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Abstract

The matroid secretary problem was introduced by Babaioff, Immorlica, and Kleinberg in
SODA 2007 as an online problem that was both mathematically interesting and had applications
to online auctions. In this column I will introduce and motivate this problem, and give a survey
of some of the exciting work that has been done on it over the past 6 years. While we have a
much better understanding of matroid secretary now than we did in 2007, the main conjecture
is still open: does there exist an O(1)-competitive algorithm?

1 Introduction

In this column, I will discuss some of the recent progress that has been made on variants of the
matroid secretary problem. These problems combine interesting aspects of online algorithms and
matroid theory, and can model real-life situations such as online auctions, so have recently received
considerable attention from the theory community. As there has already been a great overview
of some recent progress on secretary variants and how they relate to auctions and mechanism de-
sign [BIKK08], in this survey I will focus only on variants relating to matroids. Matroids have been
studied extensively by the algorithms community, particularly with respect to how to optimize over
them and over related structures (e.g. Edmonds’ famous matroid intersection theorem [Edm70]).
Only recently, though, have they been studied in the online setting, which (as always) introduces
many complications. Hopefully this column will serve as a reasonably comprehensive survey of
our current knowledge of these problems. By necessity I will not go into technical detail and will
present no proofs, but I will try to give some intuition behind the algorithms and their analyses.

1.1 Secretary Problems

The classical secretary problem is the following. There is a set E of n elements, each of which has
a value given by a function w : E → R

+. However, this value function is not given up front. The
elements appear online in the order given by some bijection σ : [n] → E, i.e. the first element that
we see is σ(1), then σ(2), up to σ(n), and we do not find out the value w(u) of an element u until we
see it. At time t, when w(σ(t)) is revealed, we must make an irrevocable decision whether or not to
stop the process and select element σ(t). Once an element is selected the process ends. The goal is
to maximize the value of the element that we select, which is essentially equivalent to maximizing
the probability that we select the most valuable element. Let OPT (w) denote the most valuable
element under value function w, and for a (possibly randomized) algorithm A, let A(w, σ) denote
the expected value of the element selected by A when run with value function w and ordering σ.

It is easy to see that if both w and σ are selected adversarially, then there is essentially nothing
that we can do. If A is deterministic, then the adversary can simply select w and σ to force A to
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pick some element at some time (say t), and then immediately afterwards (at time t + 1) present
an element with extremely large value. If A is randomized, then the best it can do is the trivial
algorithm of picking an element uniformly at random, which will pick the most valuable element
with probability 1/n.

So, in order to give nontrivial bounds, we need to weaken the problem a bit. The classical
way of doing this is to assume that σ is a random ordering, rather than an adversarial ordering.
So the adversary can still control the values, but once it has assigned values to the elements they
are presented to us in uniformly random order. In this setting, we say that an algorithm A is
α-competitive if OPT (w)/ E[A(w, σ)] ≤ α for all value functions w, where the expectation is taken
over the random choice of σ and the internal randomness of A.

With the extra flexibility afforded to us by forcing σ to be random, we can now give good
algorithms. For example, suppose that we allow the first n/2 elements to go by without selecting
them, and then we set a threshold τ = maxt∈[n/2] w(σ(t)) (the value of the best element we saw
in the first half). We then select the next element we see with value at least τ . It is easy to see
that this algorithm is 4-competitive: with probability n/2

n · n/2
n−1 > 1/4 the most valuable element

is in the second half of the elements and the second most valuable element is in the first half. If
this occurs, then τ is equal to the second-highest value, and the highest value is still in the second
half, so we will select it. Thus we get the most valuable element with probability at least 1/4, so
the algorithm is 4-competitive. It turns out that a slight variation of this is optimal: if we set the
threshold based on the most valuable of the first n/e elements (rather than n/2), the algorithm
is e-competitive, which is known to be optimal (see e.g. [Dyn63]). This type of sample-and-price
algorithm is extremely common, and variants of it will be used throughout this survey.

This problem is known as the secretary problem due to the story that is commonly used to
describe it: we take the role of a corporate executive, and the elements are candidates for a single
secretarial position. The candidates interview in random order, and we find out the value of a
candidate upon interviewing him/her. Due to a tight labor market, any candidate we turn away
will immediately find a job at a different firm and so will be unavailable, while due to business
regulations once a secretary is hired s/he cannot be fired. Thus at the time of an interview we are
forced to make an irrevocable decision as to whether or not to hire the candidate. Clearly this is
exactly the secretary problem described above. Interestingly, this problem is also known by many
other names, which correspond to other equivalent stories. In the sultan’s dowry problem [Mos87],
we think of a situation where a sultan has granted a commoner a chance to marry one of his n
daughters, which are presented sequentially in random order for his consideration. The dowry of
the daughter is told to the commoner only when she is presented, and his decision about each
daughter is irrevocable. If he tries to maximize the size of the dowry he obtains, this is obviously
equivalent to the secretary problem. The secretary problem has also been referred to as the fiancée
problem, the marriage problem, the lottery problem, etc. (see [Fer89] for a good historical overview
from a probability and statistics point of view).

1.2 Matroid Secretary

While many variants of the secretary problem were considered by the statistics and probability
communities, a very basic version escaped consideration until recently. In a paper in SODA 2005,
Bobby Kleinberg introduced a version in which instead of choosing a single element we are allowed
to choose k elements, and the goal is to maximize the sum of their values [Kle05]. This “multiple-
choice” secretary problem differed from the previous work in that previous work on selecting k
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secretaries either had objective functions depending only on the ranks of the elements rather than
their actual values (e.g. trying to maximize the probability that the k chosen are exactly the k
best [Fre83]), or assumed that the values were drawn from some distribution rather than being
assigned adversarially. Kleinberg’s algorithm is a clever modification of the basic sample-and-price
technique used in the classical version, with a recursive twist. If k = 1 then the classical algorithm
is used. Otherwise, let m be a random sample from the binomial distribution B(n, 1/2). We
recursively apply the algorithm to the first m elements to select up to � = k/2 elements. We then
set the threshold τ to the value of the �’th most valuable element of the first m, and select any
of the remaining n − m elements with value larger than τ (until we have selected k elements in
total). Kleinberg proved that this algorithm has competitive ratio of at most

√
k√

k−5
. Note that

this ratio tends toward 1 as k tends to infinity. The motivation for this problem comes from
designing strategyproof mechanisms for online auctions, but in this survey we will not discuss the
auction-theoretic motivations and results, as a previous survey by Babaioff, Immorlica, Kempe,
and Kleinberg examines secretary problems from this point of view [BIKK08].

