
The physics of stone skipping
Lydéric Bocquet
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The motion of a stone skimming over a water surface is considered. A simplified description of the
collisional process of the stone with water is proposed. The maximum number of bounces is
estimated by considering both the slowing down of the stone and its angular stability. The conditions
for a successful throw are discussed. ©2003 American Association of Physics Teachers.
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I. INTRODUCTION

Nearly everyone has tried to throw a stone on a lake
count the number of bounces the stone was able to make
course the more, the better.1 Our intuition gives us some
empirical rules for the best throw: the best stones are flat
rather circular; one has to throw them rather fast and wit
small angle with the water surface; a small kick is given w
a finger to give the stone a spin. Of course these rules ca
understood using the laws of physics: the crucial part of
motion is the collisional process of the stone with the wa
surface. The water surface exerts a reaction~lift ! force on the
stone, allowing it to rebound. This process is quite comp
because it involves the description of the flow around
immersed stone.2,3 Some energy is also dissipated during
collision, so that after a few rebounds, the initial kinetic e
ergy of the stone is fully dissipated and the stone sinks.

The purpose of this paper is to propose a simplified
scription of the bouncing process of a stone on water
order to estimate the maximum number of bounces p
formed by the stone. This problem provides an entertain
exercise for undergraduate students, with simple expla
tions for empirical laws that almost everyone has exp
enced.

II. BASIC ASSUMPTIONS

Consider a flat stone, with a small thickness and a m
M . The stone is thrown over a flat water surface. The an
between the stone surface and the water plane isu. A sche-
matic view of the collisional process is shown in Fig. 1. T
velocity V is assumed to lie in a symmetry plane of the sto
~the plane of the paper!. The difficult part of the problem is
of course, to model the reaction force due to the water, wh
results from the flow around the stone during the stone-w
contact. It is not the aim of this paper to give a detail
description of the fluid flow around the colliding ston
Rather I shall use a simplified description of the force ke
ing only the main ingredients of the problem. First, the v
locity V of the stone is expected to be~at least initially! the
order of a few meters per second. For a stone with a cha
teristic sizea of the order of a few centimeters, the Reynol
number, defined as Re5Va/n, with n the kinematic viscosity
(n;1026 m2 s21 for water!, is of order Re;105, that is,
much larger than unity.4 In this ~inertial! regime, the force
due to the water on the stone is expected on dimensi
grounds to be quadratic in the velocity and proportional
the apparent surface of the moving object and the mass
sity of the fluid.5 Because the stone is only partially im
150 Am. J. Phys.71 ~2!, February 2003 http://ojps.aip.org
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mersed in water during the collisional process, we expect
force to be proportional to the immersed surface~see Fig. 1!.
The force can be adequately decomposed into a compo
along the direction of the stone~that is, alongt, see Fig. 1!
and a component perpendicular to it~that is, alongn!. The
latter corresponds to the lift component of the force, and
former corresponds to a friction component~of water along
the object!. I write the reaction force due to water,F, as

F5 1
2 ClrwV2Simn1 1

2 CfrwV2Simt, ~1!

whereCl and Cf are the lift and friction coefficients,rw is
the mass density of water,Sim is the area of the immerse
surface, andn is the unit vector normal to the stone~see Fig.
1!. Note that in general, bothCl andCf are functions of the
tilt angle u and incidence angleb, defined as the angle
between velocityV and the horizontal. In the simplified
analysis I will assume that bothCl andCf are constant and
independent of tilt and incidence angles.6 This assumption is
not a strong one because ricochets are generally perfor
with a small tilt angle,u, and a small incidence angle,b. If
one denotes the initial components of the incident veloc
by Vx0 andVz0 ~parallel and perpendicular to the water su
face, respectively!, the latter assumption amounts toVz0

