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Richard Jordan, Mariya A. Ishutkina, Tom G. Reynolds, 
MIT Lincoln Laboratory, Lexington, MA 

Abstract 
Modeling aircraft taxi operations is an important 

element in understanding current airpOJ1 performance 
and where opportunities may lie for improvements. A 
statistical leaming approach to modeling aircraft taxi 
time is presented in this paper. This approach allows 
efficient identification of relatively simple and easily 
interpretable models of aircraft taxi time, which are 
shown to yield remarkably accurate predictions when 
tested on actual data. 

1. Introduction 
An air traffic control tower advanced automation 

system known as the Tower Flight Data Manager 
(TFDM) is being considered for development by the 
Federal Aviation Administration (FAA) [I]. TFDM is 
designed to replace the numerous standalone systems 
within current air traffic control towers with an 
integrated technology suite combining new 
surveillance displays, flight information management 
and decision suppOJ1 tools. These integrated 
technologies offer the potential to enable multiple 
system benefits, including reduced delay, taxi time 
and fuel burn (with associated economic and 

. environmental impacts). But in order for the system 
to deliver these benefits, its developers need to 
understand key ai.port operating characteristics and 
then transform this knowledge into value-added 
TFDM functionality. Airport taxi processes are 
important in this regard because delay and fuel burn 
often manifest during taxi in the current system and 
hence is where benefits may be delivered with new 
systems. 

Recent publications have studied taxi processes 
and the prediction of taxi times in some detail [e.g. 2, 
3, 4]. This paper presents a new approach to taxi 

'This work was sponsored by the Federal Aviation 
Administration under Air Force Contract No. F A8721-05-
C-0002. Opinions, interpretations, conclusions, and 
recommendations are those of the authors and are not 
necessarily endorsed by the United States Government. 

process modeling specifically intended to support the 
needs of the TFDM development activity. A 
statistical learning method is followed to extract key 
predictor variables from a set of many. The variable 
selection method automatically performs a trade-off 
between the number of variables included in and the 
performance of the taxi time models. 

The paper is organized as follows. Section 2 
provides a description of the key characteristics of 
DallaslFort Worth Airport (DFW) (the focus for 
model development because it is the location for 
TFDM prototype efforts) and the data available at 
that site. In Section 3, a standard linear regression 
model for taxi-out processes based purely on taxi 
distance at DFW is presented to act as a baseline for 
comparison with the new model. In Section 4, other 
candidate variables (in addition to distance) are 
explored. These are then utilized by the statistical 
learning approach for taxi time modeling, which is 
described in Section 5, together with results of its 
application to taxi-out processes at DFW. In Section 
6, we use the same learning methodology to develop 
a model for taxi-in time. Finally, conclusions and 
directions for future work are presented in Section 7. 

2. DFW Airport Characteristics 
The models described in this paper were 

developed fol' DaIlas/FOJ1 Worth International 
Airport. The airport layout is shown schematically in 
Figure 1. 
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Figure 1. DallaslFort Worth Airport Schematic 



The airport handles about 1,800 operations pel' 
day. The majority of the flights land 01' depalt from 
the· four parallel runways located around the central 
teririinal area. The inner runways (l7R135L and 
18L136R) are typically used for deprutures, while the 
outer runways (l7C/35C and 18R136L) are typically 
used for arrivals. In this paper, the analysis covers 
taxi-out to runway 17R and taxi-in from 17C. Figure 
2 shows the aerial view of the central tenninals and 
the foul' parallel runways. The topology of the airport 
is such that arrivals landing on 17C have to cross 17R 
while the deprutures taxiing from the central 
terminals to 17R have no runway crossings. 

