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e THIS EssaY 1 shall attempt to develop a few simple
theorems about the nature of instruction. I shall try to ilius-
trate them by reference to the teaching and learning of mathe-
matics. The choice of mathematics as a mode of illustration
is not premised on the typicality of mathematics, for mathe-
matics is restricted to well-formed problems and does not
concern itself with empirical proof by either experiment or
observation. Nor is this an attempt to elucidate mathematical
teaching as such, for that would be beyond my competence.
Rather, mathematics offers an accessible and simple example
for what, perforce, will be a simplified set of propositions about
teaching and learning. And there are data available from
mathematics learning that have some bearing on our problem.

The plan is as follows. First some characteristics of a theory
of instruction will be set forth, followed by a statement of
some highty general theorems about the instructional process.
I shall then attempt, in the light of specific observations of
mathematics learning, to convert these general propositions
into workable hypotheses. In conclusion, some remarks will be
made on the nature of research in support of curriculum
making.
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THE NATURE OF A THEORY OF INSTRUCTION

A theory of instruction is prescriptive in the sense that it sets
forth rules concerning the most effective way of achieving
knowledge or skill. By the same token, it provides a yardstick
for criticizing or evaluating any particular way of teaching or
learning.

A theory of instruction is a normative theory. Tt sets up
criteria and states the conditions for meeting them. The
criteria must have a high degree of generality: for example, a
theory of instruction should not specifly in ad hoc fashion the
conditions for efficient learning of third-grade arithmetic; such
conditions should be derivable from a more general view of
mathematics learning.

One might ask why a theory of instruction is needed, since
psychology already contains theories of learning and of de-
velopment. But theories of learning and of development are
descriptive rather than prescriptive. They tell us what hap-
pened after the fact: for example, that most children of six do
not yet possess the notion of reversibility, A theory of instruc-
tion, on the other hand, might attempt to set forth the best
means of leading the child toward the notion of reversibility.
A theory of instruction, in short, is concerned with how what
one wishes to teach can best be learned, with improving rather
than describing learning.

This is not to say that learning and developmental theories
are irrelevant to a theory of instruction. In fact, a theory of
instruction must be concerned with both learning and develop-
ment and must be congruent with those theories of learning
and development to which it subscribes.

A theory of instruction has four major features.

First, a theory of instruction should specify the experiences
which most cffectively implant in the individual a predisposi-
tion toward learning—Ilearning in general or a particular type
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of learning. For example, what sorfs of relationships with
people and things in the preschocl environment will tend to
make the child willing and able to learn when he enters
school?

Second, a theory of instruction must specify the ways in
which a body of knowledge should be structured so that it can
be most readily grasped by the learner. “Optimal structure”
refers to a set of propositions from which a larger body of
knowledge can be generated, and it is characteristic that the
formulation of such structure depends upon the state of
advance of a particular field of knowledge. The nature of
different optimal structures will be considered in more detail
shortly. Here it suffices to say that since the merit of a structure
depends upon its power for simplifying information, for gen-
erating new propositions, and for increasing the manipulability
of a body of knowledge, structure must always be related to
the status and gifts of the learner. Viewed in this way, the
optimal structure of a body of knowledge is not absolute but
relative.

Third, a theory of instruction should specily the most effec-
tive sequences in which to present the matcrials to be learned.
Given, for example, that one wishes to teach the structure of
modern physical thecry, how does one proceed? Does one
present concrete materials first in such a way as to elicit ques-
tions about recurrent regularities? Or does one begin with a
formalized mathematical notation that makes it simpler to
represent regularities later encountered? What results are in
fact produced by each method? And how describe the ideal
mix? The question of sequence will be treated in more detail
later.

Finally, a theory of instruction should specify the nature
and pacing of rewards and punishments in the process of
learning and teaching. Intuitively it seems quite clear that as
learning progresses there is a point at which it is better to
shift away from extrinsic rewards, such as a teacher’s praise,
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toward the intrinsic rewards inherent in solving a complex
problem for oneself. So, too, there is a point at which imme-
diate reward for performance should be replaced by deferred
reward. The timing of the shift from extrinsic to intrinsic and
from immediate to deferred reward is poorly understoed and
obviously important. Is it the case, for example, that wherever
learning involves the integration of a long sequence of acts,
the shift should be made as early as possible from immediate
to deferred reward and from extrinsic to intrinsic reward?

It would be beyond the scope of a single essay to pursue in
any detail all the four aspects of a theory of instruction set
forth above. What I shall attempt to do here is to explore a
major theorem concerning each of the four. The object is not
comprehensiveness but illustration.

PREDISPOSITIONS

It has been customary, in discussing predispositions to learn,
to focus wpon cultural, motivational, and personal factors
affecting the desire to learn and to undertake problem solving.
For such factors are of deep importance. There is, for example,
the relation of instructor to student—whatever the formal
status of the instructor may be, whether teacher or parent.
Since this is a relation between one who possesses something
and cne who does not, there is always a special problem of
authority involved in the instructional situation. The regulation
of this authority relationship affects the nature of the learning
that occurs, the degree to which a learner develops an inde-
pendent skill, the degree to which he is confident of his ability
to perform on his own, and so cn. The relations between one
who instructs and one who is instructed is mever indifferent
in its effect upon learning. And since the instructional process
is essentially social—particularly in its early stages when it
involves at least a teacher and a pupil—it is clear that the
child, especially if he is to cope with school, must have minimal
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mastery of the social skills necessary for engaging in the
instructional process.

There are differing attitudes toward intellectual activity in
different social classes, the two sexes, different age groups, and
different ethnic groupings. These culturally transmitted atti-
tudes also pattern the use of mind. Some cultural traditions
are, by count, more successful than others in the production
of scientists, scholars, and artists. Anthropology and psy-
chology investigate the ways a “tradition” or “role” affects
attitudes toward the use of mind. A theory of instruction con-
cerns itself, rather, with the issue of how best to utilize a given
cultural pattern in achieving particular instructional ends.

Indeed, such factors are of enormous importance. But we
shall concentrate here on a more cognitive illustration: upon
the predisposition to explore alternatives.

Since learning and problem solving depend upon the ex-
ploration of alternatives, instruction must facilitate and regu-
late the exploration of alternatives on the part of the learner.

There are three aspects to the exploration of alternatives,
each of them related to the regulation of search behavior.
They can be described in shorthand terms as activation, main-
tenance, and direction. To put it another way, exploration of
alternatives requires something to get it started, something
to keep it going, and something to keep it from being random.

