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ABSTRACT OF THE DISSERTATIONAn FFT Extension of the Elliptic Curve Method of FactorizationbyPeter Lawrence MontgomeryDoctor of Philosophy in MathematicsUniversity of California, Los Angeles, 1992Professor David G. Cantor, ChairFactorization of arbitrary integers is believed to be a hard problem. The EllipticCurve Method (ECM), discovered by Hendrik Lenstra, Jr. in 1985, is the bestknown method for �nding 20{ to 30{ digit factors of a large integer N . The ECMalgorithm has two main steps. It computes a large multiple of an element P of anelliptic curve group modulo N , obtaining another elementQ. Step 1 succeeds if westrike the identity element of the group modulo p for some prime divisor p of N . IfStep 1 is unsuccessful, then Step 2 compares multiples of Q, looking for a duplicatemodulo some pjN . This thesis describes how to apply convolutions modulo N andfast polynomial arithmetic algorithms in the search. This e�ectively increases therange of ECM by a factor of 100 with about twice the combined Step 1/Step 2execution time previously required (but more memory). The revised algorithmwas tested by trying it on the RSA Factoring Challenge list.We discuss many architectural considerations relating to the implementation,such as the identifying which portions of the computation can be vectorized orparallelized. We also discuss the algorithms for computer arithmetic.We give a detailed analysis of intermediate results of the fast polynomial GCDalgorithm.We give a family of elliptic curves with torsion group of order 16 and positiverank over Q, and compare the smoothness of their orders to the smoothness ofcurves with torsion group of order 12.
x



CHAPTER 1IntroductionAn integer N > 1 is called composite if is a product of two smaller positiveintegers; otherwise it is called prime. The Fundamental Theorem of Arithmetic [10,p. 5] states that any positive integer has a unique factorization into primes (exceptfor order). But its proof gives no clue about how to �nd these prime factors.This problem has interested mathematicians for centuries. In his DisquitionesArithmeticae, for example, Gauss [17, p. 398] wrote\The problem of distinguishing prime numbers from composites, and ofresolving composite numbers into their prime factors, is one of the mostuseful in all of arithmetic. The dignity of science seems to demand thatevery aid to the solution of such an elegant and celebrated problem bezealously cultivated."As Gauss observes, there are two problems here: checking whether a numberis prime and factoring a number into primes if it is not itself prime. Fermat'sTheorem states that if p is prime and a is an integer not divisible by p, thenap�1 � 1 (mod p). An integer p > 1 which fails this test for some a cannotbe prime and must therefore be composite. M. O. Rabin used a variation ofthis observation [17, p. 379] to give a probabilistic primality test whose runningtime is polynomial in log p. Rabin's algorithm is termed probabilistic becauseit may err, wrongly proclaiming that a number is prime when that number isreally composite (but never the reverse error); the failure probability can be madearbitrarily small through repeated execution of the algorithmwith di�erent randoma. There has been considerable recent progress in algorithms which rigorously provethat a number p which passes Rabin's test is truly prime. Although none of thelatter algorithms run in polynomial time, the state of the art is only slightly worse.For example Morain [33, p. 65] used elliptic curves to prove thatd101137e = 2 � 47 � 4231 � 7789 � p1128;where  is Euler's constant and p1128 is an 1128{digit prime. In April, 1992 Morainproved that the 1505{digit partition number p(1840296) is prime, using four ma-chine years of time on a network of SUN 3/60's.The second problem, that of splitting an arbitrary composite integer N intoits prime factors, is believed to be much harder. The problem was once primarily1



of academic interest, but has gained attention since the 1978 publication [35] of apublic-key cryptosystem whose strength depends on the di�culty of factorization.Three major factorization algorithms were introduced between 1980 and 1990:Quadratic Sieve, Elliptic Curve Method, Number Field Sieve.The Quadratic Sieve algorithm [34] [39] and the Number Field Sieve algorithm[21][13] take time dependent on the size of the integer N being factored. Eachalgorithm �nds many congruences xi � yi (mod N), where xi and yi are eithersquares or products of elements from a factor base. After enough such congru-ences have been found, selected congruences are multiplied together to get anothercongruence X � Y (mod N) in which all elements of the factor base occur to evenexponents both in X and in Y ; this selection is done using linear algebra modulo 2.Then pX and pY are integers, which can be computed modulo N . Any primedivisor of N must divide either gcd(pX +pY ; N) or gcd(pX �pY ; N); if eitherGCD is nontrivial, then one has a factor of N . The two methods di�er in howthe congruences xi � yi are found. The Quadratic Sieve algorithm has been usedfor N as large as 116 decimal digits, using a worldwide network of computers [23].That network also factored the 155{digit Fermat number 2512 + 1 using NumberField Sieve [22].The time for Elliptic Curve Method (ECM) depends primarily on the size ofthe prime factor p of N . The ECM algorithm requires considerable arithmeticmodulo N ; if p is a prime divisor of N , then ECM is really doing arithmeticmodulo p, since there is a natural ring homomorphism from Z=NZ to Z=pZ=GF(p). Over the �eld GF(p), the algorithm operates in an abelian group whoseorder is p + O(p1=2). If this order is su�ciently smooth (i.e. if the group orderhas no large prime divisors), then ECM usually �nds p. When the algorithm isunsuccessful, it can be repeated using a (presumably) di�erent group. The grouporder seems more likely to be smooth when the prime p (and hence the order) issmall, in which case fewer trials are needed to �nd p (but see Section 6.3). Thetime for ECM also grows with the time to do arithmeticmodulo N , but this growthis less severe.The Quadratic Sieve algorithm and improved computer hardware were majoringredients in causing the smallest composite cofactor in Appendix C of [11] (a booklisting known factors of bn�1 for selected b and n) to leap from 51 digits in its 1983edition to 80 digits in its 1988 edition. Between those years, the ECM algorithmfound a thousand previously unknown prime factors for these tables. Even whenECM found only some factors of a number, the cofactor was sometimes su�cientlysmall for Quadratic Sieve to complete the work quickly.As of April, 1992, seven calendar years and hundreds of machine years afterECM's introduction, three 38{digit factors, one 40{digit factor, and one 42{digitfactor had been found; these appear in Table 1.0.1. Here Fn denotes the n{th2



Fibonacci number. Lenstra found his 40{digit factor of an 89{digit cofactor ofthe partition number p(11279), using ECM on a MasPar with 214 processors andallocating 11 processors per curve. Rusin found the 42{digit factor of the Cun-ningham number 10134+1067+1 on a SPARC using the program in [29] with limitsB1 = 2 � 106 and B2 = 108.Factor Of Discoverer(s)648 38817 74757 80953 23592 82791 43858 46481 11118 + 1 Arjen K. Lenstra,Mark S. Manasse733 30281 86548 76640 68079 92440 06620 01093 F467 Robert D. Silverman792 94907 48252 58311 72666 22855 30467 08561 F667 Peter L. Montgomery12320 79689 56766 26861 48201 86399 55442 47703 p(11279) Arjen K. Lenstra18 49764 79633 09293 11033 13037 83550 43553 63361 10201 � 1 Dave RusinTable 1.0.1: Largest ECM factors foundFor a history of factorization and primality testing algorithms, see [11] and [10].1.1 Summary of main resultsThis work implements the algorithm summarized in [30], extending the workof [9]. With optimal parameters, the method described in this thesis beats itspredecessor [29] when searching for prime factors over 25 digits. The major factorsfound during this work appear in Tables 9.2.1 and 9.3.1. The largest factor foundwas a 33{digit factor of the partition number p(13421). A 31{digit factor and a32{digit factor were found during Step 1, but no other factor over 29 digits wasfound during six months of runs (primarily on a DEC 5000).1.2 Acronyms and notationsTable 1.2.1 lists acronyms used in this report; Tables 1.2.2, 1.2.3, and 1.2.4list some notations used. Non-standard acronyms and notations are de�ned where�rst used.The notation a � b (mod c) means that a� b is divisible by c. The notationb mod c (without parentheses) denotes the nonnegative remainder upon dividingthe integer b by the positive integer c; it satis�esb mod c = b� cbb=cc and 0 � b mod c � c� 1:3



For polynomials, B(X) mod C(X) denotes the remainder upon dividing B(X) byC(X) 6= 0; it satis�esB(X) mod C(X) = B(X)�C(X)$B(X)C(X)% ;deg�B(X) mod C(X)� < deg�C(X)�:AIX Operating system on IBM RS/6000AMS American Mathematical SocietyDEC Digital Equipment Corporation (computer manufacturer)DP Desired property (Chapter 5)ECM Elliptic Curve MethodECM/FFT Elliptic Curve Method with Fast Fourier Transform extensionFFT Fast Fourier TransformGCD Greatest common divisorHALFGCD Polynomial half-GCD algorithm (Figure 3.8.1)HG HALFGCD input or output property (Section 3.8)IBM International Business Machines (computer manufacturer)LIFO Last in, first outMIMD Multiple instruction, multiple data (parallel architecture)MIPS Computer manufacturerMODMULN Modular multiplication algorithm (Figure 8.1.1)N.A. Not applicableRECIP Polynomial reciprocal (Section 3.5)POLYEVAL Polynomial evaluation algorithm (Section 3.7)POLYGCD Polynomial GCD algorithm (Figure 3.8.2)RSA Rivest, Shamir, and Adleman (public-key cryptosystem [35])SIMD Single instruction, multiple data (parallel architecture)UCLA University of California, Los AngelesTable 1.2.1: Acronyms
4



A Coe�cient of X2Z2 in homogeneous form (2.3.3) of elliptic curveB Coe�cient of Y 2Z2 in homogeneous form (2.3.3) of elliptic curveB1 Upper bound for prime powers during Step 1C Field of complex numbersCost(: : : ) Cost per elliptic curve: see (7.3.1)d1, d2 Degree of F (X) (resp. G(X)) in Section 4.3d(n) Number of divisors of n, including 1 and nE(p) Reduction of elliptic curve E modulo a prime pEOR(x; y) Bitwise exclusive OR (two or more arguments)F (X) Polynomial modulo which computations are done in Section 4.3Fn nth Fibonacci number: F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn if n � 0G(X) Latest polynomial remainder in Section 4.3gk;�(X) Dickson polynomial (Section 5.1)gcd(m; n) Greatest common divisor of m and nGF(pk) Field of p elements (p a prime, k > 0, usually k = 1)GF(pk)� Nonzero elements of GF(pk)H(X) Polynomial multiplied by G(X) modulo F (X) in Section 4.3In n� n identity matrixL(x) exp(plnx ln lnx ) (de�ned for x > 1)M(n) Time to multiply two polynomials each of degree at most n� 1in a (�xed) ring R (Chapter 3)mi Multiples of Q used to compute x-coordinates for F in Section 4.3Table 1.2.2: Notations, part I
5



N The integer being factored, or modulo which arithmetic is donenj Multiples of Q used to compute x-coordinates for H in Section 4.30m;n m� n zero matrixO Point at in�nity on elliptic curve (group identity element)O(f(n)) Any function g(n) such that g(n)=f(n) is bounded as n! +1o(f(n)) Any function g(n) such that limn!1 g(n)=f(n) = 0P (X) Polynomial used to select multiples of Q in Chapter 5Prsucc(: : : ) Success probability per curve: see (7.2.2)p(n) Number of unordered partitions of an integer nQ Field of rational numbersQ Point on elliptic curve group as output from Step 1(m �Q)x x-coordinate of m �Q, in elliptic curve groupQ(p) Reduction of Q modulo a prime pq Order of Q modulo some prime pqmax Upper bound for q in Chapter 4R Commutative ring (within Chapter 3)Res(F; G) Resultant of two polynomials; see (3.10.2)Tm;n;k(F ) m� n Toeplitz matrix (3.10.1) from coe�cients of polynomial Ftadd Time for addition, subtraction, or negation in ring Rtinv Time for �nding a multiplicative inverse (when it exists) in ring Rtmul Time for multiplication in ring RZ Ring of integersZ=NZ Ring of integers modulo NTable 1.2.3: Notations, part II
6



8p16 An 8{th root of 16 modulo q�(n) M�obius function: 8<: 0 if n has repeated factors,(�1)d if n has d distinct prime factors.�(n) Euler's totient function�n(X; Y ) n{th cyclotomic polynomial in two variables: Qdjn (Xd � Y d)�(n=d)�(�) Dickman function: see Section 7.1�(s) Zeta function: P1n=1 n�sbxc Largest integer n such that n � x (x real)dxe Least integer n such that n � x (x real)$F (X)G(X)% Polynomial quotient (remainder discarded)(F , G polynomials in X)x� y,y� x Both mean x is much less than yx � y,x � y Both mean x is approximately y; � is stronger than �xjy x divides y (x, y integers)x-y x does not divide y (x, y integers)Table 1.2.4: Notations, part III
7



CHAPTER 2Elliptic Curve Method and its HistoryAn elliptic curve E over a �eld K is de�ned by a cubic equationY 2 + a1XY + a0Y = b3X3 + b2X2 + b1X + b0(2.0.1)with coe�cients in K, where b3 6= 0 and where the discriminant does not vanish(i.e. the right side of (2.0.1) must not have repeated roots after completing thesquare in Y on the left). We assume henceforth that char(K) 6= 2; 3. Then thelinear change of variabley = b3 (Y + a1X=2 + a0=2) ; x = b3X + b2=3 + a21=12;converts (2.0.1) to the Weierstrass formy2 = x3 + ax+ b;(2.0.2)where a; b 2 K and 4a3+27b2 6= 0. The curve consists of all points (x; y) satisfying(2.0.1), together with a point at in�nity, denoted by O.The points on an elliptic curve form an abelian group with identity element Oif we de�ne the group law suitably [38, pp. 55�.]. Suppose E is given by (2.0.2).The negative of O is �O = O; the negative of any other point P1 = (x1; y1) on Eis its reection with respect to the x-axis: �P1 = (x1; �y1). The sum P1 + P2 oftwo points P1, P2 2 E is de�ned by [38, pp. 58{59]:(i) If P1 = O, then P1 + P2 = P2.(ii) If P2 = O, then P1 + P2 = P1.(iii) If P1 = �P2, then P1 + P2 = O.
8



(iv) If none of (i), (ii), (iii) holds, then P1 + P2 = (x3; y3) where� = 8>>>>><>>>>>: y2 � y1x2 � x1 ; if x1 6= x2;3x21 + a2y1 ; if x1 = x2;x3 = �2 � x1� x2;y3 = �(�(x3 � x1) + y1):(2.0.3)
The parameter � in (2.0.3) is chosen so that the line y = �(x� x1) + y1 passesthrough P1 and P2 if P1 6= P2, and is tangent to E at P1 if P1 = P2. This lineintersects the curve at a third point (x3; �y3) = �P3 (which may equal P1 or P2).The group law is de�ned so that if a straight line passes through three points ofE, then those three points sum to O. Figure 2.0.1 illustrates the group law, bycomputing 2P + Q in two ways for P = (0; 1) and Q = (�1; 2) on the curvey2 = x3 � 4x+ 1.When K = GF(p) is the �eld of p elements, the group E has �nite order. Hasse[38, p. 131] proved that the order of this group satis�es���p+ 1� jEj ��� � 2pp:Hence the group order is numerically very close to p. The actual group order varieswith the choice of curve.2.1 Lenstra's original algorithmLenstra announced the ECM algorithm in February, 1985 and published it in1987 [24]. It is modeled after Pollard's P �1 algorithm [10, pp. 67�.]. With properchoice of parameters, the expected amount of arithmetic modulo N required to�nd a prime factor p of N by ECM is L(p)2+o(1) [24, p. 651] whereL(p) = exp�qlnp ln ln p � :When p � N1=2, this complexity matches that of the Quadratic Sieve algorithmmentioned in Chapter 1, but with higher constants. For p = O(N1=2��) where� > 0, the ECM algorithm is asymptotically faster than Quadratic Sieve as N !1.Lenstra [24, pp. 663�.] generalizes the de�nition of elliptic curve to work over aringZ=NZwith gcd(N; 6) = 1 as well as over a �eld. He de�nes a pseudo-addition9
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on these curves by emulating the algebraic rules for adding two points over a �eld,except when (2.0.3) might encounter a nonzero, non-invertible denominator. Anysuch denominator must be a zero divisor modulo N , which is fortuitous ratherthan disastrous since the greatest common divisor algorithm will reveal a non-trivial factor of N . From this pseudo-addition Lenstra de�nes a multiplicationwhich is algebraically equivalent to ordinary group multiplication unless a zerodivisor of N is encountered.Lenstra selects a random curve E over Z=NZwith known initial point P .Compute Q = R � P , where R is a positive integer divisible by all prime powersbelow some bound B1. This computation can fail only if some denominator is azero divisor, in which case a factor is found. For each prime factor p of N , letE(p) denote the reduction of E modulo p (see [16, Chapter 5] for de�nition). Ifany order jE(p)j divides R, then the reduction Q(p) of Q in E(p) is the identity,by Lagrange's Theorem about subgroup orders. When the reduction of Q is theidentity in E(p) for some but not all primes p dividing N , then Q's denominatoris divisible by some but not all prime factors of N , triggering the aforementioned\failure".2.2 Step 2 | Brent and Montgomery improvementsLenstra's algorithm multiplies an initial point P on a curve E by an integer R,obtaining Q = R � P (a process called \Step 1"). Step 1 fails if no zero divisor isencountered. It succeeds if the group order jE(p)j divides R for some prime pjN .Suppose that jE(p)j - R but jE(p)j j Rq for some prime q, with q not too largeand pjN . Then q �Q = q � (R � P ) = (qR) � P = Oin E(p). So the reduction Q(p) has order dividing q, and must either be the identityor have order q.Both Brent [9] and Montgomery [29] observed early that Lenstra's algorithmcan be modi�ed to take advantage of such occurrences. Each suggests computingseveral multiples ni � Q for selected ni. If some ni � nj (mod q), then the pointsni �Q and nj �Q agree upon reduction modulo p; unless ni = nj , these are unlikely tomatch modulo other primes dividing N , so p can be found by comparing ni �Q andnj �Q. The match can be done by testing the di�erence of their x-coordinates; thenthe match also succeeds if qj(ni + nj). This entire process is nicknamed \Step 2".Brent and Montgomery di�er on how to select the ni. Montgomery suggestscomparing multiples of Q along an arithmetic progression to a few �xed multiplesof Q. Brent suggests the use of semirandom multiples. This question is discussedin detail in Chapter 5. 11



2.3 Weierstrass and Montgomery parameterizationsWhen P1 6= P2, (2.0.3) uses one inversion and two multiplications (one a squar-ing); it uses another squaring if P1 = P2. The inversion may be avoided by usinghomogeneous coordinates, in which each coordinate is represented as a quotientof two elements of K, and using rational arithmetic in (2.0.3). Straightforwardattempts (whether using a common denominator or separate denominators for xand y) use about 10 multiplications in place of the inversion in (2.0.3).Montgomery [29, pp. 260{261] suggested an alternate parameterization whichallows the use of homogeneous coordinates (i.e. no inversions) while keeping thenumber of multiplications small. To motivate it, consider the a�ne curvey2 = b3x3 + b2x2 + b1x+ b0 (b3 6= 0):(2.3.1)If P1 = (x1; y1) and P2 = (x2; y2) are two points on (2.3.1) with x1 6= x2, with sumP+ = (x+; y+) and di�erence P� = (x�; y�), thenx+ =  y1� y2x1� x2!2 � b2b3 � x1� x2= b3x1x2(x1 + x2) + 2b2x1x2 + b1(x1 + x2) + 2b0 � 2y1y2b3(x1 � x2)2 ;x� =  y1 + y2x1� x2!2 � b2b3 � x1� x2= b3x1x2(x1 + x2) + 2b2x1x2 + b1(x1 + x2) + 2b0 + 2y1y2b3(x1 � x2)2 :A straightforward calculation givesx+x� = (b3x1x2 � b1)2� 4b0(b3x1 + b3x2 + b2)b23(x1� x2)2 :If we require b1 = b3 and b0 = 0, then this simpli�es tox+x� = (x1x2� 1)2(x1� x2)2 :(2.3.2)This allows one to compute the x-coordinate x+ of P1 + P2 from those of P1, P2,and P1 � P2 with a few multiplications, inversions and squarings.12



By itself, (2.3.2) costs more that (2.0.3), but (2.3.2) imposes little overheadwhen switching to homogeneous coordinates. Upon setting b0 = 0, b1 = b3 = 1=B,b2 = A=B in (2.3.1) and putting y = Y=Z, x = X=Z, we obtainBY 2Z = X(X2 +AXZ + Z2):(2.3.3)This is an elliptic curve if and only if B 6= 0 and A 6= �2.Equation (2.3.3) is said to be in homogeneous (or projective) form, because it isinvariant upon replacing (X; Y; Z) by (kX; kY; kZ) for any k 6= 0. Its coordinatesare often written (X : Y : Z) rather than (X; Y; Z). The group identity elementis O = (0 : 1 : 0). The negative of P = (X : Y : Z) is �P = (X : �Y : Z).If P1 = (X1 : Y1 : Z1) and P2 = (X2 : Y2 : Z2) are two points on (2.3.3) withdistinctX=Z ratios (hence not equal or negatives of each other) and with di�erenceP1 � P2 = (X� : Y� : Z�), then their sum P1 + P2 = (X+ : Y+ : Z+) satis�esX+Z+ = Z�(X1X2 � Z1Z2)2X�(X1Z2 � Z1X2)2= Z��(X1 � Z1)(X2 + Z2) + (X1 + Z1)(X2 � Z2)�2X��(X1 � Z1)(X2 + Z2)� (X1 + Z1)(X2 � Z2)�2;(2.3.4)by (2.3.2). Montgomery also gives a doubling rule: if P1 = (X1 : Y1 : Z1), then2P1 = (X2 : Y2 : Z2) is given byX2Z2 = (X21 � Z21 )24X1Z1(X21 +AX1Z1 + Z21 )= (X1 + Z1)2(X1 � Z1)2(4X1Z1)�(X1 � Z1)2 + ((A+ 2)=4)(4X1Z1)�;where 4X1Z1 = (X1 + Z1)2 � (X1 � Z1)2:(2.3.5)He proposes computing only the (X : Z) ratios. By (2.3.4) and (2.3.5), one canadd two points on (2.3.3) with six multiplications if their di�erence is known, andone can double a point with �ve multiplications if (A+2)=4 is known. He computeslarge multiples of a point using the methods in [31].Not every elliptic curve of the form (2.0.1) can be linearly transformed to form(2.3.3) unless the base �eld K is algebraically closed or has other nice properties.But ECM lets its user choose the curve, and there is no prohibition against selectingone of form (2.3.3). The curve selection strategy is discussed in detail in Chapter 6.13



CHAPTER 3Fast Polynomial ArithmeticOur algorithms will require fast polynomial arithmetic over the ring Z=NZ,including multiplication, remaindering, and greatest common divisor. This chaptersummarizes some of the fast algorithms found in the literature, emphasizing howthey apply to this ring. It includes a detailed analysis of intermediate results ofthe fast GCD algorithm.All rings in this chapter are assumed commutative. Polynomials are univariateunless otherwise indicated.3.1 Minimal time for polynomial multiplicationLet M(n) be the time required to multiply two polynomials F (X) and G(X)of degrees at most n� 1 over a given ring R, i.e. to compute the coe�cients of theproduct given the coe�cients of the inputs. We assume that a ring addition orsubtraction can be computed in time tadd, a ring multiplication in time tmul, anda multiplicative inversion (when it exists) in time tinv. These times are assumedconstant for any given ring R, but may depend on R.Since any multiplication algorithm must read all 2n input coe�cients, we havethe trivial lower bound M(n) � O(n). The straightforward algorithm uses n2multiplications and (n� 1)2 additions in the ring, giving the upper boundM(n) � n2tmul+ (n� 1)2tadd:Karatsuba [17, pp. 278{279] [2, pp. 62{64] observed that we can do better bydivide and conquer. Suppose that n = 2m is even. WriteF (X) = F0(X) + F1(X)Xm and G(X) = G0(X) +G1(X)Xm;where deg(F0), deg(F1), deg(G0), deg(G1) < m. ThenFG = (F0 + F1Xm)(G0 +G1Xm)= F0G0 + (F0G1 + F1G0)Xm + F1G1X2m= F0G0 + �(F0 + F1)(G0 +G1)� F0G0 � F1G1�Xm + F1G1X2m:(3.1.1)
14