The departure traffic at DFW is controlled by 
the Ramp Controller in the ramp area, by the Ground 
Controller from the spot to the runway queue and by 
the Local Controller from the queue to wheels-off. 
Analogously, the arrival traffic is controlled by the 
Local Controller on the runway through the high
speed runway exit, the Ground Controller fi·om the 
high-speed exit to the ramp area, and the Ramp 
Controller to the gate. The taxi-out model presented 
below predicts the taxi time from spot to the runway 
queue, while the taxi-in model predicts the taxi time 
for arrivals from the arrival runway to the spot. In 
addition, we are in the process of developing taxi-out 
models from spot all the way to wheels-off. The 
results of this research will be presented elsewhere. 

Figure 2. Aerial View Showing Runways, 
17R Queue Box and Spot Gronpings 

I Source: satellite image from GoogleEarth. 
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We used archived data from the Runway Status 
Lights CRWSL) system for analysis of taxi operations 
at DFW. This data set consists of surveillance data 
for aircraft and vehicles on 01' neal' the airport surface 
detected by the Airport Surface Detection Equipment 
Model-X CASDE-X) system. ASDE-X is a surface 
surveillance system that fuses the data from mUltiple 
surface movement radars, transponder multilateration 
sensors and Automatic Dependent Surveillance
Broadcast CADS-B) sensors at 1Hz update rate and 
approximately 8m lateral resolution [5]. ASDE-X 
does not classify tracks as ground vehicles, arriving 
or departing aircraft. 

Analysis of tracks was conducted by matching 
the time a given aircraft or vehicle spent while 
traversing or waiting at a patticular airport feature. 
The following features were used: spot boxes in the 
ramp area, static runway queue boxes and runway 
thresholds. 

Spot boxes were defined around the official spot 
locations. The dimensions of the spot boxes were 
chosen to accommodate the variability of transponder 
placement between aircraft Cat least twice the typical 
length of a heavy aircraft) and to completely cover 
the ramp exit area from each terminal. This enables 
our data processing algorithms to detect aircraft that 
move to the active airpOlt surface without passing 
through an official spot location. Given that there are 
more than 50 spot locations at DFW, for the pUlposes 
of taxi-in modeling described in Section 6, the spots 
are grouped according to proximity as shown in 
Figure 2. 

We have defined queue boxes in such a way as 
to encompass the area around each of the four main 
runways while excluding any taxi ways. For example, 
the queue box for 17R is shown in Figure 2; its 
dimensions are 2000 x 1000 ft. Queue waiting times 
and runway occupancy times were also analyzed, but 
the results of that analysis are not included in this 
paper. 

The runway threshold time for arrivals is defined 
as the first time an aircraft is detected within a 
horizontal boundalY of a particular runway. Arrival 
threshold time is used as a proxy for wheels-on time 
because altitude data was found to be especially 
noisy for aircraft during the landing process. 

Our processed ASDE-X DFW dataset contains 
approximately 900 departures and arrivals per day, 



which agrees well with the numbers in the Aviation 
System Perfonnance Metrics (ASPM) database'. But 
the ASDE-X data has some limitations. First, tracks 
may be missing data. In particular, because the pilots 
are required to turn on transponders only once they 
are on the active airpOit surface, ramp area coverage 
is often lacking. Overall, almost a third of departures 
and a qualter of alTivals have missing spot 
information and hence have to be excluded from the 
analysis of taxi times. For taxi-out analysis we used 
only flights that were detected leaving a spot and 
entering a patticular queue box. Second, it is 
sometimes difficult to separate fused tracks when 
several arrivals and depattures share a given call sign. 
Third, it can be difficult to differentiate ground 
vehicles from aircraft, as tracks may be missing 
altitude information. To circumvent these data 
limitations, tracks for flights that resulted in taxi 
times that differed by more than three standard 
deviations from the mean for given taxi distances and 
taxi routes were checked to ensure that only the 
actual aircraft data are included in our model 
development and analysis. 