!Vx0 .
We expect the lift force to be maximum when the object

only partially immersed due to the lack of symmetry betwe
the two sides of the stone. Therefore, if the object reache
depth such that it becomes completely immersed, the
force would be greatly diminished and would probably n
be able to sustain the weight of the stone anymore. For s
plicity, I will assume that the lift force vanishes for com
pletely immersed objects. The model for the force in Eq.~1!
is crude, but it is expected to capture the main physical
gredients of the stone-water interaction. It might fail f
lower stone velocities or larger incidence angles, wher
bulge of water could be created and affect the lift and fricti
forces on the stone.2 However, in this case it is expected th
the stone will be strongly destabilized during the collisi
process and perform only a very small number of bounc
We will restrict ourselves to large initial velocities and sm
incidence angles, such that the number of bounces is s
ciently large.

III. EQUATIONS OF MOTION

Consider the collisional process, that is, the time dur
which the stone is partially immersed in water. I will assum
in this section that the incidence angleu between the stone
150/ajp/ © 2003 American Association of Physics Teachers
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and the water surface is constant during the collisional p
cess. The validity of this assumption is considered in de
in Sec. V. The origin of time,t50, corresponds to the instan
when the edge of the stone reaches the water surface. Du
the collisional process, the equations of motion for the cen
of mass velocity are

M
dVx

dt
52

1

2
rwV2Sim~Cl sinu1Cf cosu!, ~2a!

M
dVz

dt
52Mg1

1

2
rwV2Sim~Cl cosu2Cf sinu!, ~2b!

with V25Vx
21Vz

2 and g is the acceleration due to gravity
Note that in Eq.~2! the areaSim depends on the immerse
depth and thus varies during the collisional process.

Equation~2! is nonlinear due to theV2 terms on the right-
hand side, but also due to the dependence of the imme
area, Sim , on the heightz. However, we can propose
simple approximation scheme: the magnitude of the veloc
V, is not expected to be strongly affected by the collisi
process~as I shall show in Sec. VI!. I thus make the approxi
mation thatV2.Vx0

2 1Vz0
2 .Vx0

2 on the right-hand side o
Eq. ~2!. The validity of this assumption requires a suf
ciently high initial velocity,Vx0 , and it might fail in the last
few rebounds of a stone skip sequence.

With this approximation, Eq.~2b! decouples from Eq.
~2a!. I thus first focus the discussion on the equation for
heightz, which is the height of the immersed edge~see Fig.
1!. Note that the equation forz is equivalent to the equatio
of the center of mass position, Eq.~2b! becauseu is assumed
to be constant~see Sec. V for a detailed discussion of th
point!. Hence, we may identifyVz with dz/dt and Eq.~2b!
yields a closed equation for the heightz.

IV. COLLISIONAL PROCESS

To solve Eq.~2b! we need to prescribe thez dependence
of the immersed areaSim . This quantity depends on the pre
cise shape of the stone. A natural choice is circular, whic
will treat in Sec. IV B. However, it is enlighting to first con
sider a square shape; this shape greatly simplifies the m
ematics and already contains the basic mechanisms invo

Fig. 1. Schematic view of the collisional process of a flat stone encounte
a water surface. The stone has a velocityV, with an incidence angleb,
while u is the tilt angle of the stone. The immersed areaSim represents the
area of the stone in contact with the water surface. The depth of the
mersed edge isz.
151 Am. J. Phys., Vol. 71, No. 2, February 2003
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A. A square stone

In this case, the immersed area is simplySim5auzu/sinu
~see Fig. 1!, with a the length of one edge of the stone. Th
equation forz thus becomes

M
d2z

dt2
52Mg2

1

2
rwVx0

2 C
az

sinu
, ~3!

where C5Cl cosu2Cf sinu.Cl , and I have useduzu52z
(z,0). We define the characteristic frequencyv0 as

v0
25

CrwVx0
2 a

2M sinu
, ~4!

and rewrite Eq.~3! as

d2z

dt2
1v0

2z52g. ~5!

