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Abstract

Adjoint Algorithmic Differentiation is an efficient way to obtain financial instrument price deriva-
tives with respect to the data inputs. Often the differentiation does not cover the full pricing
process when a model calibration is performed. Thanks to the implicit function theorem, the dif-
ferentiation of the solver embedded in the calibration is not required to differentiate to full pricing
process. An efficient approach to the full process differentiation is described.
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1 Introduction
In quantitative finance, computing the price of financial instruments is only part of the game;
most of the (computer) time is spent in calculating the derivatives of the price with respect to the
different inputs, the so-called greeks.

For the computation of financial instrument price derivatives, one efficient technique is Algo-
rithmic Differentiation (AD) and in particular its Adjoint mode (AAD). The method is efficient in
two senses: it is fast and provides results with machine-precision accuracy.

The adjoint method was popularised in finance by Giles and Glasserman (2006). Since then,
the technique has been applied in different contexts in finance, in particular the Libor Market
Model in Denson and Joshi (2009a) and Denson and Joshi (2009b), Monte Carlo-based calibration
in Kaebe et al. (2009), correlation risk in credit models in Capriotti and Giles (2010), and Monte
Carlo credit risk in Capriotti et al. (2011). We also refer to Capriotti (2011) and the references
therein for the general technique and its use for derivatives computations in finance.

In theory, applying the adjoint method to compute a single price (P) and all its derivatives (D)
should lead to a relative time cost (Griewank and Walther, 2008, Section 4.6)

Cost(P +D)

Cost(P )
≤ ωA

with ωA ∈ [3, 4]. This relative cost can be compared to the finite difference (also called divided
difference or bump and recompute) method, another popular technique for derivative computation.
With that technique, the relative cost depends on the number of derivatives and is

Cost(P +D)

Cost(P )
≃ number of derivatives + 1.

Even for simple financial instruments, the number of derivatives can be large. For a simple vanilla
10Y swap in EUR, the number of derivatives is 42. The advantage of the AAD in term of compu-
tational cost is obvious.

In practice, for simple functions, it is in general possible to do better than the theoretical upper
bound. For example the Black function option price and its derivatives (w.r.t. the forward, the
volatility and the strike) can be computed with a ratio of 1:1.11 to the price time, i.e. the three
derivatives can be computed by increasing the computation time by only 10%. Part of the saving
comes from using inside information on the problem. In the Black formula, the derivative of the
price with respect to the exercise boundary is zero. This type of simplification is not infrequent in
finance; it appears in European swaption pricing in the Hull-White model and Bermudan swaption
pricing.

In practice, this method is primarily of interest when considering complex processes. One
frequent part of such a process for exotic option pricing in finance is a complex model calibration.
The process is as follows:

◦ the price of an exotic instrument is related to a specific basket of vanilla instruments;

◦ the price of these vanilla instruments is computed in a given base model;

◦ the complex model parameters are calibrated to fit the the vanilla option prices from the
base model. This step is usually done through a generic numerical equation solver; and

1All figures related to actual implementations have been computed with the OpenGamma OG-Analytics library.
The OpenGamma analytic library is open source and available at http://developers.opengamma.com.
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◦ the exotic instrument is then priced with the calibrated complex model.

In the algorithmic differentiation process, we suppose that the pricing algorithm and its deriva-
tives are implemented. We want to differentiate the exotic price with respect to the parameters of
the base model. In the bump and recompute approach, this corresponds to computing the risks
with model recalibration. As the calibration can represent a major fraction of the total compu-
tation time of the procedure listed above, an alternative method is highly desirable. The subject
of this note is the calibration process part. It intended to be complementary to the literature
mentioned above.

An independent similar approach, using an Automatic Differentiation tool (ADOL-C), is pro-
posed in Schlenkrich (2011). The model used in that paper is the Hull-White one factor model. The
problem analysed is the calibration to European swaptions and pricing of Bermudan swaptions.

In general, the calibration process is not explicit, but done through a numerical equation
solving. We have only one set of parameters of the calibrated model; the set that matches the
prices from a specific set of curves and base model parameters. There is no explicit algorithm
that provides the calibrated model parameters as function of the base model, or its the adjoint
algorithmic differentiation.

What is demonstrated in this note is that the derivative of the calibration process is not required;
indeed the calculation is performed more quickly without it.

To show this, implicit function theorem is used. Under mild regularity conditions, the theorem
asserts that for a root finding problem

f(x, y) = 0

if there is a solution (x0, y0), and if Dyf(x0, y0) is invertible, then, near to x0, there is a (implicit)
function g such that f(x, g(x)) = 0 that is differentiable in x0 and

Dxg(x0) = − (Dyf(x0, y0))
−1

Dxf(x0, y0).

