UNIVERSITY OF CALIFORNIA

Los Angeles

An FFT Extension of the Elliptic Curve Method of Factorization

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in Mathematics

by

Peter Lawrence Montgomery

1992

© Copyright by

Peter Lawrence Montgomery

1992

The dissertation of Peter Lawrence Montgomery is approved.

Bryan C. Ellickson

Milos D. Ercegovac

Basil Gordon

Murray M. Schacher

David G. Cantor, Committee Chair

University of California, Los Angeles

1992

i

1

TABLE OF CONTENTS

Introduction 1
1.1 Summary of main results 0oL 3
1.2 Acronyms and notations L. 3

Elliptic Curve Method and its History 8
2.1 Lenstra’s original algorithm,

2.2 Step 2 — Brent and Montgomery improvements 11
2.3 Weierstrass and Montgomery parameterizations 12

Fast Polynomial Arithmetic 14
3.1 Minimal time for polynomial multiplication 14
3.2 Circular convolutions oL, 15
3.3 FFT for polynomial multiplication 16
3.4 Circular convolutions over Z/NZ 17
3.5 Polynomial reciprocals and division 20
3.6 Constructing a monic polynomial from its roots 21
3.7 Evaluating a polynomial at many points 22
3.8 Polynomial GCDs over a field 24
3.9 Complexity analysis of fast GCD algorithm 33
3.10 Connection with polynomial resultants 37
3.11 Polynomial GCDs over Z/NZ 40
3.12 Opportunities for optimization and parallelization 42

Applicationto ECM 44
4.1 Checking two lists for matches modulo p, where p|N 44
4.2 Use of fast polynomial evaluation 45
4.3 Construction of polynomials 46

Selection and Generation of Multiplesof @ 49
5.1 Use of k—th powers or Dickson polynomials 50
5.2 Polynomial divisors of g, ,(X) £ gp o, (Y) 51
5.3 Prime divisors of g (X) £ g, (Y) 53
5.4 Comparative computational costs 58
5.5 Using powers of 2K/2 and 3% L. 60
5.6 Achieving parallelism oo o L 61

11

5.7 Separate arithmetic progressions 63

5.8 Use of arithmetic progressions and Dickson polynomials 64
5.9 Evaluation of {(m, - @),} where m; is a polynomial function . .. 65
5.10 Implementation choices. L. 67
Selection of Curve 70
6.1 Torsion subgroup of order 12 and positive rank over Q 70
6.2 Torsion subgroup of order 16 and positive rank over Q 71
6.3 Numerical comparison of torsion subgroups of orders 12 and 16 . . 74
Selection of Search Limits By, dy, dy 80
7.1 Dickman’s functiono 80
7.2 Estimated success probability per curveo 81
7.3 Estimated time per curveo 82
7.4 FEstimated optimal parameters 83
Multiple-Precision and Modular Arithmetic. 86
8.1 Arithmeticmodulo N oo 86
8.2 Double-length multiplication 89
8.3 Arithmetic modulo small primes 91
8.4 Finding remainders modulop, oL, 92
8.5 Reconstructing remainder modulo No 93
8.6 Vectorized carry propagation oL 93
Results 96
9.1 Timing 96
9.2 Performance on RSA Factoring Challenge 99
9.3 Additional findings oo 103
Bibliography 105

v

LIST OF FIGURES

2.0.1 Grouplawony?2=a3—4dxc+1

3.5.1 Algorithm for polynomial reciprocals
3.8.1 Algorithm HALFGCD

3.8.2 Algorithm for polynomial GCDs
4.3.1 Computing G(X) mod F(X) in pieces of degree d;

5.7.1 Dependencies using two arithmetic progressions and doubling . . .
5.9.1 Finite differences of polynomial function P(X) = X*
5.9.2 Dependencies when updating an upward diagonal
5.9.3 Dependencies when updating a downward diagonal
5.10.1 Dependencies when using geometric progression

8.1.1 Procedure for multiplication modulo N
8.6.1 Straightforward multiple-precision addition and subtraction
8.6.2 Vectorized carry propagation oL

1.0.1
1.2.1
1.2.2
1.2.3
1.2.4

5.3.1

6.2.1
6.3.1
6.3.2
6.3.3

7.3.1
7.4.1

9.1.1
9.1.2
9.2.1
9.2.2
9.2.3
9.3.1

LIST OF TABLES

Largest ECM factors found 3
ACTOnyms o e e 4
Notations, part T oo o)
Notations, part IIo o 6
Notations, part IIT o oL 7
Trials needed to reach confidence level 58
Some ways to ensure that curve’s group order is divisible by 16 . . 75
Power of 3 dividing group order 76

Power of 2 dividing group order when torsion subgroup has order 12 77
Power of 2 dividing group order when torsion subgroup has order 16 78

Estimated time per curve (milliseconds) 83
Estimated optimal parameters 85
Times for polynomial operations on RS/6000 (seconds) 97
Comparative Alliant FX/80 times with one and five processors . . 98
Some factors of 153—digit partition numbers 101
How often factors were found by ECM with FFT 102
Actual and expected numbers of prime factors, by size. 103
Additional factors foundo o000 104

vi

ACKNOWLEDGEMENTS

This work was sponsored in part by U.S. Army fellowship DAAL03-89-G—-
0063 (1989-1992). Thanks to Unisys and UCLA for letting me use their facilities
during this work. Thanks to Professors David Cantor, Basil Gordon, and Samuel
S. Wagstaff, Jr. for reviewing early drafts hereof. Thanks to Professor Alfred W.
Hales for being an alternate on my committee, even though his services were not
needed.

Vil

September 25, 1947

December, 1967

June, 1969

September, 1971

1972-1982

1982-1989

1987-1992

1992

VITA

Born, San Francisco, California

Ranked among top five participants in

William Lowell Putnam Mathematical Competition.

A.B. with honors, Mathematics,
University of California, Berkeley

M.A., Mathematics, University of California, Berkeley

Scientific and system programming at
System Development Corporation (SDC),

Huntsville, Alabama

Transferred to SDC (later renamed Unisys)
in Santa Monica, California.

Did simulations and formal verification.

Graduate student in Ph.D. program,
Department of Mathematics,
University of California, Los Angeles

Teaching Associate, Summer, 1991

Coached UCLA Putnam team 1989-1991

Joined Department of Mathematics,

Oregon State University, Corvallis, Oregon 97331

PUBLICATIONS

John Brillhart, Peter L. Montgomery & Robert D. Silverman (January 1988).
Tables of Fibonacci and Lucas factorizations. Mathematics of Computation

50 (181):251-260 & S1-S15.

P. Erdos, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer & E. G.
Straus (May 1973). Euclidean Ramsey Theorems, 1. Journal of Combinato-
rial Theory, Series A 14 (3):341-363.

Vil

— (1975). Fuclidean Ramsey Theorems, II. In Colloquia Mathematica Soci-
etatis Janos Bolyai, 10, Infinite and Finite Sets, vol. I, Edited by A. Hajnal,
R. Rado, Vera T. S6s, North-Holland, Amsterdam-London, pp. 529-557.

— (1975). Euclidean Ramsey Theorems, I1I. In Colloquia Mathematica Soci-
etatis Janos Bolyai, 10, Infinite and Finite Sets, vol. I, Edited by A. Hajnal,
R. Rado, Vera T. S6s, North-Holland, Amsterdam-London, pp. 559-583.

Ronald Evans & Peter Montgomery (May 1990). Problem 6631. American Math-
ematical Monthly, 97 (5):432-433.

Peter L. Montgomery (December 1977). Problem E2686. American Mathematical
Monthly, 84 (10):820.

— (December 1978). Evaluation of boolean expressions on one’s complement

machines. SIGPLAN Notices, 13 (12):60-72.
— (September 1979). Letter to the Editor. SIGPLAN Notices, 14 (9):7.
— (November 1984). Proposal 1202. Mathematics Magazine, 57 (5):298.

— (April 1985). Modular multiplication without trial division. Mathematics of
Computation, 44 (170):519-521.

— (January 1987). Speeding the Pollard and elliptic curve methods of factoriza-
tion. Mathematics of Computation, 48 (177):243-264.

— (August 1989). Design of an FFT continuation to the ECM method of factor-
ization. Abstract 850-11-25. AMS Abstracts, 10 (4):278.

— (to appear July 1993). New solutions of a?=' =1 (mod p?). Mathematics of
Computation.

Peter L. Montgomery & Robert D. Silverman (April 1990). An FFT extension to
the P — 1 factoring algorithm. Mathematics of Computation, 54 (190):839—
854.

X

ABSTRACT OF THE DISSERTATION

An FFT Extension of the Elliptic Curve Method of Factorization
by

Peter Lawrence Montgomery
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 1992
Professor David G. Cantor, Chair

Factorization of arbitrary integers is believed to be a hard problem. The Elliptic
Curve Method (ECM), discovered by Hendrik Lenstra, Jr. in 1985, is the best
known method for finding 20— to 30— digit factors of a large integer N. The ECM
algorithm has two main steps. It computes a large multiple of an element P of an
elliptic curve group modulo N, obtaining another element (). Step 1 succeeds if we
strike the identity element of the group modulo p for some prime divisor p of N. If
Step 1 is unsuccessful, then Step 2 compares multiples of (), looking for a duplicate
modulo some p|N. This thesis describes how to apply convolutions modulo N and
fast polynomial arithmetic algorithms in the search. This effectively increases the
range of ECM by a factor of 100 with about twice the combined Step 1/Step 2
execution time previously required (but more memory). The revised algorithm
was tested by trying it on the RSA Factoring Challenge list.

We discuss many architectural considerations relating to the implementation,
such as the identifying which portions of the computation can be vectorized or
parallelized. We also discuss the algorithms for computer arithmetic.

We give a detailed analysis of intermediate results of the fast polynomial GCD
algorithm.

We give a family of elliptic curves with torsion group of order 16 and positive
rank over QQ, and compare the smoothness of their orders to the smoothness of
curves with torsion group of order 12.

CHAPTER 1

Introduction

An integer N > 1 is called composite if is a product of two smaller positive
integers; otherwise it is called prime. The Fundamental Theorem of Arithmetic [10,
p. 5] states that any positive integer has a unique factorization into primes (except
for order). But its proof gives no clue about how to find these prime factors.
This problem has interested mathematicians for centuries. In his Disquitiones

Arithmeticae, for example, Gauss [17, p. 398] wrote

“The problem of distinguishing prime numbers from composites, and of
resolving composite numbers into their prime factors, is one of the most
useful in all of arithmetic. The dignity of science seems to demand that
every aid to the solution of such an elegant and celebrated problem be

zealously cultivated.”

As Gauss observes, there are two problems here: checking whether a number
is prime and factoring a number into primes if it is not itself prime. Fermat’s
Theorem states that if p is prime and « is an integer not divisible by p, then
ar~! = 1 (mod p). An integer p > 1 which fails this test for some a cannot
be prime and must therefore be composite. M. O. Rabin used a variation of
this observation [17, p. 379] to give a probabilistic primality test whose running
time is polynomial in logp. Rabin’s algorithm is termed probabilistic because
it may err, wrongly proclaiming that a number is prime when that number is
really composite (but never the reverse error); the failure probability can be made
arbitrarily small through repeated execution of the algorithm with different random
a. There has been considerable recent progress in algorithms which rigorously prove
that a number p which passes Rabin’s test is truly prime. Although none of the
latter algorithms run in polynomial time, the state of the art is only slightly worse.
For example Morain [33, p. 65] used elliptic curves to prove that

[101137~] = 2- 47 - 4231 - 7789 - py19s,

where 7 is Euler’s constant and pyy,5 1s an 1128—digit prime. In April, 1992 Morain
proved that the 1505—digit partition number p(1840296) is prime, using four ma-
chine years of time on a network of SUN 3/60’s.

The second problem, that of splitting an arbitrary composite integer N into
its prime factors, is believed to be much harder. The problem was once primarily

of academic interest, but has gained attention since the 1978 publication [35] of a
public-key cryptosystem whose strength depends on the difficulty of factorization.
Three major factorization algorithms were introduced between 1980 and 1990:
Quadratic Sieve, Elliptic Curve Method, Number Field Sieve.

The Quadratic Sieve algorithm [34] [39] and the Number Field Sieve algorithm
[21][13] take time dependent on the size of the integer N being factored. Each
algorithm finds many congruences x; = y; (mod N), where z; and y; are either
squares or products of elements from a factor base. After enough such congru-
ences have been found, selected congruences are multiplied together to get another
congruence X =Y (mod N) in which all elements of the factor base occur to even
exponents both in X and in Y’; this selection is done using linear algebra modulo 2.
Then VX and /Y are integers, which can be computed modulo N. Any prime
divisor of N must divide either gcd(\/)_(—l— \/57, N) or gcd(\/)_(— \/57, N); if either
GCD is nontrivial, then one has a factor of N. The two methods differ in how
the congruences =, = y; are found. The Quadratic Sieve algorithm has been used
for N as large as 116 decimal digits, using a worldwide network of computers [23].
That network also factored the 155—digit Fermat number 2512 4 1 using Number
Field Sieve [22].

The time for Elliptic Curve Method (ECM) depends primarily on the size of
the prime factor p of N. The ECM algorithm requires considerable arithmetic
modulo N; if p is a prime divisor of N, then ECM 1is really doing arithmetic
modulo p, since there is a natural ring homomorphism from Z/NZ to Z/pZ =
GF(p). Over the field GF(p), the algorithm operates in an abelian group whose
order is p + O(p'/2). If this order is sufficiently smooth (i.e. if the group order
has no large prime divisors), then ECM usually finds p. When the algorithm is
unsuccessful, it can be repeated using a (presumably) different group. The group
order seems more likely to be smooth when the prime p (and hence the order) is
small, in which case fewer trials are needed to find p (but see Section 6.3). The
time for ECM also grows with the time to do arithmetic modulo N, but this growth
is less severe.

The Quadratic Sieve algorithm and improved computer hardware were major
ingredients in causing the smallest composite cofactor in Appendix C of [11] (a book
listing known factors of " £ 1 for selected b and n) to leap from 51 digits in its 1983
edition to 80 digits in its 1988 edition. Between those years, the ECM algorithm
found a thousand previously unknown prime factors for these tables. Even when
ECM found only some factors of a number, the cofactor was sometimes sufficiently
small for Quadratic Sieve to complete the work quickly.

As of April, 1992, seven calendar years and hundreds of machine years after
ECM’s introduction, three 38-digit factors, one 40-digit factor, and one 42-digit
factor had been found; these appear in Table 1.0.1. Here F|, denotes the n—th

Fibonacci number. Lenstra found his 40-digit factor of an 89-digit cofactor of
the partition number p(11279), using ECM on a MasPar with 24 processors and
allocating 11 processors per curve. Rusin found the 42-digit factor of the Cun-
ningham number 101344105741 on a SPARC using the program in [29] with limits
By =2-10% and B, = 103.

Factor Of Discoverer(s)

Arjen K. Lenstra,
Mark S. Manasse
733 30281 86548 76640 68079 92440 06620 01093 Figr Robert D. Silverman
79294907 48252 58311 72666 22855 30467 08561 Feer Peter L. Montgomery
12320 79689 56766 26861 48201 86399 5544247703 | p(11279) | Arjen K. Lenstra
18 49764 79633 09293 11033 13037 83550 43553 63361 | 10%°t — 1 ‘ Dave Rusin

648 38817 74757 80953 23592 82791 4385846481 | 118 + 1

Table 1.0.1: Largest ECM factors found

For a history of factorization and primality testing algorithms, see [11] and [10].

1.1 Summary of main results

This work implements the algorithm summarized in [30], extending the work
of [9]. With optimal parameters, the method described in this thesis beats its
predecessor [29] when searching for prime factors over 25 digits. The major factors
found during this work appear in Tables 9.2.1 and 9.3.1. The largest factor found
was a 33—digit factor of the partition number p(13421). A 31-digit factor and a
32—digit factor were found during Step 1, but no other factor over 29 digits was
found during six months of runs (primarily on a DEC 5000).

1.2 Acronyms and notations

Table 1.2.1 lists acronyms used in this report; Tables 1.2.2, 1.2.3, and 1.2.4
list some notations used. Non-standard acronyms and notations are defined where
first used.

The notation ¢ = b (mod ¢) means that a — b is divisible by ¢. The notation
b mod ¢ (without parentheses) denotes the nonnegative remainder upon dividing

the integer b by the positive integer ¢; it satisfies

bmod ¢=b—c|b/c] and 0<bmode<Lc—1.

For polynomials, B(X) mod C'(X) denotes the remainder upon dividing B(X) by
C(X) # 0; it satisfies

B(X) mod C(X) = B(X) — C(X) {—J :

deg(B(X) mod C(X)) < deg(C(X)).

AIX

AMS

DEC

DP

ECM
ECM/FFT
FFT

GCD
HALFGCD
HG

IBM

LIFO
MIMD
MIPS
MODMULN
N.A.
RECIP
POLYEVAL
POLYGCD
RSA
SIMD
UCLA

Operating system on IBM RS/6000

American Mathematical Society

Digital Equipment Corporation (computer manufacturer)
Desired property (Chapter 5)

Elliptic Curve Method

Elliptic Curve Method with Fast Fourier Transform extension
Fast Fourier Transform

Greatest common divisor

Polynomial half-GCD algorithm (Figure 3.8.1)
HALFGCD input or output property (Section 3.8)
International Business Machines (computer manufacturer)
Last in, first out

Multiple instruction, multiple data (parallel architecture)
Computer manufacturer

Modular multiplication algorithm (Figure 8.1.1)

Not applicable

Polynomial reciprocal (Section 3.5)

Polynomial evaluation algorithm (Section 3.7)
Polynomial GCD algorithm (Figure 3.8.2)

Rivest, Shamir, and Adleman (public-key cryptosystem [35])
Single instruction, multiple data (parallel architecture)

University of California, Los Angeles

Table 1.2.1: Acronyms

Coefficient of X272 in homogeneous form (2.3.3) of elliptic curve
Coefficient of Y272 in homogeneous form (2.3.3) of elliptic curve
Upper bound for prime powers during Step 1

Field of complex numbers

Cost per elliptic curve: see (7.3.1)

Degree of F/(X) (resp. G(X)) in Section 4.3

Number of divisors of n, including 1 and n

Reduction of elliptic curve £ modulo a prime p

Bitwise exclusive OR (two or more arguments)

Polynomial modulo which computations are done in Section 4.3
nth Fibonacci number: Fy =0, Fy =1, F ,=F, +F,iftn>0
Latest polynomial remainder in Section 4.3

Dickson polynomial (Section 5.1)

Greatest common divisor of m and n

Field of p elements (p a prime, k > 0, usually k& = 1)

Nonzero elements of GF(p¥)

Polynomial multiplied by G/(X) modulo F'(X) in Section 4.3

n X n identity matrix

exp(vVInz Inlna) (defined for « > 1)

Time to multiply two polynomials each of degree at most n — 1
in a (fixed) ring R (Chapter 3)

Multiples of () used to compute z-coordinates for F'in Section 4.3

Table 1.2.2: Notations, part 1

The integer being factored, or modulo which arithmetic is done
Multiples of () used to compute z-coordinates for H in Section 4.3
m X n zero matrix

Point at infinity on elliptic curve (group identity element)

Any function g(n) such that g(n)/f(n) is bounded as n — 400
Any function g(n) such that lim,_ . g(n)/f(n) =0

Polynomial used to select multiples of () in Chapter 5

Success probability per curve: see (7.2.2)

Number of unordered partitions of an integer n

Field of rational numbers

Point on elliptic curve group as output from Step 1

x-coordinate of m - (), in elliptic curve group

Reduction of () modulo a prime p

Order of () modulo some prime p

Upper bound for ¢ in Chapter 4

Commutative ring (within Chapter 3)

Resultant of two polynomials; see (3.10.2)

m x n Toeplitz matrix (3.10.1) from coefficients of polynomial F
Time for addition, subtraction, or negation in ring R

Time for finding a multiplicative inverse (when it exists) in ring R
Time for multiplication in ring R

Ring of integers

Ring of integers modulo N

Table 1.2.3: Notations, part II

An 8-th root of 16 modulo ¢
Mébius function: 0ifn lr‘las repeate(ﬁl féctors,‘

(—1)? if n has d distinct prime factors.
Euler’s totient function
n-th cyclotomic polynomial in two variables: [Ty, (X — Yd)“(n/d)
Dickman function: see Section 7.1
Zeta function: 32> n=s
Largest integer n such that n < a (x real)

Least integer n such that n > a (x real)
Polynomial quotient (remainder discarded)

(F, G polynomials in X)
Both mean x is much less than ¥
Both mean z is approximately y; ~ is stronger than =

x divides y (x, y integers)

x does not divide y (x, y integers)

Table 1.2.4: Notations, part III

CHAPTER 2

Elliptic Curve Method and its History
An elliptic curve E over a field K is defined by a cubic equation

(201) Y2+G1XY+CLOY: bSXS‘I_bQXz‘I_le‘I_bO

with coefficients in K, where b5 # 0 and where the discriminant does not vanish
(i.e. the right side of (2.0.1) must not have repeated roots after completing the
square in Y on the left). We assume henceforth that char(K) # 2, 3. Then the

linear change of variable
y:b3(Y—|—a1X/2—|—a0/2), $:b3X—|—62/3—|—a%/12,

converts (2.0.1) to the Weierstrass form

(2.0.2) y? =2 +ax + b,

where a, b € K and 4a®+27b? # 0. The curve consists of all points (, y) satisfying
(2.0.1), together with a point at infinity, denoted by O.

The points on an elliptic curve form an abelian group with identity element O
if we define the group law suitably [38, pp. 55ff.]. Suppose E is given by (2.0.2).
The negative of O is —O = O; the negative of any other point P, = (2, ;) on £
is its reflection with respect to the z-axis: — P, = (xy, —y;). The sum P, + P, of
two points P,, P, € E is defined by [38, pp. 58-59]:

(1) IfPle,theHP1+P2:P2.
(11) IfP2:O7thenP1+P2:P1.

(111) IfPlz_P27thenP1+P2:O.

(iv) If none of (i), (ii), (iii) holds, then P, + P, = (23, y3) where

Yo— U

(2.0.3) A=<{T27N0
3:1;% +a

2y,

” lf Ly 7£ Lo,

) lf L1 = Lo,
2}3:)\2—1‘1—1‘2,
ys = —(Mas — 1) + 1)

The parameter A in (2.0.3) is chosen so that the line y = M@ — a;) + y, passes
through P, and P, if P, # P,, and is tangent to £ at P, if P, = P,. This line
intersects the curve at a third point (x5, —y3;) = —P; (which may equal P, or P,).
The group law is defined so that if a straight line passes through three points of
E, then those three points sum to O. Figure 2.0.1 illustrates the group law, by
computing 2P + @ in two ways for P = (0, 1) and @ = (—1, 2) on the curve
y?=a3 —4x + 1.

When K = GF(p) is the field of p elements, the group F has finite order. Hasse
[38, p. 131] proved that the order of this group satisfies

p+1-1B]| <2vp.

Hence the group order is numerically very close to p. The actual group order varies
with the choice of curve.

2.1 Lenstra’s original algorithm

Lenstra announced the ECM algorithm in February, 1985 and published it in
1987 [24]. It is modeled after Pollard’s P — 1 algorithm [10, pp. 67ff.]. With proper

choice of parameters, the expected amount of arithmetic modulo N required to

find a prime factor p of N by ECM is L(p)?+°(1) [24, p. 651] where

L(p) = exp (s/lnp Inlnp) .

When p =~ N'/2, this complexity matches that of the Quadratic Sieve algorithm
mentioned in Chapter 1, but with higher constants. For p = O(N'/2-¢) where
e > 0, the ECM algorithm is asymptotically faster than Quadratic Sieve as N — oc.

Lenstra [24, pp. 663ff.] generalizes the definition of elliptic curve to work over a

ring Z /NZ with gcd(N, 6) = 1 as well as over a field. He defines a pseudo-addition

2P+ Q

Figure 2.0.1: Group law on y2? = a3 — 4z + 1

10

on these curves by emulating the algebraic rules for adding two points over a field,
except when (2.0.3) might encounter a nonzero, non-invertible denominator. Any
such denominator must be a zero divisor modulo N, which is fortuitous rather
than disastrous since the greatest common divisor algorithm will reveal a non-
trivial factor of N. From this pseudo-addition Lenstra defines a multiplication
which is algebraically equivalent to ordinary group multiplication unless a zero
divisor of NV is encountered.

Lenstra selects a random curve E over Z/NZ with known initial point P.
Compute () = R - P, where R is a positive integer divisible by all prime powers
below some bound B;. This computation can fail only if some denominator is a
zero divisor, in which case a factor is found. For each prime factor p of N, let
E(,y denote the reduction of I modulo p (see [16, Chapter 5] for definition). If
any order |E(,| divides R, then the reduction (), of @ in [E(, is the identity,
by Lagrange’s Theorem about subgroup orders. When the reduction of () is the
identity in F,) for some but not all primes p dividing N, then)’s denominator
is divisible by some but not all prime factors of N, triggering the aforementioned
“failure”.

2.2 Step 2 — Brent and Montgomery improvements

Lenstra’s algorithm multiplies an initial point P on a curve F by an integer R,
obtaining @ = R - P (a process called “Step 17). Step 1 fails if no zero divisor is
encountered. It succeeds if the group order |E | divides R for some prime p|N.

Suppose that [E,| { R but |E,| | Rq for some prime ¢, with ¢ not too large
and p|N. Then

¢-Q=q-(R-P)=(qR)- P =0

in K. So the reduction), has order dividing ¢, and must either be the identity
or have order g¢.