With the initial conditions att50 ~first contact with water!,
z50 andż5Vz0,0, the solution of Eq.~5! is

z~ t !52
g

v0
2 1

g

v0
2 cosv0t1

Vz0

v0

sinv0t. ~6!

Equation~6! characterizes the collisional process of the sto
with water. After a collision timetcoll defined by the condi-
tion z(tcoll)50 (tcoll.2p/v0), the stone emerges totall
from the water surface. It is easy to show that the maxim
depth attained by the stone during the collision is

uzmaxu5
g

v0
2 F11A11S v0Vz0

g D 2G . ~7!

As discussed in Sec. I, the stone will rebound if it stays o
partially immersed during the collision. The rebound con
tion can be written asuzmaxu,asinu. If we use Eqs.~7! and
~4!, this condition can be written after some straightforwa
calculations as

Vx0.Vc5

A 4Mg

Crwa2

A12
2 tan2 bM

a3Crw sinu

, ~8!

where the incidence angleb is defined asVz0 /Vx05tanb.
Therefore, we obtain aminimum critical velocityfor skim-
ming. Using the typical values,M50.1 kg, a50.1 m, Cl

'Cf'1, rw51000 kg m23, andb;u;10°, we obtainVc

.0.71 m s21;1 m s21.
The physical meaning of this condition is clear: it simp

expresses the fact that the lift force1
2 CrwV2a2 has to bal-

ance the weight of the stoneMg in order for it to bounce.

B. A circular stone

For a circular stone, the immersed area is a more comp
function of the heightz, and is given in terms of the area o
a truncated circle. A simple integral calculation yields

Sim~s!5R2@arccos~12s/R!

2~12s/R!A12~12s/R!2#, ~9!

g

-
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with s5uzu/sinu ~the maximum immersed length! and R
5a/2 is the radius of the stone.

The equation of motion forz, Eq. ~2b!, thus becomes non
linear. However, it is possible to describe~at least qualita-
tively! the collisional process and obtain the condition for t
stone to bounce.

I first introduce dimensionless variables to simplify t
calculations. The dimensionless height,z̃, time, t, and im-
mersed area,A, are defined asz̃52z/R sinu, t5v0t, and
A( z̃)5Sim /R2. ~The minus sign inz̃ is introduced for con-
venience.! If we use these variables, Eq.~2b!, and Vz

5dz/dt, we obtain

d2z̃

dt2 5a2
1

2
A~ z̃!, ~10!

with a5g/(Rv0
2 sinu). Equation~10! is the equation of a

particle ~with unit mass! in the potentialV( z̃)5*( 1
2A( z̃)

2a)dz̃. We can use standard techniques for mechanical
tems to solve Eq.~10!. In particular, Eq.~10! can be inte-
grated once to give the ‘‘constant energy’’ condition

1

2 S dz̃

dt D 2

1V~ z̃!5E, ~11!

whereE is the energy of the system and is given in terms
the initial conditions

E5
1

2 S dz̃

dt D 2U
t50

1V~ z̃50!5
1

2
~Vz0 /~Rv0 sinu!!2.

~12!

The potentialV( z̃) can be calculated analytically using th
expression for the immersed areaSim given in Eq. ~9!. A
integral calculation gives

V~ z̃!5 1
2 ~A12~12 z̃!2@ 2

3 1 1
3 ~12 z̃!2#

2~12 z̃!arccos~12 z̃!!2a z̃. ~13!

This potential is plotted in Fig. 2 as a function ofz̃. As a
consequence of the constant energy condition, Eq.~11!, z̃
exhibits a turning point at a maximum depth defined
V( z̃max)5E.

