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Preface

This document contains short lecture notes for the course Generalized linear
models, University of Helsinki, spring 2009. A more detailed treatment of
the topic can be found from

• P. McCullagh and John A. Nelder, Generalized linear models. Second
edition 1989. Chapman & Hall.

• A. J. Dobson, An introduction to generalized linear models. Second
edition 2002. Third edition 2008. Chapman & Hall/CRC.

• lecture notes 2008. http://www.rni.helsinki.fi/~jmh/glm08/

• lecture notes 2005 (in Finnish). http://www.rni.helsinki.fi/~jmh/
glm05/glm05.pdf.
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1 What is a generalized linear model?

1.1 Model

Mathematical view: A statistical model is a set of probability distribu-
tions on the sample space S. A parameterized statistical model is a
parameter set Θ together with a function P : Θ → P (S), which assigns
to each parameter point θ ∈ Θ a probability distribution Pθ on S. A
Bayesian model requires an additional component in the form of a prior
distribution on Θ. [P. McCullagh (2002). What is a statistical model.
The Annals of Statistics. Vol. 30, No. 5, 1225-1310.]

Applied view: Statistical model is a description of the probability distri-
bution of random variables which can be assumed to represent a real
world phenomenon.

Which of these are statistical models?

a) X ∼ N(µ, σ2)

b) “The height of Finnish men follows a normal distribution.”

c)

L(θ,ψ) ∝
n
∏

i=1

pθ(gi)pψ(xi | gi)pθ(yi | gi, xi),

d) “The risk of smokers to die to cardiovascular diseases is about twice the
risk of non-smokers.”

e) glm(y ~ x, family=binomial(link = "logit"), data=doseresponse)

1.2 Linear model

A simple linear model that describes the relationship of a single covariate x
and a continuous response variable Y can be written as

Yi = α + βxi + ǫi, (1)

where α is the intercept term, β is the regression coefficient for X and ǫi

is an error term. Further assumptions are needed for the error term. For
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instance, we may assume that the error terms are mutually independent and
ǫi ∼ N(0, σ2), i = 1, 2, . . . , n. A less restrictive assumption is to specify only
the first two moments E(ǫi) = 0 and Var(ǫi) = σ2, i.e. the variance does not
depend on x. Note that in model (1), the error term ǫi is written explicitly.
It is also possible to write the same model without explicitly specifying ǫi

E(Yi | xi) = µi = α + βxi. (2)

Model (2) tells on the expected value of Yi on the condition of x. As a such,
model (2) does not specify how the values of Yi vary around the expected
value E(Yi | xi). Defining Var(Yi) = σ2 we obtain a model equivalent to
model (1). If the variation of Yi is normally distributed, it can be also
written Yi ∼ N(α + βxi, σ

2).
The linearity of linear model means linearity respect to the parameters.

In other words, the model µi = α + βx3
i is also a linear model.

1.3 Generalized linear model

The linear model (2) can be transformed to a generalized linear model by
replacing µi by g(µi)

g(µi) = α + βxi = ηi, (3)

where g is a real-valued monotonic and differentiable function called link
function and the term ηi is called linear predictor. In the other words, µi is
the expected value of the response, ηi is a linear combination of the covariates
and g() defines the relationship between µi and ηi. Because g() is monotonic,
the relationship of µi and ηi is also monotonic. With the inverse of g() we
may write

µi = g−1(ηi), (4)

which provides an alternative way to define GLM. Linear model is a special
case of GLM where g(µi) = µi.

With multiple covariates the GLM is defined as

g(µi) =

p
∑

j=1

βjxij . (5)

The assumptions of the GLM are given in Section 3.
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Note that GLM is different from applying a nonlinear transformation to
response variable. In GLM, the nonlinear transformation is applied to the
expected value of the response.

Variance is defined by the variance function V that specifies the variance
of Yi as a function µi

Var(Yi) ∝ V (µi). (6)

1.4 Motivating examples

Generalized linear models are needed because linear models are not appro-
priate for all situations. In linear model it is implicitly assumed that the
response can be have all real values, which is not the case in many practical
situations. Examples:

• The number of hospital visits in a certain year for an individual is a
count response that can have values 0, 1, 2, . . ..

• Monthly alcohol consumption (liters of absolute alcohol) for an indi-
vidual is a nonnegative response that has zeroes for some individuals.

• Gamma-glutamyltransferase (GGT) measured from serum blood is a
positive response.

• Daily rainfall is a nonnegative response.

• Presence or absence of a voltage peak in switching measurements of
superconducting Josephson Junctions is a binary response.

• Fatality (fatal/non-fatal) of myocardial infarction (heart attack) is a
binary response.

• Level of education (primary school, secondary school, B.Sc., M.Sc.,
PhD) is an ordinal response.

• The date of an event of coronary heart disease measured for a cohort
of people is a time-to-event (or survival) response.

There are also situations where a linear model may be suitable although
strictly speaking the response has an inappropriate distribution.

• Height of an adult is positive but can be modeled by linear model
because all values are far from zero.
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• The daily number of customers in a big supermarket is actually a count
response but could be modeled by linear model because all values are
far from zero and the number of possible values of the response is high.

1.5 Link functions

The choice of the link function g() depends on the data, especially on the
type of the response variable. If the response is a count, i.e. an integer,
log-link g(µi) = log(µi) may be used. Log-link leads multiplicative model

µi = exp(ηi) = eβ1xi1eβ2xi2 · · · eβpxip (7)

If the response Yi is a binary variable with possible values 0 and 1, it holds

µi = E(Yi) = 1 · P (Yi = 1) + 0 · P (Yi = 0) = P (Yi = 1). (8)

The logit-link

g(µi) = logit(µi) = log

(

µi

1 − µi

)

(9)

is maybe the most typical choice for binary response data. For positive
continuous responses typical link functions are inverse link

µ−1
i = ηi (10)

and inverse-squared link
µ−2

i = ηi. (11)

1.6 Confusing terminology

1.6.1 Generalized linear model (GLM) and general linear model
(GLM)

Unfortunately, the acronym GLM is sometimes used for general linear model.
General linear model is a linear model. The word ‘general’ is used to indicate
that the response Y may be multivariate and the covariates may include both
continuous and categorical variables. In SAS, PROC GLM fits a general
linear model, not a generalized linear model.
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1.6.2 Names of X and Y

In different applications X and Y have various names that sometimes might
be confusing. Examples are given below. Some of the names are synonyms
and some have special emphasis in certain applications. Particularly, the
terms ‘independent variable’ and ‘dependent variable’ may cause a confusion.