The major condition for activating exploration of alterna-
tives in a task is the presence of some optimal level of uncer-
tainty. Curiosity, it bas been persuasively argued,” is a response
to uncertainty and ambiguity. A cut-and-dried routine task
provokes little exploration; one that is too uncertain may
arouse confusion and anxiety, with the effect of reducing
exploration.

The maintenance of exploration, once it has been activated,

1D, E. Berlyne, Conflict, Arousal, and Curiosity (New York; McGraw.
Hill, 1960).
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requires that the benefits from exploring alternatives exceed
the risks incurred. Learning something with the aid of an
instructor should, if instruction is effective, be less dangerous
or risky or painful than learning on one’s own. That is to say,
the consequences of error, of exploring wrong alternatives,
should be rendered less grave under a regimen of instruction,
and the yield from the exploration of correct alternatives
should be correspondingly greater.

The appropriate direction of exploration depends upon two
interacting considerations: a sense of the goal of a tagk and a
knowledge of the relevance of tested alternatives to the achicve-
ment of that goal. For exploration to have direction, in short,
the goal of the task must be known in some approximate
fashion, and the testing of alternatives must yield information
as to where one stands with respect to it. Put in briefest form,
direction depends upon knowledge of the results of one’s tests,
and instruction should have an edge over “spontaneous” learn-
ing in providing more of such knowledge.

STRUCTURE AND THE FORM OF KNOWLEDGE

Any idea or problem or body of knowledge can be presented
in a form simple enough so that any particular learner can
understand it in a recognizable form.

The structure of any domain of knowledge may be char-
acterized in three ways, each affecting the ability of any learner
to master it: the mode of representation in which it is put, its
economy, and its effective power. Mode, economy, and power
vary in relation to different ages, to different “styles” among
learners, and to different subject matters.

Any domain of knowledge (or any problem within that
domain of knowledge} can be represented in three ways: by
a sct of actions appropriate for achieving a certain result (en-
active representation }; by a set of summary images or graphics
that stand for a concept without defining it fully (iconic repre-
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sentation}; and by a set of symbolic or logical propositions
drawn from a symbolic system that is governed by rules or laws
for forming and transforming propositions (symbolic repre-
sentation). The distinction can most conveniently be made
congcretely in terms of a balance beam, for we shall have occa-
sion later to consider the use of such an implement in teaching
children quadratic functions. A quite young child can plainly
act on the basis of the “principles” of a balance beam, and
indicates that he can do so by being able to handle himself
on a see-saw. He knows that to get his side to go down farther
he has to move out farther from the center. A somewhat older
child can represent the balance beam to himself either by a
model on which rings can be hung and balanced or by a draw-
ing. The “image” of the balance beam can be varyingly refined,
with fewer and fewer irrelevant details present, as in the typical
diagrams in an introductory textbook in physics. Finally, a
balance beam can be described in ordinary English, without
diagrammatic aids, or it can be even better described mathe-
matically by reference to Newton’s Law of Moments in inertial
physics. Needless to say, actions, pictures, and symbols vary
in difficulty and utility for people of different ages, different
backgrounds, different styles. Morcover, a problem in the law
would be hard to diagram; one in geography lends itself to
imagery. Many subjects, such as mathematics, have alternative
modes of representation.

Economy in representing a domain of knowledge relates
to the amount of information that must be held in mind and
processed to achijeve comprehension. The more items of infor-
mation one must carry to understand something or deal with
a problem, the more successive steps one must take in process-
ing that information to achieve a conclusion, and the less the
economy. For any domain of knowledge, one can rank sum-
maries of it in terms of their economy. It is more economical
(though less powerful} to summarize the American Civil War
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as a “battle over slavery” than as “a struggle between an ex-
panding industrial region and one built upon a class society
for control of federal economic policy.” It is more economical
to summarize the characteristics of free-falling bodies by the
formula § = Zg# than to put a series of numbers into tabular
form summarizing a vast set of observations made on different
bodies dropped different distances in different gravitational
fields, The mafter is perbaps best epitomized by two ways of
imparting information, one requiring carriage of much infor-
mation, the other more a pay-as-you-go type of information
processing. A highly imbedded sentence is an example of the
former (This is the squirrel that the dog that the girl that the
man loved fed chased); the contrast case is more economical
(This is the man that loved the girl that fed the dog that chased
the squirrel),

Economy, as we shall see, varies with mode of representa-
tion, But economy is also a function of the sequence in which
material is presented or the manner in which it is learned. The
case can be exemplificd as follows (I am indebted to Dr. I.
Richard Hayes for this example). Suppose the domain of
knowledge consists of available plane service within a twelve-
hour period between five cities in the Northeast—Concord,
New Hampshire, Albany, New York, Danbury, Connecticut,
Elmira, New York, and Boston, Massachusetts. One of the
ways in which the knowledge can be imparted is by asking the
student to memorize the following list of connections:

Boston to Concord
Danbury to Concord
Albany to Boston
Concord to Elmira
Albany to Elmira
Concerd to Danbury
Boston to Albany
Concord to Albany
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Now we ask, “What is the shortest way to make a round trip
from Albany to Danbury?” The amount of information pro-
cessing required to answer this question under such conditions
is considerable. We increase economy by “simplifying terms”
in certain characteristic ways, One is {o introduce an arbitrary
but learned order—in this case, an alphabetical one. We re-
write the list:

Albany to Boston

Albany to Elmira

Boston to Albany

Boston to Concord

Concord to Albany

Concord to Danbury

Concord to Elmira

Danbury to Concord

Search then becomes easier, but there is still a somewhat trying
sequential property to the task, Economy is further increased
by using a diagrammatic notation, and again there are varying
degrees of economy in such recourse to the iconic mode.
Compare the diagram on the left and the one on the right.

The latter contzins at a glance the information that there is
only one way from Albany to Danbury and return, that Elmira
is a “trap,” and so on. What a difference between this diagram
and the first list!