Here again, the condition for the stone to bounce is t
this maximum depth be reached before the stone is f
immersed, that is,uzmaxu,2Rsinu. In terms of dimensionless

Fig. 2. Plot of the potentialV( z̃). The horizontal line is the constant energ
E of the system.
152 Am. J. Phys., Vol. 71, No. 2, February 2003
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variables, we obtain the condition:z̃max,2, with z̃max defined

by V( z̃max)5
1
2 (Vz0 /(Rv0 sinu))2. This condition can be ex-

plicitly solved. Let me introducez̃0 such thatdV/dz̃50 at
z̃5 z̃0 : V( z̃) is a monotonically increasing function ofz̃ for
z̃. z̃0 . Now it is easy to show thatz̃max.z0 @because
V( z̃max).0 and V( z̃0),0], and the conditionz̃max,2 is
therefore equivalent toV( z̃max),V(2)5 (p/2) 22a, that is,
1
2(Vz0 /(Rv0 sinu))2,(p/2) 22g/(Rv0

2 sinu). Then the con-
dition for skimming can be rewritten~recalling that
Vz0 /Vx05tanb)

Vx0.Vc5

A 16Mg

pCrwa2

A12
8M tan2 b

pa3Crw sinu

. ~14!

Up to ~slightly different! numerical factors this condition is
the same as in Eq.~8! for a square stone. Note moreover, th
the reasoning used for the potentialV is quite general and
can be applied to the square shape as well. This reaso
yields the same condition as Eq.~8! in this case.

Note also that for the circular stone, a simplified analy
of the motion could have been performed. First ifz̃ remains
small during the bounce of the stone, a smallz̃ expansion of
V( z̃) is possible, yieldingV( z̃)54&/15z̃ 5/22a z̃ ~corre-
sponding to a parabolic approximation for the shape of
stone near its edge!. Moreover, we remark that for smallVz0 ,
the energyE goes to zero, so thatz̃max is defined in this case
by V( z̃max)50. If we use also the previous approximation, w
obtain z̃max5(15a/4&)2/3. The condition for the stone to
bounce,z̃max,2, therefore yieldsa,16/15. In terms ofVx0 ,
this condition gives again a minimum critical velocity fo
skimming, defined asVc5AzMg/Crwa2 with z515/4
.3.75. This result is thus close to the ‘‘exact’’ conditio
found in Eq.~14! for the Vz050 case.

C. Energy dissipation

I have so far described the rebound of the stone by a
lyzing its vertical motion. This analysis gave a minimu
velocity for skimming which results from the balance b
tween the weight of the stone and the lift of the force due
water. However, some energy is dissipated during the co
sion due to the ‘‘friction’’ contribution of the force~the com-
ponent alongx). This mechanism of dissipation leads to a
other minimum velocity condition, in terms of the balan
between dissipation and initial kinetic energy. Only a qua
tative description of the dissipation is given here.

As shown by Eq.~2!, the componentFx of the reaction
force in thex direction ~parallel to the water surface! will
decrease the velocity of the stone. Then after a few boun
the condition for the stone to bounce, Eq.~8! or Eq. ~14!,
will no longer be satisfied and the stone will stop. It is po
sible to estimate the decrease in thex component of the
velocity using the equation for the center of mass positi
Eq. ~2a!. If we multiply both sides of Eq.~2a! by Vx and
integrate over a collision time, we obtain the decrease in
kinetic energy in thex direction in terms of the work of the
reaction force
152Lyde´ric Bocquet
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2
MVx f

2 2
1

2
MVx0

2 52E
0

tcoll
Fx~ t !Vx~ t !dt, ~15!

where Vx0 and Vx f are thex components of the velocity
before and after the collision,tcoll is the collision time, and

Fx5 1
2C̃rwVx

2Sim is the x component of the reaction force

with C̃5Cl sinu1Cf cosu.
A rough estimate of the right-hand side of Eq.~15! is

E
0

tcoll
Fx~ t !Vx~ t !dt.Vx0E

0

tcoll
Fx~ t !dt. ~16!

