Isogenies in a quantum world

David Jao

University of Waterloo

September 19, 2011

Summary of main results

A. Childs, D. Jao, and V. Soukharev, arXiv:1012.4019

- For ordinary isogenous elliptic curves of equal endomorphism ring, we show (under GRH) how to find an isogeny in subexponential time on a quantum computer.
D. Jao and L. De Feo, ePrint:2011/506
- We propose a public-key cryptosystem based on the difficulty of finding isogenies between supersingular elliptic curves (in a certain special case). The fastest known attack against the system takes exponential time, even on a quantum computer.

Isogenies

Definition

Let E and E^{\prime} be elliptic curves over F.

- An isogeny $\phi: E \rightarrow E^{\prime}$ is a non-constant algebraic morphism

$$
\phi(x, y)=\left(\frac{f_{1}(x, y)}{g_{1}(x, y)}, \frac{f_{2}(x, y)}{g_{2}(x, y)}\right)
$$

satisfying $\phi(\infty)=\infty$ (equivalently, $\phi(P+Q)=\phi(P)+\phi(Q))$.

- The degree of an isogeny is its degree as an algebraic map.
- The endomorphism ring $\operatorname{End}(E)$ is the set of isogenies from $E(\bar{F})$ to itself, together with the constant homomorphism. This set forms a ring under pointwise addition and composition.

Ordinary and supersingular curves

Theorem
Let E be an elliptic curve defined over a finite field. As a \mathbb{Z}-module, $\operatorname{dim}_{\mathbb{Z}} \operatorname{End}(E)$ is equal to either 2 or 4.

Definition

An elliptic curve E over a finite field is supersingular if $\operatorname{dim}_{\mathbb{Z}} \operatorname{End}(E)=4$, and ordinary otherwise.
Isogenous curves are always either both ordinary, or both supersingular.

Isogenies and kernels

Theorem

For every finite subgroup $G \subset E(\bar{F})$, there exists a unique (up to isomorphism) elliptic curve E / G and a unique (up to isomorphism) separable isogeny $E \rightarrow E / G$ of degree $\# G$. Every separable isogeny arises in this way.

Corollary
Every separable isogeny ϕ factors into a composition of prime degree isogenies.

Proof.
Let $G=\operatorname{ker} \phi$. Factor G using the fundamental theorem of finite abelian groups. Apply the previous theorem to each factor.

Solving the decision problem

Theorem (Tate 1966)
Two curves E and E^{\prime} are isogenous over \mathbb{F}_{q} if and only if $\# E=\# E^{\prime}$.

Remark
The cardinality \#E of E can be calculated in polynomial time using Schoof's algorithm [Schoof 1985], which is also based on isogenies.

First main theorem of complex multiplication

Theorem (First main theorem of complex multiplication)

- Let $\mathrm{Cl}\left(\mathcal{O}_{D}\right)$ denote the ideal class group of $\mathcal{O}_{D} \subset K$.
- Let $h=\# \mathrm{Cl}\left(\mathcal{O}_{D}\right)$ denote the class number of \mathcal{O}_{D}.
- There exists a number field L, called the Hilbert class field of K, with $[L: K]=h$ and $\operatorname{Gal}(L / K)=\mathrm{Cl}\left(\mathcal{O}_{D}\right)$, such that:
- Fix any prime ideal $\mathfrak{p} \subset \mathcal{O}_{L}$ of norm p.
- For every fractional ideal $\mathfrak{a} \in \mathcal{O}_{D}$, the complex elliptic curve $\mathbb{C} / \mathfrak{a}$ corresponding to the lattice \mathfrak{a} is defined over L, and has endomorphism ring \mathcal{O}_{D}.
- The reduction of $\mathbb{C} / \mathfrak{a} \bmod \mathfrak{p}$ yields an elliptic curve over \mathbb{F}_{p} with endomorphism ring \mathcal{O}_{D}.
- Every ordinary elliptic curve over \mathbb{F}_{p} arises in this way.
- Two fractional ideals yield isomorphic curves if and only if they belong to the same ideal class.