The effective power of any particular way of structuring
a domain of knowledge for a particular learner refers to the
generative value of Zis set of learned propositions. In the last
paragraph, rote learning of a set of connections between citics
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resulted in a rather inert structure from which it was difficult
to generate pathways through the set of cities. Or, to take an
example from a recent work,? children who are told that “Mary
is taller than Jane, and Betty is shorter than Jane” are often
unable to say whether Mary is taller than Betty. One can
perfectly well remark that the answer is “there” in the logic
of transitivity. But to say this is to miss the psychological point.
Effective power will, to be sure, never exceed the inherent
logical generativeness of a subject—although this is an ad-
mittedly difficult statement from the point of view of episte-
mology. In commonsense terms, it amounts to the banality
that grasp of a field of knowledge will never be better than the
best that can be done with that field of knowledge. The eflec-
tive power within a particular learner’s grasp is what one seeks
to discover by close analysis of how in fact he is going about
his task of learning. Much of Piaget’s research® seeks to dis-
cover just this property about children’s learning and thinking.
There is an interesting relation between economy and power.
Theoretically, the two are independent: indeed, it is clear that
a structure may be economical but powerless. But it is rare
for a powerful structuring technigue in any field to be un-
econcmical. This is what leads to the canon of parsimony and
the faith shared by many scientists that nature is simple:
perhaps it is only when nature can be made reasonably simple
that it can be understood. The power of a representation can
also be described as its capacity, in the hands of a learner, to
connect matters that, on the surface, seem quite separate. This
is especially crucial in mathematics, and we shall return to
the matter later.

2 Margaret Donaldson, 4 Study of Children’s Thinking (London; Tavi-
stock Publications, 1963).

3 Jean Piaget, The Child's Conception of Number (New York: Humani-
ties Press, 1952).
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SEQUENCE AND ITS USES

Instruction consists of leading the learner through a se-
quence of statements and restatements of a problem or body
of knowledge that increase the learner’s ability to grasp, tratis-
form, and fransfer what he is learning. In short, the sequence
in which a learner encounters materials within a domain of
knowledge affects the difficulty he will have in achieving
mastery.

There are usually various sequences that are equivalent in
their ease and difficulty for learners. There is no unique se-
quence for all learners, and the optimum in any particular
case will depend upon a variety of factors, including past
learning, stage of development, nature of the material, and
individual differences.

If it is true that the usual course of intellectual development
moves from enactive through iconic to symbolic representation
of the world,* it is likely that an optimum sequence will pro-
gress in the same direction. Obviously, this is a conservative
doctrine. For when the learner has a well-developed symbolic
system, it may be possible to by-pass the first two stages. But
one does so with the risk that the Tearner may not possess the
imagery to fall back on when his symbolic transformations fail
to achieve a goal in problem solving.

Exploration of alternatives will necessarily be affected by
the sequence in which material to be learned becomes avail-
able to the learner. When the learner should be encouraged
to explore alternatives widely and when he should be encour-
aged to concentrate on the implications of a single alternative
hypothesis is an empirical question, to which we shall return.

Reverting to the earlier discussion of activation and the

4Jerome S. Bruner, “The Course of Cognitive Growth,” dmerican
Psychologist, 19:1-15 (January 1964).
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maintenance of interest, it is mnecessary to specify in any
sequences the level of uncertainty and tension that must be
present to initiate problem-solving behavior, and what condi-
tions are required to keep active problem solving going. This
again is an empirical question.

Optimal sequences, as already stated, cannot be specified
independently of the criterion in terms of which final learning
is to be judged. A classification of such criteria will include at
least the following: speed of learning; resistance to forgetting;
transferability of what has been learned to new instances; form
of representation in terms of which what has been learned is
to be expressed; economy of what has been learned in terms of
cognitive strain imposed; effective power of what has been
learned in terms of its generativeness of new hypotheses and
combinations. Achieving one of these goals does not neces-
sarily bring one closer to others; speed of learning, for example,
is sometimes antithetical to transfer or to economy.

THE FORM AND PACING OF REINFORCEMENT

Learning depends upon knowledge of results at a time when
and at a place where the knowledge can be used for correction.
Instruction increases the appropriate timing and placing of
corrective knowledge.

“Knowledge of results” is useful or not depending upen
when and where the learner receives the corrective informa-
tion, under what conditions such corrective information can be
used, even assuming appropriateness of time and place of
receipt, and the form in which the corrective information is
received.

Learning and problem solving are divisible into phases.
These have been described in various ways by different writers.
But all the descriptions agree on one essential feature: that
there is a cycle involving the formulation of a testing procedure
or trial, the operation of this testing procedure, and the com-
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parison of the results of the test with some criterion. It has
variously been called trial-and-crror, means-end testing,
trial-and-check, discrepancy reduction, test-operate-fest-exit
(TOTE), hypothesis testing, and so on. These “units,” more-
over, can readily be characterized as hierarchically organized:
we seek to cancel the unknowns in an equation in order to
simplify the expression in order to solve the equation in crder
to get through the course in order to get our degree in order
to get a decent job in order to lead the good life. Knowledge
of results should come at that point in a problem-solving
episode when the person is comparing the results of his try-out
with some criterion of what he seeks to achieve. Knowledge of
results given before this point either cannot be understood or
must be carried as extra freight in immediate memory. Knowl-
edge given after this point may be too late to guide the choice
of a next hypothesis or trial. But knowledge of results must, to
be useful, provide information not only on whether or not
one’s particular act produced success but also on whether the
act is in fact leading one through the hierarchy of goals one is
seeking to achieve. This is not to say that when we cancel the
term in that equation we need to know whether it will all lead
eventually to the good life. Yet there should at least be some
“lead notice” available as to whether or not cancelation is on
the right general track. It is here that the tutor has a special
role. For most learning starts off rather piccemeal without the
integration of component acts or elements. Usually the learner
can tell whether a particular cycle of activity has worked—
feedback from specific events is fairly simple—but often he
cannot tell whether this completed cycle is leading to the even-
tual goal. It is interesting that one of the nonrigorous short cuts
to problem solution, basic rules of “heuristic,” stated in Polya’s
noted book® has to do with defining the overall problem. To
sum up, then, instruction uniquely provides information to the

5 Gyorgy Polya, How To Solve If, 2nd ed. (New York: Doubleday, 1957).
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learner about the higher-order relevance of his efforts. In time,
to be sure, the learner must develop techniques for obtaining
such higher-order corrective information on his own, for in-
struction and its aids must eventually come to an end. And,
finally, if the problem solver is to take over this function, if is
necessary for him to learn to recognize when he does not com-
prehend and, as Roger Brown® has suggested, to signal incom-
prehension to the tutor so that he can be helped. In time, the
signaling of incomprehension becomes a self-signaling and
equivalent to a temporary stop order.