Now we have the simple relationFx(t)5mFz(t), with m

5C̃/C @see Eq.~1!#. Moreover, it is expected that the ave
age vertical force during a collision, ^Fz(t)&
5tcoll

21*0
tcollFz(t)dt, is the order of the weight of the ston

Mg. This point can be explicitly verified for the square sto
case, using the expression of the forceFz in terms of the
heightz(t) and Eq.~6!. The final result iŝ Fx(t)&.mMg.7

Moreover, as shown in the above~and in particular for the
square stone, although the results remain qualitatively v
for the circular one!, the collision time is given approxima
tively by tcoll;2p/v0 . We eventually find that the loss i
kinetic energy in Eq.~15! is approximatively given by

W.2mMgVx0

2p

v0
52mMg,, ~17!

where, is defined as

,5Vx0

2p

v0
52pA2M sinu

Crwa
. ~18!

The quantity,5Vxtcoll is the distance alongx traversed by
the stone during a collision. If the energy lossW is larger
than the initial kinetic energy, the stone would be stopp
during the collision. Using Eq.~15!, this condition can be
written explicitly as1

2MVx0
2 .uWu5mMg,. We deduce that

the initial velocity should be larger than the minimum velo
ity Vc in order to perform at least one bounce, that is,

Vx0.Vc5A2mg,. ~19!

If we use the same numerical values as in the previous p
graph, we obtainm51.4, ,513 cm, so thatVc'2 m s21.
This criterion is more restrictive than the previous one, E
~14!. I thus consider in the following that Eq.~19! is the
criterion for the stone to skim over water.

V. WHY GIVE THE STONE A SPIN?

The previous calculations assumed a constant angleu. It is
obvious that the rebound of the stone is optimized whenu is
small and positive~see, for example, the value of the forc
constantC5Cl cosu2Cf sinu which decreases whenu in-
creases!. Now, if after a collision, the stone is put in rotatio
around they axis ~see Fig. 1!, that is, u̇Þ0, its orientation
would change by an appreciable amount during free flig
the incidence angleu for the next collision has little chanc
to still be in a favorable situation. The stone performs, say
most one or two more collisions. There is therefore a n
for a stabilizing angular motion. This is the role of the sp
of the stone.
153 Am. J. Phys., Vol. 71, No. 2, February 2003
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Let us denoteḟ0 as the rotational velocity of the ston
around the symmetry axis parallel ton in Fig. 1. I neglect in
the following any frictional torque on the stone~associated
with rotational motion!. During the collision, the reaction
force due to the water is applied only to the immersed par
the stone and results in a torque applied on the stone.
simplicity, I consider only the lift part of the force. Its con
tribution to the torque~calculated at the centerO of the
stone! can be readily calculated asMlift 5OP•F liftey , where
ey is the unit vector in they direction in Fig. 1 andP, the
point of application of the lift force, is located at the cent
of mass of the immersed area. This torque is in they direc-
tion and will eventually affect the angular motion alongu.
However a spin motion aroundn induces a stabilizing
torque: this is the well-known gyroscopic effect.8 The deri-
vation of the equation of motion of the rotating object~the
Euler equations! is a classic problem and is treated in sta
dard mechanics textbooks~see, for example, Ref. 8!. On the
basis of these equations, it is possible to derive the stab
ing gyroscopic effect. This derivation is briefly summariz
in the Appendix.

In our case, the equation for the angleu can be written as

ü1v2~u2u0!5
Mu

J1
, ~20!