Names of X

• covariate

• explanatory variable

• factor

• risk factor

• exposure (variable)

• design variable

• controlled variable

• carrier variable

• regressor

• predictor

• input

• determinant

• ∗independent variable

Names of Y

• response

• explained variable

• outcome

• responding variable

• regressand

• experimental variable

• measured variable

• output

• ∗dependent variable
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2 Generalized linear models in statistical soft-

ware

2.1 Generalized linear models in R

In R (www.r-project.org) generalized linear models can be fitted using
function glm. The syntax is
glm(formula, family = gaussian, data, weights, subset, na.action,

start = NULL, etastart, mustart, offset, control = glm.control(...),

model = TRUE, method = "glm.fit", x = FALSE, y = TRUE, contrasts

= NULL, ...)

Arguments
Some important arguments are

formula an object of class ”formula” (or one that can be coerced to that
class): a symbolic description of the model to be fitted.

family a description of the error distribution and link function to be used
in the model. This can be a character string naming a family function,
a family function or the result of a call to a family function.

data an optional data frame, list or environment (or object coercible by
as.data.frame to a data frame) containing the variables in the model.
weights] an optional vector of weights to be used in the fitting process.

subset an optional vector specifying a subset of observations to be used in
the fitting process.

offset can be used to specify an a priori known component to be included in
the linear predictor during fitting. This should be NULL or a numeric
vector of length either one or equal to the number of cases. One or
more offset terms can be included in the formula instead or as well,
and if both are specified their sum is used. See model.offset.

control a list of parameters for controlling the fitting process.

Output
As an output an object of class “glm” is returned. A glm object is a list that
contains the following components among the others:
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coefficients a named vector of coefficients

fitted.values the fitted mean values, obtained by transforming the linear
predictors by the inverse of the link function.

deviance up to a constant, minus twice the maximized log-likelihood. Where
sensible, the constant is chosen so that a saturated model has deviance
zero.

aic Akaike’s An Information Criterion, minus twice the maximized log-
likelihood plus twice the number of coefficients (so assuming that the
dispersion is known).

null.deviance The deviance for the null model, comparable with deviance.

iter the number of iterations of IWLS used.

df.residual the residual degrees of freedom.

df.null the residual degrees of freedom for the null model.

converged logical. Was the IWLS algorithm judged to have converged?

Example: binomial family with logit-link (logistic regression)

set.seed(3000)

b<-3;

n<-500;

x<-rnorm(n);

y<-runif(n)<exp(b*x)/(1+exp(b*x))

m1<-glm(y~x,binomial(link = "logit"))

print(summary(m1))

Summary:

Call:

glm(formula = y ~ x, family = binomial(link = "logit"))

Deviance Residuals:

Min 1Q Median 3Q Max

-2.66224 -0.53516 0.01267 0.45869 2.62460
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Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.01346 0.13572 -0.099 0.921

x 3.27787 0.29793 11.002 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 693.12 on 499 degrees of freedom

Residual deviance: 342.09 on 498 degrees of freedom

AIC: 346.09

Number of Fisher Scoring iterations: 6

2.2 Generalized linear models in SAS, Matlab and SPSS

There are several procedures in SAS for generalized linear models. PROC
GLM (where G stands for ‘general’ not for ‘generalized’) can be used to fit
and test linear models. Binary and categorical response data can be han-
dled with PROC LOGISTIC, PROC PROBIT, PROC CATMOD and PROC
GENMOD. PROC GENMOD is based on the philosophy of generalized linear
models and allows user-defined link functions in addition to the commonly
used link functions.

In Matlab, Statistics toolbox has function glmfit and glmval. SPSS
Advanced Statistics contains the module GENLIN.
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3 Theory of generalized linear models

3.1 Notation

The observed data set (y,X) contains n observations of 1 + p variables

y =
(

y1 y2 . . . yn

)T
(12)

X =











x11 x12 . . . x1p

x21 x22 . . . x2p
...

...
...

xn1 xn2 . . . xnp











. (13)

Variable y is the response variable and variables x1, x2, . . . xp are explanatory
variables or covariates. The observed value yi is treated as a realization of
a random variable Yi. In experimental setup, the explanatory variables have
fixed values set by the experimenter. In observational setup, the value xij

can be understood to be a realization of a random variable Xij but when
distribution of Yi is considered xij is taken as fixed.

The parameters include the regression coefficients

β =
(

β1 β2 . . . βp

)T
, (14)

the linear predictors

η =
(

η1 η2 . . . ηn

)T
, (15)

the expected responses

µ =
(

µ1 µ2 . . . µn

)T
, (16)

and the canonical parameters

θ =
(

θ1 θ2 . . . θn

)T
. (17)

3.2 Model assumptions

1. The distribution of Yi belongs to the exponential family. For the expo-
nential family, the density function can be presented in the form

fYi
(yi; θi, φ) = exp

(

ai(yiθi − b(θi))

φ
+ c(yi, φ/ai)

)

, (18)

where
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• θi, i = 1, . . . , n are unknown parameters (canonical parameters),

• φ is the dispersion parameter (scale parameter) that can be known
or unknown,

• ai, i = 1, . . . , n are known prior weights of each observation and

• b() and c() are known functions. The first derivative b′() is mono-
tonic and differentiable.

2. Random variables Y1, Y2, . . . , Yn are mutually independent.

3. The expected value µi = E(Yi) depends on linear predictor ηi =
∑p

j=1 xijβj

through monotonic and differentiable link function g

g(µi) = ηi. (19)

For instance, normal, binomial, Poisson and gamma distributions belong
to the exponential family. For exponential family (18) it holds

E(Yi) = b′(θi) = µi (20)

and

Var(Yi) =
b′′(θi)φ

ai

=
V (µi)φ

ai

. (21)

As shown in section 3.8, the assumption on the exponential family can be
relaxed.

