Figure 61. Z-Bus Burst Mode Timing



ZIlOG INC 61E D .. 9984043 0025275 826 .. Zll

-l~~~~~.... (2)-
- L..- c=- U

~I-~ -- ';1°--
~ ~I AI
-GP 11

J ~I. I I
~ -.@

I~.(j). - (6)- --®---
#'

'"'® ....- ~T (;;;.1

I I
I~ ~

X J(

- "\
-®I-

-0- -\1- ~I ..........~

I J

- 1\
~I ....-f®

J
I J

.... ®I- ~I

~ I
.... @- "

~I

!H' ~ I
-]® ~ .. ®!-

).
.... @I-

ill

DE

IE

RD

AS

HALf

elK

IIFIli

MilEO

ADO-AD7

Figure 62. zao Bus Read Type Transactions

543



ZIlOG INC 61E D .. 9984043 0025276 762 ..ZIl

..s

WR

W..IT

CLK

........

"Oo-"D, --1----4

01

10110

Figure 63. Z80 Bus Write Transactions

CLK

XT"U

1-----(0)-----1
-cD-

j,----"'I

Figure 64. Z280 Clock Circuit

ClK

Ill, Wll

Figure 65. Flyby DMA Write to Memory

(Z-Bus: DS; zao Bus: WR)

Figure 66. Flyby DMA Read from Memory
(Z-Bus: OS; 280 Bus: RD)

544



ZIlOG INC 61E D .. 9984043 0025277 6T9 ..ZIl

Figure 67. GREa and BUSACK Timing

Figure 68. Counter/Timer Timing

BAUD
CLOCK

T1tD

AxD

Figure 69. UART Timing

Figure 70. Reset Timing

Figure 71. Inputs Timing

545