Kleinberg’s paper was followed two years later by the seminal paper of Babaioff, Immorlica,
and Kleinberg that introduced the matroid secretary problem [BIK07]. They made the observation
that one could generalize Kleinberg’s setting to enforce combinatorial constraints on allowable sets.
Let S ⊆ 2E be a collection of subsets of the elements. Then what if we only allow our algorithm
to pick sets that are in S, and still try to maximize the sum of the values of the chosen elements?
In Kleinberg’s setting S is just all subsets of size at most k. Their motivation was, again, auction
theoretic: suppose we are selling items, and the elements are bidders who arrive online. Based on
their preferences and desires, only certain subsets of the bidders can be simultaneously satisfied.
These subsets form S.

It turns out that many interesting auctions can be modeled by forcing S to be the independent
sets of a matroid. While there are many equivalent definitions of matroids, we will use the common
one based on independent sets:

Definition 1.1. A matroid M = (E, I) is an ordered pair consisting of a finite set E and a
collection I of subsets (called the independent sets) of E satisfying the following three conditions:

1. ∅ ∈ I,

2. If I ∈ I and I ′ ⊆ I, then I ′ ∈ I, and

3. If I1 and I2 are in I and |I1| < |I2|, then there is an element e ∈ I2 \I1 such that I1∪{e} ∈ I.

The matroid secretary problem, as defined by [BIK07], is exactly what it sounds like. For a given
matroid M = (E, I) and value function w, let OPT (M, w) denote the value of the most valuable
set in I (where the value of a set is the sum of the values of its elements). For any algorithm A and
ordering σ, let A(M, w, σ) denote the value of the set returned by A (which must be an independent
set). We say that A is α-competitive for matroid M if OPT (M, w)/ E[A(M, w, σ)] ≤ α for any
value function w : E → R

+, where the expectation is taken over the uniformly random choice of σ
and the internal randomness of A. Babaioff, Immorlica, and Kleinberg defined this problem, and
made the following conjecture:

Conjecture 1.2 ([BIK07]). For every matroid M, there is an algorithm that is O(1)-competitive.
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This is the main conjecture motivating the area, and is still essentially wide open. Note that
while part of the initial motivation for the matroid secretary problem is from auctions, from a purely
online algorithms point of view, matroids are an extremely natural class, since they exemplify the
difficulty caused by irrevocable decisions. In particular, suppose that we had the power to later
throw out elements that we chose when we initially saw them (maybe a choice to throw an element
out is still irrevocable). In this setting, the matroid secretary problem would be trivial. We could
simply use the obvious greedy algorithm: maintain an independent set B, and when we see a new
element e we set B to be the maximum value independent set contained in B ∪ {e} (which might
require throwing out some elements of B, or not choosing e). It is easy to verify that this will
always give the optimum independent set. So studying the matroid secretary problem allows us to
study the difficulty caused by the requirement that our choices be irrevocable.

The rest of this survey is organized as follows. First, I will review some basic matroid theory
and definitions. I will then discuss in Section 2 the known results on Conjecture 1.2: an O(log r)-
competitive algorithm from [BIK07], and an O(

√
log r)-competitive algorithm due to Chakraborty

and Lachish [CL12]. Here r denotes the rank of the matroid, which is equal to the cardinality of the
largest independent set (note that by the third condition of Definition 1.1 all maximal independent
sets have the same cardinality). In Section 3, I will go over some progress on general matroids that
has been made under slightly different models: O(1)-competitive algorithms obtained by weakening
the adversary or giving the algorithm more power, and an O(log r)-competitive algorithm for the
generalization where the value function is submodular. Finally, in Sections 4 and 5, I will go back
to the normal model and give some O(1)-competitive algorithms for specific classes of matroids.

1.3 Basic matroid theory

Let M = (E, I) be a matroid. E is called the ground set of M. Any set in I is called independent,
and any set that is not independent is called dependent. A maximal independent set is called a basis,
and a minimal dependent set is called a circuit. The rank function r : 2E → N is the function which
maps A ⊆ E to the size of the largest independent set contained in A, i.e. r(A) = maxB⊆A:B∈I |B|,
and r(A) is called the rank of A (which we will denote by r). The rank of the matroid is just r(E),
the rank of the set of elements. The span of a set A is the unique maximal superset with the same
rank (the span is sometimes referred to as the closure [Oxl92]). The density of a set A is |A|/r(A),
and the density of a matroid is γ(M) = maxA⊆E |A|/r(A). We typically define matroids by their
independent sets, as in Definition 1.1, but their are equivalent definitions that give axioms for the
circuits, the bases, the rank function, the span, etc.

Matroids were originally introduced by Whitney [Whi35] as a way of generalizing notions of in-
dependence that had been considered in linear algebra and in graph theory. Slightly more formally,
he defined two classes of matroids and showed that they satisfy the matroid axioms.

Definition 1.3. Let G = (V,E) be an undirected graph. Let I = {A ⊆ E : (V,A) is acyclic}.
Then (E, I) is a graphic matroid, also known as the cycle matroid of G.

Definition 1.4. Let F be a field and let E be a set of elements of a vector space over F . Let
I = {A ⊆ E : A is linearly independent}. Then (E, I) is a vector matroid, and is said to be
F -representable. If there is some field F for which M = (E, I) is F -representable then we say that
M is representable.

It is not obvious a priori that forests in graphs have anything to do with linearly independent
sets in vector spaces, but Whitney was able to see that they are both examples of his more general
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definition of matroids. Since [Whi35] a rich theory of matroids has been developed (see e.g. [Oxl92]
for an overview), and many other classes of matroids have been defined. The next two classes are
extremely simple, and can easily be seen to be matroids.

Definition 1.5. A matroid M = (E, I) is a uniform matroid if there is some integer k so that
I ∈ I if and only if |I| ≤ k.