3.3 Likelihood

The log-likelihood of y1, . . . , yn from an exponential family with known dis-
persion parameter φ can be written

l(θ1, . . . , θn; φ, a,y) =
n
∑

i=1

(

ai(yiθi − b(θi))

φ
+ c(yi, φ/ai)

)

(22)

If there are no restrictions for parameters θ1, . . . , θn, the model is saturated,
i.e. it has as many parameters as there are observations. In a GLM, the
parameters θ1, . . . , θn depend on X and the parameters β1, . . . , βp through
functions b() and g()

p
∑

j=1

βjxij = ηi = g(µi) = g(b′(θi)). (23)
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Therefore, the log-likelihood can be written also a function of the parameters
µ1, . . . , µn or as a function of the parameters β1, . . . , βp

l(µ1, . . . , µn; φ, a,y) =
n
∑

i=1

(

ai(yi(b
′)−1(µi) − b((b′)−1(µi)))

φ
+ c(yi, φ/ai)

)

, (24)

l(β1, . . . , βp; φ, a,y) =
n
∑

i=1

(

ai(yi(b
′)−1(g−1(

∑p
j=1 βjxij)) − b((b′)−1(g−1(

∑p
j=1 βjxij))))

φ
+ c(yi, φ/ai)

)

.

(25)

3.4 Canonical link

The link function for which it holds ηi = g(µi) = θi is called canonical link.
Because µi = b′(θ), it follows g = (b′)−1. The use of canonical link function
simplifies calculations but this alone does not justify the use of canonical
link. The link function should be selected on the basis of the data and prior
knowledge on the problem.

3.5 Score function, observed information and expected
information (Fisher information)

The partial derivative of log-likelihood with respect to some parameter is
called score or score function. In the case of the exponential family (22) we
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obtain

∂l

∂θi
=

ai(yi − b′(θi))

φ
, (26)

∂l

∂µi
=

∂l

∂θi

∂θi

∂µi
=

ai(yi − b′(θi))

φ

1

V (µi)
, (27)

∂l

∂ηi
=

∂l

∂θi

∂θi

∂µi

∂µi

∂ηi
=

ai(yi − b′(θi))

φ

1

V (µi)
(g−1)′(ηi), (28)

∂l

∂βj

=
n
∑

i=1

∂l

∂θi

∂θi

∂µi

∂µi

∂ηi

∂ηi

∂βj

=
n
∑

i=1

ai(yi − b′(θi))

φ

1

V (µi)
(g−1)′(ηi)xij =

1

φ

n
∑

i=1

ai(yi − µi(β))xij

V (µi(β))g′(µi(β))
(29)

where the notation µi(β) emphasizes the fact that µi depends on β.
The observed information is the negative of the matrix of second order

partial derivatives of log-likelihood

J(β,y) = −∂2l(β,y)

∂β2 =









−
∑n

i=1
∂2l(β,yi)

∂β2
1

. . . −
∑n

i=1
∂2l(β,yi)
∂β1∂βp

...
. . .

...

−
∑n

i=1
∂2l(β,yi)
∂βp∂β1

. . . −
∑n

i=1
∂2l(β,yi)
∂βp∂βp









(30)

and the Fisher information or expected information is the expected value of
observed information

I(β) = EY(J(β,Y)) =

n
∑

i=1

EYi
(J(β, Yi)) = −

n
∑

i=1

E

(

∂2l(β, Yi)

∂β2

)

. (31)

3.6 Estimation

The maximum likelihood estimate for β is obtained by solving score equations

∂l(β,y)

∂β
= 0. (32)

Usually the estimation requires numerical methods. Traditionally, the maxi-
mum likelihood estimation is carried out with Fisher scoring (also called iter-
ative weighted least squares) which is a modification of the Newton-Raphson
algorithm.
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In Newton-Raphson update rule

β̂
(t+1)

= β̂
(t)

+ J−1∂l(β,y)

∂β
(33)

the observed information J is replaced by the expected information I. After
some algebra, this leads to the update formula

β̂
(t+1)

= (XTW(t)X)−1XTW(t)z(t), (34)

where

W(t) =







w
(t)
1

. . .

w
(t)
1






, (35)

w
(t)
i =

ai
[

g′
(

µi(β̂
(t)

)
)]2

V
(

µi(β̂
(t)

)
)

, (36)

z(t) = (z
(t)
1 . . . z(t)

n )T (37)

z
(t)
i = ηi(β̂

(t)
) + (yi − µi(β̂

(t)
))g′

(

µi(β̂
(t)

)
)

. (38)

It can be seen that the updating rule depends on the distribution of Yi only
through the variance function V .

When the maximum likelihood estimator β̂ exists, it is consistent and
asymptotically normal with expected value β and covariance matrix φ(XTWX)−1.

The dispersion parameter φ can estimated by the deviance (see Sec-
tion 3.7) estimator

φ̂ =
D

n − p
(39)

or the moment estimator

φ̂ =
1

n − p

n
∑

i=1

ai(yi − µi(β̂))2

V (µi(β̂))
. (40)

3.7 Deviance

Deviance is defined as

D(y; µ̂) = 2φ(l(y;y) − l(µ̂;y)) (41)
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where l(y;y) is the log-likelihood of the saturated model (full model). In the
saturated model, the number of parameters equals the number of observations
and likelihood obtains its maximum for the model class. Scaled deviance is
defined as

D∗(y; µ̂) =
D(y; µ̂)

φ
(42)

As seen in Section 4.5, deviance is closely related to the likelihood ratio test.

3.8 Quasi-likelihood

GLMs allow defining the variance function independently from the link func-
tion. The assumption that the distribution of Yi belongs to the exponential
family can be replaced by an assumption that concerns only the variance of
Yi

Var(Yi) =
φV (µi)

ai
. (43)

Parameters can be estimated maximizing quasilikelihood

Q(β;y) =
1

φ

n
∑

i=1

∫ µi

yi

a(yi − t)

V (t)
dt. (44)

The form of quasilikelihood function is chosen so that partial derivatives

∂Q(β;y)

∂βj

=
1

φ

n
∑

i=1

ai(yi − µi(β))xij

V (µi(β))g′(µi(β))
. (45)

are similar to the partial derivatives of likelihood function and consequently
the parameters can be estimated by Fisher scoring.
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4 Modeling

4.1 Process of modeling

1. Study design

2. Data collection

3. Selection of model class

4. Estimation

5. Model checking

6. Conclusions

7. Reporting

4.2 Residuals

Residuals can be used to check the model fit. For GLMs different kind of
residuals can be defined:

Raw residuals (response residuals)

ri = yi − µ̂i (46)

Pearson residuals

rP,i =
yi − µ̂i

√

V (µ̂i)/ai

(47)

whose squared sum
n
∑

i=1

r2
P,i = X2 (48)

is the Pearson chi-squared goodness-of-fit statistic.