The polynomials F0, G0, F1, G1, F0 + F1, and G0 +G1 all have degrees less thanm = n=2. This technique givesM(n) � 3M(m) + (2m+ 2(2m� 1))tadd = 3M(n=2) + (3n� 2)tadd:Together with M(1) = tmul, the solution of this recurrence isM(2n) � 3ntmul+ (5 � 3n � 6 � 2n + 1)tadd (n � 0);so M(n) = O (nlog2 3(tmul+ 5tadd)) = O (n1:585(tmul + 5tadd)) :(3.1.2)If the original bound n on the degrees is not a power of 2, then we can increasethe bound and still achieve (3.1.2). This method works over any ring.We will assume in subsequent analyses that the M(n) function satis�esaM(n) �M(an) � a2M(n)(3.1.3)for a � 1 [2, p. 280].3.2 Circular convolutionsWe start by de�ning a circular convolution of two vectors (called cyclic convo-lution in [17, p. 491] and positive wrapped convolution in [2, p. 256]).De�nition 3.2.1 Let f = [f0; f1; f2; � � � ; fn�1]T and g = [g0; g1; g2; � � � ; gn�1]Tbe two n-vectors over a ring R. Their circular convolution (of length n) f 
 g isde�ned to be the n-vector h = [h0; h1; h2; � � � ; hn�1] wherehk = Xi+j�k (mod n) figj (0 � k � n� 1):Circular convolutions of length n are really polynomial multiplications mod-ulo Xn � 1. If f , g, and h are as in De�nition 3.2.1, and ifF (X) = n�1Xi=0 fiX i; G(X) = n�1Xi=0 giX i; H(X) = n�1Xi=0 hiX i;then h = f 
 g is equivalent to H(X) � F (X)G(X) (mod Xn � 1). For example,if h = f 
 g, thenH(X) = n�1Xk=0 hkXk = n�1Xk=0 Xi+j�k (mod n) figjXk� n�1Xk=0 Xi+j�k (mod n) figjX i+j = n�1Xi=0 n�1Xj=0 figjX i+j= F (X)G(X) (mod Xn � 1):15



If we can perform fast circular convolutions, then we have an algorithm forfast polynomial multiplication. Given two polynomials F and G, choose n >deg(F ) + deg(G). Use a circular convolution of length n (after padding withleading zeros) to form F (X)G(X) (mod Xn � 1); this must equal F (X)G(X)since deg(FG) < n. We can also use n = deg(F ) + deg(G) if we compute theleading (or constant) coe�cient of the product directly.3.3 FFT for polynomial multiplicationThe Fast Fourier Transform (FFT) algorithm [2, pp. 252�.] is the basis of thefastest known polynomial multiplication algorithms. If the base ring R satis�es cer-tain conditions, then the FFT algorithm executes a circular convolution of length nusing O(n log n) operations (additions and multiplications) in the base ring. Thisis asymptotically better than the O(n1:585) bound for M(n) from Section 3.1.Speci�cally, when the length n is a power of 2 and n > 1, the FFT algorithmrequires (i) that 2 have a multiplicative inverse in R, and (ii) that there exist a(known or easily computable) element ! such that !n=2 = �1. When R = C isthe �eld of complex numbers, these are satis�ed for ! = e2�i=n. The conditions arealso satis�ed when R = GF(p) is the �eld of p elements if p � 1 (mod n) and ! isthe ((p� 1)=n){th power of a primitive element of the �eld.Given two polynomials F (X) = Pn�1i=0 fiX i and G(X) = Pn�1i=0 giX i of degreeat most n� 1, the FFT algorithm constructs the n-vectorsf̂ = [F (1); F (!); F (!2); � � � ; F (!n�1)]T ;ĝ = [G(1); G(!); G(!2); � � � ; G(!n�1)]Tfrom the coe�cient vectors f = [f0; f1; � � � ; fn�1]T and g = [g0; g1; � � � ; gn�1]T .These vectors f̂ and ĝ are the discrete Fourier transforms (DFT) of f and g. Astraightforward computation [2, p. 255] shows that the pointwise product[F (1)G(1); F (!)G(!); F (!2)G(!2); � � � ; F (!n�1)G(!n�1)]T(3.3.1)of f̂ and ĝ is the DFT of the circular convolution h = f 
 g. From ĥ, an inversediscrete Fourier transform (i.e. an interpolation) produces h and hence the coe�-cients of H(X) = F (X)G(X) (mod Xn � 1). The beauty of the FFT is that theevaluation and interpolation stages take only(n log2 n� 2n + 2)tmul + (2n log2 n)tadd;16



plus an extra n multiplications by n�1 during the interpolation. (This assumesthat all roots of unity are known, and does not count trivial multiplies by �1.)Adding the time for (3.3.1) yields a bound of(3n log2 n� 4n+ 6)tmul + (6n log2 n)taddfor multiplication modulo Xn � 1. Replacing n by 2n givesM(n) � 2n log2(2n)(3tmul + 6tadd)if the ring satis�es the requirements and n is a power of 2. See [2, pp. 257�.] fordetails.3.4 Circular convolutions over Z=NZWe would like to apply the methods of Section 3.3 to the ring R =Z=NZ, whereN is the integer we are attempting to factor. The FFT has two requirements: (i) 2must have a multiplicative inverse in R, and (ii) there must be a known element !with !n=2 = �1. Requirement (i) is satis�ed, since our N will be odd. Requirement(ii) will usually not be satis�ed.Montgomery and Silverman [32, pp. 842{843] perform circular convolutionsmodulo N by executing several such convolutions modulo small primes and usingthe Chinese Remainder Theorem to get a result modulo N . The small primes areselected so that the requirements in Section 3.3 are satis�ed.Let n be a power of 2. Suppose that we want a polynomial product F (X)G(X)(mod N; Xn � 1) where deg(F ) < n and deg(G) < n, and where all coe�cientsof F and G are in the interval [0; N � 1]. Select distinct primes fpigKi=1 such thateach pi � 1 (mod n) and P = KYi=1 pi > nN2=(1� �):(3.4.1)Here � > 0 depends on the precision of oating point arithmetic. Perform a single-precision circular convolution modulo each pi, using the methods of Section 3.3,after reducing the coe�cients of F and G modulo pi. The next step is to constructF (X)G(X) � n�1Xj=0 hjXj (mod Xn � 1)over Zfrom the known productsF (X)G(X) � n�1Xj=0 hijXj (mod pi; Xn � 1):17



Since hj � hij (mod pi), the Chinese Remainder Theorem shows thathj � KXi=1 Ppi yij (mod P );where yij � (P=pi)�1hij (mod pi):(3.4.2)The bounds 0 � hj � n(N � 1)2 < P lead to the explicit formula [32, equation(4.4)] hj = KXi=1 Ppi yij � P $ KXi=1 yijpi + �2% :(3.4.3)We can get hj mod N directly from (3.4.3). A more computationally convenientformula for hj mod N ishj � KXi=1  Ppi mod N! yij + �(�P ) mod N� $ KXi=1 yijpi + �2% (mod N):(3.4.4)The coe�cients ((P=pi)�1 mod pi) in (3.4.2) can be pre-computed and stored intables. So can (P=pi mod N) and the 0{th through (K + 1){st multiples of(�P ) mod N in (3.4.4). With these tables, computation of an hj from fhijgKi=1requires at most(i) K modular multiplications to get the yij, with 0 � yij � pi � 1;(ii) O(K) oating point operations to evaluate $ KXi=1 yijpi + �2%;(iii) K multiplications of yij by residues in [0; N � 1];(iv) K additions of numbers in [0; N � 1];(v) One reduction modulo N of a integer in h0; �N � 1��K +PKi=1(pi � 1)�i.The cost is O(K) for (i) and (ii), O(K logN) for (iii) and (iv), and O(logN logK)for (v). Since there are n di�erent coe�cients hj , the cost of the Chinese RemainderTheorem is O(nK logN). Reducing the 2n input coe�cients of F (X) and G(X)modulo the K primes pi also takes time O(nK logN). A circular convolution oflength n modulo pi takes O(n log n) operations in GF(pi), each of assumed costO(1). Hence the total time for a circular convolution modulo N isO(nK logN) +O(Kn log n) = O(nK log(nN)):18



Since K = O(log(nN2)) by (3.4.1), this time bound isO(n log(nN2) log(nN)) = O(n(log n+ logN)2):(3.4.5)David Cantor mentioned another algorithm for polynomial products moduloN ,due to David Robbins. Suppose we are given F (X) = Pn�1i=0 fiX i and G(X) =Pn�1i=0 giX i, where 0 � fi; gi < N . Select a radix R and writefi = `�1Xj=0 fijRj; gi = `�1Xj=0 gijRj :The coe�cients of F (X)G(X) and hence those of F (X)G(X) mod N can be foundfrom those of the polynomial product0@n�1Xi=0 `�1Xj=0 fijX iY j1A0@n�1Xi=0 `�1Xj=0 gijX iY j1A(3.4.6)upon substituting Y = R. This polynomial product in (3.4.6) can be found usingmethods for univariate polynomial multiplication after setting Y = X2`�1. Thisconverts the original problem from a convolution of length 2n with coe�cients atmost N �1 to a convolution of length about d = 2n(2 logRN �1) with coe�cientsat most R�1. The coe�cients of the latter product are bounded by (d=2)(R�1)2.The latter convolution can be carried out by modular arithmetic; it can also bedone by oating point arithmetic if R is su�ciently small. This allows the use ofcommercial FFT routines, which are often optimized for a particular architecture.For example, when 128{bit hardware oating point arithmetic (with mantissa circa110 bits) becomes available, then R � 230 should be feasible even if n � 220 (degree106) and ` � 210 (9000{digit integers).The estimated time for Robbins's algorithm isO d log d log�(d=2)(R � 1)2�!= O�n logN(log n+ log logN)2�if R is kept �xed and we approximate the time for oating point arithmetic linearlyin the number of bits of precision required. This is as good as (3.4.5) (exceptpossibly for the constant factor) as n ! 1 with N �xed, but better as N ! 1with n �xed. Either algorithm might be better in practice.19



3.5 Polynomial reciprocals and divisionAlgorithms for fast polynomial division use Newton's method to compute areciprocal, followed by a multiplication to compute the desired quotient. Theremainder, if desired, can be found after another polynomial multiplication andsubtraction.If F (X) is a polynomial of degree n� 1 whose leading coe�cient is invertible,then its reciprocal [2, p. 287] is de�ned to be the polynomial quotientRECIP(F ) = $X2n�2F (X) % :Observe that F (X)=Xn�1 is a �nite Laurent series with invertible constant term,and RECIP(F )=Xn�1 has precisely the terms throughX�(n�1) in the Laurent seriesfor �F (X)=Xn�1��1. The �rst term of the latter reciprocal can be found directly;we can then apply Newton's method at any time to double the accuracy. See [2,p. 287]. When n is a power of 2 and F has degree n, the algorithm in Figure 3.5.1gives all n+ 1 coe�cients of RECIP(F ).procedure RECIP�Pnj=0 fjXj�Cmt. Assume that n is a power of 2 and fn is invertible.R1(X) := 1=fne1 := �fn�1=fnfor k := 2; 4; 8; : : : ; n dolet P2k�3j=0 hjXj := Rk=2(X)2Pk�1j=0 fn�jXk�1�jRk(X) := 2Rk=2(X)Xk=2 �Pk�1j=0 hj+k�2Xjek := e2k=2� hk�3fn � fn�k=fn (Use hk�3 = 0 if k = 2.)end forreturn XRn(X) + en=fnend RECIPFigure 3.5.1: Algorithm for polynomial reciprocalsIt is straightforward to check that Rk(X) has degree k � 1. It is more tediousto verify the inductive assertiondeg�(XRk(X) + ek=fn)F (X)�Xn+k� � n� 1for k = 1; 2; 4; � � � ; n. One proof de�nes R0k(X) = XRk(X)+ek=fn; the algorithm20



in Figure 3.5.1 is equivalent toR01(X) = Xfn � fn�1f2n ;R0k(X) = 2Xk=2R0k=2(X)� 6664Rk=2(X)2jF (X)=Xn�kkXk 7775 (k > 1):When deg(F (X)) is not a power of 2, it can be scaled up to the next powerof 2, by multiplying by a power of X and adjusting the reciprocal accordingly.The computations of ek in Figure 3.5.1 can then be suppressed, since the constantcoe�cient of the output is not used in this case.To compute a quotient bG(X)=F (X)c where deg(G(X)) � 2n� 2 and whereF (X) has degree n� 1 with invertible leading coe�cient, one can use the identity$G(X)F (X)% = 6664jG(X)=Xn�1kRECIP(F (X))Xn�1 7775 :(3.5.1)To prove (3.5.1), let H(X) be its right side. We must show that deg(G(X) �F (X)H(X)) � n� 2. Each summand on the right side ofXn�1�G(X)� F (X)H(X)� = Xn�1  G(X)�Xn�1 $G(X)Xn�1 %!� $G(X)Xn�1 %�F (X)RECIP(F (X))�X2n�2�� F (X) H(X)Xn�1 � $G(X)Xn�1 %RECIP(F (X))!is a product of polynomials of degrees at most n� 1 and n� 2, so its left side hasdegree at most 2n� 3, as desired.Assuming (3.1.3), the times for polynomial reciprocal and division are boundedby tinv +O�M(n) + (tmul+ tadd) log n� [2, p. 288].3.6 Constructing a monic polynomial from its rootsLet R be a ring and n be a power of 2. Given ai 2 R for 0 � i < n, we cancompute the coe�cients of F (X) = n�1Yi=0(X � ai)(3.6.1) 21



in time (M(n=2) + ntadd) log2 n+ ntadd;(3.6.2)by repeatedly invoking the procedure for multiplication.The idea is to multiply two factors of equal degree at each stage. De�neFi;d(X) = d�1Yj=0(X � ai+j)whenever djn and i is a multiple of d with 0 � i � n� d. We are given the ai andcan compute the Fi;1(X) = X � ai with n negations. ConstructFi;2d(X) = Fi;d(X)Fi+d;d(X) (i = 0; 2d; 4d; � � � ; n� 2d)(3.6.3)from fFi;d(X)g for i = 0; d; 2d; � � � ; n � d by pairwise multiplying n=2d pairs ofmonic polynomials, each of degree d. Repeat this procedure log2 n times to getF0;n(X) = F (X).We can multiply two monic polynomials of degree d in timeM(d) + 2dtadd (bydropping the leading coe�cients before doing the multiply). Doing this n=2d times(as while replacing d by 2d) costs (n=2d)M(d)+ntadd �M(n=2)+ntadd by (3.1.3).Repeating this log2 d times (for d = 1; 2; 4; � � � ; n=2) gives the bound (3.6.2).This algorithm needs temporary storage for at most O(n) ring elements, sincewe can store the n coe�cients of fFi;2d(X)g (excluding the leading 1's) atop the ncoe�cients of fFi;d(X)g.The bound O((M(n) + ntadd) log n) applies even if n is not a power of 2, sincewe can append some zeros to faig beforehand and divide by a power of X at theend.3.7 Evaluating a polynomial at many pointsLet G(X) be a polynomial of degree at most n� 1 over a ring R, where n is apower of 2. Given ai 2 R for 0 � i < n, we claim that we can evaluate all G(ai) intotal time (7M(n=2) + 6ntadd) log2 n+ ntadd +O(M(n))(3.7.1)using fast polynomial techniques [2, pp. 292{294]. We call the resulting algorithmPOLYEVAL.First we form the fFi;d(X)g in (3.6.3), obtaining F (X) = Qn�1i=0 (X�ai). InvertF (X) to get RECIP(F (X)) = RECIP(F0;n(X)) as in Section 3.5. We are givenG(X) mod F0;n(X) since we assume deg(G(X)) < n.22



POLYEVAL proceeds recursively, in reverse order to that used during the con-struction of F (X). Given G(X) mod Fi;2d(X) and RECIP(Fi;2d(X)), computeRECIP(Fi;d(X)) = 6664Fi+d;d(X)jRECIP(Fi;2d(X))=XdkXd 7775(3.7.2)and RECIP(Fi+d;d(X)) similarly, as justi�ed by (3.6.3). Next computeG(X) mod Fi;d(X) = �G(X) mod Fi;2d(X)� mod Fi;d(X);G(X) mod Fi+d;d(X) = �G(X) mod Fi;2d(X)� mod Fi+d;d(X);(3.7.3)using the reciprocals from (3.7.2) and the methods of (3.5.1).Each step of this backwards recursion uses six products of polynomials whicheither are monic of degree d or have degree at most d � 1, for a combined time of6M(d). An extra 2d additions are used per reciprocal in (3.7.2) and per remainderin (3.7.3) to multiply by the Xd terms. There are also d subtractions requiredper remainder. Therefore the time for (3.7.2) and (3.7.3) is bounded by 6M(d) +10dtadd. These operations are repeated n=2d times when replacing 2d by d, so thenet time is bounded by (3n=d)M(d) + 5ntadd � 6M(n=2) + 5ntadd. Summing thisover all log2 n levels of the recursion, and adding the time for constructing F (X)and its reciprocal, we get the bound (3.7.1).If polynomial multiplication is done modulo Xd � 1 or X2d � 1 using an FFTalgorithm, then there are many repeated operations in this calculation, due to mul-tiplying two polynomials by the same polynomial. While using (3.6.3) to replace dby 2d and later using (3.7.2) and (3.7.3) to replace 2d by d, it su�ces to computesix forward transforms of length 2d, for the polynomialsFi;d(X); Fi+d;d(X);$RECIP(Fi;2d(X))Xd % ; $G(X) mod Fi;2d(X)Xd % ;RECIP(Fi;d(X)); RECIP(Fi+d;d(X));and four forward transforms of length d, for the polynomialsFi;d(X); Fi+d;d(X);$G(X) mod Fi;2d(X)Fi;d(X) % ; $G(X) mod Fi;2d(X)Fi+d;d(X) % :23



(Since the remainders in (3.7.3) have degree at most d � 1, it su�ces to computethem modulo Xd � 1.) The transforms of Fi;d(X) and Fi+d;d(X) of length d canbe obtained from the corresponding transforms of length 2d, by extracting everysecond element (since the transform evaluates the polynomial at the d{th roots ofunity, which are a subset of the 2d{th roots of unity). We also need �ve pointwiseproducts and reverse transforms (i.e. interpolations) of length 2d, to getFi;2d(X);RECIP(Fi;d(X)); RECIP(Fi+d;d(X));$G(X) mod Fi;2d(X)Fi;d(X) % ; $G(X) mod Fi;2d(X)Fi+d;d(X) % ;and two of these of length d for computing the �nal remainders (3.7.3). If weapproximate the cost of a forward transform or of a pointwise product and inter-polation of length d as as M(d=2)=3, then the leading coe�cient of our estimatedtime is (6 + 5)M(2d=2d)=3 + (2 + 2)M(d=2)=3 � 13M(d)=3;allowing us to replace the 7M(n=2) log2 n in (3.7.1) by (13=3)M(n=2) log2 n.The temporary storage requirements of this algorithm are O(n log n) ring el-ements for storing all coe�cients of fFi;d(X)g. That is, intermediate storage re-quirements are O(log n) times the input size. Since the Fi;d(X) polynomials arereused only once, these polynomials (or their forward transforms if using an FFT)can be saved in external storage rather than main memory, if the storage systemsupports LIFO access.If the ai have a special pattern, then we may be able to evaluate all G(ai) inless time than (3.7.1). If the ai form a geometric progression, then all G(ai) canbe found using one convolution of length 2n � 1 and O(n) extra multiplications[2, exercise 8.27] [32, p. 844]. If instead the ai form an arithmetic progression,then we can do it with deg(G) additions per G(ai) after suitable initialization (cf.Section 5.9).3.8 Polynomial GCDs over a �eldThe standard Euclidean algorithm for polynomial greatest common divisors(GCDs) [17, pp. 405�.] takes O(n2) operations when applied to two polynomialsof degree at most n. Moenck [27] found an asymptotically faster algorithm usingfast multiplication and division algorithms.24



To simplify the presentation, this section assumes that the base ring R is a�eld. Section 3.11 presents the changes required when R =Z=NZ.De�nition 3.8.1 Let M be a matrix of polynomials over a �eld. Then the degreeof M , written deg(M), is the maximum of the degrees of the entries of M .De�nition 3.8.2 A 2 � 2 matrix M of polynomials over a �eld is lopsided ofdegree n if n = 0 and M = I2, or if n > 0 andM = 0BBB@m11 m12m21 m221CCCA ;wheredeg(m11) � n�2; deg(m12) � n�1; deg(m21) � n�1; deg(m22) = n:For purposes of this de�nition, the zero polynomial has degree �1.Lemma 3.8.3 If M1 is lopsided of degree n1 and M2 is lopsided of degree n2, thenM1M2 is lopsided of degree n1 + n2.Proof. Straightforward. Since all computations are over a �eld, the product oftwo polynomials of degrees n1 and n2 has degree n1 + n2. �Figure 3.8.1 describes recursive procedure HALFGCD, which is an optimizedversion of procedure HGCD in [2, p. 364]. HALFGCD has two polynomial inputsU and V , and an integer input dred telling how much to reduce one of the degreesbefore exiting; it has two polynomial outputs Uout and Vout and a 2 � 2 matrixoutput Mout. HALFGCD has two input requirements:(HG1) U and V are polynomials in X over a �eld R, with deg(U) > deg(V );(HG2) dred is a positive integer, with dred � ddeg(U)=2e;Theorem 3.8.4 (upcoming) shows that HALFGCD`s outputs satisfy:(HG3) Mout is a lopsided 2�2 matrix of degree deg(U)�deg(Uout) and determinant�1;(HG4) 0BBB@UoutVout1CCCA =Mout0BBB@UV 1CCCA; 25



procedure HALFGCD(U; V; dred; Mout; Uout; Vout)Cmt. Given U , V , dred satisfying (HG1) and (HG2),Cmt. �nds Mout, Uout, Vout satisfying (HG3), (HG4), (HG5).if deg(V ) � deg(U) � dred then Cmt. Degree already small enough.Mout :=  1 00 1! and  UoutVout! :=  UV !else Cmt. Make two recursive calls to HALFGCD.Cmt. Choose n with 0 � n � deg(U) � 2dred + 2 (as large as convenient).Cmt. Choose d0 with 1 � d0 � dred � 1 (as close to ddred=2e as convenient).HALFGCD�� UXn� ; � VXn� ; d0; M 0; U 0; V 0�Cmt. deg(V 0) � deg(U) � n� d0 < deg(U 0) = deg(U) � n� deg(M 0):d00 := deg(V 0) � deg(U) + n+ dredif d00 � 0 then Cmt. One recursive call is enough.Mout :=M 0 and  UoutVout! := Xn U 0V 0!+Mout  U mod XnV mod Xn!elseQ := �U 0V 0� and W 0 := U 0 � QV 0 Cmt. W 0 = U 0 mod V 0.HALFGCD(V 0; W 0; d00; M 00; V 00; W 00)Mout :=M 00  0 11 �Q !M 0 UoutVout! := Xn  V 00W 00!+Mout  U mod XnV mod Xn!  =Mout  UV !!Cmt. deg(Vout) � deg(U) � dred < deg(Uout) = deg(V 0) + n� deg(M 0).end ifend ifend HALFGCD Figure 3.8.1: Algorithm HALFGCD26