In general, the numerical resolution of the equation f(x, y) = 0 requires several evaluations of f .
The derivatives of f are computed in a time not greater than the time to perform four evaluation of
f (in the one calibration instrument case). Thus, the derivatives of f can be computed faster than
the value y0. The derivatives of the implicit function, through the above formula, can be obtained
in a time which is less than the pricing time (subject to the price being computed already).

The idea of combining ADD and the implicit function theorem has been present in AD for some
time (Christianson (1998)). In addition to calculating the derivative through equation solving,
this paper also analyses error estimates for the function computed. Similar ideas are used in other
applied mathematics fields. In particular, Giles and Pierce (2000) used it in engineering design;
their formula for objective function derivatives is similar to the derivatives of the exotic instrument
price with respect to the curves in the base model presented in Section 3. To our knowledge, the
approach has not yet been used in the financial calibration context.

We describe the improved efficiency of the calculation of the derivatives below, and provide
several examples and show that the efficiency described in theory can be obtained in practice. In
both examples, the price with calibration and its 40 to 70 derivatives are obtained in a time which
is below twice the pricing time (and so well below the theoretical bound).
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2 Adjoint method and implicit function theorem
The method is presented using a simple example, allowing simplified notation. Given a function
f : Rpa → Rpz

z = f(a).

Within the algorithm to compute f , there is an equation to solve. The algorithm is decomposed
into

b = g1(a)

c s. t. g2(b, c) = 0

z = g3(c)

with g1 : Rpa → Rpb , g2 : Rpb × Rpc → Rpc and g3 : Rpc → Rpz . The second part of the algorithm
is a multi-dimensional equation that must be solved.

It is assumed that all functions are differentiable. The derivative of f : Rpa → Rpz ; a 7→ z = f(a)
at the point a is denoted Df(a) or Daf(a) if we want to emphasise the variable with respect to
which the derivative is taken. The elements of Rp are represented by column vectors. The derivative
Df(a) ∈ L(Rpa ,Rpz ) is represented by a pz × pa matrix (pz rows, pa columns).

Suppose that the adjoint version of the functions gi (1 ≤ i ≤ 3) is known but the adjoint version
for the solver is unknown, i.e. the derivatives of the function that computes c from b is unknown.
The implicit function theorem ensures (under certain conditions) that the process that produces c
as function of b is actually differentiable and links its derivative to that of g2. Defining g4 as the
implicit (and unknown) function associating c to b, i.e. g4(b) = c, the derivative of g4 is given by

Dbg4(b) = − (Dcg2(b, c))
−1

Dbg2(b, c).

Solving the equation is usually much more time-consuming than simply computing one value
of g2. In the implicit function theorem approach, using the adjoint version there is no need to
solve the equation again as there is no requirement to have adjoint version of the solver, only the
adjoint version of the function g2. The adjoint method used in this way will give better results
than the normal approach as there is no need to solve the equation for g2 again. The time required
to compute the price and all of its derivatives will be usually less than twice the time taken to
calculate one price.

The standard notation in ADD is to denote the derivative of the final value z with respect to an
intermediate value x by x̄. The literature uses different notations with regards to the transposition
of x̄; here we use

x̄ = (Dxz(x))
T
,

i.e. the bar variables are column vectors if z is of dimension one, or matrices of size px × pz
otherwise. In our instrument price examples, the dimension of z is one.

The adjoint version of the algorithm is

z̄ = I (with I the pz × pz identity)
c̄ = (Dcg3(c))

T z̄

b̄ = (Dbg4(b))
T c̄ = −

(
(Dcg2(b, c))

−1
Dbg2(b, c)

)T

c̄

ā = (Dag1(a))
T b̄.
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3 Calibration Technique description
The method is applied to the interest rate model calibration case. Let NPVVanilla

Base be the prices of
the vanilla financial instruments used for calibration in the base model. The data required for the
pricing are the yield curves (denoted C) and market volatility parameters (e.g. SABR parameters
or Black volatilities) for the base model (denoted Θ). The exotic model can price the same vanilla
options with the same curves but using different parameters (denoted Φ). The pricing function
for the vanilla options in the calibrated complex model is denoted NPVVanilla

Calibrated. The calibration
procedure is

f(C,Θ,Φ) = 0. (1)
For perfect calibration, the function is simply

f(C,Θ,Φ) = NPVVanilla
Base (C,Θ)− NPVVanilla

Calibrated(C,Φ).

Equation (1) will be multi-dimensional when there are several calibrating instruments. We suppose
that there are as many calibration instruments as parameters to be calibrated in Φ.