The following Visual Meteorological Conditions 
(VMC) mid-week days were used as training days for 
the models: 11102/09 through 11105/09 plus 09/01109. 
Taxi-out and taxi-in models were developed for 
runways 17R and 17C, respectively. In total, 3166 
departure flight tracks and 1554 arrival flight tracks 
were included in the training dataset. The following 
VMC mid-week days were used for testing the 
models: 07113/09 and 11127/09. For the former day, 
the data includes 341 departures and 262 alTivals, 
while for the latter there are 299 depattures and 226 
arrivals. We note during all the test days and training 
days, the airport operated almost exclusively in 
south flow. In a typical southflow operation runways 
18L, 17R, 13L are used for depaltures, while 
runways 18R, 13R, 17C and 17L are used for 
arrivals. 

3. Standard Linear Regression Model 
We first present the results of a standard 

ordinary least squares (OLS) linear regression model 
for the spot-7queue time, Tout. in which the distance, 
D, traveled fi'om the spot to the queue box is the 

2 For detailed cross-validation analysis of ASDE-X and 
ASPM data, see [5]. 
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single independent variable. While we discuss the 
results only for runway 17R at DFW, we've found 
that the regression equation for runway 18L is 
essentially identical'to that for runway 17R (the 
slopes of the regression lines agree to two decimal 
places and the intercepts differ by less than 9%), In 
addition, there is no significant difference in the level 
of prediction accuracy, as measured by the usual 
statistics, such as mean absolute error, mean squared 
error or R', 

The regression equation for spot-7queue time 
for runway 17R is: 

Tout.ol, = 1.925D + 0.367 (I) 

Here, D is measured in kilometers and Tout. 01, is in 
minutes. Figure 3 shows this regression line 
superimposed on a scatter plot of observed (D, T m") 
pairs for runway 17R on the independent test day 
07113/09. We see that 85.3% of the predictions based 
on this simple model at'e accurate to I minute and 
97.9% are accurate to 2 minutes. The model yields 
very similar results for the test day 11/27/09 (see 
Table 3 below). 

This analysis demonstrates that distance alone is 
a reasonably strong predictor of the taxi time from 
spot to queue. In fact, the correlation between the taxi 
time and taxi distance in the training data is 0.89. 
Nevertheless, a close examination of Figure 3 reveals 
that, while the model is quite accurate for shOit and 
intermediate taxi distances, it cannot capture the 
spread in observed taxi times for taxi distances of 
approximately 2 kilometers, and beyond, The 
implication is that factors other than distance are at 
play. 

, Linear Regression Model T esled on 07113m Dala 

abs error "- 0.5 min: 55.04% 
7 abs error "- 1.0 min: 85.3% 0 

abs errol <.: 2.0 min: 97.9% 

o 

o 

°0 0.5 I 1.5 2 2.5 3 3.5 

Dis!al"l::e ITOm Spot to Queue (kilometers) 

Figure 3. Standard Linear Regression Model 
Tested on 07/13/2009 



In the next sections, a modeling approach is 
described that aims to build more accurate models via 
the extraction of the most significant variables from a 
list of many. 

4. Independent Variables and Basis 
Functions for Taxi-Out Modeling 

Based on the results of the previous section, we 
wish to identify factors responsible for the variability 
in taxi-out times evidenced by Figure 3. For 
spot-7queue taxi time prediction, our goal is to build 
models based on variables that will either be known 
exactly at the time an aircraft is at its spot or else 
could be estimated with high accuracy via 
surveillance, flight schedules, etc. The challenge is 
in deciding which, of many, variables to include. Our 
approach is to add to the distance variable a relatively 
large set of additional variables that may impact an 
aircraft's taxi out time and then apply a method that 
builds up the regression equation by recursively 
including and excluding basis functions according to 
whether they improve the model's predictive ability. 
Basis functions are candidate independent variables 
and whatever functions~.g. products, powers--{)f 
them are to be considered for inclusion in the 
regression equation. Such approaches, referred to as 
subset selection, are commonly used in machine 
learning and pattern recognition for feature 
selection/extraction [6]; their application to statistical 
learning and regression analysis is a burgeoning field 
of research, where they have been shown to produce 
accurate and easily interpretable models involving 
only a small number of basis functions [7, 8, 9]. We 
follow such an approach largely because we find it 
difficult to know a priori which variables are likely 
to have the most significant impact on taxi-out time. 
The method we use will be described in the next 
section. 