Remarks on the first main theorem

Stated more succintly, there is an isomorphism between elements of $\mathrm{Cl}\left(\mathcal{O}_{D}\right)$ and isomorphism classes of elliptic curves E / \mathbb{F}_{p} with $\operatorname{End}(E)=\mathcal{O}_{D}$.
Definition
The set of isomorphism classes of elliptic curves E / \mathbb{F}_{p} with $\operatorname{End}(E)=\mathcal{O}_{D}$ is denoted $E l_{p, n}\left(\mathcal{O}_{D}\right)$, where $n=\# E$.

Remark

1. This isomorphism is not canonical! It depends on the choice of \mathfrak{p}.
2. This isomorphism is very hard to compute. The fastest known algorithm operates by computing the Hilbert class polynomial, which takes $O(p)$ time.

Second main theorem of complex multiplication

Theorem (Second main theorem of complex multiplication)
Let \mathfrak{a} be any fractional ideal, and let \mathfrak{b} be an ideal. Then

- $\mathfrak{a b}^{-1} \supset \mathfrak{a}$ (n.b. "to contain is to divide").
- The map $\mathbb{C} / \mathfrak{a} \rightarrow \mathbb{C} / \mathfrak{a b}^{-1}$ is an isogeny of degree $N(\mathfrak{b})$, denoted $\phi_{\mathfrak{b}}$.
- Every horizontal separable isogeny mod p arises from the mod \mathfrak{p} reduction of such an isogeny $\phi_{\mathfrak{b}}$.

Remarks on the second main theorem

- The isomorphism between ideal classes $[\mathfrak{a}] \in \mathrm{Cl}\left(\mathcal{O}_{D}\right)$ and curves $E \in E l_{p, n}\left(\mathcal{O}_{D}\right)$ is not canonical.
- However, the correspondence between ideals \mathfrak{b} and isogenies $\phi_{\mathfrak{b}}$ is canonical, up to endomorphism.

- Thus we may represent isogenies using ideal classes in \mathcal{O}_{D}.

The main group action

Theorem (Waterhouse 1969)
There is a group action $*: \operatorname{Cl}\left(\mathcal{O}_{D}\right) \times \mathrm{Ell}_{p, n}\left(\mathcal{O}_{D}\right) \rightarrow \mathrm{Ell}_{p, n}\left(\mathcal{O}_{D}\right)$, defined as follows.

- Given $\mathfrak{b} \in \mathrm{Cl}\left(\mathcal{O}_{D}\right)$, and $E \in \mathrm{Ell}_{p, n}\left(\mathcal{O}_{D}\right)$, let $\phi_{\mathfrak{b}}: E \rightarrow E^{\prime}$ be the isogeny corresponding to \mathfrak{b}.
- Set $\mathfrak{b} * E=E^{\prime}$.
$\mathrm{Ell}_{p, n}\left(\mathcal{O}_{D}\right)$ is a principal homogeneous space for the group $\mathrm{Cl}\left(\mathcal{O}_{D}\right)$ under this action. In other words, the action is free and transitive.

Computational problems

There are two main computational questions:

1. Given \mathfrak{b} and E, compute $\mathfrak{b} * E$.
2. Given E and E^{\prime}, find $\mathfrak{b} \in \operatorname{Cl}\left(\mathcal{O}_{D}\right)$ such that $\mathfrak{b} * E=E^{\prime}$ (the so-called quotient of E^{\prime} and E).
These are believed to be hard problems.
3. Computing the group action:

- Previous work: $O\left(N(\mathfrak{b})^{3}\right)(!!)$
- Our work:
- $L_{P}\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ with heuristics (Jao and Soukharev, ANTS 2010)
- $L_{p}\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ under GRH (Childs, Jao and Soukharev)

2. Computing quotients:

- Previous work: $O\left(h^{1 / 2}\right)=O\left(p^{1 / 4}\right)$ with heuristics [Galbraith, Hess, Smart 2002]
- Our work: $L_{p}\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ with quantum computers (Childs, Jao, Soukharev)
[Bisson, J. Math. Cryptol. 2011] improves these times to $L_{p}\left(\frac{1}{2}, \frac{\sqrt{2}}{2}\right)$

Isogeny-based cryptography

- Cryptosystems based on isogenies have been proposed by Couveignes (1996), Rostovtsev and Stolbunov (2006), and Stolbunov (2010).
- Given \mathfrak{b} and E, computing $\mathfrak{b} * E$ is hard, but it can be easy if you choose \mathfrak{b} to be of the form $\mathfrak{p}_{1}^{e_{1}} \mathfrak{p}_{2}^{e_{2}} \cdots \mathfrak{p}_{t}^{e_{t}}$.
- Given E and E^{\prime}, computing the quotient seems hard, and (as an attacker) you may not have the ability to choose E and E^{\prime}.
- This leads to the design of public key cryptosystems based on group actions.