Definition 1.6. A matroid M = (E, I) is a partition matroid if there is a partition E1, . . . , Ek of
E so that I ∈ I if and only if |I ∩ Ej | ≤ 1 for all j ∈ [k].

A natural class containing the partition matroids are the laminar matroids. A laminar family
is a collection of sets with the property that if two sets intersect, one is actually a superset of the
other. In a laminar matroid, each set in a laminar family is associated with a capacity, and a set
is independent if the size of its intersection with each set in the family is at most the capacity:

Definition 1.7. Let E be a set, let F be a laminar family over E, and for each F ∈ F let cF be an
arbitrary positive integer. Let I = {I ⊆ E : |I ∩F | ≤ cF for all F ∈ F}. Then (E, I) is a matroid,
and is called a laminar matroid.

It is easy to see that laminar matroids generalize partition matroids: a partition of E is clearly
a laminar family, and we can set each capacity to 1 to recover the partition matroid.

A slightly less simple class are the transversal matroids, which are based on graphs but are
about matchings rather than forests.

Definition 1.8. Let G = (L, R, E) be a bipartite graph, and let I = {A ⊆ L : ∃ an injective
function fA : A → R}. Then (L, I) is a matroid, and is called a transversal matroid.

In other words, a set A of left nodes is independent if and only if there is a matching that
saturates A. It is less obvious that transversal matroids are indeed matroids, but it is not very
hard to see [Oxl92, Theorem 1.6.2]. A degree-d transversal matroid is a transversal matroid in
which all left nodes have degree at most d.

The final class of matroids we will consider may seem somewhat strange, but have been well
studied by matroid theorists and play a key role in many structural results about matroids.

Definition 1.9. A matroid is regular if it is F -representable for every field F .

Matroids, like graphs, have a rich theory of minors. As in graphs, the two minoring operations
are deletion and contraction. Let A ⊆ E. Then the deletion of A from M, denoted by M\ A, is
the matroid on E \ A in which a subset of E \ A is independent if and only if it is independent in
M. An equivalent operation is restriction, where the restriction of M to A (denoted by M|A) is
just M\ (E \ A). An operation that is dual to deletion is contraction: the contraction of A from
M, denoted by M/A, is the matroid on E \A in which a set I ⊆ E \A is independent if and only
if there is a basis B of M|A such that I ∪B is independent in M. In fact, the choice of basis does
not matter: let B be an arbitrary basis for M|A. Then a set I is independent in M/A if and only
if I ∪B is independent in M (see [Oxl92, Proposition 3.1.8]). A matroid M′ is a minor of M if it
can be obtained from M by a series of minoring operations. The interested reader should take a
look at the excellent (albeit slightly old) survey by Paul Seymour on matroid minors [Sey95].
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2 Progress on General Matroids

In this section I will give a brief overview of the progress that has been made so far on Conjecture 1.2.
In particular, I will discuss two algorithms for the matroid secretary problem, neither of which is
O(1)-competitive. Recall that r is the rank of the given matroid.

Threshold Price Algorithm: This algorithm was the first algorithm designed for the matroid
secretary problem, and is due to [BIK07]. It is another variation of the sample-and-price paradigm.
They call the algorithm the Threshold Price Algorithm, and it works as follows. As in the classical
setting, we first observe the first n/2 elements without selecting any of them. In the classical setting
we would now set a threshold to τ = maxt∈[n/2] w(σ(t)), but instead we choose a value j uniformly
at random from {0, 1, . . . , log r} and set τ = maxt∈[n/2] w(σ(t))/2j . We initialize our chosen set B
to the empty set, and then at time t ∈ {n/2+1, . . . , n} we add the element σ(t) to B if w(σ(t)) ≥ τ
and B ∪ {σ(t)} ∈ I.

Babaioff, Immorlica, and Kleinberg proved that this algorithm is O(log r)-competitive. At a high
level, their argument works as follows. Let OPT be e1, e2, . . . , er with w(e1) ≥ w(e2) ≥ . . . w(er).
Without loss of generality we can assume that w(er) ≥ w(e1)/2r, since elements with smaller value
can contribute total value at most 1/2 of OPT. Fix i ∈ [r], and consider the number of elements in
B (the set returned by the algorithm) with value at least w(ei)/2. With probability 1/(2 log r), the
most valuable element e1 is in the first half of the elements and j is chosen to be the smallest integer
so that w(e1)/2j is at most w(ei) (and thus at least w(ei)/2). By definition there are i elements of
OPT of value at least w(ei), and in expectation i/2 of them are in the second half. So the second
half contains an independent set of size i/2 made up of elements more valuable than threshold. It
is easy to see that this fact and the matroid axioms (in particular, the third axiom) guarantee that
in this case the algorithm will return an independent set of size at least i/2, all elements of which
have value at least w(ei)/2. Since this event holds with probability 1/(2 log r) for each i ∈ [r], by
linearity of expectations we get that the algorithm returns a set that in expectation has value at
least Ω(1/ log r) times the value of OPT.

Theorem 2.1 ([BIK07]). The Threshold Price Algorithm is O(log r)-competitive

Improvement to O(
√

log r): After the publication of [BIK07], many papers were published on
the matroid secretary problem and variants (some of which I will discuss later in this survey).
But progress on the actual problem stalled, until a recent paper of Chakraborty and Lachish from
SODA 2012 that improved the competitive ratio to O(

√
log r) [CL12]. Their algorithm is extremely

complex, and we will only give a very high level overview. To begin, with probability 1/2 they
simply run the classical secretary algorithm. If there is an element that contributes at least a
1/
√

log r fraction of OPT, then this gives the theorem. Otherwise, every element has value at most
OPT/

√
log r. Under this assumption, they begin as always by letting about half of the elements go

by to create a sample. They then use this sample to construct a good estimate of the value of OPT,
and using this estimate they partition the elements (past and future) into buckets: an element is
in bucket i if its value is OPT/2i (they assume without loss of generality that OPT is a power of
2 and that all values are powers of 2). Since no element contributes much to OPT, any bucket
that contributes significantly to OPT must have reasonably large rank. Thus for every bucket the
sample will with high probability be a very good representation of the bucket, so they can estimate
quantities such as the rank of the bucket.
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With this ability, they first check whether there is a set of buckets M that are extremely nice. Let
Li denote the elements in bucket i, and for any set of buckets A let LA = ∪i∈ALi. For a set of buckets
M to be good, the main requirement is that

∑
i∈M (rank(LM ) − rank(LM\{i})) · OPT

2i ≥ OPT√
log r

.
Intuitively, this means that for an average bucket i ∈ M , a lot of the rank of the buckets in M
comes from bucket i. So we can just add arbitrary elements from buckets in M (while maintaining
global independence) with the guarantee that we will always be able to choose many elements from
the average bucket, regardless of what happens in the other buckets.