First we must decide on a list of independent 
variables. There are many variables that could 
conceivably have an impact on taxi processes, and 
the objective here is to identify a pool of initial 
candidate variables (e.g. by examination of Figure 3 
and ASDE-X track data). One possible explanation 
for the spread of spot-7queue taxi times for a given 
distance (as seen in Figure 3) is a difference in 
typical taxi speeds for different airlines. Such 
differences would be more pronounced over long taxi 
distances. Accordingly, we analyzed the average taxi 
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speeds for aircraft that, based on the ASDE-X tracks, 
traveled from various spots to runway 17R. Table I 
shows the results for two different airlines that taxied 
from spot 142 on the western side of the airport on 
11102/09-11/05/09. 

T bile a e ompanson 0 fA verage T . S d aXl 'pee s 
Airline AvgTaxi Standard # of Flights 

Speed from Deviation 
Spot 142 to 

Queue at 17R 
A, 16.1 knots 1.35 knots 10 
As 19.0 knots 1.34 knots 18 

Figure 4 demonstrates that all the aircraft in 
question followed nearly identical taxi routes and, 
therefore, taxied roughly the same distance. As this 
provides strong evidence that there are considerable 
differences in airline taxi-out speeds, even for a given 
taxi route and distance, we include in our list of 
independent variables a binary variable associated 
with each airline for which there are an adequate 
number of data points in the training dataset. 
Specifically, we include variables At, ... ,A13, where 
Aj = Ifor airline carrier j and Aj = 0 otherwise. We 
note that the airline variable may be a proxy for 
aircraft type and this will be explored fut1her in the 
future. 

17R queue box 

\ 17R 17C 
7,300 

18R 18L 

-7,300 

.60 o 
[feet] 

Figure 4. Taxi Routes from Spot 142 to 17R 

In addition, analysis of the ASDE-X data reveals 
that, for a given taxi distance range, aircraft that 
taxied from the west side of the airport tend to take 
longer than those that taxied from the east side. For 
example the average taxi time for aircraft that taxied 
a distance between 2.5 km and 3.0 kilometers to 
runway 17R from the west side of the airport is 5.89 
minutes, while the average for aircraft with taxi 



distances in this range but taxiing from the east side 
of the airport is 5.26 minutes. While part of this 
discrepancy may be due to differences in taxi speeds 
for different airlines, we include in our set of 
candidate variables a binary variable W, which is 
equal to I if the aircraft taxies from the west side and 
o if it taxies from the east. 

At least intuitively, surface congestion 
encountered while taxiing from spot to queue is also 
expected to have an impact on an aircraft's taxi time. 
Therefore, we include two congestion variables in the 
list of independent variables. These are Nsd and N,th, 
which are defined as follows: 

N,d (i) is the number of departing aircraft 
that leave a spot and taxi to runway 17R 
during the time interval [sCi) - 1.67, sCi) 
+ 0.50] minutes, where sCi) is the time 
that aircraft i left its spot to taxi to 
runway l7R. 
N,th(i) is the number of arrival aircraft 
that landed (or, more exactly, crossed 
the arrival runway threshold) on the east 
side of the airport during the interval 
[sCi) - 1.58, sCi) + 0.75] minutes, where 
sCi) is as above. 