Both Brent [9] and Montgomery [29] observed early that Lenstra’s algorithm
can be modified to take advantage of such occurrences. Each suggests computing
several multiples n; - () for selected n,;. If some n; = n; (mod ¢), then the points
n;-() and n;-() agree upon reduction modulo p; unless n; = n;, these are unlikely to
match modulo other primes dividing V, so p can be found by comparing n,- () and
n;-(). The match can be done by testing the difference of their z-coordinates; then
the match also succeeds if g|(n; + n;). This entire process is nicknamed “Step 2”.

Brent and Montgomery differ on how to select the n;. Montgomery suggests
comparing multiples of () along an arithmetic progression to a few fixed multiples
of (). Brent suggests the use of semirandom multiples. This question is discussed
in detail in Chapter 5.

11

2.3 Weierstrass and Montgomery parameterizations

When P, # P,, (2.0.3) uses one inversion and two multiplications (one a squar-
ing); it uses another squaring if P, = P,. The inversion may be avoided by using
homogeneous coordinates, in which each coordinate is represented as a quotient
of two elements of K, and using rational arithmetic in (2.0.3). Straightforward
attempts (whether using a common denominator or separate denominators for
and y) use about 10 multiplications in place of the inversion in (2.0.3).

Montgomery [29, pp. 260-261] suggested an alternate parameterization which
allows the use of homogeneous coordinates (i.e. no inversions) while keeping the
number of multiplications small. To motivate it, consider the affine curve

(231) y2 — beS ‘I‘ 622}2 ‘I‘ bll' ‘I‘ bo (63 % 0)

If P, = (x4, y;) and P, = (x,, y,) are two points on (2.3.1) with x; # x,, with sum
P, = (z,, y,) and difference P_ = (x_, y_), then

J—

T, = -z, —x
+ b, 17— 2
_bgmywg(@y + @) + 2bya35 + by (2 4 25) + 200 — 2,1y,
by(wy — 24)? 7
(?h + 92)2 b
—] — b
L1 — Xy

_ b,
bgmywg(@y + 7)) + 2bya75 + by (2 4 25) + 20 + 29,7,

53(51?1 - 1’2)2

A straightforward calculation gives

(bswyay — by)? — 4bo(bsy + bsxy + by)

bg(% - 1’2)2

It we require b; = by and by = 0, then this simplifies to

(51/'151/'2 - 1)2

(51/'1 - 1’2)2 '

(2.3.2) rLr_ =

This allows one to compute the z-coordinate x, of P, + P, from those of P, P,
and P, — P, with a few multiplications, inversions and squarings.

12

By itself, (2.3.2) costs more that (2.0.3), but (2.3.2) imposes little overhead
when switching to homogeneous coordinates. Upon setting b, =0, b; = b3 = 1/B,

b, = A/B in (2.3.1) and putting y = Y/Z, * = X/Z, we obtain

(2.3.3) BY2Z = X(X* 4+ AXZ + 7?),

This is an elliptic curve if and only if B # 0 and A # £2.

Equation (2.3.3) is said to be in homogeneous (or projective) form, because it is
invariant upon replacing (X, Y, Z) by (kX, kY, kZ) for any k # 0. Its coordinates
are often written (X : Y : Z) rather than (X, Y, 7). The group identity element
is O=(0:1:0). The negativeof P=(X:Y:Z)is =P =(X:=-Y:27).

IfP=(X,:Y,:7)and P, =(X,:Y;: 7Z,) are two points on (2.3.3) with
distinet X/7Z ratios (hence not equal or negatives of each other) and with difference

Py — Py=(X_:Y_:Z_), then their sum P, + P, = (X : Y, : Z) satisfies

Xy 72X\ Xy — 7, 7,)?

(2.3.4) Z— = X (X, Z, — 2, X,)?
Z (L= Z)(X2‘|‘Z2)‘|‘(X1‘|’Z1)(X2_Z2))2
X ((Xl — Z)(Xo+ Z,) — (X + Z3)(X; = ZQ))27

by (2.3.2). Montgomery also gives a doubling rule: if P, = (X; : Y] : Z;), then
2P, = (X, :Y,: Z,) is given by
X, (XP —23)?
Z, AX\Z,(X2+ AX,Z, 1 Z2)
_ (Xy +7Z,)°(Xy — Z4,)?
(4%, 20) (X1 =)7 + (A+2)/9)(4X, 2,))

(2.3.5)

Where 4:X1Z1 - (Xl ‘I‘ Z1)2 - (Xl - Zl)z.

He proposes computing only the (X : Z) ratios. By (2.3.4) and (2.3.5), one can
add two points on (2.3.3) with six multiplications if their difference is known, and
one can double a point with five multiplications if (A+2)/4 is known. He computes
large multiples of a point using the methods in [31].

Not every elliptic curve of the form (2.0.1) can be linearly transformed to form
(2.3.3) unless the base field K is algebraically closed or has other nice properties.
But ECM lets its user choose the curve, and there is no prohibition against selecting
one of form (2.3.3). The curve selection strategy is discussed in detail in Chapter 6.

13

CHAPTER 3

Fast Polynomial Arithmetic

Our algorithms will require fast polynomial arithmetic over the ring Z/NZ,
including multiplication, remaindering, and greatest common divisor. This chapter
summarizes some of the fast algorithms found in the literature, emphasizing how
they apply to this ring. It includes a detailed analysis of intermediate results of
the fast GCD algorithm.

All rings in this chapter are assumed commutative. Polynomials are univariate
unless otherwise indicated.

3.1 Minimal time for polynomial multiplication

Let M(n) be the time required to multiply two polynomials F'(X) and G(X)
of degrees at most n — 1 over a given ring R, i.e. to compute the coefficients of the
product given the coefficients of the inputs. We assume that a ring addition or
subtraction can be computed in time ?,44, a ring multiplication in time ¢, and

a multiplicative inversion (when it exists) in time #,,,. These times are assumed

mv:*

constant for any given ring R, but may depend on R.

Since any multiplication algorithm must read all 2n input coefficients, we have
the trivial lower bound M(n) > O(n). The straightforward algorithm uses n?
multiplications and (n — 1)? additions in the ring, giving the upper bound

M(n) S nztmul —|— (n — 1)2tadd‘

Karatsuba [17, pp. 278-279] [2, pp. 62-64] observed that we can do better by
divide and conquer. Suppose that n = 2m is even. Write

P(X) = Fo(X) + F(X)X™ and - G(X) = Go(X) + G (X)X™,
where deg(Fy), deg(F}), deg(Gy), deg(Gy) < m. Then

(3.1.1)

FG = (Fy+ FLX7)(Go + Gy X™)
— FOGO ‘I‘ (FOGI ‘I‘ FlGo)Xm ‘I‘ FlGlem

= FOGO + ((Fo + Fl)(GO + Gl) - FOGO - FlGl)Xm + F1G1X2m-

14

The polynomials Fy, Gy, Fy, Gy, Fy + Fy, and Gy + G all have degrees less than
m = n/2. This technique gives

M(n) <3M(m)+ 2m 4+ 2(2m — 1))tqq = 3M(n/2) + (3n — 2)t qq-
Together with M (1) = ¢, the solution of this recurrence is
M(27) <3+ (5-3" =62 + Vtaay (> 0),
SO
(3.1.2) M(n) = O '3ty + Slaga)) = O (0555 (L + 5taaa)) -

If the original bound n on the degrees is not a power of 2, then we can increase
the bound and still achieve (3.1.2). This method works over any ring.
We will assume in subsequent analyses that the M(n) function satisfies

(3.1.3) aM(n) < M(an) < a*M(n)
for a > 1 [2, p. 280].
3.2 Circular convolutions

We start by defining a circular convolution of two vectors (called cyelic convo-
lution in [17, p. 491] and positive wrapped convolution in [2, p. 256]).

Definition 3.2.1 Letf = [f07 f17 f27 T fn—l]T andg = [907 915 925 " gn—l]T
be two n-vectors over a ring R. Their circular convolution (of length n) f @ g is
defined to be the n-vector h = [hy, hy, hy, -+, h,_;] where

hy = > fig; (0<kE<n—1)

t+j=k (mod n)
Circular convolutions of length n are really polynomial multiplications mod-
ulo X* — 1. If f, g, and h are as in Definition 3.2.1, and if

n—1 n—1 n—1
F(X):ZfiXi, G(X):ZgiXi, H(X):ZhiXi,
=0 =0 =0

then h = f @ g is equivalent to H(X) = F(X)G(X) (mod X —1). For example,
ifth=1f®g, then

H(X):Z_:thk:Z_: Z fingk
k=0

k=0 ¢4+;5=k (mod n)

n—1 n—1n-1
= Z Z fig; X4 = Z Z fig; X
k=0 ¢4+;5=k (mod n) 1=0 7=0

= P(X)G(X) (mod X" —1).

15

It we can perform fast circular convolutions, then we have an algorithm for
fast polynomial multiplication. Given two polynomials F' and G, choose n >
deg(F') 4+ deg(G). Use a circular convolution of length n (after padding with
leading zeros) to form F(X)G(X) (mod X™ — 1); this must equal F(X)G(X)
since deg(FG) < n. We can also use n = deg(F) + deg() if we compute the
leading (or constant) coefficient of the product directly.

3.3 FFT for polynomial multiplication

The Fast Fourier Transform (FFT) algorithm [2, pp. 252ff.] is the basis of the
fastest known polynomial multiplication algorithms. If the base ring R satisfies cer-
tain conditions, then the FFT algorithm executes a circular convolution of length n
using O(nlogn) operations (additions and multiplications) in the base ring. This
is asymptotically better than the O(n'%%) bound for M(n) from Section 3.1.

Specifically, when the length n is a power of 2 and n > 1, the FFT algorithm
requires (i) that 2 have a multiplicative inverse in R, and (ii) that there exist a
(known or easily computable) element w such that w/2 = —1. When R = C is
the field of complex numbers, these are satisfied for w = ¢27/7. The conditions are
also satisfied when R = GF(p) is the field of p elements if p =1 (mod n) and w is
the ((p — 1)/n)-th power of a primitive element of the field.

Given two polynomials F/(X) = Z?:_OI f:i Xt and G(X) = Z?:_Ol ¢; X of degree

at most n — 1, the FFT algorithm constructs the n-vectors

f= [F(l)v F(w)v F(uﬂ), B F(wn_l)]Tv
& =[G(1), G(w), Gw?), ---, Gl
from the coeflicient vectors f = [fy, f1, -+, fo_1]T and g = [g0, 915 *** 5 Gn_1)T-

These vectors f and g are the discrete Fourier transforms (DFT) of f and g. A
straightforward computation [2, p. 255] shows that the pointwise product

(33.1) [F(G(), Flw)G(w), F)G(w?), -, PG w1
of f and g is the DFT of the circular convolution h = f ©® g. From fl, an inverse
discrete Fourier transform (i.e. an interpolation) produces h and hence the coeffi-

cients of H(X) = F(X)G(X) (mod X" — 1). The beauty of the FFT is that the

evaluation and interpolation stages take only

(n 10g2 n—2n + 2)tmul + (2n 10g2 n)taddv

16

plus an extra n multiplications by n=! during the interpolation. (This assumes
that all roots of unity are known, and does not count trivial multiplies by %1.)

Adding the time for (3.3.1) yields a bound of
(3nlogyn — 4n + 6)t,u + (6nlog, n)taq
for multiplication modulo X™ — 1. Replacing n by 2n gives
M(n) < 2nlogy(2n) (3t + 6taqq)

if the ring satisfies the requirements and n is a power of 2. See [2, pp. 257fl.] for
details.

3.4 Circular convolutions over Z/NZ

We would like to apply the methods of Section 3.3 to the ring R = Z /NZ, where
N is the integer we are attempting to factor. The FFT has two requirements: (i) 2
must have a multiplicative inverse in R, and (ii) there must be a known element w
with w?/2 = —1. Requirement (i) is satisfied, since our N will be odd. Requirement
(i) will usually not be satisfied.

Montgomery and Silverman [32, pp. 842-843] perform circular convolutions
modulo N by executing several such convolutions modulo small primes and using
the Chinese Remainder Theorem to get a result modulo N. The small primes are
selected so that the requirements in Section 3.3 are satisfied.

Let n be a power of 2. Suppose that we want a polynomial product F/(X)G(X)
(mod N, X" — 1) where deg(F') < n and deg((G) < n, and where all coefficients
of I and G are in the interval [0, N — 1]. Select distinct primes {p,}/£ such that
each p; =1 (mod n) and

(3.4.1) P = ﬁpZ >nN2/(1—e).

=1

Here € > 0 depends on the precision of floating point arithmetic. Perform a single-
precision circular convolution modulo each p;, using the methods of Section 3.3,
after reducing the coefficients of ' and G modulo p;. The next step is to construct

n—1
F(X)G(X)=>_ h; X/ (mod X" —1)
=0
over Z from the known products

n—1
7=0

17

Since h; = h;; (mod p;), the Chinese Remainder Theorem shows that
K P
hy =) —yi; (mod P),
=1 p;
where
(3.4.2) Yij = (P/p;)~"hy; (mod p;).

The bounds 0 < h; < n(N —1)? < P lead to the explicit formula [32, equation

(4.4)]

K P K i €
=1 "

We can get h; mod N directly from (3.4.3). A more computationally convenient

formula for hj mod N is

K €

(3.4.4) h; = i (5 mod N) yij + ((—P) mod N) {Z i 4 §J (mod N).

i=1 i i=1 Pi

The coefficients ((P/p;)~! mod p;) in (3.4.2) can be pre-computed and stored in
tables. So can (P/p; mod N) and the 0-th through (K + 1)-st multiples of
(—=P) mod N in (3.4.4). With these tables, computation of an h; from {h;;}%,

requires at most

(i) K modular multiplications to get the y,;, with 0 <y,; <p; —1;

X

(ii) O(K) floating point operations to evaluate {Z} % + %J,

(iii) K multiplications of y;; by residues in [0, N — 1];

(iv) K additions of numbers in [0, N — 1];

(v) One reduction modulo N of a integer in [0, (N — 1) (K + ZZBZI (p; — 1))]
The cost is O(K) for (i) and (ii), O(K log N) for (iii) and (iv), and O(log N log K)

for (v). Since there are n different coefficients £, the cost of the Chinese Remainder
Theorem is O(nK log N). Reducing the 2n input coefficients of F(X) and G(X)
modulo the K primes p; also takes time O(nK log N). A circular convolution of
length n modulo p; takes O(nlogn) operations in GF(p;), each of assumed cost
O(1). Hence the total time for a circular convolution modulo N is

O(nKlog N)+ O(Knlogn) = O(nK log(nN)).

18

Since K = O(log(nN?)) by (3.4.1), this time bound is

(3.4.5) O(nlog(nN?)log(nN)) = O(n(logn + log N)?).

David Cantor mentioned another algorithm for polynomial products modulo N,
due to David Robbins. Suppose we are given F(X) = Z?:_OI f: Xt and G(X) =
Z?:_Ol g; X, where 0 < f;, ¢; < N. Select a radix R and write

-1 -1
fi:Zfinjv gizzginj-
7=0 7=0

The coefficients of F/(X)G(X) and hence those of F'(X)G(X) mod N can be found

from those of the polynomial product

249 ($5) (500)

1=0 7=0 =0 7=0

upon substituting ¥ = R. This polynomial product in (3.4.6) can be found using
methods for univariate polynomial multiplication after setting ¥ = X?~1. This
converts the original problem from a convolution of length 2n with coefficients at
most NV —1 to a convolution of length about d = 2n(2logy N — 1) with coefficients
at most R—1. The coefficients of the latter product are bounded by (d/2)(R—1)2.

The latter convolution can be carried out by modular arithmetic; it can also be
done by floating point arithmetic it R is sufficiently small. This allows the use of
commercial FFT routines, which are often optimized for a particular architecture.
For example, when 128-bit hardware floating point arithmetic (with mantissa circa
110 bits) becomes available, then R a2 230 should be feasible even if n & 220 (degree
108) and ¢ = 219 (9000—digit integers).

The estimated time for Robbins’s algorithm is

9, (dlog d log((d/2)(R - 1)2))

= O(n log N(log n + log log N)z)

if R is kept fixed and we approximate the time for floating point arithmetic linearly
in the number of bits of precision required. This is as good as (3.4.5) (except
possibly for the constant factor) as n — oo with NV fixed, but better as N — oo
with n fixed. Either algorithm might be better in practice.

19

3.5 Polynomial reciprocals and division

Algorithms for fast polynomial division use Newton’s method to compute a
reciprocal, followed by a multiplication to compute the desired quotient. The
remainder, if desired, can be found after another polynomial multiplication and
subtraction.

If F(X) is a polynomial of degree n — 1 whose leading coefficient is invertible,
then its reciprocal [2, p. 287] is defined to be the polynomial quotient

RECIP(F) = {XQHJ

F(X)

Observe that F(X)/X7"~1 is a finite Laurent series with invertible constant term,
and RECIP(F)/ X"~ has precisely the terms through X ~("=1) in the Laurent series
for (F(X)/X”_l)_l. The first term of the latter reciprocal can be found directly;
we can then apply Newton’s method at any time to double the accuracy. See [2,

p. 287]. When n is a power of 2 and ' has degree n, the algorithm in Figure 3.5.1
gives all n + 1 coefficients of RECIP(F).

procedure RECIP (Z?:o ijj)

Cmt. Assume that n is a power of 2 and f, is invertible.

€ = _fn—l/fn
for k:=2, 4,8 ..., ndo

let Y2020y X7 o= Ryyyp(X)2 30020 famy XA

Ry(X) 1= 2Ry (X)XH2 = S0 Dhj oy o X0

€ = ez/Q - hk—an - fn—k/fn (USG hk—S =0 if k= 2)
end for

return XR,(X)+e,/f,
end RECIP

Figure 3.5.1: Algorithm for polynomial reciprocals

It is straightforward to check that R, (X) has degree k — 1. It is more tedious

to verify the inductive assertion
deg((X Ry (X) + e/ f,)F(X) = X™H) <n —1

fork=1,2,4,---, n. One proof defines R} (X) = X R(X)+e;/f,; the algorithm

20

in Figure 3.5.1 is equivalent to

w0 = 5 =2t

f.o 2
Rin(X)?|[F(X)/ X

R (X) =2X*?R (X)) — ¢

k/2

(k>1).

When deg(F(X)) is not a power of 2, it can be scaled up to the next power
of 2, by multiplying by a power of X and adjusting the reciprocal accordingly.
The computations of e, in Figure 3.5.1 can then be suppressed, since the constant
coefficient of the output is not used in this case.

To compute a quotient |G(X)/F(X)| where deg(G(X)) < 2n — 2 and where
F(X) has degree n — 1 with invertible leading coefficient, one can use the identity

(35.1) EniE

|G(X)/ Xt RECIP(F(X))
Xn—l

To prove (3.5.1), let H(X) be its right side. We must show that deg(G(X) —
F(X)H(X)) <n—2. Each summand on the right side of

X1 (GX) = F(XOH(X)) = X! (G(X) N {G(X)J)

i
s

J (F(X)RECIP(F(X)) — X>2)

G(X)
Xn—l

— F(X) (H(X)X”—l — { J RECIP(F(X)))

is a product of polynomials of degrees at most n — 1 and n — 2, so its left side has

degree at most 2n — 3, as desired.

Assuming (3.1.3), the times for polynomial reciprocal and division are bounded

bY tiny + O(M(1) + (tya + taaa) logn) [2, p. 288).

3.6 Constructing a monic polynomial from its roots

Let R be a ring and n be a power of 2. Given a; € R for 0 < 7 < n, we can
compute the coefficients of

(3.6.1) F(X)=II(X —a)

21

in time
(3.6.2) (M(n/2) + ntaqq) logy n + nt,aq,

by repeatedly invoking the procedure for multiplication.
The idea is to multiply two factors of equal degree at each stage. Define

d—1
F (X)) = H(X — aiy;)
7=0
whenever d|n and 7 is a multiple of d with 0 < ¢ < n —d. We are given the a; and
can compute the F;;(X) = X — a; with n negations. Construct

(363) FipuX) = Foa(X) FaaalX) (1= 0,24, 4d, -, n —2d)

from {F; 4(X)} for ¢ =0, d, 2d, --- , n — d by pairwise multiplying n/2d pairs of
monic polynomials, each of degree d. Repeat this procedure log, n times to get
Fo o (X) = F(X).

We can multiply two monic polynomials of degree d in time M(d) 4 2dt 44 (by
dropping the leading coefficients before doing the multiply). Doing this n/2d times
(as while replacing d by 2d) costs (n/2d)M(d) 4+ nt,qq < M(n/2) 4+ nt,qq by (3.1.3).
Repeating this log, d times (for d =1, 2, 4, --- | n/2) gives the bound (3.6.2).

This algorithm needs temporary storage for at most O(n) ring elements, since
we can store the n coefficients of {F] ,,(X)} (excluding the leading 1’s) atop the n
coefficients of {F} 4(X)}.

The bound O((M(n) + nt,qq)logn) applies even if n is not a power of 2, since
we can append some zeros to {a;} beforehand and divide by a power of X at the
end.

3.7 Evaluating a polynomial at many points

Let G/(X) be a polynomial of degree at most n — 1 over a ring R, where n is a
power of 2. Given a; € R for 0 <7 < n, we claim that we can evaluate all G(a;) in
total time

(3.7.1) (TM(n/2) 4+ 6nt,qq)logyn + ntqq + O(M(n))

using fast polynomial techniques [2, pp. 292-294]. We call the resulting algorithm

POLYEVAL.
First we form the {F} ;(X)} in (3.6.3), obtaining F'(X) = [1"2, (X —a,). Invert

F(X) to get RECIP(F (X)) = RECIP(F; (X)) as in Section 3.5. We are given
G(X) mod £, (X) since we assume deg(G(X)) < n.

22

POLYEVAL proceeds recursively, in reverse order to that used during the con-
struction of F'(X). Given G(X) mod F; 44(X) and RECIP(F} 54(X)), compute

Frp g X) [RECIP(F, (X)) /X
Xd

(3.7.2) RECIP(F, /(X)) =
and RECIP(F; (X)) similarly, as justified by (3.6.3). Next compute
(3.7.3) G(X) mod F; 4(X) = (G(X) mod F} 5,(X)) mod F}4(X),

G(X) mod Fiyy4(X) = (G(X) mod Fz’,zd(X)) mod Fj 4 4(X),

using the reciprocals from (3.7.2) and the methods of (3.5.1).

Each step of this backwards recursion uses six products of polynomials which
either are monic of degree d or have degree at most d — 1, for a combined time of
6M(d). An extra 2d additions are used per reciprocal in (3.7.2) and per remainder
in (3.7.3) to multiply by the X9 terms. There are also d subtractions required
per remainder. Therefore the time for (3.7.2) and (3.7.3) is bounded by 6 M (d) +
10dtqq. These operations are repeated n/2d times when replacing 2d by d, so the
net time is bounded by (3n/d)M(d) + dnt,qq < 6M(n/2) + dnt,qq. Summing this
over all log, n levels of the recursion, and adding the time for constructing F'(X)
and its reciprocal, we get the bound (3.7.1).

If polynomial multiplication is done modulo X4 — 1 or X?¢ — 1 using an FFT
algorithm, then there are many repeated operations in this calculation, due to mul-
tiplying two polynomials by the same polynomial. While using (3.6.3) to replace d
by 2d and later using (3.7.2) and (3.7.3) to replace 2d by d, it suffices to compute
six forward transforms of length 2d, for the polynomials

Fi,d(X)7 F’i—l—d,d(X)7
RECIP(FZ72d(X)) G(X) mod Fi,?d(X)
X ’ X ’
RECIP(F; 4(X)), RECIP(Fiy44(X)),

and four forward transforms of length d. for the polynomials

Fia(X), Fipaa(X),
G(X) mod Fz’,zd(X)J {G(X) mod F 54(X)
Fi,d(X) 7 Fi-l—d,d(X)

23

(Since the remainders in (3.7.3) have degree at most d — 1, it suffices to compute
them modulo X? —1.) The transforms of F; ;(X) and F;,,,(X) of length d can
be obtained from the corresponding transforms of length 2d, by extracting every
second element (since the transform evaluates the polynomial at the d-th roots of
unity, which are a subset of the 2d—th roots of unity). We also need five pointwise
products and reverse transforms (i.e. interpolations) of length 2d, to get

Fi,2d(X)7
RECIP(F; 4(X)), RECIP(Fiy44(X)),
G(X) mod Fz’,zd(X)J {G(X) mod F 54(X)
Fa(X) 7 Fiyaa(X) 7

and two of these of length d for computing the final remainders (3.7.3). If we
approximate the cost of a forward transform or of a pointwise product and inter-
polation of length d as as M(d/2)/3, then the leading coefficient of our estimated
time is

(64+5)M(2d/2d)/3 + (2+2)M(d/2)/3 < 13M(d)/3,
allowing us to replace the TM(n/2)log,n in (3.7.1) by (13/3)M(n/2)log, n.

The temporary storage requirements of this algorithm are O(nlogn) ring el-
ements for storing all coefficients of {F} ;(X)}. That is, intermediate storage re-
quirements are O(logn) times the input size. Since the F;;(X) polynomials are
reused only once, these polynomials (or their forward transforms if using an FFT)
can be saved in external storage rather than main memory, if the storage system
supports LIFO access.