In practice, some models may have more free parameters than calibrating instruments. In this
case the model parameters are constrained in such a way that there are the same number of degrees
of freedom as the number of calibrating instruments: the second example calibrates a two-factor
LMM with many parameters. We calibrate them by adding the constraint that for each yearly
period, the parameters are multiples of a initially-given structure; if the model has 40 parameters,
the actual number of degrees of freedom is 10, one for each calibrating instrument. The parameters
Φ used here are those degrees of freedom, not the original model parameters.

With the calibration procedure, we obtain calibrated model parameters from the original model
parameters and the curves:

Φ = Φ(C,Θ).

The function is obtained through the equation solving procedure; there is no explicit solution or
even explicit code that produces that function directly.

The exotic option is priced from the calibrated model through the pricing NPVExotic
Calibrated(C,Φ).

With the implicit function above we can define

NPVExotic
Base (C,Θ) = NPVExotic

Calibrated(C,Φ(C,Θ))

We are interested in the derivative of the exotic option with respect to the curves and the base
model parameters Θ.

With the adjoint versions of NPVExotic
Calibrated, we can compute the derivatives

DCNPVExotic
Calibrated and DΦNPVExotic

Calibrated.

The quantities of interest are

DCNPVExotic
Base and DΘNPVExotic

Base .

Through composition we have

DCNPVExotic
Base (C,Θ) = DCNPVExotic

Calibrated(C,Φ(C,Θ)) +DΦNPVExotic
Calibrated(C,Φ(C,Θ))DCΦ(C,Θ),

and
DΘNPVExotic

Base (C,Θ) = DΦNPVExotic
Calibrated(C,Φ(C,Θ))DΘΦ(C,Θ).
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Where DCΦ and DΘΦ are unknown. Using the implicit function theorem, the function Φ is
differentiable and its derivatives can be computed from the derivative of f :

DΘΦ(C,Θ) = − (DΦf(C,Θ,Φ(C,Θ)))
−1

DΘf(C,Θ,Φ(C,Θ))

and
DCΦ(C,Θ) = − (DΦf(C,Θ,Φ(C,Θ)))

−1
DCf(C,Θ,Φ(C,Θ)).

In the perfect calibration case

DΘΦ(C,Θ) =
(
DΦNPVVanilla

Calibrated(C,Φ(C,Θ))
)−1

DΘNPVVanilla
Base (C,Θ)

and

DCΦ(C,Θ) =
(
DΦNPVVanilla

Calibrated(C,Φ(C,Θ))
)−1

(
DCNPVVanilla

Base (C,Θ)−DCNPVVanilla
Calibrated(C,Φ(C,Θ))

)
.

4 Examples
In line with the above technique, we would like to price and compute the sensitivities of exotic
swaptions in a physical delivery SABR framework. For all the required pricing algorithms the
adjoint versions have been implemented2.

4.1 Cash swaptions in the Hull-White model
In the first example our exotic instrument is a cash-settled swaption and our vanilla basket is
composed of a unique physical delivery swaption. The base model is a SABR model on the swap
rate. The curve framework is multi-curve (one discounting curve and one forward curve). The
model parameters Θ are the SABR parameters α, ρ and ν (β is set to 0.50). The complex model is
a Hull-White one factor (extended Vasicek) model with constant volatility. The parameter of the
Hull-White model to calibrate is the constant volatility. The pricing algorithm in the Hull-White
model for the physical delivery swaption is described in Henrard (2003), and the pricing algorithm
used for the cash-settled swaption is the efficient approximation described in Henrard (2010a).

For this example, we use a 1Y×9Y swaption on an annual vs 6m Euribor swap. There are three
SABR sensitivities (α, ρ, and ν) and 38 rate sensitivities (19 on each curve). The performance
results are provided in Table 1. The computation of the three SABR derivatives add less than 30%
to the pricing computation time in this approach; a non-symmetrical finite difference computation
would add 300%.

The same comparison was performed for the interest rate sensitivities. The finite difference
requires 39 price time (3900%). The proposed approach adds only 0.55 price time (55%). In
total, the proposed algorithm is around 23 times faster than a finite difference approach and is
numerically more stable.

To partly compare with the results of Schlenkrich (2011), we also report figures for a Hull-White
one factor model with piecewise constant volatility. The set-up is different but the underlying model

2The implementations used for the performance figures are those in the OpenGamma analytics library. The
computations are done on a Mac Pro 3.2 GHz Quad-core. The test code is available from the author.
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Risk type Approach Price time Risks time Total
SABR Finite difference 1.00 3×1.00 4.00
SABR AAD and implicit function 1.00 0.28 1.28
Curve Finite difference 1.00 38×1.00 39.00
Curve AAD and implicit function 1.00 0.56 1.56
Curve and SABR Finite difference 1.00 41×1.00 42.00
Curve and SABR AAD and implicit function 1.00 0.83 1.83
Times relative to the pricing time. The pricing time is 0.45 second for 1000 swaptions.

