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Summary of main results

A. Childs, D. Jao, and V. Soukharev, arXiv:1012.4019

I For ordinary isogenous elliptic curves of equal endomorphism
ring, we show (under GRH) how to find an isogeny in
subexponential time on a quantum computer.

D. Jao and L. De Feo, ePrint:2011/506

I We propose a public-key cryptosystem based on the difficulty
of finding isogenies between supersingular elliptic curves (in a
certain special case). The fastest known attack against the
system takes exponential time, even on a quantum computer.



Isogenies

Definition
Let E and E ′ be elliptic curves over F .

I An isogeny φ : E → E ′ is a non-constant algebraic morphism

φ(x , y) =

(
f1(x , y)

g1(x , y)
,

f2(x , y)

g2(x , y)

)
satisfying φ(∞) =∞ (equivalently,
φ(P + Q) = φ(P) + φ(Q)).

I The degree of an isogeny is its degree as an algebraic map.

I The endomorphism ring End(E ) is the set of isogenies from
E (F ) to itself, together with the constant homomorphism.
This set forms a ring under pointwise addition and
composition.



Ordinary and supersingular curves

Theorem
Let E be an elliptic curve defined over a finite field. As a
Z-module, dimZ End(E ) is equal to either 2 or 4.

Definition
An elliptic curve E over a finite field is supersingular if
dimZ End(E ) = 4, and ordinary otherwise.

Isogenous curves are always either both ordinary, or both
supersingular.



Isogenies and kernels

Theorem
For every finite subgroup G ⊂ E (F ), there exists a unique (up to
isomorphism) elliptic curve E/G and a unique (up to isomorphism)
separable isogeny E → E/G of degree #G . Every separable
isogeny arises in this way.

Corollary

Every separable isogeny φ factors into a composition of prime
degree isogenies.

Proof.
Let G = ker φ. Factor G using the fundamental theorem of finite
abelian groups. Apply the previous theorem to each factor.



Solving the decision problem

Theorem (Tate 1966)

Two curves E and E ′ are isogenous over Fq if and only if
#E = #E ′.

Remark
The cardinality #E of E can be calculated in polynomial time
using Schoof’s algorithm [Schoof 1985], which is also based on
isogenies.



First main theorem of complex multiplication

Theorem (First main theorem of complex multiplication)

I Let Cl(OD) denote the ideal class group of OD ⊂ K .

I Let h = # Cl(OD) denote the class number of OD .
I There exists a number field L, called the Hilbert class field of

K , with [L : K ] = h and Gal(L/K ) = Cl(OD), such that:
I Fix any prime ideal p ⊂ OL of norm p.
I For every fractional ideal a ∈ OD , the complex elliptic curve

C/a corresponding to the lattice a is defined over L, and has
endomorphism ring OD .

I The reduction of C/a mod p yields an elliptic curve over Fp

with endomorphism ring OD .
I Every ordinary elliptic curve over Fp arises in this way.
I Two fractional ideals yield isomorphic curves if and only if they

belong to the same ideal class.



Remarks on the first main theorem

Stated more succintly, there is an isomorphism between elements
of Cl(OD) and isomorphism classes of elliptic curves E/Fp with
End(E ) = OD .

Definition
The set of isomorphism classes of elliptic curves E/Fp with
End(E ) = OD is denoted Ellp,n(OD), where n = #E .

Remark

1. This isomorphism is not canonical! It depends on the choice
of p.

2. This isomorphism is very hard to compute. The fastest known
algorithm operates by computing the Hilbert class polynomial,
which takes O(p) time.



Second main theorem of complex multiplication

Theorem (Second main theorem of complex multiplication)

Let a be any fractional ideal, and let b be an ideal. Then

I ab−1 ⊃ a (n.b. “to contain is to divide”).

I The map C/a→ C/ab−1 is an isogeny of degree N(b),
denoted φb.

I Every horizontal separable isogeny mod p arises from the mod
p reduction of such an isogeny φb.



Remarks on the second main theorem

I The isomorphism between ideal classes [a] ∈ Cl(OD) and
curves E ∈ Ellp,n(OD) is not canonical.

I However, the correspondence between ideals b and isogenies
φb is canonical, up to endomorphism.

C/a φb //

mod p

���
�
�

C/ab−1

mod p

���
�
�

E
φb

// E ′

I Thus we may represent isogenies using ideal classes in OD .



The main group action

Theorem (Waterhouse 1969)

There is a group action ∗ : Cl(OD)× Ellp,n(OD)→ Ellp,n(OD),
defined as follows.

I Given b ∈ Cl(OD), and E ∈ Ellp,n(OD), let φb : E → E ′ be
the isogeny corresponding to b.

I Set b ∗ E = E ′.

Ellp,n(OD) is a principal homogeneous space for the group Cl(OD)
under this action. In other words, the action is free and transitive.