The time interval in the definition of N,d has 
been chosen to (approximately) maximize the 
correlation between TOllt and N,d' Precisely, for each 
aircraft i, we determined via analysis of the ASDE-X 
data the number of depat1ures M(i, j, k) that left their 
spot and taxied to runway 17R during the time 
interval [sCi) - jl12, sCi) + klI2], for j, k = 0, I, ... ,180 
(so the maximum "before" and "after" times are IS 
minutes) and determined k and j such that the vector 
M(:, j, k) is maximally correlated with the vector TOll" 
Nsd is defined to be the vector that achieves this 
maximum correlation. 'Based on the data in the 
training set, the maximum correlation is 0.24, that is, 
corr(TOllh N,d) = 0.24. The time interval in the 
definition ofN". is found by the same procedure, and 
corr(Toll" Not.) = 0.11. Note that these are small 
correlations, which suggests that surface congestion, 
at least measured the way we have done so, may not 
have played a major role in the spot-7queue times for 
runway 17R on the days represented in the training 
set. Nonetheless, we include N,d and N". in our list 
of independent variables. 

Hence, the list of independent variables is: 
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• 0 

• Ah ... ,AB 
• W 

• N,d 
• Nalh 

As the models are further developed and applied 
to different situations (e.g. at DFW and at different 
airports), the pool of candidate variables is likely to 
be refined. But given this list of independent 
variables identified above, we can define the set of 
basis functions for consideration in the regression 
model. Because we believe that interactions between 
the binaty variables and the other variables may be 
important (for example, a term in the regression 
equation such as xAmD will imply that x minutes 
should be added or subtracted, depending on the sigu 
of x, per kilometer distance to the taxi out time for 
airline m) we take as the set of basis functions I, D, 
At ... , A13, W, N,d, Not. and quadratic interactions 
between them. We do not consider higher order 
interactions, as we wish to avoid complexity and 
over-fitting in the model. Note that the airline 
variables are orthogonal, so that any product between 
them is identically 0, and is, therefore, not pat1 of the 
basis set. Also, as AI .... , A13, and Ware binalY 
variables, so they are equal to their squares. Thus, 
the total number of possible basis functions is 79. 

5. Sequential Forward Floating Subset 
Selection (SFFSS) Method for Taxi-Out 
Modeling 

One way to proceed in developing a taxi-out 
model would be to perform an exhaustive search over 
the set of all the basis functions described above to 
determine the linear combination that achieves the 
maximum of some "goodness of fit" objective 
function J on the training data. However, given the 
dimension of the basis set, such an approach is, for 
all practical purposes, infeasible. Instead, we use the 
Sequential Forward Floating Subset Selection 
(SFFSS) method [7] to extract from the large set of 
basis functions a small subset that captures much of 
the variability in the data and yields small prediction 
errors. Here is a basic description of the SFFSS 
algorithm. 

Suppose that the current model includes and 
excludes a certain number of basis functions: 



• Step 1: Inclusion. Select from the list of 
remaining basis functions the one whose 
inclusion leads to the greatest increase of the 
objective function J. Add it to the existing list 
of included basis functions. 

• Step 2: Conditional exclusion. Find the 
least significant basis function among those 
included thus far. If it is the basis function 
just added, then keep it and return to Step I. 
Otherwise, exclude it and continue to Step 3. 

Step 3: Continuation of conditional 
exclusion. Again find the least significant 
basis function among those included thus far. 
If its removal will (a) leave at least two basis 
functions, and (b) the value of J is greater 
than that for any subset of basis functions of 
dIe same size already found, then remove it 
and repeat step 3. When these two conditions 
cease to be satisfied, return to step I. 

The search terminates when no fmiher increase 
in J is achieved. It starts with the constant 1 as the 
only basis function and proceeds from there. By 
"least significant basis function", we mean the one 
whose removal least decreases the value of 1. The 
inclusion and exclusion search methods are fOlward 
selection and backward selection, respectively. A 
detailed description of these methods may be found 
in [10]. 