The ability of problem solvers to use information correc-
tively is known to vary as a function of their internal state.
One state in which information is least useful is that of strong
drive and anxiety. There is a sufficient body of research to
establish this point beyond reasonable doubt.” Another such
state has been referred to as “functional fixedness”—a problem
solver is, in effect, using corrective information exclusively for
the evaluation of one single hypothesis that happens to be
wrong. The usual example is treating an object in terms of its
conventional significance when it must be treated in a new
context—we fail to use a hammer as a bob for a pendulum
because it is “fixed” in our thinking as a hammer. Numerous
studies point to the fact that during such a period there is a
remarkable intractability or even incorrigibility to problem
solving. There is some evidence to indicate that high drive and
anxiety lead one to be more prone to functional fixedness. It
is obvious that corrective information of the usual type, straight
feedback, is least useful during such states, and that an ade-
quate instructional strategy aims at terminating the intetfering
state by special means before continuing with the usual pro-

8 Roger Brown, Social Psychology (New York: Free Press of Glencoe,
1965), chapter 7, “From Codability to Coding Ability.”

7 For full documentation, see Jerome S. Brumer, “Some Theorems on
Tnstruction Tllustrated with Reference to Mathematics,” Sixty-third Year-
book of the National Society for the Study of Education, Part I (Chicago:
University of Chicago Press, 1964), pp. 306-335.
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vision of correction. In such cases, instruction verges on a kind
of therapy, and it is perhaps because of this therapeutic need
that one often finds therapylike advice in lists of aids for
probiem solvers, like the suggestion of George Humphrey®
that one turn away from the problem when it is proving too
difficult,

If information is to be used effectively, it must be translated
into the learner’s way of attempting to solve a problem. If such
translatability is not present, then the information is simply
useless. Telling a neophyte skier to “shift to his uphill edges”
when he cannot distinguish which edges he is traveling on
provides no help, whereas simply telling him to lean into the
hill may succeed. Or, in the cognitive sphere, there is by now
an impressive body of evidence that indicates that “negative
information”—information about what something is not—is
peculiarly unhelpful to a person seeking to master a concept.
Though it is logically usable, it is psychologically useless.
Translatability of corrective information can in principle also
be applied to the form of representation and its economy. 1f
learning or problem solving is proceeding in one mode—en-
active, iconic or symbolic—corrective information must be
provided either in the same mode or in one that translates into
it. Corrective information that exceeds the information-
processing capacities of a learner is obviously wasteful.

Finally, it is necessary to reiterate one general point already
made in passing. Instruction is a provisional state that has as
its object to make the learner or problem sclver self-sufficient.
Any regimen of correction carries the danger that the learner
may become permanently dependent upon the tutor’s correc-
tion. The tutor must correct the learner in a fashion that
eventually makes it possible for the learner to take over the
corrective function himself. Otherwise the resuit of instruction
is to create a form of mastery that is contingent upon the
perpetual presence of a teacher.

8 George Humphrey, Directed Thinking (New York: Dodd, Mead, 1948).

i
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SELECTED ILLUSTRATIONS TFROM MATHEMATICS

Before turning to the task of illustrating some of the points
raised, a word is in order about what is intended by such
illustration. During the last decade much work has gone into
the mathematics curriculum. One need only mention the cur-
riculum projects that are better known to appreciate the magni-
tude of the effort—the School Mathematics Study Group, the
University of Illinois Comumittee on School Mathematics, the
several projects of Educational Services Incorporated, the
Madison Project, the African Mathematics Project, the Univer-
sity of Maryland Mathematics Project, the University of Illinois
Arithmetic Project, and the Stanford Project. From this ac-
tivity, it would be possible to choose iflustrations for many
purposes. Iliustration in such a context in no sense constitutes
evidence.

For the fact of the matter is that the evidence available on
factors affecting the learning of mathematics is still very
sparse. Research on the instructional process—in mathematics
as in all disciplines-——has not been carried out in connection
with the building of curricula. As noted, psychologists have
come upon the scene, armed with evaluative devices, only after
a curriculum has already been put into operation. Surely it
would be more efficient and more useful if embryonic instruc-
tional materials could be tried out under experimental condi-
ticns so that revision and correction could be based upon
immediate knowledge of results.

By means of systematic observational studies—work close
in spirit to that of Piaget and of ethologists like Tinbergen®—
investigators could obtain information sufficiently detailed to
allow them to discern how the student grasps what has been
presented, what his systematic etrors are, and how these are
overcome. Insofar as one is able to formalize, in terms of a

9 Nikolaas Tinbergen, Seocial Behavior in Animals (New York: Yohn
Wiley & Sons, 10533,
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theory of learning or concept attainment, the nature of the
systematic errors and the strategies of correction employed,
one is thereby enabled to vary systematically the conditions
that may be affecting learning and to build these factors
directly into one’s curriculum practice. Nor need such studies
remain purely observational. Often it is possible to build one’s
mathematics materials into a programmed form and obtain a
detailed behavioral record for analysis.

To make clear what is intended by a detailed analysis of the
process of learning, an example from the work of Patrick
Suppes'® will be helpful, He has observed, for example, that
the form 3 + x = 8 is easier for children to deal with than the
form x + 3 = §, and while the finding may on the surface
seem trivial, closer inspection shows that it is not. Does the
difficulty come in dealing with an unknown at the beginning of
an expression or from the transfer of linguistic habits from
ordinary English, where sentences are easier to complete when
a term is deleted from the middle than from beginning of the
sentence? The issue of where uncertainty can best be tolerated
and the issue of the possible interference between linguistic
habits and mathematical habits are certainly worthy of careful
and detailed study.

Let me turn now to some illustrations from mathematics
that have the effect of pointing up problems raised in the
theorems and hypotheses earlier presented. They are not
evidence of anything, only ways of locating what might be
worth closer study.™

10 Patrick Suppes, “Towards a Behavioral Psychology of Mathematics
Thinking,” in I. Bruner, ed., Learning about Learning, U.S. Office of Educa-
tion monograph, in press.