Deviance residuals
rD,i = sign(yi − µ̂i)

√

di, (49)

where

di = 2ai (yi (θi(yi) − θi(µ̂i)) − b (θi(yi)) + b (θi(µ̂i))) . (50)
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The deviance is the squared sum of the deviance residuals

n
∑

i=1

r2
D,i = D(y; µ̂) (51)

Anscombe residuals where yi’s and µi’s are transformed so that the resid-
uals become approximately normally distributed.

In R, method residuals for class glm can compute raw, Pearson and de-
viance residuals.

Influential observations can be identified, for instance, by calculating dif-
ferences

∆iβ̂ = β̂ − β̂(i)
(52)

where β̂
(i)

is estimated from data without observation i.

4.3 Nonlinear terms

GLMs allow inclusion of known transformations of the covariates as far as
the linear predictor ηi can be presented as a sum of transformed covariates.
For instance, the design matrix may be defined as

X =







1 x11 x2
11 x3

11
...

...
...

...
1 xn1 x2

n1 x3
n1






. (53)

to fit a GLM with a third order polynomial for covariate x1.

4.4 Interactions

Interaction terms are nonlinear transformations of two or more covariates.
The type of interaction can synergistic (the joint effect is stronger than the
additive effect) or antagonist (the joint effect is weaker than the additive
effect). It is usually a bad idea to include interaction terms without the
corresponding main effects.
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4.5 Hypothesis testing

4.5.1 Single test

The test of hypothesis

H0 : βj = 0

H1 : βj 6= 0

for a certain regression coefficient βj of a GLM can be based on the likelihood
ratio test

Λ =
sup{L(β1, . . . , βp;y) : βj = 0}

sup{L(β1, . . . , βp;y)} (54)

Using log-likelihoods the test statistic can be written

−2 log Λ = 2(l(β̂;y) − l(β̂0;y)) (55)

where β̂ = β̂1, . . . , β̂p and β̂0 = β̂1, . . . , βj = 0, . . . , β̂p are the maximum
likelihood estimates under the two models. The statistic −2 log Λ follows
asymptotically χ2

1 distribution The test can written also in terms of deviance

−2 log Λ =
D(y; β̂0) − D(y; β̂)

φ
. (56)

The likelihood ratio test for more than one parameter is similar but the
test statistic follows asymptotically χ2 distribution with degrees of freedom
equal to the difference in dimensionality of β and β0. If the dispersion pa-
rameter is not known, the test statistics

D(y; β̂0) − D(y; β̂)

φ̂(p − q)
(57)

where q is the dimensionality of β follows asymptotically F-distribution
Fp−q,n−p.

4.5.2 Multiple tests

Let p1, p2, . . . , pm be the nominal p-values from m tests. Family-wise error
rate (FWER) is the probability that at least one true null hypothesis is falsely
rejected. Several approaches for controlling FWER exist: a simple approach
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is the Bonferroni correction where the nominal p-values are compared to
the α/m where α is the significance level. If the tests are dependent, the
Bonferroni correction is too conservative and the actual significance level is
smaller than α.

False discovery rate (FDR) is the expected proportion of incorrectly re-
jected null hypothesis in a set of hypotheses. The FDR analysis has been
used e.g. in genome wide association (GWA) studies where the number of
tests can be one million.

4.6 Model selection

Multiple models. Competing models are fitted and the estimated model
parameters are reported for each model. The properties of the models
are discussed. This is actually not a formal model selection method but
a commonly used practical approach to the problem. The approach is
feasible only if the number of the competing models is small.

Likelihood ratio test can be used to compare nested models.

Stepwise regression. In forward selection, the procedure starts with a
null model and covariates are added one by one. The procedure con-
tinues until the newly added covariate does not improve the model.
The improvement of the model defined e.g. by the p-value of the
likelihood ratio test. In backward elimination, the procedure starts
with the full model and covariates are removed one by one. The pro-
cedure continues until the removal of a covariate makes the model
worse. The lasso (least absolute shrinkage and selection operator,
http://www-stat.stanford.edu/~tibs/lasso.html) can be under-
stood as a modernized version of stepwise regression (not based on like-
lihood). Stepwise methods cannot guarantee that the best model will
be selected. Automated methods should not replace careful thinking.

Information criteria: Akaike information criterion (AIC), Bayesian infor-
mation criterion (BIC), Bayes factor, crossvalidation, etc. AIC and
BIC are straightforward to compute

AIC = −2l(β;y) + 2p,

BIC = −2l(β;y) + p log(n),
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where p is the number of parameters in the model. The model with
smallest value of AIC (or BIC if that is used) will be considered the best.
Both AIC and BIC penalize models for a higher number of parameters.
In BIC, the penalty depends also on the number of observations.

4.7 Experimental and observational studies

Experimental data origin from data generating mechanism where the exper-
imenter selects the values of some variables. In observational data, all values
are recorded as observed. The same GLMs can be used for both types of
data. The analysis follows the same lines but the interpretation of the re-
sults may differ. In general, only experimental data allows causal inference.
With observational data, the possibility of confounders and alternative causal
explanations must be accounted.

4.8 Missing data

Usually there are missing observations in real world data. A statistician has
the following options:

Ignore the missing observations and analyze only the complete cases. This
is applicable if only few observations are missing.

Impute the missing values. Multiple imputation is preferred over single im-
putation. The challenges lie in the definition of the imputation model.

Model the data. The likelihood becomes an integral over the missing values.
The results are sensitive to model misspecification and estimation may
require a lot of computational resources.

4.9 Few words on independence

Term “independence” may have different meanings depending on the context.
In statistics, the term refers to independence of events or to independence of
random variables. Events A and B are independent if

P (A and B) = P (A)P (B). (58)

or equivalently, using conditional probabilities

P (A |B) = P (A) (59)
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or
P (B |A) = P (B). (60)

Random variables X and Y are independent (marked X ⊥⊥ Y ) if

FX,Y (X, Y ) = FX(X)FY (Y ). (61)

The term “linear independence of random variables” is sometimes used to
indicate that the random variables are uncorrelated but this usage is not
recommended. In general, zero correlation does not imply independence.

In linear algebra, linear independence of a family of vectors means that
none of the vectors can be presented as a linear combination of the other
vectors. A matrix whose columns are linearly independent has full rank.