where v5@(J02J1)/J1#ḟ0 , ḟ0 is the initial spin angular
velocity ~in the n direction!, andJ0 andJ1 are moments of
inertia in then andt directions, respectively;u0 is the initial
tilt angle andMu5OP•F lift is the projection of the torque
due to the water flow in they direction. Equation~20! shows

that in the absence of spin motion,ḟ050, the torque due to
the lift force will initiate rotational motion of the stone in th
u direction. As discussed above, the corresponding situa
is unstable. On the other hand, spin motion induces a st
lizing torque that can maintainu around its initial value. The
effect of the torque can be neglected if, after a collision w
the water, the maximum amplitude of the motion of the an
u is small: du5@u2u0#max!1. If we use Eq.~20!, an esti-
mate ofdu can be obtained by balancing the last two terms
Eq. ~20!, yielding du;Mu /(J1v2) @note that up to numeri-
cal factors (J02J1)/J1;1 andJ1;MR2, with R the radius
of the stone#. The order of magnitude ofMu can be obtained
using the results of Sec. IV C. The average vertical fo
acting on the stone has been found to be the order of
weight of the stone@see the discussion after Eq.~16!#:
^Fz(t)&.Mg. If we takeOP;R, we obtain the simple re-
sult Mu;MgR. The estimate fordu follows directly as
du;g/(Rv2). Therefore, the condition foru to remain ap-
proximately constant,du!1, is

ḟ0;v@Ag

R
. ~21!

For a stone with a diameter of 10 cm, Eq.~21! gives ḟ0

@14 s21, corresponding to a rotational frequency larger th
a few revolutions per second (;2 Hz). This condition is
easily fullfilled in practice and corresponds approximately
what we would expect intuitively for a successful thro
Note that the condition~21! is independent of the center o
mass velocity of the stoneV.
153Lyde´ric Bocquet
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VI. AN ESTIMATE FOR THE MAXIMUM NUMBER
OF BOUNCES

The estimation of the maximum number of bounces is
most difficult and tentative part of the analysis because m
factors can in principle slow down or destabilize the sto
some of which are extremely difficult to model~such as ir-
regularities of the water surface and the wind!. We shall as-
sume the idealized situation described above~perfect surface,
no wind, idealized reaction force! and focus on two specific
factors, which appear, at least intuitively, as natural can
dates for stopping the stone.

A. Slow down of the stone

As I have discussed in Sec. IV C, energy is dissipa
during a collision and thex component of the velocity of the
stone will decrease during each collision: after a few co
sions, all the initial kinetic energy will be dissipated. Th
process can be easily formulated.

I consider a succession ofN collisions. Between two col-
lisions, the motion is parabolic~wind and air friction are
neglected! and the initialx component of the velocity at th
next collision is equal to the finalx component of the veloc
ity at the end of the previous collision. The important po
to note is that the energy loss during one collision, Eq.~17!,
is independent of the velocityVx0 before the collision.
Therefore, the velocity of the stone afterN collisions obeys
the relation

1
2 MVx

2@N#2 1
2 MVx

2@0#52NmMg,, ~22!

so that the stone will be stopped at a collision numberNc
such that the total energy loss is larger than the initial kine
energy@similar to the argument leading to the critical velo
ity for skimming, Vc , in Eq. ~19!#. This criterion corre-
sponds toVx

2@Nc#50 in Eq. ~22!, and Nc is given accord-
ingly by

Nc5
Vx

2@0#

2gm,
. ~23!

If we use the same typical values as before (M50.1 kg, a
50.1 m, Cl'Cf'1, rw51000 m23, b;u;10°), we ob-
tain m.1.4 and,.13 cm. We then findNc'6 for the ini-
tial velocity Vx055 m s21, Nc'17 for Vx058 m s21, and
Nc'38 for Vx0512 m s21. The latter number of bounce
corresponds to the world record.1

It is interesting to calculate the distance between two s
cessive collisions. As noted, the motion of the stone is pa
bolic out of the water: the position$X,Z% of the particle is

given by X(t)5Vxt, Z(t)52 1
2 gt21uVzut. The next colli-

sion will occur at a distanceDX52VxuVzu/g. The depen-
dence ofVx on the number of collisionsN is given by Eq.
~22!. On the other hand,Vz does not depend on the numb
of collisions because the stone rebounds ‘‘elastically’’ in t
z direction, as follows from the analysis of the collision
process in Sec. IV~see, for example, the conservation of t
energy E during the collision discussed for the circul
stone!. If we use Eq.~22!, we obtain the simple result