If the a; have a special pattern, then we may be able to evaluate all G(q;) in
less time than (3.7.1). If the a; form a geometric progression, then all G(a;) can
be found using one convolution of length 2n — 1 and O(n) extra multiplications
[2, exercise 8.27] [32, p. 844]. If instead the a; form an arithmetic progression,
then we can do it with deg(() additions per G/(a;) after suitable initialization (cf.
Section 5.9).

3.8 Polynomial GCDs over a field

The standard Euclidean algorithm for polynomial greatest common divisors
(GCDs) [17, pp. 405ff.] takes O(n?) operations when applied to two polynomials
of degree at most n. Moenck [27] found an asymptotically faster algorithm using

fast multiplication and division algorithms.

24

To simplify the presentation, this section assumes that the base ring R is a
field. Section 3.11 presents the changes required when R = Z /NZ.

Definition 3.8.1 Let M be a matriz of polynomials over a field. Then the degree
of M, written deg(M), is the maximum of the degrees of the entries of M.

Definition 3.8.2 A 2 X 2 mairiz M of polynomials over a field is lopsided of
degree n if n=0 and M =1,, or if n >0 and

My Mg

M =

Mo Mg
where
deg(my;) < n—2, deg(my,) <n—1, deg(my;) <n—1, deg(mg;) = n.
For purposes of this definition, the zero polynomial has degree —oc.

Lemma 3.8.3 If M, is lopsided of degree ny and M, is lopsided of degree n,, then
MM, is lopsided of degree ny + n,.

ProoF. Straightforward. Since all computations are over a field, the product of
two polynomials of degrees n; and n, has degree n; + n,. W

Figure 3.8.1 describes recursive procedure HALFGCD, which is an optimized
version of procedure HGCD in [2, p. 364]. HALFGCD has two polynomial inputs
U and V, and an integer input d,.4 telling how much to reduce one of the degrees
before exiting; it has two polynomial outputs U, and V,, and a 2 X 2 matrix
output M_,,. HALFGCD has two input requirements:

out*
(HG1) U and V are polynomials in X over a field R, with deg(U) > deg(V);
(HG2) d,.q is a positive integer, with d,.q < [deg(U)/2];

Theorem 3.8.4 (upcoming) shows that HALFGCD‘s outputs satisfy:

(HG3) M, is a lopsided 2 x 2 matrix of degree deg(U)—deg(U.,,,) and determinant

+1;
Uout U
(HG4) =M ;
‘/out V

25

procedure HALFGCD(U, V| dicq, Mouws, Uous, Voutr)

Cmt. Given U, V| d,.4 satisfying (HG1) and (HG2),

Cmt. finds Moue, Ugue, Vour satisfying (HG3), (HG4), (HG5).

if deg(V') < deg(U) — d,eq then Cmt. Degree already small enough.

M, = Lo and Uou = v
01 Vout v

else Cmt. Make two recursive calls to HALFGCD.
Cmt. Choose n with 0 < n < deg(U) — 2d,q + 2 (as large as convenient).

Cmt. Choose d’ with 1 < d' < d,.q — 1 (as close to [d..q/2] as convenient).
U V ! / / /

HALFGCDQWJ, {WJ & MU v)

Cmt. deg(V') < deg(U) —n — d’' < deg(U") = deg(U) — n — deg(M").

d" = deg(V') — deg(U) + n+ d.eq

if ' <0 then Cmt. One recursive call is enough.

U u U mod X"
M, =M and o) = X + M. o
Vout Vv’ V mod X"

else

Q= {%J and W =U" —-QV' Cmt. W' = U' mod V".
HALFGCD (V!, W', d", M", V", W")

M, = M" 0 L M’
out 1 —Q

() (- (2) (-(0)
Vi W V mod X" 1
Cmt. deg(Voy) < deg(U) — dreq < deg(Usy) = deg(V') +n — deg(M).
end if
end if

end HALFGCD

Figure 3.8.1: Algorithm HALFGCD

26

(HG5) deg(‘/out) S deg(U) - dred S deg(Uout) — 1
A corollary of (HG3) and (HGH) is deg(M,,,) < d..q — 1; this is useful when

deciding how much storage to allocate for the matrix. A consequence of (HG3)
and (HG4) is ged(U, V) = ged(Usues Vout)-

Algorithm POLYGCD of Figure 3.8.2 computes an arbitrary polynomial GCD
by repeatedly invoking HALFGCD. Each iteration of POLYGCD’s main loop calls
HALFGCD with a pair {U’, V’} such that ged(U’, V') = ged(U, V), where U
and V are POLYGCD’s original inputs. The output of HALFGCD is another pair
{U", V"} with ged(U"”, V") = ged(U’, V') and where

deg(V") < deg(U’) — [deg(U")/2] = [deg(U")/2].

Unless V" = 0, both the new U’ = V" and the new V' = U’ mod V" have degrees
at most half the degree of the old U’, so max(deg(U’), deg(V’)) drops quickly.

procedure POLYGCD(U, V)

Cmt. Assume that deg(U) > deg(V).

v .=v; V.=V

while V' #£ 0 do
Cmt. By induction, deg(U’) > deg(V").
HALFGCD(U', V', [deg(U")/2], My, U", V")

if V" =0 then

U/ = U//. V/ = V//
else

v .=v" Vi:=U"modV”
end if

end while

return U'(X) (normalized to a monic polynomial)

Figure 3.8.2: Algorithm for polynomial GCDs

Theorem 3.8.4 Procedure HALFGCD always terminates after being invoked with
inputs satisfying (HG1) and (HG2). Its outputs M, Uy, and V., satisfy (HG3),
(HG4), (HGH).

PROOF (LONG). We proceed by induction on d,q.

27

The simplest case is when deg(V) < deg(U) — dyeq. Then M, = I, is
the identity matrix, while U, = U and V,,, = V. Since deg(M,,) = 0 and
det(M,,,) = +1, conditions (HG3) to (HGH) are trivially satisfied.

out
Otherwise the algorithm selects two integers n and d’ such that

3.8.5 0<n<deg(U)—2d 4+2 and 1<d<d_,—1.
() g red red

The range for n is nonempty since d,.q < (deg(U)+1)/2 by (HG2). The range for
d'" is nonempty since failure of the if means that d,..4 > deg(U) — deg(V), which is
positive by (HG1). A corollary of (3.8.5) is

(3.8.6) n+2d' < deg(U).

Next the procedure calls itself with U replaced by [U/X"™], with V replaced by
|[V/X"], and with d,.q replaced by d’'. Requirement (HG1) is satisfied since

deg Q%D = deg(U) —n > deg(V) —n = deg Q%D

by (HG1). Requirement (HG2) is also satisfied, since

{deg({U/X”J)l B {deg(U) —"w S Fﬂ _ .

2 2 9

by (3.8.6). Since d’ < d,.q by (3.8.5), we may assume by induction that the outputs
from the first recursive call satisfy

(3.8.7) deg(M') = deg(U) — n — deg(U"),
(3.8.8) det(M') = %1,
v LU/ X"
M/
v LV/x"]

(3.8.9) deg(V') < deg(U) —n —d' < deg(U’) —1,

with M’ lopsided.
The algorithm defines d” by

(3.8.10) d" = deg(V') — deg(U) + n + d,oq.

28

This satisfies
(3.8.11) d"<dpg—d <d,qg—1

by (3.8.9) and (3.8.5). If the second if in HALFGCD succeeds (i.e. if d” < 0),
then the procedure exits with M, = M’, which has determinant &1 by (3.8.8).
It returns

Ut U’ U mod Xn
(3.8.12) =X + M’

| V mod X7

U/ X7 U mod X7
= X"M' + M’

[V/X"] V mod X7

X" U/X"| 4+ (U mod X™) U
:M/ :M

out ’

X7 V/X™] 4+ (V mod X7) V

this proves (HG4).
We claim that

(3.8.13) deg(U,y) = n + deg(U").

The term XU’ of U,y in the first line of (3.8.12) has degree exactly n 4 deg(U’)
U mod X~

while the contribution from M’ has degree at most

V mod X7

deg(M')+n—1=deg(U) —deg(U') —1<n+d -2
<deg(U)—d —2<n-+deg(U')—3
by (3.8.7), (3.8.9) (twice), and (3.8.6). This proves (3.8.13) and also (HG3), since

deg(Moy,) = deg(M’) = deg(U) — n — deg(U’) = deg(U) — deg(U,,)

by (3.8.7).

29

The second inequality in (HG5) follows from
deg(Upu) =1 =n+deg(U’') =1 > deg(U) — d’ > deg(U) — dyeq

by (3.8.13), (3.8.9), and (3.8.5). The first inequality in (HG5) follows from (3.8.12)

since
deg(V,y) < max(n + deg(V’), deg(M") +n —1)
= max(d” + deg(U) — d,oq, deg(U) —deg(U’) — 1)
< max(deg(U) — dyeq, n+d' —2)
< max(deg(U) = dyeq, deg(U) = dreq — 1) = deg(U) — dreq

by (3.8.10), (3.8.7), (3.8.9), and (3.8.5) (recall that d” < 0).
The final subcase occurs when d” > 0. The procedure computes the quotient

@ = |[U'/V'] and remainder W/ = U’ — QV’, so that
(3.8.14) deg(Q) = deg(U’) — deg(V"),

deg(W’) < deg(V").

Then it calls itself recursively with U, V', d,.q4 replaced by V', W', d”, respectively.
From (3.8.10), (3.8.11), and (3.8.5) it follows that

20 < (degl(V") = de(U) + 1+ do) + (doa = 1)
— deg(vl) —I— 1 —I— (n — deg(U) —I_ ered - 2)

< deg(V') + 1.

Hence d” < [deg(V")/2], fulfilling requirement (HG2) for the recursive call. Since
d" < d..q by (3.8.11), we may assume by induction that the outputs M”, V" and

30

W satisty

(3.8.15) deg(M") = deg(V"’) — deg(V"),
(3.8.16) det(M") = +1,
V// V/
— M// ,
W// W/

deg(W") < deg(V") — d" < deg(V") — 1,
with M" lopsided. We substitute the definition of d” from (3.8.10) to deduce

(3.8.17) deg(W") < deg(U) = n = dyeq < deg(V") — 1.

The procedure exits with

0 1
M, = M" M.
I =@

Its determinant is — det(M")det(M’) = £1 by (3.8.16) and (3.8.8). Lemma 3.8.3,
together with (3.8.15), (3.8.14), and (3.8.7), shows that M, is lopsided of degree

(3.8.18) deg(Moy) = deg(M") + deg(Q)) + deg(M’)
= (deg(V') — deg(V")) + (deg(U’) — deg(V"))
+ (deg(U) —n — deg(U"))

= deg(U) — n — deg(V").

31

The procedure also exits with

(3.8.19)
Ueut V7 U mod X~
= Xn —I_ Mout
Vout w” V mod X7
| U mod X
= XnM// —I_ Mout
W V mod X~
0 1 U’ U mod X
— Xn M + M,
1 —@ V! V mod X7
0 1 |U/ X"] U mod X
— X?’LM// M/ out
1 —Q [V/X"] V mod X7
X U/X"| 4+ (U mod X™) U
= Mout = Mout 9
X V/X7| + (V mod X*) V

fulfilling (HG4).
We claim that

(3.8.20) deg(Uyy) = n + deg(V").

U mod X7
The contributions to U, in (3.8.19) comes from X"V” and M,

out

V mod X7

the latter has degree at most
(3.8.21) deg(M,) +n—1=deg(U) —deg(V") =1 <n+dq —2

< deg(U) — dpeq < deg(V") +n —1

by (3.8.18), (3.8.17) (twice), and (3.8.5).

32

The formula for deg(M,,) in (HG3) follows from (3.8.18) and (3.8.20). The
second inequality of (HG5) follows from (3.8.20) and (3.8.17). The first inequality
of (HGH) follows from

deg(Vou) < max(n + deg(W"), deg(Moy) +n—1)
S maX(deg(U) - dred7 deg(U) - dred) = deg(U) - dred7
by (3.8.19), (3.8.17), and (3.8.21). W

3.9 Complexity analysis of fast GCD algorithm

Aho et al [2, p. 308] show that HALFGCD’s time is O(M(deg(U)) log deg(U))
for deg(V) < deg(U), if n and d' are selected optimally within the algorithm.
Algorithm POLYGCD also has this time bound. In order to provide a more pre-
cise bound with explicit constants, we make the following simplifying assumptions

about HALFGCD’s behavior:

a) d,.q 1s a power of 2;

(a) d
(b) deg(U) = —2 (mod d,q) and deg(U) = deg(V) — 1;

(¢) When d,.q > 1, the algorithm chooses n = deg(U) —2d,.q+2 and d' = d,q/2;
(@

The outputs at each level of recursion satisfy

deg(M,

out

) = dred
deg(Uout) = deg(U) - deg(Mout)v

deg(‘/out) = deg(Uout) - 1

The division of U’ by V' yields a quotient () of degree 1 and a remainder W’
of degree deg(V’) — 1 = deg(U’) — 2.

Assumptions (a) and (c¢) can be programmed. Assumptions (b) and (d) say that
the leading coefficients of certain inputs and intermediate results never vanish;
these are often valid when applying the algorithm with random inputs if the ring
is large [17, p. 415], but are not guaranteed (and indeed are not satisfied when the
eventual polynomial GCD has positive degree).

33

Given these assumptions, we claim that the time for HALFGCD is bounded by

(3.9.1)

(deg(U) - 2dred + 2)(8M(dred)/dred + 10tadd) + (dred - 1)tinv
+ (dred(6 10g2 dred - 9) + 9)tmul + (dred(25 10g2 dred - 30) + 15)tadd

+ M(dred)(16 10g2 dred - 12)

for d,..q > 4. There is no cost for d .4 = 1.

Our assumptions mean that HALFGCD always takes both else branches in
Figure 3.8.1 unless d,.q = 1. Hence it calls itself twice recursively. The first
recursive call has d' = d..4/2 with inputs of degrees 2d,.4 — 2 = 4d' — 2 and
2d,eq —3 = 4d’ — 3. Its output matrix M’ is lopsided of degree d' — 1, while U’ and
V' have degrees 3d’ — 1 and 3d" — 2, respectively. The algorithm next computes
d" = d > 0. The quotient () is linear, and W' has degree 3d’ — 3. The second
recursive call returns a lopsided matrix M” of degree d’ — 1 and outputs V" and
W' of degrees 2d" — 1 and 2d’ — 2 respectively. The algorithm then constructs the
outputs M, Uswe, and V., in this simplified scenario.

Excluding the recursive calls, the work in HALFGCD consists of (1) computing
@ and W’ (2) computing M,,; and (3) computing U, and V_,. Using the
classical algorithm for polynomial division (since () is assumed linear), the cost of

(1) is
(392) tinv + thul + Q(deg(vl) + 1)(tmul + tadd)

= tinv + thul + 2(3d/ - 1)(tmul + tadd)'

When computing M,

out»

both M" and M’ are lopsided of (positive) degree d' — 1,
while () is linear. Using classical methods to multiply ((1) _b)M’ takes time

(Qd/ - 1)(tmul + tadd)‘

It remains to multiply two lopsided matrices of polynomials of degrees d’ — 1 and
d'; the degrees of their entries are

d—3 d -2 d—2 d—-1

d—2 d—-1 d—1 d

34

We can compute M, using eight multiplications of polynomials of degree at most
d'—1, with 4(2d" — 1) additions to combine these products, followed by 4d’ — 8 mul-
tiplications and additions to multiply by the leading coefficient of the polynomial
of degree d’. This shows that the time (2) for computing M, is bounded by

(3.9.3)
(Qd/ - 1)(tmul + tadd) + 8M(d/) + 4(2d/ - 1)tadd + (4d/ - 8)(tmul + tadd)

< AM(2d") + (6d — 9)tpn + (14d" — 13)1404.

To construct U, and V_,, in (3), we multiply the lopsided matrix M, of degree
dreq by a vector with two components of degree at most n — 1. Assumptions (b)
and (c) ensure that n =0 (mod d,.q), so we can split the computation into n/d,.q
matrix-vector products where all degrees are bounded by d.4; — 1. Each such
product can be computed in time 8M(d,oq) + 4(2d,eq — 1)taqq- The upper half of
each vector product must be added to another vector, giving a total time bounded

by

n

(3.9.4)

R (SM(dred) + 4(ered - 1)tadd + 2(dred - 2)tadd)

S 87/L]‘4(dred)/dred + 1Ontadd'

Adding (3.9.2), (3.9.3), and (3.9.4) while using d' = d,.4/2 and n = deg(U) —

2,04 + 2 gives a cost (excluding recursive calls) of
(3.9.5) (tiny + 2t + 203" = 1)ty + taaa))
+ (AM(2d') + (6d' =)t + (14d' = 13)t,44)
+ ((8n/dred)M(dred) + 10ntadd)
= n(8M(dyeq)/drea + 10t qa) + 4 M (d,cq)
iy + (12d" — 9)t o + (20 — 15)E,04
= (deg(U) = 2d,eq + 2)(8M (dyea)/drea + 10¢aa4)

+ 4M(dred) + tinv + (6dred - 9)tmul + (1Odred - 15)tadd

35

Both recursive calls replace d,.q by d' = d,.q/2; one replaces deg(U) by 4d’ — 2
and one bydeg(U). Assuming (by induction) that the time bound (3.9.1) applies
to these calls, their combined time is

(3.9.6) (d' +2d")(8M(d')/d' + 10t,49)
+2((d = Dty + (d(6logy d' = 9) + 9ty
+ (d'(25 log, d' = 30) + 15)t,4q + M(d')(16 log, &' — 12))
= (2d' = 2)tyy + (2d'(61logy d' — 9) + 18)t,,
4 (2d'(2510g, d’ — 30) + 30) 4 + 16(2M (d')) logy d’ + 30d't 4y
< (dred = 2)liny + (drea (6108, dreq — 15) + 18) 1

+ (dred(25 10g2 dred - 40) + 3O)tadd + M(dred)(16 10g2 dred - 16)

When d,.q4 = 2, the recursive cost in (3.9.6) simplifies to zero, which is correct
since the recursive calls for d = 1 and and d” = 1 are free. Adding (3.9.5) and
(3.9.6) gives a cost of

((deg(U) = 2dieq +2)(SM (drca)/ea + 101a20)
+ AM (dreq) + tiny + (6dreq — 9l + (10dyeq — 15)tadd)
+ [(drea = 2)tiny + (drea(610g, dreq — 15) + 18)t1
+ (drea(25logy dieq — 40) 4 30)1,9q + (16 log, dieq — 16) M (deq)]
= (deg(U) = 2d,eq + 2)(8M (dyea)/drea + 108aaa) + (drea — 1)liny
+ (drea(610gy dreq = 9) + 9t + (drea(2510gy dyeq — 30) + 15)1,44

+ M(dred)(16 10g2 dred - 12)7

in agreement with (3.9.1). This completes the induction.

36

To estimate the time of Algorithm POLYGCD (Figure 3.8.2) we use the leading

terms
(397) (deg(U) - 2dred + 2)(8M(dred)/dred + 1Otadd) + (dred - 1)tinv

+ dred(6tmul + 25tadd) 10g2 dred + 16M(dred) 10g2 dred7

from our estimate (3.9.1). The calls from POLYGCD to HALFGCD always have
deg(U) = 2d,.q — 2, allowing us to neglect the first term of (3.9.7) (the congruence
assumption (b) need not hold for the call from POLYGCD to HALFGCD, but
(b) does hold for the recursive calls from HALFGCD to itself). If the original
degrees passed to POLYGCD are at most d, then HALFGCD is called successively
with d,q = d, d/2, d/4, ---, 1. The polynomial divisions within POLYGCD have

negligible cost unless the quotients have large degree. Its total estimated time is

(398) (d(6tmul —|— 25tadd) —|— 32M(d/2)) 10g2 d

This is about 32 times as long as the estimated time (3.6.2) for constructing a
polynomial of degree d from its roots. Tables 9.1.1 and 9.1.2 suggest that the
actual time ratio is closer to 10.

The storage costs of HALFGCD and POLYGCD are proportional to the size
of the input data, if d’' is chosen so that the degrees of the polynomials are ap-
proximately halved at successive levels of the recursion. The temporary storage
requirements within HALFGCD are O(deg(U)) ring elements. Summing over all
levels of recursion, the combined temporary storage requirement is

(3.9.9) O(deg(U)) + O(deg(U)/2) + O(deg(U)/4) + - -- = O(deg(U)).

The implied constant is rather large, since we need storage for the matrices of
polynomials and for the transforms used during the convolutions.

3.10 Connection with polynomial resultants

If F(X) = Z;lzo f;X7 is a polynomial of degree d, and m, n, k are integers, let
T, . x(F') denote the m x n Toeplitz-like matrix {t,;} in which ¢,;; = f; .\, .1
where f; is interpreted as 0 if ¢ < 0 or 2 > d. FEach row has some polynomial
coefficients, which shift to the right by one column as we go down one row. The

37

entry in its lower right corner is the coefficient of X*. Pictorially,

(3.10.1)

fk—l—n—m fk—l—n—m—l fk—l—n—m—? s fk—m—l—? fk—m—l—l

fk—l—n—m—l—l fk—l—n—m fk—l—n—m—l s fk—m—I—S fk—m—l—?

m,n,k(F) =

fk—l—n—? fk—l—n—S fk—l—n—4 s fk fk—l

fk—l—n—l fk—l—n—? fk—l—n—S s fk—l—l fk

If F(X)and G(X) are polynomials in X of degrees m and n respectively, then
their resultant is the (m + n) X (m + n) determinant

Tn,m—l—n,O
(3.10.2) Res(F, G) =

T

m,m+n,0

(£)
()

The resultant of F' and ¢ vanishes if and only if /' and G share a common poly-
nomial factor [20, p. 210].

Output condition (HG4) can be expressed in terms of polynomial resultants.
Suppose Algorithm HALFGCD of Figure 3.8.1 is called with two polynomials U
and V, where d = deg(U) > deg(V). Suppose the outputs are U, V.

out? out?
_ [y (X) mlz(x)) —
M, = (mm(X) (X)) If det(M,y;) = m, then

and

deg(myy), deg(myy), deg(myy), deg(myy) <m, deg(Voy,) < deg(Usye) = d —m.
by (HG3) and (HG)). We also know that
m = deg(M) < da < [d/2] < (4 1)/2

and hence d > 2m — 1. The matrix-vector equation (HG4) implies the following
equation, where I, denotes the m X m identity matrix and 0,, , denotes the m X n
zero matrix:

38

(3.10.3)

L, Opa-m U TdimoU) 0pa

Td—m,d,o(mn) Td—m,d,o(mlz) Td,zd,o(U) B Td—m,zd,o(Uout)
0,14 L, Opdem Ty240(V) TatmoV) Opa—m

Td—m,d,o(mzl) Td—m,d,o(mzz) Td—m,zd,o(vout)

All three matrices in (3.10.3) are 2d x 2d. The first determinant

@mwmﬂm—mdmmmm“m:QMM@mm“m:iL

(After removing the rows and columns with the I, blocks, the remaining matrix has
four (d —m) x (d—m) lower triangular blocks whose diagonals are m;(0), m,,(0),
mo1(0), and my,(0)). The second determinant is Res(U, V') times the (deg(U) —
deg(V))—th power of the leading coefficient of UU. Hence the third determinant in
(3.10.3) vanishes if and only if Res(U, V) = 0. Because deg(U,,,) = d —m and
deg(Vow) < d —m, the Ty, 200(Usw) and Ty, 540(Voue) blocks begin with 2m
columns of zeros. The third determinant in (3.10.3) can be therefore decomposed
into the product of the 2m x 2m and (2d — 2m) x (2d — 2m) determinants

Tm,?m,d—m(U) Td—m,?d—?m,O(Uout)
(3.10.4) det \ det

Tm,?m,d—m(v) Td—m,Qd—Qm,O(‘/out)

The right determinant in (3.10.4) is Res(Uyy, Vous) times the (deg(Uyy) —
deg(V, 4))-th power of the leading coefficient of U,,. From (HG3) and (HG4),
we know that the common factors of U, and V,, are precisely the common fac-
tors of U and V. Therefore it is plausible that the first determinant in (3.10.4)
does not vanish; such is indeed the case. This is clear when m = 0, since the empty
matrix has determinant 1. For m > 0, the first determinant vanishes only if its
rows are linearly dependent, which is equivalent to the existence of polynomials
F(X) and G(X) of degree at most m — 1 and not both zero with

(3.10.5) deg(F(X)U(X) 4+ G(X)V(X)) <d—m —1.

39

But U, (X) = my(X)U(X) + mqa(X)V(X) has degree exactly d — m, while
deg(mqy) < m — 2 and deg(myy) < m — 1 (since M, is lopsided). Comparing
degrees on both sides of the identity

U(X) (o X)F(X) = myy (X)G(X))
= my(X) (F(X)U(X) + GX)V (X)) = GX) (myy (X)U(X) + myp(X)V(X))

gives the contradiction d = deg(U) < (m — 1) 4+ (d — m) unless both sides of
the identity vanish, in which case mq,(X)F(X) = my(X)G(X). Since mq,(X)
and mq,(X) have no common factor by (HG3), there must exist Q(X) such that
F(X) = Q(X)my1(X) and G(X) = Q(X)mq,(X). Plugging these into (3.10.5)
shows that deg(Q(X) U,y (X)) < d—m — 1, a contradiction.

Knuth [17, pp. 410ff.] discusses the intermediate polynomials which occur in
the Fuclidean GCD algorithm, in terms of resultants.

Schwartz [37, pp. 705-707] describes how to compute the resultant of two poly-
nomials using Moenck’s fast GCD algorithm.