The concept of conditional independence is important when causality is
considered. Random variables X and Y are independent on the condition of

Z (notation X
⊥⊥
Z Y or X ⊥⊥ Y |Z may be used) when

FX,Y |Z(X, Y |Z) = FX |Z(X |Z)FY |Z(Y |Z) (62)

or equivalently
FX, |Y,Z(X | Y, Z) = FX |Z(X |Z). (63)
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5 Binary response

5.1 Representations of binary response data

In binary response data, the response Yi has two possible values, for instance,
0 and 1. Binary response data can be presented in different formats:

Data matrix
x y

250 0
250 1
350 1
300 0
250 0
300 1

...
...

Weighted data matrix
x y frequency

250 0 23
250 1 12
300 1 21
300 0 19
350 0 7
350 1 13

Frequency table (crosstabulation)
Y = 0 Y = 1

x = 250 23 12
x = 300 21 19
x = 350 7 13

The response Yi can be either a Bernoulli random variable (binary re-
sponse) or a sum of Bernoulli random variable (binomial response). In the
latter case, the observational units with the identical covariate values belong
to the same covariate class. For the ith covariate class mi binary responses
are recorded and the number of responses 1 is denoted by Ki. The binomial
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response is defined

Yi =
Ki

mi
. (64)

5.2 Link functions for binary data

If the possible values of Yi are 0 and 1, it holds

P (Yi = 1) = E(Yi) = g−1(ηi), (65)

where the possible values of the inverse link function g−1() belong to the
interval (0, 1). Any cumulative distribution function defines the inverse of a
link function. The commonly used link functions are the logit link

g(µi) = logit(µi) = log

(

µi

1 − µi

)

, (66)

the probit link
g(µi) = probit(µi) = Φ−1(µi), (67)

where Φ−1 is the inverse of cumulative distribution function (cdf) of the
standard normal distribution and the complementary log-log link

g(µi) = cloglog(µi) = log(− log(1 − µi)). (68)

5.3 Odds and log-odds

It is often interesting to compare the estimated responses for different values
of covariates. Denote

pA = P (Yi = 1 | ηA) (69)

pB = P (Yi = 1 | ηB) (70)

where ηA and ηB are the linear predictors for certain values of covariates.
Now the odds ratio is defined as

pA/(1 − pA)

pB/(1 − pB
(71)

and the logarithm of the odds ratio becomes

log

(

pA/(1 − pA)

pB/(1 − pB

)

= log

(

pA

1 − pA

)

− log

(

pB

1 − pB

)

= logit(pA)− logit(pB),

(72)
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which in the case of logit link simplifies

logit(pA) − logit(pB) = ηA − ηB. (73)

5.4 Latent variables

Consider an example where the effectiveness of an insecticide to mosquitos is
studied. Mosquitos have different resistance to the insecticide. A mosquito
dies (Y = 1) if the amount of insecticide x is higher than a threshold value
T , which varies in the population. Because T cannot be directly measured,
it is called latent variable. If T follows the normal distribution with mean
−α/β and variance 1/β2 we obtain for a mosquito randomly chosen from the
population

P (Y = 1) = P (T ≤ x) = Φ

(

x − (−α/β)

1/β

)

= Φ(α + βx). (74)

In other words, the use of normal distributed latent variable led to the probit
model. If T follows logistic distribution, we will end up with the logistic
model. If T follows Gumbel distribution, we will end up with the GLM with
cloglog link.

5.5 Overdispersion

Overdispersion means that the variance in the data is greater than the vari-
ance assumed in the model. The sum of independent Bernoulli random vari-
ables

K = Y1 + Y2 + . . . + Ym (75)

follows binomial distribution K ∼ Bin(m, µ) where E(Yi) = µ. It follows
that Var(K) = mµ(1 − µ). In real world datasets, however, the assumption
of independence is often unrealistic and Var(K) > mµ(1− µ). This is called
overdispersion.

5.6 Non-existence of maximum likelihood estimates

Maximum likelihood estimates do not exist if the data can be perfectly sep-
arated on the basis of covariate values, for example, response 1 is always
obtained if x > 100 and response 0 is always obtained if x < 100.

27



Generalized linear models University of Helsinki, spring 2009

5.7 Example: Switching measurements

The Josephson junction (JJ) circuits are important non-linear components
of superconducting electronics. The strong dependence of the physical pa-
rameters of JJ circuits as function of changes in environmental variables, for
instance, temperature, electric noise, and magnetic field makes the JJ circuits
to have several applications as ultra-sensitive sensors. Moreover, certain JJ
circuits are promising candidates for realization of quantum computation.
An experiment called switching measurement is a common way to probe
the properties of a JJ circuit sample. In the experiment, sequences of cur-
rent pulses are applied to the sample, while the voltage over the structure
is monitored. Switching measurements are ideal applications for design of
experiments in sense that the underlying parametric model for the switching
dynamics of a single JJ can be derived directly from the laws of physics.
With quantum mechanical arguments, it can be shown that the probability
of the voltage response can be approximated by

P (Y = 1) = 1 − e− exp(ax+b)

P (Y = 0) = e− exp(ax+b), (76)

where a and b are unknown parameters to be estimated and x is the height
of the current pulse. It follows that the measurement data can be modeled
by a GLM with cloglog link function.

In an experiment carried out in Low Temperature Laboratory, Helsinki
University of Technology in August 2005, a sample consisting of aluminium–
aluminium oxide–aluminium Josephson junction circuit in a dilution refrig-
erator at 20 millikelvin temperature was connected to computer controlled
measurement electronics in order to apply the current pulses and record the
resulting voltage pulses. The resistance of the sample at room temperature
suggested that a pulse of 300 nA always causes a switching (response 1),
which gave the upper limit for the initial estimation. The lower limit for the
initial estimation, 200 nA was roughly estimated from the dimensions of the
Josephson junction by an experienced physicist. The experiment was carried
out sequentially so that the height of pulse for stage was determined using
the measurement data recorded on the earlier stages.
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6 Count response

6.1 Representations of count response data

In the count data, the possible values the response variable Yi are integers
0, 1, 2, . . .. In practical situations there is sometimes an upper limit for Yi

but this can be ignored if E(Yi) is far below the the upper limit. It is often
assumed that the counted events arise from a Poisson process whose intensity
depends on the covariates.

When the number of events for each individual are observed, the data
can be presented in the form of data matrix

x1 x2 y
250 A 7
250 A 1
350 B 1
300 A 0
250 B 8
300 B 3

...
...