DX@N#5DX0A12
N

Nc
, ~24!
154 Am. J. Phys., Vol. 71, No. 2, February 2003
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whereDX052Vx0uVz0u/g. Note thatDX0 is approximately
equal to the distance between the two first ricochets,DX@N
51#, when Nc@1. For Vx058 m s21, we obtain DX0

'2.25 m.
Equation~24! for DX@N# is plotted in Fig. 3. We remark

that the decrease in the distance between two succes
ricochets is first rather slow@DX@N#.DX0(12 (N/2Nc))
for N!Nc , see Eq.~24!#, but strongly accelerates for the la
collisions whenN;Nc , due to the square root variation o
DX@N# close toNc . This result is in agreement with obse
vation. Such an effect is known to specialists of ston
skipping as ‘‘pitty-pat.’’1

B. Angular destabilization

However, there is another possible destabilizing mec
nism in the collision process. As was discussed in Sec. V,
rotational stability of the stone is crucial in the collision
process. A criterion for stability has been found in the fo
of a minimum spin velocity of the stone. However, ea
collision will perturb the rotational motion and the sum of a
these effects can eventually bypass the stability condit
This argument can be easily formulated. As shown abo
the amplitude of the angular motion ofu is du;g/(Rv2),

with v;ḟ0 , the ~constant! spin velocity of the stone. Now
assume that the destabilizing effects add, a reasonable
sumption. Then, afterN collisions we expect thatDNu
;Ndu. The stone is completely destabilized for a collisio
numberNc such thatDNc

u;1, yielding

Nc;
Rḟ0

2

g
. ~25!

If we use the same numerical values as before, we obtain
example,Nc.5 for a initial spin velocityf055 rev/s and
Nc538 ~the world record1! for f0514 rev/s. Note, however
that there is a quite large uncertainty of the numerical pr
actors in the above estimate ofNc , and this estimate is
merely qualitative and should not be taken literally.

Fig. 3. Plot of the~normalized! distance between two successive collisio
DX@N#/DX0 as a function of the number of bouncesN. The initial velocity
is Vx058 m s21, corresponding toNc517 ~using the same values for th
parameters as those given in the text!. The vertical dashed line indicates tha
Nc517.
154Lyde´ric Bocquet
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VII. DISCUSSION

At the level of our description, the maximum number
bounces results from the combination of the two previo
mechanisms: slow down and angular destabilization. T
maximum number of bounces is therefore given by themini-
mumof the two previous estimates, in Eqs.~23! and ~25!.

The estimateNc
sd obtained in Eq.~23! from the slow down

of the stone depends only~quadratically! on the initial veloc-
ity of the stone: in principle, a very large number of bounc
could be reached by increasing the initial velocity of t
stone. But on the other hand, the angular destabilization
cess results in a maximum value ofNc

spin which is indepen-
dent of the initial velocity of the stone, as indicated by E
~25!. This shows that even if the initial velocity of the ston
is very large, that is,Nc

sd@1, the stone will be stopped b
angular destabilization afterNc

spin bounces. In other words
the initial ‘‘kick’’ that puts the stone in rotational motion is
key factor for a good throw.

The results presented here are in agreement with our i
ition for the conditions of a good throw. Some of the resu
are also in agreement with observations, for example,
acceleration of the number of collisions at the end of
throw ~a phenomenon known as ‘‘pitty-pat’’ in stone skip
ping competitions1!. Some easy checks of the assumptio
underlying our calculations could be performed, even wi
out any sophisticated apparatus. For example, taking pict
of the water surface after the ricochets would locate the
sitions of the collisions~because small waves are produced
the surface of water!. A simple test of the variation of the
distance between two collisions as a function of collisi
number, Eq.~24!, would then be possible. A more ambitiou
project would be to design a ‘‘catapult,’’ allowing one t
throw stones with a controlled translational and spin veloc
~together with the incidence angle of the stone on water!. A
measurement of the maximum number of bounces perfor
for various throw parameters would allow us to check
assumptions underlying the present simple analysis an
determine some of the parameters involved in the descrip
~such asm and,!. It would be also interesting to repeat th
experiments reported in Ref. 2 using modern techniq
~such as fast cameras!, in order to image and analyze i
particular the rebound process as a function of the th
parameters. Hopefully a better understanding of the mec
nisms of stone skipping will allow someone to break t
actual world record.
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APPENDIX