(HG5) deg(Vout) � deg(U)� dred � deg(Uout)� 1.A corollary of (HG3) and (HG5) is deg(Mout) � dred � 1; this is useful whendeciding how much storage to allocate for the matrix. A consequence of (HG3)and (HG4) is gcd(U; V ) = gcd(Uout; Vout).Algorithm POLYGCD of Figure 3.8.2 computes an arbitrary polynomial GCDby repeatedly invoking HALFGCD. Each iteration of POLYGCD's main loop callsHALFGCD with a pair fU 0; V 0g such that gcd(U 0; V 0) = gcd(U; V ), where Uand V are POLYGCD's original inputs. The output of HALFGCD is another pairfU 00; V 00g with gcd(U 00; V 00) = gcd(U 0; V 0) and wheredeg(V 00) � deg(U 0)� ddeg(U 0)=2e = bdeg(U 0)=2c:Unless V 00 = 0, both the new U 0 = V 00 and the new V 0 = U 0 mod V 00 have degreesat most half the degree of the old U 0, so max(deg(U 0); deg(V 0)) drops quickly.procedure POLYGCD(U; V )Cmt. Assume that deg(U) > deg(V ).U 0 := U ; V 0 := Vwhile V 0 6= 0 doCmt. By induction, deg(U 0) > deg(V 0).HALFGCD(U 0; V 0; ddeg(U 0)=2e; Mout; U 00; V 00)if V 00 = 0 thenU 0 := U 00; V 0 := V 00elseU 0 := V 00; V 0 := U 00 mod V 00end ifend whilereturn U 0(X) (normalized to a monic polynomial)Figure 3.8.2: Algorithm for polynomial GCDsTheorem 3.8.4 Procedure HALFGCD always terminates after being invoked withinputs satisfying (HG1) and (HG2). Its outputs Mout, Uout, and Vout satisfy (HG3),(HG4), (HG5).Proof (long). We proceed by induction on dred.27



The simplest case is when deg(V ) � deg(U) � dred. Then Mout = I2 isthe identity matrix, while Uout = U and Vout = V . Since deg(Mout) = 0 anddet(Mout) = +1, conditions (HG3) to (HG5) are trivially satis�ed.Otherwise the algorithm selects two integers n and d0 such that0 � n � deg(U)� 2dred + 2 and 1 � d0 � dred � 1:(3.8.5)The range for n is nonempty since dred � (deg(U)+ 1)=2 by (HG2). The range ford0 is nonempty since failure of the if means that dred > deg(U)� deg(V ), which ispositive by (HG1). A corollary of (3.8.5) isn+ 2d0 � deg(U):(3.8.6)Next the procedure calls itself with U replaced by bU=Xnc, with V replaced bybV=Xnc, and with dred replaced by d0. Requirement (HG1) is satis�ed sincedeg $ UXn%! = deg(U)� n > deg(V )� n = deg $ VXn%!by (HG1). Requirement (HG2) is also satis�ed, since2666deg�jU=Xnk�2 3777 = &deg(U)� n2 ' � &2d02 ' = d0:by (3.8.6). Since d0 < dred by (3.8.5), we may assume by induction that the outputsfrom the �rst recursive call satisfydeg(M 0) = deg(U)� n� deg(U 0);(3.8.7) det(M 0) = �1;(3.8.8) 0BBB@U 0V 01CCCA =M 0 0BBB@bU=XncbV=Xnc1CCCA ;deg(V 0) � deg(U)� n� d0 � deg(U 0)� 1;(3.8.9)with M 0 lopsided.The algorithm de�nes d00 byd00 = deg(V 0)� deg(U) + n+ dred:(3.8.10) 28



This satis�es d00 � dred � d0 � dred � 1(3.8.11)by (3.8.9) and (3.8.5). If the second if in HALFGCD succeeds (i.e. if d00 � 0),then the procedure exits with Mout = M 0, which has determinant �1 by (3.8.8).It returns 0BBB@UoutVout1CCCA = Xn 0BBB@U 0V 01CCCA+M 0 0BBB@U mod XnV mod Xn1CCCA= XnM 00BBB@bU=XncbV=Xnc1CCCA+M 00BBB@U mod XnV mod Xn1CCCA=M 00BBB@XnbU=Xnc+ (U mod Xn)XnbV=Xnc+ (V mod Xn)1CCCA =Mout0BBB@UV 1CCCA ;
(3.8.12)
this proves (HG4).We claim that deg(Uout) = n+ deg(U 0):(3.8.13)The term XnU 0 of Uout in the �rst line of (3.8.12) has degree exactly n+ deg(U 0)while the contribution from M 00BBB@U mod XnV mod Xn1CCCA has degree at mostdeg(M 0) + n� 1 = deg(U)� deg(U 0)� 1 � n+ d0 � 2� deg(U)� d0 � 2 � n+ deg(U 0)� 3by (3.8.7), (3.8.9) (twice), and (3.8.6). This proves (3.8.13) and also (HG3), sincedeg(Mout) = deg(M 0) = deg(U)� n� deg(U 0) = deg(U)� deg(Uout)by (3.8.7). 29



The second inequality in (HG5) follows fromdeg(Uout)� 1 = n+ deg(U 0)� 1 � deg(U)� d0 > deg(U)� dredby (3.8.13), (3.8.9), and (3.8.5). The �rst inequality in (HG5) follows from (3.8.12)since deg(Vout) � max(n+ deg(V 0); deg(M 0) + n� 1)= max(d00 + deg(U)� dred; deg(U)� deg(U 0)� 1)� max(deg(U)� dred; n+ d0 � 2)� max(deg(U)� dred; deg(U)� dred � 1) = deg(U)� dredby (3.8.10), (3.8.7), (3.8.9), and (3.8.5) (recall that d00 � 0).The �nal subcase occurs when d00 > 0. The procedure computes the quotientQ = bU 0=V 0c and remainder W 0 = U 0 �QV 0, so thatdeg(Q) = deg(U 0)� deg(V 0);(3.8.14) deg(W 0) < deg(V 0):Then it calls itself recursively with U , V , dred replaced by V 0, W 0, d00, respectively.From (3.8.10), (3.8.11), and (3.8.5) it follows that2d00 � (deg(V 0)� deg(U) + n+ dred) + (dred� 1)= deg(V 0) + 1 + (n� deg(U) + 2dred � 2)� deg(V 0) + 1:Hence d00 � ddeg(V 0)=2e, ful�lling requirement (HG2) for the recursive call. Sinced00 < dred by (3.8.11), we may assume by induction that the outputs M 00, V 00, and
30



W 00 satisfy deg(M 00) = deg(V 0)� deg(V 00);(3.8.15) det(M 00) = �1;(3.8.16) 0BBB@V 00W 001CCCA =M 000BBB@V 0W 01CCCA ;deg(W 00) � deg(V 0)� d00 � deg(V 00)� 1;with M 00 lopsided. We substitute the de�nition of d00 from (3.8.10) to deducedeg(W 00) � deg(U)� n� dred � deg(V 00)� 1:(3.8.17)The procedure exits with Mout =M 000BBB@ 0 11 �Q 1CCCAM 0:Its determinant is �det(M 00) det(M 0) = �1 by (3.8.16) and (3.8.8). Lemma 3.8.3,together with (3.8.15), (3.8.14), and (3.8.7), shows that Mout is lopsided of degreedeg(Mout) = deg(M 00) + deg(Q) + deg(M 0)= (deg(V 0)� deg(V 00)) + (deg(U 0)� deg(V 0))+ (deg(U)� n� deg(U 0))= deg(U)� n� deg(V 00):(3.8.18)
31



The procedure also exits with0BBB@UoutVout1CCCA = Xn 0BBB@V 00W 001CCCA+Mout0BBB@U mod XnV mod Xn1CCCA(3.8.19) = XnM 000BBB@V 0W 01CCCA+Mout0BBB@U mod XnV mod Xn1CCCA= XnM 000BBB@ 0 11 �Q 1CCCA0BBB@U 0V 01CCCA+Mout0BBB@U mod XnV mod Xn1CCCA= XnM 000BBB@ 0 11 �Q 1CCCAM 00BBB@bU=XncbV=Xnc1CCCA +Mout0BBB@U mod XnV mod Xn1CCCA=Mout0BBB@XnbU=Xnc+ (U mod Xn)XnbV=Xnc+ (V mod Xn)1CCCA =Mout0BBB@UV 1CCCA ;ful�lling (HG4).We claim that deg(Uout) = n+ deg(V 00):(3.8.20)The contributions to Uout in (3.8.19) comes from XnV 00 and Mout0BBB@U mod XnV mod Xn1CCCA;the latter has degree at mostdeg(Mout) + n� 1 = deg(U)� deg(V 00)� 1 � n+ dred � 2� deg(U)� dred � deg(V 00) + n� 1(3.8.21)by (3.8.18), (3.8.17) (twice), and (3.8.5).32



The formula for deg(Mout) in (HG3) follows from (3.8.18) and (3.8.20). Thesecond inequality of (HG5) follows from (3.8.20) and (3.8.17). The �rst inequalityof (HG5) follows fromdeg(Vout) � max(n+ deg(W 00); deg(Mout) + n� 1)� max(deg(U)� dred; deg(U)� dred) = deg(U)� dred;by (3.8.19), (3.8.17), and (3.8.21). �3.9 Complexity analysis of fast GCD algorithmAho et al [2, p. 308] show that HALFGCD's time is O�M(deg(U)) log deg(U)�for deg(V ) < deg(U), if n and d0 are selected optimally within the algorithm.Algorithm POLYGCD also has this time bound. In order to provide a more pre-cise bound with explicit constants, we make the following simplifying assumptionsabout HALFGCD's behavior:(a) dred is a power of 2;(b) deg(U) � �2 (mod dred) and deg(U) = deg(V )� 1;(c) When dred > 1, the algorithm chooses n = deg(U)�2dred+2 and d0 = dred=2;(d) The outputs at each level of recursion satisfydeg(Mout) = dred� 1;deg(Uout) = deg(U)� deg(Mout);deg(Vout) = deg(Uout)� 1:The division of U 0 by V 0 yields a quotient Q of degree 1 and a remainderW 0of degree deg(V 0)� 1 = deg(U 0)� 2.Assumptions (a) and (c) can be programmed. Assumptions (b) and (d) say thatthe leading coe�cients of certain inputs and intermediate results never vanish;these are often valid when applying the algorithm with random inputs if the ringis large [17, p. 415], but are not guaranteed (and indeed are not satis�ed when theeventual polynomial GCD has positive degree).33



Given these assumptions, we claim that the time for HALFGCD is bounded by(deg(U)� 2dred + 2)(8M(dred)=dred + 10tadd) + (dred � 1)tinv+ (dred(6 log2 dred � 9) + 9)tmul+ (dred(25 log2 dred � 30) + 15)tadd+M(dred)(16 log2 dred� 12):(3.9.1)
for dred � 4. There is no cost for dred = 1.Our assumptions mean that HALFGCD always takes both else branches inFigure 3.8.1 unless dred = 1. Hence it calls itself twice recursively. The �rstrecursive call has d0 = dred=2 with inputs of degrees 2dred � 2 = 4d0 � 2 and2dred� 3 = 4d0� 3. Its output matrixM 0 is lopsided of degree d0� 1, while U 0 andV 0 have degrees 3d0 � 1 and 3d0 � 2, respectively. The algorithm next computesd00 = d0 > 0. The quotient Q is linear, and W 0 has degree 3d0 � 3. The secondrecursive call returns a lopsided matrix M 00 of degree d0 � 1 and outputs V 00 andW 00 of degrees 2d0� 1 and 2d0� 2 respectively. The algorithm then constructs theoutputs Mout, Uout, and Vout, in this simpli�ed scenario.Excluding the recursive calls, the work in HALFGCD consists of (1) computingQ and W 0; (2) computing Mout; and (3) computing Uout and Vout. Using theclassical algorithm for polynomial division (since Q is assumed linear), the cost of(1) is tinv + 2tmul+ 2(deg(V 0) + 1)(tmul + tadd)= tinv + 2tmul + 2(3d0 � 1)(tmul+ tadd):(3.9.2)When computing Mout, both M 00 and M 0 are lopsided of (positive) degree d0 � 1,while Q is linear. Using classical methods to multiply � 0 11 �Q �M 0 takes time(2d0 � 1)(tmul+ tadd):It remains to multiply two lopsided matrices of polynomials of degrees d0 � 1 andd0; the degrees of their entries are0BBB@d0 � 3 d0 � 2d0 � 2 d0 � 11CCCA ; 0BBB@d0 � 2 d0 � 1d0 � 1 d0 1CCCA :34



We can computeMout using eight multiplications of polynomials of degree at mostd0�1, with 4(2d0�1) additions to combine these products, followed by 4d0�8 mul-tiplications and additions to multiply by the leading coe�cient of the polynomialof degree d0. This shows that the time (2) for computing Mout is bounded by(2d0 � 1)(tmul+ tadd) + 8M(d0) + 4(2d0 � 1)tadd + (4d0 � 8)(tmul + tadd)� 4M(2d0) + (6d0 � 9)tmul+ (14d0 � 13)tadd:(3.9.3)To construct Uout and Vout in (3), we multiply the lopsided matrix Mout of degreedred by a vector with two components of degree at most n� 1. Assumptions (b)and (c) ensure that n � 0 (mod dred), so we can split the computation into n=dredmatrix-vector products where all degrees are bounded by dred � 1. Each suchproduct can be computed in time 8M(dred) + 4(2dred � 1)tadd. The upper half ofeach vector product must be added to another vector, giving a total time boundedby ndred�8M(dred) + 4(2dred � 1)tadd + 2(dred � 2)tadd�� 8nM(dred)=dred + 10ntadd:(3.9.4)Adding (3.9.2), (3.9.3), and (3.9.4) while using d0 = dred=2 and n = deg(U)�2dred + 2 gives a cost (excluding recursive calls) of�tinv + 2tmul + 2(3d0 � 1)(tmul+ tadd)�+ �4M(2d0) + (6d0 � 9)tmul + (14d0 � 13)tadd�+ �(8n=dred)M(dred) + 10ntadd�= n(8M(dred)=dred + 10tadd) + 4M(dred)+ tinv + (12d0 � 9)tmul + (20d0 � 15)tadd= (deg(U)� 2dred + 2)(8M(dred)=dred + 10tadd)+ 4M(dred) + tinv + (6dred � 9)tmul+ (10dred � 15)tadd
(3.9.5)
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Both recursive calls replace dred by d0 = dred=2; one replaces deg(U) by 4d0 � 2and one bydeg(U). Assuming (by induction) that the time bound (3.9.1) appliesto these calls, their combined time is(d0 + 2d0)(8M(d0)=d0 + 10tadd)+ 2�(d0 � 1)tinv + (d0(6 log2 d0� 9) + 9)tmul+ (d0(25 log2 d0 � 30) + 15)tadd +M(d0)(16 log2 d0 � 12)�= (2d0 � 2)tinv + (2d0(6 log2 d0 � 9) + 18)tmul+ (2d0(25 log2 d0 � 30) + 30)tadd + 16(2M(d0)) log2 d0 + 30d0tadd� (dred � 2)tinv + (dred(6 log2 dred � 15) + 18)tmul+ (dred(25 log2 dred � 40) + 30)tadd +M(dred)(16 log2 dred � 16):
(3.9.6)

When dred = 2, the recursive cost in (3.9.6) simpli�es to zero, which is correctsince the recursive calls for d0 = 1 and and d00 = 1 are free. Adding (3.9.5) and(3.9.6) gives a cost of�(deg(U)� 2dred + 2)(8M(dred)=dred + 10tadd)+ 4M(dred) + tinv + (6dred � 9)tmul + (10dred � 15)tadd�+ [(dred � 2)tinv + (dred(6 log2 dred � 15) + 18)tmul+ (dred(25 log2 dred � 40) + 30)tadd + (16 log2 dred � 16)M(dred)]= (deg(U)� 2dred + 2)(8M(dred)=dred + 10tadd) + (dred � 1)tinv+ (dred(6 log2 dred � 9) + 9)tmul+ (dred(25 log2 dred � 30) + 15)tadd+M(dred)(16 log2 dred� 12);in agreement with (3.9.1). This completes the induction.36



To estimate the time of Algorithm POLYGCD (Figure 3.8.2) we use the leadingterms (deg(U)� 2dred + 2)(8M(dred)=dred + 10tadd) + (dred � 1)tinv+ dred(6tmul + 25tadd) log2 dred + 16M(dred) log2 dred;(3.9.7)from our estimate (3.9.1). The calls from POLYGCD to HALFGCD always havedeg(U) � 2dred� 2, allowing us to neglect the �rst term of (3.9.7) (the congruenceassumption (b) need not hold for the call from POLYGCD to HALFGCD, but(b) does hold for the recursive calls from HALFGCD to itself). If the originaldegrees passed to POLYGCD are at most d, then HALFGCD is called successivelywith dred � d; d=2; d=4; � � � ; 1. The polynomial divisions within POLYGCD havenegligible cost unless the quotients have large degree. Its total estimated time is(d(6tmul + 25tadd) + 32M(d=2)) log2 d:(3.9.8)This is about 32 times as long as the estimated time (3.6.2) for constructing apolynomial of degree d from its roots. Tables 9.1.1 and 9.1.2 suggest that theactual time ratio is closer to 10.The storage costs of HALFGCD and POLYGCD are proportional to the sizeof the input data, if d0 is chosen so that the degrees of the polynomials are ap-proximately halved at successive levels of the recursion. The temporary storagerequirements within HALFGCD are O(deg(U)) ring elements. Summing over alllevels of recursion, the combined temporary storage requirement isO(deg(U)) +O(deg(U)=2) +O(deg(U)=4) + � � � = O(deg(U)):(3.9.9)The implied constant is rather large, since we need storage for the matrices ofpolynomials and for the transforms used during the convolutions.3.10 Connection with polynomial resultantsIf F (X) =Pdj=0 fjXj is a polynomial of degree d, and m, n, k are integers, letTm;n;k(F ) denote the m� n Toeplitz-like matrix ftijg in which tij = fi�j+n�m+k ,where fi is interpreted as 0 if i < 0 or i > d. Each row has some polynomialcoe�cients, which shift to the right by one column as we go down one row. The37



entry in its lower right corner is the coe�cient of Xk. Pictorially,
Tm;n;k(F ) = 0BBBBBBBBBBBBBBBBBB@ fk+n�m fk+n�m�1 fk+n�m�2 : : : fk�m+2 fk�m+1fk+n�m+1 fk+n�m fk+n�m�1 : : : fk�m+3 fk�m+2... ... . . . ...fk+n�2 fk+n�3 fk+n�4 : : : fk fk�1fk+n�1 fk+n�2 fk+n�3 : : : fk+1 fk

1CCCCCCCCCCCCCCCCCCA :(3.10.1)
If F (X) and G(X) are polynomials in X of degrees m and n respectively, thentheir resultant is the (m+ n)� (m+ n) determinantRes(F; G) = ���������Tn;m+n;0(F )Tm;m+n;0(G)��������� :(3.10.2)The resultant of F and G vanishes if and only if F and G share a common poly-nomial factor [20, p. 210].Output condition (HG4) can be expressed in terms of polynomial resultants.Suppose Algorithm HALFGCD of Figure 3.8.1 is called with two polynomials Uand V , where d = deg(U) > deg(V ). Suppose the outputs are Uout, Vout, andMout = �m11(X) m12(X)m21(X) m22(X)�. If det(Mout) = m, thendeg(m11); deg(m12); deg(m21); deg(m22) � m; deg(Vout) < deg(Uout) = d�m:by (HG3) and (HG5). We also know thatm = deg(Mout) < dred � dd=2e � (d+ 1)=2and hence d � 2m� 1. The matrix-vector equation (HG4) implies the followingequation, where Im denotes the m�m identity matrix and 0m;n denotes the m�nzero matrix: 38



0BBBBBBBBBBBBB@Im 0m;d�m 0m;dTd�m;d;0(m11) Td�m;d;0(m12)0m;d Im 0m;d�mTd�m;d;0(m21) Td�m;d;0(m22) 1CCCCCCCCCCCCCA0BBB@Td;2d;0(U)Td;2d;0(V )1CCCA = 0BBBBBBBBBBBBB@Tm;d+m;0(U) 0m;d�mTd�m;2d;0(Uout)Tm;d+m;0(V ) 0m;d�mTd�m;2d;0(Vout) 1CCCCCCCCCCCCCA :(3.10.3)
All three matrices in (3.10.3) are 2d � 2d. The �rst determinant�m11(0)m22(0)�m12(0)m21(0)�d�m = �det(Mout)(0)�d�m = �1:(After removing the rows and columns with the Im blocks, the remaining matrix hasfour (d�m)� (d�m) lower triangular blocks whose diagonals are m11(0), m12(0),m21(0), and m22(0)). The second determinant is Res(U; V ) times the (deg(U) �deg(V )){th power of the leading coe�cient of U . Hence the third determinant in(3.10.3) vanishes if and only if Res(U; V ) = 0. Because deg(Uout) = d � m anddeg(Vout) < d � m, the Td�m;2d;0(Uout) and Td�m;2d;0(Vout) blocks begin with 2mcolumns of zeros. The third determinant in (3.10.3) can be therefore decomposedinto the product of the 2m� 2m and (2d � 2m)� (2d� 2m) determinantsdet ��������� Tm;2m;d�m(U)Tm;2m;d�m(V ) ��������� ; det ��������� Td�m;2d�2m;0(Uout)Td�m;2d�2m;0(Vout) ��������� :(3.10.4)The right determinant in (3.10.4) is Res(Uout; Vout) times the (deg(Uout) �deg(Vout)){th power of the leading coe�cient of Uout. From (HG3) and (HG4),we know that the common factors of Uout and Vout are precisely the common fac-tors of U and V . Therefore it is plausible that the �rst determinant in (3.10.4)does not vanish; such is indeed the case. This is clear when m = 0, since the emptymatrix has determinant 1. For m > 0, the �rst determinant vanishes only if itsrows are linearly dependent, which is equivalent to the existence of polynomialsF (X) and G(X) of degree at most m� 1 and not both zero withdeg(F (X)U(X) +G(X)V (X)) � d �m� 1:(3.10.5) 39