Example: Key exchange

Public parameters: $p, E \in \operatorname{Ell}_{p, n}\left(\mathcal{O}_{K}\right)$
Key generation: Choose an ideal $\mathfrak{b}=\mathfrak{p}_{1}^{e_{1}} \mathfrak{p}_{2}^{e_{2}} \cdots \mathfrak{p}_{t}^{e_{t}}$.
Public key: $\mathfrak{b} * E$
Private key: \mathfrak{b}
To generate a shared key, take $\mathfrak{b}_{1} * \mathfrak{b}_{2} * E=\mathfrak{b}_{2} * \mathfrak{b}_{1} * E$. Breaking the system (conjecturally) requires finding the quotient \mathfrak{b}, given E and $\mathfrak{b} * E$.
Quoting Stolbunov (Adv. Math. Comm. 4(2), 2010):
Besides being interesting from the theoretical point of view, the proposed cryptographic schemes might also have an advantage against quantum computer attacks.... In case a quantum attack is discovered later, the proposed cryptographic schemes would seemingly become of theoretical interest only.

The abelian hidden shift problem

- Let A be a finite abelian group.
- Let S be a finite set.
- Let $f: A \rightarrow S$ and $g: A \rightarrow S$ be two injective functions that differ by a shift. That is, there exists $b \in A$ such that, for all $x \in A$,

$$
f(x)=g(x b)
$$

- Problem: Find b.

Isogeny construction as a hidden shift problem

Suppose we are given two isogenous curves E and E^{\prime}.

- Define $f_{0}, f_{1}: \mathrm{Cl}\left(\mathcal{O}_{D}\right) \rightarrow \mathrm{Ell}_{p, n}\left(\mathcal{O}_{D}\right)$ by

$$
\begin{aligned}
f_{0}(\mathfrak{a}) & =\mathfrak{a} * E \\
f_{1}(\mathfrak{a}) & =\mathfrak{a} * E^{\prime}
\end{aligned}
$$

- E and E^{\prime} are isogenous, so there exists $\mathfrak{b} \in \operatorname{Cl}\left(\mathcal{O}_{D}\right)$ such that

$$
\mathfrak{b} * E=E^{\prime}
$$

- Then $f_{1}(\mathfrak{a})=\mathfrak{a} * E^{\prime}=\mathfrak{a} * \mathfrak{b} * E=f_{0}(\mathfrak{a b})$.
- f_{0} and f_{1} are injective since $*$ is regular.
- Solving the hidden shift problem on f_{0}, f_{1} yields \mathfrak{b}.

Kuperberg's algorithm

Theorem (Kuperberg, 2003)

For a group A of size N, the hidden shift problem can be solved on a quantum computer in $\exp (O(\sqrt{\ln N}))=L_{N}\left(\frac{1}{2}, 0+o(1)\right)$ time, space, and queries to f and g.

- Note that Kuperberg's algorithm requires querying the functions f and g (potentially) a large number of times.
- $f(\mathfrak{a})=\mathfrak{a} * E$ and $g(\mathfrak{a})=\mathfrak{a} * E^{\prime}$ are just group action operations.
- Thus, computing quotients can be reduced to computing the action.

Computing the group action: direct approach

Problem

Given \mathfrak{b} and E, compute $\mathfrak{b} * E$.
The direct approach is to work with \mathfrak{b} itself.

- By factoring \mathfrak{b} (which takes subexponential time), we may reduce to the case where $\mathfrak{b}=\mathfrak{L}$ is prime.
- If \mathfrak{L} does not have prime norm, then it is a principal ideal, and the action is trivial.
- Hence we may assume \mathfrak{L} has prime norm. Write $N(\mathfrak{L})=\ell$.