If such a set of buckets M does not exist, then they use a different algorithm, which they call
the protection algorithm. This algorithm is based on a different intuition. Suppose that we had
a magic oracle that could build a basis for any bucket, including both past and future elements.
Then a natural approach upon seeing an element e would be to use this oracle to build a basis
for all buckets containing more valuable elements, and then test whether e is in the span of those
bases and the already selected elements. If it is not, then we select e. This is a natural algorithm
since it prevents valuable elements from being blocked by less valuable elements. Suppose that we
are considering an element e, and let S denote the previously selected elements of smaller value.
When we considered the elements of S, we only selected them if they were not in the span of the
bases of the more valuable buckets, including the bucket i containing e. So the union of S and any
independent set of bucket i (including e itself) must be independent. Thus e cannot be blocked by
lower value elements that just happened to be earlier in the order.

Obviously we do not have such a magic oracle, since we do not know what bucket an element
will be in until it appears. But what Chakraborty and Lachish show is that if there is no nice
set of buckets, then two things happen: this protection algorithm would give good value if we
had such an oracle, and we can construct an oracle that “approximately” constructs bases out of
only elements that were in the sample. The definition of approximately constructing a basis is not
straightforward, but intuitively means that it constructs an independent set that is almost as large
as the basis. This turns out to be enough for the algorithm to be O(

√
log r)-competitive.

Theorem 2.2 ([CL12]). There is an O(
√

log r)-competitive algorithm for the matroid secretary
problem.

3 Alternative Models

Since [BIK07], much of the work on the matroid secretary problem on general matroids falls into two
categories: getting stronger upper bounds by weakening the adversary or allowing the algorithm
extra power, or making the setting even more general while still proving comparable upper bounds
to [BIK07]. In this section, I will discuss some examples of both of these.

3.1 Weakening the Adversary

One extremely interesting line of work was initiated by José Soto [Sot11], who weakened the ad-
versary by forcing the value function w to also be random. In particular, he assumed that values
are assigned as follows. The adversary chooses a set of n real values, but then the value function
is a random bijection between the elements of the matroid and these values. So the adversary
essentially has the power to choose whatever terrible set of values will make an algorithm bad, but
cannot choose how these values are assigned to the elements. More formally, let L ⊂ R

+ be any
multiset of values with |L| = n, and let M = (E, I) be a matroid with |E| = n. Let w : E → L
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be a random bijection (drawn uniformly from the set of bijections), and let σ : [n] → E also be
a uniformly random bijection. Then an algorithm A in this setting is α competitive for M if
Ew[OPT (w,M)]/ Ew,σ[A(M, w, σ)] ≤ α (note that here the optimum value is a random variable
depending on w). Soto calls this the random assignment model. Note that it is clearly a generaliza-
tion of models where the values are chosen iid from some distribution (known or unknown to the
algorithm). His main result was that in this model it is in fact possible to give O(1)-competitive
algorithms for all matroids.

Theorem 3.1 ([Sot11]). For every matroid M, there is an algorithm which is (2e2/(e − 1))-
competitive in the random assignment model.

Soto’s Algorithm: Soto’s algorithm uses two main insights. First, he uses tools from matroid
theory to decompose M into a set of uniformly dense matroids. A matroid M is uniformly dense
if γ(M) = |E|/r(E), i.e. if |E|/r(E) = maxA⊆E |A|/r(A). Soto noticed that a tool from matroid
theory known as the principal sequence easily gives a partition of M into uniformly dense minors
of M, which we will call M1 = (E1, I1), . . . ,Mk = (Ek, Ik). These minors are called the principal
minors of M, and have the nice property that the union of one independent set from each is
independent in M. So if Ij ∈ Ij for all j ∈ [k] then ∪j∈[k]Ij ∈ I. Moreover, Soto proved that
respecting this decomposition does not lose too much of the value. If OPT (Mi, wi) denotes the
value of the most valuable independent set in Mi under value function wi (where wi is just the
restriction of w to Ii), then

∑
j∈[k] OPT (Mi, wi) ≥ (1 − 1/e)OPT (M, w). Note that this is true

for all value functions w, so this step does not depend on the random assignment assumption.
With this decomposition in hand, it only remains to design a 2e-competitive algorithm for

uniformly dense matroids. Running such an algorithm on each principal minor in parallel would
give an algorithm that returns an independent set with total value (in expectation) that is at
least a (1 − 1/e)/2e fraction of the expected value of the optimum. Thus the competitive ratio is
2e/(1 − 1/e) = 2e2/(e − 1), as claimed.

The algorithm for uniformly dense matroids is simple, but its analysis depends heavily on the
random assignment assumption. Let r denote the rank of the uniformly dense matroid. We first
sample half of the elements, and let T be the most valuable r elements seen so far. Now when we
see a new element e, we test whether it is one of the most valuable r elements seen so far, and if
so we add it to T (and remove the least valuable element in T , so T is always the most valuable
r elements seen so far). If e does get added to T , then if the element that is removed from T is
from the sample and we can add e to our output set while maintaining independence, then we
select e. To analyze this algorithm note that since the set T has nothing to do with the matroid,
but is instead just about the weights, we can think of T being an (adversarial) set of weights and
then randomly assigning elements to these weights. It turns out that when looked at from this
perspective, it becomes possible to prove (thanks to the uniform density of the matroid) that every
one of the top r values will be chosen with reasonable probability.