But Uout(X) = m11(X)U(X) + m12(X)V (X) has degree exactly d � m, whiledeg(m11) � m � 2 and deg(m12) � m � 1 (since Mout is lopsided). Comparingdegrees on both sides of the identityU(X)�m12(X)F (X)�m11(X)G(X)�= m12(X)�F (X)U(X) +G(X)V (X)��G(X)�m11(X)U(X) +m12(X)V (X)�gives the contradiction d = deg(U) � (m � 1) + (d � m) unless both sides ofthe identity vanish, in which case m12(X)F (X) = m11(X)G(X). Since m11(X)and m12(X) have no common factor by (HG3), there must exist Q(X) such thatF (X) = Q(X)m11(X) and G(X) = Q(X)m12(X). Plugging these into (3.10.5)shows that deg(Q(X)Uout(X)) � d�m� 1, a contradiction.Knuth [17, pp. 410�.] discusses the intermediate polynomials which occur inthe Euclidean GCD algorithm, in terms of resultants.Schwartz [37, pp. 705{707] describes how to compute the resultant of two poly-nomials using Moenck's fast GCD algorithm.3.11 Polynomial GCDs over Z=NZThe concept of a polynomial GCD over Z=NZis not well-de�ned when N iscomposite, this will be turned to our advantage in Chapter 4. For example, supposewe try to compute gcd(X2 + 9X + 8; 2X + 9) (mod 35)using the Euclidean algorithm. We start by dividing X2 + 9X + 8 by 2X + 9,getting a quotient of 18X + 11 and a remainder of 14 modulo 35. Next we tryto divide 2X + 9 by 14, but 14 is not invertible. Instead we discover the factorgcd(35; 14) = 7 of 35. The explanation is thatgcd(X2 + 9X + 8; 2X + 9) = 1 (mod 5)but gcd(X2 + 9X + 8; 2X + 9) = X + 1 (mod 7):The GCD has degree 0 modulo 5 but degree 1 modulo 7. No monic polynomialcan meet both requirements.Nonetheless, we try to follow Algorithm POLYGCD in Figure 3.8.2 using arith-metic in Z=NZ instead of arithmetic over a �eld. We assume that the originalpolynomials U and V satisfy deg(U) > deg(V ) and that the leading coe�cient40



of U is invertible modulo N (indeed, U will be monic in Section 4.3). The lattercondition ensures that deg(U) > deg(V ) (which is requirement (HG1) precedingTheorem 3.8.4) remains true even after the coe�cients of U and V are reducedmodulo p for some pjN .Theorem 3.11.1 Suppose Algorithm POLYGCD is applied to two polynomialsU and V over Z=NZ, where deg(U) > deg(V ) and the leading coe�cient of U isinvertible modulo N . Then either (i) the algorithm �nds a monic GCD of U and Vover Z=NZ, or (ii) some polynomial division has a non-zero, non-invertible leadingcoe�cient. When (ii) occurs and a factor p is found, either (i) or (ii) remains truefor the ring Z=(N=p)Z.Proof. Consider the situation just before case (ii) �rst occurs, if ever.We claim that every previous call to HALFGCD had an invertible leadingcoe�cient for U . Every such coe�cient was one of:(a) The leading coe�cient of the original U passed to POLYGCD in Figure 3.8.2;(b) The leading coe�cient of a polynomial passed to HALFGCD for U at ahigher level (in the �rst recursive call to HALFGCD in Figure 3.8.1);(c) The leading coe�cient of a polynomial used for a division (in the secondrecursive call to HALFGCD in Figure 3.8.1, and in calls from POLYGCD toHALFGCD after the �rst iteration of the while loop in Figure 3.8.2).In each case the assertion follows by induction.Letting Mout = �m11 m12m21 m22 �, we now use (HG4) to obtain0BBB@UV 1CCCA =M�1out0BBB@UoutVout1CCCA = 1det(Mout) 0BBB@ m22 �m12�m21 m11 1CCCA0BBB@UoutVout1CCCA :Hence U = �(m22Uout�m12Vout). SinceMout is lopsided and deg(Vout) < deg(Uout)by (HG5), the leading coe�cient of U is (up to sign) the product of the leadingcoe�cients of m22 and of Uout. Consequently both of the latter are invertiblemodulo N .When (ii) �rst occurs, during computation of bU 0=V 0c in HALFGCD or ofU 00 mod V 00 in POLYGCD, we �nd a (proper but not necessarily prime) factor pof N . All previous input and output assertions for HALFGCD and POLYGCDremain true over the ring Z=(N=p)Z (the degrees of V and Vout may drop, butthose of U , Uout, and Mout remain unchanged, and Mout remains lopsided). The41



only way these assertions might fail is if 1 � 0 (mod N=p); in such case the leadingcoe�cient of V 0 or V 00 was zero modulo N , not merely a zero divisor of Z=NZ.When we �nish POLYGCD, and are working modulo some divisor N 0 of N ,there will exist a matrix M of determinant �1 over Z=N 0Z such that �U 0V 0 � =M�UV �. This, together with the exit condition V 0 = 0, implies that U 0 generatesthe same ideal as U and V in the polynomial ring (Z=N 0Z)[X]. Since the leadingcoe�cient of U 0 is invertible modulo N 0, this generator can be normalized to amonic polynomial. �Remark 3.11.2 Caution. Although the degree of U does not change under re-duction modulo N=p, the degree of V may drop if N is not squarefree. For example,this occurs while attempting to divide X2 + 1 by 3X + 5 modulo 9.3.12 Opportunities for optimization and parallelizationThe classical FFT algorithm over the complex numbers has many opportunitiesfor parallelization [3, Chapter 9]. The algorithm in Section 3.4 shares many of theseopportunities, working modulo the pi instead of over C . The convolution is doneseparately for each pi; these computations can be arranged in vector or SIMDfashion. If one chooses to vectorize over the pi, then one can ensure unit strideseverywhere by storing residues modulo di�erent primes contiguously.This convolution algorithm reduces each input coe�cient modulo all the primespi. These reductions can proceed concurrently.After the individual convolutions modulo pi are complete, the Chinese Re-mainder Theorem is used to construct the outputs hj in (3.4.4). Computations fordi�erent j are independent and can be parallelized.Algorithm HALFGCD multiplies two matrices, or a matrix and a vector. Whenusing FFT-like multiplication, one can do forward transforms on all elements ofeach matrix, perform the matrix multiplication directly on the Fourier transformsof the input data, and take one inverse Fourier transform per element of the outputmatrix (cf. Section 3.7). When multiplying two 2� 2 matrices, this trick cuts thework almost in half. When using the algorithm in Section 3.4 for convolutions overZ=NZ, the lower bound for P in (3.4.1) should be adjusted to reect the largestpossible coe�cient which might appear in the matrix product before reductionmodulo N .Some cost estimates in this chapter are pessimistic. For example, when mul-tiplying two polynomials both of degree d with d a power of 2, we multiplied bythe leading coe�cients separately. If our convolution algorithm produces a prod-uct modulo X2d � 1, then the leading (or constant) coe�cient of the product canbe calculated directly, and the proper multiple of X2d � 1 added on. Similarly, a42



polynomial remainder known to have degree at most d� 1 is uniquely determinedif we compute it modulo Xd � 1.Both POLYEVAL and the algorithm for constructing a polynomial from itsroots proceed by divide and conquer. Each divides the problem into two pieces,which may be attacked independently. For example, we may compute all Fi;2dfor �xed d in (3.6.3) concurrently. The same applies to (3.7.2) and (3.7.3). Forsmall d, we can compute Fi;2d for several di�erent i at once, if the original degreeis su�ciently large. On the other hand, if d is large, then there may be only a fewvalues of i, but parallelism can be employed within the convolutions themselves.The polynomial GCD algorithm also uses divide and conquer, but its secondrecursive call cannot begin until the �rst is complete, severely restricting its poten-tial parallelism. There is some parallelism during the larger convolutions, but littleduring the highly nested stages of the recursion. Whenever Algorithm HALFGCDcomputes a quotient Q, it inverts the leading coe�cient of the denominator; nogood parallelizable algorithm for modular inversion is known. This distinction isreected in Table 9.1.2, which shows speedups approaching 4.3 using �ve proces-sors to construct a polynomial from its roots, but at most 3.7 for the polynomialGCD problem.
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CHAPTER 4Application to ECMStep 1 of ECM multiplies an initial point on an elliptic curve by a large integer,obtaining another point Q on the curve. Step 2 assumes that the reduction Q(p)of Q over GF(p) has small positive order q for some pjN . It constructs severalmultiples of Q and looks at their x-coordinates, hoping for a match modulo p. Thebirthday paradox, described by Brent [9, pp. 10{12], predicts that if we randomlypick O(pq) integers mi, then some mi � �mj (mod q) for i 6= j. This leads to amatch among the x-coordinates of mi � Q(p) and mj � Q(p). This chapter describeshow to use fast polynomial techniques when testing for a match modulo p.4.1 Checking two lists for matches modulo p, where pjNSuppose that pjN and we are given two lists faigd1�1i=0 and fbjgd2�1j=0 of valuesmodulo N , where 0 � ai < N and 0 � bj < N . How can we check whether thereexist i and j such thatai � bj (mod p) (0 � i � d1 � 1; 0 � j � d2 � 1)?(4.1.1)A related question asks for duplicates within either list; for example do there existsolutions of ai � aj (mod p) where 0 � i < j � d1 � 1 ?(4.1.2)If p were known, then we could reduce all ai and bj modulo p, sort both lists,and look for duplicates. This takes time O((d1+d2) logN log p) for the reductionsmodulo p using classical division algorithms, and O((d1 log d1+ d2 log d2) log p) forthe sorting since the entries have sizeO(log p). If d1; d2 < N , then these processingtimes are only O(log p) times the input size O((d1+d2) logN). Another approach,also for known p, uses a hash table [2, pp. 111�.].Lubiw and R�acz [26] obtain a lower bound of 
(n log n) operations when check-ing whether n elements are distinct.For the intended application, p is unknown. The real question is whether thereexists a factor p of N such that some ai � bj (mod p) (or ai � aj); if so wewant to �nd p. Sorting seems inapplicable since no comparison function is known.44



Hashing seems inapplicable since we do not know how to hash in such a way thattwo numbers congruent modulo p will hash to the same value.We can form the polynomialF (X) = d1�1Yi=0 (X � ai) mod Nin time (M(d1=2)+d1tadd) log2 d1+d1tadd, as shown in Section 3.6. Problem (4.1.2)asks whether F has multiple roots modulo p for some pjN . Any such multiple rootof F modulo p must be a root of its formal derivative F 0 modulo p. We thereforeattempt the computation gcd(F (X); G(X)) (mod N):(4.1.3)where G(X) = F 0(X). Problem (4.1.1) asks whether F (bj) � 0 (mod p) for somej and some pjN . Here we attempt (4.1.3) with G(X) = Qd2�1j=0 (X � bj) mod N .By Theorem 3.11.1, Algorithm POLYGCD in Figure 3.8.2 produces a monicpolynomial g(X) which divides both F (X) and G(X) or �nds a factor p of N (notnecessarily prime). If we are lucky, it may �nd several factors of N . When a monicGCD is found, either it has degree zero (implying there were no solutions of (4.1.2)for any pjN) or it has positive degree. The latter case seems unlikely when N isnot a prime power, unless either ai = aj for some i 6= j (resp. ai = bj for some iand j) or N has only small prime factors, as it means that (4.1.2) holds for all pjN(though not necessarily with the same i and j).4.2 Use of fast polynomial evaluationBrent [9, p. 13] suggests another way to do the match. After constructing F (X)and G(X) as above, check whether G(ai) � 0 (mod p) for some pjN and some iwith 0 � i � d1 � 1. That is, check whethergcd N; n�1Yi=0 G(ai)! > 1:Algorithm POLYEVAL of Section 3.7 requires that deg(G(X)) < deg(F (X));this can be ensured by taking a remainder initially. Since POLYEVAL computesRECIP(F (X)), the additional overhead for the polynomial division is small.We saw earlier that (3.7.1) estimates time 7M(n=2) log2 n for POLYEVAL,whereas (3.9.8) estimates time 32M(n=2) log2 n for POLYGCD. These suggest thatPOLYEVAL is faster than POLYGCD, while also being more parallelizable (Sec-tion 3.12). 45



POLYEVAL seems simpler to program that POLYGCD, because its recursionis readily replaced by iteration. POLYEVAL is also easy to test, since one canindependently evaluate a few G(ai) the long way to check results. While codingPOLYGCD, one must worry about �nding a factor p of N midway through thealgorithm, with all future calculations done modulo N=p. POLYEVAL does notrequire any modular inversions and does not attempt a GCD with N until allG(ai) have been computed, avoiding this problem (but there is still the prospectof encountering a zero divisor while computing the ai themselves, such as whilecomputing a slope in (2.0.3)).However, POLYGCD retains one tangible advantage over POLYEVAL: lessstorage is required for large d1. We observed near the end of Section 3.9 that algo-rithms HALFGCD and POLYGCD useO(n) ring elements for intermediate storagewhen taking the GCD of two polynomials of degree at most n. POLYEVAL's stor-age requirements are O(n log n) ring elements when evaluating a polynomial ofdegree at most n � 1 at n points, as observed in Section 3.7. This considerationmay diminish in importance as memories grow and parallelism becomes more im-portant, esp. since the storage (3.9.9) required by POLYGCD and HALFGCD hasa large proportionality constant.Table 7.4.1 suggests values of d1 and d2 when searching for factors of varioussizes. The suggested d1 is below 4096 until one searches for factors of 35 digits,so the extra storage may be a�ordable. But the data in Table 7.4.1 assume thatPOLYGCD is used; switching to POLYEVAL a�ects the cost equation (7.3.1) andthe optimal parameters.4.3 Construction of polynomialsAssume that we are using ECM to factor an integer N , as in Section 2.2. LetQ be the output of Step 1 of ECM, after selecting an initial point P0 on a curveand computing a large multiple of P0. If pjN , then the reduction Q(p) of Q in E(p)has �nite order, say q. We hope that q is not too large, say q < 109.Select two disjoint sets fmigd1�1i=0 and fnjgd2�1j=0 of large positive integers; we willassume later that d1 is a power of 2 and d1jd2. The selection process is discussedin detail in Chapter 5; that process need not concern us here. Form the two setsfaigd1�1i=0 and fbjgd2�1j=0 , whereai = (mi �Q)x (0 � i � d1 � 1);(4.3.1) bj = (nj �Q)x (0 � j � d2 � 1)are x-coordinates of selected multiples of Q. If we are su�ciently lucky in this46



selection, then mi � �nj (mod q)(4.3.2)for some i and j; the corresponding ai and bj in (4.3.1) satisfy (4.1.1).Next compute the polynomialsF (X) = d1�1Yi=0 (X � ai) (mod N); G(X) = d2�1Yj=0 (X � bj) (mod N):(4.3.3)These have a common root modulo p if (4.1.1) holds for some i and j. EitherPOLYGCD or POLYEVAL can be used to check for a match.If d1 � d2, then F (X) and G(X) in (4.3.3) can be constructed directly, as inSection 3.6; then POLYGCD or POLYEVAL can be applied to F and to G mod F(reducing Gmodulo F ensures that the constraint deg(U) > deg(V ) in Figure 3.8.2is satis�ed).This test has approximatelydeg(F ) deg(G) = d1d2opportunities for a match; if the sets fmig and fnjg are chosen carefully, there willbe a match in (4.3.2) for most q < 2d1d2. If we want to �nd p whenever q < qmaxfor some pre-selected qmax, then we needd1d2 � Cqmax;(4.3.4)for some positive constant C.If (4.3.4) were the only constraint on d1 and d2, then we would choose d1 � d2so as to minimize d1 + d2 and hence the total time for constructing the faig andfbjg in (4.3.1). Memory requirements impose another constraint. If qmax = 109and C = 1, for example, then (4.3.4) suggests taking d1; d2 � 215 = 32768. ForN � 10200, each residue modulo N occupies about 90 bytes, so a polynomial ofdegree 32768 occupies 2:9 megabytes. The input to POLYGCD then requires 5:8megabytes, and the storage of the output matrix Mout is also approximately thislarge if HALFGCD is called with dred = ddeg(U 0)=2e as in Figure 3.8.2. Morespace is used by the convolutions, such as when constructing Mout and �UoutVout � atthe end of Figure 3.8.1. This work was run on systems shared by other users, andit is unfriendly to hog the memory even if it is available. So one should keep d1small, say d1 � 213.One remedy selects d2 > d1, with d1jd2. Compute F (X) as in (4.3.3), but mod-ify the construction ofG(X) as in Figure 4.3.1 below. This keeps gcd(F (X); G(X))47



G(X) := 1for j from 1 to d2=d1 doHj(X) := jd1�1Yi=(j�1)d1 (X � bi) (mod N)G(X) := G(X)Hj (X) (mod F (X); N)end forFigure 4.3.1: Computing G(X) mod F (X) in pieces of degree d1unchanged, but leaves deg(G(X)) bounded by d1�1 rather than by d2. If d1 � d2,then this can save memory, though at a cost of more computation in (4.3.1).Each iteration of the inner loop in Figure 4.3.1 divides a polynomial of degreeat most 2d1� 1 by F (X) of degree d1. The discrete forward transform (de�ned inSection 3.3) of the reciprocal RECIP(F ) needs to be computed only once, as doesthe discrete forward transform of F itself.On the �rst iteration of the inner loop in Figure 4.3.1, the computation of G(X)reduces to G(X) := H1(X)� F (X) (mod N) since H1 and F are monic of degreed1. A variation initializes G(X) := F 0(X)instead of G(X) := 1; this variation �nds a match if ai1 � ai2 (mod p) for somei1 6= i2, and hence if two of the mi (or their negatives) agree modulo q.Since the FFT algorithms in Sections 3.3 and 3.4 are designed for length apower of 2, it is convenient to choose d1 as a power of 2. POLYEVAL and thepolynomial construction algorithm in Section 3.6 also work well with this choice.
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CHAPTER 5Selection and Generation of Multiples of QIn Section 4.3 we chose integers d1 and d2, with d1 a power of 2 and d1jd2 andd2 � d1. Let Q be the output of Step 1 of ECM, and suppose that the reductionQ(p) has prime order q for some prime pjN . We hope that q is not too large, sayq < 109. The algorithm uses x-coordinates (mi � Q)x for 0 � i < d1 and (nj � Q)xfor 0 � j < d2 as polynomial roots, usually �nding p if qj(mi � nj) for some i, jwith 0 � i < d1 and 0 � j < d2(5.0.1)or (in the variation to Figure 4.3.1) if qj(mi1 �mi2) for some i1, i2 with0 � i1; i2 < d1 and i1 6= i2:(5.0.2)The algorithm does not specify how to select the sequences fmig and fnjg.The next sections describe the strategy used and some motivation behind it.Some desired properties (DP's) of these sequences are:(DP1) Most small and moderate primes q should divide some mi1 �mi2 satisfying(5.0.2) or some mi�nj satisfying (5.0.1). It is acceptable if q instead dividessome mi or nj, since the computation of that mi � Q or nj � Q reveals thefactor p while inverting a denominator.If this property holds for all primes q < d1d2 say, then we can honestly claimto have B2 � d1d2 in the notation of [29].(DP2) The sums and di�erences mi1 � mi2 and mi � nj should have many primedivisors, not just the ones ensured by (DP1). However, no such sum ordi�erence should be identically zero. No mi or nj should be identically zero.The nj should be distinct.(DP3) The average time for computing an x-coordinate (mi �Q)x or (nj �Q)x shouldnot exceed 50{100 multiplications modulo N . This �gure was selected byequating the time for computation of the roots ofH in (4.3.1) to the combinedtime for building H and updating G  GH (mod F ) in Figure 4.3.1; the�gure is implementation-dependent.49



(DP4) The above computations of the (mi �Q)x and (nj �Q)x should be amenable toparallel computation on a machine with 4 to 32 parallel processors and sharedmemory, such as the Alliant FX/80 in UCLA's Department of Mathematics(whose cluster had six processors during the early parts of this study but �veat the end).(DP5) If there can be many duplicate nj 's modulo q, we try to ensure a matchmi1 � �mi2 (mod q) satisfying (5.0.2) or mi � �nj (mod q) satisfying(5.0.1). Ideally, either all nj are distinct modulo q, so that we have thefull d1d2 opportunities for a congruence mi � �nj, or we have a guaranteedmatch.(DP6) Minimize the number of instances where two pairs mi1 � nj1 and mi2 � nj2share large factors (or one divides the other) due to algebraic identities.Section 5.1 tries to achieve these objectives while letting each mi and nj be ak{th power or a value attained by a Dickson polynomial. Some advantages anddisadvantages of each choice are presented. Section 5.9 describes how to evaluatesuccessive mi � Q quickly when mi is a polynomial function of i. Section 5.10describes the choices made in the implementation.5.1 Use of k{th powers or Dickson polynomialsWe attempt to satisfy (DP2) by letting mi = P (Mi) and nj = P (Nj) forselected integers fMig and fNjg, where P is a polynomial such that P (X)�P (Y )together have many polynomial divisors. One such polynomial is P (X) = Xkwhere 2k is highly composite, since (P (X)�P (Y ))(P (X)+P (Y )) = X2k�Y 2k hasd(2k) irreducible polynomial factors [20, p. 315]. Here d(2k) denotes the numberof divisors of 2k (including 1 and 2k).Perhaps surprisingly, there are other monic polynomials P of degree k for whichP (X)� P (Y ) have a total of d(2k) irreducible polynomial factors.De�nition 5.1.1 Let k be a positive integer. For �xed �, de�ne the Dicksonpolynomial gk;� [25, pp. 355�.] by the formal identitygk;� �X + �X� = Xk + �kXk :
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It is easy to verify that gk;� is a monic polynomial of degree k, becauseg1;�(X) = X;g2;�(X) = X2 � 2�;gk+2;�(X) = Xgk+1;�(X)� �gk;�(X) (k � 1):If � = 0 and k > 0, then gk;�(X) = Xk. When � 6= 0, the Dickson polynomialsare related to the Chebyshev polynomials [1, chapter 22], sincegk;�(2�1=2 cos �) = 2�k=2 cos k�:5.2 Polynomial divisors of gk;�(X)� gk;�(Y )When k > 0, we claim that gk;�(X)� gk;�(Y ) have a total of d(2k) irreduciblefactors over Z, just as when � = 0. We illustrate this below for k = 6:g6;�(X) = X6 � 6�X4 + 9�2X2� 2�3;g6;�(X)� g6;�(Y ) = (X � Y )(X + Y )(X2 +XY + Y 2 � 3�)(X2 �XY + Y 2� 3�);g6;�(X) + g6;�(Y ) = (X2 + Y 2� 4�)(X4 �X2Y 2 + Y 4 � 2�(X2 + Y 2) + �2):Theorem 5.2.1 Let k be a positive integer and �x � 2 Z. Then the polynomialgk;�(X)� gk;�(Y ) has exactly d(k) irreducible factors over Z.Proof. The case � = 0 is covered by the theory of cyclotomic polynomials. When� 6= 0, we show that there are at least d(k) irreducible factors and at most d(k)such factors. The upper bound is clear (and applies to any polynomial of degree k,not just gk;�), since the highest total degree terms of gk;�(X)�gk;�(Y ) are Xk�Y k,which has only d(k) irreducible factors over Z.For existence, recall thatXk � Y k =Ydjk �d(X; Y )51



where the cyclotomic polynomial �d is homogeneous of degree �(d) and satis�es�d(X; Y ) = ��d(Y; X) (the minus sign is needed only if d = 1). Hencegk;�(U + �=U)� gk;�(V + �=V ) = Uk + �kUk � V k � �kV k= (Uk � V k) (1� �k=UkV k)=Ydjk �d(U; V )�d(1; �=UV ):We claim that each of the d(k) factors on the right is a non-constant polynomialfunction of U + �=U and V + �=V over Q. This will show that gk;�(X)� gk;�(Y )has at least d(k) irreducible factors.To prove this claim, �x djk and de�neg(U; V ) = �d(U; V )�d(1; �=UV ):By homogeneity and the symmetry of �d(X; Y ) in X and Y ,g(�=U; V ) = �d(�=U; V )�d(1; U=V )= �V �(d)�d(�=UV; 1)� �V ��(d) �d(V; U)�= ���d(1; �=UV )� ���d(U; V )�= g(U; V ):Therefore g is symmetric in U and �=U . Similarlyg(U; �=V ) = �d(U; �=V )�d(1; V=U)= �U�(d)�d(1; �=UV )� �U��(d)�d(U; V )�= g(U; V );so g is symmetric in V and �=V . Since g is (by de�nition) a polynomial function ofU , V , 1=U , and 1=V overZ, g must be a polynomial in the symmetric polynomialsU +�=U , U � (�=U) = �, V +�=V , and V � (�=V ) = � over Q. Moreover, g cannotbe constant because �d(U; V ) is homogeneous in U and V but �d(1; �=UV ) is nothomogeneous for � 6= 0. � 52



Corollary 5.2.2 If k is a positive integer and � 2Z, then gk;�(X) + gk;�(Y ) hasexactly d(2k)� d(k) irreducible factors over Z.Proof. From g2k;�(X + �=X) = X2k + �2k=X2k= (Xk + �k=Xk)2� 2�k= �gk;�(X + �=X)�2 � 2�k;it follows that g2k;� = g2k;� � 2�k. By Theorem 5.2.1,gk;�(X) + gk;�(Y ) = g2k;�(X)� g2k;�(Y )gk;�(X)� gk;�(Y )has exactly d(2k)� d(k) irreducible factors. �5.3 Prime divisors of gk;�(X)� gk;�(Y )According to [17, solution to exercise 4.6.2.38], if u(X) is an irreducible poly-nomial over Z, then the average number of linear factors of u(X) modulo q tendsto 1 as the prime q ! 1. If u(X; Y ) is an irreducible factor of P (X) � P (Y )over Z, then u(X; Y ) remains irreducible over Z(as a polynomial in X) after al-most all substitutions of an integer for Y , by Hilbert's Irreducibility Theorem [19,Chapter 9]. So for almost all �xed Y 2 Z, the average number of linear factorsof u(X; Y ) modulo q tends to 1 as q ! 1. If P (X) = gk;�(X) where � is a�xed integer (allowing the case where � = 0 and P (X) = Xk), then, for almostall Y 2 Z, the average total number of linear factors of P (X) � P (Y ) modulo qtends to d(2k) as q!1, by Theorem 5.2.1 and Corollary 5.2.2. When X and Yare independently and randomly selected integers modulo a large q, then a crudeestimate for the probability that P (X) � �P (Y ) (mod q) is d(2k)=q.For �xed q, the actual probability depends on the residue class of q mod-ulo 2k. Theorem 5.3.2 asserts that this probability is gcd(2k; q � 1)=q + O(q�2)when P (X) = Xk, and is �gcd(2k; q � 1) + gcd(2k; q + 1)�=2q + O(q�2) whenP (X) = gk;�(X) with � 6� 0 (mod q). Lemma 5.3.1 says that the average valueof gcd(2k; q � 1) (or of gcd(2k; q + 1) = gcd(2k; �q � 1)) as q ranges over the�(2k) residue classes relatively prime to 2k is d(2k), con�rming that the averageprobability is d(2k)=q + O(q�2) if the residue class of q modulo 2k is randomlychosen. 53