3.11 Polynomial GCDs over Z/NZ

The concept of a polynomial GCD over Z/NZ is not well-defined when N is
composite, this will be turned to our advantage in Chapter 4. For example, suppose
we try to compute

ged(X24+9X 48, 2X +9) (mod 35)

using the Euclidean algorithm. We start by dividing X2 + 9X + 8 by 2X + 9,
getting a quotient of 18X + 11 and a remainder of 14 modulo 35. Next we try
to divide 2X + 9 by 14, but 14 is not invertible. Instead we discover the factor
ged(35, 14) = 7 of 35. The explanation is that

ged(X2 49X 48, 2X +9) =1 (mod 5)

but ged(X2+9X 438, 2X +9)=X+1 (mod 7).

The GCD has degree 0 modulo 5 but degree 1 modulo 7. No monic polynomial
can meet both requirements.

Nonetheless, we try to follow Algorithm POLYGCD in Figure 3.8.2 using arith-
metic in Z/NZ instead of arithmetic over a field. We assume that the original
polynomials U and V satisfy deg(U) > deg(V) and that the leading coefficient

40

of U is invertible modulo N (indeed, U will be monic in Section 4.3). The latter
condition ensures that deg(U/) > deg(V) (which is requirement (HG1) preceding
Theorem 3.8.4) remains true even after the coefficients of U and V' are reduced
modulo p for some p|N.

Theorem 3.11.1 Suppose Algorithm POLYGCD s applied to two polynomials
U and V over Z/NZ, where deg(U) > deg(V') and the leading coefficient of U is
invertible modulo N. Then either (i) the algorithm finds a monic GCD of U and V
over Z/NZ, or (ii) some polynomial division has a non-zero, non-invertible leading

coefficient. When (ii) occurs and a factor p is found, either (i) or (ii) remains true

for the ring Z/(N/p)Z.

ProoF. Consider the situation just before case (ii) first occurs, if ever.
We claim that every previous call to HALFGCD had an invertible leading
coefficient for U. Every such coefficient was one of:

(a) The leading coefficient of the original U passed to POLYGCD in Figure 3.8.2;

(b) The leading coefficient of a polynomial passed to HALFGCD for U at a
higher level (in the first recursive call to HALFGCD in Figure 3.8.1);

(c) The leading coefficient of a polynomial used for a division (in the second
recursive call to HALFGCD in Figure 3.8.1, and in calls from POLYGCD to
HALFGCD after the first iteration of the while loop in Figure 3.8.2).

In each case the assertion follows by induction.

Letting M, = (%; %;3), we now use (HG4) to obtain

U Uout 1 Moo —MMyg Uout
_ M—l _

out det(M,y,)

V Vout —Mgy Myp Vout

Hence U = (my, U, —my5 Vo). Since M, is lopsided and deg(V,) < deg(U,)
by (HGb), the leading coefficient of U is (up to sign) the product of the leading
coefficients of my, and of U,,. Consequently both of the latter are invertible
modulo V.

When (ii) first occurs, during computation of [U’/V’| in HALFGCD or of
U” mod V" in POLYGCD, we find a (proper but not necessarily prime) factor p
of N. All previous input and output assertions for HALFGCD and POLYGCD
remain true over the ring Z/(N/p)Z (the degrees of V and V,, may drop, but
those of U, Uy, and M, remain unchanged, and M, remains lopsided). The

41

only way these assertions might fail is if 1 =0 (mod N/p); in such case the leading
coefficient of V' or V" was zero modulo N, not merely a zero divisor of Z /NZ.
When we finish POLYGCD, and are working modulo some divisor N’ of N,

there will exist a matrix M of determinant £1 over Z/N'Z such that (‘[%) =

M(g) This, together with the exit condition V’ = 0, implies that U’ generates
the same ideal as U and V in the polynomial ring (Z/N'Z)[X]. Since the leading
coefficient of U’ is invertible modulo N’; this generator can be normalized to a

monic polynomial. W

Remark 3.11.2 CAUTION. Although the degree of U does not change under re-
duction modulo N/p, the degree of V- may drop if N is not squarefree. For example,
this occurs while attempting to divide X? + 1 by 3X + 5 modulo 9.

3.12 Opportunities for optimization and parallelization

The classical FFT algorithm over the complex numbers has many opportunities
for parallelization [3, Chapter 9]. The algorithm in Section 3.4 shares many of these
opportunities, working modulo the p, instead of over C. The convolution is done
separately for each p,; these computations can be arranged in vector or SIMD
fashion. If one chooses to vectorize over the p,, then one can ensure unit strides
everywhere by storing residues modulo different primes contiguously.

This convolution algorithm reduces each input coefficient modulo all the primes
p;. These reductions can proceed concurrently.

After the individual convolutions modulo p; are complete, the Chinese Re-
mainder Theorem is used to construct the outputs h; in (3.4.4). Computations for
different j are independent and can be parallelized.

Algorithm HALFGCD multiplies two matrices, or a matrix and a vector. When
using FFT-like multiplication, one can do forward transforms on all elements of
each matrix, perform the matrix multiplication directly on the Fourier transforms
of the input data, and take one inverse Fourier transform per element of the output
matrix (cf. Section 3.7). When multiplying two 2 X 2 matrices, this trick cuts the
work almost in half. When using the algorithm in Section 3.4 for convolutions over
Z|NZ, the lower bound for P in (3.4.1) should be adjusted to reflect the largest
possible coefficient which might appear in the matrix product before reduction
modulo V.

Some cost estimates in this chapter are pessimistic. For example, when mul-
tiplying two polynomials both of degree d with d a power of 2, we multiplied by
the leading coefficients separately. If our convolution algorithm produces a prod-
uct modulo X?? — 1, then the leading (or constant) coefficient of the product can
be calculated directly, and the proper multiple of X?¢ — 1 added on. Similarly, a

42

polynomial remainder known to have degree at most d — 1 is uniquely determined
if we compute it modulo X¢ — 1.

Both POLYEVAL and the algorithm for constructing a polynomial from its
roots proceed by divide and conquer. Each divides the problem into two pieces,
which may be attacked independently. For example, we may compute all F;,,
for fixed d in (3.6.3) concurrently. The same applies to (3.7.2) and (3.7.3). For
small d, we can compute I} ,, for several different 7 at once, if the original degree
is sufficiently large. On the other hand, if d is large, then there may be only a few
values of 7, but parallelism can be employed within the convolutions themselves.

The polynomial GCD algorithm also uses divide and conquer, but its second
recursive call cannot begin until the first is complete, severely restricting its poten-
tial parallelism. There is some parallelism during the larger convolutions, but little
during the highly nested stages of the recursion. Whenever Algorithm HALFGCD
computes a quotient (), it inverts the leading coefficient of the denominator; no
good parallelizable algorithm for modular inversion is known. This distinction is
reflected in Table 9.1.2, which shows speedups approaching 4.3 using five proces-
sors to construct a polynomial from its roots, but at most 3.7 for the polynomial

GCD problem.

43

CHAPTER 4

Application to ECM

Step 1 of ECM multiplies an initial point on an elliptic curve by a large integer,
obtaining another point ¢} on the curve. Step 2 assumes that the reduction ¢,
of @ over GF(p) has small positive order ¢ for some p|N. It constructs several
multiples of () and looks at their z-coordinates, hoping for a match modulo p. The
birthday paradox, described by Brent [9, pp. 10-12], predicts that if we randomly
pick O(,/q) integers m,, then some m; = £m; (mod ¢) for 7 # j. This leads to a
match among the a-coordinates of m; -),y and m; - ()(,). This chapter describes
how to use fast polynomial techniques when testing for a match modulo p.

4.1 Checking two lists for matches modulo p, where p|N

Suppose that p|N and we are given two lists {a;}%" and {bj}?igl of values
modulo N, where 0 < a; < N and 0 < b; < N. How can we check whether there
exist ¢ and j such that

(4.1.1) a; = b; (mod p) 0<i<d—1, 0<53<d,—1)
A related question asks for duplicates within either list; for example do there exist
solutions of

(4.1.2) a; = a; (mod p) where 0<i<yj<d —17

If p were known, then we could reduce all a; and b; modulo p, sort both lists,
and look for duplicates. This takes time O((d, 4+ d,)log N log p) for the reductions
modulo p using classical division algorithms, and O((d, log d; + d, log d,)log p) for
the sorting since the entries have size O(log p). If d;, d, < N, then these processing
times are only O(log p) times the input size O((d; +d,)log N). Another approach,
also for known p, uses a hash table [2, pp. 111{f.].

Lubiw and Récz [26] obtain a lower bound of Q(nlogn) operations when check-
ing whether n elements are distinct.

For the intended application, p is unknown. The real question is whether there
exists a factor p of N such that some a;, = b;

j
want to find p. Sorting seems inapplicable since no comparison function is known.

(mod p) (or a; = ay); if so we

44

Hashing seems inapplicable since we do not know how to hash in such a way that
two numbers congruent modulo p will hash to the same value.
We can form the polynomial

dy—1
F(X)=] (X —a;) mod N
=0
in time (M (d, /2)+d;t,qq) 108y dy +dy 44, as shown in Section 3.6. Problem (4.1.2)
asks whether F' has multiple roots modulo p for some p|N. Any such multiple root
of F' modulo p must be a root of its formal derivative [modulo p. We therefore
attempt the computation

(4.1.3) ged(F(X), G(X)) (mod N).

where G/(X) = F'(X). Problem (4.1.1) asks whether F'(b;) =0 (mod p) for some
J and some p|N. Here we attempt (4.1.3) with G(X) = H]?:_OI(X — b;) mod N.
By Theorem 3.11.1, Algorithm POLYGCD in Figure 3.8.2 produces a monic
polynomial ¢(X) which divides both F/(X) and G/(X) or finds a factor p of N (not
necessarily prime). If we are lucky, it may find several factors of N. When a monic
GCD is found, either it has degree zero (implying there were no solutions of (4.1.2)
for any p|N) or it has positive degree. The latter case seems unlikely when N is
not a prime power, unless either a; = a; for some ¢ # j (resp. a; = b; for some ¢
and j) or N has only small prime factors, as it means that (4.1.2) holds for all p|V

(though not necessarily with the same ¢ and j).

4.2 Use of fast polynomial evaluation

Brent [9, p. 13] suggests another way to do the match. After constructing F'(X)
and G(X) as above, check whether G(a;) = 0 (mod p) for some p|N and some i
with 0 <@ < d; — 1. That is, check whether

n—1
ged (N, II G(ai)) > 1.
i=0

Algorithm POLYEVAL of Section 3.7 requires that deg(G/(X)) < deg(F(X));
this can be ensured by taking a remainder initially. Since POLYEVAL computes
RECIP(F(X)), the additional overhead for the polynomial division is small.

We saw earlier that (3.7.1) estimates time 7M(n/2)log,n for POLYEVAL,
whereas (3.9.8) estimates time 32M (n/2) log, n for POLYGCD. These suggest that
POLYEVAL is faster than POLYGCD, while also being more parallelizable (Sec-
tion 3.12).

45

POLYEVAL seems simpler to program that POLYGCD, because its recursion
is readily replaced by iteration. POLYEVAL is also easy to test, since one can
independently evaluate a few G/(a;) the long way to check results. While coding
POLYGCD, one must worry about finding a factor p of N midway through the
algorithm, with all future calculations done modulo N/p. POLYEVAL does not
require any modular inversions and does not attempt a GCD with N until all
(i(a;) have been computed, avoiding this problem (but there is still the prospect
of encountering a zero divisor while computing the a; themselves, such as while
computing a slope in (2.0.3)).

However, POLYGCD retains one tangible advantage over POLYEVAL: less
storage is required for large d;. We observed near the end of Section 3.9 that algo-
rithms HALFGCD and POLYGCD use O(n) ring elements for intermediate storage
when taking the GCD of two polynomials of degree at most n. POLYEVAL’s stor-
age requirements are O(nlogn) ring elements when evaluating a polynomial of
degree at most n — 1 at n points, as observed in Section 3.7. This consideration
may diminish in importance as memories grow and parallelism becomes more im-
portant, esp. since the storage (3.9.9) required by POLYGCD and HALFGCD has
a large proportionality constant.

Table 7.4.1 suggests values of d; and d, when searching for factors of various
sizes. The suggested d; is below 4096 until one searches for factors of 35 digits,
so the extra storage may be affordable. But the data in Table 7.4.1 assume that
POLYGCD is used; switching to POLYEVAL affects the cost equation (7.3.1) and

the optimal parameters.

4.3 Construction of polynomials

Assume that we are using ECM to factor an integer N, as in Section 2.2. Let
() be the output of Step 1 of ECM, after selecting an initial point I, on a curve
and computing a large multiple of P,. If p| NV, then the reduction Qpy of Q in Ey,
has finite order, say ¢. We hope that ¢ is not too large, say ¢ < 109.

Select two disjoint sets {m,}%5" and {nj};ligl of large positive integers; we will
assume later that d; is a power of 2 and d;|d,. The selection process is discussed
in detail in Chapter 5; that process need not concern us here. Form the two sets

{ai}fial and {bj}?igl, where

(4.3.1) a;=(mi-Q), (0<i<d —1),

by =(n;-Q), (0<)<dy—1)

are x-coordinates of selected multiples of (). If we are sufficiently lucky in this

46

selection, then

(4.3.2) m; = £n; (mod q)

? J

for some ¢ and j; the corresponding a; and b; in (4.3.1) satisfy (4.1.1).

Next compute the polynomials

(4.3.3) F(X) = 1j (X —a.) (mod N}, G(X)= 1:_[(X —b.) (mod N).

These have a common root modulo p if (4.1.1) holds for some ¢ and j. Either
POLYGCD or POLYEVAL can be used to check for a match.

If d = d,, then FI(X) and G(X) in (4.3.3) can be constructed directly, as in
Section 3.6; then POLYGCD or POLYEVAL can be applied to F' and to G mod F
(reducing GG modulo F ensures that the constraint deg(U) > deg(V') in Figure 3.8.2
is satisfied).

This test has approximately

deg(F') deg(G) = dyd,

opportunities for a match; if the sets {m;} and {n;} are chosen carefully, there will
be a match in (4.3.2) for most ¢ < 2d,d,. If we want to find p whenever ¢ < ¢nax
for some pre-selected ¢,,,,, then we need

(434) d1d2 2 CQmam

for some positive constant C'.

If (4.3.4) were the only constraint on d; and d,, then we would choose d; = d,
so as to minimize d; + d, and hence the total time for constructing the {a;} and
{b;} in (4.3.1). Memory requirements impose another constraint. If ¢, = 10°
and C' = 1, for example, then (4.3.4) suggests taking d,, d, = 2'> = 32768. For
N == 10200, each residue modulo N occupies about 90 bytes, so a polynomial of
degree 32768 occupies 2.9 megabytes. The input to POLYGCD then requires 5.8
megabytes, and the storage of the output matrix M, is also approximately this

large if HALFGCD is called with d..q = [deg(U’)/2] as in Figure 3.8.2. More

space is used by the convolutions, such as when constructing M__, and (Uout) at
out

the end of Figure 3.8.1. This work was run on systems shared by other users, and
it is unfriendly to hog the memory even if it is available. So one should keep d;
small, say d; < 213,

One remedy selects d, > d,, with d,|d,. Compute F'(X) as in (4.3.3), but mod-
ify the construction of G(X) as in Figure 4.3.1 below. This keeps ged(F(X), G(X))

47

G(X):=1
for j from 1 to d,/d, do

H;(X):= '_](ﬁ) (X —b;) (mod N)
G(X):= G(X)H;(X) (mod F(X), N)

end for

Figure 4.3.1: Computing G(X) mod F(X) in pieces of degree d;

unchanged, but leaves deg(G/(X)) bounded by d; — 1 rather than by d,. If d; < d,,
then this can save memory, though at a cost of more computation in (4.3.1).

Each iteration of the inner loop in Figure 4.3.1 divides a polynomial of degree
at most 2d; — 1 by F(X) of degree d;. The discrete forward transform (defined in
Section 3.3) of the reciprocal RECIP(F') needs to be computed only once, as does
the discrete forward transform of F'itself.

On the first iteration of the inner loop in Figure 4.3.1, the computation of G(X)
reduces to G(X) := Hy{(X) — F(X) (mod N) since H,; and F' are monic of degree

dy. A variation initializes

G(X) = F(X)

instead of G/(X) := 1; this variation finds a match if a;, = a;, (mod p) for some
iy # 1y, and hence if two of the m; (or their negatives) agree modulo g.

Since the FFT algorithms in Sections 3.3 and 3.4 are designed for length a
power of 2. it is convenient to choose d; as a power of 2. POLYEVAL and the
polynomial construction algorithm in Section 3.6 also work well with this choice.

48

CHAPTER 5

Selection and Generation of Multiples of ()

In Section 4.3 we chose integers d; and d,, with d; a power of 2 and d,|d, and
d, > d,. Let () be the output of Step 1 of ECM, and suppose that the reduction
Q(y) has prime order ¢ for some prime p|N. We hope that ¢ is not too large, say
q < 10°. The algorithm uses z-coordinates (m; - @), for 0 <¢ < d; and (n; - Q),
for 0 < j < d, as polynomial roots, usually finding p if ¢|(m,; & n;) for some 1, j
with

(5.0.1) 0<i<d; and 0<j<d,

or (in the variation to Figure 4.3.1) if ¢|(m,, + m;,) for some 7y, 7, with

(502) 0 S il? Z.Q < dl and il 7é i2.

The algorithm does not specify how to select the sequences {m;} and {n,}.
The next sections describe the strategy used and some motivation behind it.
Some desired properties (DP’s) of these sequences are:

(DP1) Most small and moderate primes ¢ should divide some m;, =+ m;, satisfying
(5.0.2) or some m; £ n; satisfying (5.0.1). It is acceptable if ¢ instead divides
some m; or n;, since the computation of that m, - @ or n; - Q reveals the
factor p while inverting a denominator.

If this property holds for all primes ¢ < d;d, say, then we can honestly claim
to have B, > d;d, in the notation of [29].

(DP2) The sums and differences m; & m,, and m; £ n; should have many prime
divisors, not just the ones ensured by (DP1). However, no such sum or
difference should be identically zero. No m; or n; should be identically zero.

The n; should be distinct.

(DP3) The average time for computing an 2-coordinate (m; @), or (n;-@), should
not exceed 50-100 multiplications modulo N. This figure was selected by
equating the time for computation of the roots of H in (4.3.1) to the combined
time for building H and updating G — GH (mod F') in Figure 4.3.1; the

figure is implementation-dependent.

49

(DP4) The above computations of the (m;-@), and (n;-@Q), should be amenable to
parallel computation on a machine with 4 to 32 parallel processors and shared
memory, such as the Alliant FX/80 in UCLA’s Department of Mathematics
(whose cluster had six processors during the early parts of this study but five
at the end).

(DP5) If there can be many duplicate n;’s modulo ¢, we try to ensure a match

m,;, = Zm,;, (mod ¢) satisfying (5.0.2) or m; = #£n; (mod ¢) satisfying
(5.0.1). Ideally, either all n; are distinct modulo ¢, so that we have the
full dyd, opportunities for a congruence m; = #£n;, or we have a guaranteed

match.

(DP6) Minimize the number of instances where two pairs m; +n; and m,, £n,,
share large factors (or one divides the other) due to algebraic identities.

Section 5.1 tries to achieve these objectives while letting each m; and n; be a
k—th power or a value attained by a Dickson polynomial. Some advantages and
disadvantages of each choice are presented. Section 5.9 describes how to evaluate
successive m; - () quickly when m; is a polynomial function of ¢. Section 5.10
describes the choices made in the implementation.

5.1 Use of k—th powers or Dickson polynomials

We attempt to satisfy (DP2) by letting m; = P(M;) and n; = P(N;) for
selected integers {M;} and {N,}, where P is a polynomial such that P(X)+ P(Y")
together have many polynomial divisors. One such polynomial is P(X) = X*
where 2k is highly composite, since (P(X)—P(Y))(P(X)+P(Y)) = X2 —Y?F has
d(2k) irreducible polynomial factors [20, p. 315]. Here d(2k) denotes the number
of divisors of 2k (including 1 and 2k).

Perhaps surprisingly, there are other monic polynomials P of degree k for which

P(X) £ P(Y) have a total of d(2k) irreducible polynomial factors.

Definition 5.1.1 Let k be a positive integer. For fired «, define the Dickson
polynomial gy, ., [25, pp. 355ML.] by the formal identity

()= v+ 5
gk,oz X - Xk

30

It is easy to verify that g, , is a monic polynomial of degree &, because

gl,a(X) :X7
Go.u(X) = X? =20,

gk—I—Q,a(X) = ng—l—l,oz(X) - agk,a(X) (k 2 1)

If « =0 and k> 0, then g, ,(X) = X*. When o # 0, the Dickson polynomials
are related to the Chebyshev polynomials [1, chapter 22], since

Jro (2012 cos 0) = 2a%/2 cos k0.

5.2 Polynomial divisors of ¢, ,(X) £ ¢, ,(Y)

When k > 0, we claim that g, ,(X) £ ¢, ,(Y) have a total of d(2k) irreducible
factors over Z, just as when o = 0. We illustrate this below for & = 6:
Go.0(X) = X6 — 60X+ 9a?X? — 203,
96,0(X) = g6 (Y) = (X =Y)(X +Y)
(X2+ XY +Y?2-30)(X? — XY 4+ Y2 - 3a),
G6.0(X) + g6 (Y) = (X2 4+ Y2 —4a)(X* = X2Y2 + V! —2a(X? +Y?) + o?).

Theorem 5.2.1 Let k be a positive integer and fix o € Z. Then the polynomial
o X) = g o (Y) has exactly d(k) irreducible factors over Z.

PrROOF. The case a = 0 is covered by the theory of cyclotomic polynomials. When
a # 0, we show that there are at least d(k) irreducible factors and at most d(k)
such factors. The upper bound is clear (and applies to any polynomial of degree £,
not just g), since the highest total degree terms of g, ,(X)—g, ,(Y) are X*=Y*,
which has only d(k) irreducible factors over Z.

For existence, recall that

Xk — vk =T[®u(X, Y)
d|k

51

where the cyclotomic polynomial @, is homogeneous of degree ¢(d) and satisfies
O, (X, Y)=2d,(Y, X) (the minus sign is needed only if d = 1). Hence

k ok

(84
IeoaU+afU) = gp o (V+a/V)= U’“-|-m_vk_W

= (U* = VF) (1 — ok /UFVF)

= Hq)d(U, V)®, (1, a/UV).
d|k

We claim that each of the d(k) factors on the right is a non-constant polynomial
function of U + a/U and V + «/V over Q. This will show that g, ,(X) — g5 .(Y)
has at least d(k) irreducible factors.

To prove this claim, fix d|k and define

g(U, V) =0,(U, V)o,(1, a/UV).

By homogeneity and the symmetry of ®,(X, Y) in X and Y,
9(a/U, V) = @y(a/U, V) &,y(1, U/V)
= (V2D &y(a/UV, 1)) (V=4 @4V, U))
= (£0,(1. a/UV)) (£0,(U, V)
=g(U, V).
Therefore g is symmetric in U and a/U. Similarly
g(U, afV) = @y (U, a/V) ®,y(1, V/U)
= (UPD Dy (1, a/UV)) (U=4D &y (U, V)

= g(U, V)v

so ¢ is symmetricin V and o/V. Since ¢ is (by definition) a polynomial function of
U,V,1/U, and 1/V over Z, g must be a polynomial in the symmetric polynomials
U+4a/U,U-(a/U)=a,V+4+a/V,and V- (a/V) = a over Q. Moreover, g cannot
be constant because ®,(U, V') is homogeneous in U and V but ®,(1, a/UV) is not
homogeneous for a #0. W

52

Corollary 5.2.2 If k is a positive integer and o € Z, then g o(X) + g o(Y) has
exactly d(2k) — d(k) irreducible factors over Z..

PrOOF. From
Gopa X + o/ X) = X2F o2 [X2
= (X* + b/ XF*)2 — 2aF
2
= (gra(X +a/X))" = 20%,

it follows that gy, = g2 — 2a*. By Theorem 5.2.1,

k7

o gzk,a(X) - ng,oz(Y)
gkﬂ(X) —I— gkﬂ(Y) B gk,oz(X) - gk,a(y)

has exactly d(2k) — d(k) irreducible factors. W

5.3 Prime divisors of ¢, ,(X) £ g, .(Y)

According to [17, solution to exercise 4.6.2.38], if u(X) is an irreducible poly-
nomial over Z, then the average number of linear factors of u(X) modulo ¢ tends
to 1 as the prime ¢ — oo. If u(X, Y) is an irreducible factor of P(X) £ P(Y)
over Z, then u(X, Y) remains irreducible over Z (as a polynomial in X) after al-
most all substitutions of an integer for Y, by Hilbert’s Irreducibility Theorem [19,
Chapter 9]. So for almost all fixed Y € Z, the average number of linear factors
of u(X,Y) modulo ¢ tends to 1 as ¢ — oco. If P(X) = ¢; ,(X) where a is a
fixed integer (allowing the case where a = 0 and P(X) = X*), then, for almost
all Y € Z, the average total number of linear factors of P(X) + P(Y) modulo ¢
tends to d(2k) as ¢ — oo, by Theorem 5.2.1 and Corollary 5.2.2. When X and Y
are independently and randomly selected integers modulo a large ¢, then a crude
estimate for the probability that P(X) = +P(Y) (mod ¢) is d(2k)/q.