Computational problems

There are two main computational questions:

1. Given b and E , compute b ∗ E .

2. Given E and E ′, find b ∈ Cl(OD) such that b ∗ E = E ′ (the
so-called quotient of E ′ and E ).

These are believed to be hard problems.

1. Computing the group action:
I Previous work: O(N(b)3) (!!)
I Our work:

I Lp(
1
2
,
√

3
2

) with heuristics (Jao and Soukharev, ANTS 2010)

I Lp(
1
2
,
√

3
2

) under GRH (Childs, Jao and Soukharev)

2. Computing quotients:
I Previous work: O(h1/2) = O(p1/4) with heuristics [Galbraith,

Hess, Smart 2002]
I Our work: Lp( 1

2 ,
√

3
2 ) with quantum computers (Childs, Jao,

Soukharev)

[Bisson, J. Math. Cryptol. 2011] improves these times to Lp( 1
2 ,
√

2
2 )



Isogeny-based cryptography

I Cryptosystems based on isogenies have been proposed by
Couveignes (1996), Rostovtsev and Stolbunov (2006), and
Stolbunov (2010).

I Given b and E , computing b ∗ E is hard, but it can be easy if
you choose b to be of the form pe1

1 pe2
2 · · · p

et
t .

I Given E and E ′, computing the quotient seems hard, and (as
an attacker) you may not have the ability to choose E and E ′.

I This leads to the design of public key cryptosystems based on
group actions.



Example: Key exchange

Public parameters: p, E ∈ Ellp,n(OK )

Key generation: Choose an ideal b = pe1
1 pe2

2 · · · p
et
t .

Public key: b ∗ E

Private key: b

To generate a shared key, take b1 ∗ b2 ∗ E = b2 ∗ b1 ∗ E . Breaking
the system (conjecturally) requires finding the quotient b, given E
and b ∗ E .
Quoting Stolbunov (Adv. Math. Comm. 4(2), 2010):

Besides being interesting from the theoretical point of
view, the proposed cryptographic schemes might also
have an advantage against quantum computer attacks....
In case a quantum attack is discovered later, the
proposed cryptographic schemes would seemingly become
of theoretical interest only.



The abelian hidden shift problem

I Let A be a finite abelian group.

I Let S be a finite set.

I Let f : A→ S and g : A→ S be two injective functions that
differ by a shift. That is, there exists b ∈ A such that, for all
x ∈ A,

f (x) = g(xb).

I Problem: Find b.



Isogeny construction as a hidden shift problem

Suppose we are given two isogenous curves E and E ′.

I Define f0, f1 : Cl(OD)→ Ellp,n(OD) by

f0(a) = a ∗ E

f1(a) = a ∗ E ′

I E and E ′ are isogenous, so there exists b ∈ Cl(OD) such that

b ∗ E = E ′.

I Then f1(a) = a ∗ E ′ = a ∗ b ∗ E = f0(ab).

I f0 and f1 are injective since ∗ is regular.

I Solving the hidden shift problem on f0, f1 yields b.



Kuperberg’s algorithm

Theorem (Kuperberg, 2003)

For a group A of size N, the hidden shift problem can be solved on
a quantum computer in exp(O(

√
ln N)) = LN( 1

2 , 0 + o(1)) time,
space, and queries to f and g.

I Note that Kuperberg’s algorithm requires querying the
functions f and g (potentially) a large number of times.

I f (a) = a ∗ E and g(a) = a ∗ E ′ are just group action
operations.

I Thus, computing quotients can be reduced to computing the
action.



Computing the group action: direct approach

Problem
Given b and E , compute b ∗ E .

The direct approach is to work with b itself.

I By factoring b (which takes subexponential time), we may
reduce to the case where b = L is prime.

I If L does not have prime norm, then it is a principal ideal, and
the action is trivial.

I Hence we may assume L has prime norm. Write N(L) = `.



Computing the group action: direct approach

I Write E : y 2 = x3 + ax + b.

I Let j = j(E ) be the j-invariant of E .

I Let Φ`(x , y) be the classical modular polynomial of level `.

I Let j ′ be a root of φ`(x , j(E )).

I Set

s = −18

`

b

a

∂Φ
∂x (j(E ), j ′)
∂Φ
∂y (j(E ), j ′)

a′ = − 1

48

s2

j ′(j ′ − 1728)

b′ = − 1

864

s3

j ′2(j ′ − 1728)

Then y 2 = x3 + a′x + b′ is the equation for E ′. This computation
takes O(`3+ε) time (to compute Φ`(x , y)) which is enormous as `
grows.



Computing the group action: indirect approach

An indirect approach to computing b ∗ E is much faster.

I Using index calculus, find a factorization

[b] = [pe1
1 pe2

2 · · · p
et
t ]

valid in the ideal class group Cl(OD), where the primes pi are
taken from a factor base of small primes. This process takes
subexponential time.