Lemma 5.3.1 If k > 0, thenX0�i<kgcd(i; k)=1 gcd(i� 1; k) = �(k)d(k):Proof. Let k = pe11 pe22 : : : penn be the prime factorization of k, with each ej � 1.Each i with 0 � i < k is uniquely identi�ed by its remainders rj mod pejj forj = 1; 2; : : : ; n. We can compute gcd(i; k) = Qnj=1 gcd(rj; pejj ) for any such i, andwe can compute gcd(i� 1; k) similarly. The desired sum isX0�i<kgcd(i; k)=1gcd(i� 1; k) = Xr1;r2;:::;rn0�rj<pejj 8j;gcd(rj; pejj )=1 8j nYj=1 gcd(rj � 1; pejj ) = nYj=1 X0�rj<pejjgcd(rj ; pj)=1gcd(rj � 1; pejj ):This inner gcd is 1 for the pejj �2pej�1j values of rj incongruent to 0 or 1 modulo pj,is pj for pej�1j � pej�2j values of rj, etc. So the inner sum isX0�rj<pejjgcd(rj ; pj)=1 gcd(rj � 1; pejj )= 1 � (pejj � 2pej�1j ) + pj � (pej�1j � pej�2j ) + p2j � (pej�2j � pcj�3j ) + � � �+ pejj � 1= pejj � 2pej�1j + (ej � 1)(pejj � pej�1j ) + pejj= (pejj � pej�1j )(2 + ej � 1) = pej�1j (pj � 1)(ej + 1):The claim follows from �(k) = Qnj=1 pejj (pj � 1) and d(k) = Qnj=1(ej + 1). �Theorem 5.3.2 Let q be a prime not dividing k and � 2 Z. As X and Y rangeover the interval [0; q � 1], the number of cases where gk;�(X) � gk;�(Y ) (mod q)is 8>>>>><>>>>>:1 + (q � 1) gcd(k; q � 1); if qj�;qgcd(k; q � 1) + gcd(k; q + 1)2 +O(1); if q-�:The O(1) term may depend on k but not q.Lemma 5.3.3 Let G be a �nite cyclic group. If g0 2 G and k > 0, then theequation xk = g0 has either exactly gcd(k; jGj) solutions with x 2 G, or no suchsolution. 54



Proof. We may assume that G is the additive group of integers modulo jGj,since the assertion is invariant under group isomorphism. Then xk = g0 translatesinto kx � g0 (mod jGj). This congruence has exactly gcd(k; jGj) solutions whengcd(k; jGj) divides g0, and no solution otherwise. �Proof of Theorem 5.3.2. We may regard �, X, and Y as elements of GF(q).If � = 0, then gk;�(X) = gk;�(Y ) simpli�es to Xk = Y k. For Y = 0, the onlysolution is X = 0. For each Y 6= 0, the equation has a known solution X = Y andmust have exactly gcd(k; q � 1) solutions X 2 GF(q)� by Lemma 5.3.3.Suppose instead that � 6= 0. After possibly adjusting the O(1), we may assumethat q is odd. Given z 2 GF(q), we count the solutions of gk;�(X) = z withX 2 GF(q). We claim that this equation has:� At most k solutions when z2 � 4�k = 0.� Either no solution or gcd(k; q � 1) solutions when z2 � 4�k is a quadraticresidue. For any such solution, X2 � 4 is a quadratic residue. (Throughoutthis proof, interpret \quadratic residue" as \quadratic residue modulo q" andlikewise for quadratic non-residue.)� Either no solution or gcd(k; q + 1) solutions when z2 � 4�k is a quadraticnon-residue. For any such solution, X2 � 4 is a quadratic non-residue.Suppose that we have proved this claim. There are at most 2k values of X forwhich �gk;�(X)�2 � 4�k = 0. For any such X, the polynomial equation gk;�(Y ) =gk;�(X) has at most k solutions Y , so there are at most 2k2 total solutions (X; Y )of this type. When we exclude these 2k values of X, there remain q=2+O(1) valuesof X for which X2 � 4� is a quadratic residue and another q=2 + O(1) values ofX for which X2 � 4 is a quadratic non-residue. For each X in the �rst category,there are gcd(k; q � 1) values of Y satisfying gk;�(Y ) = gk;�(X) according to theclaim. For the second category, this count is gcd(k; q + 1). Hence there are(q=2 +O(1)) gcd(k; q � 1) + (q=2 +O(1)) gcd(k; q + 1) +O(1)total solutions of gk;�(X) = gk;�(Y ) when � 6= 0, as asserted by Theorem 5.3.2.It remains to prove the claim. The case z2�4�k = 0 is easy, since the polynomialequation gk;�(X) = z of degree k in X can have at most k roots for X.We therefore concentrate on the case where z2 � 4�k 6= 0. Suppose that z =gk;�(X) with X 2 GF(q). Write X = U + �=U with U 2 GF(q2). Then z =Uk + �k=Uk, and the assumption z2 6= 4�k becomes Uk 6= �k=Uk. In particular,U 6= �=U .Under these conditions, we claim that the following are equivalent:55



(i) X2 � 4� is a quadratic residue;(ii) U 2 GF(q);(iii) U � �=U 2 GF(q);(iv) Uk � �k=Uk 2 GF(q);(v) z2� 4�k is a quadratic residue.The equivalence of (i) and (iii) is evident since X2 � 4� = (U � �=U)2 and thelatter is nonzero. Similarly for (iv) and (v). The equivalence of (ii) and (iii) isalso immediate, since X = U + �=U 2 GF(q) and q is assumed odd. For (iii) and(iv), we observe that the quotient (Uk ��k=Uk)=(U ��=U) is in GF(q). This canbe shown directly using symmetric functions, since the quotient is symmetric in Uand �=U . Or we can proceed by induction on k, using the identityUk � �k=UkU � �=U = (U + �=U)Uk�1 � �k�1=Uk�1U � �=U � �Uk�2 � �k�2=Uk�2U � �=U :If z2� 4�k is a quadratic residue, then U 2 GF(q) must satisfyUk = z �pz2 � 4�k2 :(5.3.4)For each choice of �, Lemma 5.3.3 gives us either no solution U 2 GF(q)� orgcd(k; q� 1) such solutions. If there are any solutions for one selection of �, thenthere are also solutions for the other choice, since (5.3.4) is equivalent to(�=U)k = z �pz2 � 4�k2 :This leads to 2 gcd(k; q � 1) solutions for U and to gcd(k; q � 1) solutions for Xwhen z2 � 4�k is a quadratic residue, as claimed.If instead z2 � 4�k is a quadratic non-residue, then U 2 GF(q2) n GF(q) (setdi�erence). Fix u0 2 GF(q2) such that uq+10 = �; this is possible since �q�1 = 1and the polynomial uq2�1 � 1 splits completely over GF(q2). Since the conjugateof U is U q as well as �=U , we require U q = �=Q so U q+1 = � = uq+10 . Hence U=u0is a (q+1){st root of unity in GF(q2). The equation z = Uk +�k=Uk implies that Uu0!k = z�pz2� 4�k2uk0 :For each choice of sign, this has either gcd(k; q+1) solutions U=u0 in the group of(q+1){st roots of unity or no such solution, by Lemma 5.3.3. As above, there are56



either zero or 2 gcd(k; q+1) total solutions, leading to gcd(k; q+1) di�erent valuesof X = U + �=U satisfying gk;�(X) = z. The equation (U=u0)q+1 = 1 implies thatU q = �=U , so any such X = U + �=U = U + U q 2 GF(q). �If we select T independent random pairs f(Xt; Yt)gTt=1, and pq is the probabilitythat P (X) � �P (Y ) (mod q) for randomly chosen X and Y , then our estimatedprobability of a match P (Xt) � �P (Yt) for some t becomes 1� (1� pq)T . Whenpq = o(1), we can approximate this probability by 1� e�Tpq . By Theorem 5.3.2,this pq depends on the residue class of q modulo 2k. When the residue class ofq is unknown, we should average this success probability over all possible residueclasses. The result isPrmatch = 8>>>>>><>>>>>>:1� 1�(2k)Xq0 exp �Tq gcd(2k; q0� 1)! ; if � = 0;1� 1�(2k)Xq0 exp �Tq gcd(2k; q0� 1) + gcd(2k; q0 + 1)2 ! ; if � 6= 0;(5.3.5)where q0 runs over the residue classes modulo 2k which are relatively prime to 2k.If we expand (5.3.5) as a Laurent series in q, then the leading term is d(2k)T=qfor any choice of �, by Lemma 5.3.1. The averaged success probability (5.3.5) isnever larger for � = 0 than for �xed nonzero �, because for any pair of residues q0and �q0, exp �Tq gcd(2k; q0� 1)!+ exp �Tq gcd(2k; �q0� 1)!� 2 exp �Tq gcd(2k; q0� 1) + gcd(2k; �q0� 1)2 != exp �Tq gcd(2k; q0 � 1) + gcd(2k; q0 + 1)2 !+ exp �Tq gcd(2k; �q0� 1) + gcd(2k; �q0 + 1)2 ! ;by the arithmetic-geometric mean inequality.The di�erence in these success probabilities can become signi�cant for large k.Table 5.3.1 gives the number of trials T needed for the probability (5.3.5) to reach0.05, 0.20, 0.50, 0.80, and 0.95, for selected k. The values of k selected are thosefor which d(2k) exceeds all earlier values.57



k d(2k) Polynomial 5% 20% 50% 80% 95%1 2 X = g1;1(X) .0256q .1116q .3466q .8047q 1.4979q2 3 X2 .0171q .0753q .2406q .5917q 1.1951qg2;1(X) .0171q .0743q .2310q .5365q .9986q3 4 X3 .0129q .0574q .1911q .5175q 1.1562qg3;1(X) .0128q .0558q .1733q .4024q .7489q6 6 X6 .0086q .0389q .1338q .3797q .8940qg6;1(X) .0086q .0373q .1167q .2744q .5210q12 8 X12 .0065q .0303q .1118q .3424q .8630qg12;1(X) .0064q .0283q .0909q .2235q .4449q18 9 X18 .0059q .0281q .1123q .3640q .8906qg18;1(X) .0057q .0256q .0851q .2198q .4522q24 10 X24 .0053q .0258q .1039q .3365q .8624qg24;1(X) .0052q .0233q .0787q .2062q .4272q30 12 X30 .0044q .0218q .0902q .2983q .7756qg30;1(X) .0043q .0196q .0677q .1857q .4047q60 16 X60 .0034q .0173q .0751q .2663q .7405qg60;1(X) .0033q .0151q .0537q .1507q .3406q90 18 X90 .0030q .0163q .0749q .2805q .7707qg90;1(X) .0029q .0138q .0511q .1480q .3441q120 20 X120 .0028q .0150q .0694q .2596q .7394qg120;1(X) .0026q .0126q .0470q .1378q .3241qTable 5.3.1: Trials needed to reach con�dence level5.4 Comparative computational costsIf minimizing the estimated number of trials were the only concern, then wewould prefer mi = gk;�(Mi) and nj = gk;�(Nj) with � 6= 0. However, other desiredproperties given early in this chapter impose additional requirements, such as easeof computation.Suppose that we select fMig and fNjg randomly, subject to 0 � Mi; Nj < Bwhere the bound B is pre-selected. Since gk;� is monic of degree k, the mi (andnj) are bounded approximately by Bk. Any individual mi � Q or nj � Q can becomputed with O(logBk) group operations, using the same algorithm [31] as usedduring Step 1, for a total cost of O((d1 + d2)k logB) group operations. But there58



is considerable redundancy in this computation if we repeat it for every mi andnj. We can do better by viewing the mi; nj 2 [0; Bk] as integers in a radix R.Approximately R logRBk group operations su�ce to build a table of (rRj) � Qsubject to 1 � r < R and rRj � Bk. Each mi �Q (or nj �Q) can then be computedwith another logRmi < logRBk group operations (Weierstrass coordinates), for atotal cost of (R+ d1 + d2) logRBkgroup operations. This cost is minimized when R lnR = R + d1 + d2. UsingR � (d1 + d2)= ln (d1 + d2) reduces the total cost to aboutd1 + d2ln(d1 + d2) lnBkWeierstrass group operations, and the average cost permi�Q or nj �Q to lnBkln (d1 + d2)such operations, for arbitrarily chosen mi; nj 2 [0; Bk].Since we require B � d1 + d2 to ensure distinctness of the fmig and fnjg, theaverage cost of this algorithm exceeds k group operations. Section 5.9 shows how tocompute these (mi �Q) with an overhead of k Weierstrass group operations apiece(plus initialization costs) if the fMig form an arithmetic progression, regardless of�; likewise for the fNjg. If we restrict � = 0 so that P (X) = Xk, and if 4jk, thenwe can reduce the overhead to k=2 homogeneous group operations per (mi � Q)x(or (nj �Q)x) by using a di�erent sequence fMig, as seen below.Lemma 5.4.1 If q is an odd prime, then 16 is an 8{th power modulo q.Proof. If 2 is a quadratic residue modulo q, then 16 = �p2�8.If �2 is a quadratic residue modulo q, then 16 = �p�2�8.If �1 is a quadratic residue modulo q, then 16 = �1 +p�1�8.Since at least one of these is a quadratic residue, the proof is complete. �Remark 5.4.2 We subsequently refer to this root as 8p16, and treat it as an integerin the analysis. Algorithms use only powers of � 8p16�4 = �4. Since (4Q)x =(�4Q)x, the sign ambiguity will not matter.Corollary 5.4.3 Let k be a positive integer divisible by 4 and let q be an oddprime. Then at least one of �2k=2 is a k{th power modulo q.Proof. If � � 8p16 (mod q), then �2k = (�8)k=4 � 16k=4 = 2k (mod q). Conse-quently �k � �2k=2 (mod q), and one of these is a k{th power modulo q. �59



If our k is divisible by 4, then we can multiply any previously created k{thpower or negative thereof by 2k=2 to create another such power. From a point P ,we can construct (2k=2 � P )x using k=2 doubling operations in the group. If we areallowed 100 multiplications modulo N per point, then we require 5(k=2) � 100, ork � 40, since each application of the homogeneous doubling rule (2.3.5) uses �vesuch multiplications.This trick should be employed on only one of the sequences fmig and fnjg. Ifit is used on both sequences, then there are many cases where mi2 = 2k=2mi1 andnj2 = 2k=2nj1 , violating (DP6). Since we are assuming that d2 � d1, it is probablycheaper to employ this trick during generation of the fnjg than during the fmig.5.5 Using powers of 2k=2 and 3kA straightforward scheme based on this idea letsmi = 3ik (0 � i < d1);nj = 3(d1=2)k � 2(j+1)k=2 (0 � j < d2)where 4jk. One can compute the x-coordinates (mi � Q)x using (d1 � 1)k succes-sive cubings, and hence 2(d1 � 1)k group operations (which can be done usinghomogeneous coordinates). Another d2k=2 doubling steps su�ce to compute the(nj �Q)x, starting from the known (3(d1=2)k �Q)x. If d2 � d1, then the average costper x-coordinate is slightly above k=2 group operations.Property (DP5) is achieved if Q has odd order, since a match ni � �nj with0 � i < j < d2 implies that3(d1=2)k � 2(i+1)k=2 � 3(d1=2)k � 2(j+1)k=2;3(d1=2)k � 3(d1=2)k � 2(j�i)k=2;md1=2 � nj�i�1;ensuring that a match exists in (5.0.1).This scheme also satis�es (DP1), since any prime q with2 < q � 1 < d1d2 gcd(q � 1; 2k)=2divides some mi1 � mi2 or some mi � nj. To prove this, consider f32ik � 2jkg for0 � i < d1=2 and 0 � j < d2. All of these are nonzero (2k){th powers modulo q60



since 4jk. By the Pigeon-hole principle, there must be a duplicate amongst thesed1d2=2 values. This leads to a congruence 32ik � 2jk where jij < d1=2 and 0 � j <d2, with i, j not both zero. If j = 0, then mjij � �m0. If instead j 6= 0, thennj�1 � �md1=2+i.This scheme fails to be parallel as in (DP4), but such is not important whenimplementing ECM on a sequential architecture. This scheme also has many caseswhere one 3ik�2jk=2 divides multiplemi1�nj1 (some with gcd(i1�d1=2; j1+1) > 1),in possible violation of (DP6).5.6 Achieving parallelismThe last scheme failed to achieve parallelism, in part because each point wasmultiplied by 2k=2 to get the next point. When using k{th powers (i.e. � = 0), itwould be desirable to instead multiply several points by 2k=2 concurrently.Suppose that our parallelism requirements dictate multiplying � di�erent pointsby 2k=2 at once (� might be the number of processors available). If we have selectedthe nj for 0 � j < � by some alternate means, then we can let nj = 2k=2 � nj�� for� � j < d2. Assuming that �jd1jd2, our algorithm can resemble:� Choose k divisible by 4, with d(2k) as large as feasible. Construct (mi �Q)xfor 0 � i < d1, with each mi = Mki for some fMig. Use these x-coordinatesfor roots of F (X) in Section 4.3. Initialize G(X).� Construct (nj �Q)x for 0 � j < �, with each nj = Nkj for some fNjg.� Perform the next two steps for ` = 1; � � � ; d2=�, in this order.� If ` > 1, then set nj = 2k=2 � nj�� for (` � 1)� � j < `�. Each corre-sponding (nj �Q)x can be computed from (nj�� �Q)x using k=2 doublingsteps; values for di�erent j can be computed in parallel.� If d1j`� (i.e. when d1 new values of (nj � Q)x have been found), thenform another H-polynomial and reduce G(X)H(X) modulo F (X), asin Figure 4.3.1.For the rest of this section, we assume that � = d1 and that nj = 2k=2 �mj for0 � j < d1. Then property (DP5) is automatically satis�ed if our point Q hasodd order (which can be ensured by doing enough doublings during Step 1). Moreprecisely, suppose that some ni � �nj where 0 � i < j < d2. If i < d1 and j < d1,then 2k=2 �mi � �2k=2 �mj (mod q), implying that mi � �mj. If i < d1 but j � d1,then mi � �nj�d1 . If i � d1 and j � d1, then ni�d1 � �nj�d1 and we proceed byinduction on j. 61



It remains to select the fmig. We should satisfy the cost requirement (DP3),although we may be able to a�ord more overhead per mi than per nj since we willnot be needing as many.There should be few if any multiplicative relations amongst the fmig. If,for example, mi1=mi2 = mi3=mi4 then 2`(k=2)mi1 � mi2 shares many factors with2`(k=2)mi3 �mi4 for each `, violating (DP6). This precludes, for example, de�ningMi = 3i and mi =Mki = 3ik for 0 � i < d1, even though such values can be succes-sively computed with 2k (non-parallel) group operations apiece. [This duplicationwas not a problem in Section 5.5, where all powers of 2k=2 were multiplied by thesame mi1, namely by md1=2.]If we use random values for fMig, then the only apparent violations of (DP6)occur for those constructed from the sameMi, since for example 2`(k=2)� 1 dividesall ni+(`�1)d1 �mi. That is, the only apparent redundant mi�nj occur when i � j(mod d1). If d1 � 128, then this redundancy occurs for under 1% of the mi � nj,an allowance which appears negligible.But large numbers of random k{th powers may not be easy to compute e�-ciently, as desired in (DP3), despite the method presented early in Section 5.4. Onecomputationally feasible proposal uses arithmetic progressions for fMig. If a andb are �xed, then the values of mi = (ai+ b)k are successive values of a polynomialof degree k, and successivemi �Q can be computed with k group operations apiece,after suitable initialization; see Section 5.9. That algorithm allows parallelism (onup to k processors), but uses Weierstrass rather than homogeneous coordinatesand hence requires modular inversions. Its initialization cost depends primarily onthe magnitude of the largest (ai+ b)k for 0 � i � k.However the use of arithmetic progressions for these Mi may lead to decreasedoverall e�ectiveness. Property (DP1) requires that most or all small primes q dividesome mi1 �mi2 subject to (5.0.2) or some mi� nj subject to (5.0.1). The primesleast likely to have this property are those where gcd(q � 1; 2k) = 2, since anysuch q divides an Mki �Mkj only if it dividesMi�Mj . Suppose that we have usedarithmetic progressions for fMig, say Mi = ai+ b. Then Mi +Mj = a(i+ j) + 2band Mi �Mj = a(i � j). There are only 2d1 � 3 distinct sums a(i + j) + 2b for0 � i; j < d1 and i 6= j, compared to the desired (d12 ) = d1(d1 � 1)=2 such sums.There are also very few distinct di�erences a(i� j). For small odd ` the problempersists, since ni+`�d1 � nj = 2(`+1)k=2(ai+ b)k � (aj + b)kis divisible by2(`+1)=2(ai+ b)� (aj + b) = a(2(`+1)=2i� j) + b(2(`+1)=2� 1);and there are many duplicate sums and di�erences on the right. There are fewduplications of this type when ` is even and the numerical value of � 8p16�`+1 is62



(presumably) large modulo most primes q, but many of the potential opportunitiesfor a match modulo q are being wasted when ` is odd, violating (DP6) and possibly(DP1).One work-around uses multiple arithmetic progressions for fMig. If we used1 such progressions, each of length 1, then the fMig are essentially random. Ifwe use eight or sixteen such progressions, then the above troubles occur only forMi �Mj where Mi and Mj come from the same progression, and hence for oneeighth or one sixteenth of such pairs, which may be an acceptable tolerance.5.7 Separate arithmetic progressionsIf we abandon our convention that nj = mj � 2k=2 for 0 � j < d1, but retainnj = nj��2k=2 if � � j < d2, then we must select the early nj as well as the mi.Unless we restrict fmig, property (DP5) need no longer hold.One approach uses one arithmetic progression for the fMig and another forfNjg��1j=0. Subsequent values of Nj are 8p16 times earlier values. That is,Mi = a1i+ b1 (0 � i < d1)and Nj = 8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:a2j + b2; if 0 � j < �;(a2(j � �) + b2) 8p16; if � � j < 2�;2(a2(j � 2�) + b2); if 2� � j < 3�;: : : :We can achieve (DP1) by choosing the progressions so that most small primes havethe formMi�Nj. For example, letMi = 6i+1 for 0 � i < d1 and Nj = 6d1(j+1)for 0 � j < �, with Nj = Nj�� 8p16 for � � j < d2. This particular example hasmany duplicate nj since for examplen2� = n0 � �2k=2�2 = Nk0 � 2k = (2N0)k = (12d1)k = Nk1 = n1:Such overlap is recti�ed by letting Nj = 6d1(2j + 1) take on only odd multiplesof 6d1 for 0 � j < �; even multiples appear in later rows of Figure 5.7.1 (i.e. Hjfor larger j) due to the multiplications by 8p16. We should also shift the values inthe �rst row, say to Mi = 6(i+ d1) + 1, to increase the number of distinct ratiosMi=Nj with 0 � i < d1 and 0 � j < d2. For example, if d1 = � = 4, then M0 toM3 are 25, 31, 37, and 43, whereas the early Nj appear in Figure 5.7.1.63