For fixed ¢, the actual probability depends on the residue class of ¢ mod-
ulo 2k. Theorem 5.3.2 asserts that this probability is ged(2k, ¢ — 1)/¢ + O(¢™?)
when P(X) = X% and is (gcd(Zk, qg— 1)+ ged(2k, ¢ + 1)) /2¢ + O(¢g=2) when
P(X) = ¢3(X) with @ # 0 (mod ¢). Lemma 5.3.1 says that the average value
of ged(2k, ¢ — 1) (or of ged(2k, ¢ + 1) = ged(2k, —g — 1)) as ¢ ranges over the
#(2k) residue classes relatively prime to 2k is d(2k), confirming that the average
probability is d(2k)/q + O(¢~2) if the residue class of ¢ modulo 2k is randomly
chosen.

33

Lemma 5.3.1 If k > 0, then

S sed(i— 1, k) = o(k)d(h).

0<i<k

ged(z, k)=1

€1 ,,€2

PROOF. Let k = pi'p5® ... pn be the prime factorization of k, with each ¢; > 1.

Each 7 with 0 <4 < £ is uniquely identified by its remainders r; mod p;J for
J=1,2,....,n. We can compute ged(z, k) = I, ged(r;, p?) for any such ¢, and
we can compute ged(: — 1, k) similarly. The desired sum is

S edli-L k= Y Tleedt—1) =TT Saedlry— 1.).
7=1

0<i<k T1372500y Tn 7=1 OSTJ<pj]

— (=2
ged(e, k)=1 0<r;<p.? V3,
(6, k) STy SPy VI ged(rj, pj)=1

e .
ged(ry, pjj):1 Vg

This inner ged is 1 for the p —2p% ™! values of r; incongruent to 0 or 1 modulo p.
g p] p] 7 g p]7

1 e

. e;— -2 . .
is p; for p;/ = —p,;” 7 values of r;, etc. So the inner sum is

> eedry =1, p))

¢J
0<ry <p]
ged(r;,pj)=1

e;—1 e;—1 e e;—2 c;—3 e

=1 (p =207)4 07 T = T T =)+

J

-1 e;j—1 €;

=p; =207 (e, = D) —p7) +p;

e; e;—1 e;—1
=(p/ —p;/)2+e;—=1)=p/ (p; —Dle; +1).

The claim follows from ¢(k) = I, p;(p;—1)and d(k) =T1"_,(e; +1). W

J=1

Theorem 5.3.2 Let ¢ be a prime not dividing k and o« € Z. As X and Y range
over the interval [0, ¢ — 1], the number of cases where g, ,(X) = ¢, ,(Y) (mod ¢)
is

1 + (q - 1)ng(k7 q— 1)7 Z.fQ|Oév

ng(kv q— 1) + ng(kv q+ 1)
q
2
The O(1) term may depend on k but not q.

+O(1), if ¢fa.

Lemma 5.3.3 Let G be a finite cyclic group. If g0 € G and k > 0, then the
equation x% = gy has either exactly ged(k, |G|) solutions with x € G, or no such
solution.

o4

PROOF. We may assume that G is the additive group of integers modulo |G|,
since the assertion is invariant under group isomorphism. Then 2% = g, translates
into kx = gy (mod |G|). This congruence has exactly ged(k, |G]) solutions when
ged(k, |G]) divides gg, and no solution otherwise. W

PrOOF OF THEOREM 5.3.2. We may regard «, X, and Y as elements of GF(¢q).
If o =0, then g; ,(X) = gz ,(Y) simplifies to X* = Y*. For ¥ = 0, the only
solution is X = 0. For each Y # 0, the equation has a known solution X =Y and
must have exactly ged(k, ¢ — 1) solutions X € GF(¢)* by Lemma 5.3.3.
Suppose instead that o # 0. After possibly adjusting the O(1), we may assume
that ¢ is odd. Given z € GF(q), we count the solutions of g, ,(X) = z with
X € GF(g). We claim that this equation has:

o At most k solutions when 22 — 4o = 0.

e Fither no solution or ged(k, ¢ — 1) solutions when z2 — 4% is a quadratic
residue. For any such solution, X2 — 4 is a quadratic residue. (Throughout
this proof, interpret “quadratic residue” as “quadratic residue modulo ¢” and
likewise for quadratic non-residue.)

e Either no solution or ged(k, ¢ + 1) solutions when 22 — 4a* is a quadratic
non-residue. For any such solution, X2 — 4 is a quadratic non-residue.

Suppose that we have proved this claim. There are at most 2k values of X for
which (g,W(X))2 — 40k = 0. For any such X, the polynomial equation g, ,(Y) =
J1.o(X) has at most k solutions Y, so there are at most 2&2 total solutions (X, Y')
of this type. When we exclude these 2k values of X, there remain ¢/2+4 O(1) values
of X for which X2 — 4« is a quadratic residue and another ¢/2 + O(1) values of
X for which X2 — 4 is a quadratic non-residue. For each X in the first category,
there are ged(k, ¢ — 1) values of Y satisfying g, ,(Y) = g5 ,(X) according to the
claim. For the second category, this count is ged(k, ¢ + 1). Hence there are

(¢/2+ O(1)) ged(k, ¢ = 1) +(¢/2+ O(1)) ged(k, ¢ +1) + O(1)

total solutions of g, ,(X) = g, ,(Y) when o # 0, as asserted by Theorem 5.3.2.

It remains to prove the claim. The case z2—4a* = 0 is easy, since the polynomial
equation g, ,(X) = z of degree k in X can have at most k roots for X.

We therefore concentrate on the case where 22 — 4a% # 0. Suppose that z =
Gro(X) with X € GF(q). Write X = U + o/U with U € GF(q?). Then z =
Uk + ok /U¥, and the assumption z2 # 4a* becomes Uk # o /U%. In particular,
U#alU.

Under these conditions, we claim that the following are equivalent:

)

(i) X? —4a is a quadratic residue;

(ii) U € GF(q);

)
)
(iit) U — o/U € GF(q);
(iv) Uk — ak/Uk € GF(q);
)

22 — 4ok is a quadratic residue.

(v

The equivalence of (i) and (iii) is evident since X% —4a = (U — «a/U)? and the
latter is nonzero. Similarly for (iv) and (v). The equivalence of (ii) and (iii) is
also immediate, since X = U 4+ o/U € GF(q) and ¢ is assumed odd. For (iii) and
(iv), we observe that the quotient (U*¥ — ok /U¥) /(U — «/U) is in GF(g¢). This can
be shown directly using symmetric functions, since the quotient is symmetric in U
and a/U. Or we can proceed by induction on k, using the identity

Uk — ok U
U—a/U

Uk—l _ Oék_l/Uk_l Uk—? _ ak—?/Uk—?
— (U +a/U - .
(U a/U)y—F o7 U —au

If 22 — 4a* is a quadratic residue, then U € GF(¢) must satisfy

2+ V22— 4aF

5.3.4 Uk =
(53.4) .

For each choice of £, Lemma 5.3.3 gives us either no solution U € GF(¢)* or
ged(k, g — 1) such solutions. If there are any solutions for one selection of £, then

there are also solutions for the other choice, since (5.3.4) is equivalent to

2 F V22— 4ok
5)

(a/U)r =

This leads to 2ged(k, ¢ — 1) solutions for U and to ged(k, ¢ — 1) solutions for X
when 22 — 4ok is a quadratic residue, as claimed.

If instead z%2 — 4o is a quadratic non-residue, then U € GF(¢?) \ GF(q) (set
difference). Fix u, € GF(q?) such that udt' = «a; this is possible since ar=1 = 1
and the polynomial u?’~1 — 1 splits completely over GF(q?). Since the conjugate
of U is U as well as oo/U, we require U? = a/Q so Utt! = a = ulT". Hence U/u,
is a (¢4 1)-st root of unity in GF(¢?). The equation z = U* 4+ o* /U* implies that

(U)k_ 2422 — 4aF

N Quk

Ug 0

For each choice of sign, this has either ged(k, ¢+ 1) solutions U/u, in the group of
(¢ + 1)-st roots of unity or no such solution, by Lemma 5.3.3. As above, there are

56

either zero or 2 ged(k, ¢+ 1) total solutions, leading to ged(k, ¢+ 1) different values
of X = U+ «/U satisfying ¢, ,(X) = 2. The equation (U/uq)™" =1 implies that
Ut =afU, so any such X =U+a/U=U+U1€ GF(q). N

If we select 1" independent random pairs {(X,, ¥;)}L , and p, is the probability
that P(X) = £P(Y) (mod ¢) for randomly chosen X and Y, then our estimated
probability of a match P(X;) = £P(Y;) for some ¢ becomes 1 — (1 — p,)7. When
p, = o(1), we can approximate this probability by 1 — e=P«. By Theorem 5.3.2,
this p, depends on the residue class of ¢ modulo 2k. When the residue class of
g is unknown, we should average this success probability over all possible residue

classes. The result is

(5.3.5)

1 T
l———> exp (——gcd(Zk, Go — 1)) , if a =0;
P _ o(2k) 5 q
Tmatch —

1 T ng(Zkv do — 1) —I_ ng(Zkv qo —I_ 1)) .
l——=> exp (—— , ifa#0,
¢(2k) %: q 2 ?

where ¢, runs over the residue classes modulo 2k which are relatively prime to 2k.
If we expand (5.3.5) as a Laurent series in ¢, then the leading term is d(2k)7'/q
for any choice of «, by Lemma 5.3.1. The averaged success probability (5.3.5) is

never larger for = 0 than for fixed nonzero «, because for any pair of residues ¢,
and —q,

T T
esp (——gcd@k, . 1>) +exp (——gcd@k, . 1>)
q q

(T ged(2k, qo — 1) + ged(2k, —qp — 1))
>2exp|——

q 2

(ng@h%—m+gd%wﬁﬁn
=exp|——
q 2
(T ged(2k, —go — 1) + ged(2k, —go + 1))
+exp | —— 5)

by the arithmetic-geometric mean inequality.

The difference in these success probabilities can become significant for large k.
Table 5.3.1 gives the number of trials T needed for the probability (5.3.5) to reach
0.05, 0.20, 0.50, 0.80, and 0.95, for selected k. The values of k selected are those

for which d(2k) exceeds all earlier values.

57

k| d(2k) | Polynomial 5% 20% 50% 80% 95%
X = g11(X) | 02364 | .1116q | 3466 | .8047¢ | 1.4979¢
2 3| x2 0171q | .0753¢ | .2406¢ | .5917¢ | 1.19514
2a(X) 0171q | .0743¢ | .2310¢ | 53654 | .9986¢
3 4| x3 0129¢ | .0574¢ | 19114 | 5175¢ | 1.1562¢
Gsa(X) 0128¢ | .0558¢ | .1733¢ | 40244 | .7489¢
6 6| X6 10086q | .0389¢ | .1338¢ | .3797¢ | .8940¢
Joa(X) 0086¢ | .0373¢ | .1167¢ | 27449 | 5210¢
12 8| X12 .0065¢q | .0303¢g | .1118¢ | .3424¢ | .8630q¢
Gr2.1(X) 0064 | .0283¢ | .0909¢ | .2235¢ | 44494
18 9| X18 .0059¢q | .0281q | .1123¢ | .3640q | .8906¢
1s.1(X) 0057¢ | 0256 | 08514 | .2198¢ | 45224
20| 10| x2 0053 | .0253¢ | .1039¢ | .3365¢ | .8624q
Goaa(X) 0052q | .0233¢ | .0787¢ | 2062¢ | 42724
30| 12| X% 0044q | .0218¢ | .0902¢ | .2083¢ | .7756¢
G501 (X) 0043¢ | .0196¢ | .0677¢ | .1857¢ | .4047¢
60 16 | X60 .0034q | .0173¢ | .0751q | .2663¢ | .7405¢
deo1(X) 0033¢ | .0151¢ | .0537¢ | .1507¢ | .3406¢
90 18 | X9 .0030¢ | .0163¢q | .0749¢q | .2805¢ | .7707¢q
do0.(X) 0029¢ | .0138¢ | .0511¢ | .1480¢ | 34414
120 20 | X120 .0028¢ | .0150¢ | .0694q | .2596¢ | .7394¢
Gia02(X) | 0026g | .0126q | .0470¢ | 1378¢ | 3241¢

Table 5.3.1: Trials needed to reach confidence level

5.4 Comparative computational costs

If minimizing the estimated number of trials were the only concern, then we
would prefer m; = g, ,(M;) and n; = g, ,(NN;) with a # 0. However, other desired
properties given early in this chapter impose additional requirements, such as ease
of computation.

Suppose that we select {M;} and {N;} randomly, subject to 0 < M;, N; < B
where the bound B is pre-selected. Since g, , is monic of degree k, the m; (and
n;) are bounded approximately by B*. Any individual m, - @ or n; - @ can be
computed with O(log B¥) group operations, using the same algorithm [31] as used

during Step 1, for a total cost of O((d; + dy)klog B) group operations. But there

38

is considerable redundancy in this computation if we repeat it for every m,; and
n;. We can do better by viewing the m;, n; € [0, B¥] as integers in a radix R.
Approximately Rlogp B* group operations suffice to build a table of (rR’) - @
subject to 1 <r < R and rR < B*. Each m;-Q (or n;-Q) can then be computed
with another logp m; < logy B* group operations (Weierstrass coordinates), for a
total cost of

(R +dy + dy) logp B

group operations. This cost is minimized when Rln R = R + d; + d;. Using
R = (d, +d,)/In(d; + d,) reduces the total cost to about

dy +d
T
In(dy + d;)
. . In B*
Weierstrass group operations, and the average cost per m;-Q) or n;-() to —————
In(d, +dy)

such operations, for arbitrarily chosen m,, n; € [0, B*].

Since we require B > d; + d, to ensure distinctness of the {m,} and {n,}, the
average cost of this algorithm exceeds k group operations. Section 5.9 shows how to
compute these (m; - Q) with an overhead of k Weierstrass group operations apiece
(plus initialization costs) if the {M;} form an arithmetic progression, regardless of
a; likewise for the {N;}. If we restrict a = 0 so that P(X) = X* and if 4|k, then
we can reduce the overhead to k/2 homogeneous group operations per (m; - @),

(or (n; - Q),) by using a different sequence {M,}, as seen below.

J

Lemma 5.4.1 If ¢ is an odd prime, then 16 is an 8—th power modulo q.

. .) 8
Proor. If 2 is a quadratic residue modulo ¢, then 16 = (ﬂ) .
. .) 8
It —2 is a quadratic residue modulo ¢, then 16 = (\/—2) .
It —1 is a quadratic residue modulo ¢, then 16 = (1 + \/—1)8.

Since at least one of these is a quadratic residue, the proof is complete. W

Remark 5.4.2 We subsequently refer to this root as \/16, and treat it as an integer

in the analysis. Algorithms use only powers of (\8/16)4 = 4. Since (4Q), =
(—4Q),, the sign ambiguity will not matter.

Corollary 5.4.3 Let k be a positive integer divisible by 4 and let ¢ be an odd
prime. Then at least one of £25/2 is a k—th power modulo q.

PrOOF. If a = V16 (mod ¢), then a2k = (ozg)k/4 = 16¥/* = 2% (mod ¢). Conse-
quently of = 42%/2 (mod ¢), and one of these is a k-th power modulo ¢. M

39

If our k is divisible by 4, then we can multiply any previously created k-th
power or negative thereof by 2#/2 to create another such power. From a point P,
we can construct (2%/2 - P)_ using k/2 doubling operations in the group. If we are
allowed 100 multiplications modulo N per point, then we require 5(k/2) < 100, or
k < 40, since each application of the homogeneous doubling rule (2.3.5) uses five
such multiplications.

This trick should be employed on only one of the sequences {m;} and {n;}. If
it is used on both sequences, then there are many cases where m;, = 2%/2m, and
n;, = 2%2n; , violating (DP6). Since we are assuming that d, > d, it is probably
cheaper to employ this trick during generation of the {n;} than during the {m,}.

5.5 Using powers of 2¥/2 and 3*

A straightforward scheme based on this idea lets

m; = 3k (0 <1< dy);
n, = 3(h/2Ak 262 (0 < § < dy)

where 4]|k. One can compute the z-coordinates (m; - @), using (d; — 1)k succes-
sive cubings, and hence 2(d; — 1)k group operations (which can be done using
homogeneous coordinates). Another d,k/2 doubling steps suffice to compute the
(n;-Q),, starting from the known (3(@/2*. Q) . If d, > d;, then the average cost
per x-coordinate is slightly above k/2 group operations.

Property (DP5) is achieved if @) has odd order, since a match n; = £n; with
0 <1<y <d, implies that

3(di/2)k . 9(i+1)k/2 = 3(d1/2)k . Q(J‘Jrl)k/z7
3(d1/2)k = 3(d1/2)k . Q(1=0)k/2

Mg 2 =Nj—i-1,

ensuring that a match exists in (5.0.1).
This scheme also satisfies (DP1), since any prime ¢ with

divides some m; =+ m,, or some m; £ n;. To prove this, consider {3%%* . 2/*} for
0<i<d/2and 0 <j <dy Allof these are nonzero (2k)-th powers modulo ¢

60

since 4|k. By the Pigeon-hole principle, there must be a duplicate amongst these
dyd,/2 values. This leads to a congruence 32% = 27% where |i| < d;/2 and 0 < j <
dy, with ¢, j not both zero. If j = 0, then my = £m,. If instead j # 0, then
ni_y = E£mg, jaqi-

This scheme fails to be parallel as in (DP4), but such is not important when
implementing ECM on a sequential architecture. This scheme also has many cases
where one 3*£27%/2 divides multiple m;, n;, (some with ged(sy—d, /2, j4+1) > 1),
in possible violation of (DP6).

5.6 Achieving parallelism

The last scheme failed to achieve parallelism, in part because each point was
multiplied by 2%/2 to get the next point. When using k—th powers (i.e. a = 0), it
would be desirable to instead multiply several points by 2%/2 concurrently.

Suppose that our parallelism requirements dictate multiplying p different points
by 2%/2 at once (p might be the number of processors available). If we have selected
the n; for 0 < j < p by some alternate means, then we can let n; = 2k/2 . n;_, for

j
p < j <d,. Assuming that p|d;|d,, our algorithm can resemble:

e Choose k divisible by 4, with d(2k) as large as feasible. Construct (m; - @),
for 0 <4 < dy, with each m; = M¥ for some {M;}. Use these z-coordinates
for roots of F/(X) in Section 4.3. Initialize G(X).

o Construct (n; - @), for 0 < j < p, with each n; = Nf for some {N,}.
e Perform the next two steps for £ =1, -+ | dy/p, in this order.

o If { > 1, then set n; = 2¥/2.n,_, for ({ —1)p < j < {p. Each corre-
sponding (n;-@Q), can be computed from (n;_,- @), using k/2 doubling
steps; values for different j can be computed in parallel.

o If d,|lp (i.e. when d; new values of (n; - (0), have been found), then
form another H-polynomial and reduce G(X) H(X) modulo F(X), as
in Figure 4.3.1.

For the rest of this section, we assume that p = d; and that n; = 2¥/2 . m, for
0 < j < dy. Then property (DP5) is automatically satisfied if our point @) has
odd order (which can be ensured by doing enough doublings during Step 1). More
precisely, suppose that some n; = £n; where 0 <7 < j <d,. If 1 <d; and j < dj,
then 25/2.m; = £2¥/2.m; (mod ¢), implying that m; = £m;. If i < d; but j > d;,
then m; = £n;_,4 . f ¢+ > d; and j > d;, then n;, 4, = +n,_,
induction on j.

, and we proceed by

61

It remains to select the {m;}. We should satisfy the cost requirement (DP3),
although we may be able to afford more overhead per m; than per n; since we will
not be needing as many.

There should be few if any multiplicative relations amongst the {m;}. If,
for example, m; /m;, = m;,/m;, then 2?/2m; — m, shares many factors with
216/, — m,, for each (, violating (DP6). This precludes, for example, defining
M; = 3" and m; = MF = 3% for 0 <7 < d,, even though such values can be succes-
sively computed with 2k (non-parallel) group operations apiece. [This duplication
was not a problem in Section 5.5, where all powers of 2¥/2 were multiplied by the
same m;, ,

If we use random values for {M;}, then the only apparent violations of (DP6)

namely by mg, /5.]

occur for those constructed from the same M;, since for example 2¢(5/2) — 1 divides
all ni1(s_1)q, —m;. That is, the only apparent redundant m; & n; occur when ¢ = j
(mod dy). If d; > 128, then this redundancy occurs for under 1% of the m; + n;,
an allowance which appears negligible.

But large numbers of random k-th powers may not be easy to compute effi-
ciently, as desired in (DP3), despite the method presented early in Section 5.4. One
computationally feasible proposal uses arithmetic progressions for {M,}. If a and
b are fixed, then the values of m; = (ai + b)* are successive values of a polynomial
of degree k, and successive m; - () can be computed with k group operations apiece,
after suitable initialization; see Section 5.9. That algorithm allows parallelism (on
up to k processors), but uses Weierstrass rather than homogeneous coordinates
and hence requires modular inversions. Its initialization cost depends primarily on
the magnitude of the largest (az + b)* for 0 < ¢ < k.

However the use of arithmetic progressions for these M; may lead to decreased
overall effectiveness. Property (DP1) requires that most or all small primes ¢ divide
some m; £ m, subject to (5.0.2) or some m; £ n; subject to (5.0.1). The primes
least likely to have this property are those where ged(q — 1, 2k) = 2, since any
such ¢ divides an MF & Mf only if it divides M; & M. Suppose that we have used
arithmetic progressions for {M,}, say M; = ai + b. Then M, + M; = a(e+7)+2b
and M; — M; = a(i — j). There are only 2d, — 3 distinct sums a(z 4 5) + 2b for
0 <1i4,5 <dyand ¢ # j, compared to the desired (le) = dy(dy — 1)/2 such sums.
There are also very few distinct differences a(i — j). For small odd ¢ the problem
persists, since

Nipeg, £y =202 (i + b)F & (aj + b)*
is divisible by
204D/2(g5 4 b) & (aj + b) = a(204D/2 £ §) + b(20+1)/2 £ 1),

and there are many duplicate sums and differences on the right. There are few

.))) 041,
duplications of this type when ¢ is even and the numerical value of (\8/16) is

62

(presumably) large modulo most primes ¢, but many of the potential opportunities
for a match modulo ¢ are being wasted when (is odd, violating (DP6) and possibly
(DP1).

One work-around uses multiple arithmetic progressions for {M;}. If we use
d; such progressions, each of length 1, then the {M;} are essentially random. If
we use eight or sixteen such progressions, then the above troubles occur only for
M; £ M; where M; and M, come from the same progression, and hence for one
eighth or one sixteenth of such pairs, which may be an acceptable tolerance.

5.7 Separate arithmetic progressions

If we abandon our convention that n; = m; - 2612 for 0 < j < dy, but retain

n; = n;_,2%2if p < j < d,, then we must select the early n; as well as the m,.

Unless we restrict {m;}, property (DP5) need no longer hold.
One approach uses one arithmetic progression for the {M;} and another for
{Z\Q};;é. Subsequent values of N; are v/16 times earlier values. That is,

Mi:a1i+bl (0S1<d1)
and

a2j+b27 1f0§]</’7
(a2(j - p) —I_ b?)mv 1f P S] < 2/)7

2(ay(g — 2p) + by), if 2p <5 < 3p,

We can achieve (DP1) by choosing the progressions so that most small primes have
the form M; £ N;. For example, let M; = 6i41 for 0 <¢ < d; and N; = 6d,(j+1)
for 0 <y < p, with N; = Nj_pm for p < j < dy. This particular example has
many duplicate n; since for example

nzp — no . (Qk/2)2 — Nok . Qk — (2N0)k — (12d1)k — le — nl.

Such overlap is rectified by letting V; = 6d,(2j + 1) take on only odd multiples
of 6d, for 0 < j < p; even multiples appear in later rows of Figure 5.7.1 (i.e. H;
for larger j) due to the multiplications by {/16. We should also shift the values in
the first row, say to M; = 6(: 4+ d;) 4 1, to increase the number of distinct ratios
M;/N; with 0 < ¢ < dy and 0 < j < dy. For example, if d; = p = 4, then M, to
Mj are 25, 31, 37, and 43, whereas the early N, appear in Figure 5.7.1.

63

H, roots Ny =24 N, =72 N, =120 N, = 168
| | | |

H, roots N, =24v/16 N, =T72{/16 Ny=120v/16 N, =168V16
| | | |

H, roots Ny =48 Ny = 144 Nyo = 240 Ny, =336
| | | |

H, roots N, =48V16 Ny, =144V/16 N,, = 240/16 N,; = 336+/16

| | | |

H5 I’OOtS N16 — 96 N17 — 288 N18 — 4:80 N19 — 672

Figure 5.7.1: Dependencies using two arithmetic progressions and doubling

5.8 Use of arithmetic progressions and Dickson polynomials

The trick of multiplying a point by a k-th power (or by 2%/?) to get another
point when a = 0 used the identity (XY)* = X*Y* so that

Gro(XY) - Q = (XY)F-Q=VE- (XF- Q) =Y (g0(X)- Q).

No such identity relates g, ,(XY) to g, ,(X) when o # 0.

The data in Table 5.3.1 suggest that Dickson polynomials g, ,(X) with o # 0
perform better than X* when selecting the m; and n;, if our sole objective is
maximize the probability that a random prime ¢ divides some m, £ m,, satisfying
(5.0.2) or some m; £ n; satisfying (5.0.1). Of the methods of generation considered
in Section 5.4, with m; = g, ,(M;) for some {M,} (resp. n; = g, ,(INV;) for some
{N;}), the use of random M; requires over k group operations per m,, while the use
of arithmetic progressions for { M, } reduces this cost to just & such operations, after
suitable initialization. Since theory suggests that all @ # 0 perform comparably,
it is simplest to use a =1 (or o = —1, to force nonnegative coefficients). We can

64

let, for example,

M, =6i+1 (0<i<d)
Ny =6dy(i 1) (0<j<dy).