Computing the group action: direct approach

- Write $E: y^{2}=x^{3}+a x+b$.
- Let $j=j(E)$ be the j-invariant of E.
- Let $\Phi_{\ell}(x, y)$ be the classical modular polynomial of level ℓ.
- Let j^{\prime} be a root of $\phi_{\ell}(x, j(E))$.
- Set

$$
\begin{aligned}
s & =-\frac{18}{\ell} \frac{b}{a} \frac{\frac{\partial \Phi}{\partial x}\left(j(E), j^{\prime}\right)}{\partial \phi}\left(j(E), j^{\prime}\right) \\
a^{\prime} & =-\frac{1}{48} \frac{s^{2}}{j^{\prime}\left(j^{\prime}-1728\right)} \\
b^{\prime} & =-\frac{1}{864} \frac{s^{3}}{j^{\prime 2}\left(j^{\prime}-1728\right)}
\end{aligned}
$$

Then $y^{2}=x^{3}+a^{\prime} x+b^{\prime}$ is the equation for E^{\prime}. This computation takes $O\left(\ell^{3+\varepsilon}\right)$ time (to compute $\left.\Phi_{\ell}(x, y)\right)$ which is enormous as ℓ grows.

Computing the group action: indirect approach

An indirect approach to computing $\mathfrak{b} * E$ is much faster.

- Using index calculus, find a factorization

$$
[\mathfrak{b}]=\left[\mathfrak{p}_{1}^{e_{1}} \mathfrak{p}_{2}^{e_{2}} \cdots \mathfrak{p}_{t}^{e_{t}}\right]
$$

valid in the ideal class group $\mathrm{Cl}\left(\mathcal{O}_{D}\right)$, where the primes \mathfrak{p}_{i} are taken from a factor base of small primes. This process takes subexponential time.

- Evaluate $\mathfrak{p}_{1}^{e_{1}} * \cdots * \mathfrak{p}_{t}^{e_{t}} * E$ repeatedly, one (small) prime at a time.

Main results

Theorem (Jao and Soukharev, ANTS IX, 2010)
The indirect method takes $L_{p}\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ time to evaluate the group action (GRH + heuristics).

Theorem (Childs, Jao and Soukharev)
On a quantum computer, quotients can be computed in $L_{p}\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ operations (GRH).

Remark

We use a result on expansion properties of Cayley graphs of ideal class groups [Jao, Miller, Venkatesan 2009] to eliminate extra heuristics. Our results assume only GRH.

Polynomial space

- Kuperberg's algorithm uses space $\exp (O(\sqrt{\ln n}))$.
- [Regev 2004] presents a modified algorithm using only polynomial space for the case $A=\mathbb{Z}_{2^{n}}$, with running time

$$
\exp (O(\sqrt{n \ln n}))=L_{2^{n}}\left(\frac{1}{2}, O(1)\right)
$$

- Combining Regev's ideas with techniques used by Kuperberg for the case of a general abelian group (of order N), and performing a careful analysis, we find an algorithm with running time $L_{N}\left(\frac{1}{2}, \sqrt{2}\right)$ using only polynomial space.
- Thus there is a quantum algorithm to construct elliptic curve isogenies using only polynomial space in time $L_{p}\left(\frac{1}{2}, \frac{\sqrt{3}}{2}+\sqrt{2}\right)$.

Isogeny-based cryptography with supersingular curves

Motivation:

- Ordinary curves allow for a subexponential quantum attack.
- Ordinary curves are slow [Stolbunov 2010, Table 1]:

Security (bits)	$\lceil\log p\rceil$ (bits)	Time (seconds)
	224	19
80	244	21
96	304	56
112	364	90
128	428	229

- Isogenies over supersingular curves were proposed previously for use in hash functions (Charles, Goren, Lauter 2009)

Supersingular curve isogenies

Let E be a supersingular elliptic curve over \mathbb{F}_{q}.