H1 roots N0 = 24 N1 = 72 N2 = 120 N3 = 168# # # #H2 roots N4 = 24 8p16 N5 = 72 8p16 N6 = 120 8p16 N7 = 168 8p16# # # #H3 roots N8 = 48 N9 = 144 N10 = 240 N11 = 336# # # #H4 roots N12 = 48 8p16 N13 = 144 8p16 N14 = 240 8p16 N15 = 336 8p16# # # #H5 roots N16 = 96 N17 = 288 N18 = 480 N19 = 672Figure 5.7.1: Dependencies using two arithmetic progressions and doubling5.8 Use of arithmetic progressions and Dickson polynomialsThe trick of multiplying a point by a k{th power (or by 2k=2) to get anotherpoint when � = 0 used the identity (XY )k = XkY k so thatgk;0(XY ) �Q = (XY )k �Q = Y k � �Xk �Q� = Y k � �gk;0(X) �Q�:No such identity relates gk;�(XY ) to gk;�(X) when � 6= 0.The data in Table 5.3.1 suggest that Dickson polynomials gk;�(X) with � 6= 0perform better than Xk when selecting the mi and nj, if our sole objective ismaximize the probability that a random prime q divides some mi1�mi2 satisfying(5.0.2) or some mi�nj satisfying (5.0.1). Of the methods of generation consideredin Section 5.4, with mi = gk;�(Mi) for some fMig (resp. nj = gk;�(Nj) for somefNjg), the use of randomMi requires over k group operations per mi, while the useof arithmetic progressions for fMig reduces this cost to just k such operations, aftersuitable initialization. Since theory suggests that all � 6= 0 perform comparably,it is simplest to use � = 1 (or � = �1, to force nonnegative coe�cients). We can64



let, for example, Mi = 6i+ 1 (0 � i < d1);Nj = 6d1(j + 1) (0 � j < d2):5.9 Evaluation of f(mi �Q)xg where mi is a polynomial functionLet P (X) be a polynomial inX of degree k. Some of the above schemes requireevaluating (P (i) � Q)x for several successive integers i. This can be done using astraightforward modi�cation to the technique for evaluating a polynomial along anarithmetic progression [17, p. 469], at a cost of O(k) Weierstrass group operationsper evaluation, after suitable initialization. The computations can be arranged sothat these O(k) operations can be done in parallel.For example, consider P (i) � Q for successive i where P (X) = X4 and k = 4.Tabulate P (0) to P (k) and take �nite di�erences as in the left of Figure 5.9.1.0 1 16 81 256 6251 15 65 175 36914 50 110 19436 60 8424 24Figure 5.9.1: Finite di�erences of polynomial function P (X) = X4Because deg(P ) = 4, the fourth row of �nite di�erences is constant. Thevector [24; 60; 110; 175; 256] on the �rst full upward diagonal of Figure 5.9.1can be computed from the top row using k(k + 1)=2 integer subtractions, and theresults used to evaluate [24Q; 60Q; 110Q; 175Q; 256Q] as in Section 5.4. Eachsubsequent upward diagonal, such as [24Q; 84Q; 194Q; 369Q; 625Q], can becomputed from the previous such diagonal with k group operations, by followingthe arrows in Figure 5.9.2. Once an entire diagonal vector is known, a value ofP (i) �Q can be extracted from its last component.65



24Q 60Q 110Q 175Q 256Q# # # # #24Q ! 84Q ! 194Q ! 369Q ! 625QFigure 5.9.2: Dependencies when updating an upward diagonalA problem with this scheme is that the components of the vector cannot beupdated in parallel, because each component is dependent on the previous compo-nent, as evidenced by the horizontal arrows in Figure 5.9.2.Fortunately, there is an easy remedy. If we use downward diagonals ratherthan upward diagonals in Figure 5.9.1, then we can proceed very similarly but allcomponents can be updated in parallel. Figure 5.9.3 illustrates how the downwarddiagonal [1Q; 15Q; 50Q; 60Q; 24Q] can be calculated from the previous downwarddiagonal [0Q; 1Q; 14Q; 36Q; 24Q] using four parallel group operations.0Q 1Q 14Q 36Q 24Q# . # . # . # . #1Q 15Q 50Q 60Q 24QFigure 5.9.3: Dependencies when updating a downward diagonalWhether we use upward or downward diagonals, this computation requiresWeierstrass coordinates (2.0.2) rather than homogeneous coordinates (2.3.3), be-cause (Q1�Q2)x is usually not known when we need to compute Q1+Q2 from twoknown multiples Q1 and Q2 of Q. Hence each group operation needs a modulardivision when computing the slope in (2.0.3). Downward diagonals are preferableto upward diagonals even on a sequential architecture, because the modular inver-sions in these divisions are independent. All but one inversion can be exchangedfor three modular multiplications by repeatedly using the identities [29, p. 260]1=x = y(1=xy) and 1=y = x(1=xy):For an arbitrary polynomial P (X) of degree k, suppose that we want to enu-66



merate fP (i)g for i = 1; 2; : : : . De�neP0(X) = P (X); Pj(X) = Pj�1(X + 1)� Pj�1(X) (1 � j � k):Each Pj is a polynomial of degree k� j; in particular, Pk is constant. We evaluateP (0) to P (k) numerically, and use those to evaluate Pj(i) for 0 � j � k and0 � i � k�j. Hence we can determine the (k+1)-vector [P0(0); P1(0); � � � ; Pk(0)].Each Pj(0) � Q can be computed as described for random multiples of Q earlyin Section 5.4. This gives us the vector v(0) wherev(i) = [P0(i) �Q; P1(i) �Q; � � � ; Pk(i) �Q]:Next, for i = 1; 2; : : : , we can compute v(i) from v(i� 1) using k parallel groupoperations. The �rst component of v(i) is the desired P0(i) �Q = P (i) �Q.5.10 Implementation choicesIt was decided to implement two schemes. Of the values of k appearing inTable 5.3.1, cost requirement (DP3) restricts us to k � 24 when using P (X) = Xkwhere 4jk, and to k � 12 when using P (X) = gk;�(X) where � 6= 0.For P (X) = Xk with k = 24, a variation of the scheme in Section 5.5 was used.The main problem was a lack of parallelism when using only powers of 2 and 3. Ifthere are under � processors and d1� �, then we can letm�i+j = 3ik � 5jk (0 � �i+ j < d1 and 0 � j < �);n�i+j = 2(i+1)k=2 � 7jk (0 � �i+ j < d2 and 0 � j < �):(5.10.1)The values of (5jk �Q)x and (7jk �Q)x for 0 � j < � can be computed sequentially,using (��1)(3k+4k) = 168(��1) (non-parallel) applications of (2.3.4) or (2.3.5).(If this is an unacceptable amount of sequential calculation, then one can useadditional primes besides 5 and 7.) Once these have been built, k applications of(2.3.5) and k of (2.3.4) su�ce to get each new (m�i+j � Q)x (cost: 5k + 6k = 264modular multiplications apiece). Only k=2 applications of (2.3.5) (cost 5k=2 = 60modular multiplications apiece) are needed per new (n�i+j � Q)x. For d2 � d1,the average overall cost drops below the 100 multiplications allowed by (DP3).Figure 5.10.1 illustrates the dependency picture when building the (m�i+j � Q)x.The � computations along any row (except the �rst) can proceed in parallel, withthis process repeated until d1 values are available.This construction appears to fail property (DP1), by not ensuring that smallprimes divide some mi1�mi2 or mi�nj (though they divide with high probability67



m0 = 1 ! m1 = 5k ! m2 = 52k � � � m��1 = 5(��1)k# # # #m� = 3k m�+1 = 3k � 5k m�+2 = 3k � 52k m2��1 = 3k � 5(��1)k# # # #m2� = 32k m2�+1 = 32k � 5k m2�+2 = 32k � 52k m3��1 = 32k � 5(��1)k... ... ... ...Figure 5.10.1: Dependencies when using geometric progressionby (5.3.5)). The only apparent algebraic divisibility relation amongst the mi � njwhere i and j satisfy (5.0.1) occurs when the exponents in 3i1k �5j1k�2(i2+1)k=2 �7j2ksatisfy gcd(i1; j1; i2+1; j2) > 1; for four random integers, this event has probability1 � 1=�(4) = 1 � 90=�4 < 0:08, which appears acceptably small for (DP6). Thescheme almost satis�es (DP5); if2(i1+1)k=2 � 7j1k � �2(i2+1)k=2 � 7j2k (mod q);then there is a congruence 2ik=2 � 7jk (mod q) with 0 � j < � and jij < d2=�and i, j not both zero. If i < 0, then n�(�i�1)+j � �1 = �m0. If we rede�nemd1�1 = 7(��1)k instead of the value in (5.10.1), then we have a similar result withi > 0 since m�(i�1)+(��1�j) � �7(��1)k = �md1�1 Hence we have a match in (5.0.1)except possibly when i = 0, meaning 7jk � 1 (mod q) for some j with 0 < j < �.We can check these cases separately.The other scheme implemented used P (X) = gk;�(X) with � = 1 and k = 12.The sequences were chosen by mi = g12;1(Mi) and nj = g12;1(Nj) whereMi = 6i+ 1 (0 � i < d1);Nj = 6d1(j + 1) (0 � j < d2):We claim that this satis�es (DP1), by ensuring that all small primes q dividesome Mi � Nj and hence some mi � nj . If gcd(q; 6) = 1 and 6d1 < q < 6d1d2,then we can write q = 6d1(j + 1)� (6i+ 1) where 0 � i < d1 and 0 � j < d2. Forq < 6d1 and q � 1 (mod 6) we can represent 5q instead of q.68



Selecting Nj = 6d1(j + d2=4) rather than Nj = 6d1(j + 1) would enable one toextend the upper bound to 7:5d1d2 � 6d1, albeit at the cost of computing highermultiples of Q when initializing the algorithm in Section 5.9.This scheme seems to be remarkably free of algebraic identities where oneP (X)� P (Y ) divides another, and so seems to satisfy (DP6).However, this schememay fail (DP5), by having duplicate�nj (mod q) withoutever satisfying (5.0.2) or (5.0.1).Richard Crandall [14] has also used P (X) = Xk, but without the multipliesby 2k=2 allowed by Corollary 5.4.3. His preliminary estimates suggest k = 60 ork = 72 when B1 � 106 and k = 120 or k = 240 when B1 � 107. Crandall did notuse an FFT, so his asymptotic cost per test of mi � nj is much higher. The datain Chapter 7 suggest that k = 12 is su�ciently high when using P (X) = Xk.
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CHAPTER 6Selection of CurveSo far we have not speci�ed which elliptic curve to use, except that it shouldhave the form By2 = x3 +Ax2 + x(6.0.1)for some A and B with gcd((A2 � 4)B; N) = 1 ((6.0.1) is the a�ne equivalent of(2.3.3)). We also require a known initial point. Suyama proved that any curve ofthe form (6.0.1) has order divisible by 4 when reduced modulo any prime p, sinceat least one of B(A+ 2), B(A � 2), A2 � 4 is a quadratic residue modulo p [29,p. 262].We show how to select curves of form (6.0.1) whose torsion group over Qhas order 12 or 16, with a known rational non-torsion point (hence positive rankover Q). Then we present numerical data comparing the actual exponents of 2 and3 which divide the orders of these curves when they are reduced modulo a prime.6.1 Torsion subgroup of order 12 and positive rank over QMontgomery [29, pp. 262{263] showed how to select a curve with known initialpoint and with torsion subgroup Z=12Zover Q. IfA = �3a4 � 6a2 + 14a3 ; B = (a2� 1)24a3 ; where a = t2� 1t2 + 3 ;(6.1.1)then (6.0.1) has the following rational torsion points:O 6P =  0; 0!;(6.1.2)P =  (1 + t)2(1� t)2; t(1 + t)2(1� t)2! ; 7P =  (1� t)2(1 + t)2 ; �t(1� t)2(1 + t)2! ;
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2P =  t2 + 3t2� 1; t2 + 3t2 � 1! =  1a; 1a! ; 8P =  t2 � 1t2 + 3 ; �t2� 1t2 + 3!=  a; �a!;3P = �1; 2 tt2 + 1� ; 9P = �1; �2 tt2 + 1� ;4P =  t2� 1t2 + 3 ; t2 � 1t2 + 3! =  a; a!; 10P =  t2 + 3t2 � 1; �t2 + 3t2� 1!=  1a; �1a! ;5P =  (1� t)2(1 + t)2 ; t(1� t)2(1 + t)2! ; 11P =  (1 + t)2(1� t)2 ; �t(1 + t)2(1� t)2! :The point  x0; y0! =  3a2 + 14a ; p3a2 + 14a !is on (6.0.1) if 3a2 + 1 = 4(t4 + 3)=(t2 + 3)2 is a rational square. We can achievethis by letting t2 = (u2� 12)=4u, where u3� 12u is a rational square.6.2 Torsion subgroup of order 16 and positive rank over QBremner [8] discovered that the curvey2 = x(x+ 4096)(x + 50625)has a torsion subgroup of order 16 and positive rank over Q. Replacing Bremner'sx by 1202x and his y by 1203y gives the curvey2 = x x+ 64225! x+ 22564 ! = x3 + 5472114400x2 + x;(6.2.1)which has the form (6.0.1). More generally, if a2 + b2 = c2, then the curvey2 = x x+ a2b2! x+ b2a2! = x3 + a4 + b4a2b2 x2 + x(6.2.2)
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has the following rational torsion points, where P has order 8 and Q has order 2:O Q =  � b2a2 ; 0! ;(6.2.3)P =  a+ b+ ca+ b� c; 2 (a+ b)c(a+ b� c)2! ; P +Q =  a� b� ca� b+ c; 2 (a� b)c(a� b+ c)2! ;2P =  1; c2ab! ; 2P +Q =  �1; a2 � b2ab ! ;3P =  a+ b� ca+ b+ c; 2 (a+ b)c(a+ b+ c)2! ; 3P +Q =  a� b+ ca� b� c; 2 (a� b)c(a� b� c)2! ;4P =  0; 0!; 4P +Q =  �a2b2 ; 0! ;5P =  a+ b� ca+ b+ c; �2 (a+ b)c(a+ b+ c)2! ; 5P +Q =  a� b+ ca� b� c; �2 (a� b)c(a� b� c)2! ;6P =  1; � c2ab! ; 6P +Q =  �1; �a2� b2ab !;7P =  a+ b+ ca+ b� c; �2 (a+ b)c(a+ b� c)2! ; 7P +Q =  a� b� ca� b+ c; �2 (a� b)c(a� b+ c)2! :These points are distinct for all but �nitely many ratios a : b : c, and give atorsion subgroup of order 16. Mazur showed that this is the largest possible torsionsubgroup for an elliptic curve over Q [38, p. 223].Theorem 6.2.4 Any elliptic curve with torsion group Z=8Z� Z=2Zover Q isequivalent to one of form (6.2.2) with ab 6= 0.Proof. Kubert [18, p. 217] gives the parameterizationY 2 + (1� c)XY � bY = X3 � bX2;(6.2.5)where b = (2d � 1)(d� 1); c = (2d� 1)(d� 1)d ; d = 2�(4� + 1)8�2 � 1 :Here � 2 Q and d(d� 1)(2d � 1)(8d2 � 8d + 1) 6= 0:(6.2.6) 72



Completing the square in (6.2.5) gives Y + (1� c)X � b2 !2= X3 + (c� 1)2� 4b4 X2 + b(c� 1)2 X + b24= (X + d � d2) X2 � (2d� 1)(4d2 � 6d + 1)4d2 X � (d� 1)(2d � 1)24d !:The linear change of variablesY = (d� 1)3y� (1� c)X=2 + b=2;X = (d� 1)2x+ d2 � d;converts this to the form (6.0.1) with B = 1 andA = 8d4 � 16d3 + 16d2 � 8d + 14d2(d� 1)2 = " (2d � 1)22d(d � 1)#2� 2 = " (8�2 + 4� + 1)2(8�2 + 4�)(4� + 1)#2� 2:This has the form (6.2.2) witha : b : c = 8�2 + 4� : 4� + 1 : 8�2 + 4�+ 1:Restriction (6.2.6) becomes2�(2� + 1)(4� + 1)(8�2 + 4� + 1)(8�2 + 8� + 1)2(8�2 � 1)5 6= 0;this simpli�es to �(2�+ 1)(4�+ 1) 6= 0 and hence ab 6= 0 since � is rational. �Bremner's curve (6.2.1), with a : b : c = 8 : 15 : 17, has rational non-torsionpoints and hence positive rank. Sample x-coordinates arex0 = � 310 ; 815 ; 118 ; 825 ;and their reciprocals. A search found rational non-torsion points on (6.2.2) for someother Pythagorean ratios a : b : c. These solutions were analyzed for patterns.The solutions x0 = 8=25 when a : b : c = 8 : 15 : 17, x0 = 4=45 whena : b : c = 9 : 40 : 41, and x0 = 200=289 when a : b : c = 39 : 80 : 89 all have theform x0 = (4c� 4a)=(5c� 4a) or x0 = (4c� 4b)=(5c� 4b):73



This point is a torsion point when a : b : c = 9 : 40 : 41 but not in the other twocases. Substituting x = (4c� 4a)=(5c� 4a) and b2 = c2 � a2 in (6.2.2) givesy2 = 4c2(2c� a)2(5c+ a)(c� a)a2(c+ a)(5c� 4a)3 :(6.2.7)Since (c + a)(c� a) = b2 is assumed to be a perfect square, the computed y2 is aperfect square whenever (5c+ a)(5c� 4a) is a perfect square.We can get in�nitely many solutions to (6.2.7) by setting a = 1 � t2, b = 2t,and c = 1 + t2, where t is a rational number to be determined. We requirethat (t2 + 1=9)(t2 + 3=2) be a rational square. Letting u = t2, we want u and(u+1=9)(u+3=2) to be squares. By selecting an arbitrary point (u; v) = (u0; v0)on the elliptic curve v2 = u(u+ 1=9)(u + 3=2)(6.2.8)and doubling it, we accomplish our objective, since the u-coordinate of the doubledpoint is always a perfect square. Speci�cally, we can sett = u20 � 1=62v0 :Our \arbitrary point" can be a random multiple of the known point (u; v) =(1; 5=3) or (�1; 2=3) on (6.2.8).This and other ways to get an initial point for (6.2.2) are listed in Table 6.2.1.Each method requires some homogeneous quadratic polynomial in a, b, and c tobe a perfect square, while also requiring that a2 + b2 = c2. Upon parameterizinga = 1�t2, b = 2t, and c = 1+t2, each entry leads to a fourth-degree polynomial in twhich must be a perfect square; its solutions (if any) lie on an elliptic curve. Tableentries were found in an ad hoc manner, so I make no claim of completeness. Thelast entry is due to Atkin and Morain [5], who also show how to construct curvesof positive rank with other torsion groups over Q. Elkies [15, p. 832] describes howto add points on an elliptic curve Y 2 = quartic(t) with known rational points; thiscan be used to �nd more ratios for the last column of Table 6.2.1 (sometimes usinga trivial rational point where ab = 0).6.3 Numerical comparison of torsion subgroups of orders 12 and 16If a curve E has a torsion subgroup of order 12 over Q and p is a prime whichdoes not divide the denominator of any coe�cient of E or of its torsion points,then its reduction E(p) modulo p has order divisible by 12 unless E(p) is singularmodulo p or two points in the torsion subgroup agree modulo p, and hence for all74



x0 Required square Example ratios a : b : cab a2 � ab+ b2 8 : 15 : 17, 1768 : �2415 : 2993bb+ c a2 + bc 4 : �3 : 5, 15 : 8 : 17, 136 : 273 : 3054(c � a)5c � 4a (5c + a)(5c � 4a) 15 : 8 : 17, 40 : 9 : 41, 39 : 80 : 89� 4a3a+ b (3a+ b)(3a+ 4b) 7 : �24 : 25, 20 : 21 : 29, 209 : �120 : 241�a+ cb + c ab+ ac+ bc 80 : �39 : 89, 199088 : 258825 : 326537b� cb+ c (c + 2b)(c � 2b) None foundbc� ac� 2ab(b + c� a)2 bc� ac� 2ab 111 : 680 : 689Table 6.2.1: Some ways to ensure that curve's group order is divisible by 16but �nitely many primes p. The ECM algorithm succeeds if jE(p)j=12 is su�cientlysmooth; this quotient is approximately p=12. Likewise, if E has a torsion subgroupof order 16 over Q, then the ECM algorithm succeeds if jE(p)j=16 is su�cientlysmooth; this quotient is approximately p=16. Intuitively, since p=16 < p=12, theformer seems more likely to be smooth, so curves with torsion subgroup of order 16are \better".A numerical experiment was conducted to check this hypothesis. It used �vecurves of form (6.1.1), with u = 4, 54, 49=4, 2166=625, 14884=1089. It also used�ve curves of form (6.2.2) as described in the paragraph near (6.2.8), withpu0 2 (14 ; 58 ; 437342 ; 17314960 ; 40968492658604) :The orders of all ten curves, plus one other curve with A = 101 and B = 103,were computed modulo each of 8356 primes from 10000 to 100000; those primesfor which a denominator vanished or for which one of the curves was singular (i.e.A � �2) were excluded.When the torsion subgroup had order 12 over Q, the prime 2 divided the grouporder jE(p)j an average of 3.68 times and the prime 3 divided the order an averageof 1.68 times, e�ectively subtracting an average of3:68 ln 2 + 1:68 ln 3 � 4:40from the natural logarithm of the order. When the torsion subgroup had order 16over Q, the prime 2 divided the order an average of 5:32 times and the prime 375



divided the order an average of 0:68 times, e�ectively subtracting an average of5:32 ln 2 + 0:68 ln 3 � 4:43from the natural logarithm of the order. Both averages are considerably larger thanthe ln(12 �2 �31=2) � 3:73 (or ln(16 �2 �31=2) � 4:02) which one would expect given arandom multiple of 12 (resp. 16), but the di�erence between the two expectationsseems slight. As expected, the curve with A = 101 and B = 103 (torsion groupof order 4) performed much worse than the others, with 2 appearing to the 3:65power and 3 to the 0:68 power on average.In all cases the prime 5 divided the order average of 0:30 times while 7 dividedthe order an average of 0:19 times.The data was subsequently analyzed for patterns depending on the residue classof p. Primes p � 1 (mod 6) fared better when the torsion subgroup had order 12,but primes p � 5 (mod 6) fared better when the torsion subgroup had order 16,as seen in Table 6.3.1. The statistics appeared not to depend on the residue classof p modulo 18 once the residue class of p modulo 6 is �xed.p (mod 6) 1 1 5 5Torsion subgroup order 12 16 12 16Curves tried 20860 20860 20920 20920Average exponent of 2 3.68 5.32 3.69 5.32Average exponent of 3 1.87 0.61 1.50 0.75Average ln jE(p)j reduction 4.60 4.35 4.21 4.51Power of 3:30 0 13041 0 1044631 9264 4654 13968 702532 7306 2046 4605 228233 2809 746 1582 80234 978 244 493 25935 350 88 190 7536 or more 153 41 82 31Table 6.3.1: Power of 3 dividing group orderTables 6.3.2 and 6.3.3 have data about the exponent of 2 dividing jE(p)j andp� 1. These data suggest Conjectures 6.3.1 and 6.3.2.76



p (mod 16) 1 9 5, 13 3, 7, 11, 15Torsion subgroup order 12 12 12 12Curves tried 5210 5210 10420 20940Average exponent of 2 3.80 3.82 3.92 3.51Average exponent of 3 1.68 1.67 1.69 1.68Average ln jE(p)j reduction 4.49 4.48 4.57 4.28Power of 2:22 1269 1291 2540 520923 1334 1284 2582 784024 1293 1308 1949 394125 564 584 1655 195526 366 330 821 95427 191 202 444 53028 81 105 215 26329 60 51 102 123210 22 27 51 59211 or more 30 28 61 66Table 6.3.2: Power of 2 dividing group order when torsion subgroup has order 12Conjecture 6.3.1 Let E be an elliptic curve with torsion subgroup Z=12ZoverQ. For any prime p, let jE(p)j denote the order of its reduction E(p) modulo p.Then(a) As p ranges through the primes congruent to 5 modulo 6, the largest powerof 3 dividing jE(p)j is 3� with probability 2 � 3�� for each � � 1.(b) As p ranges through the primes congruent to 3 modulo 4, the largest powerof 2 dividing jE(p)j is 2� with probability 1=4 if � = 2 and probability 3 � 2��if � � 3.(c) As p ranges through the primes congruent to 5 modulo 8, the largest powerof 2 dividing jE(p)j is 2� with probability 1=4 if � = 2 or � = 3, probability3=16 if � = 4, and probability 5 � 2�� if � � 5.Conjecture 6.3.2 Let E be an elliptic curve with torsion subgroup Z=8Z�Z=2Zover Q. For any prime p, let jE(p)j denote the order of its reduction E(p) modulo p.Then 77



p (mod 16) 1 9 5, 13 3, 7, 11, 15Torsion subgroup order 16 16 16 16Curves tried 5210 5210 10420 20940Average exponent of 2 5.77 5.87 5.49 4.98Average exponent of 3 0.67 0.66 0.67 0.68Average ln jE(p)j reduction 4.74 4.80 4.55 4.20Power of 2:24 1290 1329 2672 1058325 1349 1274 3849 523526 1307 998 1916 255227 562 791 1010 130828 329 402 478 64029 173 222 247 307210 98 99 120 154211 56 47 76 90212 or more 46 48 52 71Table 6.3.3: Power of 2 dividing group order when torsion subgroup has order 16(a) As p ranges through the primes congruent to 5 modulo 6, the largest powerof 3 dividing jE(p)j is 3� with probability 1=2 if � = 0 and probability 3�� if� � 1.(b) As p ranges through the primes congruent to 3 modulo 4, the largest powerof 2 dividing jE(p)j is 2� with probability 23�� for each � � 4.(c) As p ranges through the primes congruent to 5 modulo 8, the largest powerof 2 dividing jE(p)j is 2� with probability 1=4 if � = 4 and probability 3 � 22��if � � 4.According to Conjectures 6.3.1 and 6.3.2, the average exponent of 3 dividingthe order jE(p)j is 3=2 (resp. 3=4) when the torsion group has order 12 (resp. 16)over Q and p � 5 (mod 6). The average exponent of 2 dividing jE(p)j is 7=2 (resp.5) if p � 3 (mod 4), and 63=16 (resp. 11=2) if p � 5 (mod 8).The conjectures make no prediction for the exponent of 3 when p � 1 (mod 6),or the exponent of 2 when p � 1 (mod 8). The fractions 13041=20860, 9264=20860,and 4654=20860 in Table 6.3.1 are approximately 5=8, 4=9, and 2=9 respectively,but the other entries seem hard to guess.78