...

or weighted data matrix
x1 x2 y frequency

250 A 0 4
250 A 1 2
250 A 3 1
250 B 0 4
250 B 1 5
250 B 2 3
250 B 3 2
300 A 0 6

...
...

...
...

When the number of events are observed only for each covariate class, the
data can be presented in the form of frequency table (crosstabulation)

x2 = A x2 = B
x1 = 250 23 12
x1 = 300 21 19
x1 = 350 7 13
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6.2 Link functions for count data

Count data can be modeled by a GLM with the logarithmic link function

log(µi) =

p
∑

j=1

βjxij . (77)

These models are also called Poisson regression or log-linear models.

6.3 Likelihood

The log-likelihood Poisson distributed response has the form

l(y;β) =
n
∑

i=1

yi log(µi) − µi − log(yi!) =

n
∑

i=1

(

p
∑

j=1

βjxijyi − exp

(

p
∑

j=1

βjxij

)

− log(yi!)

)

. (78)

Example: Full likelihood for missing data Count response yi, con-
tinuous covariate xi1 and binary covariate xi2 are recorded for the sample
i = 1, 2, . . . , 1000. yi and xi1 are observed for all i but xi2 is missing for
i = 1, 2, . . . , 250. We can assume that the values xi2 are missing at random
(MAR), i.e. the missingness does not depend on the unobserved value itself
but it may depend on the observed response or on the other covariate. The
full likelihood for the data can be written

L(y; β1, β2) =
250
∏

i=1

(

p(Xi2 = 1)p(xi1|Xi2 = 1)
exp(β1xi1 + β2)

yi exp(− exp(β1xi1 + β2))

yi!
+

p(Xi2 = 0)p(xi1|Xi2 = 0)
exp(β1xi1)

yi exp(− exp(β1xi1))

yi!

)

×
1000
∏

i=251

p(xi2)p(xi1|xi2)
exp(β1xi1 + β2xi2)

yi exp(− exp(β1xi1 + β2xi2))

yi!
. (79)

In order to calculate this likelihood we need to specify the marginal distri-
bution p(x2) and the conditional distribution p(x1|x2). This may require
specification of some additional parameters that are considered as nuisance
parameters and are estimated together with the parameters of interest β1

and β2.
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6.4 Offset

The intensity of a process is defined in the form events/time and the observed
number of events depends on the system has been followed up. In the GLM,
the time is taken into account adding an offset term

log(µi) =

p
∑

j=1

βjxij + log(ti), (80)

where ti is the offset, i.e. the follow-up time or the time under exposure. The
regression coefficient of the offset is fixed to 1. In R, this can done with the
model term offset.

6.5 Overdispersion

For the Poisson distribution the variance is equal to expected value. In real-
world data, it is common that the observed variance is higher, i.e. there is
overdispersion.

6.6 Example: Follow-up for cardiovascular diseases

Cohort studies are important in epidemiological research. A population co-
hort represents the population of specified age range living in a certain geo-
graphical area. The FINRISK cohort 1982 consists of men and women who
were 25-64 years old at baseline year 1982 (the beginning of the follow-up).
The cohort has been followed up for deaths and fatal and non-fatal events
of cardiovascular diseases until the end of year 2006. The example data set
contains the number of recorded events grouped by year, age group, sex and
area (Eastern Finland / Western Finland). The number of events should be
considered in proportion to the person years of follow-up.
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7 Nominal and ordinal response

7.1 Representations of nominal response data

Data matrix
x y

250 A
250 C
350 C
300 A
250 B
300 B

...
...

Weighted data matrix
x y frequency

250 A 23
250 B 12
250 C 4
300 A 21
300 B 19
300 C 7
350 A 7
350 B 13
350 C 3

Frequency table (crosstabulation)
Y =′ A′ Y =′ B′ Y =′ C ′

x = 250 23 12 4
x = 300 21 19 7
x = 350 7 13 3

In nominal response data, the response is one of the categories. In ordinal
response data, the categories have a natural order. Binomial response is a
special case of both nominal and ordinal response.

When there are more than two categories, nominal and ordinal response
have a multivariate nature. For the ith covariate class mi responses are
recorded and the number of responses in the categories 1, 2, . . . , Q is denoted
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by a vector
(

Ki1Ki2 . . .KiQ

)

. The response is then defined as vector

Yi =
(

Ki1

mi

Ki2

mi
. . .

KiQ

mi

)

. (81)

7.2 Multinomial distribution

Multinomial distribution is a generalization of binomial distribution in the
case when there are more than two categories

fi(ki1, ki2, . . . , kiQ; mi, πi1, πi2, . . . , πiQ) =
mi!

ki1!ki2! · · · kiQ!
πki1

i1 πki2

i2 · · ·πkiQ

iQ ,

(82)
where πiq’s are category probabilities for which

∑Q
q=1 πiq = 1.

Multinomial distribution does not belong to the exponential family de-
fined in equation (18) but it can derived from the Poisson distribution. Let
K1, K2, . . . , KQ be independent Poisson distributed random variables with
means λ1, λ2, . . . , λQ. The sum m = K1 +K2 + . . .+KQ is a random variable
that follows Poisson distribution with the mean λ = λ1 +λ2 + . . .+λQ. Then
the conditional distribution

f(k1, k2, . . . , kQ; m) =

∏Q
q=1 λ

kq
q e−λq

kq

/

λme−λ

m
=

(

λ1

λ

)k1
(

λ2

λ

)k2

· · ·
(

λQ

λ

)kQ m!

k1!k2! · · · kQ!
(83)

has the form of the multinomial distribution.

7.3 Regression models for nominal and ordinal response

There are alternative ways to parameterize regression models for nominal
and ordinal response. For nominal response data, one of the categories is
typically chosen as the reference category and the model has form

log

(

πiq

πi1

)

= β0q +

p
∑

j=1

βjqxij , (84)

where the first category serves as reference. For ordinal response data, the
model can be written using cumulative probabilities γiq = πi1 +πi2 + . . .+πiq

log

(

γiq

1 − γiq

)

= β0q +

p
∑

j=1

βjqxij . (85)
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7.4 Proportional odds model

In proportional odds model it is assumed that the effect of the covariates is
the same between all response categories on the logarithmic scale. Model (84)is
then written as

log

(

πiq

πi1

)

= β0q +

p
∑

j=1

βjxij , (86)

and model (85) as

log

(

γiq

1 − γiq

)

= β0q +

p
∑

j=1

βjxij . (87)

7.5 Latent variable interpretation for ordinal regres-
sion

In some situations, the actual variable of interest is a continuous response
that is difficult or impossible to measure. Instead, an ordinal response vari-
able is measured. It can be assumed that there are unobserved cutpoints
that divide the continuous response into categories.