Adversarial Order: While the algorithm for uniformly dense matroids is interesting and im-
portant, probably the major contribution of [Sot11] was showing that the decomposition into the
principal minors essentially preserves the value for every value function. This gives us a power-
ful tool, since it means that we can change the setting and still give O(1)-competitive algorithms
for general matroids as long as we can do it for uniformly dense matroids. This was realized by
Oveis Gharan and Vondrák, who looked at the version of the matroid secretary in which the value
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function is still random (exactly as in Soto’s random assignment model), but where the ordering
σ is adversarial. In other words, their setting is the inverse of the classical setting, in which the
ordering is random but the values are adversarial. They designed an O(1)-competitive algorithm for
uniformly dense matroids in this model (the random-assignment adversarial-order model), which
when combined with Soto’s decomposition immediately yields the following theorem:

Theorem 3.2 ([GV11]). For every matroid M, there is an O(1)-competitive algorithm in the
random-assignment adversarial-order model.

Free Order Model: Theorem 3.2 essentially implies that as long as values are assigned at
random, the problem is reasonably easy. But what if we go back to the classical setting of adversarial
assignment? Is there some way of weakening the adversary slightly that would make the problem
easy? This problem was very recently considered by Jaillet, Soto, and Zenklusen [JSZ13], who
designed a constant-competitive algorithm in what they call the free order model. In this model
the value assignment is completely adversarial, but instead of the ordering σ being random or
adversarial, it is instead under the control of the algorithm. The algorithm is allowed to select the
next element to consider after making a decision about the previous element. In other words, at
any point in time t, the algorithm is allowed to select σ(t) based on the structure of the matroid
and the values w(σ(1)), w(σ(2)), . . . , w(σ(t − 1)) seen so far. But as before, values are revealed
online and decisions are irrevocable.

Suppose we begin by sampling half of the elements to get a set A, i.e. we simply select
σ(1), . . . , σ(n/2) uniformly at random. Let OPTA denote the optimum solution for A. Define
an element e 
∈ A to be good if it can be used to improve OPTA: either OPTA∪{e} is independent,
or there is some f ∈ OPTA with w(e) > w(f) such that OPTA ∪ {e} \ {f} is independent. A nat-
ural approach to the secretary problem would be to first construct A and OPTA, and then select
elements if they are good and can be selected while maintaining independence of the selected set.
This approach immediately runs into problems in the classical setting: we might select low-value
elements that “block” high-value elements that appear later. But by allowing ourselves to set the
order in which the values of elements are revealed, we can try to avoid this.

The algorithm from [JSZ13] first samples A as described. Let A = {a1, a2, . . . , am} in decreasing
order of value (where m = n/2), and let Ai = {a1, . . . , ai}. Let B = E \ A denote the matroid
elements not in A. We divide the rest of the elements into groups by letting Bi be the elements in B
that are in span(Ai) \ span(Ai−1). We let Bm+1 denote the elements in B that are not in span(A).
Note that after sampling A, we know each Bi just from the structure of the matroid and the values
of the elements in A. So we set the order so that after considering A we consider elements from B1,
then elements from B2, etc., continuing through Bm+1. The order inside of each group is arbitrary.
When considering an element of Bi, we select it if it has value larger than w(ai) (so swapping it in
for ai gives us extra value) and if we can select it while maintaining independence.

The analysis of this algorithm proves that every element in OPT is selected with probability
at least 1/9. For any element e ∈ OPT , Soto shows that there exists some value i ∈ [m] so that
with constant probability e ∈ span(Ai) (and thus will be considered in some phase i′ ≤ i) and
simultaneously e is not in the span of the elements of B that have value at least w(ai). If this
happens, and if e is not in A, then the algorithm will select e. To see this, let i′ be the phase at which
e is considered. Since e is in both span(Ai) and in OPT , it must be the case that w(e) > w(ai).
So the only reason the algorithm would not add e is if selecting it would make the selected set
dependent. But all of the elements considered before e must have value at least w(ai′) ≥ w(ai)
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in order to be selected, and since e is not in the span of the elements of B with value larger than
w(ai), adding it cannot make the selected set dependent. Thus we have the following theorem.

Theorem 3.3 ([JSZ13]). For every matroid, there is a 9-competitive algorithm in the free order
model.

3.2 Submodular Matroid Secretary

In this extension, the value function w is no longer simply a function from elements to values.
Instead w : 2E → R

+ is a function from sets of elements to values. The only requirements are
that w is nonnegative and submodular: w(S) + w(T ) ≥ w(S ∪ T ) + w(S ∩ T ) for all S, T ⊆ E.
Clearly this generalizes the standard matroid secretary problem, since linear functions (the normal
setting) are submodular. Submodular functions are an extremely interesting class of functions, and
a significant amount of work has been done on offline optimization of submodular functions. In
the online secretary setting there are a few results, the main one being an O(log r)-competitive
algorithm for general matroids due to Gupta, Roth, Schoenebeck, and Talwar [GRST10]. As
with the original matroid secretary problem, certain classes of matroids are known to admit O(1)-
competitive algorithms: uniform matroids [BHZ10, GRST10, FNS11], partition matroids [GRST10,
FNS11], and transversal and laminar matroids [MTW13]. Some of these results depend on the
additional assumption that the value function is monotone, but we will focus on the [GRST10]
result for general matroids which does not make this assumption.

The O(log r)-competitive algorithm for general matroids is a subtle modification of the threshold
price algorithm described in Section 2. As in the threshold price algorithm, the first half of the
elements are sampled and a value j is chosen uniformly at random from {0, 1, . . . , log r}. The
threshold τ is then set to 2

5 · maxt∈[n/2] w(σ(t))/2j . Whereas in the threshold price algorithm we
kept track of one set B, we will now keep track of two sets B1 and B2. We flip a fair coin at
the beginning to decide whether to select the elements of B1 or the elements of B2, but we will
keep track internally of the elements of both while only selecting the elements of the appropriate
set. When we see an element σ(t) for t > n/2, we check whether the marginal value it adds to
B1 is at least τ , i.e. whether w(B1 ∪ {σ(t)}) − w(B1) ≥ τ . If it is (and adding it to B1 maintains
the independence of B1), then we add σ(t) to B1. If not, then if adding it to B2 maintains the
independent of B2 and the marginal value it adds to B2 is at least τ , we add it to B2. Otherwise
we simply discard σ(t).