Table 1: Performance for different approaches to derivatives computations: cash settled swaption
in Hull-White one factor model.

is similar. The computation time for the finite difference and adjoint evaluations of the Jacobian
with respect to the piecewise constant volatility for a 30Y and 100Y swap (annual volatility dates)
is provided. The Jacobian is the derivative of all European swaption prices with respect to all
volatilities in the model. The 30Y Jacobian computation requires 0.110 seconds (s) by finite
difference and less than 0.015 s by algorithmic differentiation. This is approximately 14% of the
runtime and is in line with Schlenkrich (2011) figures (20%). The corresponding figures for the
100Y case are 20.2 s and 0.42 s (2%).

4.2 Amortised swaptions in LMM
In this example, the exotic instrument is an amortised European swaption (i.e. a swaption with
decreasing notional), and the vanilla basket is composed of vanilla European swaptions with same
expiry and increasing maturities. The amortised swaption has a 10Y maturity and yearly amorti-
sation. The calibrating instruments are ten vanilla swaptions with yearly maturities between 1Y
and 10Y and same strike as the amortised swaption.

The base model is a SABR model on each vanilla swaption. The complex model is a two-factor
LMM with displaced diffusion and Libor period of six months. The pricing method for the vanilla
and the amortised swaption is the efficient approximation described in Henrard (2010b).

The calibration is performed as follows: for each yearly period the weights of the different
parameters (four in each year) are fixed. The calibration is done by multiplying those weights by
a common factor. The parameter Φ in the previous section are the multiplicative factors (10 in
total), even if in practice the derivatives with all the model parameters (40 in total) are computed
as an intermediary step.

The results for the SABR and curve sensitivities are reported in Table 2. There are 30 SABR
sensitivities (α, ρ, ν for 10 vanilla swaptions). In the described approach, the 30 sensitivities add
only 20% to the computation time with respect to the calibration and price computation .

There are 42 curve sensitivities (two curves, semi-annual payments over 10 years). The com-
putation of the 42 sensitivities takes only 75% of the price time. In total, the AAD approach is
approximately 2.5% of the time required by finite difference. Note that computing the curve and
SABR sensitivities take approximately the same amount of time as computing the curve sensitiv-
ities as most of the computation are common.

Similar results for amortised swaptions of different maturities and with different numbers of
calibrating instruments are reported in Figure 1. The ratios between the price and sensitivities
time and the price time are reported for the finite difference and Adjoint Algorithmic Differenti-
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Risk type Approach Price time Risks time Total
SABR Finite difference 1.00 30×1.00 31.00
SABR AAD and implicit function 1.00 0.18 1.18
Curve Finite difference 1.00 42×1.00 43.00
Curve AAD and implicit function 1.00 0.74 1.74
Curve and SABR Finite difference 1.00 72×1.00 73.00
Curve and SABR AAD and implicit function 1.00 0.75 1.75
Times relative to the pricing time. The pricing time is 0.425 second for 250 swaptions.

Table 2: Performance for different approaches to derivatives computations: amortised swaption in
the LMM.

ation using the implicit function method described in the previous section. The implicit function
AAD method ratio is almost independent of the number of sensitivities. In all cases but the 30Y
swaptions (where 212 sensitivities are calculated), the ratio is below two.
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Figure 1: Computation time ratios (price and sensitivities time to price time) for the finite difference
and AAD methods. The vega represents the derivatives with respect to the SABR parameters;
the delta represents the derivatives with respect to the curves. The AAD method uses the implicit
function approach. Figures for annually amortised swaptions in a LMM calibrated to vanilla
swaptions in SABR.

5 Conclusion
With the algorithmic differentiation technique, one can, in general, obtain all the derivatives of
the output (price) with respect to the inputs (in this case, curves and model parameters) at the
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computation cost of less than a fixed constant (between three and four in theory) times the cost
of one price.

This note analyses the equation solving (calibration) part of the algorithmic differentiation. In
equation solving, the inner function defining the equation is usually computed numerous times.
The implicit function theorem approach requires the adjoint method for the function, not for the
equation solver. The derivatives of the global algorithm are computed at a cost which is a small
multiple of the inner function cost, not the solver cost. If calibration is a significant part of the
algorithm, this makes a large difference. In the complex pricing process of the two examples, the
ratio for the price and derivatives computation time to the price only computation time is below
two.
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