The objective function J we use is -n!og(GCV), 
where GCV is the generalized cross-validation, 
defined as GCV = MSE/(l - min)'. That is, 

J = 2nlog(l- min) -nlog(MSE) (2) 

Here n is the dimension of the entire basis 
function set, m is the number of basis functions 
currently under consideration, and MSE is the mean 
squared enor associated with the given model. This 
objective function provides a judicious trade-off 
between dimensionality and the model's predictive 
capacity. GCV was introduced in [11, 12] and is 
commonly used in practice. Our transfonnation and 
scaling of it is for computational efficiency and 
stability purposes. 

We remark that SFFSS is a sub-optimal method. 
There is no guarantee that it finds the global 
optimum. The method, however, has been shown to 
yield accurate results and to outperform many other 
sub-optimal approaches [7]. 
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Applying the SFFSS approach to the training 
data, we obtain the following regression equation for 
taxi-out time from spot to queue for runway 17R at 
DFW: 

Tout"rr" = 0.290 + 1.832D - 0.684A6 + 0.436W + 
O.l46AID - 0.256A,D - 0.336A.D + 
0.043N,d (3) 

This equation contains only 8 terms (equal to the 
number of surviving basis functions) and makes use 
of only 7 out of the 18 possible independent 
variables. As a result, it is easy to interpret. For 
example, the 5Lh term on the right hand side indicates 
that 0.146 minutes per kilometer should be added for 
airline Alo while the 7Lh term says that 0.336 minutes 
per kilometer should be subtracted for airline Ag• We 
note that these results are consistent with the average 
speeds in Table I. 

While the congestion variable N,d is included in 
the equation, it is the variable of least impact. The 
maximum Nsd observed in the training data and the 
test data is 8, which amounts to an additional taxi 
time of only about 20 seconds. This would be 
significant for shOli taxi distances, but not for longer 
taxi distances. 

We provide an example prediction using Eqn. 
(3). Suppose airline At taxies from spot 132 to 
runway 17R. From analysis ofthe ASDE-X data, the 
average taxi distance in this case is approximately 2.6 
kilometers. We have D = 2.6, W = I and AI= 1 and 
all the other variables are 0, except, perhaps, N,d' 
With N,d = 0, we obtain from (Eqn. 3) the predicted 
taxi time of 5.87 minutes. With N,d = 7, the 
maximum observed value on 07/13/09, we obtain a 
predicted taxi time of 6.17 minutes. The average taxi 
time for airline AI from spot 132 to runway 17R on 
this day was 5.95 minutes. Thus the model 
prediction is within 0.22 minutes (or 13.2 seconds) of 
the average time. More importantly, the model 
significantly outperforms the mean taxi-out time as a 
predictor over the range of distances represented in 
the data. 

Tables 2 and 3 compare the predictions of this 
model with those of the linear regression model (Eqn. 
1) for the test days of 07113/09 and 11/27/09, 
respectively. 



Table 2 SFFSS vs OLS for 07/13/09 
Model Abs Abs Abs Abs R' Melin Max 

error error error error abs abs 
<0.5 < 1.0 < 1.5 <2.0 error error 
min min min min 

SFFSS 65.7% 91.2% 97.4% 99.4% 0.92 0.44 2.41 
min min 

OLS 55.4% 85.3% 96.5% 97.9% 0.82 0.53 2.80 
min min 

Table 3 SFFSS vs OLS for 11127/09 
:Model Abs Abs Abs Abs R' Mean Max 

error error error error abs abs 
<0.5 < 1.0 < 1.5 <2.0 error eITOl' 

min min min min 
SFFSS 69.0% 90.6% 97.3% 100% 0.93 0.43 1.77 

min min 
OLS 59.8% 83.7% 96.7% 97.9% 0.79 0.55 2.59 

min min 

Clearly the SFFSS model (Eqn. 3) gives more 
accurate predictions than OLS (Eqn. I). The most 
improvement is in the percentage of predictions 
accurate to 0.5 minutes (improvement of 10.3% for 
07/13/09 and 9.2% for 11/27/09) and 1.0 minutes 
(improvement of 7.3% for 07/13/09 and 6.9% for 
11/27/09). In addition, SFFSS produces larger R2 
and smaller mean and maximum absolute error for 
both test days. 