7.6 Nominal and ordinal response data in R

Because of the multivariate nature of the response, function glm cannot be di-
rectly applied to nominal or ordinal response data in the general case. When
the data can be presented in the form a frequency table, log-linear models can
be fitted using glm(...,family=poisson(link=log)). Function multinom

from the package nnet can be used to fit multinomial log-linear models via
neural networks. Function lopr from the package MASS can be used to fit pro-
portional odds models with logit, probit or cloglog links. Function vglm from
the package VGAM fits a large variety of vector GLMs including multinomial
logit models and proportional odds models.
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8 Positive response

8.1 Characteristics of positive response data

The response variable is continuous and obtains only positive values. Non-
negative response may also obtain value 0. Typically, the distribution of the
response is skewed. We may identify three situations:

1. All observed values are positive and “far” from zero.

2. All observed values are positive and some values are relatively close to
zero.

3. All observed values are non-negative and a number of them are exactly
zero.

The first situation is the easiest to handle whereas the third situation often
requires two models, one for the probability of zero response and one for the
positive response.

Models for positive response data often assume that the coefficient of
variation (CV), the ratio of the the standard deviation to the expectation,

CV =

√

Var(Y )

E(Y )
. (88)

is constant. This is equivalent to assuming that the variance is proportional
to square of the expectation

Var(Yi) ∝ µ2
i . (89)

8.2 Gamma distribution

The gamma distribution is a distribution with a constant coefficient of vari-
ation. The gamma distribution has the density function

f(y; λ, ν) =
1

λνΓ(ν)
yν−1e−y/λ, y > 0, (90)

where ν > 0 is the shape parameter and λ > 0 is the scale parameter.
Alternative parameterizations exist. Exponential distribution is a special
case of the gamma distribution with the shape parameter ν = 1. The
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gamma distribution belongs to the exponential family (18) with θi = 1/(νλi),
b(θ) = log(−θ) and φ = 1/ν and has the mean E(Yi) = νλi and variance
Var(Yi) = νλ2

i . Usually the dispersion parameter φ is not known and need
to be estimated.

8.3 Link functions for gamma distributed response

The canonical link for the gamma distribution is the inverse link (reciprocal)

g(µi) =
1

µi
. (91)

Because g(µi) is always positive, the regression parameters β need to be
restricted so that the linear predictor is positive. Identity link can be also
for the gamma distribution. Restrictions for the regression parameters β are
needed also the identity link.

Log-link is often used for gamma distributed response. The use of log-link
implies multiplicative effect of the covariates. Restrictions for the regression
parameters are not needed.

8.4 Lognormal distribution

An alternative to the GLM with gamma distributed response is to take the
logarithm of the response and assume that log(Y ) follows normal distribution.
Then Y follows log-normal distribution

f(y; µ, σ) =
1

yσ
√

2π
exp

(

−(log(y) − µ)2

2σ2

)

, y > 0, (92)

where µ is the mean of log(Y ) and σ2 is the variance of log(Y ).

8.5 Inverse Gaussian distribution

The inverse Gaussian distribution is another standard distribution for posi-
tive responses in GLM. The pdf has form

f(y; µ, λ) =

√

λ

2πy3
exp

(−λ(y − µ)2

2µ2y

)

, y > 0, (93)
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where µ > 0 is location parameter and λ > 0 is the shape parameter. The
inverse Gaussian distribution belongs to the exponential family (18) and has
mean µ and variance µ3/λ. When λ tends to infinity the pdf of the inverse
Gaussian distribution approaches the pdf of the normal distribution.

Link functions used with the inverse Gaussian distribution include iden-
tity, log, inverse and inverse squared link,

g(µi) =
1

µ2
i

, (94)

which is the canonical link.

8.6 Compound Poisson model

In the compound Poisson model, the response is a sum of K independent
identically distributed random variables and K follows Poisson distribution.
The compound Poisson model can be used, for instance, to model the total
amount of claims for an insurance company.

8.7 Weibull distribution

The Weibull distribution has the pdf

f(y; ν, λ) =
ν

λ

(y

λ

)ν−1

exp
(

−
(y

λ

)ν)

, y ≥ 0, (95)

where ν > 0 is the shape parameter and λ > 0 is the scale parameter.
The Weibull distribution belongs to the exponential family only if the shape
parameter is known. The special case ν = 1 is the exponential distribution.

8.8 Pareto distribution

The Pareto distribution has the pdf

f(y; ν, c) =
νcν

yν+1
, y ≥ c, (96)

where ν > 0 is the shape parameter and c > 0 is the scale parameter.
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9 Time-to-event response

9.1 Representations of time-to-event data

Data matrix – one time variable: the time under follow-up
x t d

5.4 10 0
6.0 7.7 1
4.3 10 0
4.4 10 0
5.1 4.5 1
5.9 10 0

...
...

Data matrix – two time variables: the start and the end of the follow-up
x t1 t2 d

5.4 41.3 51.3 0
6.0 60.3 68.0 1
4.3 54.4 64.4 0
4.4 62.9 72.9 0
5.1 45.0 49.5 1
5.9 58.7 68.7 0

...
...

Analysis of time-to-event data is also known by names survival analysis,
lifetime data analysis, failure time analysis, reliability analysis and duration
analysis.

9.2 Censoring and truncation

In time-to-event data, the exact event times are not always available for all
observations:

Right censoring : It is only known that Ti > ci. ci is observed.

Left censoring : It is only known that Ti < ci. ci is observed.

Interval censoring : It is only known that cli < Ti < cui. cli and cui are
observed.
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Some observations may be completely missing:

Left truncation : If T < c the observation is not present in the data set.
c is known.

Right truncation : If T > c the observation is not present in the data set.
c is known.

9.3 Prospective and retrospective studies

In a prospective study, a cohort of subjects is followed up for the future
events. In a retrospective study, data on the past events are collected. The
study illustrated in Figure 1 is a prospective study with some retrospective
characteristics.