The evidence for these conjectures is weak, even if it is correct for curves gener-ated using (6.1.1) or using (6.2.2) and (6.2.8), because another method of selectingthe curves may give di�erent statistics. The program was rerun, using 100 randomcurves with torsion group Z=12Z(not necessarily with positive rank). and another100 curves with torsion group Z=8Z�Z=2Z, for 984 primes in [10000; 20000].(98400 curves with each torsion group). The results resembled those in Tables 6.3.1,6.3.2, and 6.3.3.If p is a prime and E(p) has a subgroup isomorphic to Z=nZ�Z=nZfor someinteger n, then p � 1 (mod n) [7, p. 954]. For example, if p � 2 (mod 3), thenE(p) cannot have a subgroup isomorphic to Z=3Z�Z=3Z, so its Sylow 3-subgroupmust be cyclic. Hence a power 3k cannot divide E(p) unless E(p) has a point oforder 3k. When instead p � 1 (mod 3), the Sylow 3-subgroup of E(p) need not becyclic. This rationalizes why the exponent of 3 dividing the order in Table 6.3.1varies with p (mod 3), and why the exponent of 2 in Tables 6.3.2 and 6.3.3 varieswith the exponent of 2 dividing p�1, but does not predict the actual distributions.
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CHAPTER 7Selection of Search Limits B1, d1, d2The ECM algorithm usually �nds the prime pjN if the order jE(p)j has all butpossibly one prime divisor below a bound B1, and its remaining prime divisor q(if any) divides mi � nj for some i and j satisfying (5.0.1). We want to estimatethe expected cost required to �nd p, in terms of the size of p and the searchparameters B1, d1, d2. Here d1, d2 are as in Chapter 5. To achieve this, weestimate Prsucc(B1; d1; d2), the probability of �nding p using parameters B1, d1,and d2 with a random curve. We also estimate Cost(B1; d1; d2), the cost of runningone curve with these parameters. Then we attempt to minimize the expected totalcost Cost(B1; d1; d2)Prsucc(B1; d1; d2) :(7.0.1)The numerator estimate depends on the magnitude of N (arithmetic is cheaperif N is smaller). The denominator estimate depends on the prime p (larger proba-bilities for smaller p). The minimization process treats B1, d1, and d2 as continuousreal variables, while �xing N and p. This process ignores the requirements that d1be a power of 2 and that d1jd2. Fortunately, the expected cost is very at near itsminimum (cf. the last two columns of Table 7.4.1), so imposing these restrictionslater does not signi�cantly a�ect the estimated total cost.The analysis assumes use of curves with torsion group of order 16 over Q(Section 6.2). It also assumes that Step 2 uses P (X) = X24 as in Section 5.10.7.1 Dickman's functionDickman's function �(�) [9, pp. 3{4] [17, p. 367] estimates the probability thata large integer x has all its prime factors below x1=�. It satis�es the functionalequation �(�) = 1 (0 � � � 1),(7.1.1) ��0(�) = ��(�� 1) (� > 1)(the ranges for � in [9] are incorrect). An asymptotic formula [9] isln �(�) = ��(ln� + ln ln�� 1) + o(�) (�!1):80



7.2 Estimated success probability per curveThe curve has been chosen to have order divisible by 16; its order is approxi-mately p. In terms of Dickman's function (7.1.1), the estimated success probabilityduring Step 1 is the probability that an integer near p=16 has all its prime factorsbelow B1, namely � ln(p=16)lnB1 ! :(7.2.1)(This estimate is slightly pessimistic, since the data in Section 6.3 suggest that theaverage powers of 2 and 3 dividing jE(p)j=16 are larger than those dividing randomintegers.)Step 2 succeeds if there exists a prime q > B1 such that(i) q divides the group order;(ii) all prime factors of jE(p)j=16q are below B1;(iii) two of the multiples of Q constructed during Step 2 satisfy (5.0.1).Item (i) has estimated probability 1=q for q < p=16 and probability 0 otherwise.The estimated probability of (ii) is given by Dickman's function. By (5.3.5), theestimated probability of (iii) isPrmatch(d1; d2; q) = 1� 1�(48) Xq0 (mod 48)gcd(q0; 48)=1 exp �d1d2q gcd(48; q0� 1)!= 1� 116�4 exp(�2d1d2=q) + 2 exp(�4d1d2=q)+ 4 exp(�6d1d2=q) + exp(�8d1d2=q)+ 2 exp(�12d1d2=q) + exp(�16d1d2=q)+ exp(�24d1d2=q) + exp(�48d1d2=q)�Since at most one q > B1 can satisfy both (i) and (ii), we can sum the product ofthese probabilities over all prime q > B1, leading to an estimated Step 2 success81



probability of XB1<q<p=16q prime Prmatch(d1; d2; q)q � ln(p=16q)lnB1 !� Z p=16B1 Prmatch(d1; d2; q)q � ln(p=16q)lnB1 ! dqln q :Substituting q = exp(q0) and adding (7.2.1) gives a total success probability ofPrsucc(B1; d1; d2) = Z ln(p=16)lnB1 Prmatch(d1; d2; exp(q0)) � ln(p=16) � q0lnB1 ! dq0q0+ � ln(p=16)lnB1 ! :(7.2.2)7.3 Estimated time per curveThe rows of Table 7.3.1 summarize the major actions during the ECM algo-rithm. (Actions taking negligible time such as selection of the curve itself areomitted.) Each row has four entries:(i) A brief description of the action. Actions appear in the order in which theyare �rst executed.(ii) The number of times the action is executed per curve.(iii) Its asymptotic cost (per execution) for large d1, d2, and B1 but �xed N . Thiscolumn assumes that M(d) = O(d log d) in Section 3.1.(iv) An estimated cost, using the �rst term of the asymptotic cost, with con-stants chosen to match actual run times (in milliseconds on a DEC 5000)for a 150{digit N . Speci�cally, that run attempted to factor the cofactorof p(20021) listed in Table 9.2.1, with B1 = 3 � 106 and d1 = 8192 andd2 = 81920.
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Action Timesexecuted Asymptotic costper execution Fitted cost for150{digit N (msec.)Step 1 1 O(B1) 5:5B1Roots of F 1 O(d1) 105 d1Construct F (X) 1 O(d1(log d1)2) 0:16 d1(log2 d1)2Construct RECIP(F (X)) 1 O(d1 log d1) 1:5 d1 log2 d1Roots of H d2=d1 O(d1) 25 d1Construct H(X) d2=d1 O(d1(log d1)2) 0:16 d1(log2 d1)2G(X) G(X)H(X)modF (X) d2=d1 � 1 O(d1 log d1) 1:1 d1 log2 d1gcd(F (X); G(X)) 1 O(d1(log d1)2) 1:5d1(log2 d1)2Table 7.3.1: Estimated time per curve (milliseconds)Table 7.3.1 predicts a total time per curve ofCost(B1; d1; d2)= 5:5B1 + 105d1 + 0:16d1(log2 d1)2 + 1:5d1 log2 d1+ d2d1�25d1 + 0:16d1(log2 d1)2 + 1:1d1 log2 d1�� 1:1d1 log2 d1 + 1:5d1(log2 d1)2= 5:5B1 + 105d1 + 25d2 + (0:4d1 + 1:1d2) log2 d1 + (1:66d1 + 0:16d2)(log2 d1)2:
(7.3.1)
The precise constants in this estimate depend on the implementation and thehardware available. Using more precise asymptotic costs also a�ects (7.3.1).7.4 Estimated optimal parametersWe want to minimize (7.0.1). The constants in its numerator (cost estimate(7.3.1)) were derived assuming that N has 150 digits. If all costs of the compu-tation grow in equal proportions N increases, then the location of the minimumdoes not depend on N . (However (3.4.5) suggests this proportionality assump-tion is incorrect; indeed the data in Table 9.1.1 show that operations modulo a200{digit N take 2.4{2.8 times as long as those modulo a 100{digit N , whereas83



the multiplication modulo N during Step 1 presently uses an O((logN)2) algo-rithm.) The denominator (success probability estimate (7.2.2)) depends heavilyon the magnitude of p.Table 7.4.1 gives estimates of the optimal parameters (i.e. those minimizing(7.0.1)) for various sizes of p. It includes estimated run times (in hours) for theenvironment of the last column Table 7.3.1. The minimization was done numeri-cally. To approximate a prime of d decimal digits, we put p = 10d�1=2 in (7.2.2).The integral in (7.2.2) was approximated by Simpson's rule. Dickman's functionwas approximated using interpolation in a table.The third and fourth columns of Table 7.4.1 suggest that one should used2 � 7d1. The expected cost in the sixth column increases by 50% for each eachadditional digit in p. With optimal parameters, approximately two-thirds of therun time is in Step 1 (this percentage is 57%, 65%, 68%, 72% when p has 20, 30,40, 50 digits). The conditional probability that a success occurs during Step 1rather than Step 2 while using optimal parameters drops from 11% to 5% as pincreases from 20 to 50 digits.In practice the size of p is usually unknown. The last column of Table 7.4.1gives the estimated times to �nd p of various sizes using parameters optimizedfor a p of 31 digits. The estimated times using these parameters are at mosttwice the corresponding optimal times if p has 22{41 digits, and within 20% of thecorresponding optimal times if p has 27{36 digits. If N has 150 digits, then eachcurve takes about 1.2 hours on a DEC 5000 using these parameters.The program used to generate Table 7.4.1 was rerun, using P (X) = X12 ratherthan P (X) = X24. The estimated run times were 3%{10% smaller than thecorresponding times in Table 7.4.1, suggesting that the exponent 24 is too large.The corresponding table for P (X) = X12 has values of B1 about 5%{10% smallerthan those in Table 7.4.1; its values of d1 are 2% larger while its values of d2are 15%{20% larger (suggesting d2 = 8d1 or d2 = 9d1). These di�erences aremore signi�cant for smaller p. Both P (X) = X24 and P (X) = X12 have smallerexpected times than P (X) = X4.On a machine with 1024 parallel processors each as fast as a DEC 5000 (or anetwork of these), Table 7.4.1 predicts that one can �nd all factors up to 33 digitsof a 150{digit N within an hour, up to 41 digits within a day, and 50 digits withina month, assuming perfect parallelism. Such systems may be widely available inten years, allowing Rusin's 42{digit ECM record in Table 1.0.1 to be beaten manytimes. Brent [9, p. 18] predicts that factors up to 50 digits can be found this way.
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Digitsin p B1 d1 d2 Expectednumberofcurves Expectedtime (hrs.)for150{digit N Time withB1 = 500000,d1 = 2048,d2 = 1638420 18000 160 1000 51 2.4 7.321 25000 210 1300 61 4.0 9.722 34000 270 1700 73 6.5 1323 47000 340 2200 87 11 1824 65000 430 2900 100 17 2625 88000 540 3700 120 27 3726 120000 690 4700 150 43 5327 160000 860 6100 170 68 7728 220000 1100 7700 200 110 11029 290000 1400 9800 240 170 17030 390000 1700 12000 280 260 26031 510000 2100 16000 330 390 39032 670000 2600 19000 380 600 61033 880000 3300 24000 450 920 95034 1200000 4000 30000 520 1400 150035 1500000 5000 38000 610 2100 240036 1900000 6100 47000 710 3200 380037 2500000 7500 58000 830 4700 610038 3200000 9200 72000 960 7000 1000039 4200000 11000 88000 1100 10000 1600040 5300000 14000 110000 1300 15000 2700041 6800000 17000 130000 1500 23000 4500042 8700000 21000 160000 1700 33000 7500043 11000000 25000 200000 2000 48000 13000044 14000000 30000 250000 2300 71000 22000045 18000000 37000 300000 2600 100000 37000050 56000000 95000 790000 5300 630000 7800000Table 7.4.1: Estimated optimal parameters85



CHAPTER 8Multiple-Precision and Modular ArithmeticTiming runs revealed that this program's time was concentrated on four activ-ities:(i) Arithmetic modulo N , esp. multiplication. This is the major activity duringStep 1; it is also used during Step 2 when calculating the x-coordinates foruse in (4.3.1).(ii) Arithmetic modulo (all) primes pi during a convolution.(iii) Finding remainders modulo all pi given a value modulo N (Section 3.4).(iv) Reconstructing remainder modulo N given remainders modulo several pi(equation (3.4.4)).The program has been designed to allow parallelism, but each of the abovesteps was treated to be an indivisible operation and assumed to be completed ona single processor. For example, the design allows several independent multiplica-tions modulo N to proceed at once, but any such multiplication is completed by asingle processor.The only parallel architecture used during the study was an Alliant FX/80, aMIMD architecture which also supports vectorization [4]. If a convolution requiredK prime moduli, then the data was structured so K remainders modulo di�erentprimes were stored in adjacent locations, allowing vectorization with unit strideover the primes (this contrasts with Silverman's implementation [32], which triedto assign each prime modulus to a separate processor during the convolutions). Atypical primitive operation used by the FFT is(ai; bi) (ai + !ibi; ai � !ibi) mod pi (1 � i � K);(8.0.1)which has one multiplication, one addition, and one subtraction modulo each pi,all potentially vectorizable.8.1 Arithmetic modulo NArithmetic modulo N used the algorithm in [28]. Suppose that N can berepresented using ` digits in radix R, where R is a power of 2. Let 0 � A; B < N ,with 86



A = `�1Xi=0 aiRi; B = `�1Xi=0 biRi; N = `�1Xi=0 niRi;(8.1.1)and 0 � ai; bi; ni < R for all i. The algorithm requires a constant N 0 such thatN 0 �N � �1 (mod R);such exists since N is odd.Procedure MODMULN in Figure 8.1.1 is based on the classical (not high-speed)multiplication techniques (i.e. its time is O(`2)). It returns AB=R` mod N ratherthan AB mod N . To compensate, all residues modulo N should be scaled by R`beforehand. De�ne A = AR` mod Nfor any integer A modulo N . Then(A�B) � (A�B)R` = AR` �BR` � A�B (mod N);(AB) � (AB)R` � (AR`)(BR`)R�` � ABR�` � MODMULN(A; B) (mod N):If A mod N is represented internally by A, then using MODMULN on two internalrepresentations gives the internal representation of their product modulo N . Theaddition and subtraction algorithms are unchanged. Algebraically, the mappingA ! A is an isomorphism from the ring Z=NZwith conventional arithmetic tothat set with ordinary addition but with multiplication de�ned by MODMULN.The additive identity remains 0 = 0, but the multiplicative identity becomes 1.Given two polynomials F (X) and G(X), the algorithms of Section 3.4 returnF (X)G(X) mod N . Suppose we invoke it onF (X) =Xi fiX i and G(X) =Xi gjXj:Each output coe�cient has the formXi;j fi gj �Xi;j (figj)R` (mod N)rather than the desired Pi;j (figj). That is, they are too large by a factor ofR` mod N . This correction is easily incorporated into the convolution algorithm,by scaling the pre-computed coe�cients in (3.4.4).87



procedure MODMULN(A; B)C := 0for j from 0 to ` � 1 doCmt. Suppose C =P`�1i=0 ciRi.dtemp := c0 + aj � b0qj := (dtemp �N 0) mod RCmt. Compute C := ((C � c0) + aj � (B � b0) + qj �N + dtemp)=R:carry := (dtemp+ qj � n0)=Rfor i from 1 to `� 1 doCmt. 0 � aj; qj; bi; ni � R� 1.Cmt. 0 � carry � 2(R � 1).Cmt. 0 � ci � R� 1 if i < `� 1.Cmt. 0 � dtemp � 2R2 �R� 1 if i < `� 1.Cmt. 0 � c`�1 � R� 1.Cmt. 0 � dtemp � 2R2 � 1 if i = `� 1.dtemp := ci + carry + aj � bi + qj � nici�1 := dtemp mod Rcarry := bdtemp=Rcend forc`�1 := carryCmt. C �Rj+1 = (ajaj�1 � � �a0)R �B + (qjqj�1 � � � q0)R �N .end forif C � N then C := C �Nreturn Cend MODMULNFigure 8.1.1: Procedure for multiplication modulo N
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8.2 Double-length multiplicationThe portion of Algorithm MODMULN of Figure 8.1.1 preceding the �nal C �N test requires the following primitive arithmetic operations:(i) Addition of nonnegative integers with sum not exceeding 2R2 � 1.(ii) Multiplication of two nonnegative integers below R, with product as large as(R� 1)2.(iii) Integer quotient and remainder when dividing a nonnegative integer below2R2 by R. On a binary machine this is equivalent to extracting the leastsigni�cant log2R bits or the next 1 + log2R bits of the input.The length of the operands is ` = dlogRNe; to keep ` (and the number of loopiterations) small, the the radix R be as large as convenient while �tting into amachine word.I coded MODMULN in four essentially di�erent ways, some aimed for porta-bility and some for high performance on certain architectures. The subalgorithmis chosen at compile time. Di�erent subalgorithms impose di�erent bounds on theradix R.Direct. This subalgorithm requires the hardware and language to support integersas large as 2R2�1. On a 32{bit machine, we can restrict R � 215 while usingordinary integers, or R � 230 while using 64{bit results.The Fortran 77, Fortran 90, and ANSI C language standards do not specify along integer data type (though the kind parameter of Fortran 90 permits it).The GNU C compiler does support a long long data type, but UCLA's cur-rent version (1.39) does not inline the code operating on such data, making itneedlessly slow (though Version 2 has improved support). This subalgorithmwas used primarily in some assembly language versions of MODMULN.Hal�nt. This requires that R be an even power of 2. To multiply two operandsa and b where 0 � a; b < R, one writes a = a0 + a1pR and b = b0 + b1pR,where 0 � a0; a1; b0; b1 < pR. Then ab = a0b0 + (a1b0 + a0b1)pR + a1b1R;all products are less than R. We can use three multiplications rather thanfour by utilizing the Karatsuba identity (3.1.1).If pR is su�ciently small, then the multiplications of integers below pR canbe done by table look-up, using one of the identitiesab = $(a+ b)24 %� $(a� b)24 %(8.2.1) ab = (a+ b+ 1)(a+ b)2 � a(a+ 1)2 � b(b+ 1)2 :(8.2.2) 89



The use of a table of squares (8.2.1) requires only two table look-ups permultiplication versus three when using triangular numbers (8.2.2). Equation(8.2.1) uses a table indexed from from 1�pR to 2pR � 2 whereas (8.2.2)uses indices only from 0 to 2pR � 2. A test showed (8.2.2) outperforming(8.2.1) (on a program where the most cache data would be from this table),but both table look-up methods did poorly.Double. If the double precision oating point data type can represent integers aslarge as 2R2 � 1 exactly, and if all arithmetic is exact when the inputs andoutputs are integers and outputs below this bound, then all arithmetic canbe done using oating point and converted back afterwards. On a machinewhose double precision mantissa has 53 bits, as in the IEEE standard, thisallows R = 226. On a SUN 4, an optimized Fortran implementation ofMODMULN using this subalgorithm performed almost as well as an assemblysubprogram using the direct subalgorithm and mulscc instructions.Twos-Comp. This subalgorithm assumes that all integer addition, subtraction,and multiplication is done modulo some 2b with overow ignored, where2b � R (often b = 32). That is, all integer arithmetic really operates inZ=2bZ; this is the same as twos' complement arithmetic on b{bit integers.This subalgorithm also requires that the oating point data type hold itemsa few bits larger than required for R.Suppose we want the upper and lower halves of a1a2+a3a4, where 0 � ai < R.Compute t0 = (a1a2 + a3a4 mod 2b) mod R, using integer arithmetic withoverow ignored; its remainder modulo R is in the lower bits. The top half(a1a2 + a3a4� t0)=R of this result is known to be an integer less than 2R; itcan be estimated using oating point arithmetic whose mantissa is su�cientlywide, with the result rounded to the nearest integer.The twos-comp subalgorithmwas originally developed for the Alliant, whichcan return a double-length (64{bit) integer product in scalar mode but notin vector mode [4]. It is also the best-performing non-assembly subalgo-rithm on the DEC 5000 and IBM RS/6000, whose integer and oating pointcalculations of a1a2 + a3a4 can proceed concurrently in separate functionalunits. The RS/6000 compilation used the unsupported -qxag=hst of thexlf Fortran compiler, to suppress overow checking when converting oatingpoint to integer (both here and while preparing Table 9.1.1). Without thiscompilation option, hal�nt was the fastest subalgorithm on the RS/6000.90