Figure 5 shows the performance of the SFFSS 
model as a function of taxi distance for 0711 3/2009 
data. For comparison, the linear fit to distance 
according to the OLS model is also included in the 
graph. 
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Figure 5. SFFSS Model Tested on 07/13/09 

Observe that the SFFSS model splits into 
multiple "branches", which is especially obvious for 
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distances on the order of 2 kilometers and greater. 
This branching allows it to more accurately capture 
taxi times above and below the overall mean for a 
given distance, and this is what accounts most for its 
increased accuracy over OLS. 

6. SFFSS Method for Taxi-in Modeling 
We have also used the SFFSS approach to 

construct a model of taxi-in time for runway 17C. By 
taxi-in time, we mean the time between when the 
aircraft crosses the arrival runway threshold (a proxy 
for wheels-on) and the time it arrives at its spot. 
Because most aircraft that land on runway 17C cross 
the departnre runway 17R, the modeling of taxi-in 
time from runway 17C represents a greater challenge 
than modeling the spot7queue time for departures 
on runway 17R. In paJ1icular, the interplay between 
departures and arrivals is expected to be imp0l1ant, 
insofar as arrivals may stop and wait at the crossing 
for departures occupying the runway. 

In modeling the taxi-in time, we include among 
the list of independent variables the binary variables 
for each of the 13 airlines considered in the taxi-out 
model. Rather than taxi distance, we use (runway, 
spot grouping) pairings as a proxy. This would be an 
inadequate proxy if multiple taxi routes with widely 
varying distances are used from runway 17C to a 
given spot. But our analysis of the ASDE-X data 
indicates that this is not the case at DFW. We use 
spot groupings rather than distance in the 
construction of our taxi-in model in part out of 
curiosity. We wish to gauge the predictive capacity of 
such a model. We also have in mind the fact that taxi 
distance can only be approximated in real time, while 
the spot, or at least the terminal should be known 
exactly. The variables G], ... ,G13 are binary variables 
for the spot groups which are shown in Figure 2. 

We also include two congestion variables. Nd,p 
is equal to the number of departure aircraft that leave 
their spot and taxi to a runway on the east side of the 
airp0l1 up to 5.7 minutes before or 3.3 minutes after 
the arrival aircraft in question crosses the threshold at 
runway 17C and N"" is the number of arrival aircraft 
that cross the threshold at runway 17C or runway 17L 
up to 1.3 minutes before the aircraft in question. The 
time intervals in the definitions of these variables 
have been chosen so as to maximize the correlation 
with the taxi-in time Tie> using the same method that 



was used to define the congestion variables for taxi
out time modeling, as described above. 

Hence, the list of independent variables for the 
taxi-in model are: 

• AI, ... ,A13 

• G}, ... ,G13 

• N dep 

• N"" 

As before, the set of basis functions consists of 
the constant I, these variables and quadratic 
interactions between them. Applying the SFFSS 
method, we obtain the following regression equation 
for the taxi-in time from runway 17C to spot: 

Tin.,fT" = 6.751 - 0.819G4 - 1.652G, - 2.970G6 -

3.l58G, - 2.020G. + 2.099GlO + 1.330Gll + 
3.71IG12 - 0.973A1 - 0.789A4 -1.076A5 + 
0.447A, + 2.687A1Gll - 0.478A,G, + 
2. I 59A j GI3 -1.052AllG, + O.092Nd,p + 
0.296N,rr (4) 