11 For a closcr discussion of some of the observations mentioned in what
follows, the reader is referred to Bruner, “The Course of Cognitive Growth,”
and to Jerome 5. Bruner and Helen Kenmney, “Represenfation and Mathe-
matics Learning,” in L. Morrisett and J. Vinsonhaler, eds., Mathematical
Learning, Monographs of the Society for Rescarch in Child Development, 30
(University of Chicago Press, 1965), pp. 50~39. The general “bias” on which
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Rather than presenting observations drawn from different
contexts, I shall confine the discussion to one particular study
carried out on a small group of children.!* The observations to
be reported were made on four eight-year-old children, two
boys and two girls, who were given an hour of daily instruction
in mathematics four times a weck for six weeks. The children
were in the TQ range of 120-130, and they were all enrolled
in the third grade of a private school that emphasized instruc-
tion designed to foster independent problem solving. They
were all from middle-class professional homes. The “teacher”
of the class was a well-known research mathematician (Z. P.
Dienes), his assistant a professor of psychology at Harvard
who has worked long and hard on human thought processes.

Each child worked at a ccrner table in a generous-sized
room. Next to each child sat a tutor-observer, trained in psy-
chology and with sufficient background in college mathematics
to understand the underlying mathematics being taught. In
the middle of the room was a large table with a supply of
blocks and balance beams and cups and beans and chalk that
served as instructional aids. In the course of the six weeks, the
children were given instruction in factoring, in the distributive
and commutative properties of addition and multiplication, and
finally in quadratic functions.

Each child had available a series of graded problem cards
which he could go through at his own pace. The cards gave
directions for different kinds of exercises, using the materials
mentioned above. The instructor and his assistant circulated

these observations are based is contained in Jerome S. Bruner, The Process
of Education (Cambridge; Harvard University Press, 1960), and in J. S.
Bruner, J. I. Goodnow, and G. A. Austin, 4 Study of Thinking (New York:
John Wiley & Sons, 1956).

121 am grateful to Z. P. Dienes, Samuel Anderson, Eleanor Duckworth,
and Joan Rigney Hornsby for their help in designing and carrying out this
study. Dr. Dienes particularly formed our thinking about the mode of
presenting the mathematical materials.
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from table to table helping as needed, and each tutor-observer
similarly assisted as needed. The problem sequences were de-
signed to provide, first, an appreciation of mathematical ideas
through concrete constructions involving materials of various
kinds. From such constructions, the child was encouraged to
form perceptual images of the mathematical idea in terms of
the forms that had been constructed. The child was then
further encouraged to develop or adopt a notation for describ-
ing his construction. After such a cycle, a child moved on to
the construction of a further embodiment of the idea on which
he was working, one that was mathematically isomorphic with
what he had learned, though expressed in different materials
and with altered appearance. When such a new topic was
introduced, the children were given a chance to discover its
connection with what had gone before and shown how to
extend the notational system used before. Careful minute-by-
minute records were kept of the proceedings, along with photo-
graphs of the children’s constructions.

In no sense can the children, the teachers, the classroom, or
the mathematics be said to be typical of what occurs in third
grade. Four children rarely have six teachers, nor do cight-
year-olds ordinarily get into quadratic functions. But our con-
cern is with the processes involved in mathematical learning,
and not with typicality. It seerns quite rcasonable to suppose
that the thought processes that were going on in the children
are quite ordinary among eight-year-old human beings.

ACTIVATING PROBLEM SOLVING

Onme of the first tasks faced in this study was to gain and hold
the child’s interest and to lead him to problem-solving activity.
At the same time, there was a specific objective to be achieved
—t0 teach the children factoring in such a way that they would
have this component skill in an accessible form to use in the
solution of problems. It is impossible to say on the basis of our
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experience whether the method we employed was the best one,
but in any case it appeared to work.

A considerable part of the job of activation had already been
done before ever we saw the children. They had working
models of exploratory adults in their teachers and their par-
eats. They bad no particular resistance to trying out and
rejecting hypetheses. The principal problem we faced as
teachers who outoumbered the students was to keep the
children from converting the task into one where they would
become dependent upon us. All of us had had the experience of
working with children from less intellectvally stimulating
backgrounds where there had been less emphasis upon intellec-
tual autonomy, and the contrast was appreciable. Indeed, I
can only repeat that where predisposition to learning was con-
cerned, the children in the study were almost specifically
trained for the kind of approach we were about to use—an
approach with strong emphasis on independence, on self-
pacing, on reflectiveness. Had we used a more authoritarian,
more mnemonic approach with our group, we would have had
to prepare the ground. As it was, the task had already been
well begun.

The fizst learning task introduced was one having to do with
the different ways in which a set of cubic blocks could be
arranged as “flats” (laid out in rectangular forms on the table,
not more than one cube high) and in “walls” and “buildings.”
The problem has an inferesting uncertainty to it, and the
children were challenged to determine whether they had ex-
hausted all the possible ways of laying things out. Unques-
tionably they picked up some zest from the evident curiosity of
their teachers as well. After a certain amount of time, the
children were encouraged to start keeping a written record of
the different shapes they could make, and what their dimen-
sions were. Certain numbers of cubes proved intractable to
re-forming (the primes, of course), and others proved com-
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binable in interesting ways—three rows of three cubes made
nine, thres layers of these nine “flats” had the dimensions of
3X3X3, and so on. The idea of factoring was soon
grasped, and with very little guidance the children went on to
interesting conjectures about distributiveness. The task had
its own direction built into it in the sense that it had a clear
terminus: how arrange a set of cubes in regular two- or three-
dimensional forms? It also had the added feature that the
idea of alternatives was built in: what are the different ways of
achieving such regularity? As the children gained in skill, they
shifted to other ways of laying out cubes—in pyramids, in
triangles where the cubes were treated as “diamonds,” and so
on, At this stage of the game, it was necessary to judge in each
case whether the child should be let alone to discover on
his own.

We shall see, when we come to discuss the balance beam,
that the idea of factoring was further deepened by being
applied to a “new” problem. I mention the point here because
it relates to the importance of mainiaining a problem-solving
set that runs in a continuous direction. It is often the case that
novelty must be introduced in order that the enterprise be
continued. In the case of the balance beam, the task was to
discover the different combinations of rings that could be put
on one side of the halance beam to balance a single ring placed
on hook 9. Tn effect, this is the same problem as asking the
different ways in which nine blocks can be arranged. But it is
in a different guise, and the new embodiment seems capable of
stimulating interest even though it is isomorphic with seme-
thing else that has been explored to the border of satiety.