9.4 Survival function and hazard function

Consider event time T with the cdf F (t) and the pdf f(t). Survival (or
survivor) function gives the probability the time of the event is later than a
specified time

S(t) = 1 − F (t) = P (T > t). (97)

Hazard function is defined as the event rate at time t conditional on survival
until time t or later

λ(t) = lim
h→0+

P (t < T < t + h | T ≥ t)

h
=

f(t)

S(t)
. (98)

Integration over time leads to cumulative hazard function

Λ(t) =

∫ t

0

λ(u)du = − log(S(t)). (99)

For example, exponential function with the pdf f(t) = λe−λt and the cdf
F (t) = 1 − e−λt has the hazard function λ(t) = λ, i.e. the hazard does not
depend on the time.
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Figure 1: Illustration of a study design leading to left and right censored
data with left truncation. The Lexis diagram of a cohort study is dis-
played. The follow-up period is from the year 1992 to the year 2001
and the age of the subjects is 25–65 years at the baseline examination.
The following variables are presented: B = age at baseline examination,
X = time of first coronary heart disease (CHD) event, C = censoring time,
T = observed time and D = time of death. In the diagram, the data of
eight subjects are presented. Two subjects have an event observed during
the follow-up (X = 65 and X = 53). One of the events is fatal (X = 53 and
D = 53) and the other is non-fatal (X = 65 and D = 68). One subject is
right censored (C = 39). Two subjects have a left censored event (X = 48
and X = 36). At the baseline examination, the existence of a left censored
event is recorded but the exact time of an event remains unknown. One of the
subjects with left censored event dies during the follow-up period (D = 45);
the other survives up to the end of follow-up (C = 64). Three subjects are
completely unobserved (D = 56, D = 49 and D = 34). One of them had
fatal CHD event (X = 34 and D = 34), one had a non-fatal event (X = 50)
and died later (D = 56) and one died (D = 49) without a preceding CHD
event.
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9.5 Proportional hazards model

In proportional hazards model, the covariates have a multiplicative effect on
the hazard function

λi(t) = λ0(t) exp(β1xi1 + β2xi2 + . . . + βpxip), (100)

where λ0(t) defines the baseline hazard. The baseline hazard function may
be defined parametrically, for example, the hazard function of the Weibull
distribution is often used. However, the most popular choice is the Cox model
where λ0(t) is specified as a function that changes only at observed events
times {ti : di = 1}. The Cox model can be estimated via partial likelihood.
The likelihood contribution of an event at time ti equals

Ri(ti)λi(ti)
∑N

j=1 Rj(ti)λj(ti)
, (101)

where Ri(t) is the at-risk indicator. Censored events contribute to the partial
likelihood only through their presence in the at-risk set.

In R, Cox models can be fitted with cph from the package Design or
coxph from the package survival and Weibull models can be fitted with
weibreg from the package eha. The response is defined as a survival object
which can be created with the function Surv.
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10 Extensions and related models

10.1 Beyond exponential family

The standard GLM assumptions on the exponential family, independence and
the link function where presented in Section 3. Quasi-likelihood considered
in Section 3.8 allows defining the variance function independently from the
link function for binomial and count response. The disadvantage is that
the quasi-likelihood is not a likelihood and the likelihood based theory does
not apply directly. Multinomial response considered in Section 7 does not
directly fit to the framework of exponential family. Cox model considered
in Section 9.5 is a semi-parametric model where the time-to-event response
does not belong to the exponential family.

10.2 Dependent responses

The assumption on the independence of the responses Y1, Y2, . . . , Yn is unreal-
istic in many situations. In longitudinal data, the measurements are done
for the same individuals at several time points. Usually, the measurements of
the same individual are dependent. Repeated measurements are collected
also in various other situations. For example, repeated measurements data
are obtained when the diameters of trees are measured at different heights.
In clustered data, the dependence follows from hierarchical structure of the
data. For instance, the children from the same family are more similar than
children from different families.

10.2.1 Generalized linear mixed models (GLMM)

Mixed models have both fixed covariate effects and random covariate effects.
Random effects are considered as random variables. Often the main interest
lies in the fixed effects and the parameters for the random effects are nuisance
parameters. In a typical situation with repeated measurements, the random
effect term represents all individual characteristics that are not measured.
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10.2.2 Generalized estimation equations (GEE)

In the case of independent responses, the estimates β̂ are the solutions to
the score equations

Uj =
n
∑

i=1

yi − µi

Var(Yi)

∂µi

∂βj
= 0, j = 1, . . . , p. (102)

These estimation equations can be generalized for dependent responses. Let
yi denote the vector of responses for subject i with and let Di be the ma-
trix of derivatives ∂µi/∂βj . The estimates β̂ are iteratively solved from the
generalized estimation equations

U =

n
∑

i=1

DT
i V−1

i (yi − µi) = 0, (103)

where the matrix Vi is the covariance matrix of Yi.

10.3 Nonlinear covariate effects

10.3.1 Generalized additive models (GAM)

In generalized additive models, the covariates may have nonmonotonic non-
linear effect

g(µi) =

p
∑

j=1

fj(xij), (104)

where the functions fj are estimated from the data. Typically these func-
tion are smooth splines (piecewise polynomials), where the smoothness is
controlled by degree of freedom.

10.3.2 Neural networks

Artificial neural networks are highly nonlinear statistical models. The struc-
ture of the feedforward neural networks resembles GLM/GAM. In neural
network jargon, the covariates are called input and the response is called
output. The network consists of the input layer, one or more hidden layers
and the output layer. The hidden layer may be defined as

vik = ϕ

(

p
∑

j=1

β
(1)
kj xij

)

, k = 1, 2, . . . , q (105)
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where xi is the input and ϕ is an activation function that has a similar role
as the inverse link function has in GLMs. The output is then a nonlinear
transformation of weighted output of the hidden layer

yik = ϕ

(

q
∑

j=1

β
(2)
kj vij

)

, k = 1, 2, . . . , r. (106)

In neural networks, the emphasis is usually on prediction, not on interpreta-
tion.

10.4 Bayesian estimation of GLM

The likelihood expressions can be applied to both Bayesian and frequentist
analysis. The Bayesian inference requires also the priors of the model pa-
rameters to be specified. In R functions for Bayesian estimation of GLMs
are available in the package arm more complicated models can estimated us-
ing BUGS (http://mathstat.helsinki.fi/openbugs/ and http://www.

mrc-bsu.cam.ac.uk/bugs/) or user-made software (usually a C code).
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