I Evaluate pe1
1 ∗ · · · ∗ pet

t ∗ E repeatedly, one (small) prime at a
time.



Main results

Theorem (Jao and Soukharev, ANTS IX, 2010)

The indirect method takes Lp( 1
2 ,
√

3
2 ) time to evaluate the group

action (GRH + heuristics).

Theorem (Childs, Jao and Soukharev)

On a quantum computer, quotients can be computed in Lp( 1
2 ,
√

3
2 )

operations (GRH).

Remark
We use a result on expansion properties of Cayley graphs of ideal
class groups [Jao, Miller, Venkatesan 2009] to eliminate extra
heuristics. Our results assume only GRH.



Polynomial space

I Kuperberg’s algorithm uses space exp(O(
√

ln n)).

I [Regev 2004] presents a modified algorithm using only
polynomial space for the case A = Z2n , with running time

exp(O(
√

n ln n)) = L2n( 1
2 ,O(1)).

I Combining Regev’s ideas with techniques used by Kuperberg
for the case of a general abelian group (of order N), and
performing a careful analysis, we find an algorithm with
running time LN( 1

2 ,
√

2) using only polynomial space.

I Thus there is a quantum algorithm to construct elliptic curve

isogenies using only polynomial space in time Lp( 1
2 ,
√

3
2 +

√
2).



Isogeny-based cryptography with supersingular curves

Motivation:

I Ordinary curves allow for a subexponential quantum attack.

I Ordinary curves are slow [Stolbunov 2010, Table 1]:

Security (bits) dlog pe(bits) Time (seconds)

224 19

80 244 21
96 304 56
112 364 90
128 428 229

I Isogenies over supersingular curves were proposed previously
for use in hash functions (Charles, Goren, Lauter 2009)



Supersingular curve isogenies

Let E be a supersingular elliptic curve over Fq.

I j(E ) ∈ Fp2

I End(E ) is a right order O ⊂ Qp,∞

For every isogeny φ : E → E ′:

I ker φ corresponds to a left ideal φ of O of norm deg φ

I End(E ′) is the right order of Iφ:

End(E ′) ∼= {x ∈ End(E )⊗Q : Iφx ⊂ Iφ}

I Suppose that φ1 : E → E1 and φ2 : E → E2 correspond to I1
and I2. Then E1

∼= E2 if and only if I1 and I2 are in the same
left ideal class.

Unfortunately, there is no abelian group action of the set of left
ideal classes on the set of supersingular j-invariants.



Kernel points

Basic idea
Represent an isogeny using (a generator of) its kernel.

I Alice chooses RA ∈ E and computes φA : E → E/〈RA〉
I Alice sends E/〈RA〉 to Bob

I Bob chooses RB ∈ E and computes φB : E → E/〈RB〉
I Bob sends E/〈RB〉 to Alice

I The quotient operation is commutative:

(E/〈RA〉)/〈φA(RB)〉 ∼= E/〈RA,RB〉
= E/〈RB ,RA〉 ∼= (E/〈RB〉)/〈φB(RA)〉

Given RA (RB etc.), one can compute φA (φB etc.) using Velu’s
formulas.



Problem #1

Alice needs φB(RA) in order to compute (E/〈RB〉)/〈φB(RA)〉.

Solution

I Fix a Z-module basis P,Q of E (Fp2).

I Alice chooses RA = mP + nQ.

I Bob sends (φB(P), φB(Q)) to Alice.

I Alice computes φB(RA) = mφB(P) + nφB(Q)



Problem #2

Computing E/〈RA〉 from RA from Velu’s formulas requires O(`3)
operations.

Solution

I Choose E so that `e | #E (Fp2), where ` is a small prime

I Choose RA to have order `e

I Then E/〈RA〉 can be efficiently computed as a composition of
e isogenies of degree `

For points of smooth order, discrete log is easy. But our scheme is
based on isogenies, not discrete log.



Problem #3

If RA = mAP + nAQ, then an adversary who knows φA(P), φA(Q)
can find a generator for 〈RA〉 by solving

xφA(P) + yφA(Q) = 0

for x , y ∈ Z.