I briefly recall the derivation of Eq.~20!, from the Euler
equations described in Ref. 8 The latter are written as8
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I 1

dv1

dt
2v2v3~ I 22I 3!5N1 , ~A1a!

I 2

dv2

dt
2v1v3~ I 32I 1!5N2 , ~A1b!

I 3

dv3

dt
2v1v2~ I 12I 2!5N3 . ~A1c!

In Eq. ~A1!, I a , va , andNa (a51,2,3) are, respectively
the moment of inertia, angular velocity, and torque along
direction of a particular principal axis, denoted asa. In our
case, the direction 1 is taken along the axis perpendicula
the vectorsn andt ~the direction 1 is along they axis in Fig.
1!, the direction 2 alongn and the direction 3 alongt. We
therefore havev15 u̇, and due to the symmetry of the cir
cular stone,I 15I 3[J1 and I 2[J0 . Moreover, because only
the lift component of the reaction force~alongn! is consid-
ered in the present analysis, we haveN1[Mu andN25N3

50.
Equation~A1b! yields immediately thatv̇250. We there-

fore havev25ḟ0 , with ḟ0 the initial spin velocity. Equation
~A1c! can be therefore written as

dv3

dt
5

J12J0

J1
ḟ0v1 . ~A2!

If we usev15 u̇, Eq. ~A2! can be integrated once to give

v35
J12J0

J1
ḟ0~u2u0!, ~A3!

with u05u(t50), the initial tilt angle. The substitution o
Eq. ~A3! into Eq. ~A1a! leads to Eq.~20!.

1The actual world record appears to be 38 rebounds~by J. Coleman-
McGhee!. See, for example,̂http://www.stoneskipping.com& for more in-
formation on stone skipping competitions.

2Some pictures of the bouncing process of a circular stone on water
sand can be found in C. L. Stong, ‘‘The Amateur Scientist,’’ Sci. Am.219,
112–118~1968!.

3H. R. Crane, ‘‘How things work: What can a dimple do for skippin
stones?,’’ Phys. Teach.26, 300–301~1988!.

4D. J. Tritton,Physical Fluid Dynamics, 2nd ed.~Oxford University Press,
Oxford, 1988!, pp. 97–105.

5L. D. Landau and E. M. Lifshitz,Fluid Mechanics~Pergamon, New York,
1959!, pp. 168–175.

6Note that the nontrivial point is to assume thatCl does not vanish and
reaches a finite value in the smallu andb limit. We may invoke the finite
aspect ratio~thickness over lateral size! of the object. For example, if the
stone is an ellipsoid of revolution with thicknessh and radiusa, with h
!a, we expectCl;h/a ~Ref. 5!. However the proportionality constant i
expected to be sufficiently large so that the lift effect is non-negligib
This property is exemplified by water skiing. In this case, the lift force
sufficiently large to sustain the weight of a skier on small boards, wh
both tilt and incidence angles are close to zero.

7It is amusing to note that the laws of friction for the stone are similar

those of solid friction. We have indeedFx5mMg, with m5C̃/C, inde-
pendent of the velocity and surface of the stone. Of course, the same r
holds for water skiing, which is not obvious.

8H. Goldstein,Classical Mechanics, 2nd ed.~Addison-Wesley, New York,
1980!, pp. 203–213.
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