- $j(E) \in \mathbb{F}_{p^{2}}$
- $\operatorname{End}(E)$ is a right order $\mathcal{O} \subset \mathbb{Q}_{p, \infty}$

For every isogeny $\phi: E \rightarrow E^{\prime}$:

- $\operatorname{ker} \phi$ corresponds to a left ideal ϕ of \mathcal{O} of norm $\operatorname{deg} \phi$
- $\operatorname{End}\left(E^{\prime}\right)$ is the right order of I_{ϕ} :

$$
\operatorname{End}\left(E^{\prime}\right) \cong\left\{x \in \operatorname{End}(E) \otimes \mathbb{Q}: I_{\phi} x \subset I_{\phi}\right\}
$$

- Suppose that $\phi_{1}: E \rightarrow E_{1}$ and $\phi_{2}: E \rightarrow E_{2}$ correspond to I_{1} and I_{2}. Then $E_{1} \cong E_{2}$ if and only if I_{1} and I_{2} are in the same left ideal class.
Unfortunately, there is no abelian group action of the set of left ideal classes on the set of supersingular j-invariants.

Kernel points

Basic idea
Represent an isogeny using (a generator of) its kernel.

- Alice chooses $R_{A} \in E$ and computes $\phi_{A}: E \rightarrow E /\left\langle R_{A}\right\rangle$
- Alice sends $E /\left\langle R_{A}\right\rangle$ to Bob
- Bob chooses $R_{B} \in E$ and computes $\phi_{B}: E \rightarrow E /\left\langle R_{B}\right\rangle$
- Bob sends $E /\left\langle R_{B}\right\rangle$ to Alice
- The quotient operation is commutative:

$$
\begin{aligned}
\left(E /\left\langle R_{A}\right\rangle\right) /\left\langle\phi_{A}\left(R_{B}\right)\right\rangle & \cong E /\left\langle R_{A}, R_{B}\right\rangle \\
& =E /\left\langle R_{B}, R_{A}\right\rangle \cong\left(E /\left\langle R_{B}\right\rangle\right) /\left\langle\phi_{B}\left(R_{A}\right)\right\rangle
\end{aligned}
$$

Given R_{A} (R_{B} etc.), one can compute ϕ_{A} (ϕ_{B} etc.) using Velu's formulas.

Problem \#1
Alice needs $\phi_{B}\left(R_{A}\right)$ in order to compute $\left(E /\left\langle R_{B}\right\rangle\right) /\left\langle\phi_{B}\left(R_{A}\right)\right\rangle$. Solution

- Fix a \mathbb{Z}-module basis P, Q of $E\left(\mathbb{F}_{p^{2}}\right)$.
- Alice chooses $R_{A}=m P+n Q$.
- Bob sends $\left(\phi_{B}(P), \phi_{B}(Q)\right)$ to Alice.
- Alice computes $\phi_{B}\left(R_{A}\right)=m \phi_{B}(P)+n \phi_{B}(Q)$

Problem \#2

Computing $E /\left\langle R_{A}\right\rangle$ from R_{A} from Velu's formulas requires $O\left(\ell^{3}\right)$ operations.

Solution

- Choose E so that $\ell^{e} \mid \# E\left(\mathbb{F}_{p^{2}}\right)$, where ℓ is a small prime
- Choose R_{A} to have order ℓ^{e}
- Then $E /\left\langle R_{A}\right\rangle$ can be efficiently computed as a composition of e isogenies of degree ℓ

For points of smooth order, discrete log is easy. But our scheme is based on isogenies, not discrete log.

Problem \#3

If $R_{A}=m_{A} P+n_{A} Q$, then an adversary who knows $\phi_{A}(P), \phi_{A}(Q)$ can find a generator for $\left\langle R_{A}\right\rangle$ by solving

$$
x \phi_{A}(P)+y \phi_{A}(Q)=0
$$

for $x, y \in \mathbb{Z}$.
Solution
Use different smooth order subgroups for Alice and Bob:

- Choose E so that $\ell_{A}^{e_{A}} \ell_{B}^{e_{B}}$ divides $\# E\left(\mathbb{F}_{p^{2}}\right)$
- Choose \mathbb{Z}-bases $\left\{P_{A}, Q_{A}\right\}$ of $E\left[\ell_{A}^{e_{A}}\right]$ and $\left\{P_{B}, Q_{B}\right\}$ of $E\left[\ell_{B}^{e_{B}}\right]$
- Alice chooses $R_{A}=m_{A} P_{A}+n_{A} Q_{A}$ of order $\ell_{A}^{e_{A}}$
- Alice computes $\phi_{A}: E \rightarrow E /\left\langle R_{A}\right\rangle$
- Alice sends $E /\left\langle R_{A}\right\rangle$ and $\phi_{A}\left(P_{B}\right), \phi_{A}\left(Q_{B}\right)$ to Bob

Now the adversary has $\phi_{A}\left(P_{B}\right), \phi_{A}\left(Q_{B}\right)$ but $R_{A}=m_{A} P_{A}+n_{A} Q_{A}$ is a linear combination of P_{A} and Q_{A}

Key exchange

Public parameters:

- Prime $p=\ell_{A}^{e_{A}} \ell_{B}^{e_{B}} \cdot f \pm 1$
- Supersingular elliptic curve $E / \mathbb{F}_{p^{2}}$ of order $(p \mp 1)^{2}$
- \mathbb{Z}-bases $\left\{P_{A}, Q_{A}\right\}$ of $E\left[\ell_{A}^{e_{A}}\right]$ and $\left\{P_{B}, Q_{B}\right\}$ of $E\left[\ell_{B}^{e_{B}}\right]$

Alice:

- Choose $R_{A}=m_{A} P_{A}+n_{A} Q_{A}$ of order $\ell_{A}^{e_{A}}$
- Compute $\phi_{A}: E \rightarrow E /\left\langle R_{A}\right\rangle$
- Send $E /\left\langle R_{A}\right\rangle, \phi_{A}\left(P_{B}\right), \phi_{A}\left(Q_{B}\right)$ to Bob

Bob:

- Choose $R_{B}=m_{B} P_{B}+n_{B} Q_{B}$ of order $\ell_{B}^{e_{B}}$
- Compute $\phi_{B}: E \rightarrow E /\left\langle R_{B}\right\rangle$
- Send $E /\left\langle R_{B}\right\rangle, \phi_{B}\left(P_{A}\right), \phi_{B}\left(Q_{A}\right)$ to Alice

The shared secret is
$E /\left\langle R_{A}, R_{B}\right\rangle=\left(E /\left\langle R_{A}\right\rangle\right) /\left\langle m_{A} \phi_{B}\left(P_{A}\right)+n_{A} \phi_{B}\left(Q_{A}\right)\right\rangle=\left(E /\left\langle R_{B}\right\rangle\right) /\left\langle m_{B} \phi_{A}\left(P_{B}\right)+n_{B} \phi_{A}\left(Q_{B}\right)\right\rangle$

Diagram

Attacks against the scheme

Fastest known attack (given E and E_{A}):

- Build a tree of degree ℓ_{A}-isogenies of depth $e_{A} / 2$ starting from E
- Build a tree of degree ℓ_{A}-isogenies of depth $e_{A} / 2$ starting from E_{A}
- Find a common vertex between the two trees

Using claw-finding algorithms, one can solve this problem in:

- $O\left(p^{1 / 4}\right)$ time on a classical computer
- $O\left(p^{1 / 6}\right)$ time on a quantum computer

Assuming that this is indeed the fastest possible attack, we need a 768 -bit prime for 128 -bit security against quantum computers.

Implementation

To compute $\phi_{A}: E \rightarrow E /\left\langle R_{A}\right\rangle$:

- Set $R_{0}:=\left[m_{A}\right] P_{A}+\left[n_{A}\right] Q_{A}$.
- For $0 \leq i<e_{A}$, set

$$
E_{i+1}=E_{i} /\left\langle\ell_{A}^{e_{A}-i-1} R_{i}\right\rangle, \quad \phi_{i}: E_{i} \rightarrow E_{i+1}, \quad R_{i+1}=\phi_{i}\left(R_{i}\right)
$$

- Then ϕ_{i} is a degree ℓ_{A} isogeny from E_{i} to E_{i+1}.
- We have

$$
\begin{aligned}
E_{A} & =E_{e_{A}} \\
\phi_{A} & =\phi_{e_{A}-1} \circ \cdots \circ \phi_{0}
\end{aligned}
$$

This algorithm is quadratic in e_{A}.