Solution
Use different smooth order subgroups for Alice and Bob:

I Choose E so that `eA
A `

eB
B divides #E (Fp2)

I Choose Z-bases {PA,QA} of E [`eA
A ] and {PB ,QB} of E [`eB

B ]

I Alice chooses RA = mAPA + nAQA of order `eA
A

I Alice computes φA : E → E/〈RA〉
I Alice sends E/〈RA〉 and φA(PB), φA(QB) to Bob

Now the adversary has φA(PB), φA(QB) but RA = mAPA + nAQA

is a linear combination of PA and QA



Key exchange
Public parameters:

I Prime p = `eA
A `

eB
B · f ± 1

I Supersingular elliptic curve E/Fp2 of order (p ∓ 1)2

I Z-bases {PA,QA} of E [`eA
A ] and {PB ,QB} of E [`eB

B ]

Alice:

I Choose RA = mAPA + nAQA of order `eA
A

I Compute φA : E → E/〈RA〉
I Send E/〈RA〉, φA(PB), φA(QB) to Bob

Bob:

I Choose RB = mBPB + nBQB of order `eB
B

I Compute φB : E → E/〈RB〉
I Send E/〈RB〉, φB(PA), φB(QA) to Alice

The shared secret is

E/〈RA,RB〉=(E/〈RA〉)/〈mAφB(PA)+nAφB(QA)〉=(E/〈RB〉)/〈mBφA(PB)+nBφA(QB)〉



Diagram

E0

EA

ker(φA
)=
〈[m A

]P A
+[n A

]Q A
〉

φA
(P B

),φA
(Q B

)

EB

ker(φ
B )=〈[m

B ]P
B +[n

B ]Q
B 〉

φ
B (P

A ),φ
B (Q

A )

EAB

ker(φ
′
A
)=
〈[mA

]φB
(PA

)+
[nA

]φB
(QA

)〉

EBA

ker(φ ′
B )=〈[m

B ]φ
A (P

B )+[n
B ]φ

A (Q
B )〉

‖



Attacks against the scheme

Fastest known attack (given E and EA):

I Build a tree of degree `A-isogenies of depth eA/2 starting
from E

I Build a tree of degree `A-isogenies of depth eA/2 starting
from EA

I Find a common vertex between the two trees

Using claw-finding algorithms, one can solve this problem in:

I O(p1/4) time on a classical computer

I O(p1/6) time on a quantum computer

Assuming that this is indeed the fastest possible attack, we need a
768-bit prime for 128-bit security against quantum computers.



Implementation

To compute φA : E → E/〈RA〉:
I Set R0 := [mA]PA + [nA]QA.

I For 0 ≤ i < eA, set

Ei+1 = Ei/〈`eA−i−1
A Ri 〉, φi : Ei → Ei+1, Ri+1 = φi (Ri )

I Then φi is a degree `A isogeny from Ei to Ei+1.

I We have

EA = EeA

φA = φeA−1 ◦ · · · ◦ φ0

This algorithm is quadratic in eA.



Computational strategies

R0

[`A]
��

φ0

&&LLLLLLLLLLLL

`AR0

[`A]
��

φ0

%%KKKKKKKKKK R1

[`A]

��

φ1

##GGGGGGGGGG

`2
AR0

[`A]

`AR1 R2
φ

[`A]
φ

`eA−1
A R0 `eA−2

A R1 · · · · · · ReA−1

The outer edges are always needed. For the inner nodes, one can:

I Compute vertical arrows (multiplication-based strategy)

I Compute diagonal arrows (isogeny-based strategy)



Timings
Alice Bob

round 1 round 2 round 1 round 2
225331617− 1 365 ms 363 ms 318 ms 314 ms
5110791284− 1 419 ms 374 ms 369 ms 326 ms
11741369384− 1 332 ms 283 ms 321 ms 272 ms
17621960210 + 1 330 ms 274 ms 331 ms 276 ms
23562952286 + 1 339 ms 274 ms 347 ms 277 ms
31514147564− 1 355 ms 279 ms 381 ms 294 ms
238432428− 1 1160 ms 1160 ms 986 ms 973 ms
516571372968− 1 1050 ms 972 ms 916 ms 843 ms
111111310478 + 1 790 ms 710 ms 771 ms 688 ms
17941990116− 1 761 ms 673 ms 750 ms 661 ms
23852979132− 1 755 ms 652 ms 758 ms 647 ms
31774172166 + 1 772 ms 643 ms 824 ms 682 ms
25123323799− 1 2570 ms 2550 ms 2170 ms 2150 ms
52207182538 + 1 2270 ms 2140 ms 1930 ms 1810 ms
1114813138942 + 1 1650 ms 1520 ms 1570 ms 1440 ms
1712519120712− 1 1550 ms 1430 ms 1520 ms 1380 ms
23113291051004− 1 1480 ms 1330 ms 1470 ms 1300 ms



Current record

Source code: www.prism.uvsq.fr/~dfl/

I We represent curves in Montgomery form:

By 2 = x3 + Ax2 + x

I Our formulas for 2-isogenies and 4-isogenies are faster than
anything else in the literature.

I Current record (2011-09-19): 500ms for 1024-bit primes
I This performance is achieved using a mixed approach:

I “`A” = 45

I Isogeny-based method for 4→ 45

I Multiplication-based method for `A → `eA

A

www.prism.uvsq.fr/~dfl/
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