To analyze this algorithm, let C∗ denote the optimal set. Let C∗
τ ⊆ C∗ denote the set obtained

by adding the elements of C∗ greedily in order of decreasing marginal value, and adding an element
to C∗

τ if when it was added in this ordering it had marginal value at least τ . The first claim in the
analysis of [GRST10], and the heart of their argument, is that w(B1) + w(B2) ≥ |C∗

τ | · τ/10. This
means that by randomly choosing either B1 or B2 we get at least half of this value in expectation.
They then show that if we sum this value over the possible choices of τ the total value is at least
Ω(OPT ). Thus in expectation the random choice of τ in the algorithm achieves value at least
Ω(OPT/ log r).

4 Simple Matroid Classes

Along with proving Theorem 2.1, Babaioff, Immorlica, and Kleinberg also designed O(1)-competitive
algorithms for some specific classes of matroids. In particular, they provided O(1)-competitive al-
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gorithms for uniform, partition, graphic, and bounded-degree transversal matroids. In this section,
I will present a unification of their results due to Babaioff, Dinitz, Gupta, Immorlica, and Tal-
war [BDG+09]. The following theorem will be the main goal of this section:

Theorem 4.1 ([BIK07]). Any matroid that is uniform, partition, or graphic admits an O(1)-
competitive algorithm. Any degree-d transversal matroid admits an O(d)-competitive algorithm.

While [BIK07] presented totally different algorithms for each of the above classes, Babaioff et
al. [BDG+09] unified their arguments (and slightly improved their bounds) by showing that all of
these classes can be reduced to partition matroids. For a value function w : E → R

+ and a matroid
M = (E, I), recall that OPT (M, w) denotes the value of the max-value basis of M.

Definition 4.2. A matroid M = (E, I) has the α-partition property if we can randomly construct
a partition matroid M′ = (E′, I ′) with E′ ⊆ E such that for every value function w,

• E[OPT (M′, w)] ≥ 1/α × OPT (M, w), and

• I ′ ⊆ I
This property allows us to reduce matroids to partition matroids: if a matroid has the α-

partition property, then the first thing we do is (randomly) construct the partition matroid guar-
anteed by the property. We then use an O(1)-competitive algorithm for the partition matroid.
The second part of the property guarantees that any independent set in the partition matroid that
we might return is also independent in the original matroid, and the first part of the property
guarantees that being competitive with the partition matroid is enough to be competitive with the
original matroid. Note that there is a trivial e-competitive algorithm for partition matroids: we
can simply run the classical secretary algorithm on each part of the partition. Combining this with
Definition 4.2 gives us the following theorem.

Theorem 4.3. If a matroid has the α-partition property, then there is an eα-competitive algorithm
for it.

Thus it just remains to show that uniform, graphic, and constant-degree transversal matroids
have the α-partition property for constant α. Uniform matroids are simple: we just create r parts
of the partition (where r is the rank of the matroid) and for each element choose a distinct part
to put it in uniformly at random. It is straightforward to argue that this construction satisfies the
e/(e − 1)-partition property. Transversal matroids are similar, and just require using the graph
structure in the obvious way. For every right node in the bipartite graph we create a part of the
partition, and then for each left node (i.e. element of the matroid) we assign it to the part of one
of its neighbors uniformly at random. Clearly each element of the optimal solution gets assigned
to the right node that it is matched with in the optimal solution with probability 1/d, and this is
enough to imply the d-partition property.

In order to illustrate one example of the partition property, we will show it for graphic matroids,
which were shown by [BDG+09] to have the 3-partition property. This was later improved by [KP09]
who showed that they have the 2-partition property. Both of these results give algorithms with
competitive ratio better than the original 16 proved by [BIK07].

Theorem 4.4 ([KP09]). Graphic matroids have the 2-partition property, and thus admit 2e-
competitive algorithms.
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Proof. Let G = (V,E) be the graph defining the graphic matroid M. Arbitrarily order the vertices
v1, v2, . . . , vn of V . Let G0 be the directed graph obtained by orienting every edge from the vertex
with smaller index to the vertex with larger index, and let G1 be the graph obtained by orienting
every edge in the opposite direction. We create a bin for every vertex, then uniformly at random
choose X ∈ {0, 1}. We then create the partition matroid M′ by adding edge e to the bin corre-
sponding to its tail in GX . Clearly GX does not contain any directed cycles, so since we pick at
most one outgoing edge from each vertex, any set independent in M′ is also independent in M. To
analyze the value, consider the optimum basis in the original matroid M (which corresponds to a
forest F in G). By rooting each tree arbitrarily and directing every edge up towards the root, we
can associate a value with every vertex (the value of the edge leaving it) so that the value of the
basis is equal to the sum of the values of the vertices. Then in M′, every edge in F has probability
1/2 of being in the bin corresponding to its tail in F , in which case the value of the vertex in M′

is at least as large as its value in M. Thus in expectation OPT (M′, w) ≥ 1
2OPT (M, w).

5 Advanced Matroid Classes

In this section, we will discuss three classes of matroids that were not considered by Babaioff,
Immorlica, and Kleinberg: transversal matroids (without the degree bound from the previous
section), laminar matroids, and regular matroids. The algorithms and analyses for these classes are
significantly more complex than for the simple classes of the last section, and do not fit into the
partition property framework. On the other hand, they do not stray too far from the [BDG+09]
framework: both the transversal and the laminar algorithms can be seen as a reduction to a partition
matroid that is only defined after the sample rather than at the beginning of the algorithm. This
means that the reduction can take into account the knowledge of the values gained by the sample,
which is crucial for both of them.

5.1 Transversal Matroids

The first class of matroids that was shown to admit O(1)-competitive algorithms (other than those
from [BIK07]) were transversal matroids. O(1)-competitive algorithms for transversal matroids
were given first by Dmitrov and Plaxton [DP08], who designed an algorithm that was later gener-
alized by Korula and Pál [KP09] to hold for slightly more general settings (online vertex-at-a-time
weighted matching, in particular). In order to define this algorithm, we will first define the obvious
offline greedy algorithm. Recall that in a transversal matroid the elements of the matroid are the
left vertices of a bipartite graph G = (L, R, E), so each left vertex has some value (which we do
not find out until they appear online). We first arbitrarily order the right vertices. The greedy
algorithm, when given a collection of left vertices with their values (and edges), considers them in
nonincreasing order of value. When considering left vertex u, it examines its neighborhood N(u) of
right vertices and finds the highest ranked neighbor that has not already been matched (if such a
vertex exists). It then matches u to this vertex. It is easy to see that this greedy matching always
matches left nodes with at least 1/2 as much value as the optimal matching.