5.9 Evaluation of {(m;-@),} where m; is a polynomial function

Let P(X) be a polynomial in X of degree k. Some of the above schemes require
evaluating (P(¢) - @), for several successive integers ¢. This can be done using a
straightforward modification to the technique for evaluating a polynomial along an
arithmetic progression [17, p. 469], at a cost of O(k) Weierstrass group operations
per evaluation, after suitable initialization. The computations can be arranged so
that these O(k) operations can be done in parallel.

For example, consider P(i) - @ for successive ¢ where P(X) = X4 and k = 4.
Tabulate P(0) to P(k) and take finite differences as in the left of Figure 5.9.1.

0 1 16 81 256 625
1 15 65 175 369
14 50 110 194
36 60 84
24 24

Figure 5.9.1: Finite differences of polynomial function P(X) = X*

Because deg(P) = 4, the fourth row of finite differences is constant. The
vector [24, 60, 110, 175, 256] on the first full upward diagonal of Figure 5.9.1
can be computed from the top row using k(k + 1)/2 integer subtractions, and the
results used to evaluate [24Q), 60Q, 110Q, 175Q), 256(Q)] as in Section 5.4. Each
subsequent upward diagonal, such as [24Q, 84Q), 194Q), 369Q), 625Q)], can be
computed from the previous such diagonal with k& group operations, by following
the arrows in Figure 5.9.2. Once an entire diagonal vector is known, a value of
P(7) -) can be extracted from its last component.

65

240) 600Q 110Q 1750 2560

| | | | |

2Q — 84Q — 194Q — 369Q — 625Q

Figure 5.9.2: Dependencies when updating an upward diagonal

A problem with this scheme is that the components of the vector cannot be
updated in parallel, because each component is dependent on the previous compo-
nent, as evidenced by the horizontal arrows in Figure 5.9.2.

Fortunately, there is an easy remedy. If we use downward diagonals rather
than upward diagonals in Figure 5.9.1, then we can proceed very similarly but all
components can be updated in parallel. Figure 5.9.3 illustrates how the downward
diagonal [1Q), 15Q, 500Q), 60Q), 24Q] can be calculated from the previous downward
diagonal [0Q), 1Q, 14, 360, 24Q)] using four parallel group operations.

0Q 1Q 14Q 360 24Q)
[A S
1Q 15Q) 500 600 24Q

Figure 5.9.3: Dependencies when updating a downward diagonal

Whether we use upward or downward diagonals, this computation requires
Weierstrass coordinates (2.0.2) rather than homogeneous coordinates (2.3.3), be-
cause (@)1 —Q)y), is usually not known when we need to compute @), + @), from two
known multiples ¢); and), of (). Hence each group operation needs a modular
division when computing the slope in (2.0.3). Downward diagonals are preferable
to upward diagonals even on a sequential architecture, because the modular inver-
sions in these divisions are independent. All but one inversion can be exchanged
for three modular multiplications by repeatedly using the identities [29, p. 260]

Iz =y(l/ey) and 1fy =x(1/ay).

For an arbitrary polynomial P(X) of degree k, suppose that we want to enu-

66

merate {P(¢)} for e = 1,2,.... Define

PX) = P(X), PX) = PL(X 1) = Po(X) (1<) <H)
FEach P, is a polynomial of degree k£ — j; in particular, P, is constant. We evaluate
P(0) to P(k) numerically, and use those to evaluate P;(z) for 0 < j < k and
0 <i < k—j. Hence we can determine the (k+1)-vector [Fy(0), P (0), ---, P,(0)].

Each P;(0) - @ can be computed as described for random multiples of @ early

in Section 5.4. This gives us the vector v(0) where

(i) = [Fo(1) - @, Pi(0)-Q, -+, B(2)- Q).

Next, for ¢ = 1,2, ..., we can compute v(¢) from v(¢z — 1) using k parallel group
operations. The first component of v(¢) is the desired Py(¢) - Q = P(i) - Q.

5.10 Implementation choices

It was decided to implement two schemes. Of the values of k appearing in
Table 5.3.1, cost requirement (DP3) restricts us to k < 24 when using P(X) = X*
where 4|k, and to k < 12 when using P(X) = ¢, ,(X) where a # 0.

For P(X) = X* with k£ = 24, a variation of the scheme in Section 5.5 was used.
The main problem was a lack of parallelism when using only powers of 2 and 3. If
there are under p processors and d; > p, then we can let

My = 3 - 5k (0 <pi+j<d and 0<j<p);
(5.10.1)

Ny = 200k ik (0<pi+j<dyand 0<j<p)

The values of (5% - @), and (7% - @), for 0 < j < p can be computed sequentially,
using (p—1)(3k+4k) = 168(p— 1) (non-parallel) applications of (2.3.4) or (2.3.5).
(If this is an unacceptable amount of sequential calculation, then one can use
additional primes besides 5 and 7.) Once these have been built, k& applications of
(2.3.5) and k of (2.3.4) suffice to get each new (m,,,; - @), (cost: bk 4 6k = 264
modular multiplications apiece). Only k/2 applications of (2.3.5) (cost 5k/2 = 60
modular multiplications apiece) are needed per new (n,,; - Q),. For dy > d,,
the average overall cost drops below the 100 multiplications allowed by (DP3).
Figure 5.10.1 illustrates the dependency picture when building the (m,;,; - @),.
The p computations along any row (except the first) can proceed in parallel, with
this process repeated until d; values are available.

This construction appears to fail property (DP1), by not ensuring that small
primes divide some m,, £ m,, or m,; £n; (though they divide with high probability

67

me=1 — m, = bk — my = 52k m
| | | |
m, = 3k mp_H - 3k . 5k mp+2 - 3k . 52k m2p_1 - 3k . 5(p—1)k

| | | |

_ 92k — 2k . Bk — 32k . B2k — 32k . 5(p—1)k
my, =3 My, = 32% -5 My, g =32k -5 my, y = 32k - 5lr=1)

Figure 5.10.1: Dependencies when using geometric progression

by (5.3.5)). The only apparent algebraic divisibility relation amongst the m; & n;
where 7 and j satisfy (5.0.1) occurs when the exponents in 3% . 50k 4 2(i2+1)k/2. 752k
satisfy ged(iy, 1, 1941, Jy) > 1; for four random integers, this event has probability
1 —1/¢(4) =1—=90/7* < 0.08, which appears acceptably small for (DP6). The
scheme almost satisfies (DP5); if

2(21-|—1)k/2 . 7]1k = :|:2(22-|—1)k/2 . 7]2k (mod q)7

then there is a congruence 2%/2 = T/% (mod ¢) with 0 < j < p and |i| < dy/p
and 7, j not both zero. If ¢ < 0, then n,_;_y);; = £1 = £mg. If we redefine
mg,_1 = T~D* instead of the value in (5.10.1), then we have a similar result with
poi—jy = £T0-VE = 4m, | Hence we have a match in (5.0.1)

except possibly when i = 0, meaning 7% =1 (mod ¢) for some j with 0 < j < p.

1 > 0 since M (1) 4(

We can check these cases separately.
The other scheme implemented used P(X) = ¢, ,(X) with o =1 and k = 12.

The sequences were chosen by m; = ¢15,1(M;) and n; = g,5,(N;) where

M, =6i+1 (0<i<d)

N, =6dy(i+1) (0<j<dy).

J

We claim that this satisfies (DP1), by ensuring that all small primes ¢ divide
some M; £ N; and hence some m; £ n;. If ged(q, 6) = 1 and 6d; < ¢ < 6d,d,,
then we can write ¢ = 6d,(j + 1) £ (6¢ + 1) where 0 < ¢ < d; and 0 < j < d,. For
q < 6d; and ¢ =1 (mod 6) we can represent 5¢ instead of g.

63

Selecting N; = 6d,(j + dy/4) rather than N; = 6d,(j 4+ 1) would enable one to
extend the upper bound to 7.5d;d, — 6d,, albeit at the cost of computing higher
multiples of () when initializing the algorithm in Section 5.9.

This scheme seems to be remarkably free of algebraic identities where one
P(X) £ P(Y) divides another, and so seems to satisfy (DP6).

However, this scheme may fail (DP5), by having duplicate &n; (mod ¢) without
ever satisfying (5.0.2) or (5.0.1).

Richard Crandall [14] has also used P(X) = X*, but without the multiplies
by 2/2 allowed by Corollary 5.4.3. His preliminary estimates suggest & = 60 or
k =72 when B; = 10% and k = 120 or k£ = 240 when B; = 107. Crandall did not
use an FFT, so his asymptotic cost per test of m; —n; is much higher. The data
in Chapter 7 suggest that k& = 12 is sufficiently high when using P(X) = X*.

69

CHAPTER 6

Selection of Curve

So far we have not specified which elliptic curve to use, except that it should
have the form

(6.0.1) By? =23+ Ax? +x

for some A and B with ged((A?2 —4)B, N) =1 ((6.0.1) is the affine equivalent of
(2.3.3)). We also require a known initial point. Suyama proved that any curve of
the form (6.0.1) has order divisible by 4 when reduced modulo any prime p, since
at least one of B(A + 2), B(A —2), A2 — 4 is a quadratic residue modulo p [29,
p. 262].

We show how to select curves of form (6.0.1) whose torsion group over Q
has order 12 or 16, with a known rational non-torsion point (hence positive rank
over Q). Then we present numerical data comparing the actual exponents of 2 and
3 which divide the orders of these curves when they are reduced modulo a prime.

6.1 Torsion subgroup of order 12 and positive rank over Q

Montgomery [29, pp. 262-263] showed how to select a curve with known initial
point and with torsion subgroup Z/12Z over Q. If

—3a* —6a2+1 (a2 —1)2 22 —1
\ B=—- where a=—,
4a’ 4a3 t24+3

(6.1.1) A=

then (6.0.1) has the following rational torsion points:

P:GLHTtu+W)7 7p:(8;$,4%£%3,

70

1243 243 11 12 — —1
2P = , =|-, -1, 8P = a, —al,
t2—1 t2—-1 a’ a 12+ t2—|—3
1
(i), - (1, L),
1241 12+1
2—1 2-1 12 3 t2 3 1 1
4P = v 3o = e, al, 10P = + + PEER
243 1243 1z — —1 a a
1—t)2 (1—=1t)2 L+1)? 1 t
sp— [\),t() 7 p - (Ot +1)?
(L+1)27 (141)? (1 —1)? 1—t)
The point

da 4q

n (6.0.1) if 3a2 + 1 = 4(¢* 4+ 3) /(2 + 3)? is a rational square. We can achieve
this by letting 12 = (u? — 12)/4u, where u — 12u is a rational square.

3a2+1 V3a2+1
xOv yO =

6.2 Torsion subgroup of order 16 and positive rank over Q
Bremner [8] discovered that the curve
y? = x(x 4+ 4096)(x 4+ 50625)

has a torsion subgroup of order 16 and positive rank over Q. Replacing Bremner’s
x by 1202z and his y by 1203y gives the curve

ol 64 225\ . 54T
(6.2.1) =it oo et g) =0 et Y

which has the form (6.0.1). More generally, if a? + b2 = ¢2, then the curve

2 b2 44 pa
6.2.2 y? =x :1;—|—a T+ — ::1;3—|-L:1?2—|-:1?
2
a

b? a?b?

71

has the following rational torsion points, where P has order 8 and () has order 2:

b2
(6.2.3) O Q) = (—;, 0),
a+b+c (a+b)c a—b—c (a —b)e
(a—l—b—c7 (a—l—b—c)z)7 +Q (a—b—l—c7 (a—b+e)2)’
2 a2 — b2
2P = (1, —, 2P +Q =1|-1, ;
ab ab
a+b—c (a+b)c a—b+ ¢ (a —b)e
(a—l—b—l—c7 (a—l—b—l—c)z)7 +@ (a—b—c (a —b—c)? ’
a2
4P:(0, 0), 4P—|—Q:(——2, 0),
a+b—c (a+b)c a—b+ ¢ (a —b)e
5P = 9 5P 4+ Q= -
(a—l—b—l—c7 (a—l—b—l—c)z)7 +@ (a—b—c (a —b—c)? ’
2 a2 — b2
6P=11, ——], 6P+Q=1|—-1, —)
ab ab
a+b+c (a+b)c a—b—c (a —b)e
TP = -2 7P =l —-2—— .
(a—l—b—c7 (a—l—b—c)Z)7 +@ (a—b—l—c7 (a — b+ c)?

These points are distinct for all but finitely many ratios a : b : ¢, and give a
torsion subgroup of order 16. Mazur showed that this is the largest possible torsion

subgroup for an elliptic curve over Q [38, p. 223].

Theorem 6.2.4 Any elliptic curve with torsion group Z |87 X Z /27 over Q is
equivalent to one of form (6.2.2) with ab # 0.

PRrOOF. Kubert [18, p. 217] gives the parameterization

(6.2.5) Y24 (1 —¢)XY —bY = X3 —bX2
where
2d — 1i(d —1 2c0(4 1
b= (2d —1)(d—1), oo ! -1, _2allatl)
d Ra? —1

Here oo € Q and

(6.2.6) d(d —1)(2d —1)(8d% — 8d + 1) # 0.

72

Completing the square in (6.2.5) gives

2
(c—1)2—4b ble—1) b2
4

= X3 X2 X+ —
+ + = +
(2d — 1)(4d2 —6d + 1) (d—1)(2d —1)2
= (X +d—d?) | X? - X - .
(X +)(1d2 1d

The linear change of variables
Y=(d-1p3y—(1—-¢)X/2+b/2,
X=(d—-1)2x+d*—d,

converts this to the form (6.0.1) with B =1 and

2

8dt — 16d% + 16d> —8d + 1 [(2d — 1)? (8a2 + 4o + 1)? ,

A= 1d2(d —1)? N le(d— 1)]2_) l(SO‘Z T de)(dat1)

This has the form (6.2.2) with
a:b:c=8x%4+4a:4a+1:8a%+4a+ 1.
Restriction (6.2.6) becomes

20(2a 4+ 1) (4o + 1)(8a? + 4a + 1)(8a? + 8ar + 1)?
(8a2 —1)°

#0;

this simplifies to a(2ar + 1)(4ar 4+ 1) # 0 and hence ab # 0 since « is rational. W
Bremner’s curve (6.2.1), with @ : b : ¢ = 8 : 15 : 17, has rational non-torsion
points and hence positive rank. Sample z-coordinates are
3 8 1 8
To="7T0 =0 72’ on’
107 157 18" 25
and their reciprocals. A search found rational non-torsion points on (6.2.2) for some
other Pythagorean ratios a : b: ¢. These solutions were analyzed for patterns.
The solutions x, = 8/25 when a : b : ¢ = 8 : 15 : 17, y = 4/45 when
a:b:c=9:40:41, and xzy = 200/289 when a : b: ¢ =39 : 80 : 89 all have the
form

zy = (4e —4a)/(5c —4a) or wxy= (4c—4b)/(5c — 4b).

73

This point is a torsion point when a : b: ¢ =9 : 40 : 41 but not in the other two
cases. Substituting x = (4¢ —4a)/(5¢ — 4a) and b2 = ¢ — a? in (6.2.2) gives

c2(2¢ — a)*(be+ a)(c— a)
a*(c+a)(be —4a)?

(6.2.7) y? =4

Since (¢ + a)(c — a) = b? is assumed to be a perfect square, the computed 32 is a
perfect square whenever (5¢ + a)(5¢ — 4a) is a perfect square.

We can get infinitely many solutions to (6.2.7) by setting « = 1 — 12, b = 2t,
and ¢ = 1 4 t2, where ¢ is a rational number to be determined. We require
that (12 + 1/9)(t?> + 3/2) be a rational square. Letting u = 2, we want u and
(u—+1/9)(u+3/2) to be squares. By selecting an arbitrary point (u, v) = (ug, vg)
on the elliptic curve

(6.2.8) v?=wu(u+1/9)(u+3/2)

and doubling it, we accomplish our objective, since the u-coordinate of the doubled

point is always a perfect square. Specifically, we can set

ul—1/6

2v4

Our “arbitrary point” can be a random multiple of the known point (u, v) =
(1, 5/3) or (—1, 2/3) on (6.2.8).

This and other ways to get an initial point for (6.2.2) are listed in Table 6.2.1.
Each method requires some homogeneous quadratic polynomial in a, b, and ¢ to
be a perfect square, while also requiring that a? + 62 = ¢2. Upon parameterizing
a=1—12,b=2t, and ¢ = 1412, each entry leads to a fourth-degree polynomial in ¢
which must be a perfect square; its solutions (if any) lie on an elliptic curve. Table
entries were found in an ad hoc manner, so I make no claim of completeness. The
last entry is due to Atkin and Morain [5], who also show how to construct curves
of positive rank with other torsion groups over Q. Elkies [15, p. 832] describes how
to add points on an elliptic curve Y2 = quartic(¢) with known rational points; this
can be used to find more ratios for the last column of Table 6.2.1 (sometimes using
a trivial rational point where ab = 0).

6.3 Numerical comparison of torsion subgroups of orders 12 and 16

It a curve F has a torsion subgroup of order 12 over Q and p is a prime which
does not divide the denominator of any coefficient of F or of its torsion points,
then its reduction E,) modulo p has order divisible by 12 unless £, is singular

modulo p or two points in the torsion subgroup agree modulo p, and hence for all

74

Zq Required square ‘ Example ratios a : b: ¢ ‘
a 2 2 F : : ‘
7 a*—ab+b 8:15:17, 1768 :—2415 :2993
b
e a4+ be 4:-3:5, 15:8:17, 136:273:305 |
4(c —a) |
e (be+a)(bc—4a) [15:8:17, 40:9:41, 39:80:89
4a ‘
BT (Ba+b)(3a+4b) | T:—=24:25, 20:21:29, 209:-—120:241
a—+c ‘ ‘
“h 1o ab+ ac+ be 80 : —39:89, 199088 : 258825 : 326537
b—c
b e (c+2b)(c — 2b) | None found
bc — ac— 2ab
m bc — ac — 2ab 111 : 680 : 689

Table 6.2.1: Some ways to ensure that curve’s group order is divisible by 16

but finitely many primes p. The ECM algorithm succeeds if | £, /12 is sufficiently
smooth; this quotient is approximately p/12. Likewise, if F has a torsion subgroup
of order 16 over Q, then the ECM algorithm succeeds if |F,|/16 is sufficiently
smooth; this quotient is approximately p/16. Intuitively, since p/16 < p/12, the
former seems more likely to be smooth, so curves with torsion subgroup of order 16
are “better”.

A numerical experiment was conducted to check this hypothesis. It used five
curves of form (6.1.1), with v = 4, 54, 49/4, 2166/625, 14884/1089. It also used
five curves of form (6.2.2) as described in the paragraph near (6.2.8), with

. 1 5 437 173 4096849
U - =, —— .
0 4787 3427 149607 2658604

The orders of all ten curves, plus one other curve with A = 101 and B = 103,
were computed modulo each of 8356 primes from 10000 to 100000; those primes
for which a denominator vanished or for which one of the curves was singular (i.e.
A = £2) were excluded.

When the torsion subgroup had order 12 over @, the prime 2 divided the group
order |E,| an average of 3.68 times and the prime 3 divided the order an average
of 1.68 times, effectively subtracting an average of

3.68In2+ 1.68In3 =~ 4.40

from the natural logarithm of the order. When the torsion subgroup had order 16
over (), the prime 2 divided the order an average of 5.32 times and the prime 3

75

divided the order an average of 0.68 times, effectively subtracting an average of
5.32In2 4 0.681n3 ~ 4.43

from the natural logarithm of the order. Both averages are considerably larger than
the In(12-2-31/2) & 3.73 (or In(16-2-3/2) & 4.02) which one would expect given a
random multiple of 12 (resp. 16), but the difference between the two expectations
seems slight. As expected, the curve with A = 101 and B = 103 (torsion group
of order 4) performed much worse than the others, with 2 appearing to the 3.65
power and 3 to the 0.68 power on average.

In all cases the prime 5 divided the order average of 0.30 times while 7 divided
the order an average of 0.19 times.

The data was subsequently analyzed for patterns depending on the residue class
of p. Primes p =1 (mod 6) fared better when the torsion subgroup had order 12,
but primes p = 5 (mod 6) fared better when the torsion subgroup had order 16,
as seen in Table 6.3.1. The statistics appeared not to depend on the residue class
of p modulo 18 once the residue class of p modulo 6 is fixed.

p (mod 6) 1 1 5 5
Torsion subgroup order 12 16 12 16
Curves tried 20860 20860 20920 20920
Average exponent of 2 3.68 5.32 3.69 5.32
Average exponent of 3 1.87 0.61 1.50 0.75
Average In |E | reduction | 4.60 4.35 4.21 4.51
Power of 3:

30 0 13041 0 10446
31 9264 4654 13968 7025
32 7306 2046 4605 2282
33 2809 746 1582 802
34 978 244 493 259
3° 350 88 190 75
36 or more 153 41 82 31

Table 6.3.1: Power of 3 dividing group order

Tables 6.3.2 and 6.3.3 have data about the exponent of 2 dividing |£,| and
p — 1. These data suggest Conjectures 6.3.1 and 6.3.2.

76

p (mod 16) 1 9 5,13 3,7, 11, 15
Torsion subgroup order 12 12 12 12
Curves tried 5210 5210 10420 20940
Average exponent of 2 3.80 3.82 3.92 3.51
Average exponent of 3 1.68 1.67 1.69 1.68
Average In | E | reduction | 4.49 4.48 4.57 4.28
Power of 2:

22 1269 1291 2540 5209
23 1334 1284 2582 7840
24 1293 1308 1949 3941
25 564 584 1655 1955
26 366 330 821 954
27 191 202 444 530
28 81 105 215 263
29 60 51 102 123
210 22 27 51 59
211 or more 30 28 61 66

Table 6.3.2: Power of 2 dividing group order when torsion subgroup has order 12

Conjecture 6.3.1 Let E be an elliptic curve with torsion subgroup Z /127 over
Q. For any prime p, let |E(p)| denote the order of ils reduction F, modulo p.
Then

(a) As p ranges through the primes congruent to 5 modulo 6, the largest power
of 3 dividing |E | is 3° with probability 2 - 3= for each a > 1.

(b) As p ranges through the primes congruent to 3 modulo 4, the largest power
of 2 dividing |E,| is 2o with probability 1/4 if a =2 and probability 3 - 2=
if a > 3.

(¢) Asp ranges through the primes congruent to 5 modulo 8, the largest power
of 2 dividing |E,| is 2o with probability 1/4 if « =2 or a = 3, probability
3/16 if a =4, and probability 5 - 2= if a > 5.

Conjecture 6.3.2 Let I be an elliptic curve with torsion subgroup Z /87 x 7. /27
over Q. For any prime p, let |E,| denote the order of its reduction E,y modulo p.
Then

77

p (mod 16) 1 9 5,13 3,7, 11, 15
Torsion subgroup order 16 16 16 16
Curves tried 5210 5210 10420 20940
Average exponent of 2 5.77 5.87 5.49 4.98
Average exponent of 3 0.67 0.66 0.67 0.68
Average In |E | reduction | 4.74 4.80 4.55 4.20
Power of 2:

24 1290 1329 2672 10583
25 1349 1274 3849 5235
26 1307 998 1916 2552
27 562 791 1010 1308
28 329 402 478 640
29 173 222 247 307
210 98 99 120 154
211 56 47 76 90
212 or more 46 48 52 71

Table 6.3.3: Power of 2 dividing group order when torsion subgroup has order 16

(a) As p ranges through the primes congruent to 5 modulo 6, the largest power
of 3 dividing || is 3> with probability 1/2 if a = 0 and probability 3= if
a>1.

(b) As p ranges through the primes congruent to 3 modulo 4, the largest power
of 2 dividing |E | is 2 with probability 2°=* for each o > 4.

(¢) Asp ranges through the primes congruent to 5 modulo 8, the largest power
of 2 dividing | E,| is 2o with probability 1/4 if a =4 and probability 3 - 22
if a > 4.

According to Conjectures 6.3.1 and 6.3.2, the average exponent of 3 dividing
the order |F,| is 3/2 (resp. 3/4) when the torsion group has order 12 (resp. 16)
over Q and p =5 (mod 6). The average exponent of 2 dividing | E,| is 7/2 (resp.
5) if p =3 (mod 4), and 63/16 (resp. 11/2) if p =5 (mod 8).

The conjectures make no prediction for the exponent of 3 when p =1 (mod 6),
or the exponent of 2 when p =1 (mod 8). The fractions 13041/20860, 9264 /20860,
and 4654/20860 in Table 6.3.1 are approximately 5/8, 4/9, and 2/9 respectively,
but the other entries seem hard to guess.

78

The evidence for these conjectures is weak, even if it is correct for curves gener-
ated using (6.1.1) or using (6.2.2) and (6.2.8), because another method of selecting
the curves may give different statistics. The program was rerun, using 100 random
curves with torsion group Z /127 (not necessarily with positive rank). and another
100 curves with torsion group Z/8Z x Z/2Z, for 984 primes in [10000, 20000].
(98400 curves with each torsion group). The results resembled those in Tables 6.3.1,
6.3.2, and 6.3.3.