This equation makes use of 17 out of the 28 
possible independent variables and 19 basis 
functions. Note that the congestion variables playa 
more impOltant role in this model than they did in the 
taxi-out model, as expected given the greater 
interactions occurring for arrivals. For example, in 
the training data Nd,p is seen to be as large as 12. This 
amounts to an additional 1.10 minutes in taxi-in time, 
according to Eqn. (4). In general, the 18th term on the 
right hand side of the equation represents the 
expected additional taxi-in time for an arrival aircraft 
that encounters departnre congestion of the 
magnitude Nd,p' It does not tell us where during taxi
in this delay is expected to be incU1l'ed-i.e., whether 
or not it is due to the aircraft stopping at the crossing 
to wait for departures occupying runway 17R. A 
more sophisticated model wonld be needed for that 
purpose. Similarly, the 19'h term on the right hand 
side of Eqn. (4) represents the excess taxi-in time due 
to arrivals that landed on the east side of the airpOlt 
up to 1.3 minutes prior to the aircraft in question. In 
the training data, this number is no larger than 3, 
which amounts to a predicted additional taxi-in time 
of 0.89 minutes. 

Table 4 summarizes the predictive accuracy of 
this model based on data from 07/13/09. Essentially 
identical results are obtained for the 11127/09 data. 
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Table 4. SFFSS Taxi-In Model Tested on 07/13/09 

Abs Abs Abs Abs R' Mean Max 
error < errol' < error < error < abs abs 
1.0 min 1.5 min 2.0 min 3.0 min error error 
66.3% 83.4% 90.9% 98.3% 0.78 0.89 4.54 

min min 

The accuracy of the taxi-in model is not as high 
as that for the spot~queue taxi-out model. For 
example, the coefficient of determination is R2= 0.78 
for the model tested on 07/13/09 data, whereas R2 for 
the taxi-out model exceeds 0.9 for both test days. 
This decreased accuracy is to be expected given the 
interaction of arrivals at the crossings at runway 17R 
with departures using the runway. It is possible that a 
model that uses taxi-in distance rather than (runway, 
spot group) pairings would be more accurate, but we 
believe that a critical next step is to capture more 
intelligently the interactions of arrivals with 
departnres at the runway crossing. 

The present model, however, does outperform 
the mean taxi-in time for each spot grouping as a 
predictor, at least on the test days of 07/13/09 and 
11127/09. To illustrate, on the latter of these two 
days, the ASDE-X data shows that 30 aircraft landed 
on runway 17C and taxied to the spot group G,. The 
average taxi-in time for these aircraft was 3.56 
minutes and 19 of them, or 63.3% had taxi-in times 
within I minute of the mean. Equation (4) provides 
predictions of taxi-in times within I minute accuracy 
for 23 of these aircraft, or 76.7%. More generally, 
we believe that the results demonstrated in Table 4 
show that the SFFSS approach holds promise for 
taxi-in modeling and warrants further exploration. 

7. Conclusions and Future Work 
The results presented in this paper show that 

statistical learning techniques can be used to produce 
accurate, yet relatively simple models of aircraft taxi 
time. The models presented above were developed 
for Dallas/FOlt WOlth airport on good weather days. 
These models or refinements thereof will be used for 
real-time taxi time predictions to support TFDM 
decision support tool development. 

In the nearest future we plan to incorporate other 
runways, other weather conditions and queue waiting 
times for our current DFW application. We will also 
extend this model to accommodate differing 
topologies and traffic levels at other airports. As part 



of this work, the impact of other independent 
variables will be evaluated, including time of day, 
day of week, aircraft type, weather/visibility 
conditions, and number of runway crossings per taxi 
route. SFFSS and other subset selection methods [9] 
are expected to be especially valuable in this process, 
given their propensity to efficiently extract a small 
set of highly significant variables from a much larger 
list of candidate variables. 

Finally, we point out that while SFFSS models 
presented above provide accurate predictions on the 
test data, it will be necessalY to use multiple 
approaches and compare their predictive accuracies 
when additional independent variables are 
incorporated. A close competitor to SFFSS for the 
palticular training and test data and the independent 
variables we have considered thus far is the M5P 
model tree approach [12, 13 and 14]. The results of 
our models developed using this approach will be 
presented in a subsequent manuscript. 
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