The online algorithm works as follows. We first choose a random value k from the binomial
distribution B(n, 1/2), and let the first k elements σ(1), . . . , σ(k) go by without selecting anything.
As always, this set will be our sample. We call this set of elements A. Now when we see a new left
vertex u, we first run the greedy algorithm on A∪ {u}, and let g(u) denote the right-vertex that u
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was matched to by the greedy algorithm (if it is indeed matched). Note that this is equivalent to
running the greedy algorithm on just u and the elements of A with value larger than u. So g(u)
depends only on u and on elements with larger weight. If g(u) is currently unmatched, then we
select u and mark g(u) as matched. Otherwise we do not select u.

This algorithm trivially returns an independent set, since we only ever select vertices that can be
matched without modifying the previous matching. It is not too hard to see (at least intuitively)
why this algorithm returns sets with large value. First, let M1 ⊆ A denote the sampled nodes
that are matched when we run the greedy algorithm on A. Then since the greedy algorithm is a
2-approximation to the maximum matching, and about half of the elements are in the sample, the
value of M1 is at least OPT/4 in expectation. Now let M2 = {u 
∈ A : g(u) exists} denote the left
vertices not in A for which g(u) exists. Since every vertex is equally likely to be in A as not to be in
A, every element contributes equally to M1 and to M2 (we can think of determining whether g(u)
exists as happening before determining whether or not u was sampled), and thus M2 has expected
value at least OPT/4.

Let u ∈ M2, and suppose that g(u) = v. We say that u is good if g(u′) 
= v for all u′ ∈ M2 with
u′ 
= u. Let M3 denote all of the good elements of M2. We do not lose much value when restricting
to M3, since it can be proved that in expectation, for any right node v, the total value of nodes
u with g(u) = v is only 2w(e), where e is the most valuable element with g(e) = v. On the other
hand, v has probability 1/2 of only one element u existing with g(u) = v. Putting this all together,
we get that in expectation M3 has value at least least 1/4 of M2 and thus at least 1/16 of OPT .
Finally, it is easy to see that any element of M3 will be selected by the algorithm.

5.2 Laminar Matroids

In SODA 2011, Im and Wang [IW11] showed that laminar matroids admit O(1)-competitive algo-
rithms. In particular the gave an algorithm which has competitive ratio at most 16000/3. While
their algorithm is reasonably simple, their analysis is quite complex. Recently Jaillet, Soto, and
Zenklusen [JSZ13] gave a different algorithm, which is also quite simple and has competitive ratio at
most 3e

√
3. Even more recently, a simple “simulated greedy” algorithm inspired by the transversal

matroid algorithm was shown by Ma, Tang, and Wang to be 9.6-competitive [MTW13]. In the rest
of this section, I will describe the simple algorithm of [JSZ13] and give a sketch of the analysis that
shows the competitive ratio is at most 27e/2 (the improvement to 3e

√
3 requires a more subtle

analysis).
The first thing the algorithm does is rename the matroid: it is easy to see (say from representing

the laminar family as a tree/forest) that there is a way of ordering the elements e1, . . . , en so that
every F ∈ F is exactly an interval ei, . . . , ej for some i and j. With this renaming of the elements,
their algorithm begins as most matroid secretary algorithms do: they choose a threshold k from the
binomial distribution B(n, 2/3) and let the first k elements go by as a sample A (their modification
of the probability in the binomial distribution from 1/2 to 2/3 is just to optimize the constant
achieved). They then construct the optimum solution OPTA = {ei1 , ei2 , . . . , eip} of the sample,
where 1 ≤ i1 ≤ i2 ≤ · · · ≤ ip ≤ n. Let Pj = {ek : k ∈ {ij−1, . . . , ij}, so the Pj ’s are the
intervals between consecutive elements of OPTA. They split these intervals into two sets: let
Podd = {Pj : j is odd}, and let Peven = {Pj : j is even}. Let P = Podd with probability 1/2, and
otherwise let P = Peven. They then run the classical secretary algorithm on every Pj ∈ P.

Note that this algorithm is similar to the reduction to partition matroids that we saw in Sec-
tion 4, since running the classical secretary algorithm on each set in P is exactly the same as
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running the partition matroid algorithm on the partition matroid defined by P. But there is one
crucial difference: the partition matroid is only defined after the sampling. This ends up making
it simple to prove that the set selected is actually independent. Suppose that our algorithm selects
elements ei and ej with i < j. Then by construction, ei ∈ Pi′ and ej ∈ Pj′ for some j′ ≥ i′ + 2.
Thus OPTA contains at least two elements ea and eb with i < a < b < j. So for any set F ∈ F , if
our algorithm returns a set I containing bF elements of F , then |OPTA ∩F | ≥ bF , and so cF ≥ bF .
Since this is true for any set F ∈ F , this implies that I is in fact independent.

To see that this algorithm gives good value, consider some element fi in the optimal solution,
let fj be the element of OPT with largest index less than i, and let fk be the element of OPT with
smallest index larger than i. Then with probability (2

3)2 · 1
3 · 1

2 = 2
27 the following event happens:

fj , fk ∈ A and fi 
∈ A and the coin flip to determine P is such that the set P� containing fi is in P.
If all of this happens, then by running the classical secretary algorithm on P�, with probability at
least 1/e we get an element at least as valuable as fi. Now linearity of expectations implies that
the total value of our algorithm is in expectation at least 2

27e times the value of OPT.