8.3 Arithmetic modulo small primesThe primes pi selected in (3.4.1) should be large enough that only a few areneeded, but small enough that arithmetic modulo the pi can be done easily. Inorder that enough pi exist satisfying the congruence condition for primitive roots,their minimum size is about 24 bits.A compilation option allows elements ofZ=piZto be represented as operands inthe interval [�pi; pi] (signed operands) or in [0; pi�1] (nonnegative operands). Thetypical operation (8.0.1) is the composition of two simpler operations: replacingbi  !ibi mod pi followed by (ai; bi) (ai + bi; ai � bi) mod pi(8.3.1)given faig, fbig, fpig. Since the pi rarely change, we also permit auxiliary constantswhich depend only on the pi and can be pre-computed. We want to implementthese operations in a vectorizable fashion.If ai and bi are nonnegative (i.e. in [0; pi � 1]), then one can implement thesecond operation in (8.3.1) by computing ai � pi + bi and ai � bi, then addingpi to either result if negative. If instead ai and bi are signed operands, thenone can �rst adjust ai and bi to the interval [0; pi] if they are negative, followedby outputting ai � pi + bi and ai � bi. In each case the outputs follow the sameconventions as the inputs, at a cost of �ve vectorizable adds/subtracts (two of themunder conditional mask) plus two vector compares and some loads and stores. Theselection of signed or unsigned data depends primarily on the subalgorithm formultiplication modulo pi.Suppose we want a product !ibi mod pi. Analogous to the direct method inSection 8.2, one can compute the double-length product !ibi and divide by pi,if the machine and language support double-length multiplication and division.These operations are most simply done on nonnegative operands. Division can beavoided if one uses a method analogous to MODMULN, which is allowed to return!ibi=2`0 (mod pi) where `0 is a constant and 2`0 > pi. This variation �nds ci 2[0; 2``� 1] such that !ibi� cipi is a multiple of 2`0 , returning either (!ibi� cipi)=2`0or (!ibi � cipi)=2`0 + pi.Subalgorithm hal�nt can also be used here, by breaking each input into twopieces half as long, and using an even exponent `0. It resembles MODMULN inFigure 8.1.1, with N replaced by pi, ` replaced by 2, and R replaced by 2`0=2. Thissubalgorithm also prefers nonnegative operands.Subalgorithm double �nd approximate quotients qi such that jqi�!ibi=pij � 1,by computing !ibi=pi with round-o� error at most 0.5 and rounding that result91



to the nearest integer. The outputs !ibi � piqi can then be computed exactly ifthe oating point mantissa is su�ciently wide (e.g. p2i < 253 when using 53{bitmantissa). This subalgorithm prefers signed data. If the nearest integer function(Fortran NINT) is slow but truncation towards zero is fast, then approximate!ibipi � !ibi1 + 1=2pipi :Estimate the right side using oating point arithmetic. Except when !ibi = 0,the approximation is too large in absolute value but its relative error is less than1=pi, if oating precision is su�ciently large. Upon converting the right side to aninteger while truncating towards zero, the estimated quotients qi are either corrector one too large, and the computed remainders are in the interval [�pi; pi], asdesired.Subalgorithm twos-comp also generalizes. As in double, estimate a quotientqi � !ibi=pi via oating point arithmetic. Then compute the remainder !ibi� piqiusing integer arithmetic modulo a power of 2 exceeding 2pi. We know that thecomputed remainder has absolute value at most pi, so the computed result mustbe correct despite intermediate integer overow. This subalgorithm prefers signeddata.Some of these subalgorithms �nd !ibi=2`0 mod pi for some `0 > 0 rather than!ibi mod pi. One can compensate by scaling all inputs (including primitive roots)by 2`0 mod pi, much as used by inputs to MODMULN. Since we must divide by2`0 mod pi after the convolutions modulo pi, the constant (P=pi)�1 in (3.4.2) shouldnot be pre-scaled; that multiply removes any bias.8.4 Finding remainders modulo piThe convolution algorithm in Section 3.4 reduces all input polynomial coef-�cients modulo pi. It may also need to scale these residues by 2`0 mod pi if themultiplication subalgorithm of Section 8.3 so requires. Let a sample input beA = P`�1j=0 ajRj , as in Section 8.1.The direct algorithm begins with the leading coe�cient a`�1, which it reducesmodulo pi. Then it reduces a`�1R+ a`�2 modulo pi, and so on.To reduce the number of divisions, we can pre-compute all 2`0Rj mod pi. Nowthe computation reduces to an inner product2`0A � `�1Xj=0 aj�2`0Rj mod pi� (mod pi)(8.4.1)with each summand bounded by (R� 1)(pi � 1). Analogues of the multiplicationsubalgorithms in Section 8.2 handle this inner product. For direct and hal�nt it is92



convenient to instead reduce A �2`0R modulo pi, getting a remainder in [0; Rpi�1]and dividing the latter by R mod pi; this is accomplished by replacing 2`0Rj by2`0Rj+1 in (8.4.1) (and with an additional entry per pi in the pre-computed table).8.5 Reconstructing remainder modulo NThe outputs hj of a convolution are determined by an inner product (3.4.4) inwhich one operand is a residue modulo pi and the other is a residue modulo N ;the inner product is calculated modulo N . It resemblesh � KXi=0 aiBi (mod N)(8.5.1)where ai is a single-precision integer and 0 � Bi < N ; the integers Bi are pre-computed.Writing BiR � P`�1j=0 bijRj (mod N), (8.5.1) becomeshR � KXi=0 ai(RBi) � KXi=0 ai `�1Xj=0 bijRj = `�1Xj=0Rj KXi=0 aibij (mod N):The inner sums are evaluated as triple-precision base-R integers, one per j. Fromthe last digit of this calculated product, we can determine a multiple of N whichwhen added to the product gives a multiple of R. That multiple is added whiledoing carry propagation, to get a result in radix R which is less than �(R � 1) +PKi=0 ai� times N . Dividing this sum by R (by eliminating its last digit) gives aremainder which is at most a small multiple of N (at most O(KN) if the pi andR have the same magnitude); the �nal quotient and remainder h are determinedusing the binary search algorithm on a table of small multiples of N followed by amultiple-precision subtraction.8.6 Vectorized carry propagationMultiple-precision addition and subtraction are much cheaper than multiplica-tion, but are nonetheless used heavily by ECM. They can be done by starting withthe least signi�cant digit and working up [17, p. 251]. For example, during modularaddition one may need to compute C = A+B �N where A, B, and N are givenby (8.1.1) and C has a like form. Assuming that the radix R is su�ciently smallthat 4R �ts in a word, one straightforward algorithm appears in Figure 8.6.1.This algorithm does not vectorize well. Although the computations of ai+bi�nican be vectorized, each carry potentially depends on all earlier carries.93



Cmt. Compute C = A+B �N , plus carry out.carry := 0for i from 0 to `� 1 docarry := carry + ai + bi � nici := carry mod Rcarry := bcarry=Rcend forFigure 8.6.1: Straightforward multiple-precision addition and subtractionBailey [6, p. 286] vectorizes this operation in almost all cases by assuming thatthe carries propagate at most three places to the left. When this assumption fails,Bailey resorts to scalar operations.Full vectorization is possible if one can perform integer arithmetic (shifts, adds,bitwise operations) on vector masks. Initialize ci = ai + bi � ni for 0 � i � ` � 1.These satisfy 1�R � ci � 2R�2 for all i. Then apply the algorithm in Figure 8.6.2to the fcig vector.Each iteration of the inner loop in Figure 8.6.2 does carry propagation across avector of length lnow+ 1 � 32, ensuring that all but possibly the most signi�cantelement of the output vector are in range. The values of fviglnow+1i=0 are assumedstored in a vector register. The �rst two where's in the inner loop subtract Rfrom any elements which previously were R� 1 or larger, while adding 1 to theirleft neighbors. This does not alter the numerical value of P`�1i=0 ciRi, but avoidsdigits larger than R�1. Negative digits, however, may still remain. All remainingcarries are �1 or 0, whereas previously they might have been �1, 0, or +1.The locations where a carry in is �1 are those where (i) the right neighbor isnegative, or (ii) the right neighbor is zero and that neighbor has a carry in of �1.De�ne mi = 0 if vi is positive, mi = 1 if vi = 0, and mi = 2 if vi < 0. Form thebinary sum Plnow�1i=0 mi 2i = msk< + msk� using the integer add instruction onvector masks. There are binary carries from all columns where mi = 2 (i.e. thosewhere vi < 0), and from those with mi = 1 (i.e. vi = 0) which receive a carryin. The algorithm sets bits in msk2 corresponding to columns receiving a carryin; msk2=2 has bits corresponding to carry outs. These are precisely the locationswhere the vi need to be adjusted for carry ins and carry outs in radix R.The algorithm in Figure 8.6.2 was implemented in assembly language, becausethe Alliant Fortran compiler does not support arithmetic operations on vectormasks. Caveat: the bits in the Alliant's vector masks are numbered with bit 0being most signi�cant and bit 31 being least signi�cant. In order to get the bits in94



Cmt. Input digits of C assumed in [1�R; 2R � 2],Cmt. except c0 is allowed to be �R or 2R� 1.Cmt. On exit, all but possibly c`�1 are in [0; R� 1].left := `while left > 1 dolnow := min(32; left)� 1 /* 32 = Maximum vector length */Set vi := c`�left+i for 0 � i � lnow.msk1 := mask where vi � R � 1 and 0 � i < lnowwhere msk1 do vi := vi�Rwhere 2 �msk1 do vi := vi + 1Cmt. Now all but possibly v0 and vlnow are in [1�R; R� 1];Cmt. v0 may equal �R.msk< := mask where vi < 0 and 0 � i < lnowmsk� := mask where vi � 0 and 0 � i < lnowmsk2 := EOR(msk< +msk�; msk<; msk�) /* EOR = exclusive OR */Cmt. msk2=2 identi�es which entries are too small.where msk2 do vi := vi� 1where msk2=2 do vi := vi +RSet c`�left+i := vi for 0 � i � lnow.left := left� lnowend while Figure 8.6.2: Vectorized carry propagationthe proper order for computing msk2, the vector loads and stores used stride �1rather than +1. That is, vi really held c`�left+lnow�i rather than c`�left+i.A timing run on the Alliant FX/80 (using one processor) showed the algorithmin Figure 8.6.2 to be about 30% faster than a partially vectorized implementationof Figure 8.6.1 on long vectors but worse on short vectors; the crossover point isabout ` = 10. Using an if to bypass the where's when a mask is identically zerogives an additional 10% improvement.
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CHAPTER 9Results9.1 TimingTable 9.1.1 gives timing information for various polynomial operations on anIBM RS/6000 under AIX 3.1. Computations were done modulo N = d1049�e+60,N = d1099�e+70, N = d10149�e+295, N = d10199�e+64, using random operands.These four values of N are probable primes of 50, 100, 150, and 200 digits. Theconvolution algorithm of Section 3.4 used respectively 12, 22, 33, and 44 primesjust below 231 for the convolutions modulo pi. All times are given in hundredthsof seconds, though digits beyond the two most signi�cant are probably noise.Table 9.1.2 compares the corresponding times on an Alliant FX/80 for the100{digit N , once running on a single processor and once running with �ve MIMD(multiple-instruction, multiple-data) processors. The timing runs were made dur-ing a period of little other system activity. As on the RS/6000, convolutionsmodulo this N used 22 small primes near 231.The Alliant times can be contrasted with those in [32, Table 1]. Silverman took440 + 425 + 700 = 1565 seconds to construct a polynomial of degree 15360 fromits roots when N � 10100, on an Alliant FX/8 using four processor. Our estimatedtime to construct such a polynomial of degree 16384 is 2 � 457+ 95 = 1009 secondsusing one processor, and 2�107+22 = 236 seconds using �ve processors. Accordingto the Alliant architecture manual [4, Appendices F and G], the FX/8 and FX/80both have cycle times of 170 nanoseconds, but the FX/80 often requires fewercycles per instruction. For example, converting a 32{bit integer vector in memorywith stride 1 to a double precision vector in a register (vmoveld instruction), takes7+ V L cycles on the FX/8 but 2 + dV L=2e cycles on the FX/80, where V L is thevector length (0 � V L � 32). Some major di�erence in our implementations are:(1) I vectorized over the primes pi, while Silverman assigned each pi to a separateprocessor.(2) Silverman did not reduce the coe�cients in (3.4.4) modulo N is advance,instead constructing a result approximatelyN2 and reducing that modulo N .Table 9.2.2 compares Step 1 and Step 2 times on a DEC 5000 using (eleven ortwelve) values of N ranging from 105 to 152 digits. The IBM RS/6000 is about10% faster than the DEC 5000 for this application.96



Operation n Digits in N50 100 150 200128 0.14 0.32 0.55 0.86Polynomial 256 0.34 0.70 1.22 1.83product, 512 0.75 1.55 2.64 3.95degrees 1024 1.62 3.38 5.67 8.46n and n� 1 2048 3.45 7.27 12.21 17.924096 7.50 15.62 26.01 38.058192 15.97 33.22 54.92 80.27128 0.30 0.67 1.18 1.82256 0.70 1.48 2.58 3.89Polynomial 512 1.55 3.31 5.66 8.48reciprocal, 1024 3.45 7.37 12.39 18.33degree n 2048 7.70 16.08 26.97 39.494096 16.91 35.05 58.11 84.708192 36.54 75.50 124.49 180.50128 0.26 0.60 1.06 1.68Construct 256 0.65 1.49 2.65 4.17polynomial 512 1.62 3.68 6.46 10.12of degree n 1024 3.92 8.86 15.55 24.09from roots 2048 9.47 21.03 37.21 57.204096 22.34 49.54 85.81 131.368192 52.14 114.49 197.26 301.01128 2.15 4.93 8.68 13.73Polynomial 256 5.77 13.00 22.94 36.03GCD, 512 14.70 33.10 58.04 90.79degrees 1024 36.69 81.70 142.77 222.94n and n� 1 2048 89.45 198.08 344.09 531.164096 214.91 472.11 816.46 1250.388192 508.46 1109.90 1903.40 2903.61Table 9.1.1: Times for polynomial operations on RS/6000 (seconds)97



Operation n Times for 100{digit N (seconds)1 processor 5 processors Speedup128 1.61 0.38 4.2Polynomial 256 2.91 0.67 4.4product, 512 5.59 1.26 4.4degrees 1024 11.12 2.49 4.5n and n� 1 2048 22.54 5.07 4.44096 46.34 10.43 4.48192 95.40 21.65 4.4128 3.47 0.87 4.0256 7.01 1.68 4.2Polynomial 512 13.73 3.21 4.3reciprocal, 1024 26.99 6.17 4.4degree n 2048 54.03 12.26 4.44096 109.43 24.63 4.48192 223.62 50.41 4.4128 2.80 0.71 3.9Construct 256 7.19 1.77 4.1polynomial 512 17.28 4.20 4.1of degree n 1024 40.12 9.64 4.1from roots 2048 91.33 21.73 4.24096 205.15 48.48 4.28192 456.57 107.34 4.3128 24.56 8.69 2.8Polynomial 256 66.01 21.45 3.1GCD, 512 167.71 51.20 3.3degrees 1024 405.81 118.62 3.4n and n� 1 2048 950.06 268.43 3.54096 2173.50 598.15 3.68192 4893.88 1318.86 3.7Table 9.1.2: Comparative Alliant FX/80 times with one and �ve processors98



9.2 Performance on RSA Factoring ChallengeRSA Data Security, Inc. announced the RSA Factoring Challenge [36] in March,1991. The competition features two lists of numbers which contestants attempt tofactor. Prizes are awarded quarterly for complete (though not for partial) factor-izations.One list, the RSA Challenge List, has potential keys for the RSA public keycryptosystem [35]. This list's smallest entry has 100 decimal digits, its next has110 digits, then 120, : : : , up to 500 digits. Presumably most or all entries in thislist have two prime factors of comparable sizes. As of April, 1992, thirteen monthsafter the contest began, the �rst two entries of this list had been factored (100digits by Arjen Lenstra and Mark Manasse, 110 digits by Arjen Lenstra), eachusing the Quadratic Sieve algorithm. I did not attempt any entries on the RSAChallenge list.The other list, the Partition Challenge List, has partition numbers p(n) (thenumber of partitions of n into integer summands without regard to order). Forexample, p(5) = 7 since5 = 1 + 4 = 2 + 3 = 1 + 1 + 3 = 1 + 2 + 2 = 1 + 1 + 1 + 2 = 1 + 1 + 1 + 1 + 1:A table of p(n) values can be computed using the generating function [1, p. 825]1Xn=0 p(n)Xn = 1Yn=1 11�Xn = 11Xn=�1(�1)nX(3n2+n)=2 :To reduce the number of table entries, the competition uses only prime valuesof n. This table starts at p(8681), the �rst such value beyond 1099. Partitionnumbers appear to have many small prime factors, allowing them to be attackedpro�tably by ECM. About 30% of the original 1182 entries in the Partition Chal-lenge List were factored completely by some contestant during the �rst week ofthe competition, and half had been �nished by the end of its second quarter.During Fall, 1991 (third quarter of the competition), the upper bound of thepartition numbers being accepted by the competition was 153 digits. The numbersp(n) for prime n < 20000 had appeared in the lists for previous quarters, buteighteen new entries appeared, as listed the �rst column of Table 9.2.1. I used aDEC 5000 at UCLA (luna) to �nd as many factors of these as I could, betweenOctober 1991 and January 1992. After one day, my old program [29] found the\Easily found factors" in Table 9.2.1. This completely factored six of the eighteenentries (those whose \Status" column begins with a \P", excluding p(20107)).Then I tried ECM with FFT on the twelve composite cofactors, whose sizes rangesfrom 105 to 152 decimal digits. Factors found by the new algorithm are listed99



separately; each is given a label which identi�es its size and which is also used inTable 9.2.2. The \Status" column identi�es the number of decimal digits in thecofactor, with \P" for probable prime and \C" for composite.The FFT runs were done in three rounds, with increasing limits, as identi�edby the �nal three columns of Table 9.2.2. Each round had multiple runs, with thesame input data but di�erent random number seed. Each run used two curvesper input number, both chosen to have a torsion group Z=8Z�Z=2Zover Q (seeChapter 6). After running both curves with with Step 1 limit B1, Step 2 usedP (X) = X24 for one curve and the Dickson polynomial P (X) = g12;1(X) for theother curve (see Section 5.10); the choice of which polynomial to use �rst wasdecided pseudorandomly. Any one prime factor might be found during Step 1 orStep 2. but would be discovered only once per run even if both group orders weresmooth. The search limits approximate those in Table 7.4.1 when searching for a31{digit, 35{digit, or 38{digit prime factor.Table 9.2.2 summarizes how often each factor was found in each way. Afterthe �rst round of 13 runs, the two smallest factors found, of 16 and 17 digits,were removed from the input numbers (reducing the input from 12 compositenumbers to 11), but the larger factors were retained to see how often they wouldbe rediscovered.Excluding the 16{ and 17{digit factors, the data shows ten (re-)discoveries usingP (X) = g12;1(X), nine using P (X) = X24, and one in Step 1 (near 170000). Theexperimental data suggest that the two choices for P (X) are approximately equallye�ective, and one should select the whichever is faster or easier to implement. Inmy implementation the overall Step 2 time was about 5% faster using P (X) = X24.As noted in Section 5.10, that choice also parallelizes well since up to d1 doublingscan be done at once, while only k processors can cooperate to evaluate the nextgk;�(Nj) �Q in Section 5.8.Given a large random integer N , the estimated number of prime factors of Nwith n1 to n2 digits (inclusive) isZ 10n210n1�1 1p dpln p = ln(ln p)�����10n210n1�1 = ln(n2 ln 10)� ln((n1� 1) ln 10) = ln n2n1� 1:Since there are 18 numbers in this study, the actual number of prime factors inthis range should be approximately Poisson distributed with mean (and variance)� = 18 ln(n2=(n1 � 1)).For the ranges 6{10, 11{15, 16{20, 21{25, 26{30 and 31{35 digits, Table 9.2.3compares the total number of factors found to the expected count. The numberfound is within one standard deviation of the expected count through 25 digits.Subsequently the number found is more than one standard deviation too small,with only one factor found despite an expected six from 26{35 digits.100



p(n) Easily found factors Factors found by ECM with FFT Statusp(20011) 24 � 72 C150p(20021) 22 � 11 � 12601 � 19571 p25a = 11388 95931 68795 51799 29821p25b = 95559 95853 69284 14467 61237 C94p(20023) 25 � 3 � 29 � 4 05763382 85011 p17 = 12 75127 19358 05687 C120p(20029) 32 � 5 � 295810 98232 56591 C136p(20047) 2 � 3 � 5 � 19 � 64323833 � 2960 744477586 186771 17161 6373712 16966 72529 C105p(20051) 193 � 3954 88947 99047 C137p(20063) 22 � 71 � 383 � 4211 34293 � 9 37235 68259 C129p(20071) 22 � 32 � 53 � 1093 P146p(20089) 5 � 133 � 37 � 443 p23 = 622 80676 23197 85614 44991 C122p(20101) 11 � 3840 170879 11683 47724 92833 P128p(20107) 3 84301 � 94564 80577 p16 = 6 70729 17733 03397 P122p(20113) 2 � 3 � 7 � 53 � 4191451 � 1435 62241 P136p(20117) 23 � 139 � 42198 07431 p22 = 12 50438 26612 16276 15503p26 = 1 12457 67024 22824 41059 90867 C95p(20123) 72 C152p(20129) 5 � 10916 26673 49399 64211 P134p(20143) 2 � 11 � 73329 76209 � 74 6531334 23460 57843 P124p(20147) 2 � 11 � 101 � 2517119 25681 � 695 24729 C132p(20149) 23 � 3 � 52 � 7 � 4099 P146Table 9.2.1: Some factors of 153{digit partition numbers101



B1 400,000 1,000,000 3,000,000d1 2048 4096 8192d2 12288 40960 819208d1d2 201,000,000 1,340,000,000 5,370,000,000Number of runs made 13 12 4Step 1 time (2 curves) 12 hr 28 hr 87 hrStep 2 time (P (X) = X24) 4 hr 11 hr 23 hrStep 2 time (Dickson P (X)) 4 hr 11 hr 24 hrTotal CPU time/run 20 hr 50 hr 134 hrMaximum memory 3 megabytes 7 megabytes 14 megabytesp p (mod 48)p16 5 2 (Step 1)4 (Dickson)1 (X24) N.A. N.A.p17 23 4 (Step 1)3 (Dickson)1 (X24) N.A. N.A.p22 31 2 (X24) 2 (Dickson)1 (X24) 1 (Dickson)1 (X24)p23 47 3 (Dickson)2 (X24)p25a 13 2 (Dickson)1 (X24) 1 (X24)p25b 37 1 (Step 1)1 (Dickson)1 (X24)p26 19 1 (Dickson)Table 9.2.2: How often factors were found by ECM with FFT102



Digitsn1{n2 Factorsfound Expected count:� = 18 ln n2n1 � 1 Found � �p�6{10 14 12.48 +0:4311{15 6 7.30 �0:4816{20 4 5.18 �0:5221{25 4 4.02 �0:0126{30 1 3.29 �1:2631{35 0 2.77 �1:67Table 9.2.3: Actual and expected numbers of prime factors, by sizeThese runs used about 13 � 20 + 12 � 50 + 4 � 134 � 1400 hours, accordingto Table 9.2.2. After removing known factors below 20 digits, eleven compositecofactors remained, with sizes averaging 135 digits. Approximately 120{130 hourswere spent per cofactor. According to Table 7.4.1, this is enough time to �ndfactors up to about 28 digits, if optimal parameters are used. The parameters forthe middle column of Table 9.2.2 are close to the optimum, but those in the lattercolumns are much above the optimum values. Although nothing spectacular wasfound, the number of �ndings is only slightly below what might be expected interms of the e�ort expended.9.3 Additional �ndingsThe program was also run on some other parts of the partition table and onthe Fibonacci table [12]. Table 9.3.1 lists some additional �ndings.
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N B1 Factor foundF731 3,000,000 1 33449 64190 08897 77397 71473F953 400,000 5228 87989 13069 01009 56159 28073F979 3,000,000 S1 5 67731 16869 88237 05984 10032 04301p(9067) 2,000,000 S1 27 53956 39520 89480 76372 83295 84083p(10141) 2,000,000 S1 3 34818 44600 44472 51417p(13421) 1,500,000 355 89593 04110 40585 17512 06891 80647p(13781) 400,000 12 98157 14774 71385 16855 08801p(13921) 400,000 5366 98856 20098 57941 60297p(15629) 400,000 46326 47922 03425 53526 02553p(17729) 2,000,000 1719 34650 11405 49531 27187p(17737) 400,000 75 28266 97843 85245 24035 44267p(19259) 400,000 189 34805 77670 39973 51251S1 { Identi�es factors found during Step 1Table 9.3.1: Additional factors found
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