STRUCTURE AND SEQUENCE

We can best illustrate the points made at the outset by
reference to our teaching of quadratic equations to the four
children we studied. Each child was provided with building
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materials. These were large flat squares made of wood whose
dimensions were unspecified and described simply as “vn-
known, or x long and x wide.” There were also a large number
of strips of wood that were as long as the sides of the square
and were described arbitrarily as having a width of “1” or
simply as “1 by x.” And there was a supply of little squares
with sides equal to the width “1” of the strips, thus “1 by 1.”
The reader should be warned that the presentation of these
materials is not as simple as all that. To begin with, it is
necessary to convince the children that we really do not know
and do not care what the metric size of the big square is, that
rulers are of no interest. A certain humor helps establish in
the pupils a proper contempt for measuring in this context, and
the snob appeal of simply calling an unknown by the name
“x” is very great. From there on, the children readily discover
for themselves that the long strips are x long—by correspon-
dence. They take on faith (as they should) that the narrow
dimension is “1,” but that they grasp its arbitrariness is clear
from one child’s declaration of the number of such “1” widths
that made an x. As for “1 by 1” little squares, that too is estab-
lished by simple correspondence with the narrow dimension of
the “1 by x” strips. It is horseback method, but quite good
mathematics.

The child is asked whether he can make a square bigger than

X
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the x by x square, using the materials at hand. He very quickly
builds squares with designs like those illustrated below. We ask
him to record how much wood is needed for each larger square
and how long and wide each square is.

or

He describes one of his constructed squares: very concretely
the pieces are counted out: “an x-square, two x-strips, and a
one square,” or “an x-square, four x-strips, and four ones,” or
“an x-square, six x-strips and nine ones,” and so forth. We
help him with language and show him a way to write it down.
The big square is an “xD0,” the long strips are “1x” or simply
“x,” and the little squares are “one squarcs” or “one by one”
or, better still, simply “1.” And the expression “and” can be
shortened to . And so he can write out the recipe for a con-
structed square as x0 + 4x - 4. At this stage, these are merely
names put together in little sentences. How wide and long is
the square in question? This the child can readily measure off
—an x and 2, or x + 2, and so the whole thing is (x + 2)0,
Brackets are not so easily grasped. But soon the child is able to
put down his first equality: (x4 2)0 = x0 + 4x + 4. Vir-
tually everything has a referent that can be pointed to with a
finger. He has a notational system into which he can translate
the image he has constructed.

Now we go on to making bigger squares, and each square
the child makes he is to describe in terms of what wood went
into it and how wide and how long it is. It takes some ruled




62 Toward a Theory of Instruction

sheets to get the child to keep his record so that he can go back
and inspect it for what it may reveal, and he is encouraged to
go back and look at the record and at the constructions they
stand for.

Imagine now a list such as the following, again a product of
the child’s own constructing:

x8 +2x4 lisx+1byx+41

X2 4 dx disx-2byx+2

28 +6x+ 9isx+3byx+3

0 +8x+16isx+dbyx+4
It is almost impossible for him not to make some discoveries
about the numbers: that the x values go up 2, 4, 6, 8, and
the units values go up 1, 4, 9, 16, and the dimensions increase
by additions to x of 1, 2, 3, 4. The syntactical insights about
regularity in notation are matched by perceptual-manipulative
insights about the material referents.

After a while, some new manipulations occur that provide
the child with a further basis for notational progress. He takes
the square (x -+ 2)® and reconstrucis it in a new way, One may
ask whether this is constructive manipulation, and whether it
is proper factoring. But the child is learning that the same
amount of wood can build guite strikingly different patterns
and remain the same amount of wood—even though it also
has a different notational expression. Where does the language
begin and the manipulation of materials stop? The interplay
is continuous. We shall return to this same example later.

X X+ 2
X is X
o+
4
a{ (32 €
x{x+4) + 4 = (x4+2)2 =
X% +4x +4
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What is now a problem is how to “detach” the notation that
the child has learned from the concrete, visible, manipulable
embodiment to which it refers—the wood. For if the child is
to deal with mathematical properties he will have to deal with
symbols per se, else he will be limited to the narrow and rather
trivial range of symbolism that can be given direct (and only
partial) visual embodiment. Concepts such as x* and x* may
be given a visualizable referent, but what of x* ?

How do children wean themselves from the perceptual em-
bodiment to the symbolic notation? Perhaps it is partly ex-
plained in the nature of variation and contrast.

The child is shown the balance beam again and told:
“Choose any hook on one side and put the same number of
rings on it as the number the hook is away from the middle.
Nosws balance it with rings placed on the other side. Eeep a
record,” Recall that the balance beam is familiar from work
on factoring and that the child knows that 2 rings on 9
balances 9 on 2 or mz rings on x balances » on . He is back to
construction. Can anything be constructed on the balance
beam that is like the squares? With little efort, the following
translation is made. Suppose x is 5. Then 5 rings on hook 5 is
x2%, 5 rings on hook 4 is 4x, and 4 rings on hook 1 is 4:
x2 + 4x + 4. How can we find whether this is like a square
that is x + 2 wide by x -+ 2 long, as before? Well, if x is 5,
then x + 2 is 7, and so 7 rings on hook 7. And nature obliges
~—the beam balances. One notation works for two strikingly
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different constructions and perceptual events. Notation, with
its broader equivalency, is clearly more economical than
reference to embodiments. There is little resistance to using
this more convenient language. And mow construction can
begin—commutative and distributive properties of equations
can be explored: x(x +4) + 4 =x*+ 4x 4+ 4, sothatx - 4
rings on hook x plus 4 rings on hook 1 will also balance. The
child if he wishes can also go back to the wood and find that
the same materials can make the designs illustrated earlier.

Contrast is the vehicle by which the obvious that is too
obvious to be appreciated can be made noticeable again. A
discovery by an eight-year-old gir] illustrates the matter. “Yes,
4 X 6 equals 6 X 4 in numbers, like in one way six eskimos in
each of four igloos is the same as four in each of six igloos.
But a venetian blind isn’t the same as a blind Venetian.” By
recognizing the noncommutative property of much of our
ordinary language, the commutative property of a mathe-
matical language can be partly grasped. But it is still only a
partial insight into commutativity and noncommutativity. Had
we wished to develop the distinction more deeply we might
have proceeded concretely to a contrast between sets of
operations that can be carried out in any sequence-—like the
order in which letters are put in a post box or in which we see
different movies—and operations that have a noncommutative
order—Ilike putting on shoes and socks—where one must
precede the other. The child could be taken from there to a
more general idea of commutative and noncommutative cases
and to ways of dealing with a nctation for them, perhaps by
identical sets and ordered identical sets.