5.3 Regular Matroids

When looking through the literature on the matroid secretary problem, it is hard not to notice one
missing class of matroids: representable matroids (i.e. vector matroids). These matroids were one of
the original motivations for Whitney’s definition of matroids (along with graphic matroids). So it is
somewhat surprising that until very recently, essentially no natural class of representable matroids
was known to admit an O(1)-competitive algorithm (many classes such as graphic matroids are in
fact representable, but they are more naturally considered as graphs rather than through linear
algebra). Given this seemingly difficult class of matroids, a very natural place to start is the regular
matroids. Recall that a matroid is regular if it is F -representable for every field F . Intuitively,
regular matroids should be the “easiest” class of representable matroids, since they are so heavily
restricted. And indeed, Dinitz and Kortsarz recently designed a good algorithm for regular matroids
which does not extend to general representable matroids.

Theorem 5.1 ([DK13]). There is a 9e-competitive algorithm for the matroid secretary problem on
regular matroids.

The techniques used in [DK13] are more matroid-theoretic than algorithmic, and depend heavily
on a famous theorem of Paul Seymour known as the regular matroid decomposition theorem [Sey80].
Informally, this theorem states that any regular matroid can be decomposed into a set of graphic
matroids, cographic matroids, and copies of a special matroid known as R10 (cographic matroids
are the duals of graphic matroids under the standard notion of matroid duality, where a set is
independent in the dual if and only if its complement contains a basis of the primal). The no-
tion of decomposition used by Seymour is too complex for this survey, but interestingly enough,
O(1)-competitive algorithms for these classes were already known: we have discussed graphic ma-
troids, cographic matroids were shown to have O(1)-competitive algorithms by Soto [Sot11], and
any constant size matroid is trivial. So a natural approach to regular matroids is to use the existing
algorithms for these three classes as black boxes, and show that they respect Seymour’s decompo-
sition. Unfortunately, it turns out that they do not, and so the bulk of [DK13] is not designing new
online algorithms, but rather showing two offline constructions. First, we show that Seymour’s de-
composition theorem can be modified to give a decomposition with some extra properties that turn
out to be useful. Second, we give a way of modifying all of the matroids in the decomposition so
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that the appropriate algorithm can be run on each of them while guaranteeing global independence
and only a small loss in value.

It is beyond the scope of this survey to go into the details of [DK13], but it is worth noting
that their use of the regular matroid decomposition theorem and Soto’s use of the principal se-
quence [Sot11] represent essentially the only uses of matroid theory beyond the basic definitions.
The vast majority of the results that have been presented in this survey, including the results on
general matroids and the results on all other specific matroid classes, simply use the definition of
matroids (or the subclass of matroids). Yet there is a deep and rich literature in structural matroid
theory, including a deep theory of matroid minors which was useful in [DK13], that has remained
largely untapped. If we hope to make progress on more advanced classes of matroids, it seems
natural to start using some of this theory. We suggest that the interested reader look at Oxley’s
book [Oxl92] for a good general overview, and a survey of Seymour [Sey95] for an introduction to
matroid minor theory.

6 Discussion and Directions

In this column, I have tried to present a reasonably comprehensive survey of the current results
on the matroid secretary problem and its variants. While optimization over matroids is reasonably
well understood in the offline setting, the online setting has proven to be much more difficult. Yet
we have had a fair amount of success so far: an O(

√
log r)-competitive algorithm for the matroid

secretary problem, and O(1)-competitive algorithms for many special classes such as partition,
uniform, graphic, transversal, laminar, and regular matroids. In addition, we know that much
of the difficulty comes from the precise adversarial value, random ordering assumptions: if the
values are assigned randomly to the elements then there is an O(1)-competitive algorithm for
general matroids, and if the assignment is still adversarial but the algorithm gets to control the
order (rather than it being random) then there is also an O(1)-competitive algorithm for general
matroids. So the classical assumptions, of random order and adversarial values, seem together to
be the cause of the difficulty of the problem.

There are still many interesting open problems related to the matroid secretary problem. Ob-
viously the big one is Conjecture 1.2: is there an O(1)-competitive algorithm for all matroids?
Resolving this one way or the other would be extremely interesting. Assuming that this conjecture
is either false or that we cannot make progress on it, designing O(1)-competitive algorithms for
specific classes is also extremely interesting. For example, we still have a very poor understanding
of representable matroids: there is an O(1)-competitive algorithm for regular matroids, but this
algorithm does not seem to generalize even to binary matroids (i.e. GF (2)-representable matroids).
Can we design a good algorithm for binary matroids? Ternary matroids? All representable ma-
troids? In general, the algorithms that we know for specific classes have not used much of the
structural matroid theory that has been developed by mathematicians over the last half-century
– maybe we can make progress by using results from this literature (such as Seymour’s regular
matroid decomposition theorem)?

Another set of interesting problems are related to the differences between the current algorithms.
For example, many of the known algorithms work by reducing to partition matroids, either implicitly
or explicitly. The simple classes discussed in Section 4 do this explicitly before any elements have
even been seen through the α-partition property, while the algorithms for laminar and transversal
matroids use the values revealed in the sample to design the partition matroid. Is this use of
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the sample actually necessary? More specifically, do transversal and laminar matroids satisfy the
α-partition property for some constant α? This is interesting, since it is still not known whether
all matroids have the α-partition property for constant α. If they do, then this would resolve
Conjecture 1.2 in the affirmative. More likely they do not, but at this point we do not know a
single class of matroids that provably do not. Constructing such a class might be a good first step
towards proving Conjecture 1.2 false.

Finally, one issue that I have glossed over throughout this survey is the question of when the
algorithm receives knowledge of the matroid. We have generally been assuming that the algorithm
receives knowledge of the matroid upfront, before any elements are revealed. This is what lets us,
for example, apply Seymour’s regular matroid decomposition theorem or apply the decomposition
into the principal minors of the matroid. But what if the structure of the matroid is revealed online
as the weights are? Maybe we cannot query whether a set is independent until we have seen all
elements of that set. Some of the algorithms discussed above can easily be modified to work in this
setting, but for some we do not know how to do this. Figuring out whether foreknowledge of the
matroid is actually necessary is also an interesting open problem.
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[GV11] Shayan Oveis Gharan and Jan Vondrák. On variants of the matroid secretary problem.
In Proc. ESA, pages 335–346, 2011.

[IW11] Sungjin Im and Yajun Wang. Secretary problems: laminar matroid and interval schedul-
ing. In Proc. SODA, pages 1265–1274, 2011.
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