Computational strategies

The outer edges are always needed. For the inner nodes, one can:

- Compute vertical arrows (multiplication-based strategy)
- Compute diagonal arrows (isogeny-based strategy)

Timings

	Alice		Bob	
	round 1	round 2	round 1	round 2
$2^{253} 3^{161} 7-1$	365 ms	363 ms	318 ms	314 ms
$5^{110} 7^{91} 284-1$	419 ms	374 ms	369 ms	326 ms
$11^{74} 11^{69} 384-1$	332 ms	283 ms	321 ms	272 ms
$17^{62} 1^{660} 210+1$	330 ms	274 ms	331 ms	276 ms
$23^{56} 2^{552} 286+1$	339 ms	274 ms	347 ms	277 ms
$31^{51} 4147564-1$	355 ms	279 ms	381 ms	294 ms
$2^{384} 41^{242} 8-1$	1160 ms	1160 ms	986 ms	973 ms
$5^{165}{ }^{161}{ }^{137} 2968-1$	1050 ms	972 ms	916 ms	843 ms
$11^{111} 13^{104} 78+1$	790 ms	710 ms	771 ms	688 ms
$17^{94} 19^{90} 116-1$	761 ms	673 ms	750 ms	661 ms
$23^{85} 29^{99} 132-1$	755 ms	652 ms	758 ms	647 ms
$31^{77} 41^{12} 166+1$	772 ms	643 ms	824 ms	682 ms
$2^{512} 3^{323} 799-1$	2570 ms	2550 ms	2170 ms	2150 ms
$5^{220} 7^{182} 538+1$	2270 ms	2140 ms	1930 ms	1810 ms
$11^{148} 13^{138} 942+1$	1650 ms	1520 ms	1570 ms	1440 ms
$17^{125} 19^{120} 712-1$	1550 ms	1430 ms	1520 ms	1380 ms
$23^{113} 29^{105} 1004-1$	1480 ms	1330 ms	1470 ms	1300 ms

Current record

Source code: www.prism.uvsq.fr/~dfl/

- We represent curves in Montgomery form:

$$
B y^{2}=x^{3}+A x^{2}+x
$$

- Our formulas for 2-isogenies and 4-isogenies are faster than anything else in the literature.
- Current record (2011-09-19): 500ms for 1024-bit primes
- This performance is achieved using a mixed approach:
- " ℓ_{A} " $=4^{5}$
- Isogeny-based method for $4 \rightarrow 4^{5}$
- Multiplication-based method for $\ell_{A} \rightarrow \ell_{A}^{e_{A}}$

References

- D. Charles, E. Goren, and K. Lauter. Cryptographic hash functions from expander graphs. J. Cryptol. 2009, pp. 93-113.
- J. Couveignes, Hard Homogeneous Spaces, eprint:2006/291.
- S. D. Galbraith, F. Hess, and N. P. Smart. Extending the GHS Weil descent attack. Eurocrypt 2002, Springer LNCS 2332, pp. 29-44.
- D. Jao, S. D. Miller, and R. Venkatesan. Expander graphs based on GRH with an application to elliptic curve cryptography. J. Num. Thy. 129 (6), 2009, pp. 1491-1504.
- D. Jao and V. Soukharev, A subexponential algorithm for evaluating large degree isogenies, ANTS IX, Springer LNCS 6197, pp. 219-233.
- G. Kuperberg, A subexponential-time quantum algorithm for the dihedral hidden subgroup problem, Siam J. Comput. 35 (1) (2005), pp. 170-188.
- O. Regev, A Subexponential Time Algorithm for the Dihedral Hidden Subgroup Problem with Polynomial Space, arxiv:quant-ph/0406151
- A. Rostovtsev and A. Stolbunov, Public-key cryptosystem based on isogenies, eprint:2006/145.
- A. Stolbunov, Constructing public-key cryptographic schemes based on class group action on a set of isogenous elliptic curves, Adv. Math. Comm. 4 (2) (2010), pp. 215-235.

This work: arXiv:1012.4019 and ePrint:2011/506