If p is a prime and E, has a subgroup isomorphic to Z/nZ x Z/nZ for some
integer n, then p = 1 (mod n) [7, p. 954]. For example, if p = 2 (mod 3), then
Ep)

must be cyclic. Hence a power 3% cannot divide F,, unless F(, has a point of

cannot have a subgroup isomorphic to Z /37 x Z /37, so its Sylow 3-subgroup

order 3. When instead p =1 (mod 3), the Sylow 3-subgroup of E,) need not be
cyclic. This rationalizes why the exponent of 3 dividing the order in Table 6.3.1
varies with p (mod 3), and why the exponent of 2 in Tables 6.3.2 and 6.3.3 varies
with the exponent of 2 dividing p— 1, but does not predict the actual distributions.

79

CHAPTER 7

Selection of Search Limits B, d,, d,

The ECM algorithm usually finds the prime p|N if the order |E,| has all but
possibly one prime divisor below a bound B, and its remaining prime divisor ¢
(if any) divides m; & n; for some 7 and j satisfying (5.0.1). We want to estimate
the expected cost required to find p, in terms of the size of p and the search
parameters B, d;, d,. Here d,, d, are as in Chapter 5. To achieve this, we
estimate Pry,..(By, dq, dy), the probability of finding p using parameters B, d;,
and d, with a random curve. We also estimate Cost(B;, d;, d,), the cost of running
one curve with these parameters. Then we attempt to minimize the expected total
cost

Cost(By, dy, dy)
Prsucc(Blv d17 d2)

(7.0.1)

The numerator estimate depends on the magnitude of N (arithmetic is cheaper
if N is smaller). The denominator estimate depends on the prime p (larger proba-
bilities for smaller p). The minimization process treats By, d;, and d, as continuous
real variables, while fixing N and p. This process ignores the requirements that d;
be a power of 2 and that d,|d,. Fortunately, the expected cost is very flat near its
minimum (cf. the last two columns of Table 7.4.1), so imposing these restrictions
later does not significantly affect the estimated total cost.

The analysis assumes use of curves with torsion group of order 16 over Q
(Section 6.2). It also assumes that Step 2 uses P(X) = X?* as in Section 5.10.

7.1 Dickman’s function

Dickman’s function p(«a) [9, pp. 3—4] [17, p. 367] estimates the probability that
a large integer z has all its prime factors below x'/«. It satisfies the functional
equation

(7.1.1) pla) = 1 (0<a<l),

ap'(a) = —pla=1) (a>1)
(the ranges for « in [9] are incorrect). An asymptotic formula [9] is

Inp(a) =—a(lna+Inlna —1) + o(«) (a0 — 0).

80

7.2 [Estimated success probability per curve

The curve has been chosen to have order divisible by 16; its order is approxi-
mately p. In terms of Dickman’s function (7.1.1), the estimated success probability
during Step 1 is the probability that an integer near p/16 has all its prime factors
below B,, namely

) (10

(This estimate is slightly pessimistic, since the data in Section 6.3 suggest that the
average powers of 2 and 3 dividing |F,)|/16 are larger than those dividing random
integers.)

Step 2 succeeds if there exists a prime ¢ > B such that

(i) ¢ divides the group order;
(ii) all prime factors of [E(,)|/16¢ are below By;
(iii) two of the multiples of @) constructed during Step 2 satisfy (5.0.1).

Item (i) has estimated probability 1/¢ for ¢ < p/16 and probability 0 otherwise.
The estimated probability of (ii) is given by Dickman’s function. By (5.3.5), the
estimated probability of (iii) is

1 _d1d2
Propaten(ds, dyy ¢) =1 — —— exp(gcd48,q—1)

ged(qo,48)=1

1
= 1= - (Lexp(=2didy/q) + 2exp(—Adydy/q)
+ dexp(—6d,dy/q) + exp(—8d,dy/q)
+ 2exp(—12d,d,/q) + exp(—16d,d,/q)

+ exp(—24d,dy/q) + exp(—48d1d2/q))

Since at most one ¢ > B, can satisfy both (i) and (ii), we can sum the product of
these probabilities over all prime ¢ > B, leading to an estimated Step 2 success

81

probability of

> Pronasen(- da:) (1n(p/1661))

B <q§p/16 q In Bl
q prime
p/IGPrmatch(dh d27 Q) 1H(p/16q) dq
By q In B, Ing

Substituting ¢ = exp(¢’) and adding (7.2.1) gives a total success probability of

(7.2.2)

In(p/16)
Prsucc(Blv d17 d2) = /1 Prmatch(d17 d27 eXp(q/)) P

)

7.3 Estimated time per curve

In(p/16) — Q') dq’

In B, 7

The rows of Table 7.3.1 summarize the major actions during the ECM algo-

rithm. (Actions taking negligible time such as selection of the curve itself are

omitted.) Each row has four entries:

(i) A brief description of the action. Actions appear in the order in which they

are first executed.

(ii) The number of times the action is executed per curve.

(iii) Its asymptotic cost (per execution) for large d;, d,, and B; but fixed N. This

column assumes that M(d) = O(dlogd) in Section 3.1.

(iv) An estimated cost, using the first term of the asymptotic cost, with con-

stants chosen to match actual run times (in milliseconds on a DEC 5000)
for a 150-digit N. Specifically, that run attempted to factor the cofactor
of p(20021) listed in Table 9.2.1, with B; = 3 - 10° and d; = 8192 and

d, = 81920.

82

Action Times Asymptotic cost Fitted cost for
executed | per execution | 150-digit N (msec.)

Step 1 1 O(By) 5.5 B,
Roots of I 1 O(dy) 105 d;
Construct F/(X) 1 O(d,(log d,)?) 0.16 d; (log, d,)?
Construct RECIP(F(X)) | 1 O(d, log d,) 1.5d; log, d,
Roots of H dy/dy O(dy) 25 d,
Construct H(X) dy/dy O(d,(log dy)?) 0.16 d; (log, d,)?
G(Xin;gg;H(X) dy/dy — 1 | O(dy log dy) 1.1d, log, d,
ged(F(X), G(X)) 1 O(d, (log d,)?) 1.5d, (log, d,)

Table 7.3.1: Estimated time per curve (milliseconds)

Table 7.3.1 predicts a total time per curve of

(7.3.1)

Cost(By, dy, dy)
= 5.5B, + 105d, + 0.16d, (log, d;)? + 1.5d, log, d,

dy
+ d—(25d1 +0.16d, (log, d,)* + 1.1d, log, d,) — 1.1d, log, d; + 1.5d, (log, d,)?
1

= 5.5B, + 105d, + 25d, + (0.4d, + 1.1dy)log, dy + (1.66d, + 0.16d,)(log, d;)2.

The precise constants in this estimate depend on the implementation and the
hardware available. Using more precise asymptotic costs also affects (7.3.1).

7.4 Estimated optimal parameters

We want to minimize (7.0.1). The constants in its numerator (cost estimate
(7.3.1)) were derived assuming that N has 150 digits. If all costs of the compu-
tation grow in equal proportions N increases, then the location of the minimum
does not depend on N. (However (3.4.5) suggests this proportionality assump-
tion is incorrect; indeed the data in Table 9.1.1 show that operations modulo a
200—-digit N take 2.4-2.8 times as long as those modulo a 100-digit N, whereas

83

the multiplication modulo N during Step 1 presently uses an O((log N)?) algo-
rithm.) The denominator (success probability estimate (7.2.2)) depends heavily
on the magnitude of p.

Table 7.4.1 gives estimates of the optimal parameters (i.e. those minimizing
(7.0.1)) for various sizes of p. It includes estimated run times (in hours) for the
environment of the last column Table 7.3.1. The minimization was done numeri-
cally. To approximate a prime of d decimal digits, we put p = 10¢=1/2 in (7.2.2).
The integral in (7.2.2) was approximated by Simpson’s rule. Dickman’s function
was approximated using interpolation in a table.

The third and fourth columns of Table 7.4.1 suggest that one should use
dy = Tdy. The expected cost in the sixth column increases by 50% for each each
additional digit in p. With optimal parameters, approximately two-thirds of the
run time is in Step 1 (this percentage is 57%, 65%, 68%, 72% when p has 20, 30,
40, 50 digits). The conditional probability that a success occurs during Step 1
rather than Step 2 while using optimal parameters drops from 11% to 5% as p
increases from 20 to 50 digits.

In practice the size of p is usually unknown. The last column of Table 7.4.1
gives the estimated times to find p of various sizes using parameters optimized
for a p of 31 digits. The estimated times using these parameters are at most
twice the corresponding optimal times if p has 22-41 digits, and within 20% of the
corresponding optimal times if p has 27-36 digits. If N has 150 digits, then each
curve takes about 1.2 hours on a DEC 5000 using these parameters.

The program used to generate Table 7.4.1 was rerun, using P(X) = X'2? rather
than P(X) = X?'. The estimated run times were 3%-10% smaller than the
corresponding times in Table 7.4.1, suggesting that the exponent 24 is too large.
The corresponding table for P(X) = X12 has values of B; about 5%-10% smaller
than those in Table 7.4.1; its values of d; are 2% larger while its values of d,
are 15%-20% larger (suggesting d, = 8d; or dy = 9d;). These differences are
more significant for smaller p. Both P(X) = X?* and P(X) = X!2 have smaller
expected times than P(X) = X%

On a machine with 1024 parallel processors each as fast as a DEC 5000 (or a
network of these), Table 7.4.1 predicts that one can find all factors up to 33 digits
of a 150—digit N within an hour, up to 41 digits within a day, and 50 digits within
a month, assuming perfect parallelism. Such systems may be widely available in
ten years, allowing Rusin’s 42—digit ECM record in Table 1.0.1 to be beaten many
times. Brent [9, p. 18] predicts that factors up to 50 digits can be found this way.

84

Expected | Expected Time with
Digits number | time (hrs.) | By = 500000,
. B, dy dy
inp of for d, = 2048,
curves | 150-digit N | d, = 16384
20 18000 160 1000 51 2.4 7.3
21 25000 210 1300 61 4.0 9.7
22 34000 270 1700 73 6.5 13
23 47000 340 2200 87 11 18
24 65000 430 2900 100 17 26
25 83000 540 3700 120 27 37
26 120000 690 4700 150 43 53
27 160000 860 6100 170 68 7
28 220000 | 1100 7700 200 110 110
29 290000 | 1400 9800 240 170 170
30 390000 | 1700 | 12000 280 260 260
31 510000 | 2100 | 16000 330 390 390
32 670000 | 2600 | 19000 380 600 610
33 880000 | 3300 | 24000 450 920 950
34 1200000 | 4000 | 30000 520 1400 1500
35 1500000 [5000 | 38000 610 2100 2400
36 1900000 | 6100 | 47000 710 3200 3800
37 2500000 | 7500 | 58000 830 4700 6100
38 3200000 | 9200 | 72000 960 7000 10000
39 4200000 | 11000 | 88000 1100 10000 16000
40 5300000 | 14000 | 110000 1300 15000 27000
41 6300000 | 17000 | 130000 1500 23000 45000
42 8700000 | 21000 | 160000 1700 33000 75000
43 11000000 | 25000 | 200000 2000 48000 130000
44 14000000 | 30000 | 250000 2300 71000 220000
45 18000000 | 37000 | 300000 2600 100000 370000
50 56000000 | 95000 | 790000 5300 630000 7800000

Table 7.4.1: Estimated optimal parameters

89

CHAPTER 8

Multiple-Precision and Modular Arithmetic

Timing runs revealed that this program’s time was concentrated on four activ-

ities:
(i) Arithmetic modulo N, esp. multiplication. This is the major activity during
Step 1; it is also used during Step 2 when calculating the z-coordinates for

use in (4.3.1).
(ii) Arithmetic modulo (all) primes p; during a convolution.
(iii) Finding remainders modulo all p; given a value modulo N (Section 3.4).

(iv) Reconstructing remainder modulo N given remainders modulo several p;
(equation (3.4.4)).

The program has been designed to allow parallelism, but each of the above
steps was treated to be an indivisible operation and assumed to be completed on
a single processor. For example, the design allows several independent multiplica-
tions modulo NV to proceed at once, but any such multiplication is completed by a
single processor.

The only parallel architecture used during the study was an Alliant FX/80, a
MIMD architecture which also supports vectorization [4]. If a convolution required
K prime moduli, then the data was structured so K remainders modulo different
primes were stored in adjacent locations, allowing vectorization with unit stride
over the primes (this contrasts with Silverman’s implementation [32], which tried
to assign each prime modulus to a separate processor during the convolutions). A
typical primitive operation used by the FFT is

which has one multiplication, one addition, and one subtraction modulo each p;,
all potentially vectorizable.

8.1 Arithmetic modulo N

Arithmetic modulo N used the algorithm in [28]. Suppose that N can be
represented using { digits in radix R, where R is a power of 2. Let 0 < A, B < N,
with

86

-1 -1 -1
=0 =0 =0

and 0 < a;, b;, n; < R for all 2. The algorithm requires a constant N’ such that
N'-N=-1 (mod R);

such exists since N is odd.

Procedure MODMULN in Figure 8.1.1 is based on the classical (not high-speed)
multiplication techniques (i.e. its time is O((?)). It returns AB/R’ mod N rather
than AB mod N. To compensate, all residues modulo N should be scaled by Rf
beforehand. Define

A= AR mod N

for any integer A modulo N. Then

(A£B) = (A+ B)R' = AR' £ BR' = A+ B (mod N),

(AB) = (AB)R' = (AR")(BR‘)R~* = ABR~' = MODMULN(A, B) (mod N).

If A mod N is represented internally by A, then using MODMULN on two internal
representations gives the internal representation of their product modulo N. The
addition and subtraction algorithms are unchanged. Algebraically, the mapping
A — A is an isomorphism from the ring Z/NZ with conventional arithmetic to
that set with ordinary addition but with multiplication defined by MODMULN.
The additive identity remains 0 = 0, but the multiplicative identity becomes 1.

Given two polynomials F'(X) and G(X), the algorithms of Section 3.4 return
F(X)G(X) mod N. Suppose we invoke it on

F(X):ZEXi and @(X):Zg_ij.

Each output coefficient has the form

ZTZ% = Z (fig;,)R* (mod N)

rather than the desired 3, .(f;g;). That is, they are too large by a factor of
R mod N. This correction is easily incorporated into the convolution algorithm,
by scaling the pre-computed coefficients in (3.4.4).

87

procedure MODMULN(A, B)
C:=0
for 7 from 0 to (— 1 do
Cmt. Suppose (' = Zf;é c; R
dtemp := cy +a; - by
q; := (dtemp - N') mod R
Cmt. Compute C := ((C' — ¢y) + a;

J

(B =by)+q; - N +dtemp)/R.
carry := (dtemp 4 ¢; - ng) /R
for : from 1 to ¢ —1 do

Cmt. 0<ay, g, b, n, < R—1.

Cmt. 0 <carry <2(R-—1).

Cmt. 0<¢g<R—-1life<l—1.

Cmt. 0<dtemp<2R2—R—1if1</(—-1.
Cmt. 0<e, 4 <R—1.

Cmt. 0<dtemp<2R*?—1ifi=/¢—-1.

dtemp := ¢; + carry +a; - b; + q; - n;
¢;_1 = dtemp mod R
carry := |dtemp/R]
end for
Co_q 1= carry
Cmt. C'- Rt = (aja;_ - -ag)p- B+ (q;¢,_1 - qo)r - N
end for
ifC >NthenC:=C—-N
return ¢

end MODMULN

Figure 8.1.1: Procedure for multiplication modulo N

88

8.2 Double-length multiplication

The portion of Algorithm MODMULN of Figure 8.1.1 preceding the final C' >

N test requires the following primitive arithmetic operations:

(i) Addition of nonnegative integers with sum not exceeding 2R? — 1.

(ii) Multiplication of two nonnegative integers below R, with product as large as

(R—1)2.

ii1) Integer quotient and remainder when dividing a nonnegative integer below
ger q g g g
2R? by R. On a binary machine this is equivalent to extracting the least
significant log, R bits or the next 1 + log, R bits of the input.

The length of the operands is ¢ = [logy N; to keep ¢ (and the number of loop
iterations) small, the the radix R be as large as convenient while fitting into a
machine word.

I coded MODMULN in four essentially different ways, some aimed for porta-
bility and some for high performance on certain architectures. The subalgorithm
is chosen at compile time. Different subalgorithms impose different bounds on the

radix K.

Direct. This subalgorithm requires the hardware and language to support integers
as large as 2R? — 1. On a 32-bit machine, we can restrict R < 2'® while using

ordinary integers, or R < 230

The Fortran 77, Fortran 90, and ANSI C language standards do not specify a
long integer data type (though the kind parameter of Fortran 90 permits it).

while using 64-bit results.

The GNU C compiler does support a long long data type, but UCLA’s cur-
rent version (1.39) does not inline the code operating on such data, making it
needlessly slow (though Version 2 has improved support). This subalgorithm
was used primarily in some assembly language versions of MODMULN.

Halfint. This requires that R be an even power of 2. To multiply two operands
a and b where 0 < a, b < R, one writes a = ay + a;V/R and b = b, + b,V/R,
where 0 < aqg, a1, by, by < VR. Then ab = agby + (a,by + aob,)W R + a,b, R;
all products are less than R. We can use three multiplications rather than
four by utilizing the Karatsuba identity (3.1.1).

If V'R is sufficiently small, then the multiplications of integers below VR can
be done by table look-up, using one of the identities

(8.2.1) ab — {(“ ‘Z b)ZJ _ {(a ; WJ

(522) apo OFEFD@HD alatD) Kb+
2 2 :]

89

The use of a table of squares (8.2.1) requires only two table look-ups per
multiplication versus three when using triangular numbers (8.2.2). Equation
(8.2.1) uses a table indexed from from 1 — VR to 2v/R — 2 whereas (8.2.2)
uses indices only from 0 to 2v/R — 2. A test showed (8.2.2) outperforming
(8.2.1) (on a program where the most cache data would be from this table),
but both table look-up methods did poorly.

Double. If the double precision floating point data type can represent integers as
large as 2R? — 1 exactly, and if all arithmetic is exact when the inputs and
outputs are integers and outputs below this bound, then all arithmetic can
be done using floating point and converted back afterwards. On a machine
whose double precision mantissa has 53 bits, as in the IEEE standard, this
allows R = 2?6, On a SUN 4, an optimized Fortran implementation of
MODMULN using this subalgorithm performed almost as well as an assembly
subprogram using the direct subalgorithm and mulsce instructions.

Twos-Comp. This subalgorithm assumes that all integer addition, subtraction,
and multiplication is done modulo some 2° with overflow ignored, where
2> > R (often b = 32). That is, all integer arithmetic really operates in
Z/2°Z; this is the same as twos’ complement arithmetic on b-bit integers.
This subalgorithm also requires that the floating point data type hold items
a few bits larger than required for R.

Suppose we want the upper and lower halves of a,a,+asa,, where 0 < a, < R.
Compute ¢, = (ayay + asay, mod 2°) mod R, using integer arithmetic with
overflow ignored; its remainder modulo R is in the lower bits. The top half
(ayaq 4+ azay —ty)/ R of this result is known to be an integer less than 2R; it
can be estimated using floating point arithmetic whose mantissa is sufficiently
wide, with the result rounded to the nearest integer.

The twos-comp subalgorithm was originally developed for the Alliant, which
can return a double-length (64-bit) integer product in scalar mode but not
in vector mode [4]. It is also the best-performing non-assembly subalgo-
rithm on the DEC 5000 and IBM RS/6000, whose integer and floating point
calculations of aya, + asa, can proceed concurrently in separate functional
units. The RS/6000 compilation used the unsupported -gxflag=hsflt of the
xIf Fortran compiler, to suppress overflow checking when converting floating
point to integer (both here and while preparing Table 9.1.1). Without this
compilation option, halfint was the fastest subalgorithm on the RS/6000.

90

8.3 Arithmetic modulo small primes

The primes p; selected in (3.4.1) should be large enough that only a few are
needed, but small enough that arithmetic modulo the p;, can be done easily. In
order that enough p; exist satistying the congruence condition for primitive roots,
their minimum size is about 24 bits.

A compilation option allows elements of Z /p;Z to be represented as operands in
the interval [—p;, p;] (signed operands) or in [0, p; —1] (nonnegative operands). The
typical operation (8.0.1) is the composition of two simpler operations: replacing

(8.3.1)
b, — w;b; mod p, followed by (a;, b;) — (a; + b;, a; — b;) mod p;

given {a;}, {b;}, {p;}. Since the p, rarely change, we also permit auxiliary constants
which depend only on the p; and can be pre-computed. We want to implement
these operations in a vectorizable fashion.

If a; and b; are nonnegative (i.e. in [0, p; — 1]), then one can implement the
second operation in (8.3.1) by computing a; — p; + b; and a; — b;, then adding
p; to either result if negative. If instead a, and b; are signed operands, then
one can first adjust a; and b; to the interval [0, p;] if they are negative, followed
by outputting a; — p; + b, and a; — b,. In each case the outputs follow the same
conventions as the inputs, at a cost of five vectorizable adds/subtracts (two of them
under conditional mask) plus two vector compares and some loads and stores. The
selection of signed or unsigned data depends primarily on the subalgorithm for
multiplication modulo p,.

Suppose we want a product w;b; mod p,. Analogous to the direct method in
Section 8.2, one can compute the double-length product w;b;, and divide by p;,
if the machine and language support double-length multiplication and division.
These operations are most simply done on nonnegative operands. Division can be
avoided if one uses a method analogous to MODMULN, which is allowed to return
w;b;/2" (mod p;) where ¢ is a constant and 2 > p,. This variation finds ¢; €
[0, 2¢ — 1] such that w;b; — ¢;p; is a multiple of 2, returning either (w;b; — ¢;p;)/2"
or (w;b; — ¢;p;) /2" + p;.

Subalgorithm halfint can also be used here, by breaking each input into two
pieces half as long, and using an even exponent (/. It resembles MODMULN in
Figure 8.1.1, with N replaced by p., { replaced by 2, and R replaced by 2¢/2. This
subalgorithm also prefers nonnegative operands.

Subalgorithm double find approximate quotients ¢; such that |¢; —w;b; /p;| < 1,
by computing w;b;/p; with round-off error at most 0.5 and rounding that result

91

to the nearest integer. The outputs w;b; — p,q; can then be computed exactly if
the floating point mantissa is sufficiently wide (e.g. p? < 253 when using 53-bit
mantissa). This subalgorithm prefers signed data. If the nearest integer function
(Fortran NINT) is slow but truncation towards zero is fast, then approximate
ib; 1+1/2p,
~ b

171

Pi Pi

w:b.

Estimate the right side using floating point arithmetic. Except when w;b; = 0,
the approximation is too large in absolute value but its relative error is less than
1/p;, if floating precision is sufficiently large. Upon converting the right side to an
integer while truncating towards zero, the estimated quotients ¢; are either correct
or one too large, and the computed remainders are in the interval [—p;, p;], as
desired.

Subalgorithm twos-comp also generalizes. As in double, estimate a quotient
q; ~ w;b;/p; via floating point arithmetic. Then compute the remainder w;b;, — p;¢;
using integer arithmetic modulo a power of 2 exceeding 2p;. We know that the
computed remainder has absolute value at most p,, so the computed result must
be correct despite intermediate integer overflow. This subalgorithm prefers signed
data.

Some of these subalgorithms find w;b,/2" mod p; for some ¢ > 0 rather than
w;b; mod p;. One can compensate by scaling all inputs (including primitive roots)
by 2 mod p;, much as used by inputs to MODMULN. Since we must divide by
2" mod p; after the convolutions modulo p;, the constant (P/p;)=! in (3.4.2) should
not be pre-scaled; that multiply removes any bias.

8.4 Finding remainders modulo p,

The convolution algorithm in Section 3.4 reduces all input polynomial coef-
ficients modulo p;. It may also need to scale these residues by 2¢ mod p; if the

multiplication subalgorithm of Section 8.3 so requires. Let a sample input be
A=Yy a; I, as in Section 8.1.

J=0
The direct algorithm begins with the leading coefficient a,_;, which it reduces
modulo p;. Then it reduces a,_; R + a,_, modulo p,, and so on.
To reduce the number of divisions, we can pre-compute all 2¢ 2/ mod p,. Now

the computation reduces to an inner product
1

(8.4.1) A= a; (ZWRf mod pi) (mod p;)
7=0

with each summand bounded by (R — 1)(p; — 1). Analogues of the multiplication
subalgorithms in Section 8.2 handle this inner product. For direct and halfint it is

92

convenient to instead reduce A -2 R modulo p;, getting a remainder in [0, Rp; — 1]
and dividing the latter by R mod p;; this is accomplished by replacing 2 R/ by
2¢ Rit1 in (8.4.1) (and with an additional entry per p; in the pre-computed table).

8.5 Reconstructing remainder modulo N

The outputs A; of a convolution are determined by an inner product (3.4.4) in
which one operand is a residue modulo p;, and the other is a residue modulo N;
the inner product is calculated modulo N. It resembles

(8.5.1) h = iaiBi (mod N)

=0

where a; is a single-precision integer and 0 < B, < N; the integers B, are pre-
computed.

Writing B;R = Ze_é b;;R? (mod N), (8.5.1) becomes

1=

K K £— -1

1 K
hit = Zai(RBz’) = Zai b I = Z R Z a;b;; (mod N).
=0 7=0 7=0 ;=0

=0

The inner sums are evaluated as triple-precision base- R integers, one per j. From
the last digit of this calculated product, we can determine a multiple of N which
when added to the product gives a multiple of E. That multiple is added while
doing carry propagation, to get a result in radix R which is less than ((R -1+

i, ai) times V. Dividing this sum by R (by eliminating its last digit) gives a
remainder which is at most a small multiple of N (at most O(K N) if the p; and
R have the same magnitude); the final quotient and remainder h are determined
using the binary search algorithm on a table of small multiples of N followed by a

multiple-precision subtraction.