We need not reiterate what must be obvious from this
sequence. The object was to begin with an enactive representa-
tion of quadratics—something that could literally be “done”
or built—and to move from there to an iconic representation,
however restricted. Along the way, notation was develeped
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and, by the use of variation and contrast, converted into a
propetly symbolic systemn. Again, the cbject was to start with
as economical a representation as possible and to increase
complexity only when there was some way for the child to
relate the complex instance to something simpler that had
gone before,

What was so striking in the performance of the children
was their initial inability to represent things to themselves in
a way that transcended immediate perceptual grasp. The
achievement of more comprehensive insight requires, we think,
the building of a mediating representational structure that
transcends such immediate imagery, that renders a sequence of
acts and images unitary and simultaneous. The children always
began by constructing an embodiment of some concept, build-
ing a concrete model for purposes of operational definition.
The fruit of the construction was an image and some opera-
tions that “stood for” the concept. From there on, the task was
to provide means of representation that were free of particular
manipulations and specific images. Only symbelic operations
provide the means of representing an idea in this way. But
consider this matter for a moment.

We have already remarked that by giving the child multiple
embodiments of the same general idea expressed in a common
notation we lead him to “empty” the concept of specific sen-
sory properties until he is able to grasp its abstract properties.
But surely this is not the best way of describing the child’s
increasing development of insight. The growth of such abstrac-
tions is important. But what struck us about the children as we
observed them is that they not only understood the abstractions
they had learned but also had a store of concrete images that
served to exemplify the abstractions. When they searched for a
way to deal with new problems, the task was usually carried
out not simply by abstract means but also by “matching up”
images. An example will help here. In going from the wocd-~
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blocks embodiment of the quadratic to the balance-beam
embodiment, it was interesting that the children would
“equate” concrete features of one with concrete features of
another, One side of the balance beam “stood for” the amount
of wood, the other side for the sides of the square, These were
important concrete props on which they leaned. We have been
told by research mathematicians that the same use of props—
heuristics—holds for them, that they have preferred ways of
imaging certain problems while other problems are handled
silently or in terms of an imagery of the symbolism on a page.

We reached the tentative conclusion that it was probably
necessary for a child, learning mathematics, to have not only a
firm sense of the abstraction underlying what he was working
on, but also a good stock of visual images for embodying
them. For without the latter it is difficult to track correspon-
dences and to check what one is doing symbolically. We had
occasion, again with the help of Dr. Dienes, to teach a group
of ten nine-year-olds the elements of group theory. To embody
the idea of a mathematical group initially, we gave them the
example of a four-group made up of the following four
maneuvers, A book was the vehicle, a book with an arrow
up the middle of its front cover. The four maneuvers were
rotating the book a quarter turn to the left, rotating it a
quarter turn to the right, rotating it a half turn (without
regard to direction of rotation), and letting it stay in the posi-
tion it was in. They were quick to grasp the important property
of such a mathematical group: that any sequence of maneuvers
made could be reproduced from the starting position by a
single move. This is not the usual way in which this property
is described mathematically, but it served well for the children.
We contrasted this elegant property with a series of our moves
that did nor constitute a mathematical group—indeed, they
provided the counter example themselves by proposing a one~
third turn lcft, one-third turn right, half turp either way, and
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stay. It was soon apparent that it did not work. We set the
children the task of making games of four maneuvers, six
maneuvers, and so on, that had the property of a “closed”
game, as we call it—one in which the result of any combination
of moves can be achieved by a single move. They were, of
course, highly ingenicus. But what soon became apparent was
that they needed some aid in imagery—in this case an imagery
notation—that would allow them to keep track and then to
discover whether some new game was an isomorph of one they
had already developed. The prop in this case was, of course,
the matrix, listing the moves possible across the top and then
listing them down the side, thus making it easily possible to
check whether each combination of pairs of moves could be
reproduced by a single move. The matrix in this case is a
crutch or heuristic and as such has nothing to do with the
abstraction of the mathematical group, yet it was enormously
useful to them not only for keeping track but also for com-
paring one group with another for correspondence. The matrix
with which they started looked like this:

8 = stay

a = quarter-turn Jeft
b = quarter-turn right
¢ = half-turn

0O Tp ow

0T o won
T wr 0P
Mo w Tg
w W T 00

Are there any four-groups with a different structure? It is
extremely difficult to deal with such a question without the aid
aof this housekeeping matrix as a vehicle for spotting corres-
pondence. What about a game in which a cube can be left
where i is, rotated 180° on its vertical axis, rotated 180° on
its horizontal axis, and rotated 180° on each of its four cubic
diagonals? Is it a group? Can it be simplified to a smaller
number of maneuvers? Does it contain the group described
above?
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In sum, then, while the development of insight intc mathe-
matics in our group of children depended upon their develop-
ment of “example-free” abstractions, this did not lead them
to give up their imagery. Quite to the contrary, we had the
impression that their enriched imagery was very useful to
them in dealing with new problems.

We would suggest that learning mathematics reflects a good
deal about intellectual development. It begins with instru-
mental activity, a kind of definition of things by doing them.
Such operations become represented and summarized in the
form of particular images. Finally, and with the help of a
symbolic notation that remains invariant across transforma-
tions in imagery, the learner comes to grasp the formal or
abstract propertics of the things he is dealing with. But while,
once abstraction is achieved, the learner becomes free in a
certain measure of the surface appearance of things, he none-
theless continues to rely upon the stock of imagery he has
built en route to abstract mastery. It is this stock of imagery
that permits him to work at the level of heuristic, through
convenient and nonrigorous means of exploring problems and
relating them to problems already mastered.

REINFORCEMENT AND FEEDBACK

With respect to corrective information, there is something
particularly happy about the exercises we chose to use. In
learning quadratics by the use of our blocks and then by the
aid of the balance beam, children were enabled by immediate
test to determine whether they had “got there.” A collection of
square pieces of wood is aggregated in a form that either makes
a square or doesn’t, and the child can see it immediately. So
too with a balance beam: it either balances or it does not.
There is no instructor intervening between the learner and
the materials,

But note well that the instructor had to enter in several
ways. In the first place, he determined within quite constrained
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limits the nature of the sequences, so that the children would
have the greatest chance of seeing the relation of what went
before to what was up now, Whether we succeeded well in
these sequences we do not know—save that the children
learned some elegant mathematics in a fairly short time. What
guided us was some sort of psychological-mathematical intui-
tion, and while that may be satisfactory for such engineering
as we did, it is certainly not satisfactory from the point of
view of understanding how to do it better,

We failed on several occasions, as judged by the lagging
interest of a particular child, when we wanted to be sure that
the child had really understood something. Our most glaring
failure was in trying to get across in symbolic form (probably
too early) the idea of distributiveness—that @ > (b - ¢) and
{a X b} + (a X ¢) could be treated as equal. One of our clev-
erest young pupils commented at the beginning of an hour,
with a groan, “Oh, they're distributing the distributive law
again.” In fact, our difficulty came from a misjudgment of the
importance of giving them a symbolic mode for correcting
iconic constructions, We were too eager to be sure that they
sensed the notational analogue of the factoring constructions
they had been making and which they understood at the iconic
level so well that further construction was proving a bore.