8.6 Vectorized carry propagation

Multiple-precision addition and subtraction are much cheaper than multiplica-
tion, but are nonetheless used heavily by ECM. They can be done by starting with
the least significant digit and working up [17, p. 251]. For example, during modular
addition one may need to compute C' = A4+ B — N where A, B, and N are given
by (8.1.1) and C has a like form. Assuming that the radix R is sufficiently small
that 4R fits in a word, one straightforward algorithm appears in Figure 8.6.1.

This algorithm does not vectorize well. Although the computations of a;4b,—n;
can be vectorized, each carry potentially depends on all earlier carries.

93

Cmt. Compute C' = A+ B — N, plus carry out.
carry := 0
for : from 0 to ¢ — 1 do

carry = carry + a; + b, — n;

¢; = carry mod R

carry := |carry/R|

end for

Figure 8.6.1: Straightforward multiple-precision addition and subtraction

Bailey [6, p. 286] vectorizes this operation in almost all cases by assuming that
the carries propagate at most three places to the left. When this assumption fails,
Bailey resorts to scalar operations.

Full vectorization is possible if one can perform integer arithmetic (shifts, adds,
bitwise operations) on vector masks. Initialize ¢; = a; + b; — n; for 0 <7 < — 1.
These satisty 1 — R < ¢; < 2R—2 for all ¢. Then apply the algorithm in Figure 8.6.2
to the {¢;} vector.

Each iteration of the inner loop in Figure 8.6.2 does carry propagation across a
vector of length lnow 4+ 1 < 32, ensuring that all but possibly the most significant
element of the output vector are in range. The values of {v;}}"%“*1 are assumed
stored in a vector register. The first two where’s in the inner loop subtract R
from any elements which previously were R — 1 or larger, while adding 1 to their
left neighbors. This does not alter the numerical value of Zf;é ¢, R', but avoids
digits larger than R — 1. Negative digits, however, may still remain. All remaining
carries are —1 or 0, whereas previously they might have been —1, 0, or +1.

The locations where a carry in is —1 are those where (i) the right neighbor is
negative, or (ii) the right neighbor is zero and that neighbor has a carry in of —1.

Define m; = 0 if v; is positive, m; = 1 if v; = 0, and m; = 2 if v; < 0. Form the
lnow—1
=0

vector masks. There are binary carries from all columns where m; = 2 (i.e. those

binary sum 3 m; 28 = msk, + msk. using the integer add instruction on
where v; < 0), and from those with m; = 1 (i.e. v; = 0) which receive a carry
in. The algorithm sets bits in msk, corresponding to columns receiving a carry
in; msky/2 has bits corresponding to carry outs. These are precisely the locations
where the v; need to be adjusted for carry ins and carry outs in radix K.

The algorithm in Figure 8.6.2 was implemented in assembly language, because
the Alliant Fortran compiler does not support arithmetic operations on vector
masks. Caveat: the bits in the Alliant’s vector masks are numbered with bit 0
being most significant and bit 31 being least significant. In order to get the bits in

94

Cmt. Input digits of ¢ assumed in [1 — R, 2R — 2],
Cmt. except ¢, is allowed to be —R or 2R — 1.
Cmt. On exit, all but possibly ¢,_; are in [0, R —1].
left .=/(
while left > 1 do
Inow := min(32, left) — 1 /* 32 = Maximum vector length */
Set v; 1= ¢;_j. 14, for 0 <2 < lnow.
msk, := mask where v; > R — 1 and 0 <: < lnow
where msky do v; ;= v, — R
where 2 x msk, do v, ;= v; + 1
Cmt. Now all but possibly v, and v,,,,, are in [1 — R, R —1];
Cmt. v, may equal —R.
msk. := mask where v; <0 and 0 <12 < lnow
msks := mask where v; < 0 and 0 <: < lnow
msk, 1= EOR(msk, +msk., msk, msk.) [* EOR = exclusive OR */
Cmt. msk,/2 identifies which entries are too small.
where msk, do v, := v, — 1
where msk,/2 do v, :==v; + R
Set ¢p_je gy 1= v; for 0 < i < lnow.
left .= left — Inow

end while

Figure 8.6.2: Vectorized carry propagation

the proper order for computing msk,, the vector loads and stores used stride —1
rather than +1. That is, v; really held ¢,_; ¢/ 41n00—; Tather than ¢, .

A timing run on the Alliant FX /80 (using one processor) showed the algorithm
in Figure 8.6.2 to be about 30% faster than a partially vectorized implementation
of Figure 8.6.1 on long vectors but worse on short vectors; the crossover point is
about ¢ = 10. Using an if to bypass the where’s when a mask is identically zero
gives an additional 10% improvement.

95

CHAPTER 9

Results

9.1 Timing

Table 9.1.1 gives timing information for various polynomial operations on an
IBM RS/6000 under AIX 3.1. Computations were done modulo N = [1047] 4 60,
N =[1097]+70, N = [10497] 4295, N = [10'997] 4 64, using random operands.
These four values of N are probable primes of 50, 100, 150, and 200 digits. The
convolution algorithm of Section 3.4 used respectively 12, 22, 33, and 44 primes
just below 23! for the convolutions modulo p;. All times are given in hundredths
of seconds, though digits beyond the two most significant are probably noise.

Table 9.1.2 compares the corresponding times on an Alliant FX/80 for the
100—digit N, once running on a single processor and once running with five MIMD
(multiple-instruction, multiple-data) processors. The timing runs were made dur-
ing a period of little other system activity. As on the RS/6000, convolutions
modulo this NV used 22 small primes near 231,

The Alliant times can be contrasted with those in [32, Table 1]. Silverman took
440 4+ 425 4+ 700 = 1565 seconds to construct a polynomial of degree 15360 from
its roots when N = 10'% on an Alliant FX/8 using four processor. Our estimated
time to construct such a polynomial of degree 16384 is 2- 457 + 95 = 1009 seconds
using one processor, and 2-107+22 = 236 seconds using five processors. According
to the Alliant architecture manual [4, Appendices F and G], the FX/8 and FX/80
both have cycle times of 170 nanoseconds, but the FX/80 often requires fewer
cycles per instruction. For example, converting a 32-bit integer vector in memory
with stride 1 to a double precision vector in a register (vmoveld instruction), takes
7T+ VL cycles on the FX/8 but 2+ [V L/2] cycles on the FX/80, where VL is the

vector length (0 < VL < 32). Some major difference in our implementations are:

(1) Ivectorized over the primes p;, while Silverman assigned each p; to a separate

Processor.

(2) Silverman did not reduce the coefficients in (3.4.4) modulo N is advance,
instead constructing a result approximately N? and reducing that modulo N.

Table 9.2.2 compares Step 1 and Step 2 times on a DEC 5000 using (eleven or
twelve) values of N ranging from 105 to 152 digits. The IBM RS/6000 is about
10% faster than the DEC 5000 for this application.

96

Operation n Digits in N
50 100 150 200
128 0.14 0.32 0.55 0.86
Polynomial | 256 0.34 0.70 1.22 1.83
product, 512 0.75 1.55 2.64 3.95
degrees 1024 1.62 3.38 5.67 8.46
n and n —1 | 2048 3.45 7.27 12.21 17.92
4096 7.50 15.62 26.01 38.05
8192 | 15.97 33.22 54.92 80.27
128 0.30 0.67 1.18 1.82
256 0.70 1.48 2.58 3.89
Polynomial | 512 1.55 3.31 5.66 8.48
reciprocal, | 1024 3.45 .37 12.39 18.33
degree n | 2048 7.70 16.08 26.97 39.49
4096 | 16.91 35.05 58.11 84.70
8192 | 36.54 75.50 | 124.49 | 180.50
128 0.26 0.60 1.06 1.68
Construct 256 0.65 1.49 2.65 4.17
polynomial | 512 1.62 3.68 6.46 10.12
of degree n | 1024 3.92 8.86 15.55 24.09
from roots | 2048 9.47 21.03 37.21 57.20
4096 | 22.34 49.54 85.81 | 131.36
8192 | 52.14 | 114.49 | 197.26 | 301.01
128 2.15 4.93 8.68 13.73
Polynomial | 256 5.77 13.00 22.94 36.03
GCD, 512 | 14.70 33.10 58.04 90.79
degrees 1024 | 36.69 81.70 | 142,77 | 222.94
nand n—11]2048 | 89.45 | 198.08 | 344.09 | 531.16
4096 | 214.91 | 472.11 | 816.46 | 1250.38
8192 | 508.46 | 1109.90 | 1903.40 | 2903.61

Table 9.1.1: Times for polynomial operations on RS/6000 (seconds)

97

Operation n Times for 100—digit N (seconds)
1 processor | 5 processors | Speedup
128 1.61 0.38 4.2
Polynomial | 256 2.91 0.67 4.4
product, 512 5.59 1.26 4.4
degrees 1024 11.12 2.49 4.5
n and n —1 | 2048 22.54 5.07 4.4
4096 46.34 10.43 4.4
8192 95.40 21.65 4.4
128 3.47 0.87 4.0
256 7.01 1.68 4.2
Polynomial | 512 13.73 3.21 4.3
reciprocal, | 1024 26.99 6.17 4.4
degree n | 2048 54.03 12.26 4.4
4096 109.43 24.63 4.4
8192 223.62 50.41 4.4
128 2.80 0.71 3.9
Construct 256 7.19 1.77 4.1
polynomial | 512 17.28 4.20 4.1
of degree n | 1024 40.12 9.64 4.1
from roots | 2048 91.33 21.73 4.2
4096 205.15 48.48 4.2
8192 456.57 107.34 4.3
128 24.56 8.69 2.8
Polynomial | 256 66.01 21.45 3.1
GCD, 512 167.71 51.20 3.3
degrees 1024 405.81 118.62 3.4
n and n —1 | 2048 950.06 268.43 3.5
4096 2173.50 598.15 3.6
8192 4893.88 1318.86 3.7

98

Table 9.1.2: Comparative Alliant FX /80 times with one and five processors

9.2 Performance on RSA Factoring Challenge

RSA Data Security, Inc. announced the RSA Factoring Challenge [36] in March,
1991. The competition features two lists of numbers which contestants attempt to
factor. Prizes are awarded quarterly for complete (though not for partial) factor-
izations.

One list, the RSA Challenge List, has potential keys for the RSA public key
cryptosystem [35]. This list’s smallest entry has 100 decimal digits, its next has
110 digits, then 120, ..., up to 500 digits. Presumably most or all entries in this
list have two prime factors of comparable sizes. As of April, 1992, thirteen months
after the contest began, the first two entries of this list had been factored (100
digits by Arjen Lenstra and Mark Manasse, 110 digits by Arjen Lenstra), each
using the Quadratic Sieve algorithm. I did not attempt any entries on the RSA
Challenge list.

The other list, the Partition Challenge List, has partition numbers p(n) (the
number of partitions of n into integer summands without regard to order). For
example, p(5) = T since

d=144=243=1+14+3=14242=14+14+142=1+1+1+1+1.

A table of p(n) values can be computed using the generating function [1, p. 825]

S X =1l = = = .
n=0 n=1 Z (_1)nX(3n2-I—n)/2

To reduce the number of table entries, the competition uses only prime values
of n. This table starts at p(8681), the first such value beyond 10%9. Partition
numbers appear to have many small prime factors, allowing them to be attacked
profitably by ECM. About 30% of the original 1182 entries in the Partition Chal-
lenge List were factored completely by some contestant during the first week of
the competition, and half had been finished by the end of its second quarter.

During Fall, 1991 (third quarter of the competition), the upper bound of the
partition numbers being accepted by the competition was 153 digits. The numbers
p(n) for prime n < 20000 had appeared in the lists for previous quarters, but
eighteen new entries appeared, as listed the first column of Table 9.2.1. T used a
DEC 5000 at UCLA (luna) to find as many factors of these as I could, between
October 1991 and January 1992. After one day, my old program [29] found the
“Fasily found factors” in Table 9.2.1. This completely factored six of the eighteen
entries (those whose “Status” column begins with a “P”, excluding p(20107)).
Then I tried ECM with FFT on the twelve composite cofactors, whose sizes ranges
from 105 to 152 decimal digits. Factors found by the new algorithm are listed

99

separately; each is given a label which identifies its size and which is also used in
Table 9.2.2. The “Status” column identifies the number of decimal digits in the
cofactor, with “P” for probable prime and “C” for composite.

The FFT runs were done in three rounds, with increasing limits, as identified
by the final three columns of Table 9.2.2. Each round had multiple runs, with the
same input data but different random number seed. Each run used two curves
per input number, both chosen to have a torsion group Z/8Z x Z /27 over Q (see
Chapter 6). After running both curves with with Step 1 limit By, Step 2 used
P(X) = X?* for one curve and the Dickson polynomial P(X) = ¢;,,(X) for the
other curve (see Section 5.10); the choice of which polynomial to use first was
decided pseudorandomly. Any one prime factor might be found during Step 1 or
Step 2. but would be discovered only once per run even if both group orders were
smooth. The search limits approximate those in Table 7.4.1 when searching for a
31-digit, 35—digit, or 38—digit prime factor.

Table 9.2.2 summarizes how often each factor was found in each way. After
the first round of 13 runs, the two smallest factors found, of 16 and 17 digits,
were removed from the input numbers (reducing the input from 12 composite
numbers to 11), but the larger factors were retained to see how often they would
be rediscovered.

Excluding the 16— and 17-digit factors, the data shows ten (re-)discoveries using
P(X) = ¢131(X), nine using P(X) = X4, and one in Step 1 (near 170000). The
experimental data suggest that the two choices for P(X) are approximately equally
effective, and one should select the whichever is faster or easier to implement. In
my implementation the overall Step 2 time was about 5% faster using P(X) = X?4.
As noted in Section 5.10, that choice also parallelizes well since up to d; doublings
can be done at once, while only & processors can cooperate to evaluate the next
Gr.o(N;) - @ in Section 5.8.

Given a large random integer N, the estimated number of prime factors of N
with ny to ny digits (inclusive) is

= In(In p) = In(nyIn10) — In((ny — 1)In 10) = In

101 -1

/10"2 1 dp 102 n,
1

0"1—1}_75 n,—1

Since there are 18 numbers in this study, the actual number of prime factors in
this range should be approximately Poisson distributed with mean (and variance)
A =18In(ny/(ny — 1)).

For the ranges 6-10, 11-15, 1620, 21-25, 26-30 and 31-35 digits, Table 9.2.3
compares the total number of factors found to the expected count. The number
found is within one standard deviation of the expected count through 25 digits.
Subsequently the number found is more than one standard deviation too small,
with only one factor found despite an expected six from 26-35 digits.

100

p(n) Easily found factors Factors found by ECM with FFT Status
p(20011) 21 . 7? C150
. p2ba = 11388 95931 68795 51799 29821
p(20021) | 27-11-12601 - 19571 C94
p25b = 95559 95853 69284 14467 61237
25.3.29-405763
p(20023) pl7 = 1275127 19358 05687 C120
38285011
3?-5-29
p(20029) C136
581098232 56591
2-3-5-19-643
23833 - 2960 74447
p(20047) 7586 18677 C105
11716163737
1216966 72529
p(20051) | 193 - 3954 88947 99047 C137
2% .71 - 383 - 421
p(20063) C129
134293 - 937235 68259
p(20071) 27 .3%.5%.1093 P146
p(20089) 5-13%.37-443 p23 = 62280676 23197 85614 44991 ‘ C122
11 - 3840 17087
p(20101) P128
91168347724 92833
p(20107) | 384301 - 94564 80577 pl6 = 670729 17733 03397 ‘ P122
2-3-7-53-419
p(20113) P136
1451 - 143562241
2% .139 - 421 p22 = 1250438 26612 16276 15503
p(20117) C95
9807431 p26 = 11245767024 22824 41059 90867
p(20123) 7? C152
5-109
p(20129) P134
1626673 49399 64211
2-11-733
p(20143) 2976209 - 7465313 P124
3423460 57843
2-11-101-25171
p(20147) C132
1925681 - 695 24729
p(20149) 2%.3-5%-7-4099 P146

Table 9.2.1: Some factors of 153—-digit partition numbers

101

8d,ds

Number of runs made

Step 1 time (2 curves)

Step 2 time (P(X) = X?%)
Step 2 time (Dickson P(X))
Total CPU time/run

Maximum memory

400,000
2048

12288
201,000,000
13

12 hr

4 hr

4 hr

20 hr

3 megabytes

1,000,000
4096

40960
1,340,000,000
12

28 hr

11 hr

11 hr

50 hr

7 megabytes

3,000,000
8192

81920
5,370,000,000
4

87 hr

23 hr

24 hr

134 hr

14 megabytes

P p (mod 48)
2 (Step 1)
pl6 5 4 (Dickson) N.A. N.A.
1 (X7
4 (Step 1)
pl7 23 3 (Dickson) N.A. N.A.
1 (X7
P T e N R
b23 47 3 (Dickson)
2 (X7
2 (Dickson)
p2ha 13 | 1(X*%)
1 (Step 1)
p25b 37 1 (Dickson)
1 (X7
p26 19 1 (Dickson)

Table 9.2.2: How often factors were found by ECM with FFT

102

Digits | Factors Expected C(;;.lﬂt: Found — A
ny—n, | found | A=138In " i VA
6-10 14 12.48 +0.43
11-15 6 7.30 —0.48
16-20 4 5.18 —0.52
21-25 4 4.02 —0.01
26-30 1 3.29 —1.26
31-35 0 2,77 —1.67

Table 9.2.3: Actual and expected numbers of prime factors, by size

These runs used about 13 - 20 4+ 12 - 50 + 4 - 134 =~ 1400 hours, according
to Table 9.2.2. After removing known factors below 20 digits, eleven composite
cofactors remained, with sizes averaging 135 digits. Approximately 120-130 hours
were spent per cofactor. According to Table 7.4.1, this is enough time to find
factors up to about 28 digits, if optimal parameters are used. The parameters for
the middle column of Table 9.2.2 are close to the optimum, but those in the latter
columns are much above the optimum values. Although nothing spectacular was
found, the number of findings is only slightly below what might be expected in
terms of the effort expended.

9.3 Additional findings

The program was also run on some other parts of the partition table and on
the Fibonacci table [12]. Table 9.3.1 lists some additional findings.

103

N B, Factor found

P | 3,000,000 133449 64190 08897 77397 71473

Foss 400,000 5228 87989 13069 01009 56159 28073

Forg 3,000,000 5t 56773116869 8823705984 10032 04301

p(9067) | 2,000,000t | 2753956 39520 89480 76372 83295 84083

p(10141) | 2,000,000 51 3348184460044472 51417
p(13421) | 1,500,000 35589593 04110 4058517512 06891 80647
p(13781) 400,000 129815714774 7138516855 08801
p(13921) 400,000 5366 98856 20098 57941 60297
p(15629) 400,000 46326 4792203425 53526 02553
p(17729) | 2,000,000 171934650 1140549531 27187
p(17737) 400,000 7528266 97843 85245 24035 44267
p(19259) 400,000 18934805 7767039973 51251

51— Identifies factors found during Step 1

Table 9.3.1: Additional factors found

104

1]

[10]

[11]

Bibliography

Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions
with formulas, graphs, and mathematical tables, Dover Publications, Inc., New

York, NY, 1965.

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman, The design and
analysis of computer algorithms, Addison-Wesley, Reading, MA, 1974.

Selim G. Aki, The design and analysis of parallel algorithms, Prentice Hall,
Englewood Cliffs, NJ, 1989.

Alliant Computer Systems Corporation, Littleton, MA, FX/series architec-
ture manual, April 1988, Part number 300-00001-C.

A. O. L. Atkin and F. Morain, Finding suitable curves for the elliptic curve
method of factorization, Draft of January 5, 1992; submitted to Mathematics
of Computation.

David H. Bailey, The computation of © to 29,360,000 decimal digits using
Borweins’ quartically convergent algorithm, Mathematics of Computation 50

(1988), no. 181, 283-296.

I. Borosh, C. J. Moreno, and H. Porta, Elliptic curves over finite fields, 11,
Mathematics of Computation 29 (1975), no. 131, 951-964.

Murray Bremner, Elliptic curves with 16 torsion points and positive rank,

AMS Abstracts 10 (1989), no. 4, 306, Abstract 89T-11-157.

Richard P. Brent, Some integer factorization algorithms using elliptic curves,
Research Report CMA-R32-85, Centre for Mathematical Analysis, The Aus-
tralian National University, GPO Box 4, Canberra, ACT 2601, Australia,
September 1985.

David M. Bressoud, Factorization and primality testing, Springer-Verlag, New
York, NY, 1989, Undergraduate Texts in Mathematics.

John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman, and S. S.
Wagstaft, Jr., Factorization of b* £ 1, b = 2,3,5,6,7,10,11,12 wup to high
powers, 2nd ed., Contemporary Mathematics, vol. 22, American Mathematical
Society, Providence, RI, 1988.

105

[12]

[13]

[14]

[15]

[19]

[20]

[21]

[22]

23]

[24]

[25]

John Brillhart, Peter L. Montgomery, and Robert D. Silverman, Tables of
Fibonacci and Lucas factorizations, Mathematics of Computation 50 (1988),
no. 181, 251-260 & S1-S15.

J. P. Buhler, H. W. Lenstra, Jr., and Carl Pomerance, Factoring integers with
the number field sieve, Version 19920507, 1992.

Richard Crandall, Implementation of the nk method, Electronic mail message,
January 1991.

Noam D. Elkies, On A* + B* 4+ (* = D* Mathematics of Computation 51
(1988), no. 184, 825-835.

Dale Husemoller, Elliptic curves, Graduate Texts in Mathematics, vol. 111,
Springer-Verlag, New York, 1987.

Donald E. Knuth, Seminumerical algorithms, 2nd ed., The Art of Computer
Programming, vol. 2, Addison-Wesley, Reading, MA, 1981.

Daniel Sion Kubert, Universal bounds on the torsion of elliptic curves, Proc.

London Math. Soc. 33 (1976), 193-237, Third series.

Serge Lang, Fundamentals of Diophantine geometry, Springer-Verlag, New
York, 1983.

, Algebra, second ed., Addison-Wesley, Menlo Park, CA, 1984.

A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, and J. M. Pollard, The
number field sieve, Proceedings of the Twenty Second Annual ACM Sym-

posium on Theory of Computing, Baltimore, May 14-16, 1990 (New York),
ACM, 1990, pp. 564-572.

, The factorization of the ninth Fermat number, February 1991.

Arjen K. Lenstra and Mark S. Manasse, Factoring by electronic mail, Ad-
vances in Cryptology, EUROCRYPT ’89 (J.-J. Quisquater and J. Vandewalle,
eds.), Lecture Notes in Computer Science, vol. 434, Springer-Verlag, 1990,
pp- 355-371.

H. W. Lenstra, Jr., Factoring integers with elliptic curves, Annals of Mathe-
matics 126 (1987), no. 3, 649673, Second series.

Rudolf Lidl and Harald Niederreiter, Finite fields, Fncyclopedia of Mathe-
matics and its Applications, vol. 20, Addison-Wesley, Reading, MA, 1983.

106

[26]

[27]

28]

[29]

30]

31]

32]

33]

[34]

Anna Lubiw and Andras Racz, A lower bound for the integer element dis-
tinctness problem, Information and Computation 94 (1991), no. 1, 83-92.

R. T. Moenck, Fast computation of GCDs, Proceedings Fifth Annual ACM
Symposium on Theory of Computing, Austin, TX, 1973, pp. 142-151.

Peter L. Montgomery, Modular multiplication without trial division, Mathe-
matics of Computation 44 (1985), no. 170, 519-521.

, Speeding the Pollard and elliptic curve methods of factorization,
Mathematics of Computation 48 (1987), no. 177, 243-264.

, Design of an FF'T continuation to the ECM method of factorization,
AMS Abstracts 10 (1989), no. 4, 278, Abstract 850-11-25.

via Lucas

, Evaluating recurrences of form «,, ., = f(x,, z,, ©,,_,)

chains, To be submitted to Fibonacci Quarterly, January 1992.

Peter L. Montgomery and Robert D. Silverman, An FFT extension to the
P — 1 factoring algorithm, Mathematics of Computation 54 (1990), no. 190,
839-854.

Francois Morain, Courbes elliptiques et tests de primalité, Ph.D. thesis,
L’Université Claude Bernard, Lyon I, September 1990, Introduction in French,
body in English.

Carl Pomerance, The quadratic sieve factoring algorithm, Advances in Cryp-
tology, Proceedings of EUROCRYPT 84 (New York) (T. Beth, N. Cot, and
[. Ingemarsson, eds.), Lecture Notes in Computer Science, vol. 209, Springer-

Verlag, 1985, pp. 169-182.

R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital
signatures and public-key cryptosystems, CACM 21 (1978), no. 2, 120-126.

RSA Challenge Administrator, Information about RSA Factoring Challenge,
March 1991, Send electronic mail to challenge-info@rsa.com.

J. T. Schwartz, Fast probabilistic algorithms for verification of polynomial
identities, JACM 27 (1980), no. 4, 701-717.

Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in

Mathematics, vol. 106, Springer-Verlag, New York, 1986.

Robert D. Silverman, The multiple polynomial quadratic sieve, Mathematics

of Computation 48 (1987), no. 177, 329-339.

107