We have few fresh observations to report on the matter of
overdrive and anxiety. One of our pupils had a rather strong
push about mathematics from his father at home. He was the
child who, on the first day, had to demonstrate his prowess
by multiplying two large and ugly numbers on the board, an-
nouncing the while, “I know a lot of math.” He was probably
our best student, but he made no progress until he got over
the idea that what was needed was hard computation. It was
he, too, who complained that the blocks used for quadratics
kad to have some size. But once he was willing to play with
unknowns as “x” he showed considerable power. His father
was our unwitting ally at this point, for he told him that “x’s”
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were from algebra, which was a subject most children took in
high school.

Perhaps the greatest problem one has in an experiment of
this sort is to keep out of the way, to prevent oneself from be-
coming a perennial source of information, interfering with the
child’s ability to take over the role of being his own corrector.
But each classroom situation is unique in this way, and each
dyad of teacher and pupil. Some of the teacher-pupil pairs
became quite charged with dependency; in others the child or
the teacher resisted. But that is another story.

SOME CONCLUSIONS

A first and obvious conclusion is that one must take into
account the issues of predisposition, structure, sequence, and
reinforcenment in preparing curriculum materials—whethier one
is concerned with writing a textbook, a lesson plan, a unit of
instruction, & program, or, indeed, a conversation with didac-
tic ends in view. But this obvious conclusion suggests some
rather nonobvious implications.

The type of supporting research that permits one to assess
how well one is succeeding in the management of relevant
instructional variables requires a constant and close collabora-
tion of teacher, subject-matter specialist, and psychologist. As
intimated earlier, a curriculum should be prepared jointly by
the subject-matter expert, the teacher, and the psychologist,
with due regard for the inherent structure of the material, its
sequencing, the psychological pacing of reinforcement, and
the building and maintaining of predispositions to problem
solving. As the curriculum is being built, it must be tested in
detail by close observational and experimental methods to
assess not simply whether children are “achieving” but rather
what they are making of the material and how they are orga-
nizing it. It is on the basis of “testing as you go” that revision is
made. It is this procedure that puts the evaluation process at

Notes on a Theory of Instruction 71

a time when and place where its results can be used for
correction while the curriculum is being constructed.

Only passing reference has been made to the issue of indi-
vidual differences. Quite plainly, they exist in massive degree
—in the extent to which children have problem-solving pre-
dispositions, in the degree of their interest, in the skills that
they bring to any concrete task, in their preferred mode of
representing things, in their ability to move easily through any
particular sequence, and in the degree to which they are ini-
tially dependent upen exirinsic reinforcement from the teacher.
The fact of individual differences argues for pluralism and for
an enlightened opportunism in the materials and methods of
instruction. Earlier we asserted, rather off-handedly, that no
single ideal sequence exists for any group of children. The
conclusion to be drawn from that assertion is not that it is
impossible to put together a curriculum that would satisfy a
group of children or a cross-section of children. Rather, it is
that if a curricalum is to be effective in the classroom it must
contain different ways of activating children, different ways of
presenting sequences, different opportunities for some children
to “skip” parts while others work their way through, different
ways of putting things. A curriculum, in short, must contain
many tracks leading to the same general goal.

Our illustrations have been taken from mathematics, but
there are some generalizations that go beyond to other fields.
The first is that it took the efforts of many highly talented
mathematicians to discern the underlying structure of the
mathematics that was to be taught. That is to say, the simplicity
of a mathematics curriculum rests upon the history and devel-
opment of mathematics itself. But even so glorious an intellec-
tual tradition as that of mathematics was not enough. For while
many virtues have been discovered for numbers to the base 10,
students cannot appreciate such virtues until they recognijze
that the base 10 was not handed down from the mountain by
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some mathematical God. It is when the student Jearns to work
in different number bases that the base 10 is recognized for
the achievement that it is.

Finally, a theory of instruction seeks to take account of the
fact that a curriculum reflects not only the nature of knowledge
itself but also the nature of the knower and of the knowledge-
getting process. It is the enterprise par excellence where the
line between subject matter and method grows necessarily
indistinet. A body of knowledge, enshrined in a university
faculty and embodied in a series of authoritative volumes, is
the result of much prior intellectual activity. To instruct some-
one in these disciplines is not a matter of getting him to
commit results to mind. Rather, it is to teach him to participate
in the process that makes possible the establishment of knowl-
edge. We teach a subject not to produce little living libraries on
that subject, but rather to get a student to think mathematically
for himself, to consider matters as an historian does, to take
part in the process of knowledge-getting, Knowing is a process,
not a preduct.

Chapter k_.

Man:
A Course of Study

THERE Is a dilemma in describing a course of study.
One must begin by setting forth the intellectual substance of
what is to be taught, else there can be no sense of what chal-
lenges and shapes the curiosity of the student. Yet the moment
one succumbs to the temptation to “get across” the subject, at
that moment the ingredient of pedagogy is in jeopardy. For it
is only in a trivial sense that one gives a course to “get some-
thing across,” merely to impart information. There are better
means to that end than teaching. Unless the learner also
masters himself, disciplines his taste, deepens his view of the
world, the “something” that is got across is hardly worth the
effort of transmission,

The more elementary a course and the younger its students,
the more serious must be its pedagogical aim of forming the
intellectual powers of those whom it serves. It is as important
that a good mathematics course be justified by the intellectual
discipline it provides or the honesty it promotes as by the
mathematics it transmits. Indeed, neither can be accomplished
without the other.

With these things in mind, let me describe the substance or
structure of a course in social studies now in the process of
construction, parts of which have been taught to children in
grade five. What is presented here is a blueprint. It may turn
out to be the case, as modifications